WO2022165829A1 - 一种用于供电系统的控制系统和方法 - Google Patents

一种用于供电系统的控制系统和方法 Download PDF

Info

Publication number
WO2022165829A1
WO2022165829A1 PCT/CN2021/075950 CN2021075950W WO2022165829A1 WO 2022165829 A1 WO2022165829 A1 WO 2022165829A1 CN 2021075950 W CN2021075950 W CN 2021075950W WO 2022165829 A1 WO2022165829 A1 WO 2022165829A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
stage
bus
power grid
stage controller
Prior art date
Application number
PCT/CN2021/075950
Other languages
English (en)
French (fr)
Inventor
赵欢
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21923839.1A priority Critical patent/EP4283814A4/en
Priority to CN202180051300.0A priority patent/CN115917908A/zh
Priority to PCT/CN2021/075950 priority patent/WO2022165829A1/zh
Publication of WO2022165829A1 publication Critical patent/WO2022165829A1/zh
Priority to US18/366,102 priority patent/US20230378758A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin

Definitions

  • the present application relates to the field of circuit technology, and more particularly, to a control system and method for a power supply system.
  • High voltage ride-through refers to the ability to ensure that the power station will not be disconnected from the grid and continue to operate within a certain voltage range and time interval when an accident occurs in the power system, causing the voltage at the grid-connected point of the power supply system to rise.
  • the power supply system is generally composed of a front-stage voltage conversion device and a rear-stage voltage conversion device.
  • the voltage of the DC bus is controlled by the DC bus voltage required by the maximum power point tracking (MPPT) module of the front-stage voltage conversion device and the grid.
  • MPPT maximum power point tracking
  • the required DC bus voltage is obtained by competition. When high voltage ride-through occurs on the grid side, the grid voltage rises. If the DC bus voltage cannot be controlled in time, the active power of the power supply system cannot be output.
  • the post-stage voltage conversion device When high voltage ride-through occurs on the grid side and the grid voltage rises, the post-stage voltage conversion device will calculate a higher DC bus voltage reference value based on the sampled grid voltage, and notify the pre-stage voltage conversion device to update through the high-speed communication line
  • the DC bus voltage is referenced to the voltage value required for high voltage ride-through, and the front-end controller controls the DC bus voltage according to the received DC bus voltage reference value, thereby ensuring the power output of the power supply system during high voltage ride-through.
  • the present application provides a control system and method for a power supply system, so that the voltage control of the DC bus does not depend on the high-speed communication line, and the control efficiency of the power supply system can be improved.
  • a control system for a power supply system including a post-stage voltage conversion device and a pre-stage voltage conversion device.
  • the pre-stage voltage conversion device includes a pre-stage controller and a pre-stage voltage conversion circuit, the pre-stage controller is used to control the pre-stage voltage conversion circuit to receive the electric energy provided by the power supply module in the power supply system, and after the DC voltage conversion is performed , and supply power to the voltage conversion device through the DC bus.
  • the post-stage voltage conversion device includes a post-stage controller and a post-stage voltage conversion circuit
  • the post-stage controller is used to control the post-stage voltage conversion circuit to receive the electric energy transmitted by the pre-stage voltage conversion device through the DC bus, and perform DC After conversion to AC voltage, power is supplied to the grid.
  • the post-stage controller is further configured to transmit the information indicating the occurrence of high voltage ride-through of the power grid to the pre-stage controller through the DC bus.
  • the post-stage controller may transmit the information indicating the occurrence of high voltage ride-through in the power grid to the pre-stage controller through the DC bus.
  • This control scheme eliminates the need to transmit information about high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, which can improve the control efficiency of the power supply system.
  • control of the DC bus voltage is not limited by the communication speed, the cost is low, and it is easy to implement.
  • the pre-stage controller is further configured to acquire, through the DC bus, the information transmitted by the post-stage controller indicating that high voltage ride-through occurs in the power grid.
  • the post-stage controller is specifically configured to: control the current voltage of the DC bus when it is detected that high voltage ride-through occurs in the power grid, so that the DC bus
  • the current voltage of the device complies with the preset first voltage characteristics, and the preset first voltage characteristics include at least one of the following conditions: a preset level, a preset level range or a preset level changing characteristics.
  • the pre-stage controller is specifically configured to: determine that a high voltage ride-through occurs in the power grid when it is detected that the current voltage of the DC bus conforms to the preset first voltage characteristic.
  • the post-stage voltage conversion device in the case of detecting the occurrence of high voltage ride-through in the power grid, can control the voltage of the DC bus to make it conform to the preset first voltage characteristic, where the first voltage characteristic is used to indicate High voltage ride-through occurs in the power grid, and when the front-stage voltage conversion device detects that the current voltage of the DC bus meets the preset first voltage characteristics, it can determine that high voltage ride-through occurs in the power grid, and update the current voltage of the DC bus accordingly.
  • This control scheme eliminates the need to transmit the information of high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, and can realize the rapid reference of bus voltage control. renew.
  • the pre-stage controller is further configured to: update the current voltage of the DC bus after acquiring the information indicating the occurrence of high voltage ride-through in the power grid.
  • the post-stage controller is further configured to transmit information indicating that the power grid exits high voltage ride-through to the pre-stage controller through the DC bus.
  • the pre-stage controller is further configured to acquire the information transmitted by the post-stage controller through the DC bus, indicating that the power grid exits the high voltage ride-through.
  • the post-stage controller is specifically configured to control the current voltage of the DC bus when it is detected that the power grid exits the high voltage ride-through, so that the voltage of the DC bus is The current voltage conforms to a preset second voltage characteristic, and the preset second voltage characteristic includes at least one of the following conditions: a preset level, a preset level range, or a preset level change feature.
  • the pre-stage controller is specifically configured to determine that the power grid exits the high voltage ride-through when it is detected that the current voltage of the DC bus conforms to the preset second voltage characteristic.
  • the pre-stage controller is further configured to: after acquiring the information indicating that the power grid exits the high voltage ride through, restore the voltage control of the DC bus before the high voltage ride through Way.
  • the post-stage controller includes a first sampling unit and a first control unit, and the first sampling unit is specifically configured to collect the current voltage information of the power grid, and send it to the grid.
  • the first control unit sends current voltage information of the grid.
  • the first control unit is specifically configured to: receive the current voltage information of the power grid, determine that high voltage ride-through occurs in the power grid according to the current voltage information of the power grid, and control the current voltage of the DC bus so that the current voltage of the DC bus meets the the preset first voltage characteristic.
  • the pre-stage controller includes a second sampling unit and a second control unit, and the second sampling unit is specifically configured to collect current voltage information of the DC bus, and Send the current voltage information of the DC bus to the second control unit.
  • the second control unit is specifically configured to: receive the current voltage information of the DC bus, and determine whether the current voltage of the DC bus conforms to the preset first voltage characteristic according to the current voltage information of the DC bus. When the current voltage conforms to the preset first voltage characteristic, it is determined that high voltage ride-through occurs in the power grid.
  • a control method for a power supply system is provided, the method being performed by the control system.
  • the control system includes a pre-stage voltage conversion device and a post-stage voltage conversion device, the pre-stage voltage conversion device includes a pre-stage controller and a pre-stage voltage conversion circuit, and the pre-stage controller is used to control the pre-stage voltage conversion circuit to receive the power supply
  • the electric energy provided by the power supply module in the system, and after the DC voltage conversion is performed, power is supplied to the subsequent stage voltage conversion device through the DC bus.
  • the latter stage voltage conversion device includes a subsequent stage controller and a subsequent stage voltage conversion circuit.
  • the controller is used to control the post-stage voltage conversion circuit to receive the electric energy transmitted by the pre-stage voltage conversion device through the DC bus, and to supply power to the grid after converting the DC-AC voltage.
  • the method includes: the post-stage controller transmits, to the pre-stage controller through the DC bus, information indicating that high voltage ride-through occurs in the power grid.
  • the post-stage controller may transmit the information indicating the occurrence of high voltage ride-through in the power grid to the pre-stage controller through the DC bus.
  • This control scheme eliminates the need to transmit information about high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, which can improve the control efficiency of the power supply system.
  • control of the DC bus voltage is not limited by the communication speed, the cost is low, and it is easy to implement.
  • the method further includes: the preceding-stage controller obtains, through the DC bus, the information transmitted by the succeeding-stage controller indicating that high voltage ride-through occurs in the power grid.
  • the post-stage controller transmits information indicating that high voltage ride-through occurs in the power grid to the pre-stage controller through the DC bus, including: the post-stage controller is in When it is detected that a high voltage ride-through occurs in the power grid, the current voltage of the DC bus is controlled so that the current voltage of the DC bus conforms to a preset first voltage characteristic, where the first voltage characteristic includes at least one of the following conditions: A preset level, a preset level range, or a preset level variation characteristic.
  • the pre-stage controller obtains, through the DC bus, the information transmitted by the post-stage controller indicating the occurrence of high voltage ride-through in the power grid, including: when the pre-stage controller detects that the current voltage of the DC bus conforms to the preset first In the case of voltage characteristics, it is determined that high voltage ride-through occurs in the grid.
  • the post-stage voltage conversion device in the case of detecting the occurrence of high voltage ride-through in the power grid, can control the voltage of the DC bus to make it conform to the preset first voltage characteristic, where the first voltage characteristic is used to indicate High voltage ride-through occurs in the power grid, and when the front-stage voltage conversion device detects that the current voltage of the DC bus meets the preset first voltage characteristics, it can determine that high voltage ride-through occurs in the power grid, and update the current voltage of the DC bus accordingly.
  • This control scheme eliminates the need to transmit the information of high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, and can realize the rapid reference of bus voltage control. renew.
  • a post-stage voltage conversion device for a power supply system, the device includes: a post-stage voltage conversion circuit and a post-stage controller, the post-stage controller is configured to control the post-stage voltage conversion circuit to pass through a DC bus Receive the electric energy transmitted by the previous-stage voltage conversion device, and supply power to the power grid after the DC-AC voltage conversion, wherein the previous-stage voltage conversion device includes a previous-stage controller and a previous-stage voltage conversion circuit, and the previous-stage controller is used for The front-stage voltage conversion circuit is controlled to receive the electric energy provided by the power supply module in the power supply system, and after DC voltage conversion is performed, power is supplied to the latter-stage voltage conversion device through the DC bus.
  • the post-stage controller is further configured to transmit the information indicating the occurrence of high voltage ride-through of the power grid to the pre-stage controller through the DC bus.
  • the post-stage controller may transmit the information indicating the occurrence of high voltage ride-through in the power grid to the pre-stage controller through the DC bus.
  • This control scheme eliminates the need to transmit high-voltage ride-through information in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, which can improve the control efficiency of the power supply system.
  • control of the DC bus voltage is not limited by the communication speed, the cost is low, and it is easy to implement.
  • the post-stage controller is specifically configured to: control the current voltage of the DC bus when it is detected that high voltage ride-through occurs in the power grid, so that the DC bus
  • the current voltage of the device complies with the preset first voltage characteristics, and the preset first voltage characteristics include at least one of the following conditions: a preset level, a preset level range or a preset level changing characteristics.
  • the post-stage controller is further configured to: transmit information indicating that the power grid exits high voltage ride-through to the pre-stage controller through the DC bus.
  • the post-stage controller is specifically configured to: control the current voltage of the DC bus when it is detected that the power grid exits the high voltage ride-through, so that the DC bus is
  • the current voltage of the device conforms to the preset second voltage characteristics, and the preset second voltage characteristics include at least one of the following conditions: a preset level, a preset level range or a preset level changing characteristics.
  • the back-end controller includes a sampling unit and a control unit, and the sampling unit is specifically configured to collect current voltage information of the power grid and send the power grid to the control unit current voltage information.
  • the control unit is specifically used for: receiving the current voltage information of the power grid, and according to the current voltage information of the power grid, determining that a high voltage ride-through occurs in the power grid, and controlling the current voltage of the DC bus so that the current voltage of the DC bus conforms to the current voltage of the power grid.
  • the preset first voltage characteristic is specifically used for: receiving the current voltage information of the power grid, and according to the current voltage information of the power grid, determining that a high voltage ride-through occurs in the power grid, and controlling the current voltage of the DC bus so that the current voltage of the DC bus conforms to the current voltage of the power grid.
  • the back-end controller includes a sampling unit and a control unit, and the sampling unit is specifically configured to collect current voltage information of the power grid and send the power grid to the control unit current voltage information.
  • the control unit is specifically configured to: receive the current voltage information of the power grid, determine that the power grid exits high voltage ride-through according to the current voltage information of the power grid, and control the current voltage of the DC bus so that the current voltage of the DC bus meets the preset voltage Set the second voltage characteristic.
  • a pre-stage voltage conversion device for a power supply system, the device includes: a pre-stage voltage conversion circuit and a pre-stage controller, the pre-stage controller is configured to control the pre-stage voltage conversion circuit to receive the power supply The electric energy provided by the power supply module in the system, and after the DC voltage conversion is performed, power is supplied to the subsequent stage voltage conversion device through the DC bus, wherein the subsequent stage voltage conversion device includes a subsequent stage controller and a subsequent stage voltage conversion circuit.
  • the stage controller is used to control the subsequent stage voltage conversion circuit to receive the electric energy transmitted by the front stage voltage conversion device through the DC bus, and to supply power to the grid after DC to AC voltage conversion.
  • the pre-stage controller is further configured to obtain the information transmitted by the post-stage controller, which indicates the occurrence of high voltage ride-through in the power grid, through the DC bus.
  • the post-stage controller may transmit the information indicating the occurrence of high voltage ride-through in the power grid to the pre-stage controller through the DC bus.
  • This control scheme eliminates the need to transmit information about high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, which can improve the control efficiency of the power supply system.
  • control of the DC bus voltage is not limited by the communication speed, the cost is low, and it is easy to implement.
  • the pre-stage controller is specifically configured to: in the case that it is detected that the current voltage of the DC bus conforms to the preset first voltage characteristic, determine that the power grid occurs For high voltage ride-through, the preset first voltage characteristic includes at least one of the following conditions: a preset level, a preset level range, or a preset level change feature.
  • the pre-stage controller is further configured to: update the current voltage of the DC bus after acquiring the information indicating that the high voltage ride-through occurs in the power grid.
  • the pre-stage controller is further configured to: acquire information transmitted by the post-stage controller through the DC bus, indicating that the power grid exits high voltage ride through.
  • the pre-stage controller is specifically configured to: determine that the power grid exits when it is detected that the current voltage of the DC bus conforms to a preset second voltage characteristic
  • the preset second voltage characteristic includes at least one of the following conditions: a preset level, a preset level range, or a preset level change characteristic.
  • FIG. 1 is a schematic structural diagram of an application scenario applicable to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a control system for a power supply system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a post-stage controller according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a pre-stage controller according to an embodiment of the present application.
  • FIG. 5 is a control process of the post-stage controller in the embodiment of the present application.
  • FIG. 6 is a control process of the front-end controller in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a voltage change process of a DC bus in a high voltage ride-through control process according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a voltage change process of a DC bus during a high voltage ride-through control process according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a voltage change process of a DC bus during a high voltage ride-through control process according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a control method for a power supply system according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a control device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an application scenario applicable to an embodiment of the present application.
  • the power supply system 100 can generate alternating current and provide the generated alternating current to the power grid.
  • the power supply system 100 can include a power supply module 110 and a control system 200 , and the control system 200 can include a front-stage voltage conversion device 120 and a back-stage voltage conversion device 120 . Voltage conversion device 140 .
  • the power supply module 110 may output the generated electric energy to the front-stage voltage conversion device 120 .
