WO2022204975A1 - 一种双极供电系统和控制方法 - Google Patents

一种双极供电系统和控制方法 Download PDF

Info

Publication number
WO2022204975A1
WO2022204975A1 PCT/CN2021/084085 CN2021084085W WO2022204975A1 WO 2022204975 A1 WO2022204975 A1 WO 2022204975A1 CN 2021084085 W CN2021084085 W CN 2021084085W WO 2022204975 A1 WO2022204975 A1 WO 2022204975A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage conversion
conversion device
positive
output
negative
Prior art date
Application number
PCT/CN2021/084085
Other languages
English (en)
French (fr)
Inventor
于心宇
辛凯
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21933656.7A priority Critical patent/EP4311061A4/en
Priority to PCT/CN2021/084085 priority patent/WO2022204975A1/zh
Priority to CN202180062437.6A priority patent/CN116171518A/zh
Publication of WO2022204975A1 publication Critical patent/WO2022204975A1/zh
Priority to US18/476,615 priority patent/US20240022072A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present application relates to the field of circuit technology, and more particularly, to a bipolar power supply system and control method.
  • the system architecture for long-distance power supply includes unipolar power supply system and bipolar power supply system.
  • the use of a bipolar power supply system can equivalently improve the DC voltage level, reduce the power supply current, and thus reduce the line loss.
  • the bipolar power supply system has a unique neutral current problem. If the neutral current cannot be effectively controlled, the neutral current may exceed the cable specification and affect the system reliability.
  • the maximum output power of the positive and negative voltage conversion devices is different.
  • a bipolar power supply system comprising: a voltage conversion unit, an inverter unit and a controller, wherein the voltage conversion unit is configured to receive electric energy provided by a power generation module, and after DC conversion, output the DC power to the inverter unit; the inverter unit is used to convert the direct current into alternating current and output the alternating current to the grid; the voltage conversion unit includes a positive voltage conversion device and a negative voltage conversion device, the inverter The transformer unit includes a positive inverter and a negative inverter, wherein the negative output terminal of the positive voltage conversion device and the positive output terminal of the negative voltage conversion device are connected to the first terminal of the neutral line, and the positive inverter The negative input end of the inverter and the positive input end of the negative inverter are connected to the second end of the neutral line; the controller is used to: detect whether the neutral line current conforms to the preset current range, The current of the neutral line; when the neutral current does not conform to the preset current range, control the positive voltage
  • the controller can control the output voltage of the positive voltage conversion device and the negative voltage conversion device to change the output voltage to reduce the neutral current under the condition that the output power of the positive voltage conversion device and the negative voltage conversion device remain unchanged.
  • This method of adjusting the neutral current keeps the output power of the voltage conversion device unchanged, thereby ensuring that the power supply system can provide the maximum output power and provide greater power generation. While adjusting the neutral current, the power generation efficiency of the power supply system is improved, avoiding additional economic losses.
  • the preset current range is [-I t1 , I t2 ], where -I t1 represents a first preset current threshold, and I t2 represents a second current threshold
  • the current preset threshold value, the direction of the neutral current is from the inverter unit to the voltage conversion unit, the positive direction of the current range is from the inverter unit to the voltage conversion unit, the current range The negative direction is from the voltage conversion unit to the inverter unit, and the controller is specifically configured to: determine that the neutral current is greater than I t2 ; control the positive voltage conversion device and the negative voltage conversion device to output Under the condition that the power remains unchanged, the voltage difference between the output voltage of the positive voltage conversion device and the output voltage of the negative voltage conversion device is increased, so that the neutral current is located in the interval [-I t1 , I t2 ] middle.
  • the controller controls the positive voltage conversion device and the negative voltage conversion device to increase the difference between the output voltage of the positive voltage conversion device and the negative voltage conversion device under the condition that the output power remains unchanged. voltage difference to reduce neutral current.
  • This method of adjusting the neutral current keeps the output power of the voltage conversion device unchanged, thereby ensuring that the power supply system can provide the maximum output power and provide greater power generation. While adjusting the neutral current, the power generation efficiency of the power supply system is improved, avoiding additional economic losses.
  • the preset current range is [-I t1 , I t2 ], where -I t1 represents a first preset current threshold, and I t2 represents a second current threshold
  • the current preset threshold value, the direction of the neutral current is from the inverter unit to the voltage conversion unit, the positive direction of the current range is from the inverter unit to the voltage conversion unit, the current range The negative direction is from the voltage conversion unit to the inverter unit
  • the controller is specifically configured to: determine that the neutral current is less than -I t1 ; control the positive voltage conversion device and the negative voltage conversion device to be Under the condition that the output power remains unchanged, the voltage difference between the output voltage of the positive voltage conversion device and the output voltage of the negative voltage conversion device is reduced, so that the neutral current is located at [-I t1 , I t2 ] in the interval.
  • the controller controls the positive voltage conversion device and the negative voltage conversion device to reduce the difference between the output voltage of the positive voltage conversion device and the output voltage of the negative voltage conversion device when the output power remains unchanged. voltage difference between to reduce neutral current.
  • This method of adjusting the neutral current keeps the output power of the voltage conversion device unchanged, thereby ensuring that the power supply system can provide the maximum output power and provide greater power generation. While adjusting the neutral current, the power generation efficiency of the power supply system is improved, avoiding additional economic losses.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, wherein , the first control unit is specifically configured to control the positive voltage conversion device to increase the output voltage when the neutral current is greater than I t2 ; the second control unit is specifically configured to control the neutral current greater than I t2 In the case of t2 , the negative electrode voltage conversion device is controlled to reduce the output voltage.
  • the controller may include a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, and the two control units may respectively control the positive voltage conversion device and the negative voltage conversion device.
  • the output voltage of the device is adjusted to achieve the purpose of adjusting the voltage difference between the output voltage of the positive voltage conversion device and the output voltage of the negative voltage conversion device.
  • This method of adjusting the neutral current keeps the output power of the voltage conversion device unchanged, thereby ensuring that the power supply system can provide the maximum output power and provide greater power generation. While adjusting the neutral current, the power generation efficiency of the power supply system is improved, avoiding additional economic losses.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, wherein , the first control unit is specifically used for controlling the positive voltage conversion device to increase the output voltage when the neutral current is greater than I t2 ; the second control unit is specifically used for when the neutral current is greater than I t2 In the case of , the output voltage of the negative voltage conversion device is controlled to remain unchanged.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, wherein , the first control unit is specifically configured to control the output voltage of the positive voltage conversion device to remain unchanged when the neutral current is greater than I t2 ; the second control unit is specifically configured to control the output voltage of the positive voltage conversion device when the neutral current is greater than I t2 In the case of I t2 , the negative electrode voltage conversion device is controlled to reduce the output voltage.
  • the controller is further configured to: determine whether the output voltage of the anode voltage conversion device is greater than a first preset voltage threshold, where the first preset voltage threshold is an adjustable upper limit of the output voltage of the positive voltage conversion device; the controller is specifically configured to: when the neutral current is greater than I t2 and the output voltage of the positive voltage conversion device is less than the first preset In the case of a voltage threshold, the positive voltage conversion device and the negative voltage conversion device are controlled to increase the output voltage of the positive voltage conversion device and the negative voltage conversion device under the condition that the output power remains unchanged The voltage difference between the two, so that the neutral line current is located in the interval [-I t1 , It t2 ]; the controller is further configured to: when the neutral line current is greater than I t2 and the output of the positive voltage conversion device When the voltage is greater than or equal to the first preset voltage threshold, the anode voltage conversion device is controlled to reduce the output power.
  • the controller needs to reduce the power by controlling the positive voltage conversion device to adjust The range of neutral current to improve the management efficiency of controlling neutral current.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, wherein , the first control unit is specifically used for controlling the positive voltage conversion device to reduce the output voltage when the neutral current is less than -I t1 ; the second control unit is specifically used for when the neutral current is less than -I t1 In the case of -I t1 , the negative electrode voltage conversion device is controlled to increase the output voltage.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, wherein , the first control unit is specifically used for controlling the positive voltage conversion device to reduce the output voltage when the neutral current is less than -I t1 ; the second control unit is specifically used for when the neutral current is less than -I t1 In the case of -I t1 , the output voltage of the negative voltage conversion device is controlled to remain unchanged.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, wherein , the first control unit is specifically used to control the output voltage of the positive voltage conversion device to remain unchanged when the neutral current is less than -I t1 ; the second control unit is specifically used to control the output voltage of the neutral current In the case of less than -I t1 , the negative electrode voltage conversion device is controlled to increase the output voltage.
  • the controller is further configured to: determine whether the output voltage of the negative voltage conversion device is greater than a second preset voltage threshold, where the second preset voltage threshold is The adjustable upper limit value of the output voltage of the negative voltage conversion device; the controller is specifically configured to: when the neutral current is less than -I t1 and the output voltage of the negative voltage conversion device is less than the second preset value In the case of setting a voltage threshold, controlling the positive voltage conversion device and the negative voltage conversion device to reduce the output voltage of the positive voltage conversion device and the negative voltage conversion device under the condition that the output power remains unchanged The voltage difference between the voltages, so that the neutral line current is located in the interval [-I t1 , It t2 ]; the controller is further configured to: when the neutral line current is less than -I t1 and the negative voltage conversion device When the output voltage is greater than or equal to the second preset voltage threshold, the negative voltage conversion device is controlled to reduce the output power.
  • the controller needs to reduce the power by controlling the negative voltage conversion device to adjust The range of neutral current to improve the management efficiency of controlling neutral current.
  • a control method for a bipolar power supply system includes: a voltage conversion unit, an inverter unit and a controller, the voltage conversion unit is configured to receive electric energy provided by a power generation module , and after DC conversion is performed, the DC power is output to the inverter unit; the inverter unit is used to convert the DC power into AC power, and output the AC power to the grid; the voltage conversion unit includes a positive voltage A conversion device and a negative voltage conversion device, the inverter unit includes a positive inverter and a negative inverter, wherein the negative output terminal of the positive voltage conversion device and the positive output terminal of the negative voltage conversion device are connected to the neutral line.
  • the method includes: the controller detects whether the neutral line current meets the a preset current range, the neutral current is the current passing through the neutral line; the controller controls the positive voltage conversion device and the When the output power is unchanged, the negative voltage conversion device changes the output voltage, so that the neutral current conforms to the preset current range.
  • the preset current range is [-I t1 , I t2 ], where -I t1 represents a first preset current threshold, and I t2 represents a second current threshold
  • the current preset threshold value, the direction of the neutral current is from the inverter unit to the voltage conversion unit, the positive direction of the current range is from the inverter unit to the voltage conversion unit, the current range The negative direction is from the voltage conversion unit to the inverter unit, and the controller controls the positive voltage conversion device and the negative electrode when the neutral current does not meet the preset current range.
  • changing the output voltage includes: the controller determines that the neutral line current is greater than I t2 ; the controller controls the positive voltage conversion device and the negative voltage conversion device to be Under the condition that the output power remains unchanged, the voltage difference between the output voltage of the positive voltage conversion device and the output voltage of the negative voltage conversion device is increased, so that the neutral current is located at [-I t1 , I t2 ] in the interval.
  • the preset current range is [-I t1 , I t2 ], where -I t1 represents a first preset current threshold, and I t2 represents a second current threshold
  • the current preset threshold value, the direction of the neutral current is from the inverter unit to the voltage conversion unit, the positive direction of the current range is from the inverter unit to the voltage conversion unit, the current range The negative direction is from the voltage conversion unit to the inverter unit
  • the controller is specifically configured to: when the neutral current does not conform to the preset current range, the controller controls the The positive voltage conversion device and the negative voltage conversion device change the output voltage when the output power is unchanged, including: the controller determines that the neutral current is less than -I t1 ; the controller controls the positive voltage conversion The device and the negative voltage conversion device reduce the voltage difference between the output voltage of the positive voltage conversion device and the output voltage of the negative voltage conversion device under the condition that the output power is unchanged, so that the neutral current in the interval [-I
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, so When the controller detects that the neutral current is greater than I t2 , the controller controls the positive voltage conversion device and the negative voltage conversion device to increase the output of the positive voltage conversion device under the condition that the output power remains unchanged.
  • the voltage difference between the voltage and the output voltage of the negative voltage conversion device comprising: when the first control unit detects that the neutral current is greater than I t2 , controlling the positive voltage conversion device to increase the output voltage ;
  • the second control unit detects that the neutral current is greater than I t2 , it controls the negative voltage conversion device to reduce the output voltage.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, so When the controller detects that the neutral current is greater than I t2 , the controller controls the positive voltage conversion device and the negative voltage conversion device to increase the output of the positive voltage conversion device under the condition that the output power remains unchanged.
  • the voltage difference between the voltage and the output voltage of the negative voltage conversion device comprising: when the first control unit detects that the neutral current is greater than I t2 , controlling the positive voltage conversion device to increase the output voltage ;
  • the second control unit detects that the neutral current is greater than I t2 , the output voltage of the negative voltage conversion device is controlled to remain unchanged.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, so When the controller detects that the neutral current is greater than I t2 , the controller controls the positive voltage conversion device and the negative voltage conversion device to increase the output of the positive voltage conversion device under the condition that the output power remains unchanged.
  • the voltage difference between the voltage and the output voltage of the negative voltage conversion device includes: when the first control unit detects that the neutral current is greater than I t2 , controlling the output voltage of the positive voltage conversion device not to Change; the second control unit controls the negative voltage conversion device to reduce the output voltage when detecting that the neutral current is greater than I t2 .
  • the method further includes: the controller determining whether the output voltage of the positive voltage conversion device is greater than a first preset voltage threshold, the first preset voltage
