WO2022163722A1 - Piezoelectric element, and sensor and actuator employing same - Google Patents

Piezoelectric element, and sensor and actuator employing same Download PDF

Info

Publication number
WO2022163722A1
WO2022163722A1 PCT/JP2022/002951 JP2022002951W WO2022163722A1 WO 2022163722 A1 WO2022163722 A1 WO 2022163722A1 JP 2022002951 W JP2022002951 W JP 2022002951W WO 2022163722 A1 WO2022163722 A1 WO 2022163722A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
leakage current
substrate
piezoelectric element
Prior art date
Application number
PCT/JP2022/002951
Other languages
French (fr)
Japanese (ja)
Inventor
岳人 石川
岳 圓岡
大輔 中村
広宣 待永
聖 鶴田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2022578454A priority Critical patent/JPWO2022163722A1/ja
Publication of WO2022163722A1 publication Critical patent/WO2022163722A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to piezoelectric elements, and sensors and actuators using the same.
  • piezoelectric elements that utilize the piezoelectric effect of substances have been used.
  • the piezoelectric effect is a phenomenon in which the application of pressure to a substance produces polarization proportional to the pressure.
  • Various sensors such as stress sensors, acceleration sensors, and AE (acoustic emission) sensors for detecting elastic waves, have been manufactured using the piezoelectric effect.
  • piezoelectric elements have been applied to touch panels of electronic devices such as smartphones and bulk acoustic wave (BAW) filters used as high-frequency bandpass filters.
  • BAW bulk acoustic wave
  • pressure sensors such as touch panels
  • high pressure responsiveness is required in order to detect finger operations with high sensitivity.
  • BAW filter the operating principle is vibration in the thickness direction of the piezoelectric thin film, and therefore good piezoelectric characteristics in the thickness direction are required.
  • miniaturization as an element and low power consumption are required.
  • a configuration has been proposed in which a current blocking layer is inserted between the upper and lower electrodes of a piezoelectric thin film element using perovskite crystals to maintain the electrical resistance value between the electrodes at a predetermined value or higher (for example, See Patent Document 1).
  • Wurtzite crystals having crystal orientation in the c-axis direction are used as piezoelectric materials used in sensors and actuators that utilize the piezoelectric effect.
  • Wurtzite crystals have a hexagonal crystal structure, and ZnO, AlN, GaN, and the like are used.
  • ZnO which is a group II-VI compound, tends to be an n-type semiconductor and tends to generate a minute leak current.
  • GaN and AlN which are group III-V compounds, also tend to exhibit semiconducting properties, and may generate a minute leak current. Piezoelectric characteristics are degraded due to minute leakage current.
  • An object of the present invention is to provide a piezoelectric element in which leakage current is suppressed and piezoelectric characteristics are improved.
  • the piezoelectric element includes a piezoelectric layer and a first electrode laminated in this order on a substrate, and a contact between the first electrode and the piezoelectric layer or between the substrate and the piezoelectric layer.
  • a leakage current suppression layer is arranged in at least one of the piezoelectric layers, A ratio of the capacitance per unit area of the leakage current suppression layer to the capacitance per unit area of the piezoelectric layer is 1.20 or more and less than 60.00.
  • a piezoelectric element with suppressed leakage current and improved piezoelectric characteristics is realized.
  • FIG. 1 is a first configuration example of a piezoelectric element according to an embodiment
  • 3 is a second configuration example of the piezoelectric element of the embodiment
  • 3 is a third configuration example of the piezoelectric element of the embodiment
  • 4 is a fourth configuration example of the piezoelectric element of the embodiment.
  • 5 is a fifth configuration example of the piezoelectric element of the embodiment.
  • 6 is a sixth configuration example of the piezoelectric element of the embodiment. It is a figure which shows the measurement result of an Example and a comparative example.
  • FIG. 4 is a diagram showing the relationship between the film thickness of a leakage current suppression layer and the piezoelectric constant d33;
  • FIG. 4 is a diagram showing the relationship between the film thickness of a leakage current suppression layer and the piezoelectric constant d33;
  • FIG. 4 is a diagram showing the relationship between the film thickness of a leakage current suppression layer and the piezoelectric constant d33;
  • FIG. 10 is a diagram showing the relationship between the capacitance ratio and the piezoelectric constant d33; It is a figure which expands the range of an electrostatic capacity ratio, and shows a relationship with the piezoelectric constant d33.
  • FIG. 4B is an enlarged view near the threshold in FIGS. 4A and 4B; It is a schematic diagram which shows an example of the sensor using the piezoelectric element of embodiment.
  • a leakage current suppressing layer that satisfies a predetermined capacitance relationship is provided between the piezoelectric layer provided on the substrate and the first electrode, or between the substrate and the piezoelectric layer, at least one of which suppresses the leakage current. suppresses and improves the piezoelectric characteristics.
  • piezoelectric properties includes both the amount of voltage generated per applied stress (positive piezoelectric effect) and the rate of mechanical displacement per applied electric field (reverse piezoelectric effect).
  • FIG. 1A is a schematic diagram of a piezoelectric element 10A that is a first configuration example of the embodiment.
  • an electrode 12 a piezoelectric layer 13, and an electrode 16 are laminated in this order on a substrate 11, and a leakage current suppressing layer 15 is provided between the piezoelectric layer 13 and the electrode 16.
  • electrode 16 may be referred to as the "first electrode” or upper electrode and electrode 12 as the “second electrode” or lower electrode.
  • electrode 12 may be omitted, as will be described later.
  • any type of substrate 11 can be used as long as it can stably support the laminate of the electrode 12, the piezoelectric layer 13, the leakage current suppression layer 15, and the electrode 16.
  • the substrate 11 a plastic substrate, a glass substrate, a ceramic substrate, or the like may be used.
  • the substrate 11 may be made of a flexible base material that gives flexibility to the piezoelectric element 10A.
  • the thickness of the substrate 11 is 1 ⁇ m or more and 150 ⁇ m or less, preferably 10 or more and 100 ⁇ m or less, more preferably 20 or more and 80 ⁇ m or less. If the thickness is less than 1 ⁇ m, it becomes difficult to stably support the laminate including the electrode 12 , piezoelectric layer 13 , leakage current suppression layer 15 and electrode 16 . In addition, the substrate 11 tends to warp, and the warping of the substrate 11 affects the piezoelectric characteristics. If the thickness of the substrate 11 exceeds 150 ⁇ m, it becomes difficult to give the desired bendability to the entire piezoelectric element 10A.
  • Examples of materials for the flexible substrate include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, cycloolefin polymer, polyimide (PI), and thin glass.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • acrylic resin cycloolefin polymer
  • PI polyimide
  • thin glass can be particularly colorless and transparent materials
  • the piezoelectric element 10A is used as a touch panel.
  • the piezoelectric element 10A is not required to have optical transparency, for example, if it is applied to health care products such as a pulse monitor and a heart rate monitor, or to an in-vehicle pressure detection sheet, a translucent or opaque plastic material may be used. .
  • One or both of the electrodes 12 and 16 may be transparent electrodes made of a conductive material transparent to visible light.
  • the electrodes 12 and 16 may not necessarily be transparent, but when the piezoelectric element 10A is applied to a display such as a touch panel, it is required to have optical transparency to visible light.
  • a conductive material transparent to visible light ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), IGZO (Indium Gallium Zinc Oxide), etc. can be used.
  • a metal electrode may be formed if optical transparency is not required.
  • a hexagonal metal material having the same lattice structure as wurtzite may be used.
  • hexagonal metals titanium (Ti), zirconium (Zr), hafnium (Hf), ruthenium (Ru), zinc (Zn), yttrium (Y), scandium (Sc), combinations thereof, and the like can be used. can.
  • a wurtzite crystal, a perovskite crystal, or the like can be used as the piezoelectric layer 13 .
  • wurtzite crystal which has a simpler crystal structure than perovskite crystal, is used as the main component of the piezoelectric layer 13 .
  • a predetermined amount of impurity element may be added to the piezoelectric layer 13 as an accessory component.
  • a material that crystallizes in a low-temperature process of 200°C or less is desirable as a wurtzite-type piezoelectric material.
  • Examples include zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), aluminum nitride (AlN), gallium nitride (GaN), cadmium selenide (CdSe), telluride Cadmium (CdTe) and silicon carbide (SiC) can be used. Two or more of these materials may be combined. When combining two or more materials, each compound may be laminated, or a single layer may be formed using a plurality of targets.
