WO2022141535A1 - 可移动平台的定位方法、可移动平台及存储介质 - Google Patents

可移动平台的定位方法、可移动平台及存储介质 Download PDF

Info

Publication number
WO2022141535A1
WO2022141535A1 PCT/CN2020/142435 CN2020142435W WO2022141535A1 WO 2022141535 A1 WO2022141535 A1 WO 2022141535A1 CN 2020142435 W CN2020142435 W CN 2020142435W WO 2022141535 A1 WO2022141535 A1 WO 2022141535A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable platform
satellites
positioning
satellite
preset number
Prior art date
Application number
PCT/CN2020/142435
Other languages
English (en)
French (fr)
Inventor
贺冬凌
兰设勇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/142435 priority Critical patent/WO2022141535A1/zh
Publication of WO2022141535A1 publication Critical patent/WO2022141535A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled

Definitions

  • the present application relates to the technical field of movable platforms, and in particular, to a positioning method of a movable platform, a movable platform and a storage medium.
  • GNSS Global Navigation Satellite System
  • the four satellites are used to calculate the positioning information, and then output the positioning information to the UAV flight control system.
  • the drone encounters special circumstances, such as occlusion, it will cause inaccurate positioning information, resulting in errors in the positioning of the drone.
  • the present application provides a method for positioning a movable platform, a movable platform and a storage medium, so as to improve the positioning accuracy of the movable platform.
  • the present application provides a method for locating a movable platform, the method comprising:
  • the environmental image information determine whether there is a risk of abnormal communication between the movable platform and the first satellite currently used for positioning the movable platform;
  • the movable platform is positioned according to the positioning information of the preset number of second satellites.
  • the present application also provides a movable platform, the movable platform includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the environmental image information determine whether there is a risk of abnormal communication between the movable platform and the first satellite currently used for positioning the movable platform;
  • the movable platform is positioned according to the positioning information of the preset number of second satellites.
  • the present application also provides a movable platform, the movable platform includes an antenna, a radio frequency front-end module and a positioning solution module, the antenna is connected to the radio frequency front-end module, and the radio frequency front-end module is connected to the Positioning solution module;
  • the antenna is used to receive satellite signals
  • the radio frequency front-end module is used to obtain the satellite signal received by the antenna, perform radio frequency demodulation on the satellite signal, obtain a demodulated signal, and output the demodulated signal to the positioning calculation module ;
  • the positioning and solving module is used to obtain the demodulated signal, and obtain the environmental image information corresponding to the current environment of the movable platform, and perform an operation on the movable platform according to the demodulated signal and the environmental image information. position.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned movable platform positioning method.
  • the method for locating the movable platform, the movable platform and the storage medium disclosed in the present application by obtaining the environmental image information corresponding to the current environment of the movable platform, and according to the environmental image information, it is determined whether the movable platform is the same as that of the mobile platform currently used for positioning the movable platform. Whether there is a risk of abnormal communication between a satellite, if there is a risk of abnormal communication between the movable platform and the first satellite, select a preset number of second satellites from other satellites other than the first satellite, and obtain the preset number The positioning information of the number of second satellites is used to locate the movable platform according to the positioning information of the preset number of the second satellites. That is, before an abnormal situation such as occlusion may occur, the satellites used for positioning are switched, so as to ensure accurate positioning information and avoid positioning errors of the movable platform machine, thus improving the positioning accuracy of the movable platform.
  • FIG. 1 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another movable platform provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of steps of a method for locating a movable platform provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a step of selecting a preset number of second satellites from other multiple satellites other than the first satellite provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of another step of selecting a preset number of second satellites from other satellites other than the first satellite provided by an embodiment of the present application;
  • FIG. 6 is a schematic flowchart of steps of another method for positioning a movable platform provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a movable platform provided by an embodiment of the present application.
  • Embodiments of the present application provide a method for positioning a movable platform, a movable platform and a storage medium, which are used to improve the positioning accuracy of the movable platform.
  • the movable platform includes, but is not limited to, unmanned aerial vehicles, such as rotary-wing aircraft, including single-rotor aircraft, dual-rotor aircraft, tri-rotor aircraft, quad-rotor aircraft, hexa-rotor aircraft, octa-rotor aircraft, ten-rotor aircraft, twelve-rotor aircraft Rotorcraft, etc.
  • unmanned aerial vehicles such as rotary-wing aircraft, including single-rotor aircraft, dual-rotor aircraft, tri-rotor aircraft, quad-rotor aircraft, hexa-rotor aircraft, octa-rotor aircraft, ten-rotor aircraft, twelve-rotor aircraft Rotorcraft, etc.
  • the movable platform may also be other types of unmanned aerial vehicles or movable devices, such as fixed-wing unmanned aerial vehicles, and the embodiment of the present application is not limited thereto.
  • the movable platform 1000 may include a body 100 , a power system 200 provided in the body 100 , an image acquisition device 300 , and a control device 400 .
  • the power system 200 is used to provide power for the movable platform 1000;
  • the image acquisition device 300 includes at least one of a camera and a visual sensor, and the image acquisition device 300 is used to collect environmental image information corresponding to the current environment of the movable platform;
  • the control device 400 It is used to acquire the environmental image information collected by the image acquisition device 300, and determine whether to switch the satellite used for positioning according to the environmental image information, so as to locate the movable platform.
  • the power system 200 may include one or more electronic governors (referred to as ESCs for short), one or more propellers, and one or more motors corresponding to the one or more propellers, wherein the motors are connected to the electronic between the governor and the propeller.
  • the electronic governor is used to provide driving current to the motor to control the speed of the motor.
  • the motor is used to drive the propeller to rotate, thereby providing power for the flight of the movable platform 1000, which power enables the movable platform 1000 to achieve one or more degrees of freedom movement.
  • the movable platform 1000 can rotate about one or more axes of rotation.
  • the motor may be a DC motor or an AC motor.
  • the motor may be a brushless motor or a brushed motor.
  • the movable platform 1000 may include a body 100 , a power system 200 disposed in the body 100 , an image acquisition device 300 , an antenna 500 , a radio frequency front-end module 600 and a positioning calculation module 700 , wherein the power system 200 and the image acquisition device 300 are as described in the foregoing embodiments, and are not repeated here.
  • the antenna 500 is connected to the radio frequency front-end module 600
  • the radio frequency front-end module 600 is connected to the positioning and solving module 700 .
  • the antenna 500 is used for receiving satellite signals;
  • the radio frequency front-end module 600 is used for acquiring the satellite signals received by the antenna 500, and performing radio frequency demodulation on the satellite signals to obtain the demodulated signals, and outputting the demodulated signals to the positioning calculation module 700;
  • the positioning and solving module 700 is used to obtain the demodulated signal and the environmental image information corresponding to the current environment of the movable platform collected by the image acquisition device 300, and to locate the movable platform according to the demodulated signal and the environmental image information.
  • the antenna 500 includes a first antenna and a second antenna, wherein the first antenna receives satellite signals in the first frequency band L1, and the second antenna receives satellite signals in the first frequency band L1 and the second frequency band L2.
  • the radio frequency front-end module 600 includes a radio frequency transceiver, such as an RF3902 radio frequency receiving chip.
  • the radio frequency transceiver provides the positioning calculation module 700 with a clock signal with a preset clock frequency, for example, provides a 52M clock signal to the positioning calculation module 700 .
  • the positioning solution module 700 includes a baseband chip.
  • the antenna 500 receives the signal transmitted by the satellite, and after being processed by the duplexer, the power divider and the filter, the radio frequency front-end module 600 performs radio frequency demodulation, and outputs the low-IF demodulated signal obtained by the demodulation to the positioning solution module 700 for demodulation. Calculate the positioning process to obtain the positioning result.
  • the positioning calculation module 700 includes a memory, and the memory is used for storing relevant data, wherein the relevant data includes, but is not limited to, the positioning information of satellites, the positioning result of the movable platform 1000, and the like.
  • the movable platform 1000 further includes an MCU (Microcontroller Unit, Micro Control Unit) module 800 , and the MCU module is connected to the positioning solution module 700 .
  • the positioning calculation module 700 is used to output the positioning result of the movable platform 1000 to the MCU module 800, and the MCU module 800 is used to send the positioning result to the corresponding control device of the movable platform 1000, such as the flight controller and the remote controller of the movable platform. etc. device.
  • the positioning calculation module 700 and the MCU module 800 each include a first UART (Universal Asynchronous Receiver/Transmitter, Universal Asynchronous Receiver/Transmitter) interface, and based on the respective first UART interfaces, the MCU module 800 and the positioning calculation module 700 establish connection.
