WO2018166165A1 - 一种光伏发电系统mppt扰动方法 - Google Patents

一种光伏发电系统mppt扰动方法 Download PDF

Info

Publication number
WO2018166165A1
WO2018166165A1 PCT/CN2017/102835 CN2017102835W WO2018166165A1 WO 2018166165 A1 WO2018166165 A1 WO 2018166165A1 CN 2017102835 W CN2017102835 W CN 2017102835W WO 2018166165 A1 WO2018166165 A1 WO 2018166165A1
Authority
WO
WIPO (PCT)
Prior art keywords
disturbance
mppt
period
topology
stage
Prior art date
Application number
PCT/CN2017/102835
Other languages
English (en)
French (fr)
Other versions
WO2018166165A9 (zh
Inventor
黄凯伦
曾春保
许林毅
梁适春
何宏伟
Original Assignee
厦门科华恒盛股份有限公司
漳州科华技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门科华恒盛股份有限公司, 漳州科华技术有限责任公司 filed Critical 厦门科华恒盛股份有限公司
Publication of WO2018166165A1 publication Critical patent/WO2018166165A1/zh
Publication of WO2018166165A9 publication Critical patent/WO2018166165A9/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to the field of photovoltaic power generation, and in particular to a method for MPPT disturbance of a photovoltaic power generation system.
  • photovoltaic controllers and photovoltaic inverters are mostly one-level or two-level topology systems, wherein two-level topology can realize multi-channel MPPT and have a wider MPPT range.
  • the photovoltaic two-stage MPPT system is converged to a subsequent stage by a plurality of pre-level topologies as shown in FIG. 1, and is output by the latter stage.
  • a two-stage topology consists of a photovoltaic power generation system, which is generally MPPT-tracked by a pre-stage topology, and the rear-stage topology stabilizes the bus input power.
  • the bus voltage control reference value generally adopts two methods:
  • the disadvantage of Mode 1 is that the voltage range of MPPT is limited by the bus voltage reference value (the upper limit of the MPPT voltage range is the bus voltage reference value of the boost circuit, and the lower limit of the MPPT voltage range is the bus voltage reference of the step-down circuit). Value).
  • Mode 2 solves the shortcoming of Mode 1, but in order to perform normal M PPT tracking in the case of high and low voltage input, the given value of the bus voltage needs to be determined by the input voltage of the previous stage.
  • the DC bus voltage is controlled by the latter stage, so the information exchange given by the busbar is required between the front and rear stages.
  • the space between the front and rear stages is far away, and the information interaction becomes difficult due to factors such as line interference, and the overall system reliability is reduced.
  • an object of the present invention is to provide a MPPT perturbation method for a photovoltaic power generation system, which performs MPPT perturbation by means of front and rear stages, so that the system has a wide MPPT range, and no information exchange between the front and rear stages is required.
  • the present invention is implemented by the following scheme: A photovoltaic power generation system MPPT disturbance method, the photovoltaic power generation
  • the system includes N pre-topologies and a post-topology.
  • the inputs of the pre-topologies are respectively connected to the photovoltaic components, and the outputs of the N pre-topologies are connected in parallel to the input of the subsequent topology, and the MPPT is disturbed.
  • the method includes a first sub-period and a second sub-period of the MPPT disturbance period, and specifically includes the following steps:
  • Step S1 After obtaining the input power P1 before the subsequent topology perturbation in the first sub-period, performing the post-stage M PPT perturbation, and obtaining the stable input power P2 after the subsequent-stage topological perturbation;
  • Step S2 After obtaining the input power P3 before the previous-stage topological disturbance in the second sub-period, performing the pre-stage MPPT perturbation, and obtaining the stable input power P4 after the pre-topological perturbation, returning to step S1, and proceeding to the next A sub-period.
  • step S1 includes the following steps:
  • Step S11 In the first sub-period of the current MPPT disturbance period, the input current II and the input voltage Ul before the post-topological disturbance are collected, and the input power PI (k) before the subsequent-stage topological disturbance is calculated;
  • Step S12 The input power P2 (k-1 ) after the subsequent topology disturbance according to the previous MPPT disturbance period and the input power PI (k) before the subsequent topology disturbance of the current MPPT disturbance period, according to the MPPT algorithm Calculating the disturbance bus voltage reference value Ua, and disturbing the DC bus voltage according to the disturbance bus voltage reference value Ua;