  • the threshold value is an adjustable upper limit value of the output voltage of the positive voltage conversion device; the controller controls the positive voltage conversion device and the negative voltage conversion device to increase the positive electrode when the output power remains unchanged
  • the voltage difference between the output voltage of the voltage conversion device and the output voltage of the negative voltage conversion device includes: when the neutral current of the controller is greater than I t2 and the output voltage of the positive voltage conversion device is smaller than the In the case of the first preset voltage threshold, the positive voltage conversion device and the negative voltage conversion device are controlled to increase the output voltage of the positive voltage conversion device and the negative voltage conversion device under the condition that the output power remains unchanged.
  • the method further includes: the controller when the neutral current is greater than I t2 and the When the output voltage of the positive electrode voltage conversion device is greater than or equal to the first preset voltage threshold, the positive electrode voltage conversion device is controlled to reduce the output power.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, so When the controller detects that the neutral current is less than -I t1 , the controller controls the positive voltage conversion device and the negative voltage conversion device to reduce the output power of the positive voltage conversion device under the condition that the output power remains unchanged.
  • the voltage difference between the output voltage and the output voltage of the negative voltage conversion device includes: when the first control unit detects that the neutral current is less than -I t1 , controlling the positive voltage conversion device to reduce output voltage; when the second control unit detects that the neutral line current is less than -I t1 , it controls the negative voltage conversion device to increase the output voltage.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, so When the controller detects that the neutral current is less than -I t1 , the controller controls the positive voltage conversion device and the negative voltage conversion device to reduce the output power of the positive voltage conversion device under the condition that the output power remains unchanged.
  • the voltage difference between the output voltage and the output voltage of the negative voltage conversion device includes: when the first control unit detects that the neutral current is less than -I t1 , controlling the positive voltage conversion device to reduce output voltage; when the second control unit detects that the neutral line current is less than -I t1 , the output voltage of the negative voltage conversion device is controlled to remain unchanged.
  • the controller includes a first control unit provided in the positive voltage conversion device and a second control unit provided in the negative voltage conversion device, so When the controller detects that the neutral current is less than -I t1 , the controller controls the positive voltage conversion device and the negative voltage conversion device to reduce the output power of the positive voltage conversion device under the condition that the output power remains unchanged.
  • the voltage difference between the output voltage and the output voltage of the negative voltage conversion device includes: when the first control unit detects that the neutral current is less than -I t1 , controlling the output of the positive voltage conversion device The voltage remains unchanged; when the second control unit detects that the neutral current is less than -I t1 , the second control unit controls the negative voltage conversion device to increase the output voltage.
  • the method further includes: the controller determining whether the output voltage of the negative voltage conversion device is greater than a second preset voltage threshold, the second preset voltage
  • the threshold value is an adjustable upper limit value of the output voltage of the negative voltage conversion device; the controller controls the positive voltage conversion device and the negative voltage conversion device to reduce the output voltage of the positive voltage conversion device under the condition that the output power remains unchanged
  • the voltage difference between the output voltage of the voltage conversion device and the output voltage of the negative voltage conversion device includes: when the neutral current of the controller is less than -I t1 , and the output voltage of the negative voltage conversion device is less than
  • the positive voltage conversion device and the negative voltage conversion device are controlled to reduce the output voltage of the positive voltage conversion device and the negative voltage when the output power is unchanged.
  • the method further includes: the controller when the neutral line current is less than -I t1 , and When the output voltage of the negative voltage conversion device is greater than or equal to the second preset voltage threshold, the negative voltage conversion device is controlled to reduce the output power.
  • a third aspect provides a control device for a bipolar power supply system, characterized in that the bipolar power supply system comprises: a voltage conversion unit and an inverter unit, the voltage conversion unit is used for receiving electric energy provided by a power generation module, and after the DC conversion is performed, the DC power is output to the inverter unit; the inverter unit is used for converting the DC power into the AC power and outputting the AC power to the grid; the voltage conversion unit includes a positive voltage conversion unit device and a negative voltage conversion device, the inverter unit includes a positive inverter and a negative inverter, wherein the negative output terminal of the positive voltage conversion device and the positive output terminal of the negative voltage conversion device and the first neutral line connected to one end, the negative input end of the positive inverter and the positive input end of the negative inverter are connected to the second end of the neutral line; the control device is used to perform the second aspect or the second aspect.
  • the bipolar power supply system comprises: a voltage conversion unit and an inverter unit, the voltage conversion unit is used
  • an apparatus for a bipolar power supply system comprising the control apparatus of the third aspect.
  • the device may be a voltage conversion unit or an inverter unit.
  • FIG. 1 is a schematic diagram of a bipolar power supply system 100 suitable for an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a bipolar power supply system 200 provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another bipolar power supply system 300 provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another bipolar power supply system 400 provided by an embodiment of the present application.
  • FIG. 5 is a schematic control logic diagram of a dual-stage power supply system according to an embodiment of the present application.
  • FIG. 6 is a schematic control logic diagram of a dual-stage power supply system according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a control device 700 according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a bipolar power supply system 100 according to an embodiment of the present application.
  • the bipolar power supply system 100 can generate electrical energy and provide the generated electrical energy to a power grid.
  • the bipolar power supply system 100 may include a power supply module 110 , a voltage conversion unit 120 and an inverter unit 140 .
  • the voltage conversion unit 120 may include a positive voltage conversion device 121 and a negative voltage conversion device 122 .
  • the inverter unit 140 may include a positive inverter 141 and a negative inverter 142 .
  • the negative output terminal of the positive voltage conversion device 121 and the positive output terminal of the negative voltage conversion device 122 are connected to the first terminal of the neutral line 130, and the negative input terminal of the positive inverter 141 and the positive input terminal of the negative inverter 142 are connected to The second ends of the center line 130 are connected.
  • the positive output terminal of the positive voltage conversion device 121 is connected to the positive input terminal of the positive inverter 141
  • the negative output terminal of the negative voltage conversion device 122 is connected to the negative input terminal of the negative inverter 142 .
  • the power supply module 110 may output the generated power to the voltage conversion unit 120 .
  • the voltage conversion unit 120 may supply power to the inverter unit 140 after converting the DC voltage.
  • the inverter unit 140 may receive the electric energy transmitted by the voltage conversion unit 120, and after converting the DC to AC voltage, supply power to the grid.
  • the power supply module 110 that provides electrical energy may include, but is not limited to, the following items: a photovoltaic (PV) array 111 , a battery 112 .
  • PV photovoltaic
  • the bipolar power supply system 100 in FIG. 1 may further include a transformer 160, which is configured to receive the alternating current output from the inverter unit 140, convert the alternating current into voltage, and then input the alternating current into the power grid.
  • the alternating currents output by the positive inverter 141 and the negative inverter 142 may be respectively connected to different windings in the inverter unit 140 .
  • the embodiment of the present application does not limit the connection relationship of the circuit.
  • other devices may also be connected between the various components in FIG. 1 .
  • the inverter unit 140 and the transformer 160 may also be connected.
  • a filter unit is provided to filter the voltage output by the inverter unit 140 and then input it to the transformer 160 . This application does not limit this.
  • FIG. 1 is only an exemplary illustration of the application scenarios of the embodiments of the present application.
  • the application scenarios used in the present application may be appropriately modified, for example, may include more or less functions than those in FIG. 1 .
  • Modules, devices, and units all fall within the protection scope of the embodiments of the present application.
  • the power supply module 110 may include a photovoltaic array 111 and a photovoltaic array 112 , or may include a battery 111 and a battery 112 .
  • the power supply module 110 and the voltage conversion unit 120 together form a power energy storage system, and the generated electric energy is transmitted to the inverter unit 140 , and processed by the inverter unit 140 to obtain alternating current and provide it to the grid.
  • the battery 111 or the battery 112 stores electrical energy.
  • the electrical energy stored in the battery 111 or the battery 112 can be converted into a direct current by the voltage conversion unit 120 . , and then transmitted to the inverter unit 140, and after being processed by the inverter unit 140, AC power is obtained and supplied to the power grid.
  • the voltage converting unit 120 may include a buck (Buck) converter, a boost (Boost) converter, a buck-boost (Buck-Boost) converter, or a buck-boost (Boost-Buck) converter.
  • the voltage conversion unit 120 may be isolated or non-isolated.
  • the positive voltage conversion device 121 that performs DC voltage conversion on the photovoltaic array 111 and the negative voltage conversion device 122 that performs DC voltage conversion on the photovoltaic array 112 may be the same or different, and their specific topological structures are determined according to actual circuit conditions. The application does not limit the topology of the positive and negative voltage conversion devices.
  • the positive voltage conversion device 121 and the negative voltage conversion device 122 may be direct current to direct current (DC/DC) converters.
  • the positive inverter 141 and the negative inverter 142 may include a power conversion system (PCS) or a direct current to alternating current (DC/AC) converter.
  • the positive voltage conversion device 121 and the negative voltage conversion device 122 are connected to different photovoltaic arrays, for example, the positive voltage conversion device 121 is connected to the photovoltaic array 111 and the negative voltage conversion device 122 is connected to Photovoltaic array 112 .
  • the working states of the photovoltaic array 111 and the photovoltaic array 112 are inconsistent, for example, the photovoltaic array 111 and the photovoltaic array 112 are faulty, or there is a difference in illumination. Or in the case of shading or the like, the output power of the positive voltage conversion device 121 and the negative voltage conversion device 122 may be inconsistent, so that a neutral current will be generated on the neutral line 130 .
  • the present application provides a control method and a bipolar power supply system for a bipolar power supply system.
  • FIG. 2 is a schematic structural diagram of a bipolar power supply system 200 provided by an embodiment of the present application.
  • the system includes a power supply module 210 , a voltage conversion unit 220 , an inverter unit 240 , a transformer 260 and a controller.
  • the controller may be an independent control unit, or may be a control unit disposed in the bipolar power supply system 200 .
  • the controller may include an independent module, or may include multiple modules arranged in different devices, and the multiple modules can communicate with each other.
  • the controller may be provided in the voltage conversion unit 220 or in the inverter unit 240 .
  • the controller may include a first control unit 2211 and/or a second control unit 2221, and different control units may communicate with each other.
  • the functions of the power supply module 210 and the transformer 260 are the same or similar to those of the power supply module 110 and the transformer 160 in FIG. 1 , and will not be repeated here.
  • the voltage conversion unit 220 may include a positive voltage conversion device 221 and a negative voltage conversion device 222 .
  • the inverter unit 240 includes a positive inverter 241 and a negative inverter 242 .
  • the positive voltage conversion device 221 may include a first control unit 2211 and a positive voltage conversion circuit 2212 .
  • the negative voltage conversion device 222 may include a second control unit 2221 and a negative voltage conversion circuit 2222 . In other words, the first control unit 2211 is provided in the positive voltage conversion device 221 , and the second control unit is provided in the negative voltage conversion device 222 .
  • the negative output terminal of the positive voltage conversion device 221 and the positive output terminal of the negative voltage conversion device 222 are connected to the first terminal of the neutral line 230, and the negative input terminal of the positive inverter 241 and the positive input terminal of the negative inverter 242 are connected to the first terminal of the neutral line 230.
  • the second ends of the center line 230 are connected.
  • the positive output terminal of the positive voltage conversion device 221 is connected to the positive input terminal of the positive inverter 241
  • the negative output terminal of the negative voltage conversion device 222 is connected to the negative input terminal of the negative inverter 242 .
  • the first control unit 2211 is configured to control the positive voltage conversion circuit 2212 to receive the electric energy provided by the power supply module in the power supply system, and to supply power to the inverter unit 240 after DC voltage conversion.
  • the second control unit 2221 is configured to control the negative voltage conversion circuit 2222 to receive the electric energy provided by the power supply module in the power supply system, and to supply power to the inverter unit 240 after DC voltage conversion.
  • the inverter unit 240 receives the electric energy transmitted by the voltage conversion unit 220 and supplies power to the grid after converting the DC to AC voltage.
  • the controller is used to detect whether the neutral line current conforms to the preset current range.
  • the positive voltage conversion device 221 and the negative voltage conversion device 222 are controlled to change the output voltage under the condition that the output power remains unchanged, so that the neutral current conforms to the preset current range.
  • the above preset current range may be determined according to practice, for example, according to the line shape of the neutral line 230, or may also be determined according to other methods, which is not limited in this application.
  • the current in the above preset current range may include only one current direction, or may include two current directions.
  • the current direction in the preset current range may be from the voltage conversion unit 220 to the inverter unit 240, may be from the inverter unit 240 to the voltage conversion unit 220, or may include the above two
  • Each current direction is sufficient as long as the absolute value of the above-mentioned preset current range is smaller than the preset threshold value.
  • the preset current range is [-I t1 , I t2 ], where -I t1 represents a first preset current threshold, and I t2 represents a second preset current threshold.
  • the direction of the neutral current is from the inverter unit 240 to the voltage conversion unit 220
  • the positive direction of the current range is from the inverter unit 240 to the voltage conversion unit 220
  • the current range of The negative direction is from the voltage conversion unit 220 to the inverter unit 240 .
  • I neu represents the neutral line current
  • I pos represents the current output by the positive voltage conversion device 221
  • I neg represents the current output by the negative voltage conversion device 222 .
  • P pos represents the output power of the positive voltage conversion device 221
  • U pos represents the output voltage of the positive voltage conversion device 221 .
  • P neg represents the output power of the negative voltage conversion device 221
  • U neg represents the output voltage of the negative voltage conversion device 221 .
  • I neu When I neu is greater than I t2 , it is necessary to increase the output voltage U pos of the positive voltage conversion device or decrease the output voltage U neg of the negative voltage conversion device, so that I neu is smaller than I t2 . That is, the voltage difference between the output voltages of the positive voltage conversion device 221 and the negative voltage conversion device is increased.
  • the controller controls the positive voltage conversion device 221 and the negative voltage conversion device 222 to increase the output voltage of the positive voltage conversion device 221 and the negative electrode when the output power remains unchanged when the neutral current is greater than I t2
  • the voltage difference between the output voltages of the voltage conversion device 222 such that the neutral current is in the interval [-I t1 , I t2 ].
  • the controller controls the positive voltage conversion device 221 and the negative voltage conversion device 222 to reduce the output voltage and negative voltage of the positive voltage conversion device 221 under the condition that the output power remains unchanged when the neutral current is less than -I t1
