WO2022165788A1 - 显示装置、发声控制方法、参数确定方法及装置 - Google Patents

显示装置、发声控制方法、参数确定方法及装置 Download PDF

Info

Publication number
WO2022165788A1
WO2022165788A1 PCT/CN2021/075745 CN2021075745W WO2022165788A1 WO 2022165788 A1 WO2022165788 A1 WO 2022165788A1 CN 2021075745 W CN2021075745 W CN 2021075745W WO 2022165788 A1 WO2022165788 A1 WO 2022165788A1
Authority
WO
WIPO (PCT)
Prior art keywords
exciter
sound
audio signal
audio
low
Prior art date
Application number
PCT/CN2021/075745
Other languages
English (en)
French (fr)
Inventor
习艳会
张小牤
韩文超
姬雅倩
孙伟
楚明磊
彭项君
史天阔
姬治华
孙炎
侯一凡
赵晨曦
张硕
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/619,923 priority Critical patent/US20230156402A1/en
Priority to DE112021001194.4T priority patent/DE112021001194T5/de
Priority to CN202180000202.4A priority patent/CN115191120A/zh
Priority to PCT/CN2021/075745 priority patent/WO2022165788A1/zh
Publication of WO2022165788A1 publication Critical patent/WO2022165788A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/227Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  using transducers reproducing the same frequency band
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2440/00Bending wave transducers covered by H04R, not provided for in its groups
    • H04R2440/05Aspects relating to the positioning and way or means of mounting of exciters to resonant bending wave panels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/15Transducers incorporated in visual displaying devices, e.g. televisions, computer displays, laptops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device, a sound emission control method, and a parameter determination method and device.
  • the display device directly emits sound through the screen, which can realize the integration of sound and picture, and can effectively use space and save resources. In addition, when combined with a large-size screen, it can improve the sound power and achieve different sound field effects.
  • each sub-screen spliced to form a display screen is fitted with an exciter to form a speaker array structure on the screen, and the speaker array is used to achieve the effect of sound source localization or directional sound.
  • the sound-generating device with this structure has the problem of poor low-frequency performance of the full-frequency exciter, and cannot guarantee the homogeneity and good flatness of the speaker spectrum of the sound-generating device.
  • the purpose of the technical solution of the present disclosure is to provide a display device, a sound control method, a parameter determination method and a device, which are used to solve the problems of poor low-frequency performance in the prior art screen sound generation technology, and the uniformity and good flatness of the spectrum cannot be guaranteed. .
  • the present disclosure provides a display device including a display panel, wherein the display device further includes:
  • the display panel can emit sound on the screen;
  • a plurality of the exciters are formed as at least one sound-generating unit, each of the sound-generating units includes at least two exciters, and each exciter in the same sound-generating unit is connected to the same audio signal input end.
  • a signal filter is provided on the audio transmission line from the audio signal input end to at least one of the exciters, which is used for low-frequency compensation of the sound produced by the entire sound generating unit.
  • a plurality of the exciters are formed into at least two sound generating units, and the exciters in different sound generating units are connected to different audio signal input ends.
  • the display device wherein, in the same sounding unit, a signal filter is not set on the audio transmission line from the first exciter in the at least two exciters to the audio signal input end, and the audio signal The audio signal of the input end is directly transmitted to the first exciter, and the first exciter vibrates and emits sound;
  • a low-pass filter is provided on the audio transmission line from each second exciter except the first exciter in the at least two exciters to the audio signal input end, and the audio signal of the audio signal input end passes through all the audio signals.
  • the low-pass filter obtains the low-frequency signal of the audio signal and transmits it to the second exciter, and the second exciter vibrates and emits sound.
  • the display device wherein, in the same sounding unit, a low-pass filter is provided on the audio transmission line from the first exciter of the at least two exciters to the audio signal input end, and the audio The audio signal at the signal input end passes through the low-pass filter, obtains the low-frequency signal of the audio signal, and then transmits it to the first exciter, and the first exciter vibrates and emits sound;
  • a low-pass filter is provided on the first audio transmission line from the second exciter other than the first exciter to the audio signal input end of the at least two exciters, and the second exciter to the audio signal
  • a high-pass filter is provided on the second audio line of the input end, and the audio signal of the audio signal input end obtains a low-frequency signal through the low-pass filter, and obtains a high-frequency signal through the high-pass filter, and the low-frequency signal and the high-frequency signal are obtained respectively.
  • the high-frequency signal is transmitted to the second exciter after signal superposition, and the second exciter vibrates and emits sound.
  • the display device wherein, in the same sounding unit, the audio signal input end is provided with a low-pass filter and a high-pass filter on the audio transmission line of each exciter, and the audio signal
  • the audio signal at the input end passes through the low-pass filter to obtain a low-frequency signal
  • the low-frequency signal and the high-frequency signal are superimposed and normalized and then transmitted to the a said exciter, and each said exciter vibrates and emits sound respectively.
  • the number of the first exciters is at least two, and a low-pass filter is shared between the audio signal input end and the audio transmission line of each of the first exciters. device.
  • the display panel includes a plurality of sub-panels that are spliced in sequence, and each sub-panel is respectively provided with one of the exciters, wherein the An exciter is formed as one of the sound generating units.
  • the display panel includes a plurality of display areas, wherein each display area is respectively provided with a plurality of the exciters in an array, and a plurality of exciters are arranged on each display area.
  • the exciter is formed as one of the sound generating units.
  • Embodiments of the present disclosure also provide a screen sounding device, which includes:
  • each of the sound-generating units includes at least two exciters
  • a circuit board wherein a plurality of audio input terminals are provided on the circuit board, wherein each audio input terminal corresponds to a sounding unit, and the audio input terminal is connected to each exciter corresponding to the sounding unit through an audio transmission line; wherein , in each sound generating unit, a signal filter is set on the audio transmission line from the audio input end to at least one of the exciters.
  • each of the sound-emitting units further includes a plurality of display units arranged in an array, and each of the display units is respectively provided with one of the exciters.
  • the display units of a plurality of the sound-emitting units are formed as a display panel, or one of the display units is formed as a display sub-panel, and adjacent display sub-panels are spliced together.
  • the screen sounding device wherein, in the same sounding unit, no signal filter is set on the audio transmission line from the first exciter in the at least two exciters to the audio signal input end;
  • a low-pass filter is arranged on the audio transmission line from each of the at least two exciters except the first exciter to the audio signal input end.
  • the screen sounding device wherein, in the same sounding unit, a low-pass filter is provided on the audio transmission line from the first exciter in the at least two exciters to the audio signal input end;
  • a low-pass filter is provided on the first audio transmission line from the second exciter except the first exciter to the audio signal input end of the at least two exciters; the second exciter to the audio signal
  • a high-pass filter is arranged on the second audio transmission line at the input end.
  • a low-pass filter and a high-pass filter are sequentially arranged on the audio signal input end of each exciter on the audio transmission line.
  • the screen sounding device further includes a processor for inputting audio signals to each of the audio input terminals respectively.
  • An embodiment of the present disclosure further provides a sound emission control method, wherein, applied to the display device according to any one of the above, the method includes:
  • the image information determine the sound-emitting unit when each of the audio signals is output
  • Each of the audio signals is input to the audio signal input end of the corresponding sounding unit, so that each exciter in the sounding unit connected to the audio signal input end vibrates and emits sound in response to the same audio signal.
  • the sound production control method wherein, according to the image information, determining the sound production unit when each of the audio signals is output, comprising:
  • a sound generating unit arranged at the display position is determined for sound output of the audio signal.
  • An embodiment of the present disclosure further provides a method for determining a signal filtering parameter, wherein, applied to the display device according to any one of the above, the method includes:
  • each exciter connected to the audio signal input end in the sound generating unit has low frequency compensation when it vibrates and emits sound in response to the same audio signal.
  • the method for determining the signal filtering parameters wherein, in the same sounding unit, a signal filter is not set on the audio transmission line from the first exciter to the audio signal input end, and at least two exciters except the first
  • a low-pass filter is set on the audio transmission line from each second exciter other than the exciter to the audio signal input end, according to the measured spectrum data, debug each of the sounding units, and set the audio signal
  • the filtering parameters of the signal filter on the audio transmission line from the input end to each of the exciters are obtained, and the set filtering parameters corresponding to each of the signal filters are obtained, including:
  • the filtering parameters of the corresponding low-pass filter of each described second exciter are respectively initial filtering parameters, obtain the first spectral curve when the first exciter outputs the full audio signal of the measured spectral data, The second spectrum curve when each of the exciters outputs the full audio signal of the measured spectral data respectively, and the first exciter outputs the full audio signal of the measured spectral data, and N second exciters output the measured the third spectral curve when the low-frequency signal of the spectral data is present; wherein N is the number of the second exciter;
  • the filtering parameters are adjusted to obtain the set filtering of the low-pass filter corresponding to each second exciter parameter.
  • the method for determining the signal filtering parameters wherein, obtaining the third time when the first exciter outputs the full audio signal of the measured spectral data, and N second exciters output the low-frequency signal of the measured spectral data.
  • Spectral curves including:
  • the zero-state responses of the N second exciters are calculated;
  • the third spectral curve is generated by superimposing the zero-state responses of the N second exciters and the spectral curves of the measured spectral data.
  • the method for determining signal filtering parameters wherein the initial filtering parameters include filter type, order and cutoff frequency;
  • the adjusting the filtering parameter includes:
  • the method for determining the signal filtering parameters wherein the filtering parameters are adjusted according to the comparison result of the first spectral curve, the second spectral curve and the third spectral curve to obtain each signal.
  • the set filtering parameters of the low-pass filter corresponding to the second exciter including:
  • the filtering parameters are adjusted, and the first spectral curve, the second spectral curve and the third spectrum curve;
  • the set filtering parameters of the low-pass filter corresponding to each of the second exciters are obtained.
  • the preset conditions are:
  • the distance between the third spectrum curve and the first spectrum curve at the low frequency part is less than a first preset value, and the distance between the third spectrum curve and the second spectrum curve at the high frequency part is less than a second preset value , and the transition line segment between the low frequency part and the high frequency part is a smooth line segment.
  • An embodiment of the present disclosure further provides a sound emission control device, wherein, applied to the display device according to any one of the above, the device includes:
  • a signal acquisition module configured to acquire a display image to be output and each audio signal corresponding to the display image
  • an analysis module configured to determine, according to the display image, a sound-emitting unit when each of the audio signals is output;
  • a signal transmission module for inputting each of the audio signals to the audio signal input end of the corresponding sounding unit, so that each exciter connected to the audio signal input end in the sounding unit responds to the same
  • the audio signal vibrates and sounds.
  • An embodiment of the present disclosure further provides an apparatus for determining a signal filtering parameter, wherein, when applied to the display apparatus described in any of the above, the apparatus includes:
  • the signal reading module is used to read the measured spectrum data
  • the data debugging module is used to debug the filtering parameters of the signal filter on the audio transmission line from the audio signal input end to each of the exciters in each of the sounding units according to the measured spectrum data, and obtain corresponding A set filter parameter of the signal filter, so that through the set filter parameter, when each exciter connected to the audio signal input end in the sound generating unit vibrates in response to the same audio signal, The sound produced by the entire sound generating unit has low frequency compensation.
  • FIG. 1 is a schematic plan view of the structure of one embodiment of the display device according to the embodiment of the disclosure.
  • FIG. 2 is a schematic plan structure diagram of another implementation manner of the display device according to the embodiment of the disclosure.
  • Embodiment 3 is a schematic structural diagram of Embodiment 1 of a sounding unit in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a process of testing and determining filtering parameters of a low-pass filter in an embodiment of the present disclosure
  • FIG. 5 is one of schematic diagrams of spectrum curves generated by the display device according to an embodiment of the present disclosure.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a sounding unit in an embodiment of the present disclosure
  • Embodiment 7 is a schematic structural diagram of Embodiment 3 of a sounding unit in an embodiment of the present disclosure.
  • FIG. 8 is a second schematic diagram of a spectrum curve generated by the display device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of the sound production control method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a sound emission control device according to an embodiment of the disclosure.
  • FIG. 11 is a schematic flowchart of a method for determining a signal filtering parameter according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of an apparatus for determining a signal filtering parameter according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a three-dimensional structure of the screen sound generating device according to the embodiment of the disclosure.
  • an embodiment of the present disclosure provides a display device, which is composed of at least two exciters to form a sound generation unit, and emits sound.
  • a signal filter is provided on the audio transmission line of at least one exciter, so that when at least two exciters in the sound-emitting unit vibrate and sound at the same time, the sound produced by the vibration of the exciter set with the signal filter is used for the sound of the entire sound-emitting unit.
  • Low-frequency compensation is carried out for sound generation to ensure good flatness and uniformity of the overall frequency spectrum of the sound emitted by the display device using the screen sound technology.
  • FIG. 1 is a schematic structural diagram of one implementation manner of the display device according to the embodiment of the present disclosure.
  • a plurality of exciters 110 are arranged in an array on the display panel 100 .