  • Step S13 After maintaining the first preset length, the input current 12 and the input voltage U2 after the topology stabilization are collected, and the stable input power P2 (k) after the subsequent topology disturbance is calculated;
  • Step S14 After maintaining the second preset length, entering the second sub-period of the MPPT disturbance period;
  • k is a positive integer greater than or equal to 1.
  • step S2 specifically includes the following steps:
  • Step S21 In the second sub-period of the current MPPT disturbance period, the input current 13 and the input voltage U3 before the previous-stage topological disturbance are collected, and the input power P3 (k) before the subsequent-stage topological disturbance is calculated;
  • Step S22 The input power P4 (k-1 ) after the previous-stage topological disturbance according to the previous MPPT disturbance period and the input power P3 (k) before the previous-stage topological disturbance of the current MPPT disturbance period, according to the MPPT algorithm Calculating the voltage reference value Ub of the disturbance photovoltaic module, and disturbing the output voltage of the photovoltaic module according to the voltage reference value Ub of the disturbance photovoltaic module;
  • Step S23 After maintaining the third preset length, collecting the input current II and the input voltage U1 after the topological disturbance of the previous stage, and calculating the input power P4 (k) after the topology stabilization of the latter stage; [0023] Step S24: After maintaining the fourth preset length, the current MPPT disturbance period ends;
  • k is a positive integer greater than or equal to 1.
  • the post-stage topology performs the post-stage MPPT perturbation, and further includes: after the post-topology perturbation of the DC bus voltage ⁇ , the post-stage topology and the pre-stage topology are confronted. The post-topology and the pre-topology are compared to the end of the current MPPT period.
  • the front-end topology is a DC/DC topology; and the latter-level topology is a DC/AC topology or a DC/DC topology.
  • the MPPT perturbation method of the photovoltaic power generation system of the present invention performs MPPT tracking separately through the front and rear stages, and has the following beneficial effects:
  • the reference voltage of the rear stage bus voltage of the subsequent stage topology can be changed to overcome the problem that the MPPT range of the existing fixed reference value scheme is limited, so that the system has a wide MPPT range;
  • the MPTP perturbation of the subsequent topology is performed in sequence.
  • the rear topology is determined according to the power, and the bus voltage reference value is independently determined and calculated by the subsequent stage, and the bus voltage is adjusted to ensure each path.
  • the pre-stage inputs are in normal MPPT conditions;
  • front-to-back topology MPPT disturbance does not require front-to-back topology information interaction, no communication lines, no line interference and other factors, the front-to-back topology is not limited by the spatial distance, and is not limited by the number of previous channels;
  • the bus voltage change point is used as the inter-turn point of the MPPT of the preceding and succeeding stages, and the front and rear stage topologies are respectively performed.
  • the PPT period is opposite, ensuring that the front-to-back topology can be in the same MPPT disturbance period.
  • FIG. 1 is a system block diagram of a two-stage photovoltaic power generation system
  • the present embodiment provides a method for MPPT perturbation of a photovoltaic power generation system, where the photovoltaic power generation system includes N front-end topologies and one rear-level topology, wherein the front-end topology is a DC/DC topology, and the rear-level topology is a DC/AC.
  • the input ends of the pre-stage topology are respectively connected to the photovoltaic components, and the output ends of the N pre-stage topologies are connected in parallel to the input ends of the subsequent-stage topology, and the MPPT disturbance method includes the first sub-period of the MPPT disturbance period and
  • the second sub-cycle includes the following steps:
  • Step S1 After obtaining the input power P1 before the post-topological disturbance in the first sub-period, performing the post-stage M PPT perturbation, and obtaining the stable input power P2 after the subsequent-stage topological perturbation;
  • Step S2 performing the pre-MPPT perturbation after acquiring the input power P3 before the pre-topological perturbation in the second sub-period, and obtaining the stable input power P4 after the pre-topological perturbation, returning to step S1, and proceeding to the next A sub-period.