  • the voltage difference between the output voltages of the conversion device 222 is such that the neutral current lies in the interval [-I t1 , I t2 ].
  • the controller includes a first control unit 2211 and a second control unit 2221. Both the first control unit 2211 and the second control unit 2221 can be used to detect whether the neutral line current conforms to a preset current range. Alternatively, one of the first control unit 2211 and the second control unit 2221 may detect the neutral line current, and notify the other control unit whether the neutral line current conforms to a preset current range.
  • the controller may be used to determine that the neutral current is less than -I t1 ; and to control the positive voltage conversion device and the negative voltage conversion device to reduce the positive voltage conversion device under the condition that the output power remains unchanged.
  • the voltage difference between the output voltage of the positive voltage conversion device 221 and the output voltage of the negative voltage conversion device 222 is increased. It means that the boosting amplitude of the output voltage of the positive voltage converting device 221 is greater than the boosting amplitude of the output voltage of the negative voltage converting device 222 , thereby increasing the voltage difference therebetween.
  • the controller includes a first control unit 2211 and a second control unit 2221
  • the first control unit 2211 controls the positive voltage conversion circuit 2212 to increase when detecting that the neutral current is greater than I t2 The output voltage.
  • the second control unit 2221 detects that the neutral line current is greater than I t2 , it controls the negative voltage conversion circuit 2222 to reduce the output voltage so that the neutral line current is in the interval [-I t1 , I t2 ].
  • the first control unit 2211 controls the positive voltage conversion circuit 2212 to increase the output voltage when the neutral current is greater than I t2 .
  • the second control unit 2221 controls the output voltage of the negative voltage conversion circuit 2222 to remain unchanged, so that the neutral current is in the interval [-I t1 , I t2 ].
  • the first control unit 2211 controls the output voltage of the positive voltage conversion circuit 2212 to remain unchanged when the neutral current is greater than I t2 .
  • the second control unit 2221 controls the negative voltage conversion circuit 2222 to reduce the output voltage so that the neutral current is in the interval [-I t1 , I t2 ].
  • the above are three possible implementation ways to increase the voltage difference between the output voltage of the positive voltage conversion device 221 and the output voltage of the negative voltage conversion device 222, and there are other ways to make the output voltage of the positive voltage conversion device 221 and the output voltage of the negative voltage conversion device 222 possible.
  • the voltage difference between the output voltages of the negative voltage conversion device 222 increases, which is not limited in this application.
  • the voltage before the positive voltage conversion circuit 2212 increases the output voltage is 900V
  • the voltage before the negative voltage conversion circuit 2222 increases the output voltage is also 900V.
  • the first control unit 2211 detects that the neutral current is greater than I t2 , it controls the positive voltage conversion circuit 2212 to increase the output voltage, and the adjusted output voltage of the positive voltage conversion circuit 2212 is 1000V.
  • the second control unit 2221 When the second control unit 2221 detects that the neutral current is greater than I t2 , it controls the negative voltage conversion circuit 2222 to increase the output voltage, the adjusted negative voltage conversion circuit 2222 is 950V, while the positive voltage conversion circuit 2212 and the negative voltage conversion circuit 2222 The voltage difference between the output voltages is increased from 0V to 50V, and the voltage difference between the output voltage of the positive voltage conversion device 221 and the output voltage of the negative voltage conversion device 222 is also increased.
  • the controller needs to control the positive voltage conversion device 221 or the negative voltage conversion device 221 by controlling the negative voltage conversion device.
  • Device 222 reduces power to adjust the range of neutral current.
  • the controller is further configured to: determine whether the output voltage of the positive voltage conversion device 221 is greater than a first preset voltage threshold, where the first predetermined voltage threshold is a difference between the output voltage of the positive voltage conversion device 221 Adjustable upper limit.
  • the first preset voltage threshold may be the rated voltage of the positive voltage conversion device 221 .
  • the controller is specifically configured to: control the positive voltage conversion device 221 and When the output power of the negative voltage conversion device 222 remains unchanged, the voltage difference between the output voltage of the positive voltage conversion device 221 and the output voltage of the negative voltage conversion device 222 is increased, so that the neutral line The current is in the interval [-I t1 , I t2 ].
  • the controller is further configured to control the positive voltage conversion device 221 Reduce output power.
  • the controller when the controller detects that the neutral current is less than -I t1 , the controller can control the positive voltage conversion device 221 and the negative voltage conversion device 222 to reduce the output of the positive voltage conversion device 221 under the condition that the output power remains unchanged.
  • the voltage difference between the voltage and the output voltage of the negative voltage conversion device 222 such that the neutral current lies in the interval [-I t1 , It 2 ].
  • the first control unit 2211 controls the anode voltage conversion circuit 2212 to reduce the output voltage when it is detected that the neutral line current is less than -I t1 .
  • the second control unit 2221 detects that the neutral line current is less than -I t1 , it controls the negative voltage conversion circuit 2222 to increase the output voltage so that the neutral line current is in the interval [-I t1 , I t2 ].
  • the first control unit 2211 controls the anode voltage conversion circuit 2212 to reduce the output voltage when it is detected that the neutral line current is less than -I t1 .
  • the second control unit 2221 detects that the neutral current is less than -I t1 , it controls the output voltage of the negative voltage conversion circuit 2222 to remain unchanged, so that the neutral current is in the interval [-I t1 , I t2 ].
  • the first control unit 2211 controls the output voltage of the positive voltage conversion circuit 2212 to remain unchanged when it detects that the neutral line current is less than -I t1 .
  • the second control unit 2221 detects that the neutral line current is less than -I t1 , it controls the negative voltage conversion circuit 2222 to increase the output voltage so that the neutral line current is in the interval [-I t1 , I t2 ].
  • the above are three possible implementations to reduce the voltage difference between the output voltage of the positive voltage conversion device 221 and the output voltage of the negative voltage conversion device 222, and there are other ways to make the output voltage of the positive voltage conversion device 221 and the output voltage of the negative voltage conversion device 222 possible.
  • the voltage difference between the output voltages of the negative voltage conversion device 222 is reduced, which is not limited in this application.
  • the controller needs to control the positive voltage conversion device 221 or the negative voltage conversion device 221 by controlling the negative voltage conversion device.
  • Device 222 reduces power to adjust the range of neutral current.
  • the controller is further configured to determine whether the output voltage of the negative voltage conversion device 222 is greater than a second preset voltage threshold, where the second predetermined voltage threshold is an adjustable upper limit of the output voltage of the negative voltage conversion device 222 limit.
  • the second preset voltage threshold may be the rated voltage of the negative voltage conversion device 222 .
  • the controller is specifically configured to control the positive voltage conversion device and all the When the output power of the negative voltage conversion device 222 remains unchanged, the voltage difference between the output voltage of the positive voltage conversion device and the output voltage of the negative voltage conversion device 222 is reduced, so that the neutral current is located at [-I t1 , I t2 ] in the interval;
  • the controller is further configured to control the negative voltage conversion device 222 reduces output power.
  • the second preset voltage threshold may be the same as or different from the first preset voltage threshold, which is not limited in this application.
  • the controller may control the output voltage of the positive voltage conversion device 221 and the negative voltage conversion device 222 to be changed to reduce the neutral current when the output power remains unchanged.
  • This method of adjusting the neutral current keeps the output power of the voltage conversion device unchanged, thereby ensuring that the power supply system can provide the maximum output power and provide greater power generation. While adjusting the neutral current, the power generation efficiency of the power supply system is improved, avoiding additional economic losses.
  • FIG. 3 is a schematic structural diagram of another bipolar power supply system 300 provided by an embodiment of the present application.
  • the system includes a power supply module 310 , a voltage conversion unit 320 , an inverter unit 340 , a transformer 360 and a controller.
  • the function of the power supply module 310 is the same as that of the power supply module 110 in FIG. 1
  • the function of the voltage conversion unit 320 is the same as that of the voltage conversion unit 120 in FIG. 1
  • the function of the transformer 360 is the same as that of the transformer 160 in FIG.
  • the inverter unit 340 includes a positive inverter 341 and a negative inverter 342 .
  • the controller may include at least one of the following control units: a first control unit 3211 , a second control unit 3221 , a third control unit 3411 and a fourth control unit 3421 .
  • the positive pole inverter 341 may include a third control unit 3411 and a positive pole inverter circuit 3412.
  • the negative inverter 342 may include a fourth control unit 3421 and a negative inverter circuit 3422 .
  • the third control unit 3411 is provided in the positive inverter 341
  • the fourth control unit 3421 is provided in the negative inverter circuit 3422 .
  • the negative output terminal of the positive voltage conversion device 221 and the positive output terminal of the negative voltage conversion device 222 are connected to the first terminal of the neutral line 230, and the negative input terminal of the positive inverter 241 and the positive input terminal of the negative inverter 242 are connected to the first terminal of the neutral line 230.
  • the second ends of the center line 230 are connected.
  • the first control unit 3211 is configured to control the positive voltage conversion circuit 3212 to receive the electric energy provided by the power supply module in the power supply system, and to supply power to the inverter unit 340 after DC voltage conversion.
  • the second control unit 3221 is configured to control the negative voltage conversion circuit 3222 to receive the electric energy provided by the power supply module in the power supply system, and to supply power to the inverter unit 340 after DC voltage conversion.
  • the inverter unit 340 receives the electric energy transmitted by the voltage conversion unit 320, and supplies power to the grid after converting the DC to AC voltage.
  • the controller is used to detect whether the neutral current is within the preset current range.
  • the positive voltage conversion device 321 and the negative voltage conversion device 322 are controlled to change the output voltage while the output power is unchanged, so that the neutral current conforms to the preset current range.
  • the preset current range is [-I t1 , I t2 ].
  • the content of the preset current range reference may be made to the foregoing description, which will not be repeated here.
  • the controller may include a first control unit 3211 , a second control unit 3221 , a third control unit 3411 and a fourth control unit 3421 .
  • the third control unit 3411 and the fourth control unit 3421 can be used to detect whether the neutral line current conforms to a preset current range, and can also send the detection results to the first control unit 3211 and the second control unit 3221 .
  • the third control unit 3411 or the fourth control unit 3421 when the third control unit 3411 or the fourth control unit 3421 detects that the neutral current does not conform to the preset current range, the third control unit 3411 or the fourth control unit 3421 will change the output of the positive voltage conversion device 321
  • the voltage control signal is sent to the first control unit 3211 and the second control unit 3221, so that the first control unit 3211 and the second control unit 3221 can control the positive voltage conversion device 321 and the negative voltage conversion device 322 when the output power remains unchanged
  • the positive voltage conversion device 321 is controlled to change the output voltage, so that the neutral line current conforms to the preset current range.
  • the third control unit 3411 detects that the current of the neutral line 330 is greater than I t2 , the third control unit 3411 sends a control signal for changing the output voltage of the positive voltage conversion device 321 to the first control unit 3211, and the first control The unit 3211 controls the positive voltage conversion device 321 to change the output voltage when the output power remains unchanged.
  • the fourth control unit 3421 detects that the current of the neutral line 330 is greater than I t2 , the fourth control unit 3421 sends a control signal for changing the output voltage of the negative voltage conversion device 322 to the second control unit 3221, and the second control unit 3221 controls When the output power of the negative voltage conversion device 322 is unchanged, the output voltage is changed to increase the voltage difference between the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322, so that the neutral current is located at [- I t1 , I t2 ] interval.
  • the voltage difference between the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322 is increased. It means that the boosting amplitude of the output voltage of the positive voltage converting device 321 is greater than the boosting amplitude of the output voltage of the negative voltage converting device 322, thereby increasing the voltage difference between the output voltage of the positive voltage converting device 321 and the output voltage of the negative voltage converting device 322 .
  • the third control unit 3411 when the third control unit 3411 detects that the neutral line current is greater than I t2 , the third control unit 3411 sends a control signal for increasing the output voltage of the positive voltage conversion circuit 3212 to the first control unit 3211, the first control unit 3211 controls the positive voltage conversion circuit 3212 to increase the output voltage under the condition that the output power remains unchanged.
  • the fourth control unit 3421 detects that the neutral current is greater than I t2 , the fourth control unit 3421 sends a control signal for reducing the output voltage of the negative voltage conversion circuit 3222 to the second control unit 3221, and the second control unit 3221 controls the negative
  • the voltage conversion circuit 3222 reduces the output voltage, thereby increasing the voltage difference between the output voltage of the positive voltage conversion circuit 3212 and the output voltage of the negative voltage conversion circuit 3222, so that the neutral current is located at [ -I t1 , I t2 ] interval.
  • the third control unit 3411 when the third control unit 3411 detects that the neutral current is greater than I t2 , the third control unit 3411 sends a control signal for increasing the output voltage of the positive voltage conversion circuit 3212 to the first control unit 3411 Unit 3211, the first control unit 3211 controls the positive voltage conversion circuit 3212 to increase the output voltage under the condition that the output power remains unchanged.
  • the fourth control unit 3421 detects that the neutral current is greater than I t2 , the fourth control unit 3421 sends a control signal for controlling the output voltage of the negative voltage conversion circuit 3222 to remain unchanged to the second control unit 3221, and the second control unit 3221 controls The output voltage of the negative voltage conversion circuit 3222 remains unchanged, thereby increasing the voltage difference between the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322, so that the neutral current is in the interval [-I t1 , It 2 ] .
  • the third control unit 3411 when the third control unit 3411 detects that the neutral current is greater than I t2 , the third control unit 3411 sends a control signal for controlling the output voltage of the positive voltage conversion circuit 3212 to remain unchanged to the first The control unit 3211, the first control unit 3211 controls the output voltage of the positive voltage conversion circuit 3212 to remain unchanged.
  • the fourth control unit 3421 detects that the neutral line current is greater than I t2 , the fourth control unit 3421 sends a control signal for reducing the output voltage of the negative voltage conversion circuit 3222 to the second control unit 3221, and the second control unit 3221 controls When the output power remains unchanged, the negative voltage conversion circuit 3222 reduces the output voltage, thereby increasing the voltage difference between the output voltage of the positive voltage conversion circuit 3212 and the output voltage of the negative voltage conversion circuit 3222, so that the neutral current is at [-I t1 , I t2 ] interval.
  • the above are three possible implementation ways to increase the voltage difference between the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322, and there are other ways to make the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322 possible.
  • the voltage difference between the output voltages of the negative voltage conversion device 322 increases, which is not limited in this application.
  • the controller needs to control the positive voltage conversion device 321 or the negative voltage conversion device 321 by controlling the negative voltage conversion device.
  • Device 322 reduces power to adjust the range of neutral current.
  • the third control unit 3411 detects that the neutral current is less than -I t1 , the third control unit 3411 sends a control signal for changing the output voltage of the positive voltage conversion device 321 to the first control unit 3211, the first The control unit 3211 controls the positive voltage conversion device 321 to change the output voltage.