  • the MCU module 800 obtains information such as positioning and base station data through the two first UART interfaces and the positioning calculation module 700 .
  • the radio frequency front-end module 600 and the MCU module 800 each include an SPI (Serial Peripheral Interface, serial peripheral interface) interface, and based on the respective SPI interfaces, the MCU module 800 establishes a connection with the radio frequency front-end module 600.
  • SPI Serial Peripheral Interface, serial peripheral interface
  • the MCU module 800 configures the RF front-end module 600 through the SPI interface to output a clock signal with a preset clock frequency, for example, a clock signal of 52M.
  • the RF front-end module 600, the positioning solution module 700, and the MCU module 800 are integrated on the same circuit board, and are integrated into an integrated GNSS (Global Navigation Satellite System, Global Navigation Satellite System) positioning circuit module.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the movable platform 1000 further includes a GPS (Global Positioning System, global positioning system) module 900 , and the GPS module 900 is used for positioning the movable platform 1000 .
  • the GPS module 900 is also integrated on the integrated GNSS positioning circuit module.
  • the GPS module 900 and the MCU module 800 each include a second UART interface, and based on the respective second UART interfaces, the GPS module 900 establishes a connection with the MCU module 800 .
  • the MCU module 800 can obtain information such as positioning and time through the GPS module 900 .
  • the movable platform 1000 is provided with two positioning modes: a first positioning mode and a second positioning mode.
  • the movable platform 1000 is currently in the first positioning mode, the movable platform is positioned by the positioning calculation module 700 .
  • the movable platform currently turns on the second positioning mode the movable platform is positioned through the GPS module 900 .
  • an external digital interface is also integrated on the integrated GNSS positioning circuit module, and the positioning calculation module 700 and the MCU module 800 are connected to corresponding devices through the external digital interface.
  • the corresponding devices include batteries, cameras, SD cards, USB devices, DDR devices, and the like.
  • External digital interfaces include UART interface, CAN interface, USB interface, SD interface, DDR interface, PPS interface, etc.
  • the external digital interface mainly communicates through the 12PIN socket interface and the 34PIN socket interface, the 12PIN socket is connected to the battery board, and the 34PIN socket is connected to the antenna board.
  • the MCU module 800 is connected to the battery through the UART interface (UART_BAT), and the MCU module 800 receives the battery signal.
  • the positioning calculation module 700 and/or the GPS module 900 outputs the system synchronization signal through the PPS interface, and the GPS module 900 is used by default to output the 3.3V system synchronization signal.
  • the MCU module 800 is connected to the camera through the first CAN interface (CAN_Camera), and transmits light sensor information.
  • the MCU module 800 is connected to the control device (eg, flight controller) of the movable platform 1000 through the second CAN (CAN_FC) interface, and outputs the positioning result to the flight controller and other control devices.
  • the MCU module 800 receives the light sensor signal through the UART interface (UART_LS).
  • the MCU module 800 receives the interrupt signal output when the light sensor is abnormal through the C_INT_LS interface.
  • the MCU module 800 outputs a reset signal to the light sensor through the C_RESN_LS interface to reset the light sensor.
  • the MCU module 800 obtains power supply with a voltage of 3.3V and a current of 50mA through the VCC interface.
  • the positioning and solving module 700 is connected to the SD card through the SD interface, and is used to store the log information of flight positioning and searching.
  • the positioning calculation module 700 is connected to the USB device through a USB interface; the positioning calculation module 700 is connected to the DDR device through a DDR interface.
  • the movable platform 1000 can be positioned through the integrated GNSS positioning circuit module, and the log information in the positioning process is stored and retained through the SD card externally connected to the SD interface, which is convenient for the positioning of the satellite search problem.
  • the positioning solution module 700 only outputs the positioning results.
  • the MCU module 800 transmits the positioning result to the control device (such as the flight controller) of the mobile platform 1000 through the CAN interface for policy processing, which avoids a large amount of data transmission between CPUs, and thus solves the bottleneck of data transmission. question. That is, while solving the bottleneck of data transmission, it can achieve more accurate positioning results by dynamically adjusting the positioning satellites.
  • the movable platform 1000 in FIG. 1 and FIG. 2 is only used to explain the positioning method of the movable platform provided by the embodiment of the present application, but does not constitute an application scenario of the positioning method of the mobile platform provided by the embodiment of the present application limit.
  • FIG. 3 is a schematic flowchart of a method for locating a movable platform provided by an embodiment of the present application.
  • the method can be used in any movable platform provided by the above embodiments, so as to improve the positioning accuracy of the movable platform.
  • the positioning method of the movable platform specifically includes steps S101 to S106 .
  • the movable platform is provided with an image acquisition device, wherein the image acquisition device includes but is not limited to a camera, a visual sensor, and the like.
  • the environmental image information corresponding to the current environment of the movable platform is collected by the image acquisition device, and the environmental image information is acquired from the image acquisition device.
  • the environmental image information includes image information corresponding to images acquired by the image acquisition device within each field of view around the movable platform.
  • step S102 determines whether there is a risk of abnormal communication between the movable platform and the first satellite currently used for positioning the movable platform; if so, execute step S1023, if not, execute step S1023 S106.
  • the movable platform When positioning the movable platform, the movable platform is positioned by selecting a preset number of satellites and combining satellite information corresponding to the preset number of satellites.
  • the preset number is set to 4, that is, 4 satellites are selected to locate the movable platform.
  • the communication between the satellites currently used for the positioning of the movable platform and the movable platform should be normal. However, if there is an obstacle in front of the movable platform, it may cause the movable platform to There is a risk of abnormal communication between satellites positioned by the movable platform.
  • the satellite currently used for the positioning of the movable platform is referred to as the first satellite hereinafter.
  • determining whether there is a risk of abnormal communication between the movable platform and the first satellite currently used for positioning the movable platform may include: according to the environment image information, It is determined whether there is a foreign object in the current environment of the movable platform; if there is a foreign object in the current environment of the movable platform, it is determined that there is a risk of abnormal communication between the movable platform and the first satellite.
  • the environmental image information After obtaining the environmental image information, perform image analysis on the environmental image information. For example, image recognition technology is used to identify whether the environmental image information contains foreign object information. If foreign object information is included, it is determined that there is foreign object occlusion in the current environment of the movable platform. On the contrary, it is determined that there is no foreign object occlusion in the current environment of the movable platform.
  • the first satellite is replaced, and a preset number of satellites that communicate with the movable platform normally are selected from the other satellites except the first satellite for positioning the movable platform.
  • the selected preset number of satellites that normally communicate with the movable platform will be referred to as second satellites.
  • second satellites For example, four second satellites are selected from a plurality of other satellites except the first satellite, so as to locate the movable platform through the four second satellites.
  • the selected preset number of second satellites may be satellites in the same satellite navigation system in multiple satellite navigation systems such as Beidou system, GPS system, GLONASS system, Galileo system, etc., or may be multiple satellites. Satellites within different satellite navigation systems in a navigation system.
  • the step S103 may include a sub-step S1031 and a sub-step S1032.
  • the signal-to-noise ratio calculation formula SN Signal/Noise is used to calculate the other multiple satellites other than the first satellite.
  • the signal-to-noise ratio of the signal transmitted by the satellite is used to calculate the other multiple satellites other than the first satellite.
  • the signal-to-noise ratio select the preset number of second satellites from other satellites other than the first satellite, and the signal-to-noise ratio corresponding to the signals transmitted by the preset number of the second satellites It is higher than the signal-to-noise ratio corresponding to signals transmitted by unselected satellites.
  • a preset number of second satellites corresponding to the highest signal-to-noise ratio are selected from among them. For example, from a plurality of other satellites other than the first satellite, four second satellites with the highest corresponding signal-to-noise ratios are selected.
  • the step S103 may include a sub-step S1033 and a sub-step S1034.
  • Antenna pattern refers to the graph in which the relative field strength of the radiated field changes with the direction at a certain distance from the antenna.
  • selecting the preset number of second satellites from a plurality of other satellites other than the first satellite may include: according to the antenna pattern information, determining each The relative field strength of the antenna radiation field in the spatial direction; the preset number of second satellites is selected from other satellites other than the first satellite, and the antenna in the spatial direction corresponding to the preset number of second satellites is selected.
  • the relative field strength of the radiation field is greater than the relative field strength of the antenna radiation field in the spatial direction corresponding to the unselected satellite.
  • the other satellites except the first satellite select the preset number of the maximum relative field strength of the antenna radiation field in the corresponding spatial direction.