  • the front-end topology is a DC/DC topology, specifically adopting a DC/DC converter;
  • the rear-level topology is a DC/AC topology, and a DC/AC inverter is specifically adopted, and is incorporated into the city.
  • the electrical network is connected to the load; in particular, the back-end topology may also be a DC/DC topology, performing back-flow boosting, accessing the battery pack, and implementing an energy storage charging function.
  • step S1 includes the following steps:
  • Step S11 In the first sub-period of the current MPPT disturbance period, the input current II and the input voltage Ul before the post-topological disturbance are collected, and the input power PI (k) before the subsequent-stage topological disturbance is calculated;
  • Step S12 The input power P2 (k-1) after the subsequent topology perturbation of the previous MPPT disturbance period and the input power PI (k) before the subsequent topology perturbation period of the MPPT disturbance period, according to the MPPT algorithm Calculating the disturbance bus voltage reference value Ua, and disturbing the DC bus voltage according to the disturbance bus voltage reference value Ua;
  • Step S13 After maintaining the first preset length, the input current 12 and the input voltage U2 after the topology stabilization are collected, and the stable input power P2 (k) after the subsequent topology disturbance is calculated;
  • Step S14 After maintaining the second preset length, entering the second sub-period of the MPPT disturbance period;
  • k is a positive integer greater than or equal to 1.
  • step S2 specifically includes the following steps:
  • Step S21 In the second sub-period of the current MPPT disturbance period, the input current 13 and the input voltage U3 before the previous-stage topological disturbance are collected, and the input power P3 (k) before the subsequent-stage topological disturbance is calculated;
  • Step S22 The input power P4 (k-1 ) after the previous-stage topological disturbance according to the previous MPPT disturbance period and the input power P3 (k) before the previous-stage topological disturbance of the current MPPT disturbance period, according to the MPPT algorithm Calculating the voltage reference value Ub of the disturbance photovoltaic module, and disturbing the output voltage of the photovoltaic module according to the voltage reference value Ub of the disturbance photovoltaic module;
  • Step S23 After maintaining the third preset length, the input current II and the input voltage Ul after the topological disturbance of the previous stage are collected, and the input power P4 (k) after the topology stabilization of the latter stage is calculated;
  • Step S24 After maintaining the fourth preset length, the current MPPT disturbance period ends;
  • k is a positive integer greater than or equal to 1.
  • the post-stage topology performs the post-stage MPPT perturbation, and further includes: the post-level topology perturbating the DC bus voltage ⁇ , the latter stage in the subsequent-level topology
  • the preamplifier in the meter and the pre-stage topology is aligned according to the change of the DC bus voltage, and the change point of the bus voltage is used as the inter-turn point of the MPPT of the preceding stage, the pre-meter and the post-stage
  • the device counts up to the end of the current MPPT period.
  • the DC bus voltage may be short-circuited due to changes in operating conditions (such as changes in light intensity, partial front-end shutdown, etc.), and the top-end topology of the device may be disturbed.
  • the method can be used to prevent the interference of the counters of the top-and-bottom topology of the interference.
  • the manner of the anti-interference processing is as follows: Set the inter-turn threshold it, the bus voltage change threshold iU, when T cnt e[T S -At, + ⁇ ] , iU ⁇ l us - n . w - U bus — pre I ⁇ , to allow confrontation (T ⁇ ⁇ perturbation period, it « T s , t/ bus — n . w , t/ bus — pre are the current bus voltage values of the previous MPPT cycle ).
  • the anti-interference processing method is not limited to the above examples.
  • the MPPT sub-algorithms mentioned above can be common MP ⁇ algorithms such as two-point climbing method, three-point climbing method, and conductance method.
  • the power P collected by the conductance method at each stage includes an input voltage U and an input current I.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种光伏发电系统MPPT扰动方法,所述光伏发电系统包括N个前级拓扑、一个后级拓扑,所述前级拓扑的输入端分别连接至光伏组件,所述N个前级拓扑的输出端并联至后级拓扑的输入端,其特征在于,所述MPPT扰动方法包括MPPT扰动周期的第一子周期和第二子周期,在所述第一子周期中获取后级拓扑扰动前的输入功率P1后进行后级MPPT扰动,并获取后级拓扑扰动后稳定的输入功率P2,在第二子周期中获取前级拓扑扰动前的输入功率P3后进行前级MPPT扰动,并获取前级拓扑扰动后稳定的输入功率P4。本发明通过前后级分别进行MPPT扰动,使得系统具有较宽的MPPT范围,且无须进行前后级的信息交互。