  • the vibration of at least one exciter 110 can drive the display panel 100 to vibrate.
  • the 100 acts as a vibrating body to generate vibration waves, which are transmitted to the human ear to make the screen sound.
  • the display device does not need a speaker and an earpiece, and uses the exciter 110 and the display panel 100 as the vibrating bodies, that is, sound output can be realized, and sound output from the screen of the display panel can be realized.
  • the output audio signal is usually converted into an electrical signal and output to at least one exciter 110 on the display panel 100, so that the exciter 110 generates vibration of corresponding amplitude, wherein according to the emitted audio frequency
  • the vibration amplitude of the exciter 110 is different depending on the audio value of the signal.
  • each exciter 110 can realize the vibration and sound of each audio value of the full-frequency signal, and the audio signal to be played is usually transmitted to one exciter 110, and the vibration of the one exciter 110 drives the display panel 100 vibrates and emits sound.
  • the low-frequency performance of the full-frequency exciter is poor, and the uniformity and good flatness of the emitted sound spectrum cannot be guaranteed.
  • the plurality of exciters 110 disposed on the display panel 100 are formed as at least one sound generating unit 120 , and each sound generating unit 120 includes at least two exciters 110, wherein each exciter 110 in the same sound generating unit 120 is connected to the same audio signal input terminal (not shown in the figure) for vibrating and sounding in response to the same audio signal input from the audio signal input terminal.
  • the display panel 100 includes a plurality of sub-panels 101 spliced in sequence, and each sub-panel 101 is respectively provided with an exciter 110 , wherein the plurality of exciters 110 provided on the adjacent sub-panels 101 form a sound-emitting unit 120, that is, the plurality of exciters 110 provided on the adjacent sub-panels 101 are connected to the same audio signal input end for It vibrates and emits sound in response to the same audio signal input from the audio signal input terminal.
  • a display panel formed by splicing a plurality of sub-panels can be, but is not limited to, only a Min LED display panel.
  • the display panel 100 may be an integral panel, and the display panel 100 includes a plurality of display areas 102 .
  • a plurality of exciters 110 arranged in an array are respectively arranged, and a plurality of exciters 110 disposed on each display area 102 are formed into a sound generating unit 120, that is, a plurality of exciters 110 disposed on each display area 102 are connected to
  • the same audio signal input terminal is used to vibrate and sound in response to the same audio signal input from the audio signal input terminal.
  • the display panel 100 formed as an integral panel may be, but is not limited to, only a Min LED display panel.
  • the plurality of exciters 110 are formed as at least one sound generating unit 120 , and each sound generating unit 120 includes at least two exciters 110 , each exciter 110 in the same sounding unit 120 is connected to the same audio signal input end, optionally, the exciters 110 in different sounding units 120 are connected to different audio signal input ends.
  • each audio signal that should be played at present is determined according to the display image currently output on the display device, wherein different sound
  • the sound emitted by the source can correspond to different audio signals.
  • For each audio signal determine the corresponding sound-emitting unit that needs to play the audio signal, and input the same audio signal to each exciter in the sound-emitting unit, so that multiple excitations in the same sound-emitting unit are activated.
  • the device simultaneously emits sound in response to the audio signal.
  • the sounding object in the image information is on the display panel.
  • the display position of the display device is determined, and the sound-emitting unit arranged at the display position is determined for the sound output of the audio signal, that is, by locating the sound-emitting object in the image information displayed by the display device, the sound-emitting unit at the position of the corresponding sound-emitting object is located. Output the sound emitted by the sound-emitting object to achieve the effect of sound and picture integration.
  • a signal filter is provided on the audio transmission line from the audio signal input end to at least one exciter, which is used for low-frequency compensation of the sound produced by the entire sound-generating unit. Good flatness and uniformity of the overall frequency spectrum of the sound emitted by the display device of the screen sound technology.
  • no signal filter is set on the audio transmission line from the first exciter 1101 of the at least two exciters 110 to the audio signal input end, and the audio signal at the audio signal input end is not provided with a signal filter. It is directly transmitted to the first exciter 1101, and vibrated and sounded by the first exciter 1101;
  • a low-pass filter is provided on the audio transmission line from the second exciter 1102 other than the first exciter 1101 to the audio signal input end of the at least two exciters 110, and the audio signal at the audio signal input end is provided with a low-pass filter (LPF). After passing through the low-pass filter, the low-frequency signal at the audio signal input end is obtained, and then transmitted to the second exciter 1102, and the second exciter 1102 vibrates and emits sound.
  • the number of the first exciter 1101 is one, and the second exciter 1102 includes every other exciter in the sound generating unit 120 except the first exciter 1101 .
  • the low-frequency signal of the output audio signal is extracted through the low-pass filter LPF connected to the second exciter 1102, the full-frequency sound signal of the output audio signal vibrates and sounds through the first exciter, and the output
  • the low-frequency signal of the audio signal adopts at least two second exciters to vibrate and sound at the same time, so as to ensure the uniformity and good flatness of the emitted sound spectrum.
  • the number of the first exciter is one, and the audio signal output to the first exciter is also the sound signal that needs to be output, that is, includes any audio value full-range sound signal.
  • N is the number of exciters
  • ⁇ SPL is the improvement of the sound pressure level of a single exciter
  • f is the audio value
  • f0 is the dividing point between low frequency and high frequency.
  • the sound pressure level of a single exciter has an increase of 20lg (N), and the simultaneous sounding of multiple exciters can significantly improve the low frequency sound pressure. level, to be able to have uniformity with the sound of high-frequency signals.
  • At least two second exciters 1102 output low-frequency signals of audio signals, and the frequency spectrum of the sound emitted by each second exciter 1102 is the same as that of the first excitation.
  • the frequency spectrum of the sound emitted by the device 1101 is superimposed to realize low-frequency compensation, and to ensure good flatness and uniformity of the obtained sound spectrum emitted by the entire device.
  • the dividing point f0 for dividing low frequency and high frequency is located between 2 and 5 kHz, that is, the audio value higher than the dividing point f0 can be determined to belong to the high frequency part, and the audio value below the dividing point can be determined as belonging to the high frequency part.
  • the audio value of the point f0 can be determined to belong to the low frequency part.
  • the specific value of the demarcation point f0 can be determined according to the actual vocalization requirement of the display device.
  • the obtained sound spectrum of the entire display device is well flat. And uniformity, it is necessary to design and coordinate the pass frequency range of each second exciter 1102, select a suitable low pass filter, and extract the low frequency signal in the output audio signal.
  • the cut-off frequencies of different low-pass filters are different.
  • the process of testing and determining the filtering parameters of the low-pass filter connected to each second exciter 1102 may include:
  • the filtering parameters of the low-pass filter corresponding to the second exciter are adjusted, and the set filtering parameters corresponding to each low-pass filter are obtained.
  • each low-pass filter adopts the corresponding set filtering parameters to extract and obtain the low-frequency signal in the audio signal, and the extracted low-frequency signal is transmitted to the
  • the corresponding second exciter makes the second exciter vibrate and sound.
  • the filtering parameters of the corresponding low-pass filter of each described second exciter are respectively initial filtering parameters, obtain the first spectral curve when the first exciter outputs the full audio signal of the measured spectral data, The second spectral curve when each of the exciters of the sound-emitting unit outputs the full audio signal of the measured spectral data respectively, and the first exciter outputs the full audio signal of the measured spectral data, N second excitations The third spectrum curve when the device outputs the low-frequency signal of the measured spectrum data; wherein N is the number of the second exciter;
  • the filtering parameters are adjusted to obtain the set filtering of the low-pass filter corresponding to each second exciter parameter.
  • the process of testing and determining the filtering parameters of the low-pass filter connected to each second exciter 1102 may start from step S410, and further include:
  • S493 Compare the first spectrum curve, the second spectrum curve, and the third spectrum curve, and determine whether a preset condition is satisfied between the first spectrum curve, the second spectrum curve, and the third spectrum curve , when the preset conditions are met, the process ends, and S495 is executed to obtain the set filtering parameters of the low-pass filter corresponding to each second exciter. cutoff frequency of the pass filter;
  • step S494 is performed;
  • step S494 adjust the filtering parameters, such as adjusting the cutoff frequency of the low-pass filter corresponding to each second exciter, re-obtain the first spectrum curve, the second spectrum curve, and the third spectrum curve, and Return to step S480;
  • the initial filtering parameters include a filter type, an order, and a cutoff frequency
  • the adjusting the filtering parameter includes:
  • the preset conditions satisfied between the first spectrum curve, the second spectrum curve and the third spectrum curve are:
  • the distance between the third spectrum curve and the first spectrum curve at the low frequency part is less than a first preset value, and the distance between the third spectrum curve and the second spectrum curve at the high frequency part is less than a second preset value , and the transition line segment between the low frequency part and the high frequency part is a smooth line segment.
  • the filtering parameters of the low-pass filter connected to each second exciter are tested and determined in the above manner, so as to ensure that after the low-frequency signal of the audio signal is extracted by using the determined filtering parameters, the The frequency spectrum of the sound produced by the vibration of the second exciter 1102 is superimposed with the frequency spectrum of the sound produced by the vibration of the first exciter 1101, and has good flatness and uniformity.
  • each sound generating unit includes seven second exciters and one first exciter.
  • the low frequency signal of each second exciter is generated by a 4th order Butterworth LPF with a cutoff frequency of 140 Hz.
  • the sounding spectrum with low frequency compensation can ensure the homogeneity of the spectrum of the full-frequency signal sent by a single exciter. .
  • a low-pass audio transmission line from the first exciter 1101 of the at least two exciters to the audio signal input end is set.
  • Filter LPF the audio signal at the audio signal input end passes through the low-pass filter to obtain the low-frequency signal of the audio signal and transmit each to the first exciter 1101, and the first exciter 1101 vibrates and emits sound ;
  • a low-pass filter LPF is provided on the first audio transmission line from the second exciter 1102 other than the first exciter 1101 to the audio signal input end of the at least two exciters 110, and the second exciter 1102 is connected to the audio signal input end.
  • the second audio transmission line at the end is provided with a high-pass filter HPF, and the audio signal of the audio signal input terminal obtains a low-frequency signal through the low-pass filter LPF, and obtains a high-frequency signal through the high-pass filter HPF, and the low-frequency signal and The high-frequency signal is transmitted to the second exciter 1102 after signal superposition, and the second exciter 1102 vibrates and emits sound.
  • the number of the second exciter 1102 is one, and in a sound generating unit, all the exciters except the second exciter 1102 are the first exciter 1101.
  • the number of devices 1101 may be seven.
  • multiple first exciters 1101 share the same low-pass filter LPF, that is, after the audio signal at the audio signal input end passes through the low-pass filter, the obtained low-frequency signal is transmitted to each first Exciter 1101.
  • the low-pass filter LPF on the audio transmission line from the second exciter 1102 to the audio signal input end, and the low-pass filter on the audio transmission line from the first exciter 1101 to the audio signal input end is the same low-pass filter LPF.
  • the low-pass filter LPF is used to extract the low-frequency signal of the audio signal, and the low-frequency signal adopts at least two first exciters 1101 to vibrate and sound at the same time.
  • the high-frequency signal causes the second exciter 1102 to vibrate and sound after the signal is superimposed, so that the frequency spectrum of the vibration and sound of a plurality of first exciters and the frequency spectrum of the second exciter 1102 are superimposed to realize low-frequency compensation and ensure that the entire device is obtained. Good flatness and uniformity of the sound spectrum.
  • the first exciter 1101 and the second exciter 1102 can ensure that the vibration and sound phases of the first exciter 1101 and the second exciter 1102 are consistent.
  • the audio signal input end is provided with a low-pass filter on the audio transmission line of each exciter 110 LPF and high-pass filter LPF, the audio signal at the audio signal input end passes through the low-pass filter LPF to obtain a low-frequency signal, and passes through the high-pass filter HPF to obtain a high-frequency signal, and the low-frequency signal and the high-frequency signal are obtained respectively.
  • the signal is transmitted to each of the exciters 110 after signal superposition and normalization, and each of the exciters 110 vibrates and emits sound respectively.
  • the extracted low-frequency signal and the high-frequency signal are superimposed and normalized after the signal is normalized.
  • the signal is transmitted to each exciter 110, a sound spectrum with a low-frequency compensation effect can be obtained.
  • a sound spectrum with good uniformity and flatness can be obtained. sound spectrum.
  • a signal filter is set on the audio transmission line of at least one exciter, and when at least two exciters in the sound generating unit vibrate and emit sound at the same time, the sound produced by the vibration of the exciter with the signal filter is used. , low-frequency compensation is performed on the sound emitted by the entire sound-emitting unit, so as to ensure the good flatness and uniformity of the overall frequency spectrum of the sound emitted by the display device using the screen sound-emitting technology.
  • Another embodiment of the present disclosure further provides a sound emission control method, which is applied to the display device described in any of the above. As shown in FIG. 9 , the method includes:
  • S920 determine the sound-emitting unit when each of the audio signals is output
  • the same audio signal can be transmitted to at least two exciters in a sound producing unit to vibrate and produce sound.
  • the sound is compensated for low frequency to ensure the good flatness and uniformity of the overall frequency spectrum of the sound emitted by the display device using the screen sound technology.
  • step S920 determining the sound production unit when each of the audio signals is output, comprising:
  • a sound generating unit arranged at the display position is determined for sound output of the audio signal.
  • the position of the sound-emitting object in the image displayed on the display panel can be kept consistent with the output position of the audio signal, so as to realize the effect of combining sound and picture.
  • Another embodiment of the present disclosure further provides a sound emission control device, which is applied to the display device described in any of the above. As shown in FIG. 10 , the device includes:
  • a signal acquisition module 1001 configured to acquire image information to be output and each audio signal corresponding to the image information
  • an analysis module 1002 configured to determine, according to the image information, a sound-emitting unit when each of the audio signals is output;
  • the signal transmission module 1003 is used to input each of the audio signals to the audio signal input end of the corresponding sounding unit, so that each exciter in the sounding unit connected to the audio signal input end responds to the same The audio signal vibrates and sounds.
  • the analysis module 1002 determines the sound production unit when each audio signal is output according to the image information, and is specifically used for:
  • a sound generating unit arranged at the display position is determined for sound output of the audio signal.
  • Another aspect of the embodiments of the present disclosure further provides a method for determining a signal filtering parameter, which is applied to the display device described in any of the above. As shown in FIG. 11 , the method includes:
  • the filtering parameters of the signal filter set in the display device according to the embodiment of the present disclosure can be determined, so as to ensure that when the exciter vibrates and emits sound through the signal filter with the filtering parameters With low frequency compensation effect.
  • the method for determining the signal filtering parameters wherein, in the same sounding unit, a signal filter is not set on the audio transmission line from the first exciter to the audio signal input end, and at least two exciters except the first
  • a low-pass filter is provided on the audio transmission line from each second exciter other than the exciter to the audio signal input end
  • step S1120 according to the measured spectrum data, debug each of the sound-emitting units, Set the filtering parameters of the signal filter on the audio transmission line from the audio signal input end to each of the exciters, and obtain the set filtering parameters corresponding to each of the signal filters, including:
  • the filtering parameters of the corresponding low-pass filter of each described second exciter are respectively initial filtering parameters, obtain the first spectral curve when the first exciter outputs the full audio signal of the measured spectral data, The second spectrum curve when each of the exciters outputs the full audio signal of the measured spectral data respectively, and the first exciter outputs the full audio signal of the measured spectral data, and N second exciters output the measured the third spectral curve when the low-frequency signal of the spectral data is present; wherein N is the number of the second exciter;
  • the filtering parameters are adjusted to obtain the set filtering of the low-pass filter corresponding to each second exciter parameter.
  • the method for determining the signal filtering parameters wherein, obtaining the third time when the first exciter outputs the full audio signal of the measured spectral data, and N second exciters output the low-frequency signal of the measured spectral data.
  • Spectral curves including:
  • the zero-state responses of the N second exciters are calculated;
  • the third spectral curve is generated by superimposing the zero-state responses of the N second exciters and the spectral curves of the measured spectral data.
  • the method for determining signal filtering parameters wherein the initial filtering parameters include filter type, order and cutoff frequency;
  • the adjusting the filtering parameter includes:
  • the method for determining the signal filtering parameters wherein the filtering parameters are adjusted according to the comparison result of the first spectral curve, the second spectral curve and the third spectral curve to obtain each signal.
  • the set filtering parameters of the low-pass filter corresponding to the second exciter including:
  • the filtering parameters are adjusted, and the first spectral curve, the second spectral curve and the third spectrum curve;
  • the set filtering parameters of the low-pass filter corresponding to each of the second exciters are obtained.
  • the preset conditions are:
  • the distance between the third spectrum curve and the first spectrum curve at the low frequency part is less than a first preset value, and the distance between the third spectrum curve and the second spectrum curve at the high frequency part is less than a second preset value , and the transition line segment between the low frequency part and the high frequency part is a smooth line segment.
  • Another embodiment of the present disclosure further provides an apparatus for determining a signal filtering parameter, which is applied to the display apparatus described in any of the above. As shown in FIG. 12 , the apparatus includes:
  • the signal reading module 1210 is used to read the measured spectrum data
  • the data debugging module 1220 is used to debug the filter parameters of the signal filter on the audio transmission line from the audio signal input end to each of the exciters in each of the sounding units according to the measured spectrum data, and obtain corresponding The set filtering parameters of each of the signal filters, so that through the set filtering parameters, each exciter connected to the audio signal input end in the sound generating unit responds to the same audio signal when vibrating and producing sound. , the sound produced by the entire sound generating unit has low frequency compensation.
  • the signal filtering parameter determination device wherein, in the same sounding unit, a signal filter is not set on the audio transmission line from the first exciter to the audio signal input end, at least two exciters except the first
  • the data debugging module 1220 debugs each of the sound-emitting units according to the measured spectrum data, Set the filtering parameters of the signal filter on the audio transmission line from the audio signal input end to each of the exciters, and obtain the set filtering parameters corresponding to each of the signal filters, including:
  • the filtering parameters of the corresponding low-pass filter of each described second exciter are respectively initial filtering parameters, obtain the first spectral curve when the first exciter outputs the full audio signal of the measured spectral data, The second spectrum curve when each of the exciters outputs the full audio signal of the measured spectral data respectively, and the first exciter outputs the full audio signal of the measured spectral data, and N second exciters output the measured the third spectral curve when the low-frequency signal of the spectral data is present; wherein N is the number of the second exciter;
  • the filtering parameters are adjusted to obtain the set filtering of the low-pass filter corresponding to each second exciter parameter.
  • the data debugging module 1220 obtains the full audio signal of the first exciter outputting the measured spectral data, and the N second exciters outputting the low frequency signal of the measured spectral data.
  • the third spectral curve when including:
  • the zero-state responses of the N second exciters are calculated;
  • the third spectral curve is generated by superimposing the zero-state responses of the N second exciters and the spectral curves of the measured spectral data.
  • the initial filtering parameters include filter type, order and cutoff frequency
  • the adjusting the filtering parameter includes:
  • the data debugging module 1220 adjusts the filtering parameters according to the comparison result of the first spectral curve, the second spectral curve and the third spectral curve, Obtain the set filtering parameters of the low-pass filter corresponding to each of the second exciters, including:
  • the filtering parameters are adjusted, and the first spectral curve, the second spectral curve and the third spectrum curve;
  • the set filtering parameters of the low-pass filter corresponding to each of the second exciters are obtained.
  • the preset condition is:
  • the distance between the third spectrum curve and the first spectrum curve at the low frequency part is less than a first preset value, and the distance between the third spectrum curve and the second spectrum curve at the high frequency part is less than a second preset value , and the transition line segment between the low frequency part and the high frequency part is a smooth line segment.
  • FIG. 13 Another aspect of the embodiments of the present disclosure further provides a screen sounding device, as shown in FIG. 13 , including:
  • each sound generating unit includes at least two exciters 110;
  • the circuit board 200 is provided with a plurality of audio input terminals 210, wherein each audio input terminal 210 corresponds to a sounding unit 120, and the audio input terminal 210 is connected to the corresponding sounding unit through an audio transmission line.
  • Each exciter 110 wherein, in each sound generating unit 120, a signal filter is provided on the audio transmission line from the audio input end 210 to at least one exciter.
  • an audio input end 210 is connected to each exciter 110 of a sound-generating unit 120, so that the multiple exciters 110 of the sound-generating unit 120 vibrate and emit sound at the same time.
  • the sound produced by the vibration can perform low-frequency compensation on the sound produced by the entire sound producing unit 120 .
  • each sound producing unit 120 further includes a plurality of display units 300 arranged in an array, and each display unit 300 is respectively provided with an exciter 110.
  • the display units 300 of the plurality of sound generating units 120 are formed as one display panel, or one display unit 300 is formed as one display sub-panel, and adjacent display sub-panels are spliced together.
  • each display unit 300 of the plurality of sound-emitting units 120 are formed as a display panel, that is, the plurality of display units 300 are combined to form an integral panel, and each display unit 300 corresponds to a display area, and a corresponding display area is provided respectively.
  • Exciter 110 At least two display areas 300 distributed in an array, and the exciter 110 disposed on each display area 300 form a sounding unit 120 . In one sound generating unit 120, the exciters 110 respectively disposed on each display area 300 are respectively connected to the same audio signal input end.
  • the display panel may be, but is not limited to, only an OLED display panel.
  • one display unit 300 is formed as one display sub-panel, and adjacent display sub-panels are spliced together to form a full-screen display panel.
  • each display sub-panel is provided with an exciter 110 respectively, wherein the adjacent plurality of display sub-panels and the exciter 110 provided on each display sub-panel are formed into a sounding unit 120, each of which is in a sounding unit 120.
  • An exciter 110 is connected to the same audio signal input terminal.
  • a display panel formed by splicing a plurality of display sub-panels can be, but not limited to, only a Min LED display panel.
  • the first exciter 1101 of at least two exciters 110 is connected to the audio transmission line of the audio signal input end No signal filter set;
  • a low-pass filter is provided on the audio transmission line from each second exciter 1102 of the at least two exciters 110 except the first exciter 1101 to the audio signal input end.
  • the audio signal at the audio signal input end is directly transmitted to the first exciter 1101, and the first exciter 1101 vibrates and emits sound; the audio signal at the audio signal input end passes through the low-pass filter to obtain the audio signal at the audio signal input end.
  • the low-frequency signal is then transmitted to the second exciter 1102, and the second exciter 1102 vibrates to produce sound.
  • the number of the first exciter 1101 is one, and the audio signal output to the first exciter is also the sound signal to be output, that is, the full-frequency sound signal including any audio value.
  • the second exciter 1102 includes every other exciter in the sound generating unit 120 except the first exciter 1101 .
  • the low-frequency signal of the output audio signal is extracted through the low-pass filter LPF connected to the second exciter 1102, the full-frequency sound signal of the output audio signal vibrates and sounds through the first exciter, and the output
  • the low-frequency signal of the audio signal adopts at least two second exciters to vibrate and sound at the same time, so as to ensure the uniformity and good flatness of the sound spectrum emitted.
  • the first exciter 1101 in the at least two exciters 110 is connected to the audio signal input end.
  • a low-pass filter LPF is set on the audio transmission line;
  • a low-pass filter LPF is set on the first audio transmission line from the second exciter 1102 other than the first exciter 1101 in the at least two exciters 110 to the audio signal input end;
  • a high-pass filter HPF is arranged on the second audio transmission line of the audio signal input end.
  • the audio signal at the audio signal input end passes through the low-pass filter to obtain the low-frequency signal of the audio signal, and then transmits each to the first exciter 1101 , and is vibrated by the first exciter 1101 Sound;
  • the audio signal at the audio signal input end passes through the low-pass filter LPF to obtain a low-frequency signal, and passes through the high-pass filter HPF to obtain a high-frequency signal, and the low-frequency signal and the high-frequency signal are superimposed and transmitted to
  • the second exciter 1102 is vibrated and sounded by the second exciter 1102 .
  • the number of the second exciter 1102 is one, and in a sounding unit, all the exciters except the second exciter 1102 are the first exciter 1101, optionally, the number of the first exciter 1101 can be for 7.
  • multiple first exciters 1101 share the same low-pass filter LPF, that is, after the audio signal at the audio signal input end passes through the low-pass filter, the obtained low-frequency signal is transmitted to each first Exciter 1101.
  • the low-pass filter LPF on the audio transmission line from the second exciter 1102 to the audio signal input end, and the low-pass filter on the audio transmission line from the first exciter 1101 to the audio signal input end is the same low-pass filter LPF.
  • the low-pass filter LPF is used to extract the low-frequency signal of the audio signal, and the low-frequency signal adopts at least two first exciters 1101 to vibrate and sound at the same time.
  • the high-frequency signal causes the second exciter 1102 to vibrate and sound after the signal is superimposed, so that the frequency spectrum of the vibration and sound of the plurality of first exciters 1101 and the frequency spectrum of the vibration and sound of the second exciter 1102 are superimposed to realize low-frequency compensation and ensure that the entire device is obtained. Good flatness and homogeneity of the sound spectrum emitted. As shown in FIG.
  • the audio signal input end is connected to the audio transmission line of each exciter 110 , and a low-pass filter LPF is arranged in sequence. and high pass filter HPF.
  • the audio signal at the audio signal input end passes through the low-pass filter LPF to obtain a low-frequency signal, passes through the high-pass filter HPF to obtain a high-frequency signal, and the low-frequency signal and the high-frequency signal pass through After the signals are superimposed and normalized, they are transmitted to each of the exciters 110 , and each of the exciters 110 vibrates and emits sound respectively.
  • the extracted low-frequency signal and the high-frequency signal are superimposed and normalized after the signal is normalized.
  • the signal is transmitted to each exciter 110, a sound spectrum with a low-frequency compensation effect can be obtained.
  • a sound spectrum with good uniformity and flatness can be obtained. sound spectrum.
  • the screen sounding device optionally, further includes a processor for inputting audio signals to each audio input terminal respectively.
  • the processor is specifically configured to acquire a display image to be output and each audio signal corresponding to the display image, determine the sound-emitting unit when each audio signal is output according to the display image, and assign each audio signal to the output.
  • An audio signal is input to the audio signal input end of the corresponding sounding unit, so that each exciter in the sounding unit connected to the audio signal input end vibrates and emits sound in response to the same audio signal.
  • the exciter may be a piezoelectric ceramic exciter or a micro-vibration exciter.
  • the sound emission device method of the display device can be used.
  • the adopted signal filtering parameter is determined by The method may apply the signal filtering parameter determination method adopted by the above-mentioned display device, which will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本公开提供一种显示装置、发声控制方法、参数确定方法及装置。该显示装置包括:设置于所述显示面板上的多个激励器,通过多个所述激励器,所述显示面板能够屏幕发声;其中,多个所述激励器形成为至少一发声单元,每一所述发声单元包括至少两个激励器,同一所述发声单元中的每一激励器均连接至同一音频信号输入端,在一个所述发声单元中,所述音频信号输入端到至少一所述激励器的音频传输线路上设置有信号滤波器,用于整个所述发声单元所发声音的低频补偿。