  • the post-stage voltage conversion device 140 may receive the electrical energy transmitted by the front-stage voltage conversion device 120 through the DC bus 130, and after performing the DC-to-AC voltage conversion, supply power to the power grid.
  • the power supply module 110 for providing electrical energy may include a photovoltaic (PV) array 111 and a battery 112 , the electrical energy of the photovoltaic array 111 is converted by the DC voltage of the front-stage voltage conversion device 121 and then output to the DC bus 130 , and the electrical energy of the battery 112 passes through the front-stage voltage conversion device 121 .
  • PV photovoltaic
  • the DC voltage of the voltage conversion device 122 is converted and output to the DC bus 130 .
  • the DC bus 130 is connected to the front and rear voltage conversion devices, and the power of the front and rear voltage conversion devices is transmitted through the DC bus 130 .
  • the system in FIG. 1 is only to illustrate the application scenarios of the embodiments of the present application, and is not intended to limit the present application.
  • the embodiment of the present application does not limit the connection relationship of the circuit.
  • other devices may also be connected between the components in FIG. 1 , for example, the output terminal of the voltage conversion device 140 of the subsequent stage and the previous stage. It can be directly connected to the power grid, or can be connected to the power grid through a transformer, which is not limited in this application.
  • the power supply system 100 that supplies power to the grid may be a two-stage photovoltaic power generation system, that is, the power supply module 110 may only include the photovoltaic array 111 , and the front-stage voltage replacement device 120 may only include the front-stage voltage replacement device 121.
  • the power supply module 110 may also include only the battery 112, and the front-stage voltage conversion device 120 only includes the front-stage voltage replacement device 122.
  • the power supply module 110 and the front-stage voltage conversion device 120 together form a power energy storage system , the generated electric energy is transmitted to the subsequent voltage conversion device 140 through the DC bus 130 , and after being processed by the subsequent voltage conversion device 140 , AC power is obtained and provided to the power grid.
  • the power supply system 100 may also be a two-stage photovoltaic power generation system in a light storage scenario, that is, the power supply module 110 includes a photovoltaic array 111 and a battery 112, and the front-stage voltage replacement device 120 includes a front-stage voltage replacement device 121 and a front-stage voltage replacement device 121. device 122 . It should be understood that in the application scenario of the two-stage photovoltaic power generation system in this light-storage scenario, the DC power output by the front-stage voltage conversion device 121 can also be provided to the battery 112 through the voltage conversion device 122, and the battery 112 stores electrical energy.
  • the battery 112 can output DC power through the voltage conversion device 122, and then transmit it to the subsequent voltage conversion device 140 through the DC bus 130, and after being processed by the subsequent voltage conversion device 140, AC power is obtained and provided to the power grid.
  • the front-stage voltage conversion device 120 connected to the DC bus 130 may include multiple devices, and similarly, the subsequent-stage voltage conversion device 140 connected to the DC bus 130 may include multiple devices.
  • the topology of the front-stage voltage conversion device 120 may be a buck converter, a boost converter, a buck-boost converter or a boost-buck converter, Can be isolated or non-isolated.
  • the front-stage voltage conversion device 121 that performs DC voltage conversion on the photovoltaic array 111 and the front-stage voltage conversion device 122 that performs DC voltage conversion on the battery 112 may be the same or different, and their specific topological structures are determined according to actual circuit conditions. , the present application does not limit the topology of the voltage conversion device of the front and rear stages.
  • the front-stage voltage conversion device may include a direct current to direct current (DC/DC) converter
  • the rear-stage voltage conversion device 140 may also include a power conversion system (PCS) or Direct current to alternating current (DC/AC) converter.
  • PCS power conversion system
  • DC/AC Direct current to alternating current
  • FIG. 2 is a schematic structural diagram of a control system for a power supply system according to an embodiment of the present application.
  • the control system includes a front-stage voltage conversion device 210 and a rear-stage voltage conversion device 230 , the output terminal of the front-stage voltage conversion device 210 and the input terminal 230 of the rear-stage voltage conversion device can pass through the DC bus 220 connect.
  • the pre-stage voltage conversion device 210 may include a pre-stage controller 211 and a pre-stage voltage conversion circuit 212.
  • the pre-stage voltage conversion circuit 211 is used to control the pre-stage voltage conversion circuit 212 to receive the electric energy provided by the power supply module in the power supply system, and to perform direct current.
  • the post-stage voltage conversion device 230 may include a post-stage controller 231 and a post-stage voltage conversion circuit 232, and the post-stage controller 231 is configured to control the post-stage voltage conversion circuit 232 to receive the electric energy transmitted by the pre-stage voltage conversion device 210 through the DC bus 220, And after DC to AC voltage conversion, power is supplied to the grid.
  • the parts not shown in FIG. 2 may be the same as those in FIG. 1 , or may be different from those in FIG. 1 .
  • the post-stage controller 231 may also be configured to transmit information indicating that a high voltage ride-through occurs in the power grid to the pre-stage controller 211 through the DC bus 220 .
  • the post-stage controller may transmit the information indicating the occurrence of high voltage ride-through in the power grid to the pre-stage controller through the DC bus.
  • This control scheme eliminates the need to transmit information about high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, which can improve the control efficiency of the power supply system.
  • control of the DC bus voltage is not limited by the communication speed, the cost is low, and it is easy to implement.
  • the post-stage controller 231 can be used to detect whether high-voltage ride-through occurs in the power grid. In the case of detecting that high-voltage ride-through occurs in the power grid, the voltage of the DC bus 220 required for the high-voltage ride-through can be calculated, and the voltage of the subsequent stage can be passed through.
  • the conversion circuit 232 controls the current voltage of the DC bus 220 so that the current voltage of the DC bus 220 conforms to a preset first voltage characteristic.
  • the above-mentioned preset first voltage characteristic may be a preset level, for example, 1450V, or a preset level range, for example, 1400V-1500V, or a preset level change Characteristics, for example, the voltage reaches a certain threshold within a period of time and the voltage change meets certain characteristics, or a continuous rising level.
  • the main basis for the setting of the first voltage feature are: i) it can be effectively distinguished from the voltage feature in the normal operation mode to avoid false alarms; ii) it has a certain anti-interference ability, which can control the influence of detection errors or external power fluctuations, etc. ; iii) Comprehensively consider the control difficulty of the post-stage controller and the recognition difficulty of the pre-stage controller.
  • the back-stage controller 231 may continue to detect whether the power grid exits high-voltage ride-through, and the back-stage controller 231 may also be used to pass the DC bus 220 to the previous stage.
  • the controller 211 transmits information instructing the grid to exit high voltage ride through.
  • the back-stage controller 231 may continue to detect whether the power grid exits high-voltage ride-through.
  • the conversion circuit 232 controls the current voltage of the DC bus 220 so that the current voltage of the DC bus complies with the preset second voltage characteristic. If the post-stage controller 231 detects that the power grid does not occur or does not exit the high voltage ride-through, the current control mode for the voltage of the DC bus 220 can be maintained.
  • the above-mentioned second voltage characteristic may also be a preset fixed level, for example, 1000V, or a preset level range, for example, 800V-1200V, or a preset level change characteristic , for example, the voltage reaches a certain threshold within a period of time and the voltage change meets certain characteristics, or a slowly decreasing level.
  • a preset fixed level for example, 1000V
  • a preset level range for example, 800V-1200V
  • a preset level change characteristic for example, the voltage reaches a certain threshold within a period of time and the voltage change meets certain characteristics, or a slowly decreasing level.
  • the type of the first voltage feature and the type of the second voltage feature may be the same or different, which is not limited in this application.
  • how to determine whether to enter the high voltage ride-through according to the grid voltage can be set according to the actual situation, and can also refer to the prior art, which is not limited in this application.
  • a first voltage threshold eg 1.1pu+0.015pu
  • a second voltage threshold eg, 1.1pu-0.043pu
  • a second specified time eg, 2ms
  • the front-stage controller 211 may also be configured to acquire, through the DC bus 220 , the information transmitted by the post-stage controller 231 indicating the occurrence of high voltage ride-through in the power grid.
  • the pre-stage controller 211 may be configured to adjust the voltage of the DC bus 220 according to the current voltage of the DC bus 220 , the preset first voltage characteristic and the preset second voltage characteristic.
  • the pre-stage controller 211 can detect whether the current voltage of the DC bus complies with the preset first voltage characteristic, and in the case where it is detected that the current voltage of the DC bus 220 meets the preset first voltage characteristic, it is determined that a high voltage has occurred in the grid cross.
  • the pre-stage controller 211 may also be configured to: update the current voltage of the DC bus after acquiring the information indicating that the high voltage ride-through occurs in the power grid. That is to say, after the DC bus 220 determines that the high voltage ride-through occurs in the power grid, the previous-stage controller 211 may update the current voltage of the DC bus 220 through the previous-stage voltage conversion circuit 212 .
  • updating the current voltage of the DC bus 220 by the previous-stage voltage conversion circuit 212 includes: updating the control reference of the current voltage of the DC bus 220 by the previous-stage voltage conversion circuit 212 is U 1 + ⁇ u, wherein, U 1 represents the currently detected voltage of the DC bus, ⁇ u represents the control margin, and the specific value of ⁇ u can be determined by the specific implementation of the controller, or can be determined according to the actual application, which is not limited in this application.
  • the front-stage controller 211 can also be used to obtain the information transmitted by the post-stage controller 231 through the DC bus 220, indicating that the grid exits the high voltage ride-through. As an example, after determining that the high voltage ride-through occurs in the power grid, the pre-stage controller 211 may continue to detect whether the voltage of the DC bus conforms to the preset second voltage characteristic, so as to determine whether the high voltage ride-through of the power grid ends.
  • the pre-stage controller 211 may continue to detect whether the current voltage of the DC bus 220 conforms to the preset second voltage characteristic. When the current voltage of the DC bus 220 conforms to the preset second voltage characteristic, it is determined that the power grid has exited the high voltage ride through.
  • the pre-stage controller 211 may also be used to restore the voltage control mode of the DC bus before the high-voltage ride-through after acquiring the information indicating that the grid exits the high-voltage ride-through. That is to say, after the DC bus 220 determines that the grid exits the high voltage ride-through, the pre-stage controller 211 can restore the voltage control mode of the DC bus before the high voltage ride-through. If the current voltage of the DC bus 220 does not conform to the preset first voltage characteristics and the second voltage characteristics, the pre-stage controller 211 may maintain the current control mode for the voltage of the DC bus.
  • the voltage control method of the DC bus before HVRT is related to the circuit topology and modulation method.
  • the specific control mode of the DC bus can be determined according to the actual circuit conditions, which is not limited in this application.
  • the post-stage controller can detect the voltage of the power grid, determine that the high voltage ride-through occurs in the power grid according to the current voltage of the power grid, and when the high voltage ride-through of the power grid is detected, it can control the voltage of the DC bus to make it It conforms to the preset first voltage characteristic, the first voltage characteristic is used to indicate the occurrence of high voltage ride-through in the power grid, and the front-stage controller can detect the voltage of the DC bus, and the current voltage of the DC bus meets the preset first voltage characteristic. In this case, it can be determined that high voltage ride-through occurs in the grid, and the voltage of the DC bus can be updated accordingly.
  • This control scheme eliminates the need to transmit the information of high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, and can realize the rapid reference of bus voltage control. Update, improve the control efficiency of the power supply system.
  • FIG. 3 is a schematic structural diagram of a post-stage controller 231 according to an embodiment of the present application.
  • the post-stage controller 231 may include a first sampling unit 2311 and a first control unit 2312 .
  • the first sampling unit 2311 may be configured to collect current voltage information of the power grid, and send the current voltage information of the power grid to the first control unit 2312, where the voltage information is used to indicate the current voltage of the power grid.
  • the first control unit 2312 may be configured to receive current voltage information of the power grid, and determine whether a high voltage ride-through occurs in the power grid according to the current voltage information of the power grid.
  • the first control unit 2312 can control the current voltage of the DC bus through the subsequent voltage conversion circuit 232, so that the current voltage of the DC bus conforms to a preset first voltage characteristic, the first voltage
  • the feature is used to indicate that a high voltage ride-through occurs in the grid.
  • the first control unit 2312 may also be configured to determine whether the power grid exits high voltage ride through according to the current voltage information of the power grid. When it is determined that the power grid exits the high voltage ride-through, the first control unit 2312 can control the current voltage of the DC bus through the subsequent voltage conversion circuit 232, so that the current voltage of the DC bus conforms to a preset second voltage characteristic, the second voltage The feature is used to instruct the grid to exit high voltage ride through.
  • FIG. 4 is a schematic structural diagram of a pre-stage controller 211 provided by an embodiment of the present application.
  • the pre-controller 211 may include a second sampling unit 2111 and a second control unit 2112 .
  • the second sampling unit 2111 can be used to collect current voltage information of the DC bus, and send the current voltage information of the DC bus to the second control unit 2112, where the current voltage information is used to indicate the current voltage of the DC bus.
  • the second control unit 2112 may be configured to receive the current voltage information of the DC bus, and determine whether the current voltage of the DC bus conforms to the preset first voltage characteristic according to the current voltage information of the DC bus.
  • the second control unit 2112 may determine that a high voltage ride-through occurs in the power grid. Further, the second control unit 2112 can update the current voltage of the DC bus through the front-stage voltage conversion circuit 212 .
  • the second control unit 2112 may also be configured to determine, according to the current voltage information of the DC bus, whether the current voltage of the DC bus conforms to a preset second voltage characteristic. The second control unit 2112 may determine that the power grid exits the high voltage ride-through when it is detected that the current voltage of the DC bus meets the preset second voltage characteristic. Further, the second control unit 2112 can restore the voltage control mode of the DC bus before the high voltage ride-through.
  • the function of the back-stage controller may be implemented by the first sampling unit and the first control unit respectively, and the function of the pre-stage controller may be implemented by the second sampling unit and the second control unit, respectively. Therefore, this The application embodiment can use the existing system architecture to realize the voltage control of the DC bus during high voltage ride-through, so that the control of the DC bus voltage does not need to depend on the high-speed communication line, which can improve the control efficiency of the power supply system and reduce the cost.
  • FIG. 5 is a control process of the post-stage controller in the embodiment of the present application.
  • S310 Collect current voltage information of the power grid, where the voltage information is used to indicate the current voltage of the power grid.
  • the collection of the grid voltage information can be realized by a circuit with a sampling function in the subsequent-stage voltage conversion device, or by the first sampling unit in the subsequent-stage controller, and the circuit or unit that realizes the sampling function can be connected with the grid. It has a communication interface, so as to realize the collection of grid voltage information.
  • the post-stage controller can judge whether the power grid has high voltage ride-through according to the current voltage information of the power grid acquired. If the power grid does not have high-voltage ride-through, the post-stage controller can maintain the current DC bus voltage control mode and continue to detect grid voltage. If the high-voltage ride-through occurs in the power grid, that is, the high-voltage ride-through mode is entered, the subsequent controller may perform the control of step S330.
  • the post-stage controller can control the current voltage of the DC bus through the post-stage voltage conversion circuit, so that the current voltage of the DC bus conforms to the preset first voltage characteristic, the preset voltage
  • the first voltage feature of can be used for the front-stage controller to determine that a high voltage ride-through occurs in the current grid, so as to update the current voltage of the DC bus.
  • the back-stage controller can continue to judge whether the power grid has exited the high-voltage ride-through; The control of S330 continues to detect the voltage of the grid. If the power grid exits the high voltage ride-through, the subsequent controller may perform the control of step S350.
  • the back-stage controller can control the current voltage of the DC bus through the back-stage voltage conversion circuit, so that the current voltage of the DC bus conforms to the preset second voltage characteristic, the second voltage
  • the voltage feature can be used by the front-stage controller to determine that the current grid exits high voltage ride-through, so as to restore the voltage control mode for the DC bus before the high voltage ride-through.
  • the post-stage controller can detect the voltage of the power grid in real time, and judge whether the power grid has occurred or exited high voltage ride-through according to the voltage of the power grid, and control the DC bus voltage accordingly, so that the pre-stage controller can be based on the voltage of the power grid.
  • the voltage change characteristics of the DC bus determine whether the grid occurs or exits high voltage ride-through, so that there is no need to transmit the information of the occurrence or exit of high voltage ride-through between the front and rear controllers through high-speed communication lines, even if the voltage control of the DC bus does not need to be Depending on the high-speed communication line, the control efficiency of the power supply system can be improved.
  • FIG. 6 is a control process of the front-end controller in the embodiment of the present application.
  • S410 Collect voltage information of the DC bus, where the voltage information is used to indicate the current voltage of the power grid.