  • second satellite For example, from the other multiple satellites other than the first satellite, the four second satellites with the largest relative field strength of the antenna radiation field in the spatial direction are selected.
  • the demodulated signal is obtained by receiving the signals transmitted by the preset number of the second satellite and performing radio frequency demodulation. Perform analysis to obtain positioning information corresponding to a preset number of second satellites. For example, the positioning information corresponding to the selected four second satellites is obtained.
  • the movable platform Since the first satellite is switched off, the movable platform is re-positioned according to the acquired positioning information of the preset number of second satellites, which ensures the accuracy of the positioning result.
  • the movable platform is positioned based on the positioning information of the first satellite.
  • step S107 may be included after step S105 .
  • the positioning result of the movable platform is obtained, the positioning result is further sent to the control device of the movable platform, and the control device controls the movement of the movable platform according to the positioning result of the movable platform.
  • the positioning result is also sent to the control device of the movable platform.
  • the positioning result is sent to the flight controller of the mobile platform.
  • the flight controller performs policy processing according to the positioning result of the movable platform, and controls the movable platform.
  • the method for locating the movable platform further includes: if there is no foreign object blocking in the current environment of the movable platform, selecting a corresponding signal from all satellites that communicate with the movable platform normally. A preset number of third satellites with a high noise ratio; obtaining positioning information of the preset number of third satellites; and positioning the movable platform according to the positioning information of the preset number of the third satellites.
  • the first satellite is not excluded.
  • a preset number of third satellites with the highest signal-to-noise ratio For example, four corresponding third satellites with the highest signal-to-noise ratio are selected from all satellites.
  • the positioning information of the selected preset number of third satellites is acquired, and the movable platform is located according to the positioning information of the preset number of third satellites.
  • the process of using a preset number of second satellites to locate the movable platform which will not be repeated here.
  • a GPS module is provided on the movable platform, and the positioning method of the movable platform further includes: if the movable platform currently turns on the first positioning mode, executing the acquiring corresponding correspondence of the current environment of the movable platform The step of obtaining the environmental image information; if the movable platform currently turns on the second positioning mode, the movable platform is positioned through the GPS module.
  • two positioning modes of the movable platform are set: a first positioning mode and a second positioning mode.
  • the movable platform 1000 currently turns on the first positioning mode, by acquiring the environmental image information corresponding to the current environment of the movable platform, and judging according to the environmental image information, before an abnormal situation such as occlusion may occur, switch satellites to locate the movable platform .
  • the movable platform currently turns on the second positioning mode, the movable platform is positioned through the GPS module.
  • Positioning mode positions the movable platform.
  • the positioning information of the two satellites is used to locate the movable platform. That is, before an abnormal situation such as occlusion may occur, the satellites used for positioning are switched, so as to ensure accurate positioning information and avoid positioning errors of the movable platform machine, thus improving the positioning accuracy of the movable platform.
  • FIG. 7 is a schematic block diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform may include a processor and a memory, and the processor and the memory are connected by a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the memory stores various computer programs for execution by the processor.
  • the processor is used for running the computer program stored in the memory, and implements the following steps when executing the computer program:
  • the environmental image information determine whether there is a risk of abnormal communication between the movable platform and the first satellite currently used for positioning the movable platform;
  • the movable platform is positioned according to the positioning information of the preset number of second satellites.
  • the processor when implementing the selecting a preset number of second satellites from the other multiple satellites other than the first satellite, the processor is configured to implement:
  • the preset number of second satellites are selected from other satellites other than the first satellite, and the signal-to-noise ratio corresponding to the signals transmitted by the preset number of the second satellites is higher than Signal-to-noise ratio corresponding to signals transmitted by unselected satellites.
  • the processor when implementing the selecting a preset number of second satellites from the other multiple satellites other than the first satellite, the processor is configured to implement:
  • the preset number of second satellites are selected from other satellites other than the first satellite.
  • the processor when the processor selects the preset number of second satellites from the other multiple satellites other than the first satellite according to the antenna pattern information, the processor is configured to: :
  • the preset number of second satellites are selected from other satellites other than the first satellite, and the relative field strength of the antenna radiation field in the spatial direction corresponding to the preset number of the second satellites is greater than that of the unselected satellites The relative field strength of the antenna radiated field in the corresponding spatial direction.
  • the processor determines whether there is a risk of abnormal communication between the movable platform and the first satellite currently used for positioning the movable platform according to the environmental image information, Used to implement:
  • the environmental image information determine whether there is foreign object obstruction in the current environment of the movable platform
  • the processor is further configured to:
  • the movable platform is positioned according to the positioning information of the preset number of third satellites.
  • an image acquisition device is provided on the movable platform, and the image acquisition device includes at least one of a camera and a visual sensor;
  • the processor realizes the obtaining of the environment image information corresponding to the current environment of the mobile platform, it is used to realize:
  • the environmental image information collected by the image collection device is acquired.
  • the processor after performing the positioning of the movable platform according to the positioning information of the preset number of second satellites, the processor further achieves:
  • the positioning result is sent to the control device of the movable platform, so that the control device can control the movement of the movable platform according to the positioning result.
  • a GPS module is provided on the movable platform, and the processor is further configured to:
  • the step of obtaining the environment image information corresponding to the current environment of the movable platform is performed;
  • the movable platform If the movable platform currently turns on the second positioning mode, the movable platform is positioned through the GPS module.
  • the embodiment of the present application also provides a movable platform, and the movable platform may be the movable platform described in FIG. 2 .
  • the movable platform includes an antenna, a radio frequency front-end module and a positioning calculation module, the antenna is connected to the radio frequency front-end module, and the radio frequency front-end module is connected to the positioning calculation module.
  • the antenna is used to receive satellite signals;
  • the radio frequency front-end module is used to obtain the satellite signals received by the antenna, perform radio frequency demodulation on the satellite signals, obtain demodulated signals, and output the demodulated signals to the positioning calculation module;
  • the positioning calculation module is used to obtain the demodulated signal and obtain the environmental image information corresponding to the current environment of the movable platform, according to the demodulated signal and the environmental image information , and position the movable platform.
  • the location solver module is used to:
  • the environmental image information determine whether there is a risk of abnormal communication between the movable platform and the first satellite currently used for positioning the movable platform;
  • the movable platform is positioned according to the positioning information of the preset number of second satellites.
  • the location solver module is used to:
  • the preset number of second satellites are selected from other satellites other than the first satellite, and the signal-to-noise ratio corresponding to the signals transmitted by the preset number of second satellites is higher than The signal-to-noise ratio corresponding to signals transmitted by unselected satellites.
  • the location solver module is used to:
  • the preset number of second satellites are selected from other satellites other than the first satellite.
  • the location solver module is used to:
  • the environmental image information determine whether there is foreign object obstruction in the current environment of the movable platform
  • the location solver module is used to:
  • the movable platform is positioned according to the positioning information of the preset number of third satellites.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the present application The steps of the positioning method of the movable platform provided by the embodiment.
  • the computer-readable storage medium may be the removable platform or the internal storage unit of the removable platform described in the foregoing embodiments, for example, the removable platform or the hard disk or memory of the removable platform.
  • the computer-readable storage medium can also be the removable platform or an external storage device of the removable platform, such as a pluggable hard disk equipped on the removable platform or the removable platform, a Smart Media Card (Smart Media Card, SMC), Secure Digital (SD) card, Flash Card (Flash Card), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种可移动平台(1000)的定位方法、可移动平台(1000)及存储介质,可移动平台(1000)的定位方法包括:获取可移动平台(1000)当前环境对应的环境图像信息(S101);根据环境图像信息,判断可移动平台(1000)与当前用于可移动平台(1000)定位的第一卫星之间是否存在通信异常风险(S102);若可移动平台(1000)与第一卫星之间存在通信异常风险,则从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,可移动平台(1000)与预设数量的第二卫星之间的通信正常(S103);获取预设数量的第二卫星的定位信息(S104);根据预设数量的第二卫星的定位信息,对可移动平台(1000)进行定位(S105)。

