WO2022166396A1 - 柱体表面打印烘干控制方法 - Google Patents

柱体表面打印烘干控制方法 Download PDF

Info

Publication number
WO2022166396A1
WO2022166396A1 PCT/CN2021/136937 CN2021136937W WO2022166396A1 WO 2022166396 A1 WO2022166396 A1 WO 2022166396A1 CN 2021136937 W CN2021136937 W CN 2021136937W WO 2022166396 A1 WO2022166396 A1 WO 2022166396A1
Authority
WO
WIPO (PCT)
Prior art keywords
drying
light intensity
printing
cylinder
pattern
Prior art date
Application number
PCT/CN2021/136937
Other languages
English (en)
French (fr)
Inventor
张毅
郁君健
刘嵩
Original Assignee
苏州斯莱克精密设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州斯莱克精密设备股份有限公司 filed Critical 苏州斯莱克精密设备股份有限公司
Publication of WO2022166396A1 publication Critical patent/WO2022166396A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • B41J3/40733Printing on cylindrical or rotationally symmetrical objects, e. g. on bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00212Controlling the irradiation means, e.g. image-based controlling of the irradiation zone or control of the duration or intensity of the irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00214Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns

Definitions

  • the present application relates to the field of digital printing, in particular to a method for controlling printing and drying on the surface of a cylinder.
  • UV (ultraviolet) ink is sprayed by the nozzle in the form of ink droplets.
  • this ink is sensitive to ultraviolet light of a specific wavelength, and can be dried by an LED ultraviolet lamp with a specific wavelength to cure the pattern on the surface of the substrate (ie, the tank).
  • LED ultraviolet lamp with a specific wavelength to cure the pattern on the surface of the substrate (ie, the tank).
  • 4 or more colors of ink primary colors are used, which are sequentially sprayed on the cylindrical surface of the can by the nozzle. The printing process is described later.
  • the ink droplets just sprayed on the substrate are dried at the same time (or with a certain delay), and then moved to the next station, and a color of ink is sprayed and dried until Complete the printing and drying of all color inks.
  • the "1pass" method that is, the print head sweeps the surface of the substrate once to complete the printing (the other is multi-pass printing, the print head sweeps the same position of the substrate multiple times to complete the printing)
  • this production process It is determined that the drying process has an important impact on the final print quality. Excessive and insufficient drying will cause the print quality to decline.
  • the technical problem to be solved by the present application is to provide a drying control method for printing on the surface of a cylinder, which is used in a one-pass printing method to improve the printing quality.
  • the present application provides a method for controlling printing and drying on the surface of a cylinder, including:
  • each area on the surface of the cylinder is dried by using the corresponding light intensity.
  • control table for establishing the corresponding relationship between pattern density and light intensity specifically includes: Step 1: Select a series of standard test colors in each primary color layer according to color density, and the ink droplets are uniform Distribution; Step 2: Record the current test conditions; Step 3: Adjust the drying light intensity; Step 4: Proof and dry the inkjet print pattern; Step 5: Compare the standard color and the proofing result, if the color consistency is up to If not required, repeat steps 3, 4, and 5, otherwise go to the next step; step 6; record and store the current standard color and its corresponding light intensity.
  • the test conditions include the relative movement speed between the nozzle and the substrate to be printed, the relative distance between the nozzle and the substrate to be printed, and the temperature at which the nozzle ejects ink droplets.
  • the method for dividing a pattern to be printed into multiple regions includes:
  • the pattern characteristics of the to-be-printed pattern are analyzed, and the continuous area in which the drying light intensity required by the density of the pattern belongs to the same preset range is divided into one area.
  • the drying light source in the drying of each area on the surface of the cylinder by using the corresponding light intensity, is composed of a plurality of drying light source units, and the plurality of drying light source units are according to the For the axial arrangement of the surface of the cylinder, the plurality of drying light source units can be individually controlled by partition, and each individually controlled partition is a control unit.
  • the drying of each area on the surface of the cylinder by using the corresponding light intensity specifically includes obtaining the corresponding relationship between the input control information and the light intensity output of each partition; according to the input control information and the light intensity output The corresponding relationship and the light intensity required for drying in each partition, obtain the input control information of each partition; output the input control information of each partition to the drying light intensity control circuit of each partition to obtain the light intensity required for partition drying .
  • the input control information is current information or voltage information.
  • the drying of each area on the surface of the cylinder with the corresponding light intensity further includes: checking whether the light source unit controlled by the drying light intensity control circuit fails; checking the input control information and the Whether the corresponding relationship between the light intensity output has changed, and if so, the corresponding relationship between the input control information and the light intensity output will be updated.
  • the checking whether the corresponding relationship between the input control information and the light intensity output has changed, and if there is a change, updating the corresponding relationship between the input control information and the light intensity output specifically includes: using a photoelectric sensor to move to a certain The drying light intensity control circuit outputs control information according to a certain rule at a suitable height at the base material directly above the drying light source, and records the received light intensity information output by the photoelectric sensor; then the detected relationship between the two is recorded. The curve is compared with the existing relationship curve, and if the change exceeds a predetermined range, the corresponding relationship between the input control information and the light intensity output is updated.
  • the present application also provides a digital printing machine, which adopts any one of the control methods.
  • each divided area is dried by applying the corresponding light intensity according to the light intensity required for drying, so that the drying effect is the best and the printing quality is the best good.
  • FIG. 1 is a schematic diagram of the positional structure of a nozzle and a drying lamp in the control method for printing and drying the surface of a cylinder of the present application.
  • FIG. 2 is a schematic structural diagram of a digital can printing machine system corresponding to the control method for printing and drying the surface of a cylinder of the present application.
  • FIG. 3 is a schematic flowchart of a method for generating a color density and light intensity control table in a method for controlling printing and drying on a cylinder surface of the present application.
  • FIG. 4 is a schematic flowchart of printing production in the control method for printing and drying the surface of a cylinder of the present application.
  • FIG. 5 is a schematic diagram of the relationship between the curing depth of UV ink and the intensity of ultraviolet light in the method for controlling the printing and drying of the cylinder surface of the present application.
  • the curing of UV ink is related to the curing time on the one hand, but when the ultraviolet light intensity does not meet the requirements, the UV ink on the surface is cured, but the UV ink on the bottom layer is not cured. That is to say, the curing depth of UV ink is positively correlated with the intensity of ultraviolet light, and the specific relationship can be seen in Figure 5.
  • the control method for printing and drying on the surface of the cylinder of the present application is designed to realize the intelligent control of the drying lamp.
  • the control method for printing and drying the surface of a cylinder of the present application can be used for all objects with a cylinder surface, and the cylinder can be a cylinder, an elliptical cylinder, or a prism.
  • the so-called cylinder can be hollow or solid.
  • the material for the cylinder can be metal, paper, or plastic.
  • the soda can in our lives can be divided into two-piece cans and three-piece cans according to different production processes.
  • the two-piece can refers to a metal container composed of two parts: a can lid and a whole seamless can body with a bottom.
  • the can body of this type of metal container is formed into a set shape by stretching.
  • the forming method of this cup-shaped container is stamping, so the two-piece can is also often called a stamping can.
  • the digital can printing machine is realized according to the principle of digital inkjet. Thousands of colors in common digital inkjet printing patterns are composed of four primary colors of C, M, Y, and K (there are also more basic color systems, and the following discussion takes four primary colors as an example).
  • the substrate passes under four nozzles containing four-color inks, and the nozzles sequentially eject the corresponding amount of ink on the substrate according to the pattern requirements.
  • a drying lamp is set at another position. When the inkjet substrate passes in front of the lamp, the drying lamp bakes the newly sprayed ink to cure it on the substrate.
  • drying light intensity refers to the same light intensity control signal in the traditional design. All drying light source light source units (so-called light source units, which can be lamp beads) are controlled by the same control signal. In practical applications, The performance of different light source units of the same light source will be different, so the actual emitted light radiation energy will also be different, thus affecting the consistency.
  • the control method for printing and drying the surface of a cylinder of the present application is designed to solve the above problems.
  • By analyzing the amount of basic color ink used in different areas of the inkjet print pattern and the speed at which the substrate passes in front of the drying lamp during printing it is possible to determine how much light intensity is used to obtain approximately the same amount of light radiation energy per unit of ink on the substrate. , or follow other light energy requirement guidelines for the best drying results and best print quality.
