WO2022165724A1 - 可移动平台的通信方法、可移动平台及存储介质 - Google Patents

可移动平台的通信方法、可移动平台及存储介质 Download PDF

Info

Publication number
WO2022165724A1
WO2022165724A1 PCT/CN2021/075344 CN2021075344W WO2022165724A1 WO 2022165724 A1 WO2022165724 A1 WO 2022165724A1 CN 2021075344 W CN2021075344 W CN 2021075344W WO 2022165724 A1 WO2022165724 A1 WO 2022165724A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
image sensor
type
frequency division
frequency band
Prior art date
Application number
PCT/CN2021/075344
Other languages
English (en)
French (fr)
Inventor
贺冬凌
兰设勇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/075344 priority Critical patent/WO2022165724A1/zh
Publication of WO2022165724A1 publication Critical patent/WO2022165724A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference

Definitions

  • the present application relates to the technical field of mobile platforms, and in particular, to a communication method for a mobile platform, a mobile platform and a storage medium.
  • the commonly used methods are: 1) For the interference frequency points generated by the image sensor, the software avoidance method is adopted, and these frequency points are discarded. Due to the reduction of the available communication frequency points, the communication quality and communication distance are reduced. 2) The camera is shielded by hardware such as an all-metal casing. Since the camera must have a lens, it is impossible to shield it completely, and the problem cannot be completely solved; 3) The position should be as far away as possible. Due to the size of the current drone They are basically not large and cannot achieve better results.
  • the present application provides a communication method for a movable platform, a movable platform and a storage medium, so as to effectively reduce the noise floor interference of an image sensor.
  • the present application provides a communication method for a mobile platform, including:
  • the mobile platform is controlled to communicate according to the anti-jamming processing strategy.
  • the present application also provides a movable platform, the movable platform includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the mobile platform is controlled to communicate according to the anti-jamming processing strategy.
  • the present application further provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor implements the above-mentioned movable platform communication method.
  • the communication method of the movable platform, the movable platform and the storage medium disclosed in the present application by determining the type of the image sensor of the movable platform and the configuration parameters corresponding to the image sensor, according to the type of the image sensor and the corresponding configuration parameters, determine the image
  • the corresponding frequency division interference type of the sensor and then according to the frequency division interference type, determine the anti-jamming processing strategy corresponding to the image sensor, and then control the mobile platform to communicate according to the determined anti-jamming processing strategy, that is, the image sensor is targeted.
  • Corresponding anti-interference processing thus effectively reducing the noise floor interference of the image sensor.
  • FIG. 1 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of steps of a communication method for a mobile platform provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of steps for determining a frequency division interference type corresponding to the image sensor provided by an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of another step for determining the frequency division interference type corresponding to the image sensor provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a signal spectrum provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of steps for determining an anti-interference processing strategy corresponding to the image sensor provided by an embodiment of the present application;
  • FIG. 7 is a schematic flowchart of another step for determining an anti-interference processing strategy corresponding to the image sensor provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another step for determining an anti-interference processing strategy corresponding to the image sensor provided by an embodiment of the present application;
  • FIG. 9 is a schematic flowchart of a step of controlling the movable platform to communicate according to the anti-jamming processing strategy provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a movable platform provided by an embodiment of the present application.
  • Embodiments of the present application provide a communication method for a movable platform, a movable platform and a storage medium, which are used to effectively reduce the noise floor interference of an image sensor.
  • the movable platform includes but is not limited to unmanned aerial vehicles, such as rotary-wing aircraft, including single-rotor aircraft, dual-rotor aircraft, tri-rotor aircraft, quad-rotor aircraft, hexa-rotor aircraft, octa-rotor aircraft, ten-rotor aircraft, twelve-rotor aircraft Rotorcraft, etc.
  • unmanned aerial vehicles such as rotary-wing aircraft, including single-rotor aircraft, dual-rotor aircraft, tri-rotor aircraft, quad-rotor aircraft, hexa-rotor aircraft, octa-rotor aircraft, ten-rotor aircraft, twelve-rotor aircraft Rotorcraft, etc.
  • the movable platform may also be other types of unmanned aerial vehicles or movable devices, such as fixed-wing unmanned aerial vehicles, and the embodiment of the present application is not limited thereto.
  • the movable platform 1000 may include a body 100 , a power system 200 disposed in the body 100 , an image sensor 300 , and a processor 400 .
  • the power system 200 is used to provide power for the movable platform 1000;
  • the image sensor 300 is used to collect images corresponding to the environment where the movable platform is located;
  • the processor 400 is used to determine the anti-interference processing strategy corresponding to the image sensor 300, and determine The anti-jamming processing strategy controls the mobile platform 1000 to communicate.
  • the types of image sensors 300 may include camera modules, vision modules, etc.
  • the movable platform 1000 may include one or more image sensors 300 .
  • the power system 200 may include one or more electronic governors (referred to as ESCs for short), one or more propellers, and one or more motors corresponding to the one or more propellers, wherein the motors are connected to the electronic between the governor and the propeller.
  • the electronic governor is used to provide driving current to the motor to control the speed of the motor.
  • the motor is used to drive the propeller to rotate, thereby providing power for the flight of the movable platform 1000, which enables the movable platform 1000 to achieve one or more degrees of freedom movement.
  • the movable platform 1000 can rotate about one or more axes of rotation.
  • the motor may be a DC motor or an AC motor.
  • the motor may be a brushless motor or a brushed motor.
  • the movable platform 1000 in FIG. 1 is only used to explain the communication method of the movable platform provided by the embodiment of the present application, but does not constitute a limitation on the application scenario of the communication method of the mobile platform provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method for a mobile platform provided by an embodiment of the present application. This method can be used in the movable platform provided by the above-mentioned embodiments, so as to effectively reduce the noise floor interference of the image sensor.
  • the communication method of the mobile platform specifically includes steps S101 to S104.
  • the types of image sensors of the movable platform include, but are not limited to, camera modules, vision modules, and the like.
  • a camera module and a plurality of vision modules are arranged on the movable platform.
  • the configuration parameters corresponding to the image sensor include ADC (analogue-to-digital conversion, analog-to-digital converter) bits, bus protocol, pixel arrangement type, and the like.
  • the number of ADC bits includes 8 bits, 10 bits, 12 bits, etc.
  • the bus protocol includes mipi (Mobile Industry Processor Interface, mobile industry processor interface) protocol, lvds (Low Voltage Differential Signaling, low voltage differential signaling) protocol, etc.
  • pixel Arrangement types include monochrome arrangement, RGB (red, green, blue) arrangement, RGRG arrangement, RRGG arrangement, GBGB arrangement, etc.
  • a corresponding frequency division interference type identification module is designed by using the matlab tool, and the image sensor type, as well as the corresponding configuration parameters such as ADC bits, bus protocol, pixel arrangement type, etc. are input into the frequency division interference type identification module, and the image sensor is output.
  • Corresponding frequency division interference type includes 8 frequency division interference types, 10 frequency division interference types, 24 frequency division interference types, 40 frequency division interference types, 8 frequency division plus 24 frequency division interference types, and 8 frequency division plus 40 frequency division types. Frequency division interference type, etc. For different types of image sensors and different configuration parameters of the image sensors, they correspond to different types of frequency division interference.
  • the step S102 may include a sub-step S1021.
  • the calibration information may include a frequency division interference type table, wherein the frequency division interference type table includes the correspondence between the type of the image sensor, the number of ADC bits, the bus protocol, the pixel arrangement type and the frequency division interference type.
  • the frequency division interference type table is shown in Table 1:
  • Image sensor type ADC bits bus protocol Pixel arrangement type Frequency division interference type visual 8 mipi monochrome divide by 8 visual 8 mipi RGB divide by 10 visual 10 mipi monochrome 8 division + 40 division visual 10 mipi RGB 8 division + 24 division visual 10 lvds monochrome divide by 10 visual 10 lvds RGB divide by 10 camera 8 mipi RGB divide by 24 camera 8 mipi RGRG divide by 8 camera 8 mipi RRGG divide by 8 camera 10 mipi RGB divide by 40 camera 10 mipi RGRG divide by 8 camera 10 mipi RRGG 8 division + 40 division camera 10 lvds RGB divide by 40 camera 10 lvds RGRG divide by 40 camera 10 lvds RRGG divide by 10 camera 12 mipi RGB divide by 8 camera 12 mipi RGRG 8 division + 24 division camera 12 mipi RRGG divide by 24
  • the above table 1 only lists the corresponding relationship between the types of image sensors, ADC bits, bus protocols, pixel arrangement types and frequency division interference types.
  • the frequency division interference types can be continuously listed. Expand and optimize, that is, update the calibration information.
  • the corresponding frequency division interference type is determined according to the updated calibration information.