Description

可移动平台的定位方法、可移动平台及存储介质 技术领域
本申请涉及可移动平台技术领域,尤其涉及一种可移动平台的定位方法、可移动平台及存储介质。
背景技术
目前,对可移动平台如无人机进行定位时,通常是采用搜星定位,例如采用GNSS(Global Navigation Satellite System,全球导航卫星系统)技术,选择与无人机连线之间张角较大的四颗卫星,去计算定位信息,然后输出定位信息给无人机飞控系统。当无人机遇到特殊情况,如遮挡等情况发生时,就会造成定位信息不准确,从而导致无人机的定位出现误差。
因此,如何提高可移动平台定位的准确性成为亟待解决的问题。
发明内容
基于此,本申请提供了一种可移动平台的定位方法、可移动平台及存储介质,以提高可移动平台定位的准确性。
第一方面,本申请提供了一种可移动平台的定位方法,所述方法包括:
获取可移动平台当前环境对应的环境图像信息;
根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险;
若所述可移动平台与所述第一卫星之间存在通信异常风险,则从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,所述可移动平台与所述预设数量的第二卫星之间的通信正常;
获取所述预设数量的第二卫星的定位信息;
根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位。
第二方面,本申请还提供了一种可移动平台,所述可移动平台包括存储器 和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取可移动平台当前环境对应的环境图像信息;
根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险;
若所述可移动平台与所述第一卫星之间存在通信异常风险,则从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,所述可移动平台与所述预设数量的第二卫星之间的通信正常;
获取所述预设数量的第二卫星的定位信息;
根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位。
第三方面,本申请还提供了一种可移动平台,所述可移动平台包括天线、射频前端模块和定位解算模块,所述天线连接所述射频前端模块,所述射频前端模块连接所述定位解算模块;
所述天线用于接收卫星信号;
所述射频前端模块用于获取所述天线接收到的所述卫星信号,并对所述卫星信号进行射频解调,获得解调信号,以及将所述解调信号输出至所述定位解算模块;
所述定位解算模块用于获取所述解调信号,以及获取所述可移动平台当前环境对应的环境图像信息,根据所述解调信号和所述环境图像信息,对所述可移动平台进行定位。
第四方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上述的可移动平台的定位方法。
本申请公开的可移动平台的定位方法、可移动平台及存储介质,通过获取可移动平台当前环境对应的环境图像信息,根据环境图像信息,判断可移动平台与当前用于可移动平台定位的第一卫星之间是否存在通信异常风险,若可移动平台与第一卫星之间存在通信异常风险,则从第一卫星以外的其他多颗卫星 中选取预设数量的第二卫星,并获取预设数量的第二卫星的定位信息,根据预设数量的第二卫星的定位信息,对可移动平台进行定位。也即在可能将会出现遮挡等异常情况之前,切换用于定位的卫星,从而确保定位信息准确,避免可移动平台机的定位出现误差,因此,提高了可移动平台定位的准确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种可移动平台的结构示意图;
图2是本申请实施例提供的另一种可移动平台的结构示意图;
图3是本申请实施例提供的一种可移动平台的定位方法的步骤示意流程图;
图4是本申请实施例提供的一种从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星的步骤示意流程图;
图5是本申请实施例提供的另一种从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星的步骤示意流程图;
图6是本申请实施例提供的另一种可移动平台的定位方法的步骤示意流程图;
图7是本申请的实施例提供的可移动平台的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请的实施例提供了一种可移动平台的定位方法、可移动平台及存储介质,用于实现提高可移动平台定位的准确性。
其中,该可移动平台包括但不限于无人机,例如旋翼型飞行器,包括单旋翼飞行器、双旋翼飞行器、三旋翼飞行器、四旋翼飞行器、六旋翼飞行器、八旋翼飞行器、十旋翼飞行器、十二旋翼飞行器等。当然,可移动平台也可以是其他类型的无人机或可移动装置,比如固定翼无人机,本申请实施例不限于此。
请参阅图1,图1为本申请实施例提供的一种可移动平台的结构示意图。如图1所示,可移动平台1000可以包括机体100、设于机体100内的动力系统200、图像采集装置300、以及控制装置400。其中,动力系统200用于为可移动平台1000提供动力;图像采集装置300包括相机、视觉传感器中至少一种,图像采集装置300用于采集可移动平台当前环境对应的环境图像信息;控制装置400用于获取图像采集装置300采集的环境图像信息,并根据环境图像信息确定是否切换用于定位的卫星,对可移动平台进行定位。
示例性的,动力系统200可以包括一个或多个电子调速器(简称为电调)、一个或多个螺旋桨以及与一个或多个螺旋桨相对应的一个或多个电机,其中电机连接在电子调速器与螺旋桨之间。电子调速器用于提供驱动电流给电机,以控制电机的转速。电机用于驱动螺旋桨旋转,从而为可移动平台1000的飞行提 供动力,该动力使得可移动平台1000能够实现一个或多个自由度的运动。在某些实施例中,可移动平台1000可以围绕一个或多个旋转轴旋转。应理解,电机可以是直流电机,也可以交流电机。另外,电机可以是无刷电机,也可以是有刷电机。
请参阅图2,图2为本申请实施例提供的另一种可移动平台的结构示意图。如图2所示,可移动平台1000可以包括机体100、设于机体100内的动力系统200、图像采集装置300、以及天线500、射频前端模块600和定位解算模块700,其中,动力系统200和图像采集装置300如前述实施例中所述,在此不再赘述。天线500连接射频前端模块600,射频前端模块600连接定位解算模块700。天线500用于接收卫星信号;射频前端模块600用于获取天线500接收到的卫星信号,并对卫星信号进行射频解调,获得解调信号,以及将解调信号输出至定位解算模块700;定位解算模块700用于获取解调信号,以及获取图像采集装置300采集的可移动平台当前环境对应的环境图像信息,根据解调信号和环境图像信息,对可移动平台进行定位。
示例性的,天线500包括第一天线和第二天线,其中,第一天线接收第一频段L1的卫星信号,第二天线接收第一频段L1和第二频段L2的卫星信号。
示例性的,射频前端模块600包括射频收发器,例如RF3902射频接收芯片。射频收发器向定位解算模块700提供预设时钟频率的时钟信号,例如,向定位解算模块700提供52M的时钟信号。
示例性的,定位解算模块700包括基带芯片。天线500接收卫星发射的信号,通过双工器、功分器、滤波器处理后经射频前端模块600进行射频解调,将解调获得的低中频解调信号输出给定位解算模块700进行解算定位处理,获得定位结果。
示例性的,定位解算模块700中包括存储器,存储器用于存储相关数据,其中,相关数据包括但不限于卫星的定位信息、可移动平台1000的定位结果等。
示例性的,可移动平台1000还包括MCU(Microcontroller Unit,微控制单元)模块800,MCU模块与定位解算模块700连接。定位解算模块700用于将可移动平台1000的定位结果输出至MCU模块800,MCU模块800用于将定位结果发送至可移动平台1000的相应控制装置,如可移动平台的飞控、遥控器 等装置。
示例性的,定位解算模块700和MCU模块800各自包括第一UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)接口,基于各自的第一UART接口,MCU模块800与定位解算模块700建立连接。示例性的,MCU模块800通过两路第一UART接口和定位解算模块700获取定位与基站数据等信息。
示例性的,射频前端模块600和MCU模块800各自包括SPI(Serial Peripheral Interface,串行外设接口)接口,基于各自的SPI接口,MCU模块800与射频前端模块600建立连接。上电时,MCU模块800通过SPI接口配置射频前端模块600输出预设时钟频率的时钟信号,例如52M的时钟信号。
示例性的,射频前端模块600、定位解算模块700和MCU模块800集成于同一块电路板上,集成为一体化的GNSS(Global Navigation Satellite System,全球导航卫星系统)定位电路模块。
示例性的,可移动平台1000还包括GPS(Global Positioning System,全球定位系统)模块900,GPS模块900用于对可移动平台1000进行定位。示例性的,GPS模块900也集成于一体化的GNSS定位电路模块上。
示例性的,GPS模块900与MCU模块800各自包括第二UART接口,基于各自的第二UART接口,GPS模块900与MCU模块800建立连接。MCU模块800可通过GPS模块900获取定位和时间等信息。