  • the collection of the voltage information of the DC bus can be realized by a circuit with a sampling function in the front-stage voltage conversion device, or by a second sampling unit in the pre-stage controller.
  • the circuit or unit that realizes the sampling function can be It has a communication interface with the DC bus, so as to realize the collection of bus voltage information.
  • the front-stage controller may determine whether the current voltage of the DC bus meets the preset first voltage characteristics according to the collected voltage information of the DC bus, and if the current voltage of the DC bus does not meet the preset first voltage characteristics, then The pre-stage controller can maintain the current control mode of the voltage of the DC bus, and continue to detect the voltage of the DC bus. In the case where it is detected that the current voltage of the DC bus conforms to the preset first voltage characteristic, the pre-stage controller may perform the control of step S430.
  • the previous-stage controller when detecting that the voltage of the DC bus conforms to the preset first voltage characteristic, determines that a high voltage ride-through occurs in the power grid, and can update the voltage of the DC bus through the previous-stage voltage conversion circuit.
  • the voltage control reference of the DC bus can be updated to be U 1 + ⁇ u, where U 1 represents the currently detected bus voltage and ⁇ u represents the control margin.
  • the front-stage controller may continue to determine whether the current voltage of the DC bus conforms to the preset second voltage characteristic, and if it does not conform to the preset second voltage characteristic In the second voltage characteristic, it can be determined that the power grid has not exited the high voltage ride-through, and the control of step S430 can be maintained, and the voltage of the DC bus can be continuously detected.
  • the control of step S450 may be performed.
  • the latter-stage controller determines that a high voltage ride-through occurs in the power grid, and can continue to detect whether the DC bus voltage conforms to the preset second voltage feature to judge whether the power grid exits high voltage ride through.
  • the front-stage controller when detecting that the voltage of the DC bus meets the preset second voltage characteristic, determines that the grid side has exited the high voltage ride-through, and can restore the voltage control mode of the DC bus before the high-voltage ride-through, and The voltage of the DC bus is controlled or adjusted through the front-stage voltage conversion circuit.
  • the front-end controller can detect the voltage of the DC bus in real time, and determine whether the power grid has occurred or exited high voltage ride-through according to the voltage change characteristics of the DC bus, and further update or control the voltage of the DC bus, thereby This makes it unnecessary to transmit the information of grid occurrence or exit of high voltage ride-through through high-speed communication lines between the front and rear-level controllers, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, which can improve the control efficiency of the power supply system.
  • the DC bus is not only a power and energy transmission station of the front-end and rear-stage voltage conversion devices, but also a control data information exchange point between the front-end and rear-stage devices.
  • the abscissa represents the time t
  • the ordinate represents the voltage U of the DC bus.
  • FIG. 7 is a schematic diagram of a voltage change process of a DC bus in a high-voltage ride-through control process provided by an embodiment of the present application.
  • the post-stage controller detects the grid voltage, and determines the stable operation of the current grid according to the grid voltage, and no high voltage ride-through occurs. Therefore, the pre- and post-stage controllers jointly realize the control of the DC bus voltage, so that the voltage of the DC bus is maintained. is the normal voltage U 2 .
  • the back-stage controller detects that high voltage ride-through occurs in the power grid, so the voltage of the DC bus is controlled by the back-stage voltage conversion circuit to make it the preset characteristic value U hvrt (the first voltage characteristic Example), for example, the voltage of the DC bus can be controlled to 1450V, and this preset level can last for a period of time.
  • U hvrt the first voltage characteristic Example
  • the characteristic value U hvrt here is also the currently detected bus voltage U 1 .
  • the post-stage controller detects the voltage change of the power grid and judges that the power grid has exited the high voltage ride through, that is, the power grid returns to the normal mode, and controls the voltage of the DC bus through the post-stage voltage conversion circuit to make it a preset value.
  • the normal value of U normal an example of the second voltage characteristic
  • the voltage of the DC bus can be controlled to be 1000V, and this preset level can last for a period of time.
  • the numerical values of the preset characteristic value U hvrt and the normal value U normal may be determined according to the actual circuit topology and control method, which are not limited in this embodiment of the present application.
  • the post-stage controller detects the grid voltage, and controls the voltage of the DC bus to a preset characteristic value U hvrt when determining that high voltage ride-through occurs in the power grid according to the grid voltage, and the pre-stage controller controls the voltage of the DC bus at the When the voltage reaches the preset characteristic value U hvrt , it is determined that a high voltage ride-through occurs in the power grid, and the voltage of the DC bus is updated accordingly.
  • This control scheme makes the voltage control of the DC bus easy to implement, and does not need to transmit the information of high voltage ride-through in the power grid through high-speed communication lines, can achieve rapid update of the bus voltage control reference, and improve the control efficiency of the power supply system.
  • FIG. 8 is a schematic diagram of a voltage change process of a DC bus during a high voltage ride-through control process provided by another example of the implementation of the present application.
  • the post-stage controller detects the grid voltage, and determines the stable operation of the current grid according to the grid voltage, and no high voltage ride-through occurs. Therefore, the pre- and post-stage controllers jointly realize the voltage control of the DC bus, so that the voltage of the DC bus is maintained. is the normal voltage U 2 .
  • the post-stage controller detects that high voltage ride-through occurs in the current power grid, so it controls the voltage of the DC bus through the post-stage voltage conversion circuit, and controls its voltage within a preset level range (No.
  • An example of a voltage characteristic for example, the voltage of the DC bus can be controlled between 1400-1500V.
  • the pre-stage controller detects that the voltage of the DC bus is within the preset level range, for example, it detects that the current voltage of the DC bus is 1420V, and within the preset 1400-1500V range, determine When high voltage ride-through occurs in the power grid, the current voltage of the DC bus can be further updated through the front-stage voltage conversion circuit. For example, the current voltage of the DC bus can be updated to 1440V, wherein the currently detected DC bus voltage U 1 is 1420V, and the control The margin ⁇ u is 20V.
  • the back-stage controller detects that the power grid has exited the high voltage ride-through according to the voltage of the power grid, that is, the power grid returns to the normal mode, and controls the voltage of the DC bus through the back-stage voltage conversion circuit to control it at another level.
  • the voltage of the DC bus can be controlled between 800-1200V.
  • the post-stage controller detects the grid voltage, and controls the voltage of the DC bus within a preset level range when determining that high voltage ride-through occurs in the power grid according to the grid voltage, and the pre-stage controller detects When the voltage of the DC bus reaches the preset level range, it is determined that a high voltage ride-through occurs in the power grid, and the voltage of the DC bus is updated accordingly.
  • This control scheme makes the voltage control efficiency of the DC bus higher, and does not need to transmit the information of high voltage ride-through in the power grid through high-speed communication lines, which can realize the rapid update of the bus voltage control reference and improve the control efficiency of the power supply system.
  • FIG. 9 is a schematic diagram of a voltage change process of a DC bus during a high voltage ride-through control process provided by another embodiment of the present application.
  • the post-stage controller detects the grid voltage, and determines the stable operation of the current grid according to the grid voltage, and no high voltage ride-through occurs. Therefore, the pre- and post-stage controllers jointly realize the control of the DC bus voltage, so that the DC bus voltage is maintained at Normal voltage U 2 .
  • the post-stage controller detects that high voltage ride-through occurs in the current power grid, so the voltage of the DC bus is controlled by the post-stage voltage conversion circuit, so that the voltage of the DC bus reaches a certain voltage threshold within a certain period of time and In accordance with a predetermined level change characteristic (an example of the first voltage characteristic), for example, the voltage of the DC bus can be controlled to a high-low change level, the average value of which is 1500V, and lasts for 2ms.
  • a predetermined level change characteristic an example of the first voltage characteristic
  • the voltage of the DC bus can be further updated through the previous-stage voltage conversion circuit.
  • the voltage control reference of the DC bus can be updated to the currently detected bus voltage U 1 + ⁇ u, where ⁇ u represents the control margin.
  • the post-stage controller detects that the power grid has exited the high voltage ride through according to the voltage of the power grid, that is, the power grid returns to the normal mode, and the voltage of the DC bus can be controlled by the post-stage voltage conversion circuit to make it at a certain time.
  • the segment reaches a certain voltage threshold and conforms to a preset level change characteristic (an example of the second voltage characteristic), for example, the bus voltage can be controlled to a level that continuously drops within a period of time.
  • the front-stage controller detects that the voltage of the DC bus conforms to the preset level change characteristics, and determines that the power grid has exited the high voltage ride through, and further can restore the voltage control mode of the DC bus before the high voltage ride through. .
  • the back-stage controller detects the grid voltage, and when it is determined according to the grid voltage that high-voltage ride-through occurs in the grid, controls the voltage of the DC bus to make it conform to a preset level change characteristic, and the front-stage controller When it is detected that the voltage of the DC bus conforms to the preset level change characteristics, it is determined that a high voltage ride-through occurs in the power grid, and the voltage of the DC bus is updated accordingly.
  • This control scheme makes the voltage control of the DC bus more accurate, and does not need to transmit the information of high voltage ride-through in the power grid through high-speed communication lines, which can realize the rapid update of the bus voltage control reference and improve the control efficiency of the power supply system.
  • FIG. 10 is a schematic diagram of a control method for a power supply system provided by an embodiment of the present application.
  • the method is executed by a control system, the control system includes a rear-stage voltage conversion device and a front-stage voltage conversion device, the front-stage voltage conversion device includes a front-stage controller and a front-stage voltage conversion circuit, and the front-stage controller is used to control the front-stage voltage conversion device.
  • the stage voltage conversion circuit receives the electric energy provided by the power supply module in the power supply system, and after the DC voltage conversion is performed, it supplies power to the subsequent stage voltage conversion device through the DC bus, and the latter stage voltage conversion device includes a subsequent stage controller and a subsequent stage voltage.
  • a conversion circuit, where the post-stage controller is used to control the post-stage voltage conversion circuit to receive the electric energy transmitted by the pre-stage voltage conversion device through the DC bus, and to supply power to the grid after converting the DC to AC voltage.
  • the method includes:
  • the post-stage controller transmits the information indicating the occurrence of high voltage ride-through in the power grid to the pre-stage controller through the DC bus.
  • the post-stage controller may transmit the information indicating the occurrence of high voltage ride-through in the power grid to the pre-stage controller through the DC bus.
  • This control scheme eliminates the need to transmit information about high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, which can improve the control efficiency of the power supply system.
  • control of the DC bus voltage is not limited by the communication speed, the cost is low, and it is easy to implement.
  • the method further includes: S520, the front-level controller obtains, through the DC bus, the information transmitted by the rear-level controller and indicating that high voltage ride-through occurs in the power grid.
  • the post-stage controller transmits information indicating the occurrence of high voltage ride-through in the power grid to the previous-stage controller through the DC bus, including: when the post-stage controller detects that high voltage ride-through occurs in the power grid, controlling the current state of the DC bus voltage, so that the current voltage of the DC bus conforms to a preset first voltage characteristic, and the first voltage characteristic may include at least one of the following conditions: a preset level, a preset level range, or a preset level change characteristics.
  • the pre-stage controller obtains, through the DC bus, the information transmitted by the post-stage controller indicating the occurrence of high voltage ride-through in the power grid, including: when the pre-stage controller detects that the current voltage of the DC bus conforms to the preset first voltage characteristic, determining High voltage ride-through occurs in the power grid.
  • the post-stage controller in the case of detecting that a high voltage ride-through occurs in the power grid, can control the voltage of the DC bus to make it conform to a preset first voltage characteristic, where the first voltage characteristic is used to indicate the power grid High voltage ride-through occurs, and when the front-stage controller detects that the current voltage of the DC bus meets the preset first voltage characteristic, it can determine that a high voltage ride-through occurs in the grid, and update the current voltage of the DC bus accordingly.
  • This control scheme eliminates the need to transmit the information of high voltage ride-through in the power grid between the front and rear controllers through high-speed communication lines, that is, the voltage control of the DC bus does not need to rely on high-speed communication lines, and can realize the rapid reference of bus voltage control. Update, improve the control efficiency of the power supply system.
  • the method further includes: updating the current voltage of the DC bus by the previous-stage controller.
  • the previous-stage controller updates the current voltage of the DC bus, including: the previous-stage controller updates the current voltage of the DC bus to U 1 + ⁇ u, where U 1 represents the currently detected voltage of the DC bus, ⁇ u Indicates the control margin.
  • the pre-stage controller controls the current voltage of the DC bus, including: the pre-stage controller updates the current voltage of the DC bus through the pre-stage voltage conversion circuit.
  • the method further includes: the post-stage controller transmits information indicating the occurrence of high voltage ride through in the power grid to the pre-stage controller through the DC bus, and the pre-stage controller obtains the information transmitted by the post-stage controller through the DC bus indicating the occurrence of high voltage in the power grid. Information about voltage ride through.
  • the post-stage controller transmits the information indicating the occurrence of high voltage ride-through of the power grid to the previous-stage controller through the DC bus, including: when the post-stage controller detects that the power grid exits the high voltage ride-through, the post-stage controller passes the information to the post-stage controller.
  • the voltage conversion circuit controls the current voltage of the DC bus, so that the current voltage of the DC bus conforms to a preset second voltage characteristic, and the second voltage characteristic may include at least one of the following conditions: a preset level, a preset voltage level range or a preset level change characteristic.
  • the pre-stage controller obtains, through the DC bus, the information transmitted by the post-stage controller indicating the occurrence of high voltage ride-through in the power grid, including: when the pre-stage controller detects that the current voltage of the DC bus conforms to the preset second voltage characteristic, determining The grid exits HVRT.
  • the method further includes: the previous-stage controller restores the voltage control mode of the DC bus before the high voltage ride-through.
  • the post-stage controller controls the current voltage of the DC bus, including: the post-stage controller controls the current voltage of the DC bus through the post-stage voltage conversion circuit.
  • the post-stage controller includes a first sampling unit and a first control unit, wherein the post-stage controller controls the current voltage of the DC bus when it is detected that a high voltage ride-through occurs in the power grid to make the current voltage of the DC bus
  • the voltage conforming to the preset first voltage characteristic includes: the first sampling unit collects current voltage information of the power grid, and sends the current voltage information of the power grid to the first control unit.
  • the first control unit receives the current voltage information of the power grid, determines that high voltage ride through occurs in the power grid according to the current voltage information of the power grid, and controls the current voltage of the DC bus so that the current voltage of the DC bus conforms to a preset first voltage characteristic.
  • the pre-stage controller includes a second sampling unit and a second control unit, wherein the pre-stage controller determines that a high voltage occurs in the power grid when it is detected that the current voltage of the DC bus conforms to a preset first voltage characteristic
  • the voltage ride-through includes: the second sampling unit collects current voltage information of the DC bus, and sends the current voltage information of the DC bus to the second control unit.
  • the second control unit receives the current voltage information of the DC bus, and determines whether the voltage of the DC bus conforms to the preset first voltage characteristic according to the current voltage information of the DC bus, and if the current voltage of the DC bus conforms to the preset first voltage characteristic In this case, the second control unit determines that a high voltage ride-through occurs in the grid.
  • FIG. 11 is a schematic structural diagram of a control device according to an embodiment of the present application.
  • the control device includes a processor 610 and a communication interface 620 .
  • the control device may further include a memory 630 .
  • memory 630 may be included in processor 610 .
  • the processor 610, the communication interface 620 and the memory 630 communicate with each other through an internal connection path, the memory 630 is used for storing instructions, and the processor 610 is used for executing the instructions stored in the memory 630 to implement the control method provided by the embodiments of the present application.
  • control device can be used to perform the functions of the pre-stage controller 211 or the post-stage controller 231 in Fig. 2, Fig. 3, and Fig. 4.
  • the implementation of the sampling function is generally composed of sampling resistors, operational amplifiers, conditioning circuits, etc.
  • the present application does not limit the specific hardware structures of the first sampling unit 2311 and the second sampling unit 2111. It can be determined according to the actual control method or system as long as the voltage sampling can be realized.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本申请提供了一种用于供电系统的控制系统和方法,该控制系统包括前、后级电压转换装置,前级电压转换装置包括前级控制器和前级电压转换电路,后级电压转换装置包括后级控制器和后级电压转换电路,前级电压转换装置用于通过直流母线向后级电压转换装置供电;后级电压转换装置用于通过直流母线接收前级电压转换装置传输的电能,并向电网供电;其中,后级控制器还用于通过直流母线向前级控制器传输指示电网发生高电压穿越的信息。本申请提供的控制系统和方法,前、后级控制器之间通过直流母线而非高速通信线传输电网发生高电压穿越的信息,使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。