Description

显示装置、发声控制方法、参数确定方法及装置 技术领域
本公开涉及显示技术领域,尤其是指一种显示装置、发声控制方法、参数确定方法及装置。
背景技术
显示装置通过屏幕直接发声可以实现声画合一,并能够有效地利用空间、节约资源,此外与大尺寸屏幕结合时更能够提高发声功率和实现不同的声场效果。
采用屏幕发声技术需要将激励器贴附在显示屏幕背面,显示屏幕代替扬声器中的振动膜,激励器振动,带动屏幕振动,推动气流发声。通常为实现声画合一,拼接形成显示屏幕的每一子屏上贴合设置激励器,形成屏上扬声器阵列结构,利用扬声器阵列达到声源定位或定向发声的效果。
然而,采用该种结构的发声装置,存在全频激励器低频性能较差的问题,无法保证发声装置扬声器频谱的均一性和良好平坦性。
发明内容
本公开技术方案的目的是提供一种显示装置、发声控制方法、参数确定方法及装置,用于解决现有技术屏幕发声技术中,低频性能差,无法保证频谱的均一性和良好平坦性的问题。
为解决上述技术问题,本公开提供一种显示装置,包括显示面板,其中,所述显示装置还包括:
设置于所述显示面板上的多个激励器,通过多个所述激励器,所述显示面板能够屏幕发声;
其中,多个所述激励器形成为至少一发声单元,每一所述发声单元包括至少两个激励器,同一所述发声单元中的每一激励器均连接至同一音频信号输入端,在一个所述发声单元中,所述音频信号输入端到至少一所述激励器的音频传输线路上设置有信号滤波器,用于整个所述发声单元所发声音的低频补偿。
可选地,所述的显示装置,其中,多个所述激励器形成为至少两个发声单元,不同所述发声单元中的所述激励器连接至不同的音频信号输入端。
可选地,所述的显示装置,其中,同一所述发声单元中,至少两个激励器中的第一激励器到所述音频信号输入端的音频传输线路上未设置信号滤波器,所述音频信号输入端的音频信号直接传输至所述第一激励器,由所述第一激励器振动发声;
至少两个激励器中除所述第一激励器之外的每一第二激励器到所述音频信号输入端的音频传输线路上均设置有低通滤波器,所述音频信号输入端的音频信号经过所述低通滤波器,获得所述音频信号的低频信号后传输至所述第二激励器,由所述第二激励器振动发声。
可选地,所述的显示装置,其中,同一所述发声单元中,至少两个激励器中的第一激励器到所述音频信号输入端的音频传输线路上设置有低通滤波器,所述音频信号输入端的音频信号经过所述低通滤波器,获得所述音频信号的低频信号后传输至所述第一激励器,由所述第一激励器振动发声;
至少两个激励器中除所述第一激励器之外的第二激励器到所述音频信号输入端的第一音频传输线路上设置有低通滤波器,所述第二激励器到所述音频信号输入端的第二音频线路上设置有高通滤波器,所述音频信号输入端的音频信号分别经过所述低通滤波器获得低频信号、经过所述高通滤波器获得高频信号,且所述低频信号与所述高频信号经过信号叠加后传输至所述第二激励器,由所述第二激励器振动发声。
可选地,所述的显示装置,其中,同一所述发声单元中,所述音频信号输入端到每一激励器的音频传输线路上,设置有低通滤波器和高通滤波器,所述音频信号输入端的音频信号分别经过所述低通滤波器获得低频信号、经过所述高通滤波器获得高频信号,且所述低频信号与所述高频信号经过信号叠加且归一化处理后传输至每一所述激励器,分别由每一所述激励器振动发声。
可选地,所述的显示装置,其中,所述第一激励器的数量为至少两个,其中所述音频信号输入端到每一所述第一激励器的音频传输线路上共用一个低通滤波器。
可选地,所述的显示装置,其中,所述显示面板包括多个依次拼接的子面板,每一子面板上分别设置有一个所述激励器,其中相邻多个子面板上设置的 所述激励器形成为一个所述发声单元。
可选地,所述的显示装置,其中,所述显示面板包括多个显示区域,其中每一显示区域上分别设置有阵列的多个所述激励器,设置于每一显示区域上的多个所述激励器形成为一个所述发声单元。
本公开实施例还提供一种屏幕发声装置,其中,包括:
阵列排布的多个发声单元,每一所述发声单元包括至少两个激励器;
线路板,所述线路板上设置有多个音频输入端,其中每一音频输入端对应一个发声单元,所述音频输入端通过音频传输线路连接相对应所述发声单元的每一激励器;其中,在每一发声单元中,所述音频输入端到至少一所述激励器的音频传输线路上设置有信号滤波器。
可选地,所述的屏幕发声装置,其中,每一所述发声单元还包括多个阵列排布的显示单元,每一所述显示单元上分别设置有一个所述激励器。
可选地,所述的屏幕发声装置,其中,多个所述发声单元的显示单元形成为一个显示面板,或者一个所述显示单元形成为一个显示子面板,相邻显示子面板之间相拼接。
可选地,所述的屏幕发声装置,其中,同一所述发声单元中,至少两个激励器中的第一激励器到所述音频信号输入端的音频传输线路上未设置信号滤波器;
至少两个激励器中除所述第一激励器之外的每一第二激励器到所述音频信号输入端的音频传输线路上均设置有低通滤波器。
可选地,所述的屏幕发声装置,其中,同一所述发声单元中,至少两个激励器中的第一激励器到所述音频信号输入端的音频传输线路上设置有低通滤波器;
至少两个激励器中除所述第一激励器之外的第二激励器到所述音频信号输入端的第一音频传输线路上设置有低通滤波器;所述第二激励器到所述音频信号输入端的第二音频传输线路上设置有高通滤波器。
可选地,所述的屏幕发声装置,其中,同一所述发声单元中,所述音频信号输入端到每一激励器的音频传输线路上,依次设置有低通滤波器和高通滤波器。
可选地,所述的屏幕发声装置,其中,所述屏幕发声装置还包括处理器, 用于向每一所述音频输入端分别输入音频信号。
本公开实施例还提供一种发声控制方法,其中,应用于如上任一项所述的显示装置,所述方法包括:
获取待输出图像信息和与所述图像信息对应的每一音频信号;
根据所述图像信息,确定每一所述音频信号被输出时的发声单元;
将每一所述音频信号输入至相应所述发声单元的音频信号输入端,使所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声。
可选地,所述的发声控制方法,其中,根据所述图像信息,确定每一所述音频信号被输出时的发声单元,包括:
识别所述图像信息中与所述音频信号相对应的发声物;
判断所述显示面板在显示所述图像信息时,所述图像信息中的所述发声物在显示面板上的显示位置;
确定设置于所述显示位置处的发声单元,用于所述音频信号的声音输出。
本公开实施例还提供一种信号滤波参数确定方法,其中,应用于如上任一项所述的显示装置,所述方法包括:
读取实测频谱数据;
根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,使得通过所述设定滤波参数,所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声时,具有低频补偿。
可选地,所述的信号滤波参数确定方法,其中,在同一发声单元中,第一激励器到所述音频信号输入端的音频传输线路上未设置信号滤波器,至少两个激励器中除第一激励器之外的每一第二激励器到所述音频信号输入端的音频传输线路上均设置有低通滤波器时,根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,包括:
设定每一所述第二激励器相对应低通滤波器的滤波参数分别为初始滤波参数的情况下,获得第一激励器输出所述实测频谱数据的全音频信号时的第一 频谱曲线、每一所述激励器分别输出所述实测频谱数据的全音频信号时的第二频谱曲线,以及第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线;其中N为第二激励器的个数;
根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
可选地,所述的信号滤波参数确定方法,其中,获得第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线,包括:
依据每一所述第二激励器相对应低通滤波器分别为初始滤波参数,计算N个所述第二激励器的零状态响应;
将N个所述第二激励器的零状态响应与所述实测频谱数据的频谱曲线进行叠加,生成所述第三频谱曲线。
可选地,所述的信号滤波参数确定方法,其中,所述初始滤波参数包括滤波器类型、阶数和截止频率;
其中,所述调整所述滤波参数包括:
调整每一所述低通滤波器的截止频率。
可选地,所述的信号滤波参数确定方法,其中,根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数,包括:
对比所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线;
在所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线不满足预设条件时,调整所述滤波参数,重新获得所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线;
在所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线满足预设条件时,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
可选地,所述的信号滤波参数确定方法,其中,所述预设条件为:
所述第三频谱曲线在低频部分处与所述第一频谱曲线之间的距离小于第一预设值,在高频部分处与所述第二频谱曲线之间的距离小于第二预设值,且 低频部分与高频部分之间的过渡线段为平滑线段。
本公开实施例还提供一种发声控制装置,其中,应用于如上任一项所述的显示装置,所述装置包括:
信号获取模块,用于获取待输出显示图像和与所述显示图像对应的每一音频信号;
分析模块,用于根据所述显示图像,确定每一所述音频信号被输出时的发声单元;
信号传输模块,用于将每一所述音频信号输入至相应所述发声单元的音频信号输入端,使所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声。
本公开实施例还提供一种信号滤波参数确定装置,其中,应用于如上任一项所述的显示装置,所述装置包括:
信号读取模块,用于读取实测频谱数据;
数据调试模块,用于根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,使得通过所述设定滤波参数,所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声时,整个所述发声单元所发声音具有低频补偿。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例所述显示装置的其中一实施方式的平面结构示意图;
图2为本公开实施例所述显示装置的另一实施方式的平面结构示意图;
图3为本公开实施例中,发声单元的实施方式一的结构示意图;
图4为本公开实施例中,测试确定低通滤波器的滤波参数的过程示意图;
图5为采用本公开实施例所述显示装置所生成的频谱曲线的示意图之一;
图6为本公开实施例中,发声单元的实施方式二的结构示意图;
图7为本公开实施例中,发声单元的实施方式三的结构示意图;
图8为采用本公开实施例所述显示装置所生成的频谱曲线的示意图之二;
图9为本公开实施例所述发声控制方法的流程示意图;
图10为本公开实施例所述发声控制装置的结构示意图;
图11为本公开实施例所述信号滤波参数确定方法的流程示意图;
图12为本公开实施例所述信号滤波参数确定装置的结构示意图;
图13为本公开实施例所述屏幕发声装置的立体结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
为解决现有技术屏幕发声技术中,低频性能差,无法保证频谱的均一性和良好平坦性的问题,本公开实施例提供一种显示装置,通过至少两个激励器组成一个发声单元,且发声单元中,至少一个激励器的音频传输线路上设置有信号滤波器,这样发声单元中的至少两个激励器同时振动发声时,利用设置信号滤波器的激励器振动所发声音,对整个发声单元所发声音进行低频补偿,保证采用屏幕发声技术的显示装置所发出声音整体频谱的良好平坦性和均一性。
如图1为本公开实施例所述显示装置的其中一实施方式的结构示意图,显示面板100上阵列设置有多个激励器110,通过至少一激励器110振动能够带动显示面板100振动,显示面板100作为振动体产生振动波,传送到人耳,实现屏幕发声。这样,显示装置无需扬声器和听筒,以激励器110和显示面板100作为振动体,即能够实现声音输出,实现显示面板的屏幕发声。
采用上述的显示装置,在实现屏幕发声时,通常将输出的音频信号转换为电信号输出至显示面板100上的至少一激励器110,使激励器110产生相应振幅的振动,其中根据所发出音频信号的音频值的不同,激励器110的振动幅度不同。通常技术的显示面板中,每一激励器110能够实现全频信号的每一音频 值的振动发声,待播放的音频信号通常传输至一个激励器110,由该一个激励器110的振动带动显示面板100振动发声,然而该种利用一个激励器110实现所发出音频信号的全频发声时,存在全频激励器低频性能差,无法保证所发出声音频谱的均一性和良好平坦性的效果。
本公开实施例所述显示装置,其中一实施例,如图1所示,显示面板100上设置的多个激励器110形成为至少一发声单元120,每一发声单元120包括至少两个激励器110,其中同一发声单元120中的每一激励器110均连接至同一音频信号输入端(图中未显示),用于响应由音频信号输入端所输入的同一音频信号振动发声。
本公开实施例所述显示装置,其中一实施方式,如图1所示,可选地,显示面板100包括多个依次拼接的子面板101,每一子面板101上分别设置有一个激励器110,其中相邻多个子面板101上设置的多个激励器110形成为一个发声单元120,也即相邻多个子面板101上设置的多个激励器110均连接至同一音频信号输入端,用于响应音频信号输入端所输入的同一音频信号而振动发声。
该实施方式中,可选地,多个子面板相拼接形成的显示面板可以为但不限于仅能够为Min LED显示面板。
本公开实施例所述显示装置,其中一实施方式,如图2所示,可选地,显示面板100可以为一个整体面板,该显示面板100包括多个显示区域102,每一显示区域102上分别设置有阵列的多个激励器110,设置于每一显示区域102上的多个激励器110形成为一个发声单元120,也即每一显示区域102上设置的多个激励器110均连接至同一音频信号输入端,用于响应音频信号输入端所输入的同一音频信号而振动发声。