  • magnesium (Mg), silicon (Si), calcium (Ca), vanadium (V), titanium (Ti), zirconium (Zr), strontium (Sr), lithium (Li), or mixtures thereof can be done.
  • the thickness of the piezoelectric layer 13 is 50 nm or more and 5000 nm (5 ⁇ m) or less, preferably 50 nm or more and 3000 nm (3 ⁇ m) or less, more preferably 50 nm or more and 2000 nm (2 ⁇ m) or less, more preferably 100 nm or more and 1000 nm (1 ⁇ m) or less, more preferably. is 150 nm or more and 500 nm or less.
  • the thickness of the piezoelectric layer 14 exceeds 5000 nm, cracks are likely to occur. Cracks also cause leakage paths between electrodes. If the thickness of the piezoelectric layer 14 is less than 50 nm, it becomes difficult to exhibit sufficient piezoelectric properties in the film thickness direction.
  • Good crystal orientation in the c-axis direction of the wurtzite crystal piezoelectric layer 13 means good piezoelectric characteristics in the thickness direction.
  • the crystal orientation in the c-axis direction can be evaluated by the full width at half maximum (FWHM) of the peak obtained by rocking curve measurement of X-ray diffraction from a predetermined crystal lattice plane.
  • the FMHM of the piezoelectric layer 14 is desirably 5° or less, and desirably 4° or less when applied to sensors and actuators.
  • the leakage current suppression layer 15 is an inorganic insulating layer, preferably an amorphous inorganic insulating layer.
  • Al 2 O 3 , SiO 2 , Si 3 N 4 , ZrO 2 , TiO 2 , AlN, Ta 2 O 5 or a combination of two or more thereof may be used as the inorganic insulating layer.
  • These films can be formed by dry processes such as sputtering and chemical vapor deposition (CVD) methods, and wet processes such as sol-gel methods.
  • the term "amorphous inorganic insulating layer” does not necessarily mean that the entire inorganic insulating layer is completely amorphous.
  • the ratio of the amorphous component in the leakage current suppressing layer 15 is preferably 90% or more, more preferably 95% or more.
  • the material and/or film thickness of the leakage current suppression layer 15 is determined by the ratio of the capacitance C LS per unit area of the leakage current suppression layer 15 to the capacitance C PIEZ per unit area of the piezoelectric layer 13 (C LS /C PIEZ ) is selected to be 1.20 or more and less than 60.00. As will be described later, by satisfying the condition of 1.20 ⁇ C LS /C PIEZ ⁇ 60.00, the piezoelectric characteristics of the piezoelectric element 10A are improved.
  • S is the area of the piezoelectric layer 13, which is the same as the area S of the leakage current suppressing layer 15 from the structure of the piezoelectric element 10A.
  • d PIEZ is the film thickness of the piezoelectric layer 13 .
  • the material and thickness of the piezoelectric layer 13 and the material and thickness of the leakage current suppression layer 15 are designed so as to satisfy 1.20 ⁇ C LS /C PIEZ ⁇ 60.00. As a result, minute leakage current is suppressed, and piezoelectric characteristics can be improved.
  • FIG. 1B is a schematic diagram of a piezoelectric element 10B that is a second configuration example of the embodiment.
  • an electrode 12, a piezoelectric layer 13, and an electrode 16 are layered in this order on a substrate 11, and between the substrate 11 and the piezoelectric layer 13, more specifically, the electrode 12 and the piezoelectric layer.
  • a leakage current suppression layer 15 is provided between 13 .
  • the leakage current suppression layer 15 positioned below the piezoelectric layer 13 in the stacking direction is formed as an amorphous insulating layer
  • the leakage current suppression layer 15 functions as an underlying alignment film for the piezoelectric layer 13.
  • the piezoelectric layer 13 can be grown with good orientation without being affected by the crystalline state of the electrode 12 .
  • the capacitance relationship between the leakage current suppression layer 15 and the piezoelectric layer 13 is: It is designed so that the ratio C LS /C PIEZ of the capacitance C LS is 1.20 or more and less than 60.00. As a result, minute leakage current is suppressed in the piezoelectric element 10B, and the piezoelectric characteristics are improved.
  • FIG. 1C is a schematic diagram of a piezoelectric element 10C that is a third configuration example of the embodiment.
  • an electrode 12 a piezoelectric layer 13, and an electrode 16 are laminated in this order on a substrate 11, and a leakage current suppressing layer 15-1 is provided between the electrode 12 and the piezoelectric layer 13.
  • a leakage current suppressing layer 15-2 is provided between 16 and the piezoelectric layer 13.
  • the relationship between the leakage current suppression layers 15-1 and 15-2 and the capacitance of the piezoelectric layer 13 is designed to satisfy 1.20 ⁇ C LS /C PIEZ ⁇ 60.00. ing.
  • CLS1 is the capacitance per unit area of the leakage current suppression layer 15-1
  • CLS2 is the capacitance per unit area of the other leakage current suppression layer 15-2.
  • the leakage current suppressing layer 15-1 When the leakage current suppressing layer 15-1 is formed as an amorphous insulating layer, it can also function as an underlying alignment film for the piezoelectric layer 13. When the leakage current suppressing layer 15-2 is formed as an amorphous insulating layer, it can also function as an underlying alignment film for the electrode 16. FIG.
  • the piezoelectric layer 13 By providing the leakage current suppression layer 15-1 between the electrode 12 and the piezoelectric layer 13 and providing the leakage current suppression layer 15-2 between the electrode 16 and the piezoelectric layer 13, the piezoelectric layer 13 is suppressed in the stacking direction. The occurrence of leak paths is suppressed on both the lower electrode 12 side and the upper electrode 16 side. In addition, the crystallinity of the piezoelectric layer 13 and the electrodes 16 is improved, further improving the piezoelectric characteristics.
  • FIG. 1D is a schematic diagram of a piezoelectric element 10D that is a fourth configuration example of the embodiment.
  • a conductive substrate 21 is used in the piezoelectric element 10D.
  • a piezoelectric layer 13 and an electrode 16 are laminated in this order on a substrate 21 , and a leakage current suppressing layer 15 is provided between the electrode 16 and the piezoelectric layer 13 .
  • substrate 21 can function as the bottom electrode.
  • the substrate 21 may be a metal substrate or a conductive transparent substrate such as ITO, IZO, IZTO, IGZO.
  • a metal film such as Al foil, Cu foil, Al--Ti alloy foil, Cu--Ti alloy foil, and stainless steel foil may be used.
  • the substrate 21 becomes a flexible substrate.
  • a metal adhesion film such as Ti or Ni may be inserted between the substrate 21 and the piezoelectric layer 13 .
  • the material and thickness of the piezoelectric layer 13 are such that the ratio C LS /C PIEZ of the capacitance C LS per unit area of the leakage current suppression layer 15 is 1.20 or more and less than 60.00. thickness, and the material and thickness of the leakage current suppression layer 15 are designed. As a result, minute leakage current is suppressed and the piezoelectric characteristics are improved.
  • FIG. 1E is a schematic diagram of a piezoelectric element 10E that is a fifth configuration example of the embodiment.
  • the conductive substrate 21 is also used in the piezoelectric element 10E.
  • a piezoelectric layer 13 and an electrode 16 are laminated in this order on a substrate 21 .
  • a leakage current suppressing layer 15 is provided between the substrate 21 and the piezoelectric layer 13 .
  • the substrate 21 may be a metal substrate or a conductive transparent substrate such as ITO, IZO, IZTO, IGZO.
  • a metal substrate 21 When a metal substrate 21 is used, a metal film such as Al foil, Cu foil, Al--Ti alloy foil, Cu--Ti alloy foil, and stainless steel foil may be used. When the thickness of the metal film is thin, the substrate 21 becomes a flexible substrate. A metal adhesion film such as Ti or Ni may be inserted between the substrate 21 and the leakage current suppressing layer 15 .
  • the leakage current suppression layer 15 When the leakage current suppression layer 15 is formed as an amorphous insulating layer, the leakage current suppression layer 5 can function as an underlying alignment film for the piezoelectric layer 13 .
  • the piezoelectric layer 13 By arranging an amorphous insulating layer between the substrate 21 and the piezoelectric layer 13, the piezoelectric layer 13 can be grown with good orientation without being affected by the crystalline state of the substrate 21.