  • the fourth control unit 3421 detects that the neutral current is less than -I t1 , the fourth control unit 3421 sends a control signal for changing the output voltage of the negative voltage conversion device 322 to the second control unit 3221, and the second control unit 3221 controls the negative
  • the voltage conversion device 322 changes the output voltage to reduce the voltage difference between the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322 so that the neutral current is in the interval [-I t1 , It 2 ].
  • the third control unit 3411 when the third control unit 3411 detects that the neutral line current is less than -I t1 , the third control unit 3411 sends a control signal for reducing the output voltage of the positive voltage conversion circuit 3212 to the first control unit 3411 Unit 3211, the first control unit 3211 controls the positive voltage conversion circuit 3212 to reduce the output voltage under the condition that the output power remains unchanged.
  • the fourth control unit 3421 detects that the neutral line current is less than -I t1 , the fourth control unit 3421 sends a control signal for increasing the output voltage of the negative voltage conversion circuit 3222 to the second control unit 3221, and the second control unit 3221 controls The negative voltage conversion circuit 3222 increases the output voltage, thereby reducing the voltage difference between the output voltage of the positive voltage conversion circuit 3212 and the output voltage of the negative voltage conversion circuit 3222, so that the neutral current is in the interval [-I t1 , I t2 ] .
  • the third control unit 3411 when the third control unit 3411 detects that the neutral line current is less than -I t1 , the third control unit 3411 sends a control signal for reducing the output voltage of the positive voltage conversion circuit 3212 to the first control unit 3411 Unit 3211, the first control unit 3211 controls the positive voltage conversion circuit 3212 to reduce the output voltage under the condition that the output power remains unchanged.
  • the fourth control unit 3421 detects that the neutral line current is less than -I t1 , the fourth control unit 3421 sends a control signal for controlling the output voltage of the negative voltage conversion circuit 3222 to remain unchanged to the second control unit 3221, and the second control unit 3221
  • the output voltage of the negative voltage conversion circuit 3222 is controlled to remain unchanged, thereby reducing the voltage difference between the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322, so that the neutral current is located at [-I t1 , I t2 ] interval.
  • the third control unit 3411 when the third control unit 3411 detects that the neutral current is less than -I t1 , the third control unit 3411 sends a control signal for controlling the output voltage of the positive voltage conversion circuit 3212 to remain unchanged to the third control unit 3411.
  • a control unit 3211, the first control unit 3211 controls the output voltage of the positive voltage conversion circuit 3212 to remain unchanged.
  • the fourth control unit 3421 detects that the neutral current is less than -I t1 , the fourth control unit 3421 sends a control signal for controlling the increase of the output voltage of the negative voltage conversion circuit 3222 to the second control unit 3221, and the second control unit 3221
  • the negative voltage conversion circuit 3222 is controlled to increase the output voltage, thereby reducing the voltage difference between the output voltage of the positive voltage conversion circuit 3212 and the output voltage of the negative voltage conversion circuit 3222, so that the neutral current is at [-I t1 , I t2 ] interval.
  • the above are three possible implementation ways to reduce the voltage difference between the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322, and there are other ways to make the output voltage of the positive voltage conversion device 321 and the output voltage of the negative voltage conversion device 322 possible.
  • the voltage difference between the output voltages of the negative voltage conversion device 322 is reduced, which is not limited in this application.
  • the controller may control the output voltage of the positive voltage conversion device 321 and the negative voltage conversion device 322 to change to reduce the neutral current when the output power remains unchanged.
  • This method of adjusting the neutral current keeps the output power of the voltage conversion device unchanged, thereby ensuring that the power supply system can provide the maximum output power and provide greater power generation. While adjusting the neutral current, the power generation efficiency of the power supply system is improved, avoiding additional economic losses.
  • FIG. 4 is a schematic structural diagram of another bipolar power supply system 400 provided by an embodiment of the present application.
  • the system includes a power supply module 410 , a voltage conversion unit 420 , a controller 440 , an inverter unit 450 and a transformer 460 .
  • the functions of the power supply module 410 and the transformer 460 are the same as those of the power supply module 110 and the transformer 160 in FIG. 1 , and will not be repeated here.
  • the voltage conversion unit 420 includes a positive voltage conversion device 421 and a negative voltage conversion device 422 .
  • the inverter unit 450 includes a positive inverter 451 and a negative inverter 452 .
  • the inverter unit 450 includes a positive inverter 451 and a negative inverter 452 .
  • the negative output terminal of the positive voltage conversion device 421 and the positive output terminal of the negative voltage conversion device 422 are connected to the first terminal of the neutral line 430, and the negative input terminal of the positive inverter 451 and the positive input terminal of the negative inverter 452 are connected to the first terminal of the neutral line 430.
  • the second ends of the center line 230 are connected.
  • the voltage conversion unit 420 is configured to receive the electrical energy provided by the power generation module 410 , and after performing DC conversion, output the DC power to the inverter unit 450 .
  • the inverter unit 450 is used to convert the direct current into alternating current, and output the alternating current to the grid.
  • the controller 440 can be an independent module and is connected to the neutral line and the voltage conversion unit 420, and the controller 440 can be used to perform the methods or steps performed by the aforementioned controllers.
  • the controller 440 is configured to detect whether the neutral line current conforms to the preset current range, and when the neutral line current does not conform to the preset current range, controls the positive voltage conversion device 421 and the negative voltage conversion device 422 to keep the output power unchanged. In the case of , change the output voltage so that the neutral line current conforms to the preset current range.
  • the preset current range is [-I t1 , I t2 ]. For the content of the preset current range, reference may be made to the foregoing description, which will not be repeated here.
  • the controller 440 is specifically configured to control the positive voltage conversion device 421 and the negative voltage conversion device 422 to increase the output power of the positive voltage conversion device 421 under the condition that the output power of the positive voltage conversion device 421 remains unchanged when it is detected that the neutral current is greater than I t2
  • the controller 440 controls the positive voltage conversion device 421 and the negative voltage conversion device 422 to increase the positive voltage conversion device under the condition that the output power remains unchanged when the neutral line current is detected to be greater than I t2
  • the output voltage of 421 is reduced, and the output voltage of the negative voltage conversion device 422 is reduced.
  • the controller 440 controls the positive voltage conversion device 421 and the negative voltage conversion device 422 to increase the positive voltage conversion when the output power remains unchanged when the neutral line current is detected to be greater than I t2
  • the device 421 outputs a voltage and maintains the output voltage of the negative voltage conversion device 422 unchanged.
  • the controller 440 when the controller 440 detects that the neutral current is greater than I t2 , the controller 440 controls the positive voltage conversion device 421 and the negative voltage conversion device 422 to maintain the positive voltage conversion device under the condition that the output power remains unchanged. The output voltage of 421 remains unchanged, and the output voltage of the negative voltage conversion device 422 is reduced.
  • the controller needs to control the positive voltage conversion device 421 or the negative voltage conversion device 421 by controlling the negative voltage conversion device.
  • Device 422 reduces power to adjust the range of neutral current.
  • the controller 440 is also specifically configured to control the positive voltage conversion device 421 and the negative voltage conversion device 422 to reduce the output of the positive voltage conversion device 421 when the output power of the positive voltage conversion device 421 remains unchanged when the monitored neutral current is less than -I t1 .
  • the voltage difference between the voltage and the output voltage of the negative voltage conversion device 422 such that the neutral current is in the interval [-I t1 , It 2 ].
  • the controller 440 controls the positive voltage conversion device 421 and the negative voltage conversion device 422 to reduce the positive voltage conversion when the output power remains unchanged when the neutral line current is detected to be less than -I t1
  • the output voltage of the device 421 increases the output voltage of the negative voltage conversion device 422 .
  • the controller 440 when the controller 440 detects that the neutral line current is less than -I t1 , the controller 440 controls the positive voltage conversion device 421 and the negative voltage conversion device 422 to reduce the positive voltage when the output power remains unchanged.
  • the output voltage of the conversion device 421 keeps the output voltage of the negative voltage conversion device 422 unchanged.
  • the controller 440 controls the positive voltage conversion device 421 and the negative voltage conversion device 422 to maintain the positive voltage conversion under the condition that the output power remains unchanged when the neutral line current is detected to be less than -I t1
  • the output voltage of the device 421 remains unchanged, and the output voltage of the negative voltage conversion device 422 is increased.
  • the controller 440 can control the output voltage of the positive voltage conversion device 421 and the negative voltage conversion device 422 to change to reduce the neutral current when the output power is unchanged.
  • This method of adjusting the neutral current keeps the output power of the voltage conversion device unchanged, thereby ensuring that the power supply system can provide the maximum output power and provide greater power generation. While adjusting the neutral current, the power generation efficiency of the power supply system is improved, avoiding additional economic losses.
  • FIGS. 2 to 4 are only exemplary descriptions of the embodiments of the present application, and in practice, the bipolar power supply system of the present application may be appropriately modified, for example, may include more or Fewer functional modules, devices, and units all fall within the protection scope of the embodiments of the present application.
  • bipolar power supply system only one bipolar power supply system is used to supply power to the grid in FIGS. 2 to 4 .
  • the solutions of the embodiments of the present application can also be applied to a scenario in which multiple bipolar power supply systems supply power to the power grid.
  • the above-mentioned multiple bipolar power supply systems can be connected in parallel on the grid connection side.
  • the neutral current in multiple bipolar power supply systems is adjusted, when adjusting the output voltage of the positive voltage conversion device and the negative voltage device in each bipolar power supply system, it is also necessary to ensure that multiple bipolar power supply systems are used.
  • the sum of the output voltages of the positive voltage conversion device and the negative voltage conversion device of each bipolar power supply system in the system is the same (or as much as possible), so that the current in the circulating path between the multiple bipolar voltage conversion systems can be reduced , to reduce power losses in multiple bipolar powered systems.
  • FIG. 5 is a schematic control logic diagram of a dual-stage power supply system according to an embodiment of the present application.
  • the collection of the current on the neutral line can be realized by the first control unit provided in the positive voltage conversion device, or by the second control unit provided in the negative voltage conversion device, or by the positive electrode
  • the third control unit in the inverter may also be implemented by the fourth control unit disposed in the negative inverter, or implemented by the controller connected to the neutral line.
  • the neutral current can be collected by the first control unit arranged in the positive voltage conversion device and the second control unit arranged in the negative voltage conversion device, and the magnitude relationship between the collected neutral current and I t2 can be determined,
  • the neutral current can also be collected by the third control unit arranged in the positive inverter and the fourth control unit arranged in the negative inverter, and the relationship between the collected neutral current and I t2 can be judged, or the The controller on the neutral line collects the neutral current, and judges the relationship between the collected neutral current and I t2 .
  • S540 Determine whether the output voltage of the positive voltage conversion device is greater than a first preset voltage threshold.
  • the description about the preset first preset voltage may refer to the foregoing description, which will not be repeated here.
  • the controller when adjusting the output voltage of the positive voltage conversion device, the controller simultaneously determines whether the output voltage of the positive voltage conversion device is greater than the first preset voltage threshold.
  • the controller determines that the output voltage of the positive voltage conversion device is greater than or equal to the first preset voltage threshold, and controls the positive voltage conversion device to reduce the output power.
  • the controller determines that the output voltage of the positive voltage conversion device is less than the first preset voltage threshold, and controls the output power of the positive voltage conversion device to remain unchanged.
  • the controller controls the output power of the positive voltage conversion device and the negative voltage conversion device to remain unchanged
  • the controller controls the output voltage of the positive voltage conversion device and the negative voltage conversion device to change the neutral current.
  • this method of adjusting the neutral line current maintains the output power of the voltage conversion device unchanged, thereby ensuring that the power supply system can provide the maximum output power and provide greater power generation. Additional economic losses are avoided.
  • FIG. 6 is a schematic control logic diagram of a dual-stage power supply system according to another embodiment of the present application.
  • Step 610 Collect the neutral line current. Step 610 is the same as step 510 and will not be repeated here.
  • S620 Determine that the collected neutral line current is less than -I t1 .
  • the neutral current can be collected by the first control unit provided in the positive voltage conversion device and the second control unit provided in the negative voltage conversion device, and it can be determined that the collected neutral current is the same as the value of -I t1
  • the magnitude relationship; the neutral current can also be collected by the third control unit arranged in the positive inverter and the fourth control unit arranged in the negative inverter, and the magnitude relationship between the collected neutral current and -I t1 can be judged;
  • the controller connected to the neutral line collects the neutral line current, and judges the relationship between the collected neutral line current and -I t1 .
  • S640 Determine whether the output voltage of the negative voltage conversion device is greater than a second preset voltage threshold.
  • the description about the preset second preset voltage may refer to the foregoing description, which will not be repeated here.
  • the controller when adjusting the output voltage of the negative voltage conversion device, the controller simultaneously determines whether the output voltage of the negative voltage conversion device is greater than the second preset voltage threshold.
  • S650 The controller determines that the output voltage of the negative voltage conversion device is greater than or equal to the second preset voltage threshold, and controls the negative voltage conversion device to reduce the output power.
  • S660 The controller determines that the output voltage of the negative voltage conversion device is less than the second preset voltage threshold, and controls the output power of the negative voltage conversion device to remain unchanged.
  • the controller controls the output power of the positive voltage conversion device and the negative voltage conversion device to remain unchanged, the controller controls the output voltage of the positive voltage conversion device and the negative voltage conversion device to change the neutral current. , so that the neutral current is within the range of the cable specification, which ensures the stability of the system.
  • FIG. 7 is a schematic structural diagram of a control device 700 according to an embodiment of the present application.
  • the control device 700 includes a processor 710 and a communication interface 720 .
  • the control device 700 may further include a memory 730 .
  • memory 730 may be included in processor 710 .
  • the processor 710, the communication interface 720 and the memory 730 communicate with each other through an internal connection path, the memory 730 is used for storing instructions, and the processor 710 is used for executing the instructions stored in the memory 730 to implement the control method provided by the embodiments of the present application.
  • control device 700 can be used to perform the functions of the controllers in FIGS. 2 to 4 , or to perform the functions of the respective control units in FIGS. 2 to 4 , for example, the first The control units 2211 and 3211 , the second control units 2221 and 3221 , or the third control unit 3411 and the fourth control unit 3421 in FIG. 3 , or the controller 440 in FIG. 4 .
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种双极供电系统和控制方法,能够提高控制中线电流的管理效率。该双极供电系统包括:电压转换单元、逆变单元和控制器,电压转换单元包括正极电压转换装置和负极电压转换装置,逆变单元包括正极逆变器和负极逆变器,其中,正极电压转换装置的负输出端和负极电压转换装置的正输出端与中线的第一端相连,正极逆变器的负输入端和负极逆变器的正输入端与中线的第二端相连;控制器用于:检测中线电流是否符合预设的电流范围;在中线电流不符合预设的电流范围的情况下,控制正极电压转换装置和负极电压转换装置在输出功率不变的情况下,变更输出电压,以使得中线电流符合预设的电流范围。