  • the image sensor After determining the type of the image sensor of the movable platform, as well as the configuration parameters such as ADC bits, bus protocol, and pixel arrangement type corresponding to the image sensor, the image sensor is determined by querying the calibration information, for example, by querying the frequency division interference type table. type and the frequency division interference type corresponding to the configuration parameters.
  • the corresponding ADC bits are 8 bits
  • the bus protocol is mipi protocol
  • the pixel arrangement type is monochrome arrangement
  • the corresponding ADC bits are 10 bits
  • the bus protocol is the lvds protocol
  • the pixel arrangement type is RRGG color arrangement
  • the step S102 may include a sub-step S1022 and a sub-step S1023.
  • the movable platform communicates based on the type of the image sensor and the corresponding configuration parameters, and obtains the corresponding signal spectrum by sampling the communication signal. For example, as shown in Figure 5, Figure 5 shows the corresponding sampled signal spectrum when the image sensor type is a visual module, the number of ADC bits is 8, the bus protocol is mipi protocol, and the pixel arrangement type is monochrome arrangement. .
  • the spectrum rule of the signal spectrum is obtained, and the frequency division interference type corresponding to the image sensor is determined according to the spectrum rule.
  • determining the frequency division interference type corresponding to the image sensor according to the signal spectrum may include: analyzing the periodicity of the signal spectrum, and according to the change trend of power in the spectrum of each period with frequency , and determine the frequency division interference type corresponding to the image sensor.
  • the frequency division interference type corresponding to the image sensor is the 8 frequency division interference type.
  • the anti-jamming processing strategy includes GPS (Global Positioning System, global positioning system) frequency band, GLONASS (GLOBAL NAVIGATION SATELLITE SYSTEM, global satellite navigation system) frequency band, SDR (Software Defined Radio, software radio) 2.4G frequency band and SDR5.
  • GPS Global Positioning System, global positioning system
  • GLONASS GLOBAL NAVIGATION SATELLITE SYSTEM, global satellite navigation system
  • SDR Software Defined Radio, software radio
  • a frequency selection strategy for at least one of the 8G frequency bands For example, avoid the GPS frequency band, reserve a frequency point in the SDR5.8G frequency band, and so on.
  • preset anti-interference processing strategies corresponding to various frequency division interference types, for example, set 8-frequency interference type, 10-frequency interference type corresponding to anti-interference processing strategy 1, 24-frequency interference type, 8-frequency plus plus 24-frequency interference type corresponds to anti-interference processing strategy 2, 40-frequency interference type, 8-frequency plus 40-frequency interference type corresponds to anti-interference processing strategy 3, among which, anti-interference processing strategy 1, anti-interference processing strategy 2 and anti-interference The processing strategies 3 are different from each other.
  • the anti-interference processing strategy corresponding to the frequency division interference type determines the anti-interference processing strategy corresponding to the frequency division interference type. For example, if it is determined that the frequency division interference type is an 8-frequency interference type, the corresponding anti-interference processing strategy is determined to be the anti-interference processing strategy 1 . For another example, if it is determined that the frequency division interference type is the 24 frequency division interference type, the corresponding anti-interference processing strategy is determined to be the anti-interference processing strategy 2 . For another example, if the frequency division interference type is determined to be the frequency division by 8 plus the frequency division by 40 interference type, the corresponding anti-interference processing strategy is determined as the anti-interference processing strategy 3 .
  • determining the anti-interference processing strategy corresponding to the image sensor according to the frequency division interference type may include: according to the frequency division interference type, the type of the image sensor, and data corresponding to the image sensor The transmission rate is used to determine the anti-interference processing strategy.
  • the correspondence between the type of the image sensor, the data transmission rate corresponding to the image sensor, the type of frequency division interference and the anti-interference processing strategy is preset.
  • the corresponding anti-interference processing strategy is determined.
  • the preset anti-jamming processing strategy 1 includes: the vision module and camera module all avoid GPS frequency bands, GLONASS frequency bands, SDR2.4G frequency band, and the camera module avoids the SDR5.8G frequency band, and the vision module reserves a frequency point in the SDR5.8G frequency band;
  • anti-interference processing strategy 2 includes: the vision module and camera module all avoid the GPS frequency band, In the GLONASS frequency band, the visual module reserves two frequency points in the SDR2.4G frequency band for the 24-frequency interference.
  • the camera module avoids the SDR2.4G frequency band when the data transmission rate is higher than 2G, and reserves one frequency point in the SDR5.8G frequency band.
  • the camera module is lower than the 2G data transmission rate, and the processing strategy is the same as that of the vision module; the anti-interference processing strategy 3 includes: the vision module and the camera module all avoid the GPS frequency band and the GLONASS frequency band, and the vision module interferes with the 24 frequency division. Two frequency points are reserved in the SDR2.4G frequency band.
  • the camera module reserves one frequency point in the SDR2.4G frequency band when the data transmission rate is higher than 2G. Keep as few frequency points as possible, the camera module is lower than the 2G data transmission rate, and the processing strategy is the same as that of the vision module.
  • the corresponding anti-interference processing strategy is determined. For example, if it is determined that the type of the image sensor is a camera module, the data transmission rate corresponding to the camera module is greater than the 2G data transmission rate, and the frequency division interference type is 24 frequency division interference type, then avoid GPS frequency band, GLONASS frequency band, SDR2.4G frequency band, reserve a frequency point in the SDR5.8G frequency band.
  • the step S103 may include a sub-step S1031.
  • the frequency division interference type of the image sensor is 8 frequency division interference type or 10 frequency division interference type
  • the type of the image sensor is a camera module, avoid GPS frequency band, GLONASS frequency band, SDR2.4G frequency band and SDR5.8G frequency band
  • the type of the image sensor is a visual module, avoid the GPS frequency band, GLONASS frequency band and SDR2.4G frequency band, and reserve a frequency point in the SDR5.8G frequency band.
  • the vision module and the camera module all avoid the GPS frequency band, the GLONASS frequency band and the SDR2.4G frequency band, and the camera module also needs to avoid the SDR5.8G frequency band.
  • the corresponding data transmission rate is low, and the SDR5.8G frequency band cannot be completely avoided.
  • the visual module has little interference in the SDR5.8G frequency band. Therefore, the visual module is allowed to reserve a frequency in the SDR5.8G frequency band. point.
  • the step S103 may include a sub-step S1032.
  • the frequency division interference type of the image sensor is the frequency division interference type of 24 or the frequency division 8 plus the frequency division 24 interference type
  • the type of the image sensor is a camera module and the data transmission rate is greater than or equal to a preset If the rate threshold is set, avoid GPS frequency band and GLONASS frequency band, avoid SDR2.4G frequency band and SDR5.8G frequency band for 8-frequency interference, and reserve a frequency point in SDR5.8G frequency band for 24-frequency interference; If the type of the sensor is a camera module and the data transmission rate is less than the preset rate threshold, the GPS frequency band and GLONASS frequency band are avoided, and the SDR2.4G frequency band is avoided for 8-frequency interference; if the type of the image sensor is visual The module avoids the GPS frequency band and the GLONASS frequency band, and avoids the SDR2.4G frequency band for the 8-frequency interference.
  • the 8-frequency plus 24-frequency interference type is usually the 8-frequency strong interference type and the 24-frequency weak interference type, the visual module and the camera module. Avoid all the GPS frequency bands and GLONASS frequency bands. Since the GPS frequency bands and GLONASS frequency bands are relatively narrow, it is easy to avoid them. Also, due to the low data transmission rate corresponding to the visual module, the SDR2.4G frequency band is avoided for the 8-frequency interference visual module.
  • the camera module and the data transmission rate is greater than or equal to the preset rate threshold (such as 2G data transmission rate), avoid the SDR2.4G frequency band and SDR5.8G frequency band for the 8-frequency interference, and the SDR5.8G frequency band for the 24-frequency interference Keep a frequency point.
  • the camera module and the data transmission rate is less than the preset rate threshold, which is the same as the vision module processing scheme.
  • the preset rate threshold may be set to 2G. It should be noted that the preset rate threshold may be flexibly set according to the actual situation, which is not specifically limited here.
  • determining the anti-jamming processing strategy corresponding to the image sensor according to the frequency division interference type may further include: when the frequency division interference type of the image sensor is a frequency division interference type of 24 or a frequency division plus 8 In the case of the 24-frequency interference type, if the type of the image sensor is a camera module and the data transmission rate is less than the preset rate threshold, the frequency is selected within the fluctuating frequency band where the preset frequency point is located.
  • the camera module and the data transmission rate is less than the preset rate threshold, and the frequency is selected near the preset frequency point.
  • the preset frequency point is set to 1.25GHz, that is, frequency selection near 1.25GHz, because the even frequency energy of the non-standard sine wave signal is low, and the interference of the corresponding frequency band near 1.25GHz is small.
  • the preset frequency point can be flexibly set according to the actual situation, which is not specifically limited here.
  • the step S103 may include a sub-step S1033.
  • the frequency division interference type of the image sensor is a 40-frequency interference type or an 8-frequency plus 40-frequency interference type