  • the ratio C LS /C PIEZ of the capacitance C LS per unit area of the leakage current suppression layer 15 to the capacitance C PIEZ per unit area of the piezoelectric layer 13 is set to 1.20 or more and less than 60.00. 2, the material and thickness of the piezoelectric layer 13 and the material and thickness of the leakage current suppression layer 15 are designed. As a result, minute leakage current is suppressed and the piezoelectric characteristics are improved.
  • the occurrence of a leak path between the substrate 21 and the electrode 16 is suppressed, and a minute leak current is suppressed.
  • the crystallinity of the piezoelectric layer 13 is improved, and the piezoelectric characteristics are further improved.
  • FIG. 1F is a schematic diagram of a piezoelectric element 10F that is a sixth configuration example of the embodiment.
  • the conductive substrate 21 is also used in the piezoelectric element 10F.
  • a piezoelectric layer 13 and an electrode 16 are laminated in this order on a substrate 21 .
  • a leakage current suppression layer 15-1 is provided between the substrate 21 and the piezoelectric layer 13, and a leakage current suppression layer 15-2 is provided between the piezoelectric layer 13 and the electrode 16.
  • the substrate 21 may be a metal substrate or a conductive transparent substrate such as ITO, IZO, IZTO, IGZO.
  • a metal substrate 21 When a metal substrate 21 is used, a metal film such as Al foil, Cu foil, Al--Ti alloy foil, Cu--Ti alloy foil, and stainless steel foil may be used. When the thickness of the metal film is thin, the substrate 21 becomes a flexible substrate. A metal adhesion film such as Ti or Ni may be inserted between the substrate 21 and the leakage current suppressing layer 15 .
  • the leakage current suppression layer 15-1 When the leakage current suppression layer 15-1 is formed as an amorphous insulating layer, the leakage current suppression layer 15-1 can function as an underlying alignment film for the piezoelectric layer 13. By arranging an amorphous insulating layer between the substrate 21 and the piezoelectric layer 13, the piezoelectric layer 13 can be grown with good orientation without being affected by the crystalline state of the substrate 21.
  • FIG. When the leakage current suppressing layer 15-2 is formed as an amorphous insulating layer, it can also function as an underlying alignment film for the electrode 16. FIG.
  • the capacitance C LS per unit area of the two leakage current suppression layers 15-1 and 5-12 in the configuration of FIG. 1F is as described with reference to FIG. 1C, and C LS /C PIEZ is 1. .20 or more and less than 60.00.
  • C LS /C PIEZ is 1. .20 or more and less than 60.00.
  • the piezoelectric element 10 of the embodiment is designed so that the capacitance relationship between the leakage current suppression layer 15 and the piezoelectric layer 13 satisfies a predetermined relationship.
  • the grounds for the above simple capacitance system derived from the results of measurement and evaluation of a plurality of actually manufactured samples will be described.
  • Fig. 2 shows the specifications of the sample of the example and the sample of the comparative example. Except for Comparative Example 1, all the samples had a leakage current suppression layer. 1A, except for Comparative Example 1, a leakage current suppressing layer 15 is provided between the electrode 16 (first electrode) and the piezoelectric layer 13. In FIG. As will be described later, the characteristics of each sample are evaluated based on the piezoelectric characteristics of Comparative Example 1 without the leakage current suppression layer 15 . Fixing conditions common to all samples are as follows.
  • a PET film having a thickness of 50 ⁇ m is used as the substrate 11 .
  • An IZO film with a thickness of 100 nm is formed on the PET film as the second electrode 12 using a batch sputtering apparatus.
  • the film formation power is DC 400 W
  • the film formation pressure is 0.4 Pa
  • the film is formed in a mixed gas atmosphere of argon (Ar) gas and 1% oxygen (O 2 ).
  • a piezoelectric layer 13 of MgZnO is formed on the second electrode 12 using the same film forming apparatus.
  • the film formation power is RF 500 W
  • the film formation pressure is 0.2 Pa
  • the film is formed in a mixed gas atmosphere of Ar gas and 13% O 2 .
  • the composition of Mg in the piezoelectric layer 13 is 12 wt.%.
  • the piezoelectric layer 13 has a dielectric constant ⁇ r PIEZ of 9 and a FWHM of 4.6° obtained by the X-ray diffraction rocking curve method on the MgZnO (002) plane. These are the conditions common to all samples.
  • a plurality of samples were prepared by changing the presence/absence, type, and thickness of the leakage current suppressing layer 15 and the thickness of the piezoelectric layer 13, and the leakage current with respect to the capacitance per unit area of the piezoelectric layer 13 was measured.
  • the ratio C LS /C PIEZ of the capacitance per unit area of the suppression layer 15 is calculated.
  • the piezoelectric constant d33 [pC/N] of each sample is measured as a piezoelectric characteristic.
  • d33 is a value representing the expansion/contraction mode in the polarization direction, and is represented by the amount of polarization charge per unit pressure applied in the polarization direction.
  • the expansion/contraction mode in the film thickness direction that is, in the c-axis direction is represented.
  • the piezoelectric constant d33 is evaluated by the following procedure. A sample is placed on the stage with the second electrode 12 facing downward, a predetermined pressure is applied from the upper surface of the sample with an indenter, and the charge generated by polarization in the c-axis (film thickness) direction is measured. The d33 value is obtained by dividing the amount of charge generated when the applied load is changed from 5N to 6N by the load difference of 1N.
  • Al 2 O 3 is formed as the leakage current suppressing layer 15 .
  • the Al 2 O 3 film is formed in a mixed gas atmosphere of Ar gas and 11.5% O 2 under the conditions of power RF of 300 W and pressure of 0.3 Pa using a batch sputtering apparatus.
  • Al 2 O 3 has a dielectric constant of 9.
  • the thickness of the piezoelectric layer 13 of Example 1 is 200 nm, and the thickness of the leakage current suppression layer 15 is 25 nm.
  • the piezoelectric constant d33 of this sample is 19.8 pC/N, and the capacitance ratio C LS /C PIEZ is 8.000.
  • Example 2 the thickness of the piezoelectric layer 13 is 200 nm, and the thickness of the leakage current suppression layer 15 is 50 nm.
  • the piezoelectric constant d33 of this sample is 14.7 pC/N, and the capacitance ratio C LS /C PIEZ is 4.000.
  • the thickness of the piezoelectric layer 13 of Example 3 is 200 nm, and the thickness of the leakage current suppression layer 15 is 75 nm.
  • the piezoelectric constant d33 of this sample is 13.4 pC/N, and the capacitance ratio C LS /C PIEZ is 2.667.
  • the thickness of the piezoelectric layer 13 of Example 4 is 200 nm, and the thickness of the leakage current suppression layer 15 is 125 nm.
  • the piezoelectric constant d33 of this sample is 12.1 pC/N, and the capacitance ratio C LS /C PIEZ is 1.600.
  • the ratio of the thickness of the leakage current suppressing layer 15 to the thickness of the piezoelectric layer 13 is reflected in the capacitance ratio C LS /C PIEZ .
  • the capacitance ratio and the piezoelectric constant d33 is a tendency for the capacitance ratio and the piezoelectric constant d33 to increase.
  • the thickness of the piezoelectric layer 13 of Example 6 is 500 nm, and the thickness of the leakage current suppression layer 15 is 100 nm.
  • the piezoelectric constant d33 of this sample is 15.1 pC/N, and the capacitance ratio C LS /C PIEZ is 5.000.
  • the thickness of the piezoelectric layer 13 of Example 9 is 300 nm, and the thickness of the leakage current suppression layer 15 is 10 nm.
  • the piezoelectric constant d33 of this sample is 20.9 pC/N, and the capacitance ratio C LS /C PIEZ is 30.000.
  • the thickness of the piezoelectric layer 13 in Example 10 is 500 nm, and the thickness of the leakage current suppression layer 15 is 10 nm.
  • the piezoelectric constant d33 of this sample is 25.0 pC/N, and the capacitance ratio C LS /C PIEZ is 50.000.
  • Example 9 the piezoelectric constant d33 is improved by increasing the thickness of the piezoelectric layer 13 compared to Examples 1-4.
  • Example 6 the thickness of the piezoelectric layer 13 is the same as that of the tenth example, but the thickness of the leakage current suppressing layer 15 is ten times as thick as that of the tenth example.