Description

一种双极供电系统和控制方法 技术领域
本申请涉及电路技术领域,并且更具体地,涉及一种双极供电系统和控制方法。
背景技术
在直流供电领域,进行远距离供电的系统架构包括单极供电系统和双极供电系统。其中,采用双极供电系统可以等效提升直流电压等级,降低供电电流,从而减小线路损耗。但是,双极供电线系统存在特有的中线电流问题,若中线电流得不到有效控制,可能会导致中线电流超过线缆规格,影响系统可靠性。现有的控制中线电流的方案中,通常需要通过调节双极供电系统的正、负极电压转换装置的输出功率,来控制中线电流。但在一些新能源供电场景中,例如风电系统、光伏系统,正、负极电压转换装置的最大输出功率存在差异,限制正、负极电压转换装置的输出功率将导致供电系统无法提供最大输出功率,影响发电量,并带来额外的经济损失。因此,业界亟需提供一种中线电流的控制方法,来提高控制中线电流的管理效率。
发明内容
第一方面,提供了一种双极供电系统,包括:电压转换单元、逆变单元和控制器,所述电压转换单元用于接收发电模块提供的电能,并在进行直流转换之后,将直流电输出至所述逆变单元;所述逆变单元用于将所述直流电转换为交流电,并将所述交流电输出至电网;所述电压转换单元包括正极电压转换装置和负极电压转换装置,所述逆变单元包括正极逆变器和负极逆变器,其中,所述正极电压转换装置的负输出端和所述负极电压转换装置的正输出端与中线的第一端相连,所述正极逆变器的负输入端和所述负极逆变器的正输入端与所述中线的第二端相连;所述控制器用于:检测中线电流是否符合预设的电流范围,所述中线电流为通过所述中线的电流;在所述中线电流不符合所述预设的电流范围的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,变更输出电压,以使得所述中线电流符合所述预设的电流范围。
控制器可以控制正极电压转换装置和负极电压转换装置输出功率不变的情况下,变更输出电压,以减少中线电流。这种调节中线电流的方式维持电压转换装置的输出功率不变,从而保证供电系统能够提供最大输出功率和提供更大的发电量,在调节中线电流的同时,提高了供电系统的发电效率,避免了额外的经济损失。
结合第一方面,在一种可能的实现方式中,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值,所述中线电流的方向为从所述逆变单元至所述电压转换单元,所述电流范围的正方向为从所述逆变单元至所述电压转换单元,所述电流范围的负方向为从所述电压转换单元至所述逆变单元,所述控制器具体用于:确定所述中线电流大于I t2;控制所述正极电压转换装置和所述负极电压转换装置在 输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
控制器在中线电流大于I t2的情况下,控制正极电压转换装置和负极电压转换装置在输出功率不变的情况下,增大正极电压转换装置的输出电压和负极电压转换装置的输出电压之间的电压差,以减少中线电流。这种调节中线电流的方式维持电压转换装置的输出功率不变,从而保证供电系统能够提供最大输出功率和提供更大的发电量,在调节中线电流的同时,提高了供电系统的发电效率,避免了额外的经济损失。
结合第一方面,在一种可能的实现方式中,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值,所述中线电流的方向为从所述逆变单元至所述电压转换单元,所述电流范围的正方向为从所述逆变单元至所述电压转换单元,所述电流范围的负方向为从所述电压转换单元至所述逆变单元,所述控制器具体用于:确定所述中线电流小于-I t1;控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
控制器在中线电流小于-I t1的情况下,控制正极电压转换装置和负极电压转换装置在输出功率不变的情况下,减小正极电压转换装置的输出电压和负极电压转换装置的输出电压之间的电压差,以减少中线电流。这种调节中线电流的方式维持电压转换装置的输出功率不变,从而保证供电系统能够提供最大输出功率和提供更大的发电量,在调节中线电流的同时,提高了供电系统的发电效率,避免了额外的经济损失。
结合第一方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,所述第一控制单元具体用于在所述中线电流大于I t2的情况下,控制所述正极电压转换装置增大输出电压;所述第二控制单元具体用于在所述中线电流大于I t2的情况下,控制所述负极电压转换装置减小输出电压。
控制器可以包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,上述两个控制单元可以分别控制正极电压转换装置和负极电压转换装置的输出电压,以达到调整正极电压转换装置的输出电压和负极电压转换装置的输出电压之间的电压差的目的。这种调节中线电流的方式维持电压转换装置的输出功率不变,从而保证供电系统能够提供最大输出功率和提供更大的发电量,在调节中线电流的同时,提高了供电系统的发电效率,避免了额外的经济损失。
结合第一方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,所述第一控制单元具体用于在所述中线电流大于I t2情况下,控制所述正极电压转换装置增大输出电压;所述第二控制单元具体用于在所述中线电流大于I t2的情况下,控制所述负极电压转换装置的输出电压不变。
结合第一方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,所述第一控制单元具体用于在所述中线电流大于I t2的情况下,控制所述正极电压转换装置的输出电压不变;所述第二控制单元具体用于在所述中线电流大于I t2的情况下,控制所述负 极电压转换装置减小输出电压。
结合第一方面,在一种可能的实现方式中,所述控制器还用于:确定所述正极电压转换装置的输出电压是否大于第一预设电压阈值,所述第一预设电压阈值为所述正极电压转换装置的输出电压的可调节上限值;所述控制器具体用于:在所述中线电流大于I t2、且所述正极电压转换装置的输出电压小于所述第一预设电压阈值的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;所述控制器还用于:在所述中线电流大于I t2、且所述正极电压转换装置的输出电压大于或等于所述第一预设电压阈值的情况下,控制所述正极电压转换装置减小输出功率。
在调整中线电流的过程中,若正极电压转换装置的输出电压已达到其可调节的上限值,例如第一预设电压阈值,则控制器需要通过控制正极电压转换装置减小功率,来调节中线电流的范围,以提高控制中线电流的管理效率。
结合第一方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,所述第一控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述正极电压转换装置减小输出电压;所述第二控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述负极电压转换装置增大输出电压。
结合第一方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,所述第一控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述正极电压转换装置减小输出电压;所述第二控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述负极电压转换装置的输出电压不变。
结合第一方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,所述第一控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述正极电压转换装置的输出电压不变;所述第二控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述负极电压转换装置增大输出电压。
结合第一方面,在一种可能的实现方式中,所述控制器还用于:确定所述负极电压转换装置的输出电压是否大于第二预设电压阈值,所述第二预设电压阈值为所述负极电压转换装置的输出电压的可调节上限值;所述控制器具体用于:在所述中线电流小于-I t1、且所述负极电压转换装置的输出电压小于所述第二预设电压阈值的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;所述控制器还用于:在所述中线电流小于-I t1、且所述负极电压转换装置的输出电压大于或等于所述第二预设电压阈值的情况下,控制所述负极电压转换装置减小输出功率。
在调整中线电流的过程中,若负极电压转换装置的输出电压已达到其可调节的上限值,例如第一预设电压阈值,则控制器需要通过控制负极电压转换装置减小功率,来调节中线 电流的范围,以提高控制中线电流的管理效率。
第二方面,提供了一种用于双极供电系统的控制方法,所述双极供电系统包括:电压转换单元、逆变单元和控制器,所述电压转换单元用于接收发电模块提供的电能,并在进行直流转换之后,将直流电输出至所述逆变单元;所述逆变单元用于将所述直流电转换为交流电,并将所述交流电输出至电网;所述电压转换单元包括正极电压转换装置和负极电压转换装置,所述逆变单元包括正极逆变器和负极逆变器,其中,所述正极电压转换装置的负输出端和所述负极电压转换装置的正输出端与中线的第一端相连,所述正极逆变器的负输入端和所述负极逆变器的正输入端与所述中线的第二端相连;所述方法包括:所述控制器检测中线电流是否符合预设的电流范围,所述中线电流为通过所述中线的电流;所述控制器在所述中线电流不符合所述预设的电流范围的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,变更输出电压,以使得所述中线电流符合所述预设的电流范围。
结合第二方面,在一种可能的实现方式中,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值,所述中线电流的方向为从所述逆变单元至所述电压转换单元,所述电流范围的正方向为从所述逆变单元至所述电压转换单元,所述电流范围的负方向为从所述电压转换单元至所述逆变单元,所述控制器在所述中线电流不符合所述预设的电流范围的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,变更输出电压,包括:所述控制器确定所述中线电流大于I t2;所述控制器控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
结合第二方面,在一种可能的实现方式中,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值,所述中线电流的方向为从所述逆变单元至所述电压转换单元,所述电流范围的正方向为从所述逆变单元至所述电压转换单元,所述电流范围的负方向为从所述电压转换单元至所述逆变单元,所述控制器具体用于:所述控制器在所述中线电流不符合所述预设的电流范围的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,变更输出电压,包括:所述控制器确定所述中线电流小于-I t1;所述控制器控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
结合第二方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:所述第一控制单元在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置增大输出电压;所述第二控制单元在检测到所述中线电流大于I t2的情况下,控制所述负极电压转换装置减小输出电压。
结合第二方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在 检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:所述第一控制单元在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置增大输出电压;所述第二控制单元在检测到所述中线电流大于I t2的情况下,控制所述负极电压转换装置的输出电压不变。
结合第二方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:所述第一控制单元在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置的输出电压不变;所述第二控制单元在检测到所述中线电流大于I t2的情况下,控制所述负极电压转换装置减小输出电压。
结合第二方面,在一种可能的实现方式中,所述方法还包括:所述控制器确定所述正极电压转换装置的输出电压是否大于第一预设电压阈值,所述第一预设电压阈值为所述正极电压转换装置的输出电压的可调节上限值;所述控制器控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:所述控制器在所述中线电流大于I t2、且所述正极电压转换装置的输出电压小于所述第一预设电压阈值的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;所述方法还包括:所述控制器在所述中线电流大于I t2、且所述正极电压转换装置的输出电压大于或等于所述第一预设电压阈值的情况下,控制所述正极电压转换装置减小输出功率。
结合第二方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:所述第一控制单元在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置减小输出电压;所述第二控制单元在检测到所述中线电流小于-I t1的情况下,控制所述负极电压转换装置增大输出电压。
结合第二方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:所述第一控制单元在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置减小输出电压;所述第二控制单元在检测到所述中线电流小于-I t1的情况下,控制所述负极电压转换装置的输出电压不变。
结合第二方面,在一种可能的实现方式中,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在 检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:所述第一控制单元在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置的输出电压不变;所述第二控制单元在检测到所述中线电流小于-I t1的情况下,控制所述负极电压转换装置增大输出电压。
结合第二方面,在一种可能的实现方式中,所述方法还包括:所述控制器确定所述负极电压转换装置的输出电压是否大于第二预设电压阈值,所述第二预设电压阈值为所述负极电压转换装置的输出电压的可调节上限值;所述控制器控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:所述控制器在所述中线电流小于-I t1、且所述负极电压转换装置的输出电压小于所述第二预设电压阈值的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;所述方法还包括:所述控制器在所述中线电流小于-I t1、且所述负极电压转换装置的输出电压大于或等于所述第二预设电压阈值的情况下,控制所述负极电压转换装置减小输出功率。
第三方面,一种用于双极供电系统的控制设备,其特征在于,所述双极供电系统包括:电压转换单元和逆变单元,所述电压转换单元用于接收发电模块提供的电能,并在进行直流转换之后,将直流电输出至所述逆变单元;所述逆变单元用于将所述直流电转换为交流电,并将所述交流电输出至电网;所述电压转换单元包括正极电压转换装置和负极电压转换装置,所述逆变单元包括正极逆变器和负极逆变器,其中,所述正极电压转换装置的负输出端和所述负极电压转换装置的正输出端与中线的第一端相连,所述正极逆变器的负输入端和所述负极逆变器的正输入端与所述中线的第二端相连;所述控制设备用于执行第二方面或第二方面中的任意一种可能的实现方式中所述的方法。
第四方面,提供了一种用于双极供电系统的设备,所述设备包括如第三方面所述的控制设备。所述设备可以为电压转换单元或者逆变单元。
附图说明
图1是适用于本申请一实施例的的双极供电系统100的示意图。
图2是本申请实施例提供的一种双极供电系统200的结构示意图。
图3是本申请实施例提供的另一种双极供电系统300的结构示意图。
图4是本申请实施例提供的另一种双极供电系统400的结构示意图。
图5是本申请一实施例的双级供电系统的控制逻辑示意图。
图6是本申请另一实施例的双级供电系统的控制逻辑示意图。
图7本申请实施例的一种控制设备700的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解本申请实施例,首先结合图1说明本申请的应用场景。图1是本申请一实 施例的双极供电系统100的示意图。如图1所示,双极供电系统100可以产生电能,并将产生的电能提供给电网供电。具体地,双极供电系统100可以包括供电模块110、电压转换单元120和逆变单元140。电压转换单元120中可以包括正极电压转换装置121和负极电压转换装置122。逆变单元140可以包括正极逆变器141和负极逆变器142。其中,正极电压转换装置121的负输出端和负极电压转换装置122的正输出端与中线130的第一端相连,正极逆变器141的负输入端和负极逆变器142的正输入端与中线130的第二端相连。另外,正极电压转换装置121的正输出端与正极逆变器141的正输入端相连,负极电压转换装置122的负输出端与负极逆变器142的负输入端相连。
供电模块110可以将产生的电能输出至电压转换单元120。电压转换单元120在进行直流电压转换之后,可以向逆变单元140供电。逆变单元140可以接收电压转换单元120传输的电能,并在进行直流至交流电压转换之后,向电网供电。作为示例,提供电能的供电模块110可以包括但不限于以下项:光伏(photovoltaic,PV)阵列111、电池112。图1的系统仅是为了说明本申请实施例的应用场景,并不作为对本申请的限制。
可选地,图1中的双极供电系统100中还可以包括变压器160,其用于接收逆变单元140输出的交流电,并将该交流电进行电压变换,然后输入电网之中。其中,正极逆变器141和负极逆变器142输出的交流电可以分别接入逆变单元140中的不同绕组中。
应理解,本申请实施例对电路的连接关系不做限定,在实际应用中,图1中的各个部件之间可能还连接有其他的设备,例如,逆变单元140与变压器160之间还可以设置有滤波单元,以对逆变单元140输出的电压进行滤波之后,再输入至变压器160。本申请对此不作限制。
应理解,图1仅仅是对本申请实施例的应用场景的示例性说明,在实践中,本申请使用的应用场景可以做适当的变形,例如,可以包括比图1中更多或更少的功能模块、器件和单元,其均落入本申请实施例的保护范围中。
应理解,在本申请中,供电模块110可以包括光伏阵列111和光伏阵列112,或者可以包括电池111和电池112。此时,供电模块110和电压转换单元120共同组成电力储能系统,其产生的电能输送至逆变单元140,经过逆变单元140处理之后,得到交流电,并提供给电网。应理解,在这种双极供电系统的应用场景中,电池111或者电池112储存电能,在电网需要供电时,电池111或者电池112储存的电能可以经过电压转换单元120进行电压转换之后,输出直流电,然后传输至逆变单元140,经过逆变单元140处理之后,得到交流电,并提供给电网。
电压转换单元120可包括降压式(Buck)变换器、升压式(Boost)变换器、降升压(Buck-Boost)变换器或升降压(Boost-Buck)变换器。电压转换单元120可以是隔离式的,也可以是是非隔离式的。
另外,对光伏阵列111进行直流电压转换的正极电压转换装置121与对光伏阵列112进行直流电压转换的负极电压转换装置122可以相同,也可以不同,它们的具体拓扑结构根据实际电路情况而定,本申请对正、负极电压转换装置的拓扑结构不做限定。在本申请中,正极电压转换装置121和负极电压转换装置122可以为直流转直流(direct current to direct current,DC/DC)变换器。正极逆变器141和负极逆变器142可以包括功率转换系统(Power Conversion System,PCS)或直流转交流(direct current to alternating current, DC/AC)变换器。
在图1所示的双级供电系统100中,正极电压转换装置121和负极电压转换装置122接入不同的光伏阵列,例如正极电压转换装置121接入光伏阵列111,负极电压转换装置122接入光伏阵列112。在光伏阵列111和光伏阵列112的工作状态不一致的情况下,例如光伏阵列111和光伏阵列112发生故障,或者出现光照差异。或者产生遮挡等情况下,可能会导致正极电压转换装置121和负极电压转换装置122的输出功率不一致,从而中线130上会产生中线电流。一方面,中线130上产生电流会增加损耗,影响发电量;另一方面,当中线130上的电流超过缆线规格时,会影响系统的可靠性。针对该问题,本申请提供了一种用于双极供电系统的控制方法和双极供电系统。接下来,将结合图2至图6,详细描述本申请实施例的方案。
图2是本申请一实施例提供的一种双极供电系统200的结构示意图。如图2所示,该系统包括供电模块210、电压转换单元220、逆变单元240、变压器260和控制器。其中,控制器可以为独立的控制单元,也可以为设置于双极供电系统200中的控制单元。并且控制器可以包括一个独立模块,也可以包括设置于不同设备中的多个模块,多个模块之间可相互通信。例如,控制器可以设置于电压转换单元220中或者设置于逆变单元240中。例如,控制器可以包括第一控制单元2211和/或第二控制单元2221,不同的控制单元之间可以相互通信。
供电模块210、变压器260和图1中的供电模块110、变压器160的功能相同或相似,在此不再赘述。电压转换单元220可以包括正极电压转换装置221和负极电压转换装置222。逆变单元240包括正极逆变器241和负极逆变器242。正极电压转换装置221可以包括第一控制单元2211和正极电压转换电路2212。负极电压转换装置222可以包括第二控制单元2221和负极电压转换电路2222。换句话说,第一控制单元2211设置于正极电压转换装置221中,第二控制单元设置于负极电压转换装置222中。其中,正极电压转换装置221的负输出端和负极电压转换装置222的正输出端与中线230的第一端相连,正极逆变器241的负输入端和负极逆变器242的正输入端与中线230的第二端相连。
另外,正极电压转换装置221的正输出端与正极逆变器241的正输入端相连,负极电压转换装置222的负输出端与负极逆变器242的负输入端相连。
第一控制单元2211用于控制正极电压转换电路2212接收供电系统中的供电模块提供的电能,并在进行直流电压转换之后向逆变单元240供电。第二控制单元2221用于控制负极电压转换电路2222接收供电系统中的供电模块提供的电能,并在进行直流电压转换之后向逆变单元240供电。逆变单元240接收电压转换单元220传输的电能,并在进行直流至交流电压转换之后,向电网供电。
其中,控制器用于检测中线电流是否符合预设的电流范围。在中线电流不符合预设的电流范围的情况下,控制正极电压转换装置221和负极电压转换装置222在输出功率不变的情况下,变更输出电压,以使得中线电流符合预设的电流范围。