  • the type of the image sensor is a camera module and the data transmission rate is greater than or equal to a preset Rate threshold, avoid the GPS frequency band and GLONASS frequency band, reserve one frequency point in the SDR2.4G frequency band, and reserve several frequency points in the SDR5.8G frequency band
  • the type of the image sensor is a camera module and data transmission If the rate is less than the preset rate threshold, avoid the GPS frequency band and the GLONASS frequency band, and avoid the SDR2.4G frequency band and the SDR5.8G frequency band for the 8-frequency interference
  • the type of the image sensor is a visual module, avoid the Turn on GPS band and GLONASS band.
  • the 8-frequency plus 40-frequency interference type is usually the 8-frequency strong interference type and the 40-frequency weak interference type, the visual module and the camera module. All avoid GPS frequency band, GLONASS frequency band.
  • the preset rate threshold such as 2G data transmission rate
  • one frequency point is reserved in the SDR2.4G frequency band, and as few frequency points as possible are reserved in the SDR5.8G frequency band.
  • the camera module and the data transmission rate is less than the preset rate threshold, avoiding the SDR2.4G frequency band and the SDR5.8G frequency band for the 8-frequency interference.
  • the camera module and the data transmission rate is less than the preset rate threshold, and the frequency is selected near the preset frequency point. , for example, to select frequencies around 1.25GHz.
  • the mobile platform is controlled to communicate based on the anti-jamming processing strategy.
  • the step S104 may include a sub-step S1041 and a sub-step S1042.
  • the frequency selection strategy of GPS frequency band, GLONASS frequency band, SDR2.4G frequency band and SDR5.8G frequency band select the appropriate frequency point or frequency band. For example, if it is determined that the frequency division interference type is 8 frequency division interference type, and the type of the image sensor is a visual module, avoid the GPS frequency band, GLONASS frequency band, and SDR2.4G frequency band, and reserve a frequency point in the SDR5.8G frequency band. According to the anti-interference processing strategy, select a frequency point in the SDR5.8G frequency band.
  • a frequency point is selected in the SDR5.8G frequency band, and the mobile platform is controlled to communicate according to the selected frequency point.
  • the type of the image sensor of the movable platform and the configuration parameters corresponding to the image sensor are determined, and the frequency division interference type corresponding to the image sensor is determined according to the type of the image sensor and the corresponding configuration parameters, and then according to the frequency division interference type, Determine the anti-interference processing strategy corresponding to the image sensor, and then control the mobile platform to communicate according to the determined anti-interference processing strategy, that is, determine the frequency division interference type corresponding to the image sensor, and provide corresponding frequency division interference types for each frequency division interference type.
  • the anti-interference processing strategy is targeted to perform corresponding anti-interference processing based on the image sensor, thus effectively reducing the noise floor interference of the image sensor.
  • FIG. 10 is a schematic block diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform 500 may include a processor 511 and a memory 512, and the processor 511 and the memory 512 are connected by a bus, such as an I2C (Inter-integrated Circuit) bus.
  • a bus such as an I2C (Inter-integrated Circuit) bus.
  • the processor 511 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 512 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • Various computer programs to be executed by the processor 511 are stored in the memory 512 .
  • the processor is used for running the computer program stored in the memory, and implements the following steps when executing the computer program:
  • the mobile platform is controlled to communicate according to the anti-jamming processing strategy.
  • the configuration parameters include at least one of the following: ADC bits, bus protocol, and pixel arrangement type.
  • the processor determines the frequency division interference type corresponding to the image sensor according to the type of the image sensor and the configuration parameter, the processor is configured to:
  • the calibration information includes a frequency division interference type table.
  • the frequency division interference type table includes the corresponding relationship between the type of the image sensor, the number of ADC bits, the bus protocol, the pixel arrangement type and the frequency division interference type.
  • the processor determines the frequency division interference type corresponding to the image sensor according to the type of the image sensor and the configuration parameter, the processor is configured to:
  • the frequency division interference type corresponding to the image sensor is determined.
  • the processor when the processor determines the frequency division interference type corresponding to the image sensor according to the signal spectrum, the processor is configured to:
  • the periodicity of the signal spectrum is analyzed, and the frequency division interference type corresponding to the image sensor is determined according to the change trend of the power in the spectrum of each period with the frequency.
  • the processor when implementing the controlling the movable platform to communicate according to the anti-jamming processing policy, is configured to implement:
  • the movable platform is controlled to communicate.
  • the frequency division interference types include: frequency division interference types, frequency division interference types by 10, frequency division interference types by 24, frequency division interference types by 40, frequency division by 8 plus frequency division by 24 interference types, and frequency division by 8. Frequency plus divide-by-40 interference type.
  • the processor when the processor determines the anti-interference processing strategy corresponding to the image sensor according to the frequency division interference type, the processor is configured to:
  • the anti-interference processing strategy is determined according to the frequency division interference type, the type of the image sensor, and the data transmission rate corresponding to the image sensor.
  • the anti-jamming processing strategy includes a frequency selection strategy of at least one of the GPS frequency band, the GLONASS frequency band, the SDR2.4G frequency band, and the SDR5.8G frequency band.
  • the processor when the processor determines the anti-interference processing strategy corresponding to the image sensor according to the frequency division interference type, the processor is configured to:
  • the frequency division interference type of the image sensor is 8 frequency division interference type or 10 frequency division interference type
  • the type of the image sensor is a camera module, avoid GPS frequency band, GLONASS frequency band, SDR2.4G frequency band and SDR5.8G frequency band
  • the type of the image sensor is a visual module, avoid GPS frequency band, GLONASS frequency band and SDR2.4G frequency band, and reserve a frequency point in SDR5.8G frequency band.
  • the processor when the processor determines the anti-interference processing strategy corresponding to the image sensor according to the frequency division interference type, the processor is configured to:
  • the frequency division interference type of the image sensor is the frequency division interference type of 24 or the frequency division 8 plus the frequency division 24 interference type
  • the type of the image sensor is a camera module and the data transmission rate is greater than or equal to the preset rate threshold , then avoid GPS frequency band and GLONASS frequency band, avoid SDR2.4G frequency band and SDR5.8G frequency band for 8-frequency interference, and reserve a frequency point in SDR5.8G frequency band for 24-frequency interference
  • the type is a camera module and the data transmission rate is less than the preset rate threshold, avoid the GPS frequency band and GLONASS frequency band, and avoid the SDR2.4G frequency band for 8-frequency interference
  • the type of the image sensor is a vision module , then avoid GPS frequency band and GLONASS frequency band, and avoid SDR2.4G frequency band for 8-frequency interference.
  • the processor when the processor determines the anti-interference processing strategy corresponding to the image sensor according to the frequency division interference type, the processor is configured to:
  • the frequency division interference type of the image sensor is the frequency division interference type of 24 or the frequency division 8 plus the frequency division 24 interference type
  • the type of the image sensor is a camera module and the data transmission rate is less than the preset rate threshold , select the frequency in the fluctuation frequency band where the preset frequency point is located.
  • the preset frequency includes 1.25GHz.
  • the processor when the processor determines the anti-interference processing strategy corresponding to the image sensor according to the frequency division interference type, the processor is configured to:
  • the frequency division interference type of the image sensor is the frequency division interference type of 40 or the frequency division 8 plus the frequency division 40 interference type
  • the type of the image sensor is a camera module and the data transmission rate is greater than or equal to the preset rate threshold , then avoid the GPS frequency band and the GLONASS frequency band, reserve one frequency point in the SDR2.4G frequency band, and reserve several frequency points in the SDR5.8G frequency band; if the type of the image sensor is a camera module and the data transmission rate is less than For the preset rate threshold, avoid GPS frequency band and GLONASS frequency band, and avoid SDR2.4G frequency band and SDR5.8G frequency band for 8-frequency interference; if the type of the image sensor is a visual module, avoid GPS frequency band band and GLONASS band.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the present application
  • Embodiments provide steps of a communication method for a mobile platform.
  • the computer-readable storage medium may be an internal storage unit of the removable platform described in the foregoing embodiments, such as a hard disk or a memory of the removable platform.
  • the computer-readable storage medium can also be an external storage device of the removable platform, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital) equipped on the removable platform , SD) card, flash memory card (Flash Card), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种可移动平台的通信方法、可移动平台及存储介质,该方法包括:确定可移动平台的图像传感器的类型,以及确定所述图像传感器对应的配置参数(S101);根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型(S102);根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略(S103);根据所述抗干扰处理策略控制所述可移动平台进行通信(S104)。