  • the piezoelectric characteristics differ due to the difference in the film thickness ratio of the leak current suppressing layer 15 to the piezoelectric layer 13, all of Examples 6, 9, and 10 show good values of the piezoelectric constant d33.
  • Example 5 the piezoelectric layer 13 is formed with a thickness of 200 nm, and the leakage current suppression layer 15 is formed of SiO 2 with a thickness of 15 nm.
  • the SiO 2 film was formed in a mixed gas atmosphere of Ar gas and 5.4% O 2 under the conditions of power RF of 300 W and pressure of 0.3 Pa using the same batch sputtering apparatus that was used to form the Al 2 O 3 film. do.
  • the dielectric constant of SiO2 is 4.
  • the piezoelectric constant d33 of the sample of Example 5 is 15.3 pC/N, and the capacitance ratio C LS /C PIEZ is 5.926.
  • the piezoelectric layer 13 is formed with a thickness of 500 nm
  • the leakage current suppression layer 15 is formed of SiO 2 with a thickness of 50 nm.
  • the SiO 2 film was formed in a mixed gas atmosphere of Ar gas and 5.4% O 2 under the conditions of power RF of 300 W and pressure of 0.3 Pa using the same batch sputtering apparatus that was used to form the Al 2 O 3 film. do.
  • the dielectric constant of SiO2 is 4.
  • the piezoelectric constant d33 of the sample of Example 8 is 14.8 pC/N, and the capacitance ratio C LS /C PIEZ is 4.444.
  • Example 5 The reason why the measurement results are slightly different between Example 5 and Example 8 is considered to be that the film thickness ratio between the piezoelectric layer 13 and the leakage current suppressing layer 15 is slightly different. However, in both Examples 5 and 8, good values of the piezoelectric constant d33 were obtained, and it can be seen that the SiO 2 film functions effectively as a leakage current suppressing layer.
  • Example 7 A Si 3 N 4 film is used in Example 7.
  • the piezoelectric layer 13 is formed with a thickness of 500 nm, and a Si 3 N 4 film with a thickness of 50 nm is formed as the leakage current suppression layer 15 .
  • the Si 3 N 4 film was formed in a mixed gas atmosphere of Ar gas and 20% N 2 gas using the same batch sputtering apparatus as used for forming the Al 2 O 3 film under the conditions of power RF 300 W and pressure 0.3 Pa. form a film.
  • Si 3 N 4 has a dielectric constant of 8.
  • the piezoelectric constant d33 of the sample of Example 7 is 18.5 pC/N, and the capacitance ratio C LS /C PIEZ is 8.889.
  • a good value of the piezoelectric constant d33 is obtained in the seventh embodiment as well, and it can be seen that the Si 3 N 4 film functions effectively as a leakage current suppressing layer.
  • Comparative Example 1 the piezoelectric layer 13 having a thickness of 200 nm is provided, but the leak current suppressing layer 15 is not used.
  • the piezoelectric constant d33 of this sample is 10.2 pC/N.
  • the piezoelectric properties of Comparative Example 1 are used as evaluation criteria.
  • a piezoelectric layer 13 with a thickness of 200 nm is provided, and an Al 2 O 3 film with a thickness of 225 nm is formed as the leakage current suppression layer 15 .
  • the piezoelectric constant d33 of this sample is 8.3 pC/N, and the capacitance ratio C LS /C PIEZ is 0.889.
  • the thickness of the leakage current suppressing layer 15 is increased, and the capacitance ratio is decreased, resulting in deterioration of the piezoelectric characteristics.
  • a piezoelectric layer 13 with a thickness of 200 nm is provided, and an Al 2 O 3 film with a thickness of 300 nm is formed as the leakage current suppression layer 15 .
  • the piezoelectric constant d33 of this sample is 7.5 pC/N, and the capacitance ratio C LS /C PIEZ is 0.667.
  • the thickness of the leakage current suppression layer 15 is further increased than in Comparative Example 2, the capacitance ratio is decreased, and the piezoelectric characteristics are degraded.
  • a piezoelectric layer 13 with a thickness of 200 nm is provided, and a SiO 2 film with a thickness of 80 nm is formed as the leakage current suppression layer 15 .
  • the piezoelectric constant d33 of this sample is 9.0 pC/N, and the capacitance ratio C LS /C PIEZ is 1.111.
  • the thickness of the leakage current suppression layer 15 is increased compared to Example 5, so the capacitance ratio is reduced and the piezoelectric characteristics are lowered. is doing.
  • a piezoelectric layer 13 with a thickness of 300 nm is provided, and an Al 2 O 3 film with a thickness of 5 nm is formed as the leakage current suppression layer 15 .
  • the piezoelectric constant d33 of this sample is 9.5 pC/N, and the capacitance ratio C LS /C PIEZ is 60.000.
  • the thickness of the leakage current suppression layer 15 is as thin as 5 nm, and the capacitance ratio does not increase.
  • the piezoelectric characteristics are lower than those of Comparative Example 1, which serves as a reference. It can be seen that if the thickness of the leakage current suppression layer 15 is too thin, the leakage current suppression effect cannot be obtained.
  • FIG. 3 is a diagram plotting the relationship between the film thickness of the leak current suppression layer 15 and the piezoelectric constant d33 based on the evaluation results of FIG. Comparative Example 1 in which the leakage current suppressing layer 15 is not provided is used as a reference (initial characteristics), and the samples of Examples 1 to 10, in which the piezoelectric characteristics are improved from the initial characteristics, are regarded as effective samples.
  • the piezoelectric properties of Comparative Example 1 are indicated by white triangles on the vertical axis. A dotted line parallel to the horizontal axis is the reference line.
  • the piezoelectric properties of Comparative Examples 2-5 are lower than the reference.
  • FIGS. 4A and 4B are plots of the piezoelectric constant d33 as a function of the capacitance ratio C LS /C PIEZ .
  • FIG. 5 is an enlarged view near the threshold in FIGS. 4A and 4B.
  • FIG. 4A shows the distribution of the piezoelectric constant d33 when the capacitance ratio C LS /C PIEZ is in the range of 0 to 10, and FIG .
  • the distribution of the piezoelectric constant d33 is shown in the range. Looking only at FIG. 4A, it appears that increasing the capacitance ratio improves the piezoelectric properties.
  • FIG. 4A it appears that increasing the capacitance ratio improves the piezoelectric properties.
  • the piezoelectric characteristics are equivalent to or improved from the initial characteristics when the capacitance ratio C LS /C PIEZ is 1.20 or more. 00, preferably 1.25 or more and less than 60.00, more preferably 1.29 or more and less than 60.00.
  • the d33 value when the ratio C LS /C PIEZ is 1.20 is within the range of ⁇ 3% from the initial characteristics, and the d33 value when the ratio C LS /C PIEZ is 1.25 is ⁇ 2% from the initial characteristics. is within the range of , and can be regarded as within the range of error. From this, the capacitance relationship between the leak current suppression layer 15 and the piezoelectric layer 13 of the piezoelectric element 10 is as follows: 1.20 ⁇ C LS /C PIEZ ⁇ 6.00 is guided.
  • FIG. 6 is a schematic diagram of a sensor 100 using the piezoelectric element 10 of the embodiment.
  • the sensor 100 has a piezoelectric element 10 , a charge amplifier 24 and a display device 25 .
  • the piezoelectric effect When a mechanical force is applied to the piezoelectric element 10, the piezoelectric effect generates an amount of electric charge proportional to the applied force.
  • the charge amplifier 24 By amplifying the generated charge with the charge amplifier 24 and outputting it to the display device 25, it is used as a pressure sensor.
  • the resistance change due to strain may be measured.
  • a bridge circuit is connected between the first electrode 16 and the second electrode 12 (between the first electrode 16 and the substrate 21 when a conductive substrate 21 is used) to convert the resistance change into a voltage change. It may be converted, amplified, analog-to-digital converted, etc., and then output.
  • an electric field applying means may be used to control the electric field applied to the piezoelectric element 10 and use it as an actuator. Due to the inverse piezoelectric effect, strain occurs according to the applied electric field. In the piezoelectric element, the leakage current suppressing layer 15 provides good d33 characteristics representing the expansion/contraction mode in the polarization direction, so an actuator with good drive efficiency can be obtained.