  • the control accuracy of the output light intensity of the light source can be improved through the partition control of the drying light beads and the monitoring of the light intensity.
  • the system consists of a large turntable, several mandrels installed on the large turntable, an angle encoder installed coaxially with each mandrel, a nozzle installed at the printing station and a drying lamp.
  • Several nozzles are installed at different positions of the base, above the mandrel, and the drying lamps are opposite to the nozzles and are installed under the mandrel to form different printing stations and print different colors.
  • a sensor is installed on the base of a station before the No. 1 printing station to detect the appearance of a specified mandrel, and a sensor mark is installed under the installation bearing of a specified mandrel and revolves with the mandrel, the mandrel is Defined as the No.
  • the above sensor is the No. 1 mandrel detection sensor.
  • a sensor is installed on the base of another station before the No. 1 printing station (it can also be in the same station as the No. 1 mandrel detection) to detect whether there is a can on the mandrel. This sensor is the detection of whether there is a can or not. sensor.
  • the printed can body is sleeved on the mandrel, and is driven by the large turntable to revolve. The large turntable performs intermittent motion, and the cans are transported to each station in turn. The mandrel drives the can body to rotate.
  • the mandrel When the mandrel revolves and stays at a certain printing station, the mandrel drives the tank to rotate at that position, and at the same time, the nozzle starts inkjet printing, and the drying lamp is turned on at the appropriate time (lag by 180° after printing, or at other angles). , drying, after completion, the revolution starts, moves to the next position, repeats the above actions, and prints new cans or prints with different colors.
  • One end of the mandrel is installed on the edge of the large turntable through a bearing, and the main body of the mandrel extends out in a cantilever shape. It rotates (revolution) intermittently with the large turntable under the control of the large turntable motor, and at the same time, the mandrel also rotates around its own axis (rotation). ).
  • the tank body is sleeved on the mandrel, and has no relative movement with the mandrel, and revolves and rotates with the mandrel.
  • An angle encoder is installed coaxially with the mandrel, which generates N uniform (by angle) pulses per revolution, representing the angle that the mandrel rotates, that is, the position information.
  • the inkjet system consists of a nozzle, an ink circuit and a nozzle controller.
  • the controller sends control pulses to the nozzle according to the received digital pattern information, and controls each nozzle of the nozzle to eject ink droplets of different sizes or not to eject ink droplets.
  • the drying system consists of a light source controller, a light source driver and a light source.
  • the controller consists of a processor and related circuits, responsible for information processing, logic analysis, communication with the host computer, receiving instructions, and sending control signals to the driver; the driver realizes power amplification and drives the light source to emit light; the light source consists of several drying light sources Unit composition, light source units are arranged according to a certain rule, can be controlled separately by partition, and each separately controlled partition is a control unit.
  • each control unit in each partition can be precisely controlled to reduce the difference in the overall synchronization control, so that the drying quality can be refined and the printing accuracy can be improved.
  • the tank pattern is rectangular after unfolding, and the inkjet printing pattern is formed by the accumulation of ink droplets.
  • the ink that forms the droplets has 4 basic colors (C, M, Y, K), which are divided into 4 basic color layers.
  • Each color ink droplet has 4 levels of gray (there are also nozzles that support more gray levels, the following discussion takes 4 levels of gray as an example), 0—no ink droplet, 1—small ink droplet, 2—medium ink droplet, 3— Big ink drop.
  • the following discussion takes 600dpi x 600dpi as an example.
  • the so-called inkjet printing pattern refers to the pattern that each layer of pixels needs to be formed by inkjet when the picture is decomposed into four basic color layers.
  • Each pixel corresponds to an ink droplet, and the grayscale of each pixel is The level corresponds to the size of the ink droplet.
  • the drying control method for the surface printing of the cylinder of the present application is equally applicable and repeated.
  • the to-be-printed patterns described below are all basic color layers, that is, patterns that need to be formed by inkjet for each layer.
  • the present application is a method for controlling printing and drying on the surface of a cylinder, comprising:
  • Step 1 Establish a control table for the correspondence between pattern density and light intensity.
  • the application first needs to establish a light intensity control model, which is as follows:
  • the drying lamp light source control unit The smallest unit that controls the light intensity of the drying lamp is called the drying lamp light source control unit, and a control unit may contain one or more light source units.
  • the control information chain of the light intensity control system is composed as follows:
  • V d f(x)
  • Step 1 Select a series of standard test colors according to the color density in each base color layer of CMYK, and the ink droplets are evenly distributed;
  • Step 2 Record the current test conditions (the test conditions include the difference between the nozzle and the substrate to be printed). The relative movement speed, the relative distance between the print head and the substrate to be printed, the temperature when the print head ejects ink droplets and other factors related to the printing effect);
  • Step 3 Adjust the drying light intensity;
  • Step 4 Proofing and drying Dry inkjet printing pattern;
  • Step 5 Compare the standard color and proofing results, if the color consistency does not meet the requirements, repeat steps 3, 4, and 5, otherwise go to the next step;
  • Step 6 Satisfaction, record, store The current standard color and its corresponding light intensity;
  • Step 7 If you are still not satisfied after trying all the possibilities in Step 5, you can find other reasons.
  • S ci , S mi , S yi , and S ki represent the different concentration values (ranges) of the four colors of C, M, Y, and K, respectively. These values can be determined by different evaluation standards as needed.
  • P ci , P mi , P yi , and P ki represent light intensity values corresponding to S ci , S mi , S yi , and S ki , respectively.
  • Step 2 Divide the pattern to be printed into a plurality of areas, divide the surface of the cylinder to be printed into corresponding areas, and obtain the density of the pattern in each area.
  • Pattern analysis space Pattern analysis can be described by a three-dimensional space, X—circumferential coordinate, Y—axial coordinate, z—concentration, and the density can be represented by the cumulative pixel grayscale weighted value (or other standard) per unit area.
  • Light intensity control space The light intensity control process can be described in a three-dimensional space, X—circumferential coordinate, Y—axial coordinate, Z—light intensity.
  • angle encoder output pulse picture pixel
  • drying lamp control unit encoder N pulses/revolution, picture circumferential N X pixels, axial N Y pixels, picture resolution k (dpi), each drying lamp The number n c of picture pixels corresponding to the control unit.
  • Circumferential Partitioning There are two methods to choose from, Fixed Partitioning and Feature Partitioning.
  • Feature partition - partition according to a certain feature (such as an area where the cumulative value of pixels in a moving window of a certain size changes within a certain range), and the size of the partition is indeterminate.
  • Axial partition partition by drying lamp control unit.
  • Light intensity classification According to the test results, it is divided into k grades.
  • Static partition (Partition first and then analyze) Divide the pattern to be printed into multiple regions (usually uniformly divided) by preset distances along the axial and circumferential directions corresponding to the surface of the cylinder to be printed. Determine the required light intensity of each partition according to the color density light intensity control table in Table 1. It can be understood that the static partitioning method can be used for patterns that do not have too many abrupt changes or that do not have large areas with similar colors. or
  • Dynamic partitioning (analyzing first, then partitioning) to analyze the pattern characteristics of the pattern to be printed, and divide the continuous area where the drying light intensity required by the density of the pattern belongs to the same preset range into one area. For example, it can be understood that for some patterns, such as a solid color in a large area or a background with little color change, the background can be regarded as an area. (mainly color density analysis), determine the required light intensity of each partition according to the color density light intensity control table, and then divide the inkjet printing pattern into several areas along the circumferential and axial directions according to the analysis results. The size and shape of each area may be different, and the results of different patterns may also be different.
  • Static and dynamic hybrid partitioning It is used in the case where the pattern has obvious color mutation. Most areas adopt static partitioning, with the sudden change as the partition boundary, and the rest use dynamic partitioning.
  • Step 3 printing the to-be-printed pattern on the surface of the cylinder to-be-printed body.
  • the existing inkjet control method can be used to print the to-be-printed pattern on the surface of the cylindrical body to be printed, which will not be repeated here.
  • Step 4 According to the corresponding relationship between the pattern density and the light intensity in the control table, use the corresponding light intensity to dry each area on the surface of the cylinder to be printed.
  • drying each area on the surface of the cylinder to be printed by using the corresponding light intensity specifically includes obtaining the corresponding relationship between the input control information and the light intensity output of each partition; according to the corresponding relationship between the input control information and the light intensity output
  • the input control information of each partition is obtained from the light intensity required for drying in each partition; the input control information of each partition is output to the drying light intensity control circuit of each partition to obtain the light intensity required for partition drying.