其中,上述预设的电流范围可以根据实践确定,例如根据中线230的线型来确定,或者还可以根据其他方式确定,本申请对此不作限定。上述预设的电流范围中的电流可以只包括一个电流方向,也可以包括两个电流方向。例如,预设的电流范围中的电流方向可以为从所述电压转换单元220至所述逆变单元240,可以为从所述逆变单元240至所述电压 转换单元220,也可以包括上述两个电流方向,只要上述预设的电流范围的绝对值小于预设阈值即可。
在一个示例中,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值。所述中线电流的方向为从所述逆变单元240至所述电压转换单元220,所述电流范围的正方向为从所述逆变单元240至所述电压转换单元220,所述电流范围的负方向为从所述电压转换单元220至所述逆变单元240。
下面结合公式(1),说明本申请实施例的调节中线电流的原理。公式(1)表示如下:
Figure PCTCN2021084085-appb-000001
其中,I neu表示中线电流,I pos表示正极电压转换装置221输出的电流,I neg表示负极电压转换装置222输出的电流。P pos表示正极电压转换装置221的输出功率,U pos表示正极电压转换装置221的输出电压。P neg表示负极电压转换装置221的输出功率,U neg表示负极电压转换装置221的输出电压。
在I neu大于I t2的情况下,需要增大正极电压转换装置的输出电压U pos或者减小负极电压转换装置的输出电压U neg,才能使得I neu小于I t2。即增大正极电压转换装置221和负极电压转换装置的输出电压之间的电压差。
在I neu小于-I t1的情况下,需要减小正极电压转换装置的输出电压U pos或者增大负极电压转换装置的输出电压U neg,才能使得I neu大于-I t1。即减小正极电压转换装置221和负极电压转换装置的输出电压之间的电压差。
在一些示例中,控制器在中线电流大于I t2的情况下,控制正极电压转换装置221和负极电压转换装置222在输出功率不变的情况下,增大正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间中。
具体地,控制器在中线电流小于-I t1的情况下,控制正极电压转换装置221和负极电压转换装置222在输出功率不变的情况下,减小正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间中。
在一些示例中,控制器包括第一控制单元2211和第二控制单元2221。第一控制单元2211和第二控制单元2221均可以用于检测中线电流是否符合预设的电流范围。或者,也可以由第一控制单元2211和第二控制单元2221中的其中一个检测中线电流,并向另一个控制单元通知中线电流是否符合预设的电流范围。
可选地,控制器可用于确定所述中线电流小于-I t1;并且控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
应理解,在本申请技术方案中,增大正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差,若两个电压转换装置均为升压变换器,则可以指正极电压转换装置221的输出电压的升压幅度大于负极电压转换装置222的输出电压的升压幅度,从而增加两者之间的电压差。
作为一种可能的实现方式,若控制器包括第一控制单元2211和第二控制单元2221, 则第一控制单元2211在检测到中线电流大于I t2的情况下,控制正极电压转换电路2212增大输出电压。第二控制单元2221在检测到中线电流大于I t2的情况下,控制负极电压转换电路2222减小输出电压,以使得中线电流位于[-I t1,I t2]区间中。
作为另一种可能的实现方式,第一控制单元2211在中线电流大于I t2的情况下,控制正极电压转换电路2212增大输出电压。第二控制单元2221在中线电流大于I t2的情况下,控制负极电压转换电路2222的输出电压不变,以使得中线电流位于[-I t1,I t2]区间中。
作为再一种可能的实现方式,第一控制单元2211在中线电流大于I t2的情况下,控制正极电压转换电路2212的输出电压不变。第二控制单元2221在中线电流大于I t2的情况下,控制负极电压转换电路2222减小输出电压,以使得中线电流位于[-I t1,I t2]区间中。
上述为增大正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差的三种可能的实现方式,还有其他的方式能够使得正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差增大,本申请对此不作限定。
例如,正极电压转换电路2212增大输出电压之前的电压为900V,负极电压转换电路2222增大输出电压之前的电压同样为900V。第一控制单元2211在检测到中线电流大于I t2的情况下,控制正极电压转换电路2212增大输出电压,调整后的正极电压转换电路2212输出电压为1000V。第二控制单元2221在检测到中线电流大于I t2的情况下,控制负极电压转换电路2222增加输出电压,调整后的负极电压转换电路2222为950V,而正极电压转换电路2212和负极电压转换电路2222之间输出电压的电压差从0V增加为50V,也实现了正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差增大。
此外,在调整中线电流的过程中,若正极电压转换装置221或负极电压转换装置222的输出电压已达到其可调节的上限值,则控制器需要通过控制正极电压转换装置221或负极电压转换装置222减小功率,来调节中线电流的范围。
例如,所述控制器还用于:确定所述正极电压转换装置221的输出电压是否大于第一预设电压阈值,所述第一预设电压阈值为所述正极电压转换装置221的输出电压的可调节上限值。例如,第一预设电压阈值可以为正极电压转换装置221的额定电压。
在所述中线电流大于I t2、且所述正极电压转换装置221的输出电压小于所述第一预设电压阈值的情况下,所述控制器具体用于:控制所述正极电压转换装置221和所述负极电压转换装置222在输出功率不变的情况下,增大所述正极电压转换装置221的输出电压和所述负极电压转换装置222的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
在所述中线电流大于I t2、且所述正极电压转换装置221的输出电压大于或等于所述第一预设电压阈值的情况下,所述控制器还用于控制所述正极电压转换装置221减小输出功率。
可选地,在控制器检测到中线电流小于-I t1的情况下,可控制正极电压转换装置221和负极电压转换装置222在输出功率不变的情况下,减小正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间中。
作为一种可能的实现方式,第一控制单元2211在检测到中线电流小于-I t1的情况下, 控制正极电压转换电路2212减小输出电压。第二控制单元2221在检测到中线电流小于-I t1的情况下,控制负极电压转换电路2222增大输出电压,以使得中线电流位于[-I t1,I t2]区间中。
作为另一种可能的实现方式,第一控制单元2211在检测到中线电流小于-I t1的情况下,控制正极电压转换电路2212减小输出电压。第二控制单元2221在检测到中线电流小于-I t1的情况下,控制负极电压转换电路2222的输出电压不变,以使得中线电流位于[-I t1,I t2]区间中。
作为再一种可能的实现方式,第一控制单元2211在检测到中线电流小于-I t1的情况下,控制正极电压转换电路2212的输出电压不变。第二控制单元2221在检测到中线电流小于-I t1的情况下,控制负极电压转换电路2222增大输出电压,以使得中线电流位于[-I t1,I t2]区间中。
上述为减小正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差的三种可能的实现方式,还有其他的方式能够使得正极电压转换装置221的输出电压和负极电压转换装置222的输出电压之间的电压差减小,本申请对此不作限定。
此外,在调整中线电流的过程中,若正极电压转换装置221或负极电压转换装置222的输出电压已达到其可调节的上限值,则控制器需要通过控制正极电压转换装置221或负极电压转换装置222减小功率,来调节中线电流的范围。
例如,控制器还用于确定所述负极电压转换装置222的输出电压是否大于第二预设电压阈值,所述第二预设电压阈值为所述负极电压转换装置222的输出电压的可调节上限值。例如,第二预设电压阈值可以为负极电压转换装置222的额定电压。
在所述中线电流小于-I t1、且所述负极电压转换装置222的输出电压小于所述第二预设电压阈值的情况下,所述控制器具体用于控制所述正极电压转换装置和所述负极电压转换装置222在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置222的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;
在所述中线电流小于-I t1、且所述负极电压转换装置222的输出电压大于或等于所述第二预设电压阈值的情况下,所述控制器还用于控制所述负极电压转换装置222减小输出功率。
其中,第二预设电压阈值可以与第一预设电压阈值相同,也可以不同,本申请对此不作限定。
在本申请实施例中,控制器可以控制正极电压转换装置221和负极电压转换装置222输出功率不变的情况下,变更输出电压,以减少中线电流。这种调节中线电流的方式维持电压转换装置的输出功率不变,从而保证供电系统能够提供最大输出功率和提供更大的发电量,在调节中线电流的同时,提高了供电系统的发电效率,避免了额外的经济损失。
图3是本申请实施例提供的另一种双极供电系统300的结构示意图。如图3所示,该系统包括供电模块310、电压转换单元320、逆变单元340、变压器360和控制器。供电模块310的功能与图1中供电模块110相同,电压转换单元320的功能与图1中的电压转换单元120相同,变压器360和图1中的变压器160的功能相同,在此不再赘述。逆变单元340包括正极逆变器341和负极逆变器342。控制器可包括以下控制单元中的至少一个:第一控制单元3211、第二控制单元3221、第三控制单元3411和第四控制单元3421。正 极逆变器341可以包括第三控制单元3411和正极逆变电路3412。负极逆变器342可以包括第四控制单元3421和负极逆变电路3422。换句话说,第三控制单元3411设置于正极逆变器341中,第四控制单元3421设置于负极逆变电路3422中。其中,正极电压转换装置221的负输出端和负极电压转换装置222的正输出端与中线230的第一端相连,正极逆变器241的负输入端和负极逆变器242的正输入端与中线230的第二端相连。
同样地,第一控制单元3211用于控制正极电压转换电路3212接收供电系统中的供电模块提供的电能,并在进行直流电压转换之后向逆变单元340供电。第二控制单元3221用于控制负极电压转换电路3222接收供电系统中的供电模块提供的电能,并在进行直流电压转换之后向逆变单元340供电。逆变单元340接收电压转换单元320传输的电能,并在进行直流至交流电压转换之后,向电网供电。
控制器用于检测中线电流是否符合预设的电流范围。在中线电流不符合预设的电流范围的情况下,控制正极电压转换装置321和负极电压转换装置322在输出功率不变的情况下,变更输出电压,以使得中线电流符合预设的电流范围。可选地,所述预设的电流范围为[-I t1,I t2]。关于预设的电流范围的内容可参见前文中的描述,此处不再赘述。
作为示例,控制器可包括第一控制单元3211、第二控制单元3221、第三控制单元3411和第四控制单元3421。第三控制单元3411和第四控制单元3421可以用于检测中线电流是否符合预设的电流范围,还可以将检测结果发送至第一控制单元3211、第二控制单元3221。
作为示例,在第三控制单元3411或第四控制单元3421检测到中线电流不符合预设的电流范围的情况下,第三控制单元3411或第四控制单元3421将变更正极电压转换装置321的输出电压的控制信号发送给第一控制单元3211和第二控制单元3221,从而第一控制单元3211第二控制单元3221和在控制正极电压转换装置321和负极电压转换装置322在输出功率不变的情况下,控制正极电压转换装置321变更输出电压,以使得中线电流符合所述预设的电流范围。
例如,在第三控制单元3411检测到中线330的电流大于I t2的情况下,第三控制单元3411将变更正极电压转换装置321的输出电压的控制信号发送给第一控制单元3211,第一控制单元3211控制正极电压转换装置321输出功率不变的情况下,变更输出电压。在第四控制单元3421检测中线330的电流大于I t2的情况下,第四控制单元3421将变更负极电压转换装置322的输出电压的控制信号发送给第二控制单元3221,第二控制单元3221控制负极电压转换装置322输出功率不变的情况下,变更输出电压,从而增大正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
应理解,在本申请技术方案中,增大正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差,若两个电压转换装置均为升压变换器,则可以指正极电压转换装置321的输出电压升压幅度大于负极电压转换装置322的输出电压升压幅度,从而增大正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差。
作为一种可能的实现方式,在第三控制单元3411检测到中线电流大于I t2的情况下,第三控制单元3411将增大正极电压转换电路3212的输出电压的控制信号发送给第一控制 单元3211,第一控制单元3211控制正极电压转换电路3212在输出功率不变的情况下增大输出电压。在第四控制单元3421检测中线电流大于I t2的情况下,第四控制单元3421将减小负极电压转换电路3222的输出电压的控制信号发送给第二控制单元3221,第二控制单元3221控制负极电压转换电路3222在输出功率不变的情况下,减小输出电压,从而增大正极电压转换电路3212的输出电压和负极电压转换电路3222的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
作为另一种可能的实现方式,在第三控制单元3411检测到中线电流大于I t2的情况下,第三控制单元3411将增大正极电压转换电路3212的输出电压的控制信号发送给第一控制单元3211,第一控制单元3211控制正极电压转换电路3212在输出功率不变的情况下,增大输出电压。在第四控制单元3421检测中线电流大于I t2的情况下,第四控制单元3421将控制负极电压转换电路3222的输出电压不变的控制信号发送给第二控制单元3221,第二控制单元3221控制负极电压转换电路3222输出电压不变,从而增大正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
作为再一种可能的实现方式,在第三控制单元3411检测到中线电流大于I t2的情况下,第三控制单元3411将控制正极电压转换电路3212的输出电压不变的控制信号发送给第一控制单元3211,第一控制单元3211控制正极电压转换电路3212输出电压不变。在第四控制单元3421检测中线电流大于I t2的情况下,第四控制单元3421将控制负极电压转换电路3222的输出电压减小的控制信号发送给第二控制单元3221,第二控制单元3221控制负极电压转换电路3222在输出功率不变的情况下,减小输出电压,从而增大正极电压转换电路3212的输出电压和负极电压转换电路3222的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
上述为增大正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差的三种可能的实现方式,还有其他的方式能够使得正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差增大,本申请对此不作限定。
此外,在调整中线电流的过程中,若正极电压转换装置321或负极电压转换装置322的输出电压已达到其可调节的上限值,则控制器需要通过控制正极电压转换装置321或负极电压转换装置322减小功率,来调节中线电流的范围。具体方案可参见前文中的描述,此处不再赘述。
可选地,在第三控制单元3411检测到中线电流小于-I t1的情况下,第三控制单元3411将变更正极电压转换装置321的输出电压的控制信号发送给第一控制单元3211,第一控制单元3211控制正极电压转换装置321变更输出电压。在第四控制单元3421检测中线电流小于-I t1的情况下,第四控制单元3421将变更负极电压转换装置322的输出电压的控制信号发送给第二控制单元3221,第二控制单元3221控制负极电压转换装置322变更输出电压,从而减小正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
作为一种可能的实现方式,在第三控制单元3411检测到中线电流小于-I t1的情况下,第三控制单元3411将减小正极电压转换电路3212的输出电压的控制信号发送给第一控制单元3211,第一控制单元3211控制正极电压转换电路3212在输出功率不变的情况下, 减小输出电压。在第四控制单元3421检测中线电流小于-I t1的情况下,第四控制单元3421将增大负极电压转换电路3222的输出电压的控制信号发送给第二控制单元3221,第二控制单元3221控制负极电压转换电路3222增大输出电压,从而减小正极电压转换电路3212的输出电压和负极电压转换电路3222的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
作为另一种可能的实现方式,在第三控制单元3411检测到中线电流小于-I t1情况下,第三控制单元3411将减小正极电压转换电路3212的输出电压的控制信号发送给第一控制单元3211,第一控制单元3211控制正极电压转换电路3212在输出功率不变的情况下,减小输出电压。在第四控制单元3421检测中线电流小于-I t1的情况下,第四控制单元3421将控制负极电压转换电路3222的输出电压不变的控制信号发送给第二控制单元3221,第二控制单元3221控制负极电压转换电路3222输出电压不变,从而减小正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
作为再一种可能的实现方式,在第三控制单元3411检测到中线电流小于-I t1的情况下,第三控制单元3411将控制正极电压转换电路3212的输出电压不变的控制信号发送给第一控制单元3211,第一控制单元3211控制正极电压转换电路3212输出电压不变。在第四控制单元3421检测中线电流小于-I t1的情况下,第四控制单元3421将控制负极电压转换电路3222的输出电压增大的控制信号发送给第二控制单元3221,第二控制单元3221控制负极电压转换电路3222增大输出电压,从而减小正极电压转换电路3212的输出电压和负极电压转换电路3222的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
上述为减小正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差的三种可能的实现方式,还有其他的方式能够使得正极电压转换装置321的输出电压和负极电压转换装置322的输出电压之间的电压差减小,本申请对此不作限定。
因此,在本申请实施例中,控制器可以控制正极电压转换装置321和负极电压转换装置322输出功率不变的情况下,变更输出电压,以减少中线电流。这种调节中线电流的方式维持电压转换装置的输出功率不变,从而保证供电系统能够提供最大输出功率和提供更大的发电量,在调节中线电流的同时,提高了供电系统的发电效率,避免了额外的经济损失。
图4是本申请实施例提供的另一种双极供电系统400的结构示意图。如图4所示,该系统包括供电模块410、电压转换单元420、控制器440、逆变单元450和变压器460。供电模块410、变压器460的功能与图1中的供电模块110、变压器160相同,在此不再赘述。电压转换单元420包括正极电压转换装置421和负极电压转换装置422。逆变单元450包括正极逆变器451和负极逆变器452。逆变单元450包括正极逆变器451和负极逆变器452。其中,正极电压转换装置421的负输出端和负极电压转换装置422的正输出端与中线430的第一端相连,正极逆变器451的负输入端和负极逆变器452的正输入端与中线230的第二端相连。
电压转换单元420用于接收发电模块410提供的电能,并在进行直流转换之后,将直流电输出至逆变单元450。逆变单元450用于将直流电转换为交流电,并将交流电输出至电网。
控制器440可以为独立的模块,并与中线以及电压转换单元420相连,控制器440可用于执行前文中的控制器所执行的方法或步骤。
具体地,控制器440用于检测中线电流是否符合预设的电流范围,在中线电流不符合预设的电流范围的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,变更输出电压,以使得中线电流符合所述预设的电流范围。可选地,所述预设的电流范围为[-I t1,I t2]。关于预设的电流范围的内容可参见前文中的描述,此处不再赘述。
作为示例,控制器440具体用于在检测到中线电流大于I t2的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,增大正极电压转换装置421的输出电压和负极电压转换装置422的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
作为一种可能的实现方式,控制器440在检测到中线电流大于I t2的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,增大正极电压转换装置421的输出电压,减小负极电压转换装置422的输出电压。
作为另一种可能的实现方式,控制器440在检测到中线电流大于I t2的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,增大正极电压转换装置421输出电压,维持负极电压转换装置422输出电压不变。
作为再一种可能的实现方式,控制器440在检测到中线电流大于I t2的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,维持正极电压转换装置421输出电压不变,减小负极电压转换装置422的输出电压。
此外,在调整中线电流的过程中,若正极电压转换装置421或负极电压转换装置422的输出电压已达到其可调节的上限值,则控制器需要通过控制正极电压转换装置421或负极电压转换装置422减小功率,来调节中线电流的范围。具体方案可参见前文中的描述,此处不再赘述。
控制器440还具体用于在监测到中线电流小于-I t1的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,减小正极电压转换装置421的输出电压和负极电压转换装置422的输出电压之间的电压差,以使得中线电流位于[-I t1,I t2]区间。
作为一种可能的实现方式,控制器440在检测到中线电流小于-I t1的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,减小正极电压转换装置421的输出电压,增大负极电压转换装置422的输出电压。