  • the piezoelectric element 10 suppresses the generation of minute leakage current in the piezoelectric layer 13, and the device to which the piezoelectric element 10 is applied has good piezoelectric characteristics. shown.
  • the piezoelectric layer 13 may be formed by stacking two or more layers of piezoelectric films.
  • the main component of each piezoelectric film may be the same material or may be different materials. From the viewpoint of lattice constant matching, the same material may be used for the main component.
  • a subcomponent may be added to at least a part of the piezoelectric film. The subcomponents added in each layer may be the same or different.
  • the film thickness of the piezoelectric layer as a whole is 5 ⁇ m or less, preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and further preferably 500 nm or less.
  • the material and thickness of the leakage current suppressing layer are determined so that 1.20 ⁇ C LS /C PIEZ ⁇ 60.00 is satisfied in relation to the dielectric constant and film thickness of the entire piezoelectric layer.
  • the leakage current suppression layer is made of ZrO2, TiO2 , AlN, Ta2O5 , or two of these, in addition to Al2O3 , SiO2 , and Si3N4 , within the range that satisfies this capacitance ratio condition.
  • Combinations of the above may also be used. If the dielectric constant of the leakage current suppressing layer is too high, it may become difficult for high-frequency signals to pass through, resulting in a dull signal waveform.
  • Al 2 O 3 , SiO 2 and Si 3 N 4 are particularly suitable for the leakage current suppression layer when the piezoelectric element is applied to a high frequency device.

Abstract

Provided is a piezoelectric element with which a leakage current is suppressed and piezoelectric characteristics are improved. In the piezoelectric element, a piezoelectric layer and a first electrode are stacked in this order on a substrate, and a leakage current suppressing layer is disposed either between the first electrode and the piezoelectric layer, or between the substrate and the piezoelectric layer. A ratio of electrostatic capacitance per unit surface area of the leakage current suppressing layer to electrostatic capacitance per unit surface area of the piezoelectric layer is at least equal to 1.20 and less than 60.00.

Description

圧電素子、及びこれを用いたセンサ及びアクチュエータPiezoelectric element, sensor and actuator using the same
 本発明は、圧電素子、及びこれを用いたセンサ及びアクチュエータに関する。 The present invention relates to piezoelectric elements, and sensors and actuators using the same.
 従来から、物質の圧電効果を利用した圧電素子が用いられている。圧電効果は、物質に圧力が加えられることにより、圧力に比例した分極が得られる現象をいう。圧電効果を利用して、応力センサ、加速度センサ、弾性波を検出するAE(アコースティック・エミッション)センサ等の様々なセンサが作製されている。 Conventionally, piezoelectric elements that utilize the piezoelectric effect of substances have been used. The piezoelectric effect is a phenomenon in which the application of pressure to a substance produces polarization proportional to the pressure. Various sensors, such as stress sensors, acceleration sensors, and AE (acoustic emission) sensors for detecting elastic waves, have been manufactured using the piezoelectric effect.
 近年では、スマートフォン等の電子機器のタッチパネルや、高周波バンドパスフィルタとして用いられるバルク弾性波(Bulk Acoustic Wave:BAW)フィルタに圧電素子が適用されている。タッチパネル等の圧力センサへの適用では、指の操作を高感度に検出するために高い圧力応答性が求められる。BAWフィルタへの適用では、圧電薄膜の厚み方向の振動を動作原理とするため、厚さ方向への良好な圧電特性が求められる。いずれの適用でも、素子としての小型化と、低消費電力が求められる。 In recent years, piezoelectric elements have been applied to touch panels of electronic devices such as smartphones and bulk acoustic wave (BAW) filters used as high-frequency bandpass filters. When applied to pressure sensors such as touch panels, high pressure responsiveness is required in order to detect finger operations with high sensitivity. When applied to a BAW filter, the operating principle is vibration in the thickness direction of the piezoelectric thin film, and therefore good piezoelectric characteristics in the thickness direction are required. In any application, miniaturization as an element and low power consumption are required.
 ペロブスカイト型の結晶を用いた圧電薄膜素子の上部電極と下部電極の間に、電流ブロック層を挿入して、電極間の電気抵抗値を所定の値以上に保つ構成が提案されている(たとえば、特許文献1参照)。 A configuration has been proposed in which a current blocking layer is inserted between the upper and lower electrodes of a piezoelectric thin film element using perovskite crystals to maintain the electrical resistance value between the electrodes at a predetermined value or higher (for example, See Patent Document 1).
特開2009-130182号公報JP 2009-130182 A
 圧電効果を利用したセンサおよびアクチュエータ等に用いられる圧電材料として、c軸方向に結晶配向性を有するウルツ鉱型結晶が用いられる。ウルツ鉱型結晶は六方晶系の結晶構造を有し、ZnO、AlN、GaN等が用いられている。このうち、II-VI族化合物のZnOはn型半導体になりやすく、微小なリーク電流が発生しやすい。III-V族化合物のGaNやAlNも半導体性が発現する傾向にあり、微小なリーク電流が発生するおそれがある。微小なリーク電流に起因して、圧電特性が低下する。 Wurtzite crystals having crystal orientation in the c-axis direction are used as piezoelectric materials used in sensors and actuators that utilize the piezoelectric effect. Wurtzite crystals have a hexagonal crystal structure, and ZnO, AlN, GaN, and the like are used. Among them, ZnO, which is a group II-VI compound, tends to be an n-type semiconductor and tends to generate a minute leak current. GaN and AlN, which are group III-V compounds, also tend to exhibit semiconducting properties, and may generate a minute leak current. Piezoelectric characteristics are degraded due to minute leakage current.
 本発明は、一つの側面で、リーク電流が抑制され圧電特性が向上した圧電素子を提供することを目的とする。 An object of the present invention is to provide a piezoelectric element in which leakage current is suppressed and piezoelectric characteristics are improved.
 本発明のひとつの態様では、圧電素子は、基板上に圧電体層と第1の電極がこの順で積層されており、前記第1の電極と前記圧電体層の間、または前記基板と前記圧電体層の間の少なくとも一方にリーク電流抑制層が配置されており、
 前記圧電体層の単位面積当たりの静電容量に対する前記リーク電流抑制層の単位面積当たりの静電容量の比が1.20以上60.00未満である。
In one aspect of the present invention, the piezoelectric element includes a piezoelectric layer and a first electrode laminated in this order on a substrate, and a contact between the first electrode and the piezoelectric layer or between the substrate and the piezoelectric layer. A leakage current suppression layer is arranged in at least one of the piezoelectric layers,
A ratio of the capacitance per unit area of the leakage current suppression layer to the capacitance per unit area of the piezoelectric layer is 1.20 or more and less than 60.00.
 リーク電流が抑制され圧電特性が向上した圧電素子が実現される。 A piezoelectric element with suppressed leakage current and improved piezoelectric characteristics is realized.
実施形態の圧電素子の第1の構成例である。1 is a first configuration example of a piezoelectric element according to an embodiment; 実施形態の圧電素子の第2の構成例である。3 is a second configuration example of the piezoelectric element of the embodiment; 実施形態の圧電素子の第3の構成例である。3 is a third configuration example of the piezoelectric element of the embodiment; 実施形態の圧電素子の第4の構成例である。4 is a fourth configuration example of the piezoelectric element of the embodiment. 実施形態の圧電素子の第5の構成例である。5 is a fifth configuration example of the piezoelectric element of the embodiment. 実施形態の圧電素子の第6の構成例である。6 is a sixth configuration example of the piezoelectric element of the embodiment. 実施例と比較例の測定結果を示す図である。It is a figure which shows the measurement result of an Example and a comparative example. リーク電流抑制層の膜厚と圧電定数d33の関係を示す図である。FIG. 4 is a diagram showing the relationship between the film thickness of a leakage current suppression layer and the piezoelectric constant d33; 静電容量比と圧電定数d33の関係を示す図である。FIG. 10 is a diagram showing the relationship between the capacitance ratio and the piezoelectric constant d33; 静電容量比の範囲を広げて圧電定数d33との関係を示す図である。It is a figure which expands the range of an electrostatic capacity ratio, and shows a relationship with the piezoelectric constant d33. 図4A及び図4Bの閾値近傍の拡大図である。FIG. 4B is an enlarged view near the threshold in FIGS. 4A and 4B; 実施形態の圧電素子を用いたセンサの一例を示す模式図である。It is a schematic diagram which shows an example of the sensor using the piezoelectric element of embodiment.