  • the light source controller judges the current position according to the output pulse signal of the mandrel encoder, and determines the pattern division corresponding to the current position (corresponding to the same position in the circumferential direction, there may be multiple divisions along the axial direction).
  • control information (voltage/current) required to generate the same output light intensity may be different, so the system should be calibrated in advance, that is, to establish a control channel for each control path.
  • Input the corresponding relationship between control information and light intensity output (curve/table).
  • I is the light intensity control information input
  • C is the light source unit control unit
  • P ij is the output light intensity generated by the control information I i at the output end of the control unit C j .
  • the light source driving circuit drives each light source unit according to the input control information I to obtain the required light intensity.
  • the processor of the light source controller records and saves the relevant information of each mandrel and each station.
  • the processor can judge whether there is a can on the mandrel at each station after receiving the signal of the presence or absence of the can detection sensor;
  • the processor can know whether the current system is in the stop angle after receiving the moving stop angle signal from the PLC that controls the movement of the large turntable;
  • the processor receives and records the output pulse of each mandrel angle encoder to know the current position of the corresponding mandrel;
  • the processor can know the initial printing angle position of the corresponding nozzle after receiving the start printing signal and the angle encoder information from each nozzle controller;
  • each mandrel passes through each station in sequence, and the canning (feeding) system loads the cans into mandrels 1, 2, 3, ..., n, 1, 2, 3, ... , the first tank is loaded into the No. 1 mandrel.
  • the position sensor outputs the detection result, and the processor receives the No. 1 mandrel signal and records it in the No. 1 mandrel storage unit.
  • the processor receives the signal of the presence or absence of the tank and records it in the storage unit of the No. 1 mandrel. Afterwards, the No. 1 mandrel will stop at printing stations 1, 2, 3... in sequence. Whenever it stops at a printing station, the processor will receive the stop angle signal of the large turntable sent by the PLC. If the mandrel has a can, the processor will also receive the print start signal sent by the nozzle controller, and the processor will receive the signal. The resulting signals are recorded in the memory area of mandrel No. 1. Other mandrels go through the same process.
  • No. 1 mandrel The processor finds the No. 1 mandrel according to the output of the No. 1 mandrel detection sensor, and determines the number of other mandrels, establishes the corresponding relationship between the mandrel and the printing station, so as to query and update the mandrel state to determine whether the conditions for turning on the drying lamp are met.
  • Printing station 1 When a mandrel arrives at printing station 1, the processor starts to count the output pulses (A direction signal) of the mandrel angle encoder after receiving the stop angle signal from the PLC; the processor receives When the nozzle prints the start signal, record the current count value of the angle encoder (the z signal may not have been received at this time), until the end of one revolution, and start the next cycle.
  • the starting angle of the drying lamp can be determined accordingly, that is, the drying lamp is started when the ink droplets ejected by the nozzle move to the drying lamp position with the surface of the tank, and then the drying lamp can be started according to the
  • the z signal received by the angle encoder converts the angle into an absolute angular position with the z signal position as a reference, which is the drying start position. After that, set the drying stop position according to needs or preset criteria.
  • the above drying start and stop positions are measured by the output pulse of the angle encoder and recorded in the mandrel storage area (see the table above).
  • Printing start/stop angle The printing start and printing stop angles (positions) are determined by the nozzle controller according to the stop angle information, the tank information, and the angle encoder information. There are different ways. First, the stop angle requirements and the tank requirements must be met. , On this basis, start printing when a certain angle position signal (such as encoder z-phase signal) is received, and stop printing after completing one cycle (360°) printing (or other preset stop conditions).
  • a certain angle position signal such as encoder z-phase signal
  • the first layer starts printing when it receives the z-phase signal of the corresponding angle encoder (or starts printing at a specified angle), the corresponding relationship between the mandrel angle and the picture pixels is established, and the accurate multi-layer color is realized accordingly. Overprint.
  • Drying start position/drying stop position - one-circle printing mode if only one rotation is made in the stop angle stage, only the first half of the printed result will be dried in the printing station, and the drying start angle is the printing start angle position +180°, the drying stop angle is the printing start angle position; in other printing stations, drying one circle, that is, the second half circle printed in the previous station and the first half circle printed in this station, and the last printing station The second half of the print is dried in the adjacent station behind it.
  • the rotation will last at least 1.5 circles in the stop angle stage, and the drying start angle is +180° from the printing start angle position.
  • the dry stop angle is +180° from the print start angle position.
  • Drying conditions the system is at the stop angle; the mandrel is in the correct position; at the printing station 1, the nozzle starts to print; it reaches the drying start angle (position), or is in the drying start range.
  • Drying operation At a certain printing station, after drying is started, the drying controller will perform the following operations;
  • the pattern feature information (such as light intensity) of the corresponding area can be obtained from Table 2 above; then the control input required by the light source control unit can be obtained from Table 3 and the corresponding algorithm (such as interpolation algorithm). information; input the control input information into the light source power amplifying unit to realize the intelligent control of the drying light intensity.
  • each light source unit will gradually age, and the degree of ageing varies.
  • the degree of ageing varies.
  • the consistency of the drying effect will become worse.
  • the drying of each area on the surface of the cylinder to be printed by using the corresponding light intensity further includes: checking whether the light source unit controlled by the drying light intensity control circuit fails (according to the drying light driving The information is current or voltage, to determine whether the light source unit is invalid, that is, whether it can emit light normally); check whether the corresponding relationship between the input control information and the light intensity output has changed, and if there is a change, update the input control information and light intensity output. Correspondence.
  • the checking whether the corresponding relationship between the input control information and the light intensity output has changed, and if there is a change, updating the corresponding relationship between the input control information and the light intensity output specifically including: using a photoelectric sensor to move directly above a drying light source (facing the light-emitting surface) corresponds to the appropriate height of the substrate (here is where the tank receives ink droplets, that is, the surface of the tank), the drying light intensity control circuit outputs control information according to a certain rule, and records the received information at the same time. Then, compare the detected relationship curve between the two with the existing relationship curve, and update the corresponding relationship between the input control information and the light intensity output if the change exceeds a predetermined range.
  • a more specific implementation is as follows:
  • Light source control unit - a Check whether the light beads of the light source control unit fail; b. Check whether the control information-light intensity curve changes, and if there is a change, update the curve.
  • the specific operations are as follows:
  • the large turntable moves the photoelectric sensor to a suitable height corresponding to the substrate directly above a drying light source, and the processor of the light source controller outputs control information (control quantity) according to a certain rule, and records the received The light intensity information output by the photoelectric sensor. Then compare the measured relationship curve between the two with the existing relationship curve (Table 3 above). If the change exceeds the predetermined range, update Table 3 to compensate for the influence of the light source change and ensure the stability and consistency of the drying effect.
  • the light source basic control unit in addition to measuring the light intensity of each light source basic control unit separately, the light source basic control unit can also be lit at the same time to detect the change of the overall brightness of the light source.
  • the system analyzes, judges and decides by itself. This system is designed to realize the intelligent control of drying lamps.
  • the colors printed first are dried too many times—each station prints some colors, the colors printed first are dried once in each station, and the colors printed later are dried less frequently than the colors printed first. This will easily cause the first printed color to be over-dried and affect the quality.
  • the drying intensity of different printing speeds also needs to be changed - a fast printing speed means a short drying time, and the required drying intensity is large, otherwise, the required drying intensity is small. Therefore, the same drying intensity cannot be used for different printing speeds, and the drying intensity needs to be matched with the printing speed.
  • the aging of the light source device causes the output light intensity to change - the output intensity of different light sources, light source units and other devices will be affected to varying degrees with the increase of time and frequency of use, and it needs to be monitored at any time.
  • the corresponding adjustment of the input, the output of the same light intensity of different devices may be different.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ink Jet (AREA)