示例性的,可移动平台1000设置两种定位模式:第一定位模式和第二定位模式。当可移动平台1000当前开启第一定位模式时,通过定位解算模块700对可移动平台进行定位。当可移动平台当前开启第二定位模式时,通过GPS模块900对可移动平台进行定位。
示例性的,一体化的GNSS定位电路模块上还集成外接数字接口,定位解算模块700和MCU模块800通过外接数字接口与相应装置连接。其中,相应装置包括电池、相机、SD卡、USB装置、DDR装置等。外接数字接口包括UART接口、CAN接口、USB接口、SD接口、DDR接口、PPS接口等。
外接数字接口主要通过12PIN座子接口和34PIN座子接口进行通信,12PIN座子连接电池板,34PIN座子连接天线板。
对于12PIN座子:MCU模块800通过UART接口(UART_BAT)与电池连接,MCU模块800接收接收电池信号。定位解算模块700和/或GPS模块900通过PPS接口输出系统同步信号,默认采用GPS模块900输出3.3V系统同步信号。MCU模块800通过第一CAN接口(CAN_Camera)与相机连接,传输光线传感器信息。MCU模块800通过第二CAN(CAN_FC)接口与可移动平台1000的控制装置(如飞控)连接,输出定位结果给飞控等控制装置。
对于34PIN座子:MCU模块800通过UART接口(UART_LS)接收光线传感器信号。MCU模块800通过C_INT_LS接口接收光线传感器出现异常时输出的中断信号。MCU模块800通过C_RESN_LS接口输出复位信号至光线传感器,复位光线传感器。MCU模块800通过VCC接口获得电压3.3V、电流50mA的供电。
对于10PIN座子:定位解算模块700通过SD接口与SD卡连接,用于存储飞行定位搜星的log信息。
另外,定位解算模块700通过USB接口与USB装置连接;定位解算模块700通过DDR接口与DDR装置连接。
通过一体化的GNSS定位电路模块实现对可移动平台1000进行定位,并且通过SD接口外接的SD卡存储保留定位过程中的log信息,便于搜星问题定位,定位解算模块700只将定位结果输出给MCU模块800,MCU模块800再通过CAN接口将定位结果传送给可移动平台1000的控制装置(如飞控)进行策略处理,避免了CPU之间的大量数据传输,因此解决了数据传输的瓶颈问题。也即实现在解决数据传输瓶颈的同时,通过动态调整定位卫星,达到更精准的定位结果。
可以理解的,上述对于可移动平台1000各部件的命名仅仅出于标识的目的,并不因此对本申请实施例进行限制。
以下将基于可移动平台1000对本申请的实施例提供的可移动平台的定位方法进行详细介绍。需知,图1和图2中的可移动平台1000仅用于解释本申请实施例提供的可移动平台的定位方法,但并不构成对本申请实施例提供的可移动平台的定位方法的应用场景的限定。
请参阅图3,图3是本申请的实施例提供的一种可移动平台的定位方法的 示意流程图。该方法可以用于上述实施例提供的任意一种可移动平台中,以实现提高可移动平台定位的准确性。
如图3所示,该可移动平台的定位方法具体包括步骤S101至步骤S106。
S101、获取可移动平台当前环境对应的环境图像信息。
示例性的,可移动平台上设有图像采集装置,其中,图像采集装置包括但不限于相机、视觉传感器等。通过图像采集装置采集可移动平台当前环境对应的环境图像信息,从图像采集装置获取该环境图像信息。示例性的,环境图像信息包括可移动平台四周各个视场角范围内图像采集装置采集的图像对应的图像信息。
S102、根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险;若是,则执行步骤S1023,若否,则执行步骤S106。
在对可移动平台进行定位时,通过选取预设数量的卫星,结合该预设数量的卫星对应的卫星信息对可移动平台进行定位。示例性的,该预设数量设置为4,也即选取4个卫星对可移动平台进行定位。
正常情况下,当前用于可移动平台定位的卫星与可移动平台之间的通信应该是正常的,不过,若是可移动平台的前方出现障碍遮挡物,可能就会造成可移动平台与当前用于可移动平台定位的卫星之间存在通信异常风险。为了便于描述,下文将当前用于可移动平台定位的卫星称为第一卫星。
在一些实施例中,根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险可以包括:根据所述环境图像信息,判断所述可移动平台当前环境中是否存在异物遮挡;若所述可移动平台当前环境中存在异物遮挡,则判定所述可移动平台与所述第一卫星之间存在通信异常风险。
获取到环境图像信息后,对环境图像信息进行图像分析,例如采用图像识别技术,识别环境图像信息中是否包含有异物信息,若包含异物信息,则判定可移动平台当前环境中存在异物遮挡。反之,则判定可移动平台当前环境中不存在异物遮挡。
若判定可移动平台当前环境中不存在异物遮挡,也即说明一切正常,可移 动平台与第一卫星之间不存在通信异常风险。若判定可移动平台当前环境中存在异物遮挡,则判定可移动平台与第一卫星之间存在通信异常风险,可能会影响可移动平台的定位结果。
S103、从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,所述可移动平台与所述预设数量的第二卫星之间的通信正常。
若可移动平台与第一卫星之间存在通信异常风险,如果继续采用第一卫星对可移动平台进行定位,可能会造成定位结果出现偏差。此时,将第一卫星替换掉,从除第一卫星以外的其他多颗卫星中,选取预设数量的与可移动平台通信正常的卫星,用于对可移动平台进行定位。为了便于描述,下文将选取的预设数量的与可移动平台通信正常的卫星称为第二卫星。例如,从除第一卫星以外的其他多颗卫星中,选取4个第二卫星,以通过这4个第二卫星对可移动平台进行定位。
需要说明的是,选取的预设数量的第二卫星可以为北斗系统、GPS系统、GLONASS系统、Galileo系统等多个卫星导航系统中的同一个卫星导航系统内的卫星,也可以为多个卫星导航系统中的不同卫星导航系统内的卫星。
在一些实施例中,如图4所示,所述步骤S103可以包括子步骤S1031和子步骤S1032。
S1031、获取所述第一卫星以外的其他多颗卫星发射的信号对应的信噪比。
为了从除第一卫星以外的其他多颗卫星中,选取出预设数量的第二卫星,获取第一卫星以外的其他多颗卫星发射的信号对应的信噪比。具体地,获取第一卫星以外的其他多颗卫星发射的信号的有效信号功率Signal、以及低噪功率Noise,通过信噪比计算公式SN=Signal/Noise,计算得到第一卫星以外的其他多颗卫星发射的信号的信噪比。
S1032、根据所述信噪比,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星发射的信号对应的信噪比高于未选取的卫星发射的信号对应的信噪比。
根据第一卫星以外的其他多颗卫星发射的信号的信噪比大小,从中选取对应信噪比最高的预设数量的第二卫星。例如,从第一卫星以外的其他多颗卫星中,选取对应信噪比最高的4个第二卫星。
在一些实施例中,如图5所示,所述步骤S103可以包括子步骤S1033和子步骤S1034。
S1033、获取所述可移动平台的天线方向图信息。
天线方向图,是指在离天线一定距离处,辐射场的相对场强随方向变化的图形。通过获得天线方向图信息,可以得到各个空间方向上天线辐射场的相对场强的大小。
S1034、根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星。
在一些实施例中,根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星可以包括:根据所述天线方向图信息,确定各个空间方向上天线辐射场的相对场强;从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星对应的空间方向上天线辐射场的相对场强大于未选取的卫星对应的空间方向上天线辐射场的相对场强。
也即,根据各个空间方向上天线辐射场的相对场强的大小,从除第一卫星以外的其他多颗卫星中,选取对应的空间方向上天线辐射场的相对场强最大的预设数量的第二卫星。例如,从第一卫星以外的其他多颗卫星中,选取的空间方向上天线辐射场的相对场强最大的4个第二卫星。
S104、获取所述预设数量的第二卫星的定位信息。
从除第一卫星以外的其他多颗卫星中选取预设数量的第二卫星之后,通过接收预设数量的第二卫星发射的信号,并进行射频解调获得解调信号,通过对解调信号进行解析,获取预设数量的第二卫星对应的定位信息。例如,获得选取的4个第二卫星对应的定位信息。
S105、根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位。
由于将第一卫星切换掉了,根据获取的预设数量的第二卫星的定位信息,重新对可移动平台进行定位,确保了定位结果的准确性。
S106、基于所述第一卫星对所述可移动平台进行定位。
若可移动平台与第一卫星之间不存在通信异常风险,则继续采用第一卫星 对可移动平台进行定位。通过获取第一卫星的定位信息,基于第一卫星的定位信息,对可移动平台进行定位。
在一些实施例中,如图6所示,所述步骤S105之后可以包括步骤S107。
S107、将定位结果发送至所述可移动平台的控制装置,以供所述控制装置根据所述定位结果控制所述可移动平台的移动。
在获得可移动平台的定位结果后,进一步将定位结果发送至可移动平台的控制装置,控制装置根据可移动平台的定位结果,控制可移动平台的移动。