Description

一种用于供电系统的控制系统和方法 技术领域
本申请涉及电路技术领域,并且更具体地,涉及一种用于供电系统的控制系统和方法。
背景技术
高电压穿越(high voltage ride-through,HVRT)是指当电力系统出现事故,引起供电系统并网点电压升高时,在一定的电压升高范围和时间间隔内保证电站不脱网连续运行的能力。供电系统一般由前级电压转换装置和后级电压转换装置组成,直流母线的电压控制由前级电压转换装置的最大功率点追踪(maximum power point tracking,MPPT)模块所需的直流母线电压与电网所需的直流母线电压竞争得到。当电网侧出现高电压穿越,电网电压抬高,如果不能及时控制直流母线电压,则会导致供电系统的有功功率无法输出。
当电网侧出现高电压穿越,电网电压抬高,此时后级电压转换装置会依据采样的电网电压计算得到一个较高的直流母线电压参考值,并通过高速通信线通知前级电压转换装置更新直流母线电压参考到高电压穿越所需电压值,前级控制器根据收到的直流母线电压参考值对直流母线电压进行控制,从而保障高电压穿越时供电系统的功率输出。
当前、后级电压转换装置分别布置在两个箱体内,且距离较远时,需要一种更高效、易行的控制方法来应对电网高电压穿越时直流母线电压的快速更新,从而达到对供电系统高电压穿越的功率输出要求。
发明内容
本申请提供一种用于供电系统的控制系统和方法,使得直流母线的电压控制不依赖于高速通信线,能够提高供电系统的控制效率。
第一方面,提供了一种用于供电系统的控制系统,该控制系统包括后级电压转换装置和前级电压转换装置。该前级电压转换装置包括前级控制器和前级电压转换电路,该前级控制器用于控制该前级电压转换电路接收该供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过直流母线向该电压转换装置供电。该后级电压转换装置包括后级控制器和后级电压转换电路,该后级控制器用于控制该后级电压转换电路通过该直流母线接收该前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电。其中,该后级控制器还用于通过该直流母线向该前级控制器传输指示该电网发生高电压穿越的信息。
在本申请实施例中,后级控制器可以通过直流母线将指示电网发生高电压穿越的信息传输至前级控制器。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。
另一方面,本申请实施例中,可以使得直流母线电压的控制不受通信速度的限制,成 本低,易于实现。
结合第一方面,在第一方面的某些实现方式中,该前级控制器还用于通过该直流母线获取该后级控制器传输的指示该电网发生高电压穿越的信息。
结合第一方面,在第一方面的某些实现方式中,该后级控制器具体用于:在检测到该电网发生高电压穿越的情况下,控制该直流母线的当前电压,使该直流母线的当前电压符合预设的第一电压特征,该预设的第一电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。该前级控制器具体用于:在检测到该直流母线的当前电压符合该预设的第一电压特征的情况下,确定该电网发生高电压穿越。
在本申请实施例中,后级电压转换装置在检测到电网发生高电压穿越的情况下,可以控制直流母线的电压,使其符合预设的第一电压特征,该第一电压特征用于指示电网发生高电压穿越,而前级电压转换装置在检测到直流母线的当前电压符合预设的第一电压特征的情况下,便可以确定电网发生高电压穿越,并相应地更新直流母线的当前电压。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,并且能够实现母线电压控制参考的快速更新。
结合第一方面,在第一方面的某些实现方式中,该前级控制器还用于:在获取指示该电网发生高电压穿越的信息之后,更新该直流母线的当前电压。
结合第一方面,在第一方面的某些实现方式中,该后级控制器还用于通过该直流母线向该前级控制器传输指示该电网退出高电压穿越的信息。该前级控制器还用于通过该直流母线获取该后级控制器传输的指示该电网退出高电压穿越的信息。
结合第一方面,在第一方面的某些实现方式中,该后级控制器具体用于在检测到该电网退出高电压穿越的情况下,控制该直流母线的当前电压,使该直流母线的当前电压符合预设的第二电压特征,该预设的第二电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。该前级控制器具体用于在检测到该直流母线的当前电压符合该预设的第二电压特征的情况下,确定该电网退出高电压穿越。
结合第一方面,在第一方面的某些实现方式中,该前级控制器还用于:在获取指示该电网退出高电压穿越的信息之后,恢复高电压穿越之前的该直流母线的电压控制方式。
结合第一方面,在第一方面的某些实现方式中,该后级控制器包括第一采样单元和第一控制单元,该第一采样单元具体用于采集该电网的当前电压信息,并向该第一控制单元发送该电网的当前电压信息。该第一控制单元具体用于:接收该电网的当前电压信息,根据该电网的当前电压信息,确定该电网发生高电压穿越,以及控制该直流母线的当前电压,使该直流母线的当前电压符合该预设的第一电压特征。
结合第一方面,在第一方面的某些实现方式中,该前级控制器包括第二采样单元和第二控制单元,该第二采样单元具体用于采集该直流母线的当前电压信息,并向该第二控制单元发送该直流母线的当前电压信息。该第二控制单元具体用于:接收该直流母线的当前电压信息,根据该直流母线的当前电压信息,确定该直流母线的当前电压是否符合该预设的第一电压特征,在该直流母线的当前电压符合该预设的第一电压特征的情况下,确定该电网发生高电压穿越。
第二方面,提供了一种用于供电系统的控制方法,该方法由控制系统执行。该控制系统包括前级电压转换装置和后级电压转换装置,该前级电压转换装置包括前级控制器和前级电压转换电路,该前级控制器用于控制该前级电压转换电路接收该供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过直流母线向后级电压转换装置供电,该后级电压转换装置包括后级控制器和后级电压转换电路,该后级控制器用于控制该后级电压转换电路通过该直流母线接收该前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电。该方法包括:该后级控制器通过该直流母线向该前级控制器传输指示该电网发生高电压穿越的信息。
在本申请实施例中,后级控制器可以通过直流母线将指示电网发生高电压穿越的信息传输至前级控制器。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。
另一方面,本申请实施例中,可以使得直流母线电压的控制不受通信速度的限制,成本低,易于实现。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该前级控制器通过该直流母线获取该后级控制器传输的指示该电网发生高电压穿越的信息。
结合第二方面,在第二方面的某些实现方式中,该后级控制器通过该直流母线向该前级控制器传输指示该电网发生高电压穿越的信息,包括:该后级控制器在检测到该电网发生高电压穿越的情况下,控制该直流母线的当前电压,使该直流母线的当前电压符合预设的第一电压特征,该第一电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。该前级控制器通过该直流母线获取该后级控制器传输的指示该电网发生高电压穿越的信息,包括:该前级控制器在检测到该直流母线的当前电压符合该预设的第一电压特征的情况下,确定该电网发生高电压穿越。
在本申请实施例中,后级电压转换装置在检测到电网发生高电压穿越的情况下,可以控制直流母线的电压,使其符合预设的第一电压特征,该第一电压特征用于指示电网发生高电压穿越,而前级电压转换装置在检测到直流母线的当前电压符合预设的第一电压特征的情况下,便可以确定电网发生高电压穿越,并相应地更新直流母线的当前电压。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,并且能够实现母线电压控制参考的快速更新。
第三方面,提供了一种用于供电系统的后级电压转换装置,该装置包括:后级电压转换电路和后级控制器,该后级控制器用于控制该后级电压转换电路通过直流母线接收前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电,其中,该前级电压转换装置包括前级控制器和前级电压转换电路,该前级控制器用于控制该前级电压转换电路接收该供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过该直流母线向该后级电压转换装置供电。其中,该后级控制器还用于通过该直流母线向该前级控制器传输指示该电网发生高电压穿越的信息。
在本申请实施例中,后级控制器可以通过直流母线将指示电网发生高电压穿越的信息传输至前级控制器。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网 发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。
另一方面,本申请实施例中,可以使得直流母线电压的控制不受通信速度的限制,成本低,易于实现。
结合第三方面,在第三方面的某些实现方式中,该后级控制器具体用于:在检测到该电网发生高电压穿越的情况下,控制该直流母线的当前电压,使该直流母线的当前电压符合预设的第一电压特征,该预设的第一电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。
结合第三方面,在第三方面的某些实现方式中,该后级控制器还用于:通过该直流母线向该前级控制器传输指示该电网退出高电压穿越的信息。
结合第三方面,在第三方面的某些实现方式中,该后级控制器具体用于:在检测到该电网退出高电压穿越的情况下,控制该直流母线的当前电压,使该直流母线的当前电压符合预设的第二电压特征,该预设的第二电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。
结合第三方面,在第三方面的某些实现方式中,该后级控制器包括采样单元和控制单元,该采样单元具体用于采集该电网的当前电压信息,并向该控制单元发送该电网的当前电压信息。该控制单元具体用于:接收该电网的当前电压信息,并根据该电网的当前电压信息,确定该电网发生高电压穿越,以及控制该直流母线的当前电压,使该直流母线的当前电压符合该预设的第一电压特征。
结合第三方面,在第三方面的某些实现方式中,该后级控制器包括采样单元和控制单元,该采样单元具体用于采集该电网的当前电压信息,并向该控制单元发送该电网的当前电压信息。该控制单元具体用于:接收该电网的当前电压信息,根据该电网的当前电压信息,确定该电网退出高电压穿越,以及控制该直流母线的当前电压,使该直流母线的当前电压符合该预设的第二电压特征。
第四方面,提供了一种用于供电系统的前级电压转换装置,该装置包括:前级电压转换电路和前级控制器,该前级控制器用于控制该前级电压转换电路接收该供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过直流母线向后级电压转换装置供电,其中,该后级电压转换装置包括后级控制器和后级电压转换电路,该后级控制器用于控制该后级电压转换电路通过该直流母线接收该前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电。其中,该前级控制器还用于通过该直流母线获取该后级控制器传输的指示该电网发生高电压穿越的信息。
在本申请实施例中,后级控制器可以通过直流母线将指示电网发生高电压穿越的信息传输至前级控制器。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。
另一方面,本申请实施例中,可以使得直流母线电压的控制不受通信速度的限制,成本低,易于实现。
结合第四方面,在第四方面的某些实现方式中,该前级控制器具体用于:在检测到该直流母线的当前电压符合预设的第一电压特征的情况下,确定该电网发生高电压穿越,该 预设的第一电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。
结合第四方面,在第四方面的某些实现方式中,该前级控制器还用于:在获取指示该电网发生高电压穿越的信息之后,更新该直流母线的当前电压。
结合第四方面,在第四方面的某些实现方式中,该前级控制器还用于:通过该直流母线获取该后级控制器传输的指示该电网退出高电压穿越的信息。
结合第四方面,在第四方面的某些实现方式中,该前级控制器具体用于:在检测到该直流母线的当前电压符合预设的第二电压特征的情况下,确定该电网退出高电压穿越,该预设的第二电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。
附图说明
图1是适用于本申请一实施例的应用场景的结构示意图。
图2是本申请实施例的一种用于供电系统的控制系统的结构示意图。
图3是本申请实施例的一种后级控制器的结构示意图。
图4是本申请实施例的一种前级控制器的结构示意图。
图5是本申请实施例中后级控制器的控制过程。
图6是本申请实施例中前级控制器的控制过程。
图7为本申请实施例的一种高电压穿越的控制过程中直流母线的电压变化过程示意图。
图8为本申请又一实施例的高电压穿越的控制过程中直流母线的电压变化过程示意图。
图9为本申请又一实施例的高电压穿越的控制过程中直流母线的电压变化过程示意图。
图10是本申请实施例的一种用于供电系统的控制方法的示意图。