Abstract

一种柱体表面打印烘干控制方法,包括:建立图案浓度与光强之间对应关系的控制表;将待打印图案划分成多个区域,并将柱体待打印体表面划分成对应的区域,获取每个区域内图案的浓度;将待打印图案打印到柱体待打印体表面上;根据控制表中图案浓度与光强之间的对应关系,采用相应光强对柱体待打印体表面上各个区域进行烘干。

Description

柱体表面打印烘干控制方法
本申请基于并要求于2021年2月8日递交的申请号为202110170746.7、发明名称为“柱体表面打印烘干控制方法”的中国专利申请的优先权。
技术领域
本申请涉及数码印刷领域,具体涉及一种柱体表面打印烘干控制方法。
背景技术
数码印刷中常常需要对柱体表面进行印刷,其中一种利用数码印罐机在易拉罐罐体外表面打印各种高精度图案,设备工作时,UV(紫外)墨水由喷头以墨滴的形式喷到受材表面,这种墨水对特定波长的紫外光敏感,可由具有特定波长的LED紫外灯烘干,将图案固化在基材(即罐体)表面。一般要用到4种或更多种颜色的墨水(基色),依次由喷头喷到易拉罐圆柱面上,喷印过程如后文描述。每次喷印一种颜色的墨水同时(或有一定延时)对刚喷在基材上的墨滴烘干,然后移到下一工位,喷下一种颜色的墨水并烘干,直到完成所有颜色墨水的喷印和烘干。对于“一遍打印(1pass)”方法,即喷头在基材表面扫过一遍就完成打印(另一种是多遍打印,喷头在基材同一位置扫过多次才完成打印),这种生产工艺决定了烘干过程对最终的打印质量有着重要影响,烘干过度和不足都会造成打印质量下降。
发明内容
本申请要解决的技术问题是提供一种柱体表面打印烘干控制方法,用于一遍打印方法,提高打印质量。
为了解决上述技术问题,本申请提供了一种柱体表面打印烘干控制方法,包括:
建立图案浓度与光强之间对应关系的控制表;
将待打印图案划分成多个区域,并将柱体表面划分成对应的区域,获取每个区域内图案的浓度;
将所述待打印图案打印到所述柱体表面上;
根据所述控制表中图案浓度与光强之间的对应关系,采用相应光强对所述柱体表面上各 个区域进行烘干。
在其中一个实施例中,所述建立图案浓度与光强之间对应关系的控制表,具体包括:第1步:分别在各基色层按色彩浓度选择一系列标准测试色,其中的墨滴均匀分布;第2步:记录当前测试条件;第3步:调整烘干灯光强;第4步:打样和烘干喷墨打印图案;第5步:对比标准色与打样结果,如果色彩一致性达不到要求,重复步骤第3、4、5步,否则进行下一步;第6步;记录、存储当前标准色及其对应的光强。
在其中一个实施例中,所述测试条件包括喷头和待打印基材之间的相对运动速度、喷头和待打印基材之间的相对距离、喷头喷出墨滴时的温度。
在其中一个实施例中,将待打印图案划分成多个区域的方法包括:
将待打印图案沿对应所述柱体表面的轴向和周向按预设的距离划分成多个区域;或者,
对待打印图案的图案特性进行分析,将图案的浓度所需要的烘干光强属于同一预设范围内的连续区域划分为一个区域。
在其中一个实施例中,所述采用相应光强对所述柱体表面上各个区域进行烘干中,烘干光源由若干烘干灯光源单位组成,所述若干烘干灯光源单位按照所述柱体表面的轴向排列,所述若干烘干灯光源单位可分区单独控制,每个单独控制的分区为一个控制单元。
在其中一个实施例中,所述采用相应光强对所述柱体表面上各个区域进行烘干,具体包括获取各分区的输入控制信息与光强输出对应关系;根据输入控制信息与光强输出对应关系和各分区烘干时需要的光强,得到各分区的输入控制信息;将所述各分区的输入控制信息输出到各分区的烘干灯光强控制电路得到分区烘干时需要的光强。
在其中一个实施例中,所述输入控制信息是电流信息或者电压信息。
在其中一个实施例中,所述采用相应光强对所述柱体表面上各个区域进行烘干,还包括:检查烘干灯光强控制电路控制的光源单位是否失效;检查所述输入控制信息与光强输出对应关系是否发生变化,若变化则更新所述输入控制信息与光强输出对应关系。
在其中一个实施例中,所述检查所述输入控制信息与光强输出对应关系是否发生变化,若变化则更新所述输入控制信息与光强输出对应关系,具体包括:利用光电传感器移动到某一烘干光源的正上方对应基材处的适合高度处,烘干灯光强控制电路按一定规律输出控制信息,同时记录接收到的光电传感器输出的光强信息;然后将检测得的二者关系曲线与已有关系曲线比较,如变化超出预定范围,则更新所述输入控制信息与光强输出对应关系。
基于同样的发明构思,本申请还提供一种数码印刷机,该数码印刷机采用任一项所述的控制方法。
本申请的有益效果:
通过分析喷墨打印图案中不同区域中基本色彩墨水的用量,对于每个划分后的区域根据烘干时需要的光强施加对应的光强进行烘干,使烘干效果最好,打印质量最佳。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例或现有技术描述中所需要使用的附图进行简单的介绍,显而易见地,下面描述的附图仅仅作为本文发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1是本申请柱体表面打印烘干控制方法中的喷头和烘干灯的位置结构示意图。
图2是本申请柱体表面打印烘干控制方法对应的数码印罐机系统结构示意图。
图3是本申请柱体表面打印烘干控制方法中的颜色浓度光强控制表的生成方法的流程示意图。
图4是本申请柱体表面打印烘干控制方法中的打印生产的流程示意图。
图5是本申请柱体表面打印烘干控制方法中的UV墨水的固化深度和紫外线光照强度的关系示意图。
具体实施方式
下面结合附图和具体实施例对本申请作进一步说明,以使本领域的技术人员可以更好地理解本申请并能予以实施,但所举实施例不作为对本申请的限定。
因不同图案或同一图案不同区域所用墨量不同,不同打印速度下,基材在灯光下经历的时间长度不同,基材接受的光强差异会很大,如用同样的光强烘干,难以保证烘干效果一致,进而影响打印质量的一致性。可以理解,UV墨水固化一方面和固化时间有关,但是当紫外线光照强度达不到要求时,表面的UV墨水被固化,但是底层的UV墨水没有被固化。也就是说UV墨水的固化深度和紫外线光照强度成正相关,具体关系可以参阅图5。为满足对打印图片质量稳定性的要求,烘干时由LED灯提供的光强也应随着图案的不同、打印条件的不同而有所变化,同时,这种变化如何进行、如何实现,即本申请柱体表面打印烘干控制方法为实现烘干灯的智能化控制而设计。
本申请柱体表面打印烘干控制方法可用于所有具有柱体表面的物体,所述柱体可以是圆柱体、椭圆柱体、棱柱。所谓柱体可以是前后贯穿即中空的,也可以是实心的。对于柱体的 制作材料可以是金属,也可以是纸,或者是塑料。当然,最常见的柱体之一就是我们生活中的易拉罐。易拉罐按照制作工艺的不同可以分为二片罐和三片罐。其中,二片罐指的是由罐盖和带底的整体无缝的罐身两个部分组成的金属容器,这类金属容器的罐身是采用拉伸的方法,形成设定形状的。这种杯状容器的成型方法属冲压加工,所以二片罐也常称为冲压罐。
数码印罐机是根据数码喷墨原理实现的。常见的数码喷墨打印图案中千百种色彩都是由C、M、Y、K四种基色组成的(也有更多基本颜色的系统,以下讨论以四基色为例)。参阅图1,打印时,基材从装有四色墨水的四个喷头下通过,喷头根据图案要求依次在基材上喷射相应墨量的墨水。而在另一位置设置一烘干灯,喷墨后的基材从灯前通过时,烘干灯对刚喷上的墨水烘烤,使其固化在基材上。
在上述数码印罐机中,传统的做法是,对一批具有相同图案的罐体打印采用相同的烘干光强,直至工作结束。这种操作的问题是:
(1)如果同一图案不同区域色彩差异较大时,单位墨量接受的烘干光能量差异也较大,烘干效果不一致;
(2)连续打印不同图案,而这些图案色彩相差较大时,烘干效果也不一致;
(3)先喷印的颜色会被烘干多次,如不合理控制光强,会烘干过度,影响打印的色彩效果。
上述所谓“相同的烘干光强”在传统设计中是指相同的光强控制信号,所有烘干光源光源单位(所谓光源单位,可以是灯珠)接受同一控制信号的控制,实际应用中,同一光源不同光源单位的性能会有所不同,因而实际发出光辐射能量也会各不相同,从而影响了一致性。
本申请柱体表面打印烘干控制方法就是为解决上述问题而设计的。分析喷墨打印图案不同区域中基本色彩墨水的用量,以及打印时基材从烘干灯前通过的速度,即可确定使用多大光强才能使基材上单位墨量获得大致相同的光辐射能量,或遵循其他光能量需求准则,使烘干效果最好,打印质量最佳。同时,通过对烘干灯光珠分区控制以及光强的监测,可以改善光源输出光强的控制精度。
为了方便理解本申请柱体表面打印烘干控制方法,下面介绍实现本申请柱体表面打印烘干控制方法对应的实现结构。可以理解,下面介绍的系统只是一种可能的实现,也可以采用其他体现本申请的系统结构。