Description

一种光伏发电系统 MPPT扰动方法 技术领域
[0001] 本发明涉及光伏发电领域, 特别是涉及一种光伏发电系统 MPPT扰动方法。
背景技术
[0002] 目前, 光伏控制器、 光伏逆变器多为一级或两级拓扑系统, 其中两级拓扑能够 实现多路 MPPT, 且具有更宽的 MPPT范围。
[0003] 光伏两级 MPPT系统如图 1所示由多个前级拓扑汇流至后级, 由后级输出。 两级 拓扑组成的光伏发电系统, 一般由前级拓扑进行 MPPT跟踪, 后级拓扑稳定母线 输入功率。
[0004] 现有技术中, 母线电压控制参考值一般采用两种方式:
[0005] 1、 根据需求设置固定的母线参考值;
[0006] 2、 由前级输入电压值计算得出所需的母线参考值。
技术问题
[0007] 方式 1的不足之处为 MPPT的电压范围受到母线电压参考值的限制 (升压电路则 MPPT电压范围的上限为母线电压参考值, 降压电路则 MPPT电压范围的下限为 母线电压参考值) 。
[0008] 方式 2解决了方式 1的不足, 但为了在高低压输入情况下, 系统均能进行正常 M PPT跟踪, 母线电压的给定值需要由前级输入电压决定。 而直流母线电压由后级 控制, 因此前后级之间需要进行母线给定的信息交互。 前后级拓扑之间的空间 距离较远, 受线路干扰等因素, 信息交互变得困难, 整体系统可靠性降低。 问题的解决方案
技术解决方案
[0009] 有鉴于此, 本发明的目的是提供一种光伏发电系统 MPPT扰动方法, 通过前后 级分别进行 MPPT扰动, 使得系统具有较宽的 MPPT范围, 且无须进行前后级的 信息交互。
[0010] 本发明采用以下方案实现: 一种光伏发电系统 MPPT扰动方法, 所述光伏发电 系统包括 N个前级拓扑、 一个后级拓扑, 所述前级拓扑的输入端分别连接至光伏 组件, 所述 N个前级拓扑的输出端并联至后级拓扑的输入端, 所述 MPPT扰动方 法包括 MPPT扰动周期的第一子周期和第二子周期, 具体包括以下步骤:
[0011] 步骤 S1 : 在所述第一子周期中获取后级拓扑扰动前的输入功率 P1后进行后级 M PPT扰动, 并获取后级拓扑扰动后稳定的输入功率 P2;
[0012] 步骤 S2: 在第二子周期中获取前级拓扑扰动前的输入功率 P3后进行前级 MPPT 扰动, 并获取前级拓扑扰动后稳定的输入功率 P4, 返回步骤 Sl, 进入下一个第 一子周期。
[0013] 进一步地, 所述步骤 Sl, 具体包括以下步骤:
[0014] 步骤 S11 : 在当前 MPPT扰动周期的第一子周期中, 采集后级拓扑扰动前的输入 电流 II和输入电压 Ul, 计算得到后级拓扑扰动前的输入功率 PI (k) ;
[0015] 步骤 S12: 根据上一 MPPT扰动周期的后级拓扑扰动后稳定的输入功率 P2 (k-1 ) 和当前 MPPT扰动周期的后级拓扑扰动前的输入功率 PI (k) , 根据 MPPT算法 , 计算得到扰动母线电压参考值 Ua, 根据扰动母线电压参考值 Ua扰动直流母线 电压;
[0016] 步骤 S13: 维持第一预设吋长后, 采集后级拓扑稳定后的输入电流 12和输入电 压 U2, 计算得到后级拓扑扰动后稳定的输入功率 P2 (k) ;
[0017] 步骤 S14: 维持第二预设吋长后, 进入 MPPT扰动周期的第二子周期;
[0018] 其中, k为大于等于 1的正整数。
[0019] 进一步地, 所述步骤 S2, 具体包括以下步骤:
[0020] 步骤 S21 : 在当前 MPPT扰动周期的第二子周期中, 采集前级拓扑扰动前的输入 电流 13和输入电压 U3, 计算得到后级拓扑扰动前的输入功率 P3 (k) ;
[0021] 步骤 S22: 根据上一 MPPT扰动周期的前级拓扑扰动后稳定的输入功率 P4 (k-1 ) 和当前 MPPT扰动周期的前级拓扑扰动前的输入功率 P3 (k) , 根据 MPPT算法 , 计算得到扰动光伏组件电压参考值 Ub, 根据扰动光伏组件电压参考值 Ub, 扰 动光伏组件输出电压;
[0022] 步骤 S23: 维持第三预设吋长后, 采集前级拓扑扰动后稳定的输入电流 II和输 入电压 Ul, 计算得到后级拓扑稳定后的输入功率 P4 (k) ; [0023] 步骤 S24: 维持第四预设吋长后, 当前 MPPT扰动周期结束;
[0024] 其中, k为大于等于 1的正整数。
[0025] 进一步地, 所述 MPPT扰动周期的第一子周期中, 后级拓扑进行后级 MPPT扰动 , 还包括: 在后级拓扑扰动直流母线电压吋, 后级拓扑和前级拓扑进行对吋, 后级拓扑和前级拓扑同吋计吋至当前 MPPT周期结束。
[0026] 进一步地, 所述前级拓扑为 DC/DC拓扑; 所述后级拓扑为 DC/AC拓扑或 DC/DC 拓扑。
发明的有益效果
有益效果
[0027] 与现有技术相比, 本发明的一种光伏发电系统 MPPT扰动的方法, 通过前后级 分别进行 MPPT跟踪, 具有以下有益效果:
[0028] 1、 后级拓扑的后级母线电压参考值可变化, 克服现有固定参考值方案 MPPT 范围受限的问题, 使得系统具有较宽的 MPPT范围;
[0029] 2、 依次进行后级拓扑 MPPT扰动, 在不需要前后级信息交互的情况下, 后级 拓扑根据功率变化, 由后级独立判断、 计算母线电压参考值, 调整母线电压以 保证各路前级输入均处于正常 MPPT工况;
[0030] 3、 前后级拓扑 MPPT扰动不需要前后级拓扑信息交互, 无需通信线路, 不受 线路干扰等因素, 前后级拓扑不受空间距离的限制、 不受前级路数限制;
[0031] 4、 由母线电压变化点作为前后级 MPPT的对吋吋间点, 前后级拓扑分别进行 M
PPT周期对吋, 确保前后级拓扑能处于相同的 MPPT扰动周期中。
对附图的简要说明
附图说明
[0032] 图 1为光伏发电两级系统的系统框图;
[0033] 图 2为本发明的工作流程图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0034] 下面结合附图及实施例对本发明做进一步说明。 [0035] 本实施例提供一种光伏发电系统 MPPT扰动方法, 所述光伏发电系统包括 N个 前级拓扑、 一个后级拓扑, 其中前级拓扑为 DC/DC拓扑, 后级拓扑为 DC/AC拓 扑, 所述前级拓扑的输入端分别连接至光伏组件, 所述 N个前级拓扑的输出端并 联至后级拓扑的输入端, 所述 MPPT扰动方法包括 MPPT扰动周期的第一子周期 和第二子周期, 具体包括以下步骤:
[0036] 步骤 S1 : 在所述第一子周期中获取后级拓扑扰动前的输入功率 P1后进行后级 M PPT扰动, 并获取后级拓扑扰动后稳定的输入功率 P2;
[0037] 步骤 S2: 在第二子周期中获取前级拓扑扰动前的输入功率 P3后进行前级 MPPT 扰动, 并获取前级拓扑扰动后稳定的输入功率 P4, 返回步骤 Sl, 进入下一个第 一子周期。
[0038] 在本实施例中, 所述前级拓扑为 DC/DC拓扑, 具体采用 DC/DC变换器; 所述后 级拓扑为 DC/AC拓扑, 具体采用 DC/AC逆变器, 并入市电网络, 接入负载; 特 别地, 所述后级拓扑还可以为 DC/DC拓扑, 进行回流升压, 接入电池组, 实现 储能充电功能。