Description

可移动平台的通信方法、可移动平台及存储介质 技术领域
本申请涉及可移动平台技术领域,尤其涉及一种可移动平台的通信方法、可移动平台及存储介质。
背景技术
目前,可移动平台如无人机中,视觉或相机等图像传感器常常会带来严重的底噪干扰问题,从而对SDR(Software Defined Radio,软件无线电)的通信质量、GPS(Global Positioning System,全球定位系统)的信噪比等产生影响。例如,会缩短可靠通信距离,造成遥控器断连等情况发生;影响无人机的定位能力,造成无人机姿态漂移,无法准确返航,严重时可能导致坠毁等问题。
为了对底噪进行抑制,通常采用的方法有:1)对于图像传感器产生的干扰频点,采用软件避让的方式,舍去这些频点,由于可用的通信频点减少,造成通信质量、通信距离下降;2)对于相机采用全金属外壳等硬件方式进行屏蔽,由于相机必须要留有镜头,不可能全部屏蔽,无法彻底解决问题;3)采用位置上尽量远离的方式,由于目前无人机体积都基本都不大,无法达到较佳的效果。
因此,如何有效降低图像传感器的底噪干扰成为亟待解决的问题。
发明内容
基于此,本申请提供了一种可移动平台的通信方法、可移动平台及存储介质,以实现有效降低图像传感器的底噪干扰。
第一方面,本申请提供了一种可移动平台的通信方法,包括:
确定可移动平台的图像传感器的类型,以及确定所述图像传感器对应的配置参数;
根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型;
根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略;
根据所述抗干扰处理策略控制所述可移动平台进行通信。
第二方面,本申请还提供了一种可移动平台,所述可移动平台包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
确定可移动平台的图像传感器的类型,以及确定所述图像传感器对应的配置参数;
根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型;
根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略;
根据所述抗干扰处理策略控制所述可移动平台进行通信。
第三方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上述的可移动平台的通信方法。
本申请公开的可移动平台的通信方法、可移动平台及存储介质,通过确定可移动平台的图像传感器的类型和图像传感器对应的配置参数,根据图像传感器的类型、以及对应的配置参数,确定图像传感器对应的分频干扰类型,然后根据分频干扰类型,确定图像传感器对应的抗干扰处理策略,进而根据所确定的抗干扰处理策略控制可移动平台进行通信,也即针对性地基于图像传感器进行相应抗干扰处理,因此有效降低了图像传感器的底噪干扰。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以 根据这些附图获得其他的附图。
图1是本申请实施例提供的一种可移动平台的结构示意图;
图2是本申请实施例提供的一种可移动平台的通信方法的步骤示意流程图;
图3是本申请实施例提供的一种确定所述图像传感器对应的分频干扰类型的步骤示意流程图;
图4是本申请实施例提供的另一种确定所述图像传感器对应的分频干扰类型的步骤示意流程图;
图5是本申请实施例提供的一种信号频谱的示意图;
图6是本申请实施例提供的一种确定所述图像传感器对应的抗干扰处理策略的步骤示意流程图;
图7是本申请实施例提供的另一种确定所述图像传感器对应的抗干扰处理策略的步骤示意流程图;
图8是本申请实施例提供的又一种确定所述图像传感器对应的抗干扰处理策略的步骤示意流程图;
图9是本申请实施例提供的一种根据所述抗干扰处理策略控制所述可移动平台进行通信的步骤示意流程图;
图10是本申请实施例提供的一种可移动平台的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用 的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请的实施例提供了一种可移动平台的通信方法、可移动平台及存储介质,用于实现有效降低图像传感器的底噪干扰。
其中,该可移动平台包括但不限于无人机,例如旋翼型飞行器,包括单旋翼飞行器、双旋翼飞行器、三旋翼飞行器、四旋翼飞行器、六旋翼飞行器、八旋翼飞行器、十旋翼飞行器、十二旋翼飞行器等。当然,可移动平台也可以是其他类型的无人机或可移动装置,比如固定翼无人机,本申请实施例不限于此。
请参阅图1,图1为本申请实施例提供的一种可移动平台的结构示意图。如图1所示,可移动平台1000可以包括机体100、设于机体100内的动力系统200、图像传感器300、以及处理器400。其中,动力系统200用于为可移动平台1000提供动力;图像传感器300用于采集可移动平台所处环境对应的图像;处理器400用于确定图像传感器300对应的抗干扰处理策略,并根据确定的抗干扰处理策略控制可移动平台1000进行通信。
示例性的,图像传感器300的类型可以包括相机模组、视觉模组等,可移动平台1000可以包括一个或多个图像传感器300。
示例性的,动力系统200可以包括一个或多个电子调速器(简称为电调)、一个或多个螺旋桨以及与一个或多个螺旋桨相对应的一个或多个电机,其中电机连接在电子调速器与螺旋桨之间。电子调速器用于提供驱动电流给电机,以控制电机的转速。电机用于驱动螺旋桨旋转,从而为可移动平台1000的飞行提供动力,该动力使得可移动平台1000能够实现一个或多个自由度的运动。在某些实施例中,可移动平台1000可以围绕一个或多个旋转轴旋转。应理解,电机可以是直流电机,也可以交流电机。另外,电机可以是无刷电机,也可以是有刷电机。
可以理解的是,上述对于可移动平台1000各部件的命名仅仅出于标识的目的,并不因此对本申请实施例进行限制。
以下将基于可移动平台1000对本申请的实施例提供的可移动平台的通信方法进行详细介绍。需知,图1中的可移动平台1000仅用于解释本申请实施例提供的可移动平台的通信方法,但并不构成对本申请实施例提供的可移动平台的通信方法的应用场景的限定。
请参阅图2,图2是本申请的实施例提供的一种可移动平台的通信方法的示意流程图。该方法可以用于上述实施例提供的可移动平台中,以实现有效降低图像传感器的底噪干扰。
如图2所示,该可移动平台的通信方法具体包括步骤S101至步骤S104。
S101、确定可移动平台的图像传感器的类型,以及确定所述图像传感器对应的配置参数。
示例性的,可移动平台的图像传感器的类型包括但不限于相机模组、视觉模组等。例如,可移动平台上设置有一个相机模组以及多个视觉模组。图像传感器对应的配置参数包括ADC(analogue-to-digitalconversion,模数转换器)位数、总线协议、像素排列类型等。其中,ADC位数包括8位、10位、12位等,总线协议包括mipi(Mobile Industry Processor Interface,移动行业处理器接口)协议、lvds(Low Voltage Differential Signaling,低压差分信号传输)协议等,像素排列类型包括单色排列、RGB(红、绿、蓝)色排列、RGRG色排列、RRGG色排列、GBGB色排列等。
S102、根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型。
示例性的,通过matlab工具设计相应的分频干扰类型识别模块,将图像传感器的类型、以及对应的ADC位数、总线协议、像素排列类型等配置参数输入分频干扰类型识别模块,输出图像传感器对应的分频干扰类型。其中,图像传感器对应的分频干扰类型包括8分频干扰类型、10分频干扰类型、24分频干扰类型、40分频干扰类型、8分频加24分频干扰类型、8分频加40分频干扰类型等。针对不同类型的图像传感器,以及图像传感器的不同配置参数,其对应不同的分频干扰类型。
在一些实施例中,如图3所示,所述步骤S102可以包括子步骤S1021。
S1021、查询预设的标定信息,确定所述图像传感器的类型和所述配置参数对应的分频干扰类型,其中,所述标定信息表征图像传感器的类型、配置参数、分频干扰类型之间的对应关系。
示例性的,预先通过进行大量实验,获得图像传感器的类型、对应的配置参数与分频干扰类型之间的对应关系,从而生成相应的标定信息。示例性的,该标定信息可以包括分频干扰类型表,其中,分频干扰类型表中包含图像传感器的类型、ADC位数、总线协议、像素排列类型与分频干扰类型之间的对应关系。例如,分频干扰类型表如表1所示:
表1
图像传感器类型 ADC位数 总线协议 像素排列类型 分频干扰类型
视觉 8 mipi 单色 8分频
视觉 8 mipi RGB 10分频
视觉 10 mipi 单色 8分频+40分频
视觉 10 mipi RGB 8分频+24分频
视觉 10 lvds 单色 10分频
视觉 10 lvds RGB 10分频
相机 8 mipi RGB 24分频
相机 8 mipi RGRG 8分频
相机 8 mipi RRGG 8分频
相机 10 mipi RGB 40分频
相机 10 mipi RGRG 8分频
相机 10 mipi RRGG 8分频+40分频
相机 10 lvds RGB 40分频
相机 10 lvds RGRG 40分频
相机 10 lvds RRGG 10分频
相机 12 mipi RGB 8分频
相机 12 mipi RGRG 8分频+24分频
相机 12 mipi RRGG 24分频
需要说明的是,上述表1只是列举的部分图像传感器的类型、ADC位数、总线协议、像素排列类型与分频干扰类型之间的对应关系,实际应用中可以不断对该分频干扰类型表进行扩充和优化,也即对标定信息进行更新。从而根据更新的标定信息,确定对应的分频干扰类型。
在确定了可移动平台的图像传感器的类型,以及图像传感器对应的ADC位数、总线协议、像素排列类型等配置参数后,通过查询标定信息,例如通过查询分频干扰类型表,确定出图像传感器的类型和配置参数对应的分频干扰类型。