若是基于第一卫星对可移动平台进行定位的,获得相应的定位结果后,也将定位结果发送至可移动平台的控制装置。
例如,将定位结果发送至可移动平台的飞控。飞控根据可移动平台的定位结果进行策略处理,对可移动平台进行控制。
在一些实施例中,所述可移动平台的定位方法还包括:若所述可移动平台当前环境中不存在异物遮挡,则从所有与所述可移动平台正常通信的卫星中,选取对应的信噪比高的预设数量的第三卫星;获取所述预设数量的第三卫星的定位信息;根据所述预设数量的第三卫星的定位信息,对所述可移动平台进行定位。
为了确保对可移动平台定位的准确性,若可移动平台当前环境中不存在异物遮挡,则不排除第一卫星,从所有包含第一卫星的与可移动平台正常通信的卫星中,选取对应的信噪比最高的预设数量的第三卫星。例如,从所有卫星中选取4个对应的信噪比最高的第三卫星。
然后,获取选取的预设数量的第三卫星的定位信息,根据预设数量的第三卫星的定位信息,对可移动平台进行定位。具体操作可参考采用预设数量的第二卫星对可移动平台进行定位的过程,在此不再赘述。
在一些实施例中,可移动平台上设有GPS模块,所述可移动平台的定位方法还包括:若所述可移动平台当前开启第一定位模式,则执行所述获取可移动平台当前环境对应的环境图像信息的步骤;若所述可移动平台当前开启第二定位模式,则通过所述GPS模块对所述可移动平台进行定位。
示例性的,为了进一步提高用户体验,设置可移动平台的两种定位模式:第一定位模式和第二定位模式。当可移动平台1000当前开启第一定位模式时, 通过获取可移动平台当前环境对应的环境图像信息,根据环境图像信息判断在可能将会出现遮挡等异常情况之前,切换卫星对可移动平台进行定位。当可移动平台当前开启第二定位模式时,通过GPS模块对可移动平台进行定位。在不同应用场景下,可以选择第一定位模式或第二定位模式对可移动平台进行定位,或者以第一定位模式和第二定位模式互为备份,其中一个定位模式出现异常时,采用另外一个定位模式对可移动平台进行定位。
上述实施例通过获取可移动平台当前环境对应的环境图像信息,根据环境图像信息,判断可移动平台与当前用于可移动平台定位的第一卫星之间是否存在通信异常风险,若可移动平台与第一卫星之间存在通信异常风险,则从第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,并获取预设数量的第二卫星的定位信息,根据预设数量的第二卫星的定位信息,对可移动平台进行定位。也即在可能将会出现遮挡等异常情况之前,切换用于定位的卫星,从而确保定位信息准确,避免可移动平台机的定位出现误差,因此,提高了可移动平台定位的准确性。
请参阅图7,图7是本申请一实施例提供的可移动平台的示意性框图。
如图7所示,该可移动平台可以包括处理器和存储器,处理器和存储器通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。存储器中存储有供处理器执行的各种计算机程序。
其中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取可移动平台当前环境对应的环境图像信息;
根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险;
若所述可移动平台与所述第一卫星之间存在通信异常风险,则从所述第一 卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,所述可移动平台与所述预设数量的第二卫星之间的通信正常;
获取所述预设数量的第二卫星的定位信息;
根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位。
在一些实施例中,所述处理器在实现所述从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星时,用于实现:
获取所述第一卫星以外的其他多颗卫星发射的信号对应的信噪比;
根据所述信噪比,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星发射的信号对应的信噪比高于未选取的卫星发射的信号对应的信噪比。
在一些实施例中,所述处理器在实现所述从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星时,用于实现:
获取所述可移动平台的天线方向图信息;
根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星。
在一些实施例中,所述处理器在实现所述根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星时,用于实现:
根据所述天线方向图信息,确定各个空间方向上天线辐射场的相对场强;
从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星对应的空间方向上天线辐射场的相对场强大于未选取的卫星对应的空间方向上天线辐射场的相对场强。
在一些实施例中,所述处理器在实现所述根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险时,用于实现:
根据所述环境图像信息,判断所述可移动平台当前环境中是否存在异物遮挡;
若所述可移动平台当前环境中存在异物遮挡,则判定所述可移动平台与所述第一卫星之间存在通信异常风险。
在一些实施例中,所述处理器还用于实现:
若所述可移动平台当前环境中不存在异物遮挡,则从所有与所述可移动平台正常通信的卫星中,选取对应的信噪比高的预设数量的第三卫星;
获取所述预设数量的第三卫星的定位信息;
根据所述预设数量的第三卫星的定位信息,对所述可移动平台进行定位。
在一些实施例中,所述可移动平台上设有图像采集装置,所述图像采集装置包括相机、视觉传感器中至少一种;
所述处理器在实现所述获取可移动平台当前环境对应的环境图像信息时,用于实现:
获取所述图像采集装置采集的所述环境图像信息。
在一些实施例中,所述处理器在实现所述根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位之后,还实现:
将定位结果发送至所述可移动平台的控制装置,以供所述控制装置根据所述定位结果控制所述可移动平台的移动。
在一些实施例中,所述可移动平台上设有GPS模块,所述处理器还用于实现:
若所述可移动平台当前开启第一定位模式,则执行所述获取可移动平台当前环境对应的环境图像信息的步骤;
若所述可移动平台当前开启第二定位模式,则通过所述GPS模块对所述可移动平台进行定位。
本申请的实施例中还提供一种可移动平台,该可移动平台可以为图2中所述的可移动平台。该可移动平台包括天线、射频前端模块和定位解算模块,天线连接射频前端模块,射频前端模块连接定位解算模块。
其中,天线用于接收卫星信号;射频前端模块用于获取所述天线接收到的所述卫星信号,并对所述卫星信号进行射频解调,获得解调信号,以及将所述解调信号输出至所述定位解算模块;所述定位解算模块用于获取所述解调信号,以及获取所述可移动平台当前环境对应的环境图像信息,根据所述解调信号和所述环境图像信息,对所述可移动平台进行定位。
在一些实施例中,所述定位解算模块用于:
根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台 定位的第一卫星之间是否存在通信异常风险;
若所述可移动平台与所述第一卫星之间存在通信异常风险,则从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,所述可移动平台与所述预设数量的第二卫星之间的通信正常;
对所述解调信号进行解析,获取所述预设数量的第二卫星的定位信息;
根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位。
在一些实施例中,所述定位解算模块用于:
获取所述第一卫星以外的其他多颗卫星发射的信号对应的信噪比;
根据所述信噪比,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星发射的信号对应的信噪比高于未选取的卫星发射的信号对应的信噪比。
在一些实施例中,所述定位解算模块用于:
获取所述可移动平台的天线方向图信息;
根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星。
在一些实施例中,所述定位解算模块用于:
根据所述环境图像信息,判断所述可移动平台当前环境中是否存在异物遮挡;
若所述可移动平台当前环境中存在异物遮挡,则判定所述可移动平台与所述第一卫星之间存在通信异常风险。
在一些实施例中,所述定位解算模块用于:
若所述可移动平台当前环境中不存在异物遮挡,则从所有与所述可移动平台正常通信的卫星中,选取对应的信噪比高的预设数量的第三卫星;
获取所述预设数量的第三卫星的定位信息;
根据所述预设数量的第三卫星的定位信息,对所述可移动平台进行定位。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现本申请实施例提供的可移动平台的定位方法的步骤。
其中,所述计算机可读存储介质可以是前述实施例所述的可移动平台或可 移动平台的内部存储单元,例如所述可移动平台或可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台或可移动平台的外部存储设备,例如所述可移动平台或可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (37)