作为另一种可能的实现方式,控制器440在检测到中线电流小于-I t1的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,减小正极电压转换装置421的输出电压,维持负极电压转换装置422的输出电压不变。
作为再一种可能的实现方式,控制器440在检测到中线电流小于-I t1的情况下,控制正极电压转换装置421和负极电压转换装置422在输出功率不变的情况下,维持正极电压转换装置421输出电压不变,增大负极电压转换装置422的输出电压。
因此,在本申请实施例中,控制器440可以控制正极电压转换装置421和负极电压转换装置422输出功率不变的情况下,变更输出电压,以减少中线电流。这种调节中线电流 的方式维持电压转换装置的输出功率不变,从而保证供电系统能够提供最大输出功率和提供更大的发电量,在调节中线电流的同时,提高了供电系统的发电效率,避免了额外的经济损失。
应理解,图2至图4仅仅是对本申请实施例的示例性描述,在实践中,本申请的双极供电系统可以做适当的变形,例如,可以包括比图2至图4中更多或更少的功能模块、器件和单元,其均落入本申请实施例的保护范围中。
应理解,图2至图4中仅以一个双极供电系统为电网供电进行描述。可选地,本申请实施例的方案也可以应用于多个双极供电系统为电网供电的场景。上述多个双极供电系统可以在入网侧并联。可选地,若调节多个双极供电系统中的中线电流,则在调整每个双极供电系统中的正极电压转换装置和负极电压装置的输出电压时,还需要保证多个双极供电系统中的每个双极供电系统的正极电压转换装置和负极电压转换装置的输出电压之和相同(或者说尽可能相同),从而可以减少多个双极电压转换系统之间的环流路径中的电流,以减少多个双极供电系统中的功率损耗。
下面结合图5至图6,对本申请的用于双极供电系统的控制方法进行详细描述。
图5是本申请一实施例的双级供电系统的控制逻辑示意图。
S510、采集中线上的电流。
具体地,中线上的电流的采集可以为设置于正极电压转换装置中的第一控制单元实现的,也可以为设置于负极电压转换装置中的第二控制单元实现的,也可以为设置于正极逆变器中的第三控制单元实现的,也可以为设置于负极逆变器中的第四控制单元实现的,或者为连接在中线上的控制器实现。实现采样功能的单元与中线之间具有连接关系,能够实现中线电流的采集。
S520、确定采集得到的中线电流大于I t2
可选地,可以由设置于正极电压转换装置中的第一控制单元和设置于负极电压转换装置中的第二控制单元可采集中线电流,并判断采集得到的中线电流与I t2的大小关系,也可以由设置于正极逆变器中的第三控制单元和设置于负极逆变器中的第四控制单元采集中线电流,并判断采集得到的中线电流与I t2的大小关系,或者由连接在中线上的控制器采集中线电流,并判断采集得到的中线电流与I t2的大小关系。
S530、在中线电流大于I t2的情况下,控制正极电压转换装置和负极电压转换装置在输出功率不变的情况下,增大正极电压转换装置的输出电压和负极电压转换装置的输出电压之间的电压差,以使得中线电流小于I t2
应理解,增大正极电压转换装置的输出电压和负极电压转换装置的输出电压之间的电压差的具体方式如图2至图4中所述,在此不再赘述。
S540、确定正极电压转换装置的输出电压是否大于第一预设电压阈值。其中,关于第一预设电压预设的描述可参考前文,此处不再赘述。
具体地,控制器在调节正极电压转换装置的输出电压时,同时确定正极电压转换装置的输出电压是否大于第一预设电压阈值。
S550、控制器确定正极电压转换装置的输出电压大于或等于第一预设电压阈值,控制正极电压转换装置减小输出功率。
S560、控制器确定正极电压转换装置的输出电压小于第一预设电压阈值,控制正极电 压转换装置输出功率不变。
因此,在本申请实施例中,在控制器控制正极电压转换装置和负极电压转换装置输出功率不变的情况下,通过控制器控制正极电压转换装置和负极电压转换装置的输出电压,改变中线电流,这种调节中线电流的方式维持电压转换装置的输出功率不变,从而保证供电系统能够提供最大输出功率和提供更大的发电量,在调节中线电流的同时,提高了供电系统的发电效率,避免了额外的经济损失。
图6是本申请另一实施例的双级供电系统的控制逻辑示意图。
S610:采集中线电流。步骤610和步骤510相同,在此不再赘述。
S620:确定采集得到的中线电流小于-I t1
在本申请实施例中,可以由设置于正极电压转换装置中的第一控制单元和设置于负极电压转换装置中的第二控制单元采集中线电流,并判断采集得到的中线电流与-I t1的大小关系;也可以由设置于正极逆变器中的第三控制单元和设置于负极逆变器中的第四控制单元采集中线电流,并判断采集得到的中线电流与-I t1的大小关系;或者由连接在中线上的控制器采集中线电流,并判断采集得到的中线电流与-I t1的大小关系。
S630:在中线电流小于-I t1的情况下,控制正极电压转换装置和负极电压转换装置在输出功率不变的情况下,减小正极电压转换装置的输出电压和负极电压转换装置的输出电压之间的电压差,以使得中线电流大于-I t1
应理解,减小正极电压转换装置的输出电压和负极电压转换装置的输出电压之间的电压差的具体方式如图2至图4中所述,在此不再赘述。
S640:确定负极电压转换装置的输出电压是否大于第二预设电压阈值。其中,关于第二预设电压预设的描述可参考前文,此处不再赘述。
具体地,控制器在调节负极电压转换装置的输出电压时,同时确定负极电压转换装置的输出电压是否大于第二预设电压阈值。
S650:控制器确定负极电压转换装置的输出电压大于或等于第二预设电压阈值,控制负极电压转换装置减小输出功率。
S660:控制器确定负极电压转换装置的输出电压小于第二预设电压阈值,控制负极电压转换装置输出功率不变。
因此,在本申请实施例中,在控制器控制正极电压转换装置和负极电压转换装置输出功率不变的情况下,通过控制器控制正极电压转换装置和负极电压转换装置的输出电压,改变中线电流,使得中线电流在线缆规格范围内,保证了系统的稳定性。
图7是本申请实施例的控制设备700的结构示意图。如图7所示,该控制设备700包括处理器710、通信接口720。可选地,该控制设备700还可以包括存储器730。可选地,存储器730可以包括于处理器710中。其中,处理器710、通信接口720和存储器730通过内部连接通路互相通信,存储器730用于存储指令,处理器710用于执行存储器730存储的指令,以实现本申请实施例提供的控制方法。
可选地,该控制设备700可以用于执行图2至图4中的控制器的功能,或者执行图2至图4中的各个控制单元的功能,例如,图2和图3中的第一控制单元2211和3211、第二控制单元2221和3221,或者图3中的第三控制单元3411以及第四控制单元3421,或者图4中的控制器440。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种双极供电系统,其特征在于,包括:电压转换单元、逆变单元和控制器,
    所述电压转换单元用于接收发电模块提供的电能,并在进行直流转换之后,将直流电输出至所述逆变单元;
    所述逆变单元用于将所述直流电转换为交流电,并将所述交流电输出至电网;
    所述电压转换单元包括正极电压转换装置和负极电压转换装置,所述逆变单元包括正极逆变器和负极逆变器,其中,所述正极电压转换装置的正输出端与所述正极逆变器的正输入端相连,所述负极电压转换装置的负输出端与所述负极逆变器的负输入端相连,所述正极电压转换装置的负输出端和所述负极电压转换装置的正输出端与中线的第一端相连,所述正极逆变器的负输入端和所述负极逆变器的正输入端与所述中线的第二端相连;
    所述控制器用于:
    检测中线电流是否符合预设的电流范围,所述中线电流为通过所述中线的电流;
    在所述中线电流不符合所述预设的电流范围的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,变更输出电压,以使得所述中线电流符合所述预设的电流范围。
  2. 如权利要求1所述的系统,其特征在于,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值,所述中线电流的方向为从所述逆变单元至所述电压转换单元,所述电流范围的正方向为从所述逆变单元至所述电压转换单元,所述电流范围的负方向为从所述电压转换单元至所述逆变单元,所述控制器具体用于:
    确定所述中线电流大于I t2
    控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
  3. 如权利要求1所述的系统,其特征在于,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值,所述中线电流的方向为从所述逆变单元至所述电压转换单元,所述电流范围的正方向为从所述逆变单元至所述电压转换单元,所述电流范围的负方向为从所述电压转换单元至所述逆变单元,所述控制器具体用于:
    确定所述中线电流小于-I t1
    控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
  4. 如权利要求2所述的系统,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,
    所述第一控制单元具体用于在所述中线电流大于I t2的情况下,控制所述正极电压转换装置增大输出电压;
    所述第二控制单元具体用于在所述中线电流大于I t2的情况下,控制所述负极电压转换装置减小输出电压。
  5. 如权利要求2所述的系统,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,
    所述第一控制单元具体用于在所述中线电流大于I t2情况下,控制所述正极电压转换装置增大输出电压;
    所述第二控制单元具体用于在所述中线电流大于I t2的情况下,控制所述负极电压转换装置的输出电压不变。
  6. 如权利要求2所述的系统,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,
    所述第一控制单元具体用于在所述中线电流大于I t2的情况下,控制所述正极电压转换装置的输出电压不变;
    所述第二控制单元具体用于在所述中线电流大于I t2的情况下,控制所述负极电压转换装置减小输出电压。
  7. 如权利要求2至6中任一项所述的系统,其特征在于,所述控制器还用于:确定所述正极电压转换装置的输出电压是否大于第一预设电压阈值,所述第一预设电压阈值为所述正极电压转换装置的输出电压的可调节上限值;
    所述控制器具体用于:
    在所述中线电流大于I t2、且所述正极电压转换装置的输出电压小于所述第一预设电压阈值的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;
    所述控制器还用于:
    在所述中线电流大于I t2、且所述正极电压转换装置的输出电压大于或等于所述第一预设电压阈值的情况下,控制所述正极电压转换装置减小输出功率。
  8. 如权利要求3所述的系统,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,
    所述第一控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述正极电压转换装置减小输出电压;
    所述第二控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述负极电压转换装置增大输出电压。
  9. 如权利要求3所述的系统,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,
    所述第一控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述正极电压转换装置减小输出电压;
    所述第二控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述负极电压转换装置的输出电压不变。
  10. 如权利要求3所述的系统,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,其中,
    所述第一控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述正极电压转换装置的输出电压不变;
    所述第二控制单元具体用于在所述中线电流小于-I t1的情况下,控制所述负极电压转换装置增大输出电压。
  11. 如权利要求3、8至10中任一项所述的系统,其特征在于,所述控制器还用于:
    确定所述负极电压转换装置的输出电压是否大于第二预设电压阈值,所述第二预设电压阈值为所述负极电压转换装置的输出电压的可调节上限值;
    所述控制器具体用于:
    在所述中线电流小于-I t1、且所述负极电压转换装置的输出电压小于所述第二预设电压阈值的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;
    所述控制器还用于:
    在所述中线电流小于-I t1、且所述负极电压转换装置的输出电压大于或等于所述第二预设电压阈值的情况下,控制所述负极电压转换装置减小输出功率。
  12. 一种用于双极供电系统的控制方法,其特征在于,所述双极供电系统包括:电压转换单元、逆变单元和控制器,
    所述电压转换单元用于接收发电模块提供的电能,并在进行直流转换之后,将直流电输出至所述逆变单元;
    所述逆变单元用于将所述直流电转换为交流电,并将所述交流电输出至电网;
    所述电压转换单元包括正极电压转换装置和负极电压转换装置,所述逆变单元包括正极逆变器和负极逆变器,其中,所述正极电压转换装置的正输出端与所述正极逆变器的正输入端相连,所述负极电压转换装置的负输出端与所述负极逆变器的负输入端相连,所述正极电压转换装置的负输出端和所述负极电压转换装置的正输出端与中线的第一端相连,所述正极逆变器的负输入端和所述负极逆变器的正输入端与所述中线的第二端相连;
    所述方法包括:
    所述控制器检测中线电流是否符合预设的电流范围,所述中线电流为通过所述中线的电流;
    所述控制器在所述中线电流不符合所述预设的电流范围的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,变更输出电压,以使得所述中线电流符合所述预设的电流范围。
  13. 如权利要求12所述的方法,其特征在于,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值,所述中线电流的方向为从所述逆变单元至所述电压转换单元,所述电流范围的正方向为从所述逆变单元至所述电压转换单元,所述电流范围的负方向为从所述电压转换单元至所述逆变单元,
    所述控制器在所述中线电流不符合所述预设的电流范围的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,变更输出电压,包括:
    所述控制器确定所述中线电流大于I t2
    所述控制器控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的 情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
  14. 如权利要求12所述的方法,其特征在于,所述预设的电流范围为[-I t1,I t2],其中,-I t1表示第一电流预设阈值,I t2表示表示第二电流预设阈值,所述中线电流的方向为从所述逆变单元至所述电压转换单元,所述电流范围的正方向为从所述逆变单元至所述电压转换单元,所述电流范围的负方向为从所述电压转换单元至所述逆变单元,所述控制器具体用于:
    所述控制器在所述中线电流不符合所述预设的电流范围的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,变更输出电压,包括:
    所述控制器确定所述中线电流小于-I t1
    所述控制器控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中。
  15. 如权利要求13所述的方法,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:
    所述第一控制单元在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置增大输出电压;
    所述第二控制单元在检测到所述中线电流大于I t2的情况下,控制所述负极电压转换装置减小输出电压。
  16. 如权利要求13所述的方法,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:
    所述第一控制单元在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置增大输出电压;
    所述第二控制单元在检测到所述中线电流大于I t2的情况下,控制所述负极电压转换装置的输出电压不变。
  17. 如权利要求13所述的方法,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:
    所述第一控制单元在检测到所述中线电流大于I t2的情况下,控制所述正极电压转换装置的输出电压不变;
    所述第二控制单元在检测到所述中线电流大于I t2的情况下,控制所述负极电压转换 装置减小输出电压。
  18. 如权利要求13至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制器确定所述正极电压转换装置的输出电压是否大于第一预设电压阈值,所述第一预设电压阈值为所述正极电压转换装置的输出电压的可调节上限值;
    所述控制器控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:
    所述控制器在所述中线电流大于I t2、且所述正极电压转换装置的输出电压小于所述第一预设电压阈值的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,增大所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;
    所述方法还包括:所述控制器在所述中线电流大于I t2、且所述正极电压转换装置的输出电压大于或等于所述第一预设电压阈值的情况下,控制所述正极电压转换装置减小输出功率。
  19. 如权利要求14所述的方法,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:
    所述第一控制单元在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置减小输出电压;
    所述第二控制单元在检测到所述中线电流小于-I t1的情况下,控制所述负极电压转换装置增大输出电压。
  20. 如权利要求14所述的方法,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:
    所述第一控制单元在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置减小输出电压;
    所述第二控制单元在检测到所述中线电流小于-I t1的情况下,控制所述负极电压转换装置的输出电压不变。
  21. 如权利要求14所述的方法,其特征在于,所述控制器包括设置于所述正极电压转换装置中的第一控制单元和设置于所述负极电压转换装置中的第二控制单元,所述控制器在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:
    所述第一控制单元在检测到所述中线电流小于-I t1的情况下,控制所述正极电压转换装置的输出电压不变;
    所述第二控制单元在检测到所述中线电流小于-I t1的情况下,控制所述负极电压转换装置增大输出电压。
  22. 如权利要求13、19至21中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制器确定所述负极电压转换装置的输出电压是否大于第二预设电压阈值,所述第二预设电压阈值为所述负极电压转换装置的输出电压的可调节上限值;
    所述控制器控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,包括:
    所述控制器在所述中线电流小于-I t1、且所述负极电压转换装置的输出电压小于所述第二预设电压阈值的情况下,控制所述正极电压转换装置和所述负极电压转换装置在输出功率不变的情况下,减小所述正极电压转换装置的输出电压和所述负极电压转换装置的输出电压之间的电压差,以使得所述中线电流位于[-I t1,I t2]区间中;
    所述方法还包括:所述控制器在所述中线电流小于-I t1、且所述负极电压转换装置的输出电压大于或等于所述第二预设电压阈值的情况下,控制所述负极电压转换装置减小输出功率。
  23. 一种用于双极供电系统的控制设备,其特征在于,所述双极供电系统包括:电压转换单元和逆变单元,
    所述电压转换单元用于接收发电模块提供的电能,并在进行直流转换之后,将直流电输出至所述逆变单元;
    所述逆变单元用于将所述直流电转换为交流电,并将所述交流电输出至电网;
    所述电压转换单元包括正极电压转换装置和负极电压转换装置,所述逆变单元包括正极逆变器和负极逆变器,其中,所述正极电压转换装置的正输出端与所述正极逆变器的正输入端相连,所述负极电压转换装置的负输出端与所述负极逆变器的负输入端相连,所述正极电压转换装置的负输出端和所述负极电压转换装置的正输出端与中线的第一端相连,所述正极逆变器的负输入端和所述负极逆变器的正输入端与所述中线的第二端相连;
    所述控制设备用于执行如权利要求12至22中任一项所述的方法。
PCT/CN2021/084085 2021-03-30 2021-03-30 一种双极供电系统和控制方法 WO2022204975A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21933656.7A EP4311061A4 (en) 2021-03-30 2021-03-30 BIPOLAR POWER SUPPLY SYSTEM AND CONTROL METHODS
PCT/CN2021/084085 WO2022204975A1 (zh) 2021-03-30 2021-03-30 一种双极供电系统和控制方法
CN202180062437.6A CN116171518A (zh) 2021-03-30 2021-03-30 一种双极供电系统和控制方法
US18/476,615 US20240022072A1 (en) 2021-03-30 2023-09-28 Bipolar power supply system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084085 WO2022204975A1 (zh) 2021-03-30 2021-03-30 一种双极供电系统和控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/476,615 Continuation US20240022072A1 (en) 2021-03-30 2023-09-28 Bipolar power supply system and control method