如图2所示,系统由一个大转盘,安装在大转盘上的若干芯棒,与每个芯棒同轴安装的角度编码器,安装在打印工位的喷头和烘干灯组成。若干喷头被安装在基座不同位置,位于芯棒上方,烘干灯与喷头相对,安装在芯棒下方,形成不同的打印工位,打印不同颜色。在 1号打印工位之前的一个工位基座上装有一传感器检测某一指定芯棒的出现,在一指定芯棒的安装轴承下方装有感应标志并随该芯棒一起公转,此芯棒即定义为1号芯棒,上述传感器即为1号芯棒检测传感器。在1号打印工位之前的另一个工位(也可以与1号芯棒检测处于同一工位)基座上装有一传感器,用于检测芯棒上是否有罐,此传感器即为有无罐检测传感器。被打印的罐体套在芯棒上,由大转盘带动做公转,大转盘做间歇运动,依次将罐运送到各个工位,芯棒带动罐体做自转。当芯棒公转停留在某一打印工位时,芯棒带动罐体在该位置自转,同时喷头开始喷墨打印,烘干灯在适当时机(滞后于打印180°,也可能是其它角度)开启、烘干,完成后,公转启动,移动至下一位置,重复上述动作,进行新罐打印或不同色彩的打印。
具体结构可以参考中国专利CN 109501476 A、CN207257125U。可以理解,本申请除了采用上述转盘式的,也可以采用一些直线型的系统,在此不再赘述。
芯棒的一端通过轴承安装在大转盘边缘位置,芯棒主体呈悬臂状伸出,随大转盘在大转盘电机的控制下做间歇转动(公转),同时芯棒也绕自己的轴线转动(自转)。罐体套在芯棒上,与芯棒没有相对运动,随芯棒一起公转和自转。
与芯棒同轴装有一个角度编码器,每转产生N个均匀(按角度)脉冲,代表芯棒转过的角度,即位置信息。
喷墨系统由喷头、墨路和喷头控制器组成。控制器根据收到的数字化的图案信息向喷头发出控制脉冲,控制喷头的各个喷孔喷射出大小不一的墨滴或不喷射墨滴。
烘干系统由光源控制器、光源驱动器和光源组成。其中控制器由处理器及相关电路组成,负责信息处理,逻辑分析,与上位机通讯、接受指令,向驱动器发出控制信号等工作;驱动器实现功率放大,驱动光源发光;光源由若干烘干灯光源单位组成,光源单位按一定规律排列,可分区单独控制,每个单独控制的分区为一个控制单元。
可以理解,通过将光强输出按若干个由一个或多个(不定数量,按需)最小控制单元组成的区域进行分区控制,将大大减小对整体模块化光源单位控制带来的差异累计,可以精确到对每个分区每个控制单元的控制,来减小对整体同步控制产生的差异,这样烘干质量才能得到精细化保证,打印精度得以提升。
罐体图案展开后呈矩形,喷墨打印图案由墨滴堆积而成。形成墨滴的墨水有4种基本颜色(C、M、Y、K),分成4个基本颜色层。各色墨滴有4级灰度(也有支持更多灰度级的喷头,以下讨论以4级灰度为例),0—无墨滴,1—小墨滴,2—中墨滴,3—大墨滴。图形分辨率有不同选择,以下讨论以600dpi x 600dpi为例。
可以理解所谓喷墨打印图案指的是将图片分解成四种基本颜色后的基本颜色层时每一层像素需要喷墨构成的图案,每个像素对应了一个墨滴,每一像素的灰度级别对应了墨滴的大小。对于每种基本颜色层对应的喷墨打印图案来说,本申请柱体表面打印烘干控制方法都是同样适用的和重复的。下文所述待打印图案都是基本颜色层即每一层需要喷墨构成的图案。
本申请一种柱体表面打印烘干控制方法,包括:
步骤一:建立图案浓度与光强之间对应关系的控制表。
也就是说,本申请首先需要建立光强控制模型,具体如下:
(1)标定光源控制电流与基材表面接受到的光强之间的关系
烘干灯控制光强的最小单位称为烘干灯光源控制单元,一个控制单元可能包含一个或多个光源单位。光强控制系统控制信息链组成如下:
光强控制量(x)→单元控制电流(i)→单元输出光强(d)→基材位置接受的光强(D)→光电传感器在基材位置接受的光强(D 1)→传感器输出(V d)
V d=f(x)
(2)建立各基本颜色墨滴分布、烘干灯光强、打印质量三者的关系(建模)
通过分析、实验,建立各基本颜色墨滴分布、烘干灯光强、打印质量三者的关系(建模),结果以函数、曲线或表格的形式保存起来。此过程相当于建模,或对打印机烘干系统做标定,实现过程如图3所示。
第1步:分别在CMYK各基色层按色彩浓度选择一系列标准测试色,其中的墨滴均匀分布;第2步:记录当前测试条件(所述测试条件包括喷头和待打印基材之间的相对运动速度、喷头和待打印基材之间的相对距离、喷头喷出墨滴时的温度等与打印效果相关的因素);第3步:调整烘干灯光强;第4步:打样和烘干喷墨打印图案;第5步:对比标准色与打样结果,如果色彩一致性达不到要求,重复步骤第3、4、5步,否则进行下一步;第6步:满意,记录、存储当前标准色及其对应的光强;第7步:如第5步中尝试所有可能性后仍然不满意,可查找其他原因。
分析结果:得到颜色浓度光强控制表,建立了墨滴(像素)分布-光强关系
表1颜色浓度光强控制表
Figure PCTCN2021136937-appb-000001
Figure PCTCN2021136937-appb-000002
上表中S ci、S mi、S yi、S ki分别代表C、M、Y、K四种颜色的不同浓度值(范围),这些值可根据需要由不同的评价标准确定,P ci、P mi、P yi、P ki分别代表对应S ci、S mi、S yi、S ki的光强值。
步骤二:将待打印图案划分成多个区域,并将柱体待打印体表面划分成对应的区域,获取每个区域内图案的浓度。
具体如下:
图案分析空间:图案分析可用一个三维空间描述,X—周向坐标,Y—轴向坐标,z—浓度,浓度可用单位面积上累计像素灰度加权值(或其他标准)表示。
光强控制空间:可将光强控制过程在一个三维空间中描述,X—周向坐标,Y—轴向坐标,Z—光强。
角度编码器输出脉冲、图片像素、烘干灯控制单元关系:编码器N个脉冲/转,图片周向N X像素,轴向N Y像素,图片分辨率k(dpi),烘干灯每个控制单元对应的图片像素数n c
周向分区:有两种方法可供选择,即固定分区和特性分区。
固定分区——沿周向平均分为n x个区域,每个区域包含N X/n x个像素,或N/n x个编码器脉冲。
特性分区——按某种特性分区(如一定大小的移动窗口内像素累计值的变化在一定范围的区域),分区大小不定。
轴向分区:以烘干灯控制单元为单位分区。
光强分级:根据试验结果分为k级。
(a)静态分区:(先分区后分析)将待打印图案沿对应所述柱体待打印体表面的轴向和周向按预设的距离划分成多个区域(一般为均匀分割)。根据表1颜色浓度光强控制表确定各分区所需光强。可以理解,对于没有太多突变或者没有大片区域颜色接近的图案都可以采用静态分区法。或者
(b)动态分区:(先分析,后分区)对待打印图案的图案特性进行分析,将图案的浓度所需要的烘干光强属于同一预设范围内的连续区域划分为一个区域。比如可以理解对于有些图案比如存在某个大片区域的纯色或者颜色变化不大的背景,可以将该背景作为一个区域。(主要是色彩浓度分析),根据颜色浓度光强控制表确定各分区所需光强,然后根据分析结果沿周向和轴向将喷墨打印图案分成若干区域。各区域大小、形状可能不等,不同图案划分结果也可能不同。
(c)静态动态混合型分区:用于图案有明显色彩突变的情况,多数区域采取静态分区,以突变处为分区边界,其余部分采用动态分区。
分析结果得表2,分区—光强对应关系(X,Y,Z)。其中,X i(x i1,x i2)—周向分区,x i1起始位置,x i2终止位置,Y j—轴向分区,Z ij—分区内光强或其他图案特征信息(P cij,P mij,P yij,P kij)
表2-分区—光强对应关系
Figure PCTCN2021136937-appb-000003
步骤三:将所述待打印图案打印到所述柱体待打印体表面上。可以理解,可以采用现有的喷墨控制方法将所述待打印图案打印到所述柱体待打印体表面上,在此不再赘述。
步骤四:根据所述控制表中图案浓度与光强之间的对应关系,采用相应光强对所述柱体待打印体表面上各个区域进行烘干。
其中,所述采用相应光强对所述柱体待打印体表面上各个区域进行烘干,具体包括获取各分区的输入控制信息与光强输出对应关系;根据输入控制信息与光强输出对应关系和各分区烘干时需要的光强,得到各分区的输入控制信息;将所述各分区的输入控制信息输出到各分区的烘干灯光强控制电路得到分区烘干时需要的光强。
更具体的实施方式如下:
将分析结果即表2,传送给光源控制器;
开始打印后,光源控制器根据芯棒编码器的输出脉冲信号判断当前位置,确定当前位置所对应的图案分区(对应周向同一位置,沿轴向可能有多个分区)。
由表2查得当前各分区所需光强,再由表3(如下)及插值算法(如需要)得到各分区所需光源控制信息,并将其输出至烘干灯光强控制电路(功放)。
因不同光源,同一光源不同光源单位,以及相关电路特性存在差异,产生相同输出光强所需控制信息(电压/电流)可能会不同,所以应事先对系统做好标定,即建立各个控制通路的输入控制信息与光强输出对应关系(曲线/表格)。在如下表3中,I为光强控制信息输入,C为光源单位控制单元,P ij为控制信息I i在控制单元C j输出端产生的输出光强。