例如,若确定图像传感器的类型为视觉模组,对应的ADC位数为8位,总线协议为mipi协议,像素排列类型为单色排列,通过查询上述表1,确定图像传感器对应的分频干扰类型为8分频。
又如,若确定图像传感器的类型为相机模组,对应的ADC位数为10位,总线协议为lvds协议,像素排列类型为RRGG色排列,通过查询上述表1,确定图像传感器对应的分频干扰类型为10分频。
在一些实施例中,如图4所示,所述步骤S102可以包括子步骤S1022和子步骤S1023。
S1022、基于所述图像传感器的类型、以及所述配置参数进行通信信号采样,获得对应的信号频谱。
可移动平台基于图像传感器的类型、以及对应的配置参数进行通信,通过采样通信信号,获得对应的信号频谱。例如,如图5所示,图5为在图像传感器的类型为视觉模组、ADC位数为8位、总线协议为mipi协议、像素排列类型为单色排列的情况下对应采样到的信号频谱。
S1023、根据所述信号频谱,确定所述图像传感器对应的分频干扰类型。
通过对采样到的信号频谱进行分析,获得信号频谱的频谱规律,根据频谱规律确定图像传感器对应的分频干扰类型。
在一些实施例中,根据所述信号频谱,确定所述图像传感器对应的分频干扰类型可以包括:对所述信号频谱的周期性进行分析,根据每个周期的频谱中功率随频率的变化趋势,确定所述图像传感器对应的分频干扰类型。
例如,以图5所示的信号频谱为例,对该信号频谱的周期性进行分析,获 得每个周期的频谱中功率随频率的变化趋势,在图5所示的信号频谱中,功率呈随每个周期内频率分8段进行周期性重复变化的趋势,因此,根据该变化趋势,确定图像传感器对应的分频干扰类型为8分频干扰类型。
S103、根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略。
示例性的,抗干扰处理策略包括GPS(Global Positioning System,全球定位系统)频段、GLONASS(GLOBAL NAVIGATION SATELLITE SYSTEM,全球卫星导航系统)频段、SDR(Software Defined Radio,软件无线电)2.4G频段和SDR5.8G频段中至少一种的选频策略。例如,避开GPS频段、在SDR5.8G频段内保留一个频点等等。
示例性的,预设各种分频干扰类型对应的抗干扰处理策略,例如,设置8分频干扰类型、10分频干扰类型对应抗干扰处理策略1,24分频干扰类型、8分频加24分频干扰类型对应抗干扰处理策略2,40分频干扰类型、8分频加40分频干扰类型对应抗干扰处理策略3,其中,抗干扰处理策略1、抗干扰处理策略2与抗干扰处理策略3互不相同。
根据所确定的分频干扰类型,以及预设的各种分频干扰类型对应的抗干扰处理策略,确定该分频干扰类型对应的抗干扰处理策略。例如,若确定分频干扰类型为8分频干扰类型,则确定对应的抗干扰处理策略为抗干扰处理策略1。又如,若确定分频干扰类型为24分频干扰类型,则确定对应的抗干扰处理策略为抗干扰处理策略2。再如,若确定分频干扰类型为8分频加40分频干扰类型,则确定对应的抗干扰处理策略为抗干扰处理策略3。
在一些实施例中,根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略可以包括:根据所述分频干扰类型、所述图像传感器的类型、所述图像传感器对应的数据传输速率,确定所述抗干扰处理策略。
示例性的,预设图像传感器的类型、图像传感器对应的数据传输速率、分频干扰类型与抗干扰处理策略之间的对应关系。通过获得图像传感器的类型、图像传感器对应的数据传输速率、以及对应的分频干扰类型,确定对应的抗干扰处理策略。
例如,仍以抗干扰处理策略1、抗干扰处理策略2、以及抗干扰处理策略3 为例,预设抗干扰处理策略1包括:视觉模组和相机模组全部避开GPS频段、GLONASS频段、SDR2.4G频段,且相机模组避开SDR5.8G频段,视觉模组在SDR5.8G频段内保留一个频点;抗干扰处理策略2包括:视觉模组和相机模组全部避开GPS频段、GLONASS频段,视觉模组对24分频干扰在SDR2.4G频段内保留两个频点,相机模组高于2G数据传输速率避开SDR2.4G频段、在SDR5.8G频段内保留一个频点,相机模组低于2G数据传输速率,与视觉模组处理策略相同;抗干扰处理策略3包括:视觉模组和相机模组全部避开GPS频段、GLONASS频段,视觉模组对24分频干扰在SDR2.4G频段内保留两个频点,相机模组高于2G数据传输速率在SDR2.4G频段内保留一个频点,相机高于2G速率SDR2.4G保有一个分布频点、在SDR5.8G频段内保留尽量少的若干个频点,相机模组低于2G数据传输速率,与视觉模组处理策略相同。
通过获得图像传感器的类型、图像传感器对应的数据传输速率、以及对应的分频干扰类型,确定对应的抗干扰处理策略。比如,若确定图像传感器的类型为相机模组,相机模组对应的数据传输速率大于2G数据传输速率,分频干扰类型为24分频干扰类型,则避开GPS频段、GLONASS频段、SDR2.4G频段、在SDR5.8G频段内保留一个频点。
在一些实施例中,如图6所示,所述步骤S103可以包括子步骤S1031。
S1031、当所述图像传感器的分频干扰类型为8分频干扰类型或10分频干扰类型时,若所述图像传感器的类型为相机模组,则避开GPS频段、GLONASS频段、SDR2.4G频段和SDR5.8G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段、GLONASS频段和SDR2.4G频段,在SDR5.8G频段内保留一个频点。
对于8分频干扰类型或者10分频干扰类型,视觉模组和相机模组全部避开GPS频段、GLONASS频段以及SDR2.4G频段,相机模组还需要避开SDR5.8G频段,由于视觉模组对应的数据传输速率较低,无法完全避开SDR5.8G频段,也由于数据传输速率低视觉模组在SDR5.8G频段的干扰小,因此,允许视觉模组在SDR5.8G频段内保留一个频点。
在一些实施例中,如图7所示,所述步骤S103可以包括子步骤S1032。
S1032、当所述图像传感器的分频干扰类型为24分频干扰类型或8分频加 24分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率大于或等于预设速率阈值,则避开GPS频段和GLONASS频段,对8分频干扰避开SDR2.4G频段和SDR5.8G频段,以及对24分频干扰在SDR5.8G频段内保留一个频点;若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段。
对于24分频干扰类型、8分频加24分频干扰类型,其中,8分频加24分频干扰类型通常是8分频强干扰与24分频弱干扰类型,视觉模组和相机模组全部避开GPS频段、GLONASS频段,由于GPS频段和GLONASS频段都相对较窄,容易避开。同样由于视觉模组对应的数据传输速率较低,对8分频干扰视觉模组避开SDR2.4G频段。相机模组且数据传输速率大于或等于预设速率阈值(如2G数据传输速率),对8分频干扰避开SDR2.4G频段和SDR5.8G频段,对24分频干扰在SDR5.8G频段内保留一个频点。相机模组且数据传输速率小于预设速率阈值,与视觉模组处理方案相同。
示例性的,预设速率阈值可设置为2G,需要说明的是,该预设速率阈值可根据实际情况进行灵活设置,在此不作具体限制。
在一些实施例中,根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略还可以包括:当所述图像传感器的分频干扰类型为24分频干扰类型或8分频加24分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则在预设频点所在的波动频段内选频。
对于24分频干扰类型、8分频加24分频干扰类型这两种分频干扰类型,相机模组且数据传输速率小于预设速率阈值,在预设频点附近选频。示例性的,该预设频点设置为1.25GHz,也即在1.25GHz附近选频,因为非标准正弦波信号的偶次频能量较低,在1.25GHz附近的对应频段的干扰小。
需要说明的是,该预设频点可根据实际情况进行灵活设置,在此不作具体限制。
在一些实施例中,如图8所示,所述步骤S103可以包括子步骤S1033。
S1033、当所述图像传感器的分频干扰类型为40分频干扰类型或8分频加 40分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率大于或等于预设速率阈值,则避开GPS频段和GLONASS频段,在SDR2.4G频段内保留一个频点,以及在SDR5.8G频段内保留若干个频点;若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段和SDR5.8G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段和GLONASS频段。
对于40分频干扰类型、8分频加40分频干扰类型,其中,8分频加40分频干扰类型通常是8分频强干扰与40分频弱干扰类型,视觉模组和相机模组全部避开GPS频段、GLONASS频段。相机模组且数据传输速率大于或等于预设速率阈值(如2G数据传输速率),在SDR2.4G频段内保留一个频点,在SDR5.8G频段内保留尽量少的若干个频点。相机模组且数据传输速率小于预设速率阈值,对8分频干扰避开SDR2.4G频段和SDR5.8G频段。
示例性的,对于对于40分频干扰类型、8分频加40分频干扰类型这两种分频干扰类型,相机模组且数据传输速率小于预设速率阈值,在预设频点附近选频,例如,在1.25GHz附近选频。
S104、根据所述抗干扰处理策略控制所述可移动平台进行通信。
根据所确定的抗干扰处理策略,也即避开哪些频段,选择哪些频段或频点,基于该抗干扰处理策略控制可移动平台进行通信。
在一些实施例中,如图9所示,所述步骤S104可以包括子步骤S1041和子步骤S1042。