该实施方式中,可选地,形成为整体面板的显示面板100可以为但不限于仅能够为Min LED显示面板。
采用上述实施方式,在所述显示装置的显示面板100上所设置的多个激励器110中,多个激励器110形成为至少一发声单元120,每一发声单元120包括至少两个激励器110,同一发声单元120中的每一激励器110均连接至同一音频信号输入端,可选地,不同发声单元120中的激励器110连接至不同的音频信号输入端。
采用本公开实施例所述显示装置,在向显示装置输入音频信号,使激励器振动发声时,根据在显示装置上当前所输出的显示图像,确定当前应该播放的每一音频信号,其中不同声源所发出声音可以对应不同音频信号,对于每一音频信号确定相应需要播放该音频信号的发声单元,向该发声单元中的每一激励器输入同一音频信号,使同一发声单元中的多个激励器响应该音频信号同时发声。
可选地,可以通过识别所述图像信息中与所述音频信号相对应的发声物,判断所述显示面板在显示所述图像信息时,所述图像信息中的所述发声物在显示面板上的显示位置,确定设置于所述显示位置处的发声单元,用于所述音频信号的声音输出,也即通过定位显示装置所显示图像信息中的发声物,使相应发声物所在位置的发声单元输出发声物所发出的声音,实现声画合一的效果。
本公开实施例所述显示装置,在一个所述发声单元中,音频信号输入端到至少一激励器的音频传输线路上设置有信号滤波器,用于整个发声单元所发声音的低频补偿,保证采用屏幕发声技术的显示装置所发出声音整体频谱的良好平坦性和均一性。
其中一实施方式,如图3所示,同一发声单元120中,至少两个激励器110中的第一激励器1101到音频信号输入端的音频传输线路上未设置信号滤波器,音频信号输入端的音频信号直接传输至第一激励器1101,由第一激励器1101振动发声;
至少两个激励器110中除第一激励器1101之外的第二激励器1102到音频信号输入端的音频传输线路上设置有低通滤波器(Lowpass filter,LPF),所述音频信号输入端的音频信号经过所述低通滤波器,获得所述音频信号输入端的低频信号后传输至所述第二激励器1102,由第二激励器1102振动发声。
可选地,第一激励器1101的数量为一个,第二激励器1102包括一个发声单元120中除第一激励器1101之外的其他每一激励器。
采用该实施方式,通过与第二激励器1102连接的低通滤波器LPF提取所输出的音频信号的低频信号,所输出的音频信号的全频声音信号通过第一激励器振动发声,所输出的音频信号的低频信号采用至少两个第二激励器同时振动发声,保证所发出声音频谱的均一性和良好平坦性。
需要说明的是,本公开实施例中,可选地,第一激励器的数量为一个,输 出至第一激励器的音频信号也即为所需要输出的声音信号,也即包括任一音频值的全频声音信号。
具体地,根据用于声压级提升的如下公式原理所示:
Figure PCTCN2021075745-appb-000001
其中,N为激励器的个数,ΔSPL为相对单个激励器声压级的提升量,f为音频值,f0为低频和高频的分界点。
可以看出,当激励器的数量为至少两个,音频值f处于低频范围内时,相对单个激励器声压级具有提升量20lg(N),多个激励器同时发声能够显著提高低频声压级,以能够与高频信号的发声具有均一性。
基于该一原理,本公开实施例所述发声控制方法中,通过至少两个的第二激励器1102输出音频信号的低频信号,且每一第二激励器1102所发出声音的频谱与第一激励器1101所发出声音的频谱叠加,实现低频补偿,保证所获得整个装置所发出声音频谱的良好平坦性和均一性。
需要说明的是,可选地,用于划分低频与高频的分界点f0位于2至5kHz之间,也即高于该分界点f0的音频值可以确定为属于高频部分,低于该分界点f0的音频值可以确定为属于低频部分。其中,该分界点f0的具体数值可以根据显示装置的实际发声要求确定。
采用该实施例所述显示装置,为保证每一第二激励器1102所发出声音的频谱与第一激励器1101所发出声音的频谱叠加后,所获得整个显示装置所发出声音频谱的良好平坦性和均一性,需要设计及协调各个第二激励器1102的通频范围,选择合适的低通滤波器,将所输出音频信号中的低频信号提取出来。
因此,本公开实施例中,可选地,需要测试确定与每一第二激励器1102所连接的低通滤波器的滤波参数。
可选地,每一第二激励器1102到音频信号输入端的音频传输线路上所设置的低通滤波器中,不同低通滤波器的截止频率不同。
本公开实施例所述显示装置,测试确定与每一第二激励器1102所连接的低通滤波器的滤波参数的过程可以包括:
读取实测频谱数据;
根据所述实测频谱数据,调试第二激励器相对应的低通滤波器的滤波参数,获得对应每一低通滤波器的设定滤波参数。
其中,音频信号输入端所输入的音频信号经过低通滤波器时,每一低通滤波器分别采用相对应的设定滤波参数,提取获得音频信号中的低频信号,所提取的低频信号传输至相对应的第二激励器,使第二激励器振动发声。
可选地,根据所述实测频谱数据,调试所述第二激励器相对应的低通滤波器的滤波参数,获得对应每一所述低通滤波器的设定滤波参数,包括:
设定每一所述第二激励器相对应低通滤波器的滤波参数分别为初始滤波参数的情况下,获得第一激励器输出所述实测频谱数据的全音频信号时的第一频谱曲线、所述发声单元的每一所述激励器分别输出所述实测频谱数据的全音频信号时的第二频谱曲线,以及第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线;其中N为第二激励器的个数;
根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
具体地,结合图4所示,测试确定与每一第二激励器1102所连接的低通滤波器的滤波参数的过程可以从步骤S410开始,并进一步包括:
S420,读取实测频谱数据;
S430,根据所读取的实测频谱数据,绘制第一激励器输出所述实测频谱数据的全音频信号时的第一频谱曲线;
S440,读入第二激励器(也即用于低频补偿)的激励器个数n;
S450,绘制第一激励器和n个第二激励器均发实测频谱数据的全音频信号时的第二频谱曲线;
S460,选择拟采用低通滤波器的类型和阶数;
S470,设置n个第二激励器的初始截止频率f01、f02、¨¨、f0n;可选地,n个第二激励器的初始截止频率可以相同,也可为相互不同;
S480,根据初始截止频率f01、f02、¨¨、f0n设计每一低通滤波器;
S490,根据所设计的低通滤波器,计算n个低通滤波器的零状态响应;
S491,按照声压级提升原理,将n个低通滤波器的零状态响应与实测频谱数据的频谱曲线进行叠加;
S492,绘制第一激励器发实测频谱数据的全音频信号、n个第二激励器发 实测频谱数据的低频信号时的第三频谱曲线;
S493,对比所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线,判断第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线之间是否满足预设条件,在满足预设条件时,则流程结束,执行S495,获得每一第二激励器相对应低通滤波器的设定滤波参数,本公开实施例中,获得每一第二激励器相对应低通滤波器的截止频率;
在不满足预设条件时,执行步骤S494;
S494,调整所述滤波参数,如调整每一第二激励器相对应低通滤波器的截止频率,重新获得所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线,并返回步骤S480;
S495,结束。
本公开实施例中,可选地,所述初始滤波参数包括滤波器类型、阶数和截止频率;
其中,所述调整所述滤波参数包括:
调整每一所述低通滤波器的截止频率。
进一步,可选地,第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线之间所满足的预设条件为:
所述第三频谱曲线在低频部分处与所述第一频谱曲线之间的距离小于第一预设值,在高频部分处与所述第二频谱曲线之间的距离小于第二预设值,且低频部分与高频部分之间的过渡线段为平滑线段。
本公开实施例所述显示装置,通过上述方式测试确定与每一第二激励器所连接的低通滤波器的滤波参数,保证采用所确定的滤波参数提取音频信号的低频信号后,经每一第二激励器1102振动所发出声音的频谱与第一激励器1101振动所发出声音的频谱叠加,具有良好平坦性和均一性。
本公开实施例所述显示装置,可选地,综合考虑低频的声压级提升、衔接点附近的过渡平滑程度以及低通滤波器设计的复杂程度,建议采用7个低通激励器,也即每一发声单元包括7个第二激励器,1个第一激励器。可选地,每一第二激励器的低频信号由截止频率为140Hz的4阶巴特沃斯LPF生成。以该设置参数为例,如图5所示的发声仿真频谱曲线图,采用本公开实施例所述显示装置,通过低频补偿的发声频谱能够保证与单一激励器所发全频信号频谱 的均一性。
经过测试证明,采用本公开实施例上述实施方式所述的显示装置,能够达到较佳的低频补偿效果,100Hz以上频率声压级可达60.82dB以上。
本公开实施例所述显示装置,另一实施方式,如图6所示,同一发声单元120中,至少两个激励器中的第一激励器1101到音频信号输入端的音频传输线路上设置有低通滤波器LPF,所述音频信号输入端的音频信号经过所述低通滤波器,获得所述音频信号的低频信号后传输每一至所述第一激励器1101,由所述第一激励器1101振动发声;
至少两个激励器110中除第一激励器1101之外的第二激励器1102到音频信号输入端的第一音频传输线路上设置有低通滤波器LPF,所述第二激励器1102到音频信号输入端的第二音频传输线路上设置有高通滤波器HPF,所述音频信号输入端的音频信号分别经过低通滤波器LPF获得低频信号、经过所述高通滤波器HPF获得高频信号,且所述低频信号与所述高频信号经过信号叠加后传输至第二激励器1102,由第二激励器1102振动发声。
该实施方式中,可选地,第二激励器1102的数量为一个,一个发声单元中,除第二激励器1102之外的激励器均为第一激励器1101,可选地,第一激励器1101的数量可以为7个。
进一步,可选地,多个第一激励器1101共用同一低通滤波器LPF,也即音频信号输入端的音频信号经过所述低通滤波器后,所获得的低频信号分别传输至每一第一激励器1101。
另外,可选地,如图6所示,第二激励器1102到音频信号输入端的音频传输线路上的低通滤波器LPF,与第一激励器1101到音频信号输入端的音频传输线路上的低通滤波器LPF为同一低通滤波器LPF。
该实施方式,利用低通滤波器LPF提取音频信号的低频信号,低频信号采用至少两个第一激励器1101同时振动发声,所输出的音频信号分别提取低频信号和高频信号后,低频信号与高频信号经过信号叠加后使第二激励器1102振动发声,这样利用多个第一激励器振动发声的频谱与第二激励器1102振动发声的频谱叠加,实现低频补偿,保证所获得整个装置所发出声音频谱的良好平坦性和均一性。
另外,相较于图3所示实施方式,采用该实施方式,对于任一频率的音频 信号,能够保证第一激励器1101和第二激励器1102振动发声的相位一致。
本公开实施例所述显示装置,再一实施方式,如图7所示,同一所述发声单元中,所述音频信号输入端到每一激励器110的音频传输线路上,设置有低通滤波器LPF和高通滤波器LPF,所述音频信号输入端的音频信号分别经过所述低通滤波器LPF获得低频信号、经过所述高通滤波器HPF获得高频信号,且所述低频信号与所述高频信号经过信号叠加且归一化处理后传输至每一所述激励器110,分别由每一所述激励器110振动发声。
采用该实施方式,音频信号输入端所输入的音频信号经低通滤波器LPF和高通滤波器HPF分别滤波后,所提取的低频信号与高频信号叠加并经信号归一化后,归一化后信号传输至每一激励器110,可以获得低频补偿效果的声音频谱,以低通滤波器LPF的截止频率fc=80Hz为例,如图8所示,能够获得具有良好均一性和平坦性的声音频谱。
实验测试证明,采用该实施方式所述显示装置,相较于图3所示实施方式的显示装置,低频补偿效果更好,100Hz以上频率声压级可达61dB以上。
采用本公开实施例所述显示装置,至少一个激励器的音频传输线路上设置有信号滤波器,发声单元中的至少两个激励器同时振动发声时,利用设置信号滤波器的激励器振动所发声音,对整个发声单元所发声音进行低频补偿,保证采用屏幕发声技术的显示装置所发出声音整体频谱的良好平坦性和均一性。
本公开另一实施例还提供一种发声控制方法,应用于如上任一项所述的显示装置,如图9所示,所述方法包括:
S910,获取待输出图像信息和与所述图像信息对应的每一音频信号;
S920,根据所述图像信息,确定每一所述音频信号被输出时的发声单元;
S930,将每一所述音频信号输入至相应所述发声单元的音频信号输入端,使所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声。
采用该实施例所述发声控制方法,同一音频信号可以传输至一个发声单元中的至少两个激励器,进行振动发声,利用设置信号滤波器的激励器振动所发声音,对整个发声单元所发声音进行低频补偿,保证采用屏幕发声技术的显示装置所发出声音整体频谱的良好平坦性和均一性。
可选地,所述的发声控制方法,其中,在步骤S920,根据所述图像信息, 确定每一所述音频信号被输出时的发声单元,包括:
识别所述图像信息中与所述音频信号相对应的发声物;
判断所述显示面板在显示所述图像信息时,所述图像信息中的所述发声物在显示面板上的显示位置;
确定设置于所述显示位置处的发声单元,用于所述音频信号的声音输出。
采用上述确定音频信号被输出时的发声单元的方式,能够使显示面板所显示图像中发声物的位置与音频信号输出的位置保持一致,实现音画合一的效果。
本公开另一实施例还提供一种发声控制装置,应用于如上任一项所述的显示装置,如图10所示,所述装置包括:
信号获取模块1001,用于获取待输出图像信息和与所述图像信息对应的每一音频信号;
分析模块1002,用于根据所述图像信息,确定每一所述音频信号被输出时的发声单元;
信号传输模块1003,用于将每一所述音频信号输入至相应所述发声单元的音频信号输入端,使所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声。
可选地,所述的发声控制装置,其中,分析模块1002根据所述图像信息,确定每一所述音频信号被输出时的发声单元,具体用于:
识别所述图像信息中与所述音频信号相对应的发声物;
判断所述显示面板在显示所述图像信息时,所述图像信息中的所述发声物在显示面板上的显示位置;
确定设置于所述显示位置处的发声单元,用于所述音频信号的声音输出。
本公开实施例另一方面还提供一种信号滤波参数确定方法,应用于如上任一项所述的显示装置,如图11所示,所述方法包括:
S1110,读取实测频谱数据;
S1120,根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,使得通过所述设定滤波参数,所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声时,整个所述发声单元所发声音具有低频补偿。
采用本公开实施例所述信号滤波参数确定方法,能够确定本公开实施例所述显示装置中所设置信号滤波器的滤波参数,以保证通过具有该滤波参数的信号滤波器,激励器振动发声时具有低频补偿效果。
可选地,所述的信号滤波参数确定方法,其中,在同一发声单元中,第一激励器到所述音频信号输入端的音频传输线路上未设置信号滤波器,至少两个激励器中除第一激励器之外的每一第二激励器到所述音频信号输入端的音频传输线路上均设置有低通滤波器时,在步骤S1120,根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,包括:
设定每一所述第二激励器相对应低通滤波器的滤波参数分别为初始滤波参数的情况下,获得第一激励器输出所述实测频谱数据的全音频信号时的第一频谱曲线、每一所述激励器分别输出所述实测频谱数据的全音频信号时的第二频谱曲线,以及第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线;其中N为第二激励器的个数;
根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
可选地,所述的信号滤波参数确定方法,其中,获得第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线,包括:
依据每一所述第二激励器相对应低通滤波器分别为初始滤波参数,计算N个所述第二激励器的零状态响应;
将N个所述第二激励器的零状态响应与所述实测频谱数据的频谱曲线进行叠加,生成所述第三频谱曲线。
可选地,所述的信号滤波参数确定方法,其中,所述初始滤波参数包括滤波器类型、阶数和截止频率;
其中,所述调整所述滤波参数包括:
调整每一所述低通滤波器的截止频率。
可选地,所述的信号滤波参数确定方法,其中,根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数,包括:
对比所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线;
在所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线不满足预设条件时,调整所述滤波参数,重新获得所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线;
在所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线满足预设条件时,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
可选地,所述的信号滤波参数确定方法,其中,所述预设条件为:
所述第三频谱曲线在低频部分处与所述第一频谱曲线之间的距离小于第一预设值,在高频部分处与所述第二频谱曲线之间的距离小于第二预设值,且低频部分与高频部分之间的过渡线段为平滑线段。
本公开另一实施例还提供一种信号滤波参数确定装置,应用于如上任一项所述的显示装置,如图12所示,所述装置包括:
信号读取模块1210,用于读取实测频谱数据;
数据调试模块1220,用于根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,使得通过所述设定滤波参数,所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声时,整个所述发声单元所发声音具有低频补偿。
可选地,所述的信号滤波参数确定装置,其中,在同一发声单元中,第一激励器到所述音频信号输入端的音频传输线路上未设置信号滤波器,至少两个激励器中除第一激励器之外的每一第二激励器到所述音频信号输入端的音频传输线路上均设置有低通滤波器时,数据调试模块1220根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,包括:
设定每一所述第二激励器相对应低通滤波器的滤波参数分别为初始滤波参数的情况下,获得第一激励器输出所述实测频谱数据的全音频信号时的第一 频谱曲线、每一所述激励器分别输出所述实测频谱数据的全音频信号时的第二频谱曲线,以及第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线;其中N为第二激励器的个数;
根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
可选地,所述的信号滤波参数确定装置,其中,数据调试模块1220获得第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线,包括:
依据每一所述第二激励器相对应低通滤波器分别为初始滤波参数,计算N个所述第二激励器的零状态响应;
将N个所述第二激励器的零状态响应与所述实测频谱数据的频谱曲线进行叠加,生成所述第三频谱曲线。
可选地,所述的信号滤波参数确定装置,其中,所述初始滤波参数包括滤波器类型、阶数和截止频率;
其中,所述调整所述滤波参数包括:
调整每一所述低通滤波器的截止频率。
可选地,所述的信号滤波参数确定装置,其中,数据调试模块1220根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数,包括:
对比所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线;
在所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线不满足预设条件时,调整所述滤波参数,重新获得所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线;
在所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线满足预设条件时,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
可选地,所述的信号滤波参数确定装置,其中,所述预设条件为:
所述第三频谱曲线在低频部分处与所述第一频谱曲线之间的距离小于第 一预设值,在高频部分处与所述第二频谱曲线之间的距离小于第二预设值,且低频部分与高频部分之间的过渡线段为平滑线段。
本公开实施例另一方面还提供一种屏幕发声装置,如图13所示,包括:
阵列排布的多个发声单元120,每一发声单元包括至少两个激励器110;
线路板200,所述线路板200上设置有多个音频输入端210,其中每一音频输入端210对应一个发声单元120,所述音频输入端210通过音频传输线路连接相对应所述发声单元的每一激励器110;其中,在每一发声单元120中,所述音频输入端210到至少一激励器的音频传输线路上设置有信号滤波器。
采用该实施例所述屏幕发声装置,一个音频输入端210连接至一个发声单元120的每一激励器110,这样发声单元120的多个激励器110同时振动发声,利用设置信号滤波器的激励器振动所发声音,能够对整个发声单元120所发声音进行低频补偿。
本公开实施例所述的屏幕发声装置,其中,如图13所示,每一所述发声单元120还包括多个阵列排布的显示单元300,每一显示单元300上分别设置有一个激励器110。
可选地,多个发声单元120的显示单元300形成为一个显示面板,或者一个显示单元300形成为一个显示子面板,相邻显示子面板之间相拼接。
其中,当多个发声单元120的显示单元300形成为一个显示面板时,也即是多个显示单元300相组合形成为一个整体面板,每一显示单元300对应为一个显示区域,分别对应设置一个激励器110。至少两个阵列分布的显示区域300,以及每一显示区域300上设置的激励器110形成为一个发声单元120。一个发声单元120内,每一显示区域300上分别设置的激励器110分别连接至同一音频信号输入端。
可选地,多个发声单元120的显示单元300形成为一个显示面板时,所述显示面板可以为但不限于仅能够为OLED显示面板。
另一实施方式,一个显示单元300形成为一个显示子面板,相邻显示子面板之间相拼接形成为一个全屏显示面板。其中,每一显示子面板上分别设置有一个激励器110,其中相邻多个显示子面板以及每一显示子面板上设置的激励器110形成为一个发声单元120,一个发声单元120内的每一激励器110均连接至同一音频信号输入端。
该实施方式中,可选地,多个显示子面板相拼接形成的显示面板可以为但不限于仅能够为Min LED显示面板。
本公开实施例所述屏幕发声装置,其中一实施方式,如图3所示,同一发声单元120中,至少两个激励器110中的第一激励器1101到所述音频信号输入端的音频传输线路上未设置信号滤波器;
至少两个激励器110中除所述第一激励器1101之外的每一第二激励器1102到所述音频信号输入端的音频传输线路上均设置有低通滤波器。
采用该实施结构,音频信号输入端的音频信号直接传输至第一激励器1101,由第一激励器1101振动发声;音频信号输入端的音频信号经过所述低通滤波器,获得所述音频信号输入端的低频信号后传输至所述第二激励器1102,由第二激励器1102振动发声。
可选地,第一激励器1101的数量为一个,输出至第一激励器的音频信号也即为所需要输出的声音信号,也即包括任一音频值的全频声音信号。第二激励器1102包括一个发声单元120中除第一激励器1101之外的其他每一激励器。
采用该实施方式,通过与第二激励器1102连接的低通滤波器LPF提取所输出的音频信号的低频信号,所输出的音频信号的全频声音信号通过第一激励器振动发声,所输出的音频信号的低频信号采用至少两个第二激励器同时振动发声,保证所发出声音频谱的均一性和良好平坦性。本公开实施例所述的屏幕发声装置,另一实施方式,如图6所示,同一所述发声单元120中,至少两个激励器110中的第一激励器1101到所述音频信号输入端的音频传输线路上设置有低通滤波器LPF;
至少两个激励器110中除第一激励器1101之外的第二激励器1102到所述音频信号输入端的第一音频传输线路上设置有低通滤波器LPF;所述第二激励器到所述音频信号输入端的第二音频传输线路上设置有高通滤波器HPF。
采用该实施结构,所述音频信号输入端的音频信号经过所述低通滤波器,获得所述音频信号的低频信号后传输每一至所述第一激励器1101,由所述第一激励器1101振动发声;所述音频信号输入端的音频信号分别经过低通滤波器LPF获得低频信号、经过所述高通滤波器HPF获得高频信号,且所述低频信号与所述高频信号经过信号叠加后传输至第二激励器1102,由第二激励器1102振动发声。
可选地,第二激励器1102的数量为一个,一个发声单元中,除第二激励器1102之外的激励器均为第一激励器1101,可选地,第一激励器1101的数量可以为7个。
进一步,可选地,多个第一激励器1101共用同一低通滤波器LPF,也即音频信号输入端的音频信号经过所述低通滤波器后,所获得的低频信号分别传输至每一第一激励器1101。
另外,可选地,如图6所示,第二激励器1102到音频信号输入端的音频传输线路上的低通滤波器LPF,与第一激励器1101到音频信号输入端的音频传输线路上的低通滤波器LPF为同一低通滤波器LPF。
该实施方式,利用低通滤波器LPF提取音频信号的低频信号,低频信号采用至少两个第一激励器1101同时振动发声,所输出的音频信号分别提取低频信号和高频信号后,低频信号与高频信号经过信号叠加后使第二激励器1102振动发声,这样利用多个第一激励器1101振动发声的频谱与第二激励器1102振动发声的频谱叠加,实现低频补偿,保证所获得整个装置所发出声音频谱的良好平坦性和均一性。本公开实施例所述的屏幕发声装置,如图7所示,同一所述发声单元120中,所述音频信号输入端到每一激励器110的音频传输线路上,依次设置有低通滤波器LPF和高通滤波器HPF。
采用该实施结构,所述音频信号输入端的音频信号分别经过所述低通滤波器LPF获得低频信号、经过所述高通滤波器HPF获得高频信号,且所述低频信号与所述高频信号经过信号叠加且归一化处理后传输至每一所述激励器110,分别由每一所述激励器110振动发声。
采用该实施方式,音频信号输入端所输入的音频信号经低通滤波器LPF和高通滤波器HPF分别滤波后,所提取的低频信号与高频信号叠加并经信号归一化后,归一化后信号传输至每一激励器110,可以获得低频补偿效果的声音频谱,以低通滤波器LPF的截止频率fc=80Hz为例,如图8所示,能够获得具有良好均一性和平坦性的声音频谱。
本公开实施例所述屏幕发声装置,可选地,还包括处理器,用于向每一音频输入端分别输入音频信号。
可选地,该处理器具体用于获取待输出显示图像和与所述显示图像对应的每一音频信号,根据所述显示图像,确定每一所述音频信号被输出时的发声单 元,将每一所述音频信号输入至相应所述发声单元的音频信号输入端,使所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声。
本公开实施例中,可选地,所述激励器可以为压电陶瓷激励器或微振动激励器。
另外,需要说明的是,采用本公开实施例所述屏幕发声装置的发声控制方法,可以采用上述显示装置的发声装置方法,此外本公开实施例所述发声装置中,所采用的信号滤波参数确定方法可以应用上述显示装置所采用的信号滤波参数确定方法,在此不再详细说明。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述原理前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (25)