  1. 一种可移动平台的定位方法,其特征在于,包括:
    获取可移动平台当前环境对应的环境图像信息;
    根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险;
    若所述可移动平台与所述第一卫星之间存在通信异常风险,则从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,所述可移动平台与所述预设数量的第二卫星之间的通信正常;
    获取所述预设数量的第二卫星的定位信息;
    根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位。
  2. 根据权利要求1所述的方法,其特征在于,所述从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,包括:
    获取所述第一卫星以外的其他多颗卫星发射的信号对应的信噪比;
    根据所述信噪比,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星发射的信号对应的信噪比高于未选取的卫星发射的信号对应的信噪比。
  3. 根据权利要求1所述的方法,其特征在于,所述从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,包括:
    获取所述可移动平台的天线方向图信息;
    根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,包括:
    根据所述天线方向图信息,确定各个空间方向上天线辐射场的相对场强;
    从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星对应的空间方向上天线辐射场的相对场强大于未选取的 卫星对应的空间方向上天线辐射场的相对场强。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险,包括:
    根据所述环境图像信息,判断所述可移动平台当前环境中是否存在异物遮挡;
    若所述可移动平台当前环境中存在异物遮挡,则判定所述可移动平台与所述第一卫星之间存在通信异常风险。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述可移动平台当前环境中不存在异物遮挡,则从所有与所述可移动平台正常通信的卫星中,选取对应的信噪比高的预设数量的第三卫星;
    获取所述预设数量的第三卫星的定位信息;
    根据所述预设数量的第三卫星的定位信息,对所述可移动平台进行定位。
  7. 根据权利要求1所述的方法,其特征在于,所述可移动平台上设有图像采集装置,所述图像采集装置包括相机、视觉传感器中至少一种;
    所述获取可移动平台当前环境对应的环境图像信息,包括:
    获取所述图像采集装置采集的所述环境图像信息。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位之后,包括:
    将定位结果发送至所述可移动平台的控制装置,以供所述控制装置根据所述定位结果控制所述可移动平台的移动。
  9. 根据权利要求1所述的方法,其特征在于,所述可移动平台上设有GPS模块,所述方法还包括:
    若所述可移动平台当前开启第一定位模式,则执行所述获取可移动平台当前环境对应的环境图像信息的步骤;
    若所述可移动平台当前开启第二定位模式,则通过所述GPS模块对所述可移动平台进行定位。
  10. 一种可移动平台,其特征在于,所述可移动平台包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取可移动平台当前环境对应的环境图像信息;
    根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险;
    若所述可移动平台与所述第一卫星之间存在通信异常风险,则从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,所述可移动平台与所述预设数量的第二卫星之间的通信正常;
    获取所述预设数量的第二卫星的定位信息;
    根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位。
  11. 根据权利要求10所述的可移动平台,其特征在于,所述处理器在实现所述从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星时,用于实现:
    获取所述第一卫星以外的其他多颗卫星发射的信号对应的信噪比;
    根据所述信噪比,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星发射的信号对应的信噪比高于未选取的卫星发射的信号对应的信噪比。
  12. 根据权利要求10所述的可移动平台,其特征在于,所述处理器在实现所述从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星时,用于实现:
    获取所述可移动平台的天线方向图信息;
    根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星。
  13. 根据权利要求12所述的可移动平台,其特征在于,所述处理器在实现所述根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星时,用于实现:
    根据所述天线方向图信息,确定各个空间方向上天线辐射场的相对场强;
    从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星对应的空间方向上天线辐射场的相对场强大于未选取的 卫星对应的空间方向上天线辐射场的相对场强。
  14. 根据权利要求10所述的可移动平台,其特征在于,所述处理器在实现所述根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险时,用于实现:
    根据所述环境图像信息,判断所述可移动平台当前环境中是否存在异物遮挡;
    若所述可移动平台当前环境中存在异物遮挡,则判定所述可移动平台与所述第一卫星之间存在通信异常风险。
  15. 根据权利要求10所述的可移动平台,其特征在于,所述处理器还用于实现:
    若所述可移动平台当前环境中不存在异物遮挡,则从所有与所述可移动平台正常通信的卫星中,选取对应的信噪比高的预设数量的第三卫星;
    获取所述预设数量的第三卫星的定位信息;
    根据所述预设数量的第三卫星的定位信息,对所述可移动平台进行定位。
  16. 根据权利要求10所述的可移动平台,其特征在于,所述可移动平台上设有图像采集装置,所述图像采集装置包括相机、视觉传感器中至少一种;
    所述处理器在实现所述获取可移动平台当前环境对应的环境图像信息时,用于实现:
    获取所述图像采集装置采集的所述环境图像信息。
  17. 根据权利要求10所述的可移动平台,其特征在于,所述处理器在实现所述根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位之后,还实现:
    将定位结果发送至所述可移动平台的控制装置,以供所述控制装置根据所述定位结果控制所述可移动平台的移动。
  18. 根据权利要求10所述的可移动平台,其特征在于,所述可移动平台上设有GPS模块,所述处理器还用于实现:
    若所述可移动平台当前开启第一定位模式,则执行所述获取可移动平台当前环境对应的环境图像信息的步骤;
    若所述可移动平台当前开启第二定位模式,则通过所述GPS模块对所述可 移动平台进行定位。
  19. 一种可移动平台,其特征在于,所述可移动平台包括天线、射频前端模块和定位解算模块,所述天线连接所述射频前端模块,所述射频前端模块连接所述定位解算模块;
    所述天线用于接收卫星信号;
    所述射频前端模块用于获取所述天线接收到的所述卫星信号,并对所述卫星信号进行射频解调,获得解调信号,以及将所述解调信号输出至所述定位解算模块;
    所述定位解算模块用于获取所述解调信号,以及获取所述可移动平台当前环境对应的环境图像信息,根据所述解调信号和所述环境图像信息,对所述可移动平台进行定位。
  20. 根据权利要求19所述的可移动平台,其特征在于,所述定位解算模块用于:
    根据所述环境图像信息,判断所述可移动平台与当前用于所述可移动平台定位的第一卫星之间是否存在通信异常风险;
    若所述可移动平台与所述第一卫星之间存在通信异常风险,则从所述第一卫星以外的其他多颗卫星中选取预设数量的第二卫星,其中,所述可移动平台与所述预设数量的第二卫星之间的通信正常;
    对所述解调信号进行解析,获取所述预设数量的第二卫星的定位信息;
    根据所述预设数量的第二卫星的定位信息,对所述可移动平台进行定位。
  21. 根据权利要求19所述的可移动平台,其特征在于,所述天线包括第一天线和第二天线,所述第一天线接收第一频段的卫星信号,所述第二天线接收第一频段和第二频段的卫星信号。
  22. 根据权利要求19所述的可移动平台,其特征在于,所述射频前端模块包括射频收发器,所述射频收发器向所述定位解算模块提供预设时钟频率的时钟信号。
  23. 根据权利要求19所述的可移动平台,其特征在于,所述可移动平台还包括MCU模块,所述MCU模块与所述定位解算模块连接;所述定位解算模块用于将定位结果输出至所述MCU模块,所述MCU模块用于将所述定位结 果发送至所述可移动平台的控制装置。
  24. 根据权利要求23所述的可移动平台,其特征在于,所述定位解算模块和所述MCU模块各自包括第一UART接口,所述MCU模块与所述定位解算模块通过所述第一UART接口建立连接。
  25. 根据权利要求23所述的可移动平台,其特征在于,所述可移动平台还包括GPS模块,所述GPS模块用于对所述可移动平台进行定位。
  26. 根据权利要求25所述的可移动平台,其特征在于,所述GPS模块与所述MCU模块各自包括第二UART接口,所述GPS模块与所述MCU模块通过所述第二UART接口建立连接。
  27. 根据权利要求23所述的可移动平台,其特征在于,若所述可移动平台当前开启第一定位模式,则通过所述定位解算模块对所述可移动平台进行定位;若所述可移动平台当前开启第二定位模式,则通过所述GPS模块对所述可移动平台进行定位。
  28. 根据权利要求19所述的可移动平台,其特征在于,所述定位解算模块包括存储器,所述存储器用于存储相关数据,所述相关数据包括卫星的定位信息、所述可移动平台的定位结果。
  29. 根据权利要求23所述的可移动平台,其特征在于,所述射频前端模块、所述定位解算模块和所述MCU模块集成于同一块电路板上。
  30. 根据权利要求29所述的可移动平台,其特征在于,所述电路板上还集成外接数字接口,所述定位解算模块和所述MCU模块通过所述外接数字接口与相应装置连接。
  31. 根据权利要求30所述的可移动平台,其特征在于,所述外接数字接口包括UART接口、CAN接口、USB接口、SD接口、DDR接口中至少一种。
  32. 根据权利要求31所述的可移动平台,其特征在于,所述定位解算模块和所述MCU模块通过所述外接数字接口与相应装置连接包括以下至少一种:
    所述MCU模块通过UART接口与电池连接;
    所述MCU模块通过第一CAN接口与相机连接;
    所述MCU模块通过第二CAN接口与所述可移动平台的控制装置连接;
    所述定位解算模块通过SD接口与SD卡连接;
    所述定位解算模块通过USB接口与USB装置连接;
    所述定位解算模块通过DDR接口与DDR装置连接。
  33. 根据权利要求20所述的可移动平台,其特征在于,所述定位解算模块用于:
    获取所述第一卫星以外的其他多颗卫星发射的信号对应的信噪比;
    根据所述信噪比,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星,所述预设数量的第二卫星发射的信号对应的信噪比高于未选取的卫星发射的信号对应的信噪比。
  34. 根据权利要求20所述的可移动平台,其特征在于,所述定位解算模块用于:
    获取所述可移动平台的天线方向图信息;
    根据所述天线方向图信息,从所述第一卫星以外的其他多颗卫星中选取所述预设数量的第二卫星。
  35. 根据权利要求20所述的可移动平台,其特征在于,所述定位解算模块用于:
    根据所述环境图像信息,判断所述可移动平台当前环境中是否存在异物遮挡;
    若所述可移动平台当前环境中存在异物遮挡,则判定所述可移动平台与所述第一卫星之间存在通信异常风险。
  36. 根据权利要求35所述的可移动平台,其特征在于,所述定位解算模块用于:
    若所述可移动平台当前环境中不存在异物遮挡,则从所有与所述可移动平台正常通信的卫星中,选取对应的信噪比高的预设数量的第三卫星;
    获取所述预设数量的第三卫星的定位信息;
    根据所述预设数量的第三卫星的定位信息,对所述可移动平台进行定位。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至9中任一项所述的可移动平台的定位方法。
PCT/CN2020/142435 2020-12-31 2020-12-31 可移动平台的定位方法、可移动平台及存储介质 WO2022141535A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142435 WO2022141535A1 (zh) 2020-12-31 2020-12-31 可移动平台的定位方法、可移动平台及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142435 WO2022141535A1 (zh) 2020-12-31 2020-12-31 可移动平台的定位方法、可移动平台及存储介质