S1041、根据所述抗干扰处理策略进行选频。
根据GPS频段、GLONASS频段、SDR2.4G频段和SDR5.8G频段等的选频策略,选择相应合适的频点或频段。例如,若确定分频干扰类型为8分频干扰类型,且图像传感器的类型为视觉模组,则避开GPS频段、GLONASS频段、SDR2.4G频段,在SDR5.8G频段内保留一个频点,根据抗干扰处理策略,在SDR5.8G频段内选择一个频点。
S1042、基于选择的频点或频段,控制所述可移动平台进行通信。
仍以上述列举的例子为例,在SDR5.8G频段内选择了一个频点,则根据选择的该频点,控制可移动平台进行通信。
基于图像传感器工作原理及数据排列方式,分析其干扰的规律,确定其对应的分频干扰类型,并结合图像传感器的常规数据传输速率范围,进而选出对通信干扰影响最小的频点或频段,对干扰的改善效果显著可靠;并且,还节省了人力成本和硬件成本。
上述实施例通过确定可移动平台的图像传感器的类型和图像传感器对应的配置参数,根据图像传感器的类型、以及对应的配置参数,确定图像传感器对应的分频干扰类型,然后根据分频干扰类型,确定图像传感器对应的抗干扰处理策略,进而根据所确定的抗干扰处理策略控制可移动平台进行通信,也即通过确定图像传感器对应的分频干扰类型,并针对每种分频干扰类型提供对应的抗干扰处理策略,针对性地基于图像传感器进行相应抗干扰处理,因此有效降低了图像传感器的底噪干扰。
请参阅图10,图10是本申请一实施例提供的可移动平台的示意性框图。
如图10所示,该可移动平台500可以包括包括处理器511和存储器512,处理器511和存储器512通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器511可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器512可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。存储器512中存储有供处理器511执行的各种计算机程序。
其中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
确定可移动平台的图像传感器的类型,以及确定所述图像传感器对应的配置参数;
根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型;
根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略;
根据所述抗干扰处理策略控制所述可移动平台进行通信。
在一些实施例中,所述配置参数包括以下至少一种:ADC位数、总线协议、像素排列类型。
在一些实施例中,所述处理器在实现所述根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型时,用于实现:
查询预设的标定信息,确定所述图像传感器的类型和所述配置参数对应的分频干扰类型,其中,所述标定信息表征图像传感器的类型、配置参数、分频干扰类型之间的对应关系。
在一些实施例中,所述标定信息包括分频干扰类型表。
在一些实施例中,所述分频干扰类型表中包含图像传感器的类型、ADC位数、总线协议、像素排列类型与分频干扰类型之间的对应关系。
在一些实施例中,所述处理器在实现所述根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型时,用于实现:
基于所述图像传感器的类型、以及所述配置参数进行通信信号采样,获得对应的信号频谱;
根据所述信号频谱,确定所述图像传感器对应的分频干扰类型。
在一些实施例中,所述处理器在实现所述根据所述信号频谱,确定所述图像传感器对应的分频干扰类型时,用于实现:
对所述信号频谱的周期性进行分析,根据每个周期的频谱中功率随频率的变化趋势,确定所述图像传感器对应的分频干扰类型。
在一些实施例中,所述处理器在实现所述根据所述抗干扰处理策略控制所述可移动平台进行通信时,用于实现:
根据所述抗干扰处理策略进行选频;
基于选择的频点或频段,控制所述可移动平台进行通信。
在一些实施例中,所述分频干扰类型包括:8分频干扰类型、10分频干扰类型、24分频干扰类型、40分频干扰类型、8分频加24分频干扰类型、8分频加40分频干扰类型。
在一些实施例中,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
根据所述分频干扰类型、所述图像传感器的类型、所述图像传感器对应的 数据传输速率,确定所述抗干扰处理策略。
在一些实施例中,所述抗干扰处理策略包括GPS频段、GLONASS频段、SDR2.4G频段和SDR5.8G频段中至少一种的选频策略。
在一些实施例中,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
当所述图像传感器的分频干扰类型为8分频干扰类型或10分频干扰类型时,若所述图像传感器的类型为相机模组,则避开GPS频段、GLONASS频段、SDR2.4G频段和SDR5.8G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段、GLONASS频段和SDR2.4G频段,在SDR5.8G频段内保留一个频点。
在一些实施例中,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
当所述图像传感器的分频干扰类型为24分频干扰类型或8分频加24分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率大于或等于预设速率阈值,则避开GPS频段和GLONASS频段,对8分频干扰避开SDR2.4G频段和SDR5.8G频段,以及对24分频干扰在SDR5.8G频段内保留一个频点;若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段。
在一些实施例中,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
当所述图像传感器的分频干扰类型为24分频干扰类型或8分频加24分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则在预设频点所在的波动频段内选频。
在一些实施例中,所述预设频点包括1.25GHz。
在一些实施例中,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
当所述图像传感器的分频干扰类型为40分频干扰类型或8分频加40分频 干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率大于或等于预设速率阈值,则避开GPS频段和GLONASS频段,在SDR2.4G频段内保留一个频点,以及在SDR5.8G频段内保留若干个频点;若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段和SDR5.8G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段和GLONASS频段。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现本申请实施例提供的可移动平台的通信方法的步骤。
其中,所述计算机可读存储介质可以是前述实施例所述的可移动平台的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种可移动平台的通信方法,其特征在于,包括:
    确定可移动平台的图像传感器的类型,以及确定所述图像传感器对应的配置参数;
    根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型;
    根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略;
    根据所述抗干扰处理策略控制所述可移动平台进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述配置参数包括以下至少一种:ADC位数、总线协议、像素排列类型。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型,包括:
    查询预设的标定信息,确定所述图像传感器的类型和所述配置参数对应的分频干扰类型,其中,所述标定信息表征图像传感器的类型、配置参数、分频干扰类型之间的对应关系。
  4. 根据权利要求3所述的方法,其特征在于,所述标定信息包括分频干扰类型表。
  5. 根据权利要求4所述的方法,其特征在于,所述分频干扰类型表中包含图像传感器的类型、ADC位数、总线协议、像素排列类型与分频干扰类型之间的对应关系。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型,包括:
    基于所述图像传感器的类型、以及所述配置参数进行通信信号采样,获得对应的信号频谱;
    根据所述信号频谱,确定所述图像传感器对应的分频干扰类型。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述信号频谱,确定所述图像传感器对应的分频干扰类型,包括:
    对所述信号频谱的周期性进行分析,根据每个周期的频谱中功率随频率的变化趋势,确定所述图像传感器对应的分频干扰类型。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述抗干扰处理策略控制所述可移动平台进行通信,包括:
    根据所述抗干扰处理策略进行选频;
    基于选择的频点或频段,控制所述可移动平台进行通信。
  9. 根据权利要求1所述的方法,其特征在于,所述分频干扰类型包括:8分频干扰类型、10分频干扰类型、24分频干扰类型、40分频干扰类型、8分频加24分频干扰类型、8分频加40分频干扰类型。