图11本申请实施例的一种控制设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解本申请实施例,首先结合图1说明本申请的应用场景。图1是适用于本申请实施例的应用场景的结构示意图。如图1所示,供电系统100可以产生交流电,并将产生的交流电提供给电网供电,供电系统100可以包括供电模块110和控制系统200,控制系统200可以包括前级电压转换装置120和后级电压转换装置140。供电模块110可以将产生的电能输出至前级电压转换装置120。前级电压转换装置120在进行直流电压转换之后,可以通过直流母线130向后级电压转换装置140供电。后级电压转换装置140可以通过直流母线130接收前级电压转换装置120传输的电能,并在进行直流至交流电压转换之后,向电网供电。提供电能的供电模块110可以包括光伏(photovoltaic,PV)阵列111和电池112,光伏阵列111的电能经过前级电压转换装置121的直流电压转换后输出至直流母线130,电池112的电能经过前级电压转换装置122的直流电压转换后输出至直流母 线130。直流母线130连接前、后级电压转换装置,同时前、后两级电压转换装置的功率通过直流母线130进行传输。图1的系统仅是为了说明本申请实施例的应用场景,并不作为对本申请的限制。
应理解,本申请实施例对电路的连接关系不做限定,在实际应用中,图1中的各个部件之间可能还连接有其他的设备,例如,后级前级电压转换装置140的输出端可以直接接入电网,也可以通过变压器接入电网,本申请对此不作限制。
应理解,本申请中,向电网供电的供电系统100可以是两级式光伏发电系统,即供电模块110可以只包括光伏阵列111,前级电压装换装置120可以只包括前级电压装换装置121。在本申请中,供电模块110也可以只包括电池112,前级电压转换装置120只包括前级电压装换装置122,此时,供电模块110和前级电压转换装置120共同组成电力储能系统,其产生的电能通过直流母线130输送至后级电压转换装置140,经过后级电压转换装置140处理之后,得到交流电,并提供给电网。供电系统100也可以是光储场景的两级式光伏发电系统,即供电模块110包括光伏阵列111和电池112,前级电压装换装置120包括前级电压装换装置121和前级电压装换装置122。应理解,在这种光储场景的两级式光伏发电系统的应用场景中,前级电压转换装置121输出的直流电也可以经过电压转换装置122提供给电池112,由电池112储存电能。在电网需要供电时,电池112可以经过电压转换装置122输出直流电,然后经过直流母线130传输至后级电压转换装置140,经过后级电压转换装置140处理之后,得到交流电,并提供给电网。接入直流母线130的前级电压转换装置120可以包括多个装置,同样,与直流母线130连接的后级电压转换装置140可以包括多个装置。前级电压转换装置120的拓扑可以为降压式(buck)变换器、升压式(boost)变换器、降升压(buck-boost)变换器或升降压(boost-buck)变换器,可以是隔离式,也可以是是非隔离式。另外,对光伏阵列111进行直流电压转换的前级电压转换装置121与对电池112进行直流电压转换的前级电压转换装置122可以相同也可以不同,它们的具体拓补结构根据实际电路情况而定,本申请对前、后级电压转换装置的拓扑结构不做限定。在本申请中,前级电压装换装置可以包括直流转直流(direct current to direct current,DC/DC)变换器,后级电压转换装置140也可以包括功率转换系统(power conversion system,PCS)或直流转交流(direct current to alternating current,DC/AC)变换器。
图2是本申请实施例的一种用于供电系统的控制系统的结构示意图。如图2所示,该控制系统包括前级电压转换装置210和后级电压转换装置230,前级电压转换装置210的输出端和后级电压转换装置的230输入端之间可以通过直流母线220连接。前级电压转换装置210可以包括前级控制器211和前级电压转换电路212,前级控制器211用于控制前级电压转换电路212接收供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过直流母线220向后级电压转换装置230供电。后级电压转换装置230可以包括后级控制器231和后级电压转换电路232,后级控制器231用于控制后级电压转换电路232通过直流母线220接收前级电压转换装置210传输的电能,并在进行直流至交流电压转换之后,向电网供电。图2中未画出的部分可以与图1相同,也可以与图1不同。
在本申请实施例中,后级控制器231还可以用于通过直流母线220向前级控制器211传输指示电网发生高电压穿越的信息。
因此,在本申请实施例中,后级控制器可以通过直流母线将指示电网发生高电压穿越的信息传输至前级控制器。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。
另一方面,本申请实施例中,可以使得直流母线电压的控制不受通信速度的限制,成本低,易于实现。
具体地,后级控制器231可以用于检测电网是否发生高电压穿越,在检测到电网发生高电压穿越的情况下,可以计算高电压穿越所需要的直流母线220的电压,并通过后级电压转换电路232控制直流母线220的当前电压,使直流母线220的当前电压符合预设的第一电压特征。
作为示例,上述预设的第一电压特征可以是一个预设的电平,例如,1450V,或者是一个预设的电平范围,例如,1400V-1500V,也可以是一段预设的电平变化特征,例如,一段时间内电压达到某一阈值且电压变化满足一定的特征,或者一段连续上升的电平。该第一电压特征设置的主要依据有:i)能有效区别于正常运行模式时的电压特征,避免误报;ii)具有一定的抗干扰性,可以控制检测误差或是外界功率波动等的影响;iii)综合考虑后级控制器的控制难度及前级控制器的识别难度。
作为一种可能的实现方式,后级控制器231在检测到电网发生高电压穿越之后,还可以继续检测电网是否退出高电压穿越,后级控制器231还可以用于通过直流母线220向前级控制器211传输指示电网退出高电压穿越的信息。
具体地,若检测到电网发生高电压穿越,后级控制器231还可以继续检测电网是否退出高电压穿越,在检测到电网退出高电压穿越的情况下,后级控制器231可以通过后级电压转换电路232控制直流母线220的当前电压,使直流母线的当前电压符合预设的第二电压特征。若后级控制器231检测到电网未发生或未退出高电压穿越,则可以保持当前对直流母线220的电压的控制方式。
作为示例,上述第二电压特征也可以是一个预设的固定电平,例如,1000V,或者是一个预设的电平范围,例如,800V-1200V,也可以是一段预设的电平变化特征,例如,一段时间内电压达到某一阈值且电压变化满足一定的特征,或者一段缓慢下降的电平。
应理解,第一电压特征的类型和第二电压特征的类型可以相同,也可以不同,本申请对此不做限定。
应理解,具体如何根据电网电压判断是否进入高电压穿越可以根据实际情况设置,也可以参考现有技术,本申请对此不做限定。作为示例,可以采用如下方式:如果电网电压大于第一电压阈值(比如1.1pu+0.015pu)且达到第一指定时间(比如2ms),则确定电网进入高电压穿越。如果电网电压小于第二电压阈值(比如1.1pu-0.043pu)且达到第二指定时间(比如2ms),则确定电网退出高电压穿越。如果电网电压未发生明显变化,则确定未发生高电压穿越。
在本申请实施例中,前级控制器211还可以用于通过直流母线220获取后级控制器231传输的指示电网发生高电压穿越的信息。
具体地,前级控制器211可以用于根据直流母线220的当前电压、预设的第一电压特征和预设的第二电压特征对直流母线220的电压进行调整。前级控制器211可以检测直流 母线的当前电压是否符合预设的第一电压特征,在检测到直流母线220的当前电压符合预设的第一电压特征的情况下,则确定电网发生了高电压穿越。
作为一种可能的实现方式,前级控制器211还可以用于:在获取指示电网发生高电压穿越的信息之后,更新直流母线的当前电压。也就是说,在通过直流母线220确定电网发生高电压穿越之后,前级控制器211可以通过前级电压转换电路212更新直流母线220的当前电压。
作为一种可能的实现方式,通过前级电压转换电路212更新直流母线220的当前电压,包括:通过前级电压转换电路212更新直流母线220的当前电压的控制参考为U 1+Δu,其中,U 1表示当前检测到的直流母线的电压,Δu表示控制余量,Δu的具体数值可以由控制器的具体实现决定,也可以根据实际应用情况确定,本申请不作限制。
应理解,前级控制器211还可以用于通过直流母线220获取后级控制器231传输的指示电网退出高电压穿越的信息。作为示例,前级控制器211在确定电网发生高电压穿越之后,还可以继续检测直流母线的电压是否符合预设的第二电压特征,以此判断电网的高电压穿越是否结束。
具体地,在检测到直流母线220的电压符合预设的第一电压特征的情况下,前级控制器211可以继续检测直流母线220的当前电压是否符合预设的第二电压特征,在检测到直流母线220的当前电压符合预设的第二电压特征的情况下,确定电网已经退出高电压穿越。
作为一种可能的实现方式,前级控制器211还可以用于:在获取指示电网退出高电压穿越的信息之后,恢复高电压穿越之前的直流母线的电压控制方式。也就是说,在通过直流母线220确定电网退出高电压穿越之后,前级控制器211可以恢复高电压穿越之前的直流母线的电压控制方式。若直流母线220的当前电压不符合预设的第一电压特征和第二电压特征,则前级控制器211可以保持当前对直流母线的电压的控制方式。
应理解,高电压穿越之前的直流母线的电压控制方式与电路的拓扑结构、调制方式等有关,不同的拓扑结构、不同的调制方式下直流母线的电压控制方式可能会有差异,高电压穿越之前的直流母线的具体控制方式可以依据实际电路情况而定,本申请对此不作限制。
在本申请实施例中,后级控制器可以检测电网的电压,根据电网的当前电压确定电网发生高电压穿越,在检测到电网发生高电压穿越的情况下,可以控制直流母线的电压,使其符合预设的第一电压特征,该第一电压特征用于指示电网发生高电压穿越,而前级控制器可以检测直流母线的电压,在直流母线的当前电压符合预设的第一电压特征的情况下,便可以确定电网发生高电压穿越,并相应地更新直流母线的电压。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,并且能够实现母线电压控制参考的快速更新,提高供电系统的控制效率。
图3是本申请实施例的一种后级控制器231的结构示意图。如图3所示,后级控制器231可以包括第一采样单元2311和第一控制单元2312。其中,第一采样单元2311可以用于采集电网的当前电压信息,并向第一控制单元2312发送电网的当前电压信息,该电压信息用于指示电网的当前电压。第一控制单元2312可以用于接收电网的当前电压信息, 并根据电网的当前电压信息,确定电网是否发生高电压穿越。在确定电网发生高电压穿越的情况下,第一控制单元2312可以通过后级电压转换电路232控制直流母线的当前电压,使直流母线的当前电压符合预设的第一电压特征,该第一电压特征用于指示电网发生高电压穿越。
在一种可能的实现方式中,第一控制单元2312还可以用于根据电网的当前电压信息,确定电网是否退出高电压穿越。在确定电网退出高电压穿越的情况下,第一控制单元2312可以通过后级电压转换电路232控制直流母线的当前电压,使直流母线的当前电压符合预设的第二电压特征,该第二电压特征用于指示电网退出高电压穿越。
图4是本申请实施例提供的一种前级控制器211的结构示意图。如图4所示,前级控制器211可以包括第二采样单元2111和第二控制单元2112。其中,第二采样单元2111可以用于采集直流母线的当前电压信息,并向第二控制单元2112发送直流母线的当前电压信息,该当前电压信息用于指示直流母线的当前电压。第二控制单元2112可以用于接收直流母线的当前电压信息,并根据直流母线的当前电压信息,确定直流母线的当前电压是否符合预设的第一电压特征。在直流母线的当前电压符合预设的第一电压特征的情况下,第二控制单元2112可以确定电网发生高电压穿越。进一步第二控制单元2112可以通过前级电压转换电路212更新直流母线的当前电压。
在一种可能的实现方式中,第二控制单元2112还可以用于根据直流母线的当前电压信息,确定直流母线的当前电压是否符合预设的第二电压特征。在检测到直流母线的当前电压符合预设的第二电压特征的情况下,第二控制单元2112可以确定电网退出高电压穿越。进一步第二控制单元2112可以恢复高电压穿越之前的直流母线的电压控制方式。
在本申请实施例中,后级控制器的功能可以由第一采样单元和第一控制单元分别实现,前级控制器的功能可以由第二采样单元和第二控制单元分别实现,因此,本申请实施例可以利用现有系统架构实现高电压穿越时的直流母线的电压控制,使得直流母线电压的控制无需依赖于高速通信线,能够提高供电系统的控制效率,减少成本。
下面结合图5和图6,对本申请的控制方法进行详细描述。
图5是本申请实施例中后级控制器的控制过程。
S310,采集电网的当前电压信息,该电压信息用于指示电网的当前电压。
具体的,电网电压信息的采集可以是后级电压转换装置中具有采样功能的电路实现的,也可以是后级控制器中的第一采样单元完成的,实现采样功能的电路或单元可以与电网具有通信接口,从而实现电网电压信息的采集。
S320,后级控制器可以依据采集得到的电网的当前电压信息判断电网是否发生高电压穿越,若电网未发生高电压穿越,则后级控制器可以保持当前的直流母线电压控制方式,并继续检测电网的电压。若电网发生高电压穿越,即进入高电压穿越模式,则后级控制器可以进行步骤S330的控制。
S330,后级控制器在检测到电网发生高电压穿越的情况下,可以通过后级电压转换电路控制直流母线的当前电压,使直流母线的当前电压符合预设的第一电压特征,该预设的第一电压特征可以用于前级控制器确定当前电网发生高电压穿越,从而更新直流母线的当前电压。