[0039] 在本实施例中, 所述步骤 Sl, 具体包括以下步骤:
[0040] 步骤 S11 : 在当前 MPPT扰动周期的第一子周期中, 采集后级拓扑扰动前的输入 电流 II和输入电压 Ul, 计算得到后级拓扑扰动前的输入功率 PI (k) ;
[0041] 步骤 S12: 根据上一 MPPT扰动周期的后级拓扑扰动后稳定的输入功率 P2 (k-1 ) 和当前 MPPT扰动周期的后级拓扑扰动前的输入功率 PI (k) , 根据 MPPT算法 , 计算得到扰动母线电压参考值 Ua, 根据扰动母线电压参考值 Ua扰动直流母线 电压;
[0042] 步骤 S13: 维持第一预设吋长后, 采集后级拓扑稳定后的输入电流 12和输入电 压 U2, 计算得到后级拓扑扰动后稳定的输入功率 P2 (k) ;
[0043] 步骤 S14: 维持第二预设吋长后, 进入 MPPT扰动周期的第二子周期;
[0044] 其中, k为大于等于 1的正整数。
[0045] 在本实施例中, 所述步骤 S2, 具体包括以下步骤:
[0046] 步骤 S21 : 在当前 MPPT扰动周期的第二子周期中, 采集前级拓扑扰动前的输入 电流 13和输入电压 U3, 计算得到后级拓扑扰动前的输入功率 P3 (k) ; [0047] 步骤 S22: 根据上一 MPPT扰动周期的前级拓扑扰动后稳定的输入功率 P4 (k-1 ) 和当前 MPPT扰动周期的前级拓扑扰动前的输入功率 P3 (k) , 根据 MPPT算法 , 计算得到扰动光伏组件电压参考值 Ub, 根据扰动光伏组件电压参考值 Ub, 扰 动光伏组件输出电压;
[0048] 步骤 S23 : 维持第三预设吋长后, 采集前级拓扑扰动后稳定的输入电流 II和输 入电压 Ul, 计算得到后级拓扑稳定后的输入功率 P4 (k) ;
[0049] 步骤 S24: 维持第四预设吋长后, 当前 MPPT扰动周期结束;
[0050] 其中, k为大于等于 1的正整数。
[0051] 在本实施例中, 所述 MPPT扰动周期的第一子周期中, 后级拓扑进行后级 MPPT 扰动, 还包括: 在后级拓扑扰动直流母线电压吋, 后级拓扑中的后级计吋器和 前级拓扑中的前级计吋器根据直流母线电压的变化进行对吋, 把母线电压的变 化点作为前后级 MPPT的对吋吋间点, 前级计吋器和后级计吋器同吋计吋至当前 MPPT周期结束。
[0052] 在本实施例中, 在正常运行过程中, 可能会由于工况变化 (如光强变化、 部分 前级关机等) 造成直流母线电压短吋间抖动, 干扰前后级拓扑的计吋器对吋, 采用该方法可以对干扰前后级拓扑的对计吋器的对吋进行防干扰处理。
[0053] 所述防干扰处理的方式举例如下: 设置吋间阈值 it、 母线电压变化阈值 iU, 当 T cnte[T S-At, +∞] , iU<l usnw - Ubuspre I吋, 才允许对吋 (T ^ΜΡΡΤ扰动周 期, it « T s, t/busnw、 t/buspre分别为当前、 前一个 MPPT周期的母线电压值) 。 防扰处理方法不局限于上述举例。
[0054] 以上所提到的 MPPT子算法均可为两点爬山法、 三点爬山法、 电导法等常见 MP ΡΤ算法。 其中, 电导法在各阶段采集的功率 P包含输入电压 U和输入电流 I。
[0055] 以上所述仅为本发明的较佳实施例, 凡依本发明申请专利范围所做的均等变化 与修饰, 皆应属本发明的涵盖范围。