表3输入控制信息与光强输出对应关系
Figure PCTCN2021136937-appb-000004
光源驱动电路根据输入控制信息I驱动各单元光源单位,得到所需光强。
综上所述,光强控制过程相关信息的流动路径如下:
Figure PCTCN2021136937-appb-000005
下面介绍本系统的一个具体工作过程:
参阅表4:系统工作时,光源控制器的处理器记录、保存每一芯棒和每一工位的相关信息。
表4光源控制器记录相关信息
Figure PCTCN2021136937-appb-000006
具体如下:
(1)处理器收到1号芯棒检测传感器信号后即可判断出各工位处芯棒的编号;
(2)处理器收到有无罐检测传感器信号后即可判断出各工位处芯棒上是否有罐;
(3)处理器收到控制大转盘运动的PLC传来的动停角信号后即可知当前系统是否处于停角;
(4)处理器收到并记录各芯棒角度编码器输出脉冲便可知相应芯棒当前位置;
(5)处理器收到各喷头控制器传来的开始打印信号及角度编码器信息即可知对应喷头的起始打印角度位置;
开始工作时,大转盘间歇运动,各芯棒顺次经过各个工位,进罐(送进)系统依次将罐加载到芯棒1、2、3、…、n、1、2、3、…,第一个罐加载到1号芯棒。1号芯棒经过1号芯棒检测工位时,位置传感器输出检测结果,处理器收到1号芯棒信号,将其记录在1号芯棒的存储单元。1号芯棒经过有无罐检测工位时,有无罐检测传感器输出检测到的信号,处理器收到有无罐信号,将其记录在1号芯棒的存储单元。随后,1号芯棒会依次经停打印工位1、2、3……。每当停在一个打印工位时,处理器会收到PLC发出的大转盘停角信号,如果芯棒有罐,处理器还会收到喷头控制器发出的打印启动信号,处理器会将收到的这些信号记录在1号芯棒的存储区。其他芯棒也经历相同过程。
表5记录结果
Figure PCTCN2021136937-appb-000007
1号芯棒:处理器根据1号芯棒检测传感器的输出发现1号芯棒,并以此确定其他各芯棒的编号,建立芯棒与打印工位的对应关系,从而查询、更新芯棒的状态,确定是否满足开启烘干灯的条件。
打印工位1:当一芯棒到达打印工位1时,处理器收到PLC发出的停角信号后,开始持续计数该芯棒角度编码器的输出脉冲(A向信号);处理器收到喷头打印启动信号时,记录角度编码器当前计数值(此时可能尚未收到z信号),直至公转一周结束,开启下一个循环。因烘干灯与喷头安装位置相隔180°,可据此确定烘干灯启动角度,即当喷头喷出的墨滴随罐体表面转到烘干灯位置时启动烘干灯,随后可根据从角度编码器收到的z信号将该角度换算成以z信号位置为参考的绝对角度位置,这就是烘干启动位置。之后,根据需要或预设准则设定烘干停止位置。
以上烘干启动与停止位置均以角度编码器输出脉冲为度量单位,并记录在该芯棒存储区中(见上表)。
打印启动/停止角度:打印启动和打印停止角度(位置)由喷头控制器根据停角信息、有无罐信息、角度编码器信息决定,可以有不同方式,首先要满足停角要求和有罐要求,在此基础上,收到某一角度位置标志信号(如编码器z相信号)时开始打印,完成一周(360°)打印(或其他预设停止条件)后,停止打印。
根据当前角度编码器标志的位置换算成图片像素位置,即可开始打印,完成一周(360°)打印(或其他预设停止条件)后,停止打印。
如第一层在收到对应角度编码器z相信号时开始打印(或在某一指定角度开始打印),则建立了芯棒角度与图片像素的对应关系,并据此实现多层色彩的准确套印。
烘干启动位置/烘干停止位置——一圈打印模式:如果只在停角阶段自转一周,则在打印工位1只烘干打印结果的前半圈,烘干启动角度为打印起始角位置+180°,烘干停止角度为打印起始角位置;在其他打印工位,烘干一圈,即前一工位打印的后半圈和本工位打印的前半圈,而最后打印工位打印的后半圈在其后相邻工位烘干。
如果在停角阶段完成整圈烘干,则在停角阶段自转至少持续1.5圈,烘干启动角度为打印起始角位置+180°,完成一整圈烘干后回到相同位置,即烘干停止角度为打印起始角位置+180°。
其他打印工位:当一芯棒到达其他打印工位(除打印工位1外)时,如打印条件满足,可根据在打印工位1确定的烘干起始和停止位置进行烘干。
烘干条件:系统处于停角;芯棒上罐在正确位置;在打印工位1时,喷头开始打印;到达烘干启动角度(位置),或处于烘干启动区间。
烘干操作:在某一打印工位,烘干启动后,烘干控制器作如下操作;
根据角度编码器给出的当前角度位置信息,由上文表2得到对应区域图案特征信息(如光强);再由表3及相应算法(如插值算法)得到光源控制单元所需的控制输入信息;将控制输入信息输入光源功率放大单元,实现对烘干光强的智能控制。
随时间的流逝,各光源单位会逐渐老化,老化的程度不尽相同,始终采用一样的光强控制信号,烘干效果的一致性会变差。
在一些实施例中,所述采用相应光强对所述柱体待打印体表面上各个区域进行烘干,还包括:检查烘干灯光强控制电路控制的光源单位是否失效(根据烘干灯驱动信息即电流或者电压,来判定光源单位是否失效,也就是能不能正常发光);检查所述输入控制信息与光强输出对应关系是否发生变化,若变化则更新所述输入控制信息与光强输出对应关系。
所述检查所述输入控制信息与光强输出对应关系是否发生变化,若变化则更新所述输入 控制信息与光强输出对应关系,具体包括:利用光电传感器移动到某一烘干光源的正上方(正对发光面)对应基材处的适合高度(此处也即是罐体承接墨滴处,即罐体表面位置),烘干灯光强控制电路按一定规律输出控制信息,同时记录接收到的光电传感器输出的光强信息;然后将检测得的二者关系曲线与已有关系曲线比较,如变化超出预定范围,则更新所述输入控制信息与光强输出对应关系。更具体的实施方式如下:
如图1所示,选取两个相邻芯棒,在两芯棒间安装一组光电传感器对应光源的基本控制单元,传感器的电源与信号线经电滑环与外部电路相连(或电池供电,无线传送信号),处理器通过A/D转换采样该传感器输出。光电传感器随大转盘运动,光源检测时,可使其停留在待检光源上方,控制器处理器输出不同控制量,便接收到对应的光电传感器输出量,从而建立起控制量与光强的函数关系。
光源控制单元——a.检查光源控制单元的光珠是否失效;b.检查控制信息-光强曲线是否变化,如有变化,更新曲线。具体操作如下:
在设备维护时,大转盘将光电传感器移动到某一烘干光源的正上方对应基材处的适合高度处,光源控制器的处理器按一定规律输出控制信息(控制量),同时记录接收到的光电传感器输出的光强信息。然后将测得的二者关系曲线与已有关系曲线(上文表3)比较,如变化超出预定范围,则更新表3,补偿光源变化的影响,保证烘干效果的稳定性、一致性。
整体光源——除分别测量各光源基本控制单元的光强外,还可将光源基本控制单元同时点亮,检测光源整体亮度的变化。
为了更加清楚再一次理解本申请,本申请可以解决的技术问题或者达到的有益效果,罗列如下:
建立稳定的墨量(颜色浓度)与光强对应关系,保证烘干强度的一致性。
因不同图案所用墨量不同,不同打印速度下,基材在灯光下经历的时间长度不同,基材需要的能量差异会很大,如用同样的光强烘干,难以保证烘干效果一致,进而影响打印质量的一致性。为满足对打印图片质量稳定性的要求,烘干时由LED灯提供的光强也应随着图案的不同,打印条件的不同而有所变化,同时,这种变化如何进行、如何实现,要由系统自行分析、判定、决定。本系统即为实现烘干灯的智能化控制而设计。
同一图案不同部分颜色浓度不同却用相同的烘干强度------会导致颜色浓度深的地方接收到的能量过多或过少,烘干过度或不足,颜色浓度浅的地方也同样。使能量不能按需分配。
不同图案用相同的烘干强度------也存在以上相似的问题。
先打印的颜色烘干次数过多-----每个工位打印一些颜色,先打印的颜色经过每个工位被 烘干一次,后打印的颜色比先打印的颜色烘干次数少,这样容易造成先打印的颜色被过度烘干而影响质量。
不同打印速度烘干强度也需要改变------打印速度快就意味着烘干时间短,所需烘干强度大,反之所需烘干强度就小。所以,不同的打印速度不能够用相同的烘干强度,需将烘干强度与打印速度匹配。
不同的光源单位、光源输出强度不同-------不同的光源单位、光源如果用相同的烘干控制输入,会导致输出强度差异。输出强度大的光源单位、光源所需的烘干控制输入小,反之亦然。所以需要随时调整、匹配所需的对应光强控制输入。
光源器件老化造成输出光强变化-----不同的光源、光源单位等器件随着时间和使用频次的增加,其输出的强度不同程度的将受到影响,需要随时监测后,及时作出光强输入的对应性的调整,同样的光强不同器件的输出可能有所不同。
以上所述实施例仅是为充分说明本申请而所举的较佳的实施例,本申请的保护范围不限于此。本技术领域的技术人员在本申请基础上所作的等同替代或变换,均在本申请的保护范围之内。本申请的保护范围以权利要求书为准。