S340,若电网发生高电压穿越,后级控制器还可以继续判断电网是否退出高电压穿越, 若电网未退出高电压穿越,则后级控制器可以保持当前的直流母线电压控制方式,即保持步骤S330的控制,并继续检测电网的电压。若电网退出高电压穿越,则后级控制器可以进行步骤S350的控制。
S350,在检测到电网退出高电压穿越的情况下,后级控制器可以通过后级电压转换电路控制直流母线的当前电压,使直流母线的当前电压符合预设的第二电压特征,该第二电压特征可以用于前级控制器确定当前电网退出高电压穿越,从而恢复高电压穿越之前对直流母线的电压控制方式。
在本申请实施例中,后级控制器可以实时检测电网的电压,并依据电网的电压判断电网是否发生或退出高电压穿越,并相应地对直流母线电压进行控制,使得前级控制器可以依据直流母线的电压变化特征确定电网是否发生或退出高电压穿越,从而使得前、后级控制器之间无需通过高速通信线传输电网发生或退出高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。
图6是本申请实施例中前级控制器的控制过程。
S410,采集直流母线的电压信息,该电压信息用于指示电网的当前电压。
具体的,直流母线的电压信息的采集可以是前级电压转换装置中具有采样功能的电路实现的,也可以是前级控制器中的第二采样单元完成的,实现采样功能的电路或单元可以与直流母线具有通信接口,从而实现母线电压信息的采集。
S420,前级控制器可以根据采集到的直流母线的电压信息,判断直流母线的当前电压是否符合预设的第一电压特征,若直流母线的当前电压不符合预设的第一电压特征,则前级控制器可以保持当前对直流母线的电压的控制方式,并继续检测直流母线的电压。在检测到直流母线的当前电压符合预设的第一电压特征的情况下,前级控制器可以进行步骤S430的控制。
S430,前级控制器在检测到直流母线的电压符合预设的第一电压特征的情况下,确定电网发生了高电压穿越,则可以通过前级电压转换电路更新直流母线的电压。例如,可以更新直流母线的电压控制参考为U 1+Δu,其中,U 1表示当前检测到的母线电压,Δu表示控制余量。
S440,在检测到直流母线的当前电压符合预设的第一电压特征的情况下,前级控制器可以继续判断直流母线的当前电压是否符合预设的第二电压特征,若不符合预设的第二电压特征,可以确定电网并未退出高电压穿越,则可以继续保持步骤S430的控制,并继续检测直流母线的电压。在检测到直流母线的电压符合预设的第二电压特征的情况下,则可以进行步骤S450的控制。也就是说,后级控制器在检测到直流母线电压符合预设的第一电压特征的情况下,确定电网发生了高电压穿越,则可以继续检测直流母线的电压是否符合预设的第二电压特征,以此判断电网是否退出高电压穿越。
S450,前级控制器在检测到直流母线的电压符合预设的第二电压特征的情况下,确定电网侧已经退出高电压穿越,则可以恢复高电压穿越之前的直流母线的电压控制方式,并通过前级电压转换电路对直流母线的电压进行控制或调整。
在本申请实施例中,前级控制器可以实时检测直流母线的电压,并根据直流母线的电压变化特征确定电网是否发生或退出高电压穿越,并进一步对直流母线的电压进行更新或控制,从而使得前、后级控制器之间无需通过高速通信线传输电网发生或退出高电压穿越 的信息,即使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。
在本申请实施例中,直流母线既是前、后级电压转换装置的功率能量传输站,也是前、后级设备间的控制数据信息交互点。
下面结合图7至图9,对本申请实施例中的高电压穿越的控制过程中的母线电压的变化进行说明。在图7至图9中,横坐标表示时间t,纵坐标表示直流母线的电压U。
图7为本申请实施例提供的一种高电压穿越的控制过程中直流母线的电压变化过程示意图。
0-t 1时段,后级控制器检测电网电压,根据电网电压确定当前电网稳定运行,未发生高电压穿越,因此前、后级控制器共同实现直流母线电压的控制,使得直流母线的电压维持为正常电压U 2
t 1-t 2时段,后级控制器检测到电网发生高电压穿越,因此通过后级电压转换电路对直流母线的电压进行控制,使其为预设的特征值U hvrt(第一电压特征的一例),例如,可以将直流母线的电压控制为1450V,这个预设的电平可以持续一段时间。
t 2-t 3时段,前级控制器检测到直流母线的电压为预设的特征值U hvrt,确定电网发生高电压穿越,因此可以进一步通过前级电压装换电路更新直流母线的电压,例如,可以将直流母线的电压更新为1470V,其中Δu=20V表示控制余量。这里的特征值U hvrt也是当前检测到的母线电压U 1
t 3-t 4时段,后级控制器检测电网电压变化,判断电网已经退出高电压穿越,即电网恢复正常模式,则通过后级电压转换电路对直流母线的电压进行控制,使其为预设的正常值U normal(第二电压特征的一例),例如,可以将直流母线的电压控制为1000V,这个预设的电平可以持续一段时间。
t 4-t 5时段,前级控制器检测到直流母线的电压为预设的正常值U normal,则确定电网已经退出高电压穿越,进一步可以恢复高电压穿越之前的直流母线的电压控制方式。
应理解,预设的特征值U hvrt与正常值U normal的数值大小可以根据实际电路拓扑及控制方式而定,本申请实施例不做限定。
在本申请实施例中,后级控制器检测电网电压,在依据电网电压确定电网发生高电压穿越时,将直流母线的电压控制为预设的特征值U hvrt,前级控制器在直流母线的电压达到该预设的特征值U hvrt的情况下,确定电网发生高电压穿越,相应地更新直流母线的电压。这种控制方案使得直流母线的电压控制易于实现,且无需通过高速通信线传输电网发生高电压穿越的信息,能够实现母线电压控制参考的快速更新,提高供电系统的控制效率。
图8为本申请实施又一例提供的高电压穿越的控制过程中直流母线的电压变化过程示意图。
0-t 1时段,后级控制器检测电网电压,根据电网电压确定当前电网稳定运行,未发生高电压穿越,因此前、后级控制器共同实现直流母线的电压控制,使得直流母线的电压维持为正常电压U 2
t 1-t 2时段,后级控制器检测到当前电网发生高电压穿越,因此通过后级电压转换电路对直流母线的电压进行控制,将其电压控制在一个预设的电平范围内(第一电压特征的一例),例如,可以将直流母线的电压控制在1400-1500V之间。
t 2-t 3时段,前级控制器检测到直流母线的电压在该预设的电平范围内,例如,检测到直流母线的当前电压为1420V,在预设的1400-1500V范围内,确定电网发生高电压穿越,则可以进一步通过前级电压转换电路更新直流母线的当前电压,例如,可以将直流母线的当前电压更新为1440V,其中,当前检测到的直流母线电压U 1为1420V,控制余量Δu为20V。
t 3-t 4时段,后级控制器根据电网的电压检测到电网已经退出高电压穿越,即电网恢复正常模式,则通过后级电压转换电路对直流母线的电压进行控制,将其控制在另一个预设的电平范围内(第二电压特征的一例),例如,可以将直流母线的电压控制在800-1200V之间。
t 4-t 5时段,前级控制器检测到直流母线的电压在该预设的电平范围内,则确定电网已经退出高电压穿越,进一步可以恢复高电压穿越之前的直流母线的电压控制方式。
在本申请实施例中,后级控制器检测电网电压,在依据电网电压确定电网发生高电压穿越时,将直流母线的电压控制在某一预设的电平范围,前级控制器在检测到直流母线的电压达到该预设的电平范围的情况下,确定电网发生高电压穿越,并相应地更新直流母线的电压。这种控制方案使得直流母线的电压控制效率更高,且无需通过高速通信线传输电网发生高电压穿越的信息,能够实现母线电压控制参考的快速更新,提高供电系统的控制效率。
图9为本申请又一实施例提供的高电压穿越的控制过程中直流母线的电压变化过程示意图。
0-t 1时段,后级控制器检测电网电压,根据电网电压确定当前电网稳定运行,未发生高电压穿越,因此前、后级控制器共同实现直流母线电压的控制,使得直流母线电压维持为正常电压U 2
t 1-t 2时段,后级控制器检测到当前电网发生高电压穿越,因此通过后级电压转换电路控制直流母线的电压,使直流母线的电压在某一时间段内达到某一电压阈值且符合某一个预设的电平变化特征(第一电压特征的一例),例如,可以将直流母线的电压控制为一段高低变化的电平,其平均值为1500V,且持续2ms。
t 2-t 3时段,前级控制器检测到直流母线的电压符合该预设的电平变化特征之后,因此确定电网发生高电压穿越,则可以进一步通过前级电压转换电路更新直流母线的电压,例如,可以将直流母线的电压控制参考更新为当前检测到的母线电压U 1+Δu,其中Δu表示控制余量。
t 3-t 4时段,后级控制器根据电网的电压检测到电网已经退出高电压穿越,即电网恢复正常模式,则可以通过后级电压转换电路控制直流母线的电压,使其在某一时间段内达到某一电压阈值且符合某一个预设的电平变化特征(第二电压特征的一例),例如,可以将母线电压控制为一段时间内连续下降的电平。
t 4-t 5时段,前级控制器检测到直流母线的电压符合该预设的电平变化特征,则确定电网已经退出高电压穿越,进一步可以恢复高电压穿越之前对直流母线的电压控制方式。
在本申请实施例中,后级控制器检测电网电压,在依据电网电压确定电网发生高电压穿越时,控制直流母线的电压,使其符合某一个预设的电平变化特征,前级控制器在检测到直流母线的电压符合该预设的电平变化特征的情况下,确定电网发生高电压穿越,相应 地更新直流母线的电压。这种控制方案使得直流母线的电压的控制更准确,且无需通过高速通信线传输电网发生高电压穿越的信息,能够实现母线电压控制参考的快速更新,提高供电系统的控制效率。
应理解,图7至图9中,在0-t 1时段,直流母线的电压保持为一个稳定的电平,在t 4-t 5时段,直流母线的电压也维持为一个稳定的电平,这仅仅是这两个时段中,直流母线电压的控制结果的一种表现形式,本申请对稳定运行期间和前级控制器确定电网退出高电压穿越之后直流母线的电压的具体变化情况和数值大小不作限制。在实际应用中,这两个时段内的直流母线的电压变化情况和数值大小依据实际情况而定。
图10是本申请实施例提供的一种用于供电系统的控制方法的示意图。该方法由控制系统执行,该控制系统包后级电压转换装置和前级电压转换装置,该前级电压转换装置包括前级控制器和前级电压转换电路,该前级控制器用于控制该前级电压转换电路接收该供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过直流母线向后级电压转换装置供电,该后级电压转换装置包括后级控制器和后级电压转换电路,该后级控制器用于控制该后级电压转换电路通过该直流母线接收该前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电。
该方法包括:
S510,后级控制器通过直流母线向前级控制器传输指示电网发生高电压穿越的信息。
在本申请实施例中,后级控制器可以通过直流母线将指示电网发生高电压穿越的信息传输至前级控制器。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,能够提高供电系统的控制效率。
另一方面,本申请实施例中,可以使得直流母线电压的控制不受通信速度的限制,成本低,易于实现。
作为一种可能的实现方式,该方法还包括:S520,前级控制器通过直流母线获取后级控制器传输的指示电网发生高电压穿越的信息。
在一些示例中,后级控制器通过直流母线向前级控制器传输指示电网发生高电压穿越的信息,包括:后级控制器在检测到电网发生高电压穿越的情况下,控制直流母线的当前电压,使直流母线的当前电压符合预设的第一电压特征,该第一电压特征可以包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。前级控制器通过直流母线获取后级控制器传输的指示电网发生高电压穿越的信息,包括:前级控制器在检测到直流母线的当前电压符合预设的第一电压特征的情况下,确定电网发生高电压穿越。
在本申请实施例中,后级控制器在检测到电网发生高电压穿越的情况下,可以控制直流母线的电压,使其符合预设的第一电压特征,该第一电压特征用于指示电网发生高电压穿越,而前级控制器在检测到直流母线的当前电压符合预设的第一电压特征的情况下,便可以确定电网发生高电压穿越,并相应地更新直流母线的当前电压。这种控制方案使得前、后级控制器之间无需通过高速通信线传输电网发生高电压穿越的信息,即使得直流母线的电压控制无需依赖于高速通信线,并且能够实现母线电压控制参考的快速更新,提高供电系统的控制效率。
在一些示例中,在获取指示所述电网发生高电压穿越的信息之后,该方法还包括:前级控制器更新直流母线的当前电压。
在一些示例中,前级控制器更新直流母线的当前电压,包括:前级控制器将直流母线的当前电压更新为U 1+Δu,其中,U 1表示当前检测到的直流母线的电压,Δu表示控制余量。
在一些示例中,前级控制器控制直流母线的当前电压,包括:前级控制器通过前级电压转换电路更新直流母线的当前电压。
在一些示例中,该方法还包括:后级控制器通过直流母线向前级控制器传输指示电网发生高电压穿越的信息,前级控制器通过直流母线获取后级控制器传输的指示电网发生高电压穿越的信息。
在一些示例中,后级控制器通过直流母线向前级控制器传输指示电网发生高电压穿越的信息,包括:后级控制器在检测到电网退出高电压穿越的情况下,通过所述后级电压转换电路控制直流母线的当前电压,使直流母线的当前电压符合预设的第二电压特征,该第二电压特征可以包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。前级控制器通过直流母线获取后级控制器传输的指示电网发生高电压穿越的信息,包括:前级控制器在检测到直流母线的当前电压符合预设的第二电压特征的情况下,确定电网退出高电压穿越。
在一些示例中,在前级控制器获取指示电网退出高电压穿越的信息之后,该方法还包括:前级控制器恢复高电压穿越之前的直流母线的电压控制方式。
在一些示例中,后级控制器控制直流母线的当前电压,包括:后级控制器通过后级电压转换电路控制直流母线的当前电压。