 実施形態では、基板上に設けられた圧電体層と第1の電極の間、または基板と圧電体層の間の少なくとも一方に所定の静電容量関係を満たすリーク電流抑制層を設けてリーク電流を抑制し、圧電特性を向上する。この明細書で圧電特性というときは、印加応力あたりの発生電圧量(正圧電効果)と、印加電界あたりの機械的な変位割合(逆圧電効果)の双方を含む。 In the embodiment, a leakage current suppressing layer that satisfies a predetermined capacitance relationship is provided between the piezoelectric layer provided on the substrate and the first electrode, or between the substrate and the piezoelectric layer, at least one of which suppresses the leakage current. suppresses and improves the piezoelectric characteristics. In this specification, the term "piezoelectric properties" includes both the amount of voltage generated per applied stress (positive piezoelectric effect) and the rate of mechanical displacement per applied electric field (reverse piezoelectric effect).
 <素子構造>
 図1Aは、実施形態の第1の構成例である圧電素子10Aの模式図である。圧電素子10Aは、基板11上に、電極12、圧電体層13、及び電極16がこの順で積層され、圧電体層13と電極16の間に、リーク電流抑制層15が設けられている。便宜上、電極16を「第1の電極」または上部電極、電極12を「第2の電極」または下部電極と呼んでもよい。後述するように、基板11の電気的性質によって、電極12は省略してもよい。
<Device structure>
FIG. 1A is a schematic diagram of a piezoelectric element 10A that is a first configuration example of the embodiment. In the piezoelectric element 10A, an electrode 12, a piezoelectric layer 13, and an electrode 16 are laminated in this order on a substrate 11, and a leakage current suppressing layer 15 is provided between the piezoelectric layer 13 and the electrode 16. For convenience, electrode 16 may be referred to as the "first electrode" or upper electrode and electrode 12 as the "second electrode" or lower electrode. Depending on the electrical properties of substrate 11, electrode 12 may be omitted, as will be described later.
 基板11は、電極12、圧電体層13、リーク電流抑制層15、及び電極16の積層体を安定して支持することができれば、特に種類を問わない。基板11として、プラスチック基板、ガラス基板、セラミック基板などを用いてもよい。一つの構成例として、基板11として、圧電素子10Aに屈曲性を与える可撓性基材を用いてもよい。基板11の厚さは、1μm以上150μm以下、好ましくは10以上100μm以下、さらに好ましくは20以上80μm以下である。1μm未満になると、電極12、圧電体層13、リーク電流抑制層15、及び電極16を含む積層体を安定して支持することが困難になる。また、基板11が反りやすくなり、基板11の反りが圧電特性に影響する。基板11の厚さが150μmを超えると、圧電素子10A全体に所望の屈曲性を与えるのが困難になる。 Any type of substrate 11 can be used as long as it can stably support the laminate of the electrode 12, the piezoelectric layer 13, the leakage current suppression layer 15, and the electrode 16. As the substrate 11, a plastic substrate, a glass substrate, a ceramic substrate, or the like may be used. As one configuration example, the substrate 11 may be made of a flexible base material that gives flexibility to the piezoelectric element 10A. The thickness of the substrate 11 is 1 μm or more and 150 μm or less, preferably 10 or more and 100 μm or less, more preferably 20 or more and 80 μm or less. If the thickness is less than 1 μm, it becomes difficult to stably support the laminate including the electrode 12 , piezoelectric layer 13 , leakage current suppression layer 15 and electrode 16 . In addition, the substrate 11 tends to warp, and the warping of the substrate 11 affects the piezoelectric characteristics. If the thickness of the substrate 11 exceeds 150 μm, it becomes difficult to give the desired bendability to the entire piezoelectric element 10A.
 可撓性基材の材料として、たとえば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル系樹脂、シクロオレフィン系ポリマー、ポリイミド(PI)、薄膜ガラス等を用いることができる。これらの材料の中で、特にポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル系樹脂、シクロオレフィン系ポリマー、薄膜ガラスは無色透明な材料であり、圧電素子10Aをタッチパネル等の透過性部品に適用する場合に適している。圧電素子10Aに光透過性を要求されない場合、たとえば、脈拍計、心拍計などのヘルスケア用品や、車載圧力検知シート等に適用される場合は、半透明または不透明のプラスチック材料を用いてもよい。 Examples of materials for the flexible substrate include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, cycloolefin polymer, polyimide (PI), and thin glass. can. Among these materials, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, cycloolefin polymer, and thin film glass are particularly colorless and transparent materials, and the piezoelectric element 10A is used as a touch panel. It is suitable for application to permeable parts such as If the piezoelectric element 10A is not required to have optical transparency, for example, if it is applied to health care products such as a pulse monitor and a heart rate monitor, or to an in-vehicle pressure detection sheet, a translucent or opaque plastic material may be used. .
 電極12と電極16の一方または両方は、可視光に対して透明な導電材料で形成された透明電極であってもよい。圧電素子10Aの適用分野によっては、電極12と電極16の透明性は必須ではないが、圧電素子10Aをタッチパネル等のディスプレイに適用する場合は、可視光に対する光透過性を有することが求められる。可視光に対して透明な導電材料として、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)、IGZO(Indium Gallium Zinc Oxide)などを用いることができる。 One or both of the electrodes 12 and 16 may be transparent electrodes made of a conductive material transparent to visible light. Depending on the application field of the piezoelectric element 10A, the electrodes 12 and 16 may not necessarily be transparent, but when the piezoelectric element 10A is applied to a display such as a touch panel, it is required to have optical transparency to visible light. As a conductive material transparent to visible light, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), IGZO (Indium Gallium Zinc Oxide), etc. can be used.
 光透過性を要しない場合は、金属電極を形成してもよい。金属電極を形成する場合は、ウルツ鉱と同じ格子構造を有する六方晶系の金属材料を用いてもよい。六方晶系の金属として、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ルテニウム(Ru)、亜鉛(Zn)、イットリウム(Y)、スカンジウム(Sc)、これらの組み合わせ等を用いることができる。 A metal electrode may be formed if optical transparency is not required. When forming a metal electrode, a hexagonal metal material having the same lattice structure as wurtzite may be used. As hexagonal metals, titanium (Ti), zirconium (Zr), hafnium (Hf), ruthenium (Ru), zinc (Zn), yttrium (Y), scandium (Sc), combinations thereof, and the like can be used. can.
 圧電体層13として、ウルツ鉱型の結晶、ペロブスカイト型の結晶等を用いることができる。実施形態では、ペロブスカイト型結晶よりも結晶構造が単純なウルツ鉱型の結晶を圧電体層13の主成分として用いる。圧電体層13に、副成分として所定量の不純物元素が添加されていてもよい。 A wurtzite crystal, a perovskite crystal, or the like can be used as the piezoelectric layer 13 . In the embodiment, wurtzite crystal, which has a simpler crystal structure than perovskite crystal, is used as the main component of the piezoelectric layer 13 . A predetermined amount of impurity element may be added to the piezoelectric layer 13 as an accessory component.
 ウルツ鉱型の圧電材料として、200℃以下の低温プロセスで結晶化する材料が望ましい。一例として、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、炭化ケイ素(SiC)を用いることができる。これらの材料の2以上を組み合わせてもよい。2以上の材料を組み合わせる場合は、それぞれの化合物を積層してもよいし、複数のターゲットを用いて一つの層として成膜してもよい。 A material that crystallizes in a low-temperature process of 200°C or less is desirable as a wurtzite-type piezoelectric material. Examples include zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), aluminum nitride (AlN), gallium nitride (GaN), cadmium selenide (CdSe), telluride Cadmium (CdTe) and silicon carbide (SiC) can be used. Two or more of these materials may be combined. When combining two or more materials, each compound may be laminated, or a single layer may be formed using a plurality of targets.
 圧電材料に副成分を添加するときは、主成分に添加されたときに導電性を発現せず、かつ、圧電特性を妨げない元素を用いるのが望ましい。一例として、マグネシウム(Mg)、ケイ素(Si)、カルシウム(Ca)、バナジウム(V)、チタン(Ti)、ジルコニウム(Zr)、ストロンチウム(Sr)、リチウム(Li)、またはこれらの混合物を用いることができる。 When adding a subcomponent to the piezoelectric material, it is desirable to use an element that does not exhibit conductivity when added to the main component and does not interfere with the piezoelectric properties. As an example, using magnesium (Mg), silicon (Si), calcium (Ca), vanadium (V), titanium (Ti), zirconium (Zr), strontium (Sr), lithium (Li), or mixtures thereof can be done.