Claims (10)

  1. 一种柱体表面打印烘干控制方法,其特征在于,包括:
    建立图案浓度与光强之间对应关系的控制表;
    将待打印图案划分成多个区域,并将柱体表面划分成对应的区域,获取每个区域内图案的浓度;
    将所述待打印图案打印到所述柱体表面上;
    根据所述控制表中图案浓度与光强之间的对应关系,采用相应光强对所述柱体表面上各个区域进行烘干。
  2. 如权利要求1所述的柱体表面打印烘干控制方法,其特征在于,所述建立图案浓度与光强之间对应关系的控制表,具体包括:第1步:分别在各基色层按色彩浓度选择一系列标准测试色,其中的墨滴均匀分布;第2步:记录当前测试条件;第3步:调整烘干灯光强;第4步:打样和烘干喷墨打印图案;第5步:对比标准色与打样结果,如果色彩一致性达不到要求,重复步骤第3、4、5步,否则进行下一步;第6步;记录、存储当前标准色及其对应的光强。
  3. 如权利要求2所述的柱体表面打印烘干控制方法,其特征在于,所述测试条件包括喷头和待打印基材之间的相对运动速度、喷头和待打印基材之间的相对距离、喷头喷出墨滴时的温度。
  4. 如权利要求1所述的柱体表面打印烘干控制方法,其特征在于,将待打印图案划分成多个区域的方法包括:
    将待打印图案沿对应所述柱体表面的轴向和周向按预设的距离划分成多个区域;或者,对待打印图案的图案特性进行分析,将图案的浓度所需要的烘干光强属于同一预设范围内的连续区域划分为一个区域。
  5. 如权利要求1所述的柱体表面打印烘干控制方法,其特征在于,所述采用相应光强对所述柱体表面上各个区域进行烘干中,烘干光源由若干烘干灯光源单位组成,所述若干烘干灯光源单位按照所述柱体表面的轴向排列,所述若干烘干灯光源单位可分区单独控制,每个单独控制的分区为一个控制单元。
  6. 如权利要求1所述的柱体表面打印烘干控制方法,其特征在于,所述采用相应光强对所述柱体表面上各个区域进行烘干,具体包括获取各分区的输入控制信息与光强输出对应关系;根据输入控制信息与光强输出对应关系和各分区烘干时需要的光强,得到各分区的输入 控制信息;将所述各分区的输入控制信息输出到各分区的烘干灯光强控制电路得到分区烘干时需要的光强。
  7. 如权利要求6所述的柱体表面打印烘干控制方法,其特征在于,所述输入控制信息是电流信息或者电压信息。
  8. 如权利要求6所述的柱体表面打印烘干控制方法,其特征在于,所述采用相应光强对所述柱体表面上各个区域进行烘干对应基材处的适合高度处,还包括:检查烘干灯光强控制电路控制的光源单位是否失效;检查所述输入控制信息与光强输出对应关系是否发生变化,若变化则更新所述输入控制信息与光强输出对应关系。
  9. 如权利要求8所述的柱体表面打印烘干控制方法,其特征在于,所述检查所述输入控制信息与光强输出对应关系是否发生变化,若变化则更新所述输入控制信息与光强输出对应关系,具体包括:利用光电传感器移动到某一烘干光源的正上方,烘干灯光强控制电路按一定规律输出控制信息,同时记录接收到的光电传感器输出的光强信息;然后将检测得的二者关系曲线与已有关系曲线比较,如变化超出预定范围,则更新所述输入控制信息与光强输出对应关系。
  10. 一种数码印刷机,其特征在于:该数码印刷机采用权利要求1到9中任一项所述的控制方法。
PCT/CN2021/136937 2021-02-08 2021-12-10 柱体表面打印烘干控制方法 WO2022166396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110170746.7 2021-02-08
CN202110170746.7A CN113002185B (zh) 2021-02-08 2021-02-08 柱体表面打印烘干控制方法