在一些示例中,后级控制器包括第一采样单元和第一控制单元,其中,后级控制器在检测到电网发生高电压穿越的情况下,控制直流母线的当前电压,使直流母线的当前电压符合预设的第一电压特征,包括:第一采样单元采集电网的当前电压信息,并向第一控制单元发送电网的当前电压信息。第一控制单元接收电网的当前电压信息,根据电网的当前电压信息,确定电网发生高电压穿越,并控制直流母线的当前电压,使直流母线的当前电压符合预设的第一电压特征。
在一些示例中,前级控制器包括第二采样单元和第二控制单元,其中,前级控制器在检测到直流母线的当前电压符合预设的第一电压特征的情况下,确定电网发生高电压穿越,包括:第二采样单元采集直流母线的当前电压信息,并向第二控制单元发送直流母线的当前电压信息。第二控制单元接收直流母线的当前电压信息,根据直流母线的当前电压信息,确定直流母线的电压是否符合预设的第一电压特征,在直流母线的当前电压符合预设的第一电压特征的情况下,第二控制单元确定电网发生高电压穿越。
图11是本申请实施例的控制设备的结构示意图。如图11所示,该控制设备包括处理器610、通信接口620。可选地,该控制设备还可以包括存储器630。可选地,存储器630可以包括于处理器610中。其中,处理器610、通信接口620和存储器630通过内部连接通路互相通信,存储器630用于存储指令,处理器610用于执行存储器630存储的指令,以实现本申请实施例提供的控制方法。
可选地,该控制设备可以用于执行图2、图3、图4中的前级控制器211或后级控制 器231的功能。
应理解,在本申请实施例中,采样功能的实现一般由采样电阻、运放、调理电路等组成,本申请对第一采样单元2311和第二采样单元2111的具体硬件结构不作限制,具体结构可以根据实际控制方法或系统确定只要可以实现电压的采样即可。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种用于供电系统的控制系统,其特征在于,所述控制系统包括:前级电压转换装置和后级电压转换装置,
    所述前级电压转换装置包括前级控制器和前级电压转换电路,所述前级控制器用于控制所述前级电压转换电路接收所述供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过直流母线向后级电压转换装置供电;
    所述后级电压转换装置包括后级控制器和后级电压转换电路,所述后级控制器用于控制所述后级电压转换电路通过所述直流母线接收所述前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电;
    其中,所述后级控制器还用于通过所述直流母线向所述前级控制器传输指示所述电网发生高电压穿越的信息。
  2. 如权利要求1所述的控制系统,其特征在于,所述前级控制器还用于通过所述直流母线获取所述后级控制器传输的指示所述电网发生高电压穿越的信息。
  3. 如权利要求2所述的控制系统,其特征在于,所述后级控制器具体用于:
    在检测到所述电网发生高电压穿越的情况下,控制所述直流母线的当前电压,使所述直流母线的当前电压符合预设的第一电压特征,所述预设的第一电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征;
    所述前级控制器具体用于:在检测到所述直流母线的当前电压符合所述预设的第一电压特征的情况下,确定所述电网发生高电压穿越。
  4. 如权利要求2或3所述的控制系统,其特征在于,所述前级控制器还用于:
    在获取指示所述电网发生高电压穿越的信息之后,更新所述直流母线的当前电压。
  5. 如权利要求1至4中任一项所述的控制系统,其特征在于,
    所述后级控制器还用于通过所述直流母线向所述前级控制器传输指示所述电网退出高电压穿越的信息;
    所述前级控制器还用于通过所述直流母线获取所述后级控制器传输的指示所述电网退出高电压穿越的信息。
  6. 如权利要求5所述的控制系统,其特征在于,
    所述后级控制器具体用于在检测到所述电网退出高电压穿越的情况下,控制所述直流母线的当前电压,使所述直流母线的当前电压符合预设的第二电压特征,所述预设的第二电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征;
    所述前级控制器具体用于在检测到所述直流母线的当前电压符合所述预设的第二电压特征的情况下,确定所述电网退出高电压穿越。
  7. 如权利要求5或6所述的控制系统,其特征在于,所述前级控制器还用于:
    在获取指示所述电网退出高电压穿越的信息之后,恢复高电压穿越之前的所述直流母线的电压控制方式。
  8. 如权利要求3或4所述的控制系统,其特征在于,所述后级控制器包括第一采样 单元和第一控制单元,
    所述第一采样单元具体用于采集所述电网的当前电压信息,并向所述第一控制单元发送所述电网的当前电压信息;
    所述第一控制单元具体用于:
    接收所述电网的当前电压信息;
    根据所述电网的当前电压信息,确定所述电网发生高电压穿越;
    控制所述直流母线的当前电压,使所述直流母线的当前电压符合所述预设的第一电压特征。
  9. 如权利要求3或4所述的控制系统,其特征在于,所述前级控制器包括第二采样单元和第二控制单元,
    所述第二采样单元具体用于采集所述直流母线的当前电压信息,并向所述第二控制单元发送所述直流母线的当前电压信息;
    所述第二控制单元具体用于:
    接收所述直流母线的当前电压信息;
    根据所述直流母线的当前电压信息,确定所述直流母线的当前电压是否符合所述预设的第一电压特征;
    在所述直流母线的当前电压符合所述预设的第一电压特征的情况下,确定所述电网发生高电压穿越。
  10. 一种用于供电系统的控制方法,其特征在于,所述方法由控制系统执行,所述控制系统包括前级电压转换装置和后级电压转换装置,所述前级电压转换装置包括前级控制器和前级电压转换电路,所述前级控制器用于控制所述前级电压转换电路接收所述供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过直流母线向后级电压转换装置供电,所述后级电压转换装置包括后级控制器和后级电压转换电路,所述后级控制器用于控制所述后级电压转换电路通过所述直流母线接收所述前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电,
    所述方法包括:
    所述后级控制器通过所述直流母线向所述前级控制器传输指示所述电网发生高电压穿越的信息。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述前级控制器通过所述直流母线获取所述后级控制器传输的指示所述电网发生高电压穿越的信息。
  12. 如权利要求11所述的方法,其特征在于,所述后级控制器通过所述直流母线向所述前级控制器传输指示所述电网发生高电压穿越的信息,包括:
    所述后级控制器在检测到所述电网发生高电压穿越的情况下,控制所述直流母线的当前电压,使所述直流母线的当前电压符合预设的第一电压特征,所述第一电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征;
    所述前级控制器通过所述直流母线获取所述后级控制器传输的指示所述电网发生高电压穿越的信息,包括:
    所述前级控制器在检测到所述直流母线的当前电压符合所述预设的第一电压特征的 情况下,确定所述电网发生高电压穿越。
  13. 一种用于供电系统的后级电压转换装置,其特征在于,所述装置包括:后级电压转换电路和后级控制器,
    所述后级控制器用于控制所述后级电压转换电路通过直流母线接收前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电,其中,所述前级电压转换装置包括前级控制器和前级电压转换电路,所述前级控制器用于控制所述前级电压转换电路接收所述供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过所述直流母线向所述后级电压转换装置供电;
    其中,所述后级控制器还用于通过所述直流母线向所述前级控制器传输指示所述电网发生高电压穿越的信息。
  14. 如权利要求13所述的后级电压转换装置,其特征在于,所述后级控制器具体用于:
    在检测到所述电网发生高电压穿越的情况下,控制所述直流母线的当前电压,使所述直流母线的当前电压符合预设的第一电压特征,所述预设的第一电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。
  15. 如权利要求13或14所述的后级电压转换装置,其特征在于,所述后级控制器还用于:
    通过所述直流母线向所述前级控制器传输指示所述电网退出高电压穿越的信息。
  16. 如权利要求15所述的后级电压转换装置,其特征在于,所述后级控制器具体用于:
    在检测到所述电网退出高电压穿越的情况下,控制所述直流母线的当前电压,使所述直流母线的当前电压符合预设的第二电压特征,所述预设的第二电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。
  17. 如权利要求14所述的后级电压转换装置,其特征在于,所述后级控制器包括采样单元和控制单元,
    所述采样单元具体用于采集所述电网的当前电压信息,并向所述控制单元发送所述电网的当前电压信息;
    所述控制单元具体用于:
    接收所述电网的当前电压信息;
    根据所述电网的当前电压信息,确定所述电网发生高电压穿越;
    控制所述直流母线的当前电压,使所述直流母线的当前电压符合所述预设的第一电压特征。
  18. 如权利要求16所述的后级电压转换装置,其特征在于,所述后级控制器包括采样单元和控制单元,
    所述采样单元具体用于采集所述电网的当前电压信息,并向所述控制单元发送所述电网的当前电压信息;
    所述控制单元具体用于:
    接收所述电网的当前电压信息;
    根据所述电网的当前电压信息,确定所述电网退出高电压穿越;
    控制所述直流母线的当前电压,使所述直流母线的当前电压符合所述预设的第二电压特征。
  19. 一种用于供电系统的前级电压转换装置,其特征在于,所述装置包括:前级电压转换电路和前级控制器,
    所述前级控制器用于控制所述前级电压转换电路接收所述供电系统中的供电模块提供的电能,并在进行直流电压转换之后,通过直流母线向后级电压转换装置供电,其中,所述后级电压转换装置包括后级控制器和后级电压转换电路,所述后级控制器用于控制所述后级电压转换电路通过所述直流母线接收所述前级电压转换装置传输的电能,并在进行直流至交流电压转换之后,向电网供电;
    其中,所述前级控制器还用于通过所述直流母线获取所述后级控制器传输的指示所述电网发生高电压穿越的信息。
  20. 如权利要求19所述的前级电压转换装置,其特征在于,所述前级控制器具体用于:
    在检测到所述直流母线的当前电压符合预设的第一电压特征的情况下,确定所述电网发生高电压穿越,所述预设的第一电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。
  21. 如权利要求19或20所述的前级电压转换装置,其特征在于,所述前级控制器还用于:
    在获取指示所述电网发生高电压穿越的信息之后,更新所述直流母线的当前电压。
  22. 如权利要求19至21中任一项所述的前级电压转换装置,其特征在于,所述前级控制器还用于:
    通过所述直流母线获取所述后级控制器传输的指示所述电网退出高电压穿越的信息。
  23. 如权利要求22所述的前级电压转换装置,其特征在于,所述前级控制器具体用于:
    在检测到所述直流母线的当前电压符合预设的第二电压特征的情况下,确定所述电网退出高电压穿越,所述预设的第二电压特征包括以下情况中的至少一种:一个预设的电平、一个预设的电平范围或一段预设的电平变化特征。
PCT/CN2021/075950 2021-02-08 2021-02-08 一种用于供电系统的控制系统和方法 WO2022165829A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21923839.1A EP4283814A4 (en) 2021-02-08 2021-02-08 CONTROL SYSTEM AND METHOD FOR A POWER SUPPLY SYSTEM
CN202180051300.0A CN115917908A (zh) 2021-02-08 2021-02-08 一种用于供电系统的控制系统和方法
PCT/CN2021/075950 WO2022165829A1 (zh) 2021-02-08 2021-02-08 一种用于供电系统的控制系统和方法
US18/366,102 US20230378758A1 (en) 2021-02-08 2023-08-07 Control system and method for power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075950 WO2022165829A1 (zh) 2021-02-08 2021-02-08 一种用于供电系统的控制系统和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/366,102 Continuation US20230378758A1 (en) 2021-02-08 2023-08-07 Control system and method for power supply system