  10. 根据权利要求1所述的方法,其特征在于,所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略,包括:
    根据所述分频干扰类型、所述图像传感器的类型、所述图像传感器对应的数据传输速率,确定所述抗干扰处理策略。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述抗干扰处理策略包括GPS频段、GLONASS频段、SDR2.4G频段和SDR5.8G频段中至少一种的选频策略。
  12. 根据权利要求9所述的方法,其特征在于,所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略,包括:
    当所述图像传感器的分频干扰类型为8分频干扰类型或10分频干扰类型时,若所述图像传感器的类型为相机模组,则避开GPS频段、GLONASS频段、SDR2.4G频段和SDR5.8G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段、GLONASS频段和SDR2.4G频段,在SDR5.8G频段内保留一个频点。
  13. 根据权利要求9所述的方法,其特征在于,所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略,包括:
    当所述图像传感器的分频干扰类型为24分频干扰类型或8分频加24分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率大于或等于预设速率阈值,则避开GPS频段和GLONASS频段,对8分频干扰避开SDR2.4G频段和SDR5.8G频段,以及对24分频干扰在SDR5.8G频段内保留一个频点; 若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略,还包括:
    当所述图像传感器的分频干扰类型为24分频干扰类型或8分频加24分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则在预设频点所在的波动频段内选频。
  15. 根据权利要求14所述的方法,其特征在于,所述预设频点包括1.25GHz。
  16. 根据权利要求9所述的方法,其特征在于,所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略,包括:
    当所述图像传感器的分频干扰类型为40分频干扰类型或8分频加40分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率大于或等于预设速率阈值,则避开GPS频段和GLONASS频段,在SDR2.4G频段内保留一个频点,以及在SDR5.8G频段内保留若干个频点;若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段和SDR5.8G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段和GLONASS频段。
  17. 一种可移动平台,其特征在于,所述可移动平台包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    确定可移动平台的图像传感器的类型,以及确定所述图像传感器对应的配置参数;
    根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型;
    根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略;
    根据所述抗干扰处理策略控制所述可移动平台进行通信。
  18. 根据权利要求17所述的可移动平台,其特征在于,所述配置参数包括以下至少一种:ADC位数、总线协议、像素排列类型。
  19. 根据权利要求17所述的可移动平台,其特征在于,所述处理器在实现所述根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型时,用于实现:
    查询预设的标定信息,确定所述图像传感器的类型和所述配置参数对应的分频干扰类型,其中,所述标定信息表征图像传感器的类型、配置参数、分频干扰类型之间的对应关系。
  20. 根据权利要求19所述的可移动平台,其特征在于,所述标定信息包括分频干扰类型表。
  21. 根据权利要求20所述的可移动平台,其特征在于,所述分频干扰类型表中包含图像传感器的类型、ADC位数、总线协议、像素排列类型与分频干扰类型之间的对应关系。
  22. 根据权利要求17所述的可移动平台,其特征在于,所述处理器在实现所述根据所述图像传感器的类型、以及所述配置参数,确定所述图像传感器对应的分频干扰类型时,用于实现:
    基于所述图像传感器的类型、以及所述配置参数进行通信信号采样,获得对应的信号频谱;
    根据所述信号频谱,确定所述图像传感器对应的分频干扰类型。
  23. 根据权利要求22所述的可移动平台,其特征在于,所述处理器在实现所述根据所述信号频谱,确定所述图像传感器对应的分频干扰类型时,用于实现:
    对所述信号频谱的周期性进行分析,根据每个周期的频谱中功率随频率的变化趋势,确定所述图像传感器对应的分频干扰类型。
  24. 根据权利要求17所述的可移动平台,其特征在于,所述处理器在实现所述根据所述抗干扰处理策略控制所述可移动平台进行通信时,用于实现:
    根据所述抗干扰处理策略进行选频;
    基于选择的频点或频段,控制所述可移动平台进行通信。
  25. 根据权利要求17所述的可移动平台,其特征在于,所述分频干扰类型 包括:8分频干扰类型、10分频干扰类型、24分频干扰类型、40分频干扰类型、8分频加24分频干扰类型、8分频加40分频干扰类型。
  26. 根据权利要求17所述的可移动平台,其特征在于,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
    根据所述分频干扰类型、所述图像传感器的类型、所述图像传感器对应的数据传输速率,确定所述抗干扰处理策略。
  27. 根据权利要求17至26任一项所述的可移动平台,其特征在于,所述抗干扰处理策略包括GPS频段、GLONASS频段、SDR2.4G频段和SDR5.8G频段中至少一种的选频策略。
  28. 根据权利要求25所述的可移动平台,其特征在于,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
    当所述图像传感器的分频干扰类型为8分频干扰类型或10分频干扰类型时,若所述图像传感器的类型为相机模组,则避开GPS频段、GLONASS频段、SDR2.4G频段和SDR5.8G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段、GLONASS频段和SDR2.4G频段,在SDR5.8G频段内保留一个频点。
  29. 根据权利要求25所述的可移动平台,其特征在于,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
    当所述图像传感器的分频干扰类型为24分频干扰类型或8分频加24分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率大于或等于预设速率阈值,则避开GPS频段和GLONASS频段,对8分频干扰避开SDR2.4G频段和SDR5.8G频段,以及对24分频干扰在SDR5.8G频段内保留一个频点;若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段。
  30. 根据权利要求29所述的可移动平台,其特征在于,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,还用于实现:
    当所述图像传感器的分频干扰类型为24分频干扰类型或8分频加24分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则在预设频点所在的波动频段内选频。
  31. 根据权利要求30所述的可移动平台,其特征在于,所述预设频点包括1.25GHz。
  32. 根据权利要求25所述的可移动平台,其特征在于,所述处理器在实现所述根据所述分频干扰类型,确定所述图像传感器对应的抗干扰处理策略时,用于实现:
    当所述图像传感器的分频干扰类型为40分频干扰类型或8分频加40分频干扰类型时,若所述图像传感器的类型为相机模组且数据传输速率大于或等于预设速率阈值,则避开GPS频段和GLONASS频段,在SDR2.4G频段内保留一个频点,以及在SDR5.8G频段内保留若干个频点;若所述图像传感器的类型为相机模组且数据传输速率小于所述预设速率阈值,则避开GPS频段和GLONASS频段,以及对8分频干扰避开SDR2.4G频段和SDR5.8G频段;若所述图像传感器的类型为视觉模组,则避开GPS频段和GLONASS频段。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至16中任一项所述的可移动平台的通信方法。
PCT/CN2021/075344 2021-02-04 2021-02-04 可移动平台的通信方法、可移动平台及存储介质 WO2022165724A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075344 WO2022165724A1 (zh) 2021-02-04 2021-02-04 可移动平台的通信方法、可移动平台及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075344 WO2022165724A1 (zh) 2021-02-04 2021-02-04 可移动平台的通信方法、可移动平台及存储介质