Publications (1)

Publication Number Publication Date
WO2022166396A1 true WO2022166396A1 (zh) 2022-08-11

Family

ID=76384132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136937 WO2022166396A1 (zh) 2021-02-08 2021-12-10 柱体表面打印烘干控制方法

Country Status (2)

Country Link
CN (1) CN113002185B (zh)
WO (1) WO2022166396A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113002185B (zh) * 2021-02-08 2022-05-24 苏州斯莱克精密设备股份有限公司 柱体表面打印烘干控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069367A (ja) * 2012-09-28 2014-04-21 Dainippon Screen Mfg Co Ltd 乾燥装置、乾燥装置を備えた印刷装置、および乾燥方法
CN106739542A (zh) * 2017-01-22 2017-05-31 广州市申发机电有限公司 一种全自动快速高效旋转曲面数码喷墨印刷机
CN106985550A (zh) * 2016-01-18 2017-07-28 富士施乐株式会社 液滴干燥装置和图像形成设备
CN108263101A (zh) * 2018-03-22 2018-07-10 浙江理工大学上虞工业技术研究院有限公司 数码印花转印纸定位烘干装置及其烘干方法
CN108944041A (zh) * 2018-06-27 2018-12-07 中山松德印刷机械有限公司 一种可变二维码的定位高速喷码印刷方法
CN109501476A (zh) * 2018-12-21 2019-03-22 苏州斯莱克精密设备股份有限公司 一种数码印罐机打印精度控制方法以及数码印罐机
CN110341307A (zh) * 2018-04-05 2019-10-18 富士施乐株式会社 干燥装置、用于干燥的计算机可读介质和图像形成装置
CN110757977A (zh) * 2019-12-06 2020-02-07 东莞市图创智能制造有限公司 打印固化方法及打印固化系统
CN112223929A (zh) * 2020-10-21 2021-01-15 深圳市汉森软件有限公司 基于羽化处理的喷墨打印方法、装置、设备及存储介质
CN113002185A (zh) * 2021-02-08 2021-06-22 苏州斯莱克精密设备股份有限公司 柱体表面打印烘干控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10225198B4 (de) * 2002-06-06 2007-07-12 Polytype S.A. Verfahren und Vorrichtung zum Drucken eines mehrfarbigen Bildes

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069367A (ja) * 2012-09-28 2014-04-21 Dainippon Screen Mfg Co Ltd 乾燥装置、乾燥装置を備えた印刷装置、および乾燥方法
CN106985550A (zh) * 2016-01-18 2017-07-28 富士施乐株式会社 液滴干燥装置和图像形成设备
CN106739542A (zh) * 2017-01-22 2017-05-31 广州市申发机电有限公司 一种全自动快速高效旋转曲面数码喷墨印刷机
CN108263101A (zh) * 2018-03-22 2018-07-10 浙江理工大学上虞工业技术研究院有限公司 数码印花转印纸定位烘干装置及其烘干方法
CN110341307A (zh) * 2018-04-05 2019-10-18 富士施乐株式会社 干燥装置、用于干燥的计算机可读介质和图像形成装置
CN108944041A (zh) * 2018-06-27 2018-12-07 中山松德印刷机械有限公司 一种可变二维码的定位高速喷码印刷方法
CN109501476A (zh) * 2018-12-21 2019-03-22 苏州斯莱克精密设备股份有限公司 一种数码印罐机打印精度控制方法以及数码印罐机
CN110757977A (zh) * 2019-12-06 2020-02-07 东莞市图创智能制造有限公司 打印固化方法及打印固化系统
CN112223929A (zh) * 2020-10-21 2021-01-15 深圳市汉森软件有限公司 基于羽化处理的喷墨打印方法、装置、设备及存储介质
CN113002185A (zh) * 2021-02-08 2021-06-22 苏州斯莱克精密设备股份有限公司 柱体表面打印烘干控制方法

Also Published As

Publication number Publication date
CN113002185B (zh) 2022-05-24
CN113002185A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
US9308740B2 (en) Printing method and printing apparatus
WO2022166396A1 (zh) 柱体表面打印烘干控制方法
CN104029510B (zh) 喷墨印刷浓度修正方法、修正装置及喷墨印刷方法、设备
CN106183414B (zh) 喷墨打印设备和检查图案打印方法
US9333741B2 (en) Method and arrangement for printing a three-dimensional surface
US7976145B2 (en) Recording method
JP2000127369A5 (zh)
US20110050772A1 (en) Printing apparatus using plural color inks including white color ink and printing method thereof
CN210390444U (zh) 可快速二次印刷的uv丝印机
US8714726B2 (en) Printing apparatus, printing method, and program
JP6667679B2 (ja) 複数のモジュールを備えたプリンタの較正
KR20210042812A (ko) 프린트헤드에서의 잉크 액적 체적의 폐루프 조절을 위한 시스템 및 방법
US10341534B2 (en) Color calibration
CN106739498B (zh) 一种喷墨打印机、控制所述打印机的方法以及控制所述打印机的装置
CN1576004A (zh) 维持喷墨头的温度的打印装置和打印方法
CN100577431C (zh) 可自动校正喷墨头承座速度不均匀的方法及系统
US11247450B2 (en) Method for determining print parameters of a printing machine and test stand
CN104441970B (zh) 一种喷墨印刷中重影的修正方法及装置
JP2013141799A (ja) プログラムの製造方法、濃度補正方法及び印刷方法
CN109311319A (zh) 打印机校准技术
CN112895728B (zh) 印刷装置的生产方法以及印刷装置
CN104816570A (zh) 一种雕刻上色方法
US11662252B2 (en) Printing apparatus and method for generating color chart data
JP2016083886A (ja) 画像形成装置、画像形成方法およびコンピュータプログラム
US11752756B2 (en) Method of operating a flexographic printing press, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924389

Country of ref document: EP

Kind code of ref document: A1