Publications (1)

Publication Number Publication Date
WO2022141535A1 true WO2022141535A1 (zh) 2022-07-07

Family

ID=82260142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142435 WO2022141535A1 (zh) 2020-12-31 2020-12-31 可移动平台的定位方法、可移动平台及存储介质

Country Status (1)

Country Link
WO (1) WO2022141535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928416A (zh) * 2022-07-21 2022-08-19 成都金诺信高科技有限公司 一种天线倾角自动巡优搜星系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101160535A (zh) * 2005-04-17 2008-04-09 天宝导航有限公司 增强的gnss信号处理
US20120293365A1 (en) * 2010-11-24 2012-11-22 Javad Gnss, Inc. Satellite signal multipath mitigation in gnss devices
CN107533140A (zh) * 2015-03-06 2018-01-02 看门人系统公司 可移动物体的低能耗定位
US20180172839A1 (en) * 2013-03-14 2018-06-21 Google Llc Accounting for atmospheric and terrestrial obstacles in geographic positioning
CN110346825A (zh) * 2019-06-26 2019-10-18 中国第一汽车股份有限公司 车辆定位方法、装置、车辆和存储介质
CN110603463A (zh) * 2017-05-19 2019-12-20 高通股份有限公司 使用摄像头在车辆处进行非视距(NLoS)卫星检测

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101160535A (zh) * 2005-04-17 2008-04-09 天宝导航有限公司 增强的gnss信号处理
US20120293365A1 (en) * 2010-11-24 2012-11-22 Javad Gnss, Inc. Satellite signal multipath mitigation in gnss devices
US20180172839A1 (en) * 2013-03-14 2018-06-21 Google Llc Accounting for atmospheric and terrestrial obstacles in geographic positioning
CN107533140A (zh) * 2015-03-06 2018-01-02 看门人系统公司 可移动物体的低能耗定位
CN110603463A (zh) * 2017-05-19 2019-12-20 高通股份有限公司 使用摄像头在车辆处进行非视距(NLoS)卫星检测
CN110346825A (zh) * 2019-06-26 2019-10-18 中国第一汽车股份有限公司 车辆定位方法、装置、车辆和存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928416A (zh) * 2022-07-21 2022-08-19 成都金诺信高科技有限公司 一种天线倾角自动巡优搜星系统和方法

Similar Documents

Publication Publication Date Title
US11161608B2 (en) Unmanned aerial vehicle and flying control method thereof
US11175668B2 (en) Navigation method and apparatus, and terminal device
WO2017148222A1 (zh) 多传感器信息采集导航系统及方法
US20190243388A1 (en) Unmanned aerial vehicle including an omnidirectional depth sensing and obstacle avoidance aerial system and method of operating same
CN110488850A (zh) 一种基于树莓派的四旋翼无人机视觉导航系统及方法
CN108924520B (zh) 传输控制方法、装置、控制器、拍摄设备及飞行器
TW201248347A (en) System and method for controlling unmanned aerial vehicle
WO2018063594A1 (en) Course profiling and sharing
WO2022141535A1 (zh) 可移动平台的定位方法、可移动平台及存储介质
CN110471442A (zh) 一种目标观察方法、相关设备及系统
WO2021081774A1 (zh) 一种参数优化方法、装置及控制设备、飞行器
US9549478B2 (en) Mounting bracket for a marine display
CN207319073U (zh) 无人机和无人飞行系统
CN110221330A (zh) 自移动设备及其方向确定方法、自动工作系统
WO2020133105A1 (zh) 授时方法、切换方法、装置、控制系统及无人飞行器
CN206877150U (zh) 一种无人机控制系统及无人机
CN110809863B (zh) 通信链路系统、数据传输方法、无人飞行器和存储介质
KR20180079985A (ko) 무인 비행 장치 키트 및 시스템
CN108089590A (zh) 一种无人机遥感多类型传感器自动控制系统及方法
KR102458817B1 (ko) 고성능 내장형 다중 gnss 수신기
CN109407693A (zh) 无人机和无人飞行系统
WO2022027337A1 (zh) 可移动平台的控制系统、控制方法、设备及存储介质
WO2022126397A1 (zh) 传感器的数据融合方法、设备及存储介质
EP3379380B1 (en) Virtual reality system, operating method, non-transitory computer readable storage medium, and computer program product
CN110599754A (zh) 基于互联网的水质监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967873

Country of ref document: EP

Kind code of ref document: A1