Claims

权利要求书
[权利要求 1] 一种光伏发电系统 MPPT扰动方法, 所述光伏发电系统包括 N个前级 拓扑、 一个后级拓扑, 所述前级拓扑的输入端分别连接至光伏组件, 所述 N个前级拓 ί卜的输出端并联至后级拓 ί卜的输入端, 其特征在于: 所述 MPPT扰动方法包括 MPPT扰动周期的第一子周期和第二子周期
, 具体包括以下步骤:
步骤 S1 : 在所述第一子周期中获取后级拓扑扰动前的输入功率 P1后 进行后级 MPPT扰动, 并获取后级拓扑扰动后稳定的输入功率 P2; 步骤 S2: 在第二子周期中获取前级拓扑扰动前的输入功率 P3后进行 前级 MPPT扰动, 并获取前级拓扑扰动后稳定的输入功率 P4, 返回步 骤 Sl, 进入下一个第一子周期。
[权利要求 2] 根据权利要求 1所述的一种光伏发电系统 MPPT扰动方法, 其特征在 于: 所述步骤 Sl, 具体包括以下步骤:
步骤 S11 : 在当前 MPPT扰动周期的第一子周期中, 采集后级拓扑 扰动前的输入电流 II和输入电压 U1, 计算得到后级拓扑扰动前的输入 功率 PI (k) ;
步骤 S12: 根据上一 MPPT扰动周期的后级拓扑扰动后稳定的输入 功率 P2 (k-1) 和当前 MPPT扰动周期的后级拓扑扰动前的输入功率 PI
(k) , 根据 MPPT算法, 计算得到扰动母线电压参考值 Ua, 根据扰 动母线电压参考值 Ua扰动直流母线电压; 步骤 S13: 维持第一预设吋长后, 采集后级拓扑稳定后的输入电流 12 和输入电压 U2, 计算得到后级拓扑扰动后稳定的输入功率 P2 (k) ; 步骤 S14: 维持第二预设吋长后, 进入 MPPT扰动周期的第二子周期 其中, k为大于等于 1的正整数。
[权利要求 3] 根据权利要求 1所述的一种光伏发电系统 MPPT扰动方法, 其特征在 于: 所述步骤 S2, 具体包括以下步骤: 步骤 S21 : 在当前 MPPT扰动周期的第二子周期中, 采集前级拓扑 扰动前的输入电流 13和输入电压 U3, 计算得到后级拓扑扰动前的输入 功率 P3 (k) ;
步骤 S22: 根据上一 MPPT扰动周期的前级拓扑扰动后稳定的输入 功率 P4 (k-1) 和当前 MPPT扰动周期的前级拓扑扰动前的输入功率 P3
(k) , 根据 MPPT算法, 计算得到扰动光伏组件电压参考值 Ub, 根 据扰动光伏组件电压参考值 Ub, 扰动光伏组件输出电压;
步骤 S23: 维持第三预设吋长后, 采集前级拓扑扰动后稳定的输入 电流 II和输入电压 Ul, 计算得到后级拓扑稳定后的输入功率 P4 (k) 步骤 S24: 维持第四预设吋长后, 当前 MPPT扰动周期结束; 其中, k为大于等于 1的正整数。
[权利要求 4] 根据权利 1所述的一种光伏发电系统 MPPT扰动的方法, 其特征在于
: 所述 MPPT扰动周期的第一子周期中, 后级拓扑进行后级 MPPT扰 动, 还包括: 在后级拓扑扰动直流母线电压吋, 后级拓扑和前级拓扑 进行对吋, 后级拓扑和前级拓扑同吋计吋至当前 MPPT周期结束。
[权利要求 5] 根据权利 1所述的一种光伏发电系统 MPPT扰动的方法, 其特征在于
: 所述前级拓扑为 DC/DC拓扑。
[权利要求 6] 根据权利 1所述的一种光伏发电系统 MPPT扰动的方法, 其特征在于
: 所述后级拓扑为 DC/AC拓扑或 DC/DC拓扑。
PCT/CN2017/102835 2017-03-13 2017-09-22 一种光伏发电系统mppt扰动方法 WO2018166165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710144833.9A CN106981882B (zh) 2017-03-13 2017-03-13 一种光伏发电系统mppt扰动方法
CN201710144833.9 2017-03-13

Publications (2)

Publication Number Publication Date
WO2018166165A1 true WO2018166165A1 (zh) 2018-09-20
WO2018166165A9 WO2018166165A9 (zh) 2019-01-03

Family

ID=59338091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102835 WO2018166165A1 (zh) 2017-03-13 2017-09-22 一种光伏发电系统mppt扰动方法

Country Status (2)