Publications (1)

Publication Number Publication Date
WO2022165829A1 true WO2022165829A1 (zh) 2022-08-11

Family

ID=82741939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075950 WO2022165829A1 (zh) 2021-02-08 2021-02-08 一种用于供电系统的控制系统和方法

Country Status (4)

Country Link
US (1) US20230378758A1 (zh)
EP (1) EP4283814A4 (zh)
CN (1) CN115917908A (zh)
WO (1) WO2022165829A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520069A (zh) * 2023-07-04 2023-08-01 上海百竹成航新能源有限责任公司 一种高电压穿越识别方法及其装置、电子设备和储能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140056041A1 (en) * 2011-05-18 2014-02-27 General Electric Company Power generation system, power converter system, and methods of operating a power converter system
CN204030631U (zh) * 2014-08-31 2014-12-17 新疆金风科技股份有限公司 风力发电机组的变流器控制装置
CN109672210A (zh) * 2017-10-16 2019-04-23 新疆金风科技股份有限公司 变流器、变流器的高电压穿越控制方法和装置
CN110572184A (zh) * 2019-08-02 2019-12-13 华为技术有限公司 发电系统及用于发电系统的通信装置
CN110994628A (zh) * 2019-11-14 2020-04-10 特变电工西安电气科技有限公司 一种两级式光伏逆变器的高电压穿越控制方法
CN112134302A (zh) * 2020-08-31 2020-12-25 中国东方电气集团有限公司 一种基于直流母线电压调节的风机高电压穿越控制系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509231B2 (en) * 2012-04-26 2016-11-29 General Electric Company Power converter system, damping system, and method of operating a power converter system
US9667057B2 (en) * 2014-06-18 2017-05-30 General Electric Company System and method for protecting a power converter during an adverse voltage event

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140056041A1 (en) * 2011-05-18 2014-02-27 General Electric Company Power generation system, power converter system, and methods of operating a power converter system
CN204030631U (zh) * 2014-08-31 2014-12-17 新疆金风科技股份有限公司 风力发电机组的变流器控制装置
CN109672210A (zh) * 2017-10-16 2019-04-23 新疆金风科技股份有限公司 变流器、变流器的高电压穿越控制方法和装置
CN110572184A (zh) * 2019-08-02 2019-12-13 华为技术有限公司 发电系统及用于发电系统的通信装置
CN110994628A (zh) * 2019-11-14 2020-04-10 特变电工西安电气科技有限公司 一种两级式光伏逆变器的高电压穿越控制方法
CN112134302A (zh) * 2020-08-31 2020-12-25 中国东方电气集团有限公司 一种基于直流母线电压调节的风机高电压穿越控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4283814A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520069A (zh) * 2023-07-04 2023-08-01 上海百竹成航新能源有限责任公司 一种高电压穿越识别方法及其装置、电子设备和储能系统
CN116520069B (zh) * 2023-07-04 2023-11-17 上海百竹成航新能源有限责任公司 一种高电压穿越识别方法及其装置、电子设备和储能系统

Also Published As

Publication number Publication date
US20230378758A1 (en) 2023-11-23
EP4283814A1 (en) 2023-11-29
CN115917908A8 (zh) 2024-05-14
CN115917908A (zh) 2023-04-04
EP4283814A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US11031906B2 (en) Current-voltage curve scan method for photovoltaic module, and optimizer
US9685781B2 (en) Solar photovoltaic system and a method for energy harvest optimization thereof and a method for fault detection thereof
JP6161730B2 (ja) 電力変換装置
US10503126B2 (en) Access control method for parallel direct current power supplies and device thereof
CN105098965A (zh) 伺服系统及其电源切换方法
JP6678342B2 (ja) 電力供給システム、及び蓄電装置
US20150270788A1 (en) Power conversion apparatus and control method for power conversion apparatus
WO2022165829A1 (zh) 一种用于供电系统的控制系统和方法
KR101769043B1 (ko) 다수 회로의 모듈 스트링별 태양광 발전장치의 사물인터넷 기반 제어 시스템
US20130073107A1 (en) Network apparatus, electric power supply system, and electric power supply method
US11859840B2 (en) Photovoltaic air conditioning system startup method, controller and photovoltaic air conditioning system
US9541587B2 (en) Inverting apparatus for avoiding misjudgement of maximum power point tracking operation and control method thereof
WO2018166165A1 (zh) 一种光伏发电系统mppt扰动方法
WO2014024731A1 (ja) 連系系統切替装置及び電力制御システム
US20150244251A1 (en) Inverting apparatus and detection method of islanding operation
EP2963762B1 (en) Floating voltage suppression in a pv-inverter
CN116048182A (zh) 光伏组件柔性功率点跟踪方法、装置、设备、介质及系统
JP2012161208A (ja) 電源装置、及び電源制御方法
KR101699958B1 (ko) 전력 특성을 동기화한 복합발전 전력공급 시스템
CN105191044A (zh) 源与负载之间的功率管理
WO2021229652A1 (ja) 水電解システム及び電流制御装置
JP2013080731A (ja) Pvパネル診断装置、診断方法及び診断プログラム
US20160380434A1 (en) Hierarchical control of a plurality of power subsystems and method of operating the same
WO2022204975A1 (zh) 一种双极供电系统和控制方法
WO2018170803A1 (zh) 光伏发电系统及最大功率点跟踪mppt的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021923839

Country of ref document: EP

Effective date: 20230823

NENP Non-entry into the national phase

Ref country code: DE