  1. 一种显示装置,包括显示面板,其中,所述显示装置还包括:
    设置于所述显示面板上的多个激励器,通过多个所述激励器,所述显示面板能够屏幕发声;
    其中,多个所述激励器形成为至少一发声单元,每一所述发声单元包括至少两个激励器,同一所述发声单元中的每一激励器均连接至同一音频信号输入端,在一个所述发声单元中,所述音频信号输入端到至少一所述激励器的音频传输线路上设置有信号滤波器,用于整个所述发声单元所发声音的低频补偿。
  2. 根据权利要求1所述的显示装置,其中,多个所述激励器形成为至少两个发声单元,不同所述发声单元中的所述激励器连接至不同的音频信号输入端。
  3. 根据权利要求1所述的显示装置,其中,同一所述发声单元中,至少两个激励器中的第一激励器到所述音频信号输入端的音频传输线路上未设置信号滤波器,所述音频信号输入端的音频信号直接传输至所述第一激励器,由所述第一激励器振动发声;
    至少两个激励器中除所述第一激励器之外的每一第二激励器到所述音频信号输入端的音频传输线路上均设置有低通滤波器,所述音频信号输入端的音频信号经过所述低通滤波器,获得所述音频信号的低频信号后传输至所述第二激励器,由所述第二激励器振动发声。
  4. 根据权利要求1所述的显示装置,其中,同一所述发声单元中,至少两个激励器中的第一激励器到所述音频信号输入端的音频传输线路上设置有低通滤波器,所述音频信号输入端的音频信号经过所述低通滤波器,获得所述音频信号的低频信号后传输至所述第一激励器,由所述第一激励器振动发声;
    至少两个激励器中除所述第一激励器之外的第二激励器到所述音频信号输入端的第一音频传输线路上设置有低通滤波器,所述第二激励器到所述音频信号输入端的第二音频线路上设置有高通滤波器,所述音频信号输入端的音频信号分别经过所述低通滤波器获得低频信号、经过所述高通滤波器获得高频信号,且所述低频信号与所述高频信号经过信号叠加后传输至所述第二激励器,由所述第二激励器振动发声。
  5. 根据权利要求1所述的显示装置,其中,同一所述发声单元中,所述音 频信号输入端到每一激励器的音频传输线路上,设置有低通滤波器和高通滤波器,所述音频信号输入端的音频信号分别经过所述低通滤波器获得低频信号、经过所述高通滤波器获得高频信号,且所述低频信号与所述高频信号经过信号叠加且归一化处理后传输至每一所述激励器,分别由每一所述激励器振动发声。
  6. 根据权利要求4所述的显示装置,其中,所述第一激励器的数量为至少两个,其中所述音频信号输入端到每一所述第一激励器的音频传输线路上共用一个低通滤波器。
  7. 根据权利要求1所述的显示装置,其中,所述显示面板包括多个依次拼接的子面板,每一子面板上分别设置有一个所述激励器,其中相邻多个子面板上设置的所述激励器形成为一个所述发声单元。
  8. 根据权利要求1所述的显示装置,其中,所述显示面板包括多个显示区域,其中每一显示区域上分别设置有阵列的多个所述激励器,设置于每一显示区域上的多个所述激励器形成为一个所述发声单元。
  9. 一种屏幕发声装置,其中,包括:
    阵列排布的多个发声单元,每一所述发声单元包括至少两个激励器;
    线路板,所述线路板上设置有多个音频输入端,其中每一音频输入端对应一个发声单元,所述音频输入端通过音频传输线路连接相对应所述发声单元的每一激励器;其中,在每一发声单元中,所述音频输入端到至少一所述激励器的音频传输线路上设置有信号滤波器。
  10. 根据权利要求9所述的屏幕发声装置,其中,每一所述发声单元还包括多个阵列排布的显示单元,每一所述显示单元上分别设置有一个所述激励器。
  11. 根据权利要求9所述的屏幕发声装置,其中,多个所述发声单元的显示单元形成为一个显示面板,或者一个所述显示单元形成为一个显示子面板,相邻显示子面板之间相拼接。
  12. 根据权利要求9所述的屏幕发声装置,其中,同一所述发声单元中,至少两个激励器中的第一激励器到所述音频信号输入端的音频传输线路上未设置信号滤波器;
    至少两个激励器中除所述第一激励器之外的每一第二激励器到所述音频信号输入端的音频传输线路上均设置有低通滤波器。
  13. 根据权利要求9所述的屏幕发声装置,其中,同一所述发声单元中, 至少两个激励器中的第一激励器到所述音频信号输入端的音频传输线路上设置有低通滤波器;
    至少两个激励器中除所述第一激励器之外的第二激励器到所述音频信号输入端的第一音频传输线路上设置有低通滤波器;所述第二激励器到所述音频信号输入端的第二音频传输线路上设置有高通滤波器。
  14. 根据权利要求9所述的屏幕发声装置,其中,同一所述发声单元中,所述音频信号输入端到每一激励器的音频传输线路上,依次设置有低通滤波器和高通滤波器。
  15. 根据权利要求9所述的屏幕发声装置,其中,所述屏幕发声装置还包括处理器,用于向每一所述音频输入端分别输入音频信号。
  16. 一种发声控制方法,其中,应用于权利要求1至8任一项所述的显示装置,所述方法包括:
    获取待输出图像信息和与所述图像信息对应的每一音频信号;
    根据所述图像信息,确定每一所述音频信号被输出时的发声单元;
    将每一所述音频信号输入至相应所述发声单元的音频信号输入端,使所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声。
  17. 根据权利要求16所述的发声控制方法,其中,根据所述图像信息,确定每一所述音频信号被输出时的发声单元,包括:
    识别所述图像信息中与所述音频信号相对应的发声物;
    判断所述显示面板在显示所述图像信息时,所述图像信息中的所述发声物在显示面板上的显示位置;
    确定设置于所述显示位置处的发声单元,用于所述音频信号的声音输出。
  18. 一种信号滤波参数确定方法,其中,应用于权利要求1至8任一项所述的显示装置,所述方法包括:
    读取实测频谱数据;
    根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,使得通过所述设定滤波参数,所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发 声时,具有低频补偿。
  19. 根据权利要求18所述的信号滤波参数确定方法,其中,在同一发声单元中,第一激励器到所述音频信号输入端的音频传输线路上未设置信号滤波器,至少两个激励器中除第一激励器之外的每一第二激励器到所述音频信号输入端的音频传输线路上均设置有低通滤波器时,根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,包括:
    设定每一所述第二激励器相对应低通滤波器的滤波参数分别为初始滤波参数的情况下,获得第一激励器输出所述实测频谱数据的全音频信号时的第一频谱曲线、每一所述激励器分别输出所述实测频谱数据的全音频信号时的第二频谱曲线,以及第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线;其中N为第二激励器的个数;
    根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
  20. 根据权利要求19所述的信号滤波参数确定方法,其中,获得第一激励器输出所述实测频谱数据的全音频信号、N个第二激励器输出所述实测频谱数据的低频信号时的第三频谱曲线,包括:
    依据每一所述第二激励器相对应低通滤波器分别为初始滤波参数,计算N个所述第二激励器的零状态响应;
    将N个所述第二激励器的零状态响应与所述实测频谱数据的频谱曲线进行叠加,生成所述第三频谱曲线。
  21. 根据权利要求19所述的信号滤波参数确定方法,其中,所述初始滤波参数包括滤波器类型、阶数和截止频率;
    其中,所述调整所述滤波参数包括:
    调整每一所述低通滤波器的截止频率。
  22. 根据权利要求19所述的信号滤波参数确定方法,其中,根据所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线的对比结果,调整所述滤波 参数,获得每一所述第二激励器相对应低通滤波器的设定滤波参数,包括:
    对比所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线;
    在所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线不满足预设条件时,调整所述滤波参数,重新获得所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线;
    在所述第一频谱曲线、所述第二频谱曲线和所述第三频谱曲线满足预设条件时,获得每一所述第二激励器相对应低通滤波器的设定滤波参数。
  23. 根据权利要求22所述的信号滤波参数确定方法,其中,所述预设条件为:
    所述第三频谱曲线在低频部分处与所述第一频谱曲线之间的距离小于第一预设值,在高频部分处与所述第二频谱曲线之间的距离小于第二预设值,且低频部分与高频部分之间的过渡线段为平滑线段。
  24. 一种发声控制装置,其中,应用于权利要求1至8任一项所述的显示装置,所述装置包括:
    信号获取模块,用于获取待输出显示图像和与所述显示图像对应的每一音频信号;
    分析模块,用于根据所述显示图像,确定每一所述音频信号被输出时的发声单元;
    信号传输模块,用于将每一所述音频信号输入至相应所述发声单元的音频信号输入端,使所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声。
  25. 一种信号滤波参数确定装置,其中,应用于权利要求1至8任一项所述的显示装置,所述装置包括:
    信号读取模块,用于读取实测频谱数据;
    数据调试模块,用于根据所述实测频谱数据,调试每一所述发声单元中,设置于音频信号输入端到每一所述激励器的音频传输线路上的信号滤波器的滤波参数,获得对应每一所述信号滤波器的设定滤波参数,使得通过所述设定滤波参数,所述发声单元中与所述音频信号输入端连接的每一激励器,响应同一所述音频信号振动发声时,整个所述发声单元所发声音具有低频补偿。
PCT/CN2021/075745 2021-02-07 2021-02-07 显示装置、发声控制方法、参数确定方法及装置 WO2022165788A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/619,923 US20230156402A1 (en) 2021-02-07 2021-02-07 Display device, sound producing control method, parameter determining method and device
DE112021001194.4T DE112021001194T5 (de) 2021-02-07 2021-02-07 Anzeigevorrichtung, verfahren zur steuerung der tonerzeugung, verfahren und vorrichtung zur bestimmung von parametern
CN202180000202.4A CN115191120A (zh) 2021-02-07 2021-02-07 显示装置、发声控制方法、参数确定方法及装置
PCT/CN2021/075745 WO2022165788A1 (zh) 2021-02-07 2021-02-07 显示装置、发声控制方法、参数确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075745 WO2022165788A1 (zh) 2021-02-07 2021-02-07 显示装置、发声控制方法、参数确定方法及装置