Publications (1)

Publication Number Publication Date
WO2022204975A1 true WO2022204975A1 (zh) 2022-10-06

Family

ID=83455427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084085 WO2022204975A1 (zh) 2021-03-30 2021-03-30 一种双极供电系统和控制方法

Country Status (4)

Country Link
US (1) US20240022072A1 (zh)
EP (1) EP4311061A4 (zh)
CN (1) CN116171518A (zh)
WO (1) WO2022204975A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956727A (zh) * 2014-06-03 2014-07-30 南京南瑞继保电气有限公司 一种直流附加控制的调制功率分配方法
CN104065287A (zh) * 2014-05-30 2014-09-24 许继电气股份有限公司 一种电压源型对称双极换流器的平衡控制方法
US20160036221A1 (en) * 2014-07-31 2016-02-04 Abb Technology Ag Dc connection system for renewable power generators
CN105515034A (zh) * 2015-12-01 2016-04-20 许继电气股份有限公司 一种两端双极mmc—hvdc系统的功率控制方法
CN111433995A (zh) * 2017-10-06 2020-07-17 通用电器技术有限公司 转换器方案

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218609B (zh) * 2014-09-22 2016-08-24 周细文 基于双极式直流传输的光伏电站系统拓扑结构
CN105811449B (zh) * 2016-05-22 2018-07-06 辽宁省电力有限公司大连供电公司 一种柔性直流输电系统无功功率分配方法
CN206099366U (zh) * 2016-09-03 2017-04-12 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 双极型光伏发电系统
EP3818612A1 (en) * 2018-08-24 2021-05-12 General Electric Technology GmbH Hvdc transmission schemes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065287A (zh) * 2014-05-30 2014-09-24 许继电气股份有限公司 一种电压源型对称双极换流器的平衡控制方法
CN103956727A (zh) * 2014-06-03 2014-07-30 南京南瑞继保电气有限公司 一种直流附加控制的调制功率分配方法
US20160036221A1 (en) * 2014-07-31 2016-02-04 Abb Technology Ag Dc connection system for renewable power generators
CN105515034A (zh) * 2015-12-01 2016-04-20 许继电气股份有限公司 一种两端双极mmc—hvdc系统的功率控制方法
CN111433995A (zh) * 2017-10-06 2020-07-17 通用电器技术有限公司 转换器方案

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4311061A4 *

Also Published As

Publication number Publication date
CN116171518A (zh) 2023-05-26
EP4311061A1 (en) 2024-01-24
EP4311061A4 (en) 2024-05-29
CN116171518A8 (zh) 2024-05-28
US20240022072A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US10298019B1 (en) Communication host and photovoltaic power generation system
US20180234051A1 (en) Current-voltage curve scan method for photovoltaic module, and optimizer
CN107748292B (zh) 一种交流绝缘检测电路、系统及方法
TWI517547B (zh) 變頻調速系統及方法
TW201125249A (en) Power supply unit provided with AC/DC input voltage detection and power supply system incorporating same
WO2016121273A1 (ja) 電力制御装置、電力制御方法及び電力制御システム
CN111585308A (zh) 光伏快速关断系统的控制方法及其应用装置和系统
CN114270651B (zh) 逆变器无功电流控制方法及装置
EP2993754A1 (en) Centralized mppt exiting and switching method and application thereof
WO2017000910A1 (zh) 光伏发电系统及操作其以进行光伏发电的方法
US20240088785A1 (en) Resonant switched capacitor converter and control method thereof
CN112217192A (zh) 一种直流耦合光伏离网制氢系统及其控制方法
WO2018206010A1 (en) Power systems with inverter input voltage control
US8928298B2 (en) Power system and power controlling method and apparatus thereof
US20230378758A1 (en) Control system and method for power supply system
WO2022204975A1 (zh) 一种双极供电系统和控制方法
WO2024082715A1 (zh) 功率变换系统及其纹波电流抑制方法
WO2016082418A1 (zh) 一种功率因数控制方法及装置
KR101655018B1 (ko) 저압직류 배전계통의 전압 불평형 제어 시스템 및 방법
US11217993B2 (en) Conversion system with high voltage side and low voltage side
JP6481199B2 (ja) 電力制御装置、電力制御方法及び電力制御システム
JP2015027203A (ja) パワーコンディショナ、パワーコンディショナシステムおよびパワーコンディショナの制御方法
WO2018170803A1 (zh) 光伏发电系统及最大功率点跟踪mppt的控制方法
JP2007193739A (ja) 電力変換装置
CN108809126B (zh) 一种基于峰谷电流实时监测的风力涡轮机ac-dc控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021933656

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021933656

Country of ref document: EP

Effective date: 20231020