Country Link
CN (1) CN106981882B (zh)
WO (1) WO2018166165A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037120A (zh) * 2022-06-09 2022-09-09 合肥工业大学 基于模块化多端口变换器的两级式能源路由器系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981882B (zh) * 2017-03-13 2019-11-29 科华恒盛股份有限公司 一种光伏发电系统mppt扰动方法
CN107884661B (zh) * 2017-10-18 2020-07-03 科华恒盛股份有限公司 一种检测光伏逆变器输入接线方式的方法与装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651436A (zh) * 2009-09-16 2010-02-17 合肥阳光电源有限公司 一种高精度最大功率点跟踪方法
US20130249296A1 (en) * 2012-03-22 2013-09-26 Chung Yuan Christian University Photovoltaic System Having Power-Increment-Aided Incremental-Conductance Maximum Power Point Tracking Controller Using Constant-Frequency and Variable-Duty Control and Method Thereof
CN203535465U (zh) * 2013-11-10 2014-04-09 石家庄通合电子科技股份有限公司 基于高效自适应扰动观察法的两级mppt协同控制系统
CN104734548A (zh) * 2015-04-07 2015-06-24 深圳市英威腾电气股份有限公司 一种光伏并网逆变器以及光伏并网逆变器的控制方法
CN106981882A (zh) * 2017-03-13 2017-07-25 厦门科华恒盛股份有限公司 一种光伏发电系统mppt扰动方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450513B2 (en) * 2013-09-27 2016-09-20 Daihen Corporation Control circuit and control method for inverter circuit, and control circuit and control method for power conversion circuit
CN104377732B (zh) * 2014-11-21 2016-09-14 南车株洲电力机车研究所有限公司 一种基于直流母线分布式mppt光伏发电系统
CN104375556A (zh) * 2014-12-03 2015-02-25 北京恒德阳光光电科技有限公司 太阳能mppt恒流源
CN104836523B (zh) * 2015-04-29 2017-03-22 国家电网公司 基于李雅普诺夫开关耦合极值搜索的光伏储能发电模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651436A (zh) * 2009-09-16 2010-02-17 合肥阳光电源有限公司 一种高精度最大功率点跟踪方法
US20130249296A1 (en) * 2012-03-22 2013-09-26 Chung Yuan Christian University Photovoltaic System Having Power-Increment-Aided Incremental-Conductance Maximum Power Point Tracking Controller Using Constant-Frequency and Variable-Duty Control and Method Thereof
CN203535465U (zh) * 2013-11-10 2014-04-09 石家庄通合电子科技股份有限公司 基于高效自适应扰动观察法的两级mppt协同控制系统
CN104734548A (zh) * 2015-04-07 2015-06-24 深圳市英威腾电气股份有限公司 一种光伏并网逆变器以及光伏并网逆变器的控制方法
CN106981882A (zh) * 2017-03-13 2017-07-25 厦门科华恒盛股份有限公司 一种光伏发电系统mppt扰动方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037120A (zh) * 2022-06-09 2022-09-09 合肥工业大学 基于模块化多端口变换器的两级式能源路由器系统及方法
CN115037120B (zh) * 2022-06-09 2024-04-30 合肥工业大学 基于模块化多端口变换器的两级式能源路由器系统及方法

Also Published As

Publication number Publication date
CN106981882B (zh) 2019-11-29
CN106981882A (zh) 2017-07-25
WO2018166165A9 (zh) 2019-01-03

Similar Documents

Publication Publication Date Title
US8508074B2 (en) System and method for optimizing solar power conversion
JP6531237B2 (ja) Dc−ac変換方法
US9391540B2 (en) Method and apparatus for chaotic democratic pulse width modulation generation
WO2018166165A1 (zh) 一种光伏发电系统mppt扰动方法
JP6225388B2 (ja) Mppt集中モード退出、切り替え方法及びその応用
WO2018010972A1 (en) A control method for improving conversion efficiency of a multi-channel mppt inverter
Suntio et al. Comments on “An Efficient Partial Power Processing DC/DC Converter for Distributed PV Architectures”
Shenoy et al. Differential power processing architecture for increased energy production and reliability of photovoltaic systems
Khazaei et al. Real-time digital simulation-based modeling of a single-phase single-stage PV system
JPWO2012157329A1 (ja) 集電箱
WO2017175393A1 (ja) 太陽光発電システム
Lee et al. Differential power processing converter design for photovoltaic wearable applications
Levron et al. Nonlinear control design for the photovoltaic isolated-port architecture with submodule integrated converters
CN108092534B (zh) 单相五电平变流器的控制方法以及装置
Sheir et al. A high efficiency single-phase multilevel packed U cell inverter for photovoltaic applications
Shenoy et al. Differential power processing for efficiency and performance leaps in utility-scale photovoltaics
US10326277B2 (en) Hierarchical control of a plurality of power subsystems and method of operating the same
Oliveira et al. Analysis of grid-tied single phase multilevel inverters powered by photovoltaic panels under partial shading conditions
Mahendran Advanced cascaded multilevel inverter for PV cell renewable energy system employing incremental conductance MPPT algorithm
Kakosimos et al. Single-phase cascaded H-bridge neutral-point clamped inverter: A comparison between MPC and PI control
WO2022165829A1 (zh) 一种用于供电系统的控制系统和方法
Wen et al. Differential power processing based photovoltaic power systems: A review
US20190006851A1 (en) Split-type power optimization module for solar module strings of a solar panel
Yang et al. A new control algorithm based on photovoltaic differential power processing architecture
Zhu et al. Sub-module differential power processing photovoltaic optimizer using self-adjusted time-sharing maximum power point tracking control strategy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900332

Country of ref document: EP

Kind code of ref document: A1