Publications (1)

Publication Number Publication Date
WO2022165724A1 true WO2022165724A1 (zh) 2022-08-11

Family

ID=82740795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075344 WO2022165724A1 (zh) 2021-02-04 2021-02-04 可移动平台的通信方法、可移动平台及存储介质

Country Status (1)

Country Link
WO (1) WO2022165724A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103442374A (zh) * 2013-07-12 2013-12-11 北京神州泰岳软件股份有限公司 干扰信号处理方法及系统
WO2016168966A1 (zh) * 2015-04-20 2016-10-27 华为技术有限公司 防止摄像头干扰天线的方法、装置及电子设备
CN108093134A (zh) * 2017-12-15 2018-05-29 广东欧珀移动通信有限公司 电子设备的抗干扰方法及相关产品
CN109274437A (zh) * 2018-11-29 2019-01-25 努比亚技术有限公司 一种摄像头抗干扰方法、设备及计算机可读存储介质
US20190306675A1 (en) * 2018-03-29 2019-10-03 Intel Corporation Detecting and mitigating drone interference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103442374A (zh) * 2013-07-12 2013-12-11 北京神州泰岳软件股份有限公司 干扰信号处理方法及系统
WO2016168966A1 (zh) * 2015-04-20 2016-10-27 华为技术有限公司 防止摄像头干扰天线的方法、装置及电子设备
CN108093134A (zh) * 2017-12-15 2018-05-29 广东欧珀移动通信有限公司 电子设备的抗干扰方法及相关产品
US20190306675A1 (en) * 2018-03-29 2019-10-03 Intel Corporation Detecting and mitigating drone interference
CN109274437A (zh) * 2018-11-29 2019-01-25 努比亚技术有限公司 一种摄像头抗干扰方法、设备及计算机可读存储介质

Similar Documents

Publication Publication Date Title
US9258170B2 (en) Converter/multiplexer for serial bus
WO2021003059A1 (en) Resource allocation management for co-channel co-existence in intelligent transport systems
US10719349B2 (en) Peripheral device sharing for virtual machines
WO2021148041A1 (zh) 一种路损参考信号的确定方法及装置
WO2019127229A1 (zh) 监听数据的展示方法及装置及无人机监听系统
US11815979B2 (en) Application priority based power management for a computer device
US11682307B2 (en) Situation-aware, intelligent data-synchronization methods for UAV-inspection applications
US20240054821A1 (en) Management device, in-vehicle system, vehicle, communication management method and storage medium
US20200351615A1 (en) System and method for managing movable object communications
US10402214B2 (en) Device provided script to convert command
WO2022165724A1 (zh) 可移动平台的通信方法、可移动平台及存储介质
US10055823B2 (en) Method for generating a pixel filtering boundary for use in auto white balance calibration
WO2017192242A1 (en) Wlan/bt/802.15.4 coexistence interface
WO2021142850A1 (zh) 部件维护提醒方法、设备、系统及计算机可读存储介质
US20200354069A1 (en) Devices and systems utilizing a single chip for control of device movement
US11364992B2 (en) Aligning aircraft with runway centerline during takeoff
US10639797B1 (en) Selectively uploading operational data generated by robot based on physical communication link attribute
WO2022141535A1 (zh) 可移动平台的定位方法、可移动平台及存储介质
US20150172182A1 (en) Method and apparatus for controlling virtual switching
WO2021208094A1 (zh) 带宽切换方法、装置、无人机及计算机可读存储介质
WO2022140965A1 (zh) 遥控设备及其控制方法、遥控通信系统、存储介质
KR102147830B1 (ko) Ai 기반의 영상 처리를 통한 무인 비행체의 통합 제어 시스템 및 그 방법
KR101482492B1 (ko) Nmea 2000 정보를 휴대 단말을 통해 원거리에 전달하는 방법 및 시스템
EP3920545B1 (en) Wireless communication for industrial automation
CN208299935U (zh) 无人机图传系统以及无人机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923749

Country of ref document: EP

Kind code of ref document: A1