 圧電体層13の厚さは50nm以上5000nm(5μm)以下、好ましくは50nm以上3000nm(3μm)以下、より好ましくは50nm以上2000nm(2μm)以下、より好ましくは100nm以上1000nm(1μm)以下、より好ましくは150nm以上500nm以下である。圧電体層14の厚さが5000nmを超えると、クラックが発生しやすくなる。クラックは電極間のリークパスの原因にもなる。圧電体層14の厚さが50nm未満では、膜厚方向に十分な圧電特性を発揮することが困難になる。 The thickness of the piezoelectric layer 13 is 50 nm or more and 5000 nm (5 μm) or less, preferably 50 nm or more and 3000 nm (3 μm) or less, more preferably 50 nm or more and 2000 nm (2 μm) or less, more preferably 100 nm or more and 1000 nm (1 μm) or less, more preferably. is 150 nm or more and 500 nm or less. When the thickness of the piezoelectric layer 14 exceeds 5000 nm, cracks are likely to occur. Cracks also cause leakage paths between electrodes. If the thickness of the piezoelectric layer 14 is less than 50 nm, it becomes difficult to exhibit sufficient piezoelectric properties in the film thickness direction.
 ウルツ鉱型結晶の圧電体層13のc軸方向への結晶配向性が良いということは、厚さ方向への圧電特性が良いことを意味する。c軸方向の結晶配向性は、所定の結晶格子面からのX線回折のロッキングカーブ測定で得られるピークの半値全幅(Full Width at Half Maximum:FWHM)で評価され得る。圧電体層14のFMHMは5°以下であることが望ましく、センサおよびアクチュエータに適用される場合は、4°以下であることが望ましい。 Good crystal orientation in the c-axis direction of the wurtzite crystal piezoelectric layer 13 means good piezoelectric characteristics in the thickness direction. The crystal orientation in the c-axis direction can be evaluated by the full width at half maximum (FWHM) of the peak obtained by rocking curve measurement of X-ray diffraction from a predetermined crystal lattice plane. The FMHM of the piezoelectric layer 14 is desirably 5° or less, and desirably 4° or less when applied to sensors and actuators.
 リーク電流抑制層15は、無機絶縁層であり、好ましくはアモルファス無機絶縁層である。無機絶縁層として、Al、SiO、Si、ZrO、TiO、AlN、Ta5、またはこれらの2種以上の組み合わせを用いてもよい。これらの膜は、スパッタリング、化学気相成長(Chemical Vapor Deposition:CVD)法などのドライ工程や、ゾルゲル法などのウェット工程で形成され得る。 The leakage current suppression layer 15 is an inorganic insulating layer, preferably an amorphous inorganic insulating layer. Al 2 O 3 , SiO 2 , Si 3 N 4 , ZrO 2 , TiO 2 , AlN, Ta 2 O 5 or a combination of two or more thereof may be used as the inorganic insulating layer. These films can be formed by dry processes such as sputtering and chemical vapor deposition (CVD) methods, and wet processes such as sol-gel methods.
 リーク電流抑制層15において、アモルファスの無機絶縁層というときは、必ずしも無機絶縁層の全体が完全にアモルファスであることを意味しない。リーク電流抑制層15のうち、アモルファス(非晶質)成分が占める割合が、好ましくは90%以上、より好ましくは95%以上であればよい。 In the leak current suppression layer 15, the term "amorphous inorganic insulating layer" does not necessarily mean that the entire inorganic insulating layer is completely amorphous. The ratio of the amorphous component in the leakage current suppressing layer 15 is preferably 90% or more, more preferably 95% or more.
 リーク電流抑制層15の材料、及び/または膜厚は、圧電体層13の単位面積当たりの静電容量CPIEZに対するリーク電流抑制層15の単位面積当たりの静電容量CLSの比(CLS/CPIEZ)が1.20以上60.00未満となるように選択されている。後述するように、1.20≦CLS/CPIEZ<60.00の条件を満たすことで、圧電素子10Aの圧電特性が向上する。 The material and/or film thickness of the leakage current suppression layer 15 is determined by the ratio of the capacitance C LS per unit area of the leakage current suppression layer 15 to the capacitance C PIEZ per unit area of the piezoelectric layer 13 (C LS /C PIEZ ) is selected to be 1.20 or more and less than 60.00. As will be described later, by satisfying the condition of 1.20≦C LS /C PIEZ <60.00, the piezoelectric characteristics of the piezoelectric element 10A are improved.
 リーク電流抑制層15の静電容量CLSは、
   CLS=(εrLS×ε×S)/dLS   (1)
で表される。ここで、εは真空の誘電率であり、材料に依存しない定数である。Sはリーク電流抑制層15の面積、dLSはリーク電流抑制層15の膜厚である。
The capacitance CLS of the leakage current suppression layer 15 is
C LS =(εr LS ×ε 0 ×S)/d LS (1)
is represented by where ε 0 is the dielectric constant of the vacuum, a material-independent constant. S is the area of the leakage current suppression layer 15 and dLS is the film thickness of the leakage current suppression layer 15 .
 圧電体層13の静電容量CPIEZは、
   CPIEZ=(εrPIEZ×ε×S)/dPIEZ   (2)
で表される。ここで、Sは圧電体層13の面積であり、圧電素子10Aの構造からリーク電流抑制層15の面積Sと同じである。dPIEZは圧電体層13の膜厚である。
The capacitance C PIEZ of the piezoelectric layer 13 is
CPIEZ = ( εrPIEZ ×ε0×S)/ dPIEZ (2)
is represented by Here, S is the area of the piezoelectric layer 13, which is the same as the area S of the leakage current suppressing layer 15 from the structure of the piezoelectric element 10A. d PIEZ is the film thickness of the piezoelectric layer 13 .
 式(1)と式(2)から、圧電体層13の単位面積当たりの静電容量CPIEZに対するリーク電流抑制層15の単位面積当たりの静電容量CLSの比CLS/CPIEZは、
   CLS/CPIEZ=(εrLS×dPIEZ)/(εrPIEZ×dLS)   (3)
となる。式(3)に基づき、1.20≦CLS/CPIEZ<60.00を満たすように圧電体層13の材料と厚さ、及びリーク電流抑制層15の材料と厚さが設計される。これにより、微小なリーク電流が抑制され、圧電特性を改善することができる。
From equations (1) and (2), the ratio C LS /C PIEZ of the capacitance C LS per unit area of the leakage current suppression layer 15 to the capacitance C PIEZ per unit area of the piezoelectric layer 13 is
C LS /C PIEZ =(εr LS ×d PIEZ )/(εr PIEZ ×d LS ) (3)
becomes. Based on the formula (3), the material and thickness of the piezoelectric layer 13 and the material and thickness of the leakage current suppression layer 15 are designed so as to satisfy 1.20≦C LS /C PIEZ <60.00. As a result, minute leakage current is suppressed, and piezoelectric characteristics can be improved.
 図1Bは、実施形態の第2の構成例である圧電素子10Bの模式図である。圧電素子10Bは、基板11上に、電極12、圧電体層13、及び電極16がこの順で積層され、基板11と圧電体層13の間、より具体的には、電極12と圧電体層13の間に、リーク電流抑制層15が設けられている。 FIG. 1B is a schematic diagram of a piezoelectric element 10B that is a second configuration example of the embodiment. In the piezoelectric element 10B, an electrode 12, a piezoelectric layer 13, and an electrode 16 are layered in this order on a substrate 11, and between the substrate 11 and the piezoelectric layer 13, more specifically, the electrode 12 and the piezoelectric layer. A leakage current suppression layer 15 is provided between 13 .