Publications (1)

Publication Number Publication Date
WO2022165788A1 true WO2022165788A1 (zh) 2022-08-11

Family

ID=82741927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075745 WO2022165788A1 (zh) 2021-02-07 2021-02-07 显示装置、发声控制方法、参数确定方法及装置

Country Status (4)

Country Link
US (1) US20230156402A1 (zh)
CN (1) CN115191120A (zh)
DE (1) DE112021001194T5 (zh)
WO (1) WO2022165788A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646971A (zh) * 2018-05-17 2018-10-12 Oppo广东移动通信有限公司 屏幕发声控制方法、装置以及电子装置
CN109189360A (zh) * 2018-07-09 2019-01-11 Oppo广东移动通信有限公司 屏幕发声控制方法、装置以及电子装置
CN109194796A (zh) * 2018-07-09 2019-01-11 Oppo广东移动通信有限公司 屏幕发声方法、装置、电子装置及存储介质
CN109240413A (zh) * 2018-07-09 2019-01-18 Oppo广东移动通信有限公司 屏幕发声方法、装置、电子装置及存储介质
CN110018808A (zh) * 2018-12-25 2019-07-16 瑞声科技(新加坡)有限公司 一种音质调整方法及装置
CN110049421A (zh) * 2018-12-29 2019-07-23 瑞声科技(新加坡)有限公司 屏幕发声装置音频失真的测试方法
CN210805037U (zh) * 2019-12-19 2020-06-19 云谷(固安)科技有限公司 显示装置
US20210006880A1 (en) * 2019-07-01 2021-01-07 AAC Technologies Pte. Ltd. Screen sound generation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG123638A1 (en) * 2004-12-31 2006-07-26 St Microelectronics Asia Method and system for enhancing bass effect in audio signals
US10003872B2 (en) * 2016-10-06 2018-06-19 Microsoft Technology Licensing, Llc Speaker arrangement
KR102356877B1 (ko) * 2017-11-09 2022-01-28 엘지디스플레이 주식회사 표시장치 및 그 구동 방법
KR20200037003A (ko) * 2018-09-28 2020-04-08 삼성디스플레이 주식회사 표시 장치와 그의 구동 방법
US20200310736A1 (en) * 2019-03-29 2020-10-01 Christie Digital Systems Usa, Inc. Systems and methods in tiled display imaging systems
CN117292611A (zh) * 2019-06-17 2023-12-26 海信视像科技股份有限公司 显示装置及可发声屏幕
JPWO2022024763A1 (zh) * 2020-07-28 2022-02-03

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646971A (zh) * 2018-05-17 2018-10-12 Oppo广东移动通信有限公司 屏幕发声控制方法、装置以及电子装置
CN109189360A (zh) * 2018-07-09 2019-01-11 Oppo广东移动通信有限公司 屏幕发声控制方法、装置以及电子装置
CN109194796A (zh) * 2018-07-09 2019-01-11 Oppo广东移动通信有限公司 屏幕发声方法、装置、电子装置及存储介质
CN109240413A (zh) * 2018-07-09 2019-01-18 Oppo广东移动通信有限公司 屏幕发声方法、装置、电子装置及存储介质
CN110018808A (zh) * 2018-12-25 2019-07-16 瑞声科技(新加坡)有限公司 一种音质调整方法及装置
CN110049421A (zh) * 2018-12-29 2019-07-23 瑞声科技(新加坡)有限公司 屏幕发声装置音频失真的测试方法
US20210006880A1 (en) * 2019-07-01 2021-01-07 AAC Technologies Pte. Ltd. Screen sound generation device
CN210805037U (zh) * 2019-12-19 2020-06-19 云谷(固安)科技有限公司 显示装置

Also Published As

Publication number Publication date
US20230156402A1 (en) 2023-05-18
CN115191120A (zh) 2022-10-14
DE112021001194T5 (de) 2022-12-15

Similar Documents

Publication Publication Date Title
JP6904963B2 (ja) 拡張現実システムにおいてオーディオを指向させるための技法
JP5488128B2 (ja) 信号処理装置
US8116508B2 (en) Dual-mode loudspeaker
CN109905801A (zh) 显示设备
CN111405450B (zh) 一种用于骨传导设备测试的仿真人头装置及测试方法
US11399249B2 (en) Reproduction system and reproduction method
JP2017531393A (ja) 機械的作動パネル音響システム
JP2012093399A (ja) 音場可視化システム
JP2009100354A (ja) 全方位周波数指向性音響装置
KR100633064B1 (ko) 평판 음향 출력장치 및 영상/음향 출력장치
JP2013186147A (ja) 弦楽器のための信号処理装置
US9936303B2 (en) Multi-diaphragm speaker
WO2022165788A1 (zh) 显示装置、发声控制方法、参数确定方法及装置
US20230354712A1 (en) Audio Device And Driving Method Thereof, And Display Device
JP5494048B2 (ja) 音/光変換器
US11451916B2 (en) Sound adjustment method and sound adjustment device
US20150146898A1 (en) Sound field supporting device and sound field supporting system
CN102857851B (zh) 一种用于声品质评价的声像同步系统
US20200045424A1 (en) Multi-chambered ported resonator for distributed mode and balanced mode radiator transducers
TWI665921B (zh) 電磁換能器
TWI411285B (zh) 行動電話音效測試裝置及測試方法
JP6387995B2 (ja) 車両検査方法
KR102536323B1 (ko) 스피커 장치 및 그 제어 방법
CN208174956U (zh) 一种平板式音响
JP2022106297A (ja) 音響発生器及び音響装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923800

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.11.2023)