 圧電素子10Bで、積層方向で圧電体層13の下層に位置するリーク電流抑制層15がアモルファス絶縁層として形成される場合、リーク電流抑制層15は、圧電体層13の下地配向膜として機能することもできる。電極12と圧電体層13の間にアモルファスの絶縁層を配置することで、電極12の結晶状態の影響をほとんど受けずに、圧電体層13を配向性良く成長することができる。 In the piezoelectric element 10B, when the leakage current suppression layer 15 positioned below the piezoelectric layer 13 in the stacking direction is formed as an amorphous insulating layer, the leakage current suppression layer 15 functions as an underlying alignment film for the piezoelectric layer 13. can also By disposing an amorphous insulating layer between the electrode 12 and the piezoelectric layer 13 , the piezoelectric layer 13 can be grown with good orientation without being affected by the crystalline state of the electrode 12 .
 図1Bの配置構成で、リーク電流抑制層15と圧電体層13の静電容量関係は、圧電体層13の単位面積当たりの静電容量CPIEZに対するリーク電流抑制層15の単位面積当たりの静電容量CLSの比CLS/CPIEZが1.20以上60.00未満となるように設計されている。これにより、圧電素子10Bで微小なリーク電流が抑制され、圧電特性が向上する。 In the arrangement configuration of FIG. 1B , the capacitance relationship between the leakage current suppression layer 15 and the piezoelectric layer 13 is: It is designed so that the ratio C LS /C PIEZ of the capacitance C LS is 1.20 or more and less than 60.00. As a result, minute leakage current is suppressed in the piezoelectric element 10B, and the piezoelectric characteristics are improved.
 図1Cは、実施形態の第3の構成例である圧電素子10Cの模式図である。圧電素子10Cは、基板11上に、電極12、圧電体層13、及び電極16がこの順で積層され、電極12と圧電体層13の間にリーク電流抑制層15-1が設けられ、電極16と圧電体層13の間にリーク電流抑制層15-2が設けられている。 FIG. 1C is a schematic diagram of a piezoelectric element 10C that is a third configuration example of the embodiment. In the piezoelectric element 10C, an electrode 12, a piezoelectric layer 13, and an electrode 16 are laminated in this order on a substrate 11, and a leakage current suppressing layer 15-1 is provided between the electrode 12 and the piezoelectric layer 13. A leakage current suppressing layer 15-2 is provided between 16 and the piezoelectric layer 13. FIG.
 図1Cの配置構成でも、リーク電流抑制層15-1及び15-2と、圧電体層13の静電容量の関係は1.20≦CLS/CPIEZ<60.00を満たすように設計されている。リーク電流抑制層15-1と15-2を設ける場合、2層のリーク電流抑制層の単位面積当たりの静電容量CLSは、
   CLS=CLS1×CLS2/(CLS1+CLS2
となる。ここで、CLS1は一方のリーク電流抑制層15-1の単位面積当たりの静電容量、CLS2は他方のリーク電流抑制層15-2の単位面積当たりの静電容量である。
In the arrangement configuration of FIG. 1C as well, the relationship between the leakage current suppression layers 15-1 and 15-2 and the capacitance of the piezoelectric layer 13 is designed to satisfy 1.20≦C LS /C PIEZ <60.00. ing. When the leakage current suppression layers 15-1 and 15-2 are provided, the capacitance C LS per unit area of the two leakage current suppression layers is
C LS =C LS1 ×C LS2 /(C LS1 +C LS2 )
becomes. Here, CLS1 is the capacitance per unit area of the leakage current suppression layer 15-1, and CLS2 is the capacitance per unit area of the other leakage current suppression layer 15-2.
 リーク電流抑制層15-1がアモルファス絶縁層として形成される場合、圧電体層13の下地配向膜として機能することもできる。リーク電流抑制層15-2がアモルファス絶縁層として形成される場合、電極16の下地配向膜として機能することもできる。電極12と圧電体層13の間にリーク電流抑制層15-1を設け、電極16と圧電体層13の間にリーク電流抑制層15-2を設けることで、積層方向で圧電体層13の下層の電極12側と、上層の電極16側の両方で、リークパスの発生が抑制される。また圧電体層13と電極16の結晶性が良くなり、圧電特性がさらに向上する。 When the leakage current suppressing layer 15-1 is formed as an amorphous insulating layer, it can also function as an underlying alignment film for the piezoelectric layer 13. When the leakage current suppressing layer 15-2 is formed as an amorphous insulating layer, it can also function as an underlying alignment film for the electrode 16. FIG. By providing the leakage current suppression layer 15-1 between the electrode 12 and the piezoelectric layer 13 and providing the leakage current suppression layer 15-2 between the electrode 16 and the piezoelectric layer 13, the piezoelectric layer 13 is suppressed in the stacking direction. The occurrence of leak paths is suppressed on both the lower electrode 12 side and the upper electrode 16 side. In addition, the crystallinity of the piezoelectric layer 13 and the electrodes 16 is improved, further improving the piezoelectric characteristics.
 図1Dは、実施形態の第4の構成例である圧電素子10Dの模式図である。圧電素子10Dでは、導電性の基板21を用いる。基板21の上に、圧電体層13と電極16がこの順で積層され、電極16と圧電体層13の間にリーク電流抑制層15が設けられている。この構成では、基板21は下部電極として機能し得る。基板21は、金属の基板であってもよいし、ITO、IZO、IZTO、IGZOなどの導電性透明基板であってもよい。金属の基板21を用いる場合、Al箔、Cu箔、Al-Ti合金箔、Cu-Ti合金箔、ステンレス箔などの金属膜を用いてもよい。金属膜の厚さが薄い場合、基板21は可撓性の基板となる。基板21と圧電体層13の間にTi、Niなどの金属密着膜を挿入してもよい。 FIG. 1D is a schematic diagram of a piezoelectric element 10D that is a fourth configuration example of the embodiment. A conductive substrate 21 is used in the piezoelectric element 10D. A piezoelectric layer 13 and an electrode 16 are laminated in this order on a substrate 21 , and a leakage current suppressing layer 15 is provided between the electrode 16 and the piezoelectric layer 13 . In this configuration, substrate 21 can function as the bottom electrode. The substrate 21 may be a metal substrate or a conductive transparent substrate such as ITO, IZO, IZTO, IGZO. When a metal substrate 21 is used, a metal film such as Al foil, Cu foil, Al--Ti alloy foil, Cu--Ti alloy foil, and stainless steel foil may be used. When the thickness of the metal film is thin, the substrate 21 becomes a flexible substrate. A metal adhesion film such as Ti or Ni may be inserted between the substrate 21 and the piezoelectric layer 13 .
 図1Aと同様に、リーク電流抑制層15の単位面積当たりの静電容量CLSの比CLS/CPIEZが1.20以上60.00未満となるように、圧電体層13の材料と厚さ、及びリーク電流抑制層15の材料と厚さが設計されている。これにより、微小なリーク電流が抑制され圧電特性が向上する。 As in FIG. 1A, the material and thickness of the piezoelectric layer 13 are such that the ratio C LS /C PIEZ of the capacitance C LS per unit area of the leakage current suppression layer 15 is 1.20 or more and less than 60.00. thickness, and the material and thickness of the leakage current suppression layer 15 are designed. As a result, minute leakage current is suppressed and the piezoelectric characteristics are improved.
 図1Eは、実施形態の第5の構成例である圧電素子10Eの模式図である。圧電素子10Eでも、導電性の基板21を用いる。基板21の上に、圧電体層13と電極16がこの順で積層されている。基板21と圧電体層13の間にリーク電流抑制層15が設けられている。 FIG. 1E is a schematic diagram of a piezoelectric element 10E that is a fifth configuration example of the embodiment. The conductive substrate 21 is also used in the piezoelectric element 10E. A piezoelectric layer 13 and an electrode 16 are laminated in this order on a substrate 21 . A leakage current suppressing layer 15 is provided between the substrate 21 and the piezoelectric layer 13 .
 図1Dと同様に、基板21は金属の基板であってもよいし、ITO、IZO、IZTO、IGZOなどの導電性透明基板であってもよい。金属の基板21を用いる場合、Al箔、Cu箔、Al-Ti合金箔、Cu-Ti合金箔、ステンレス箔などの金属膜を用いてもよい。金属膜の厚さが薄い場合、基板21は可撓性の基板となる。基板21とリーク電流抑制層15の間にTi、Niなどの金属密着膜を挿入してもよい。 As in FIG. 1D, the substrate 21 may be a metal substrate or a conductive transparent substrate such as ITO, IZO, IZTO, IGZO. When a metal substrate 21 is used, a metal film such as Al foil, Cu foil, Al--Ti alloy foil, Cu--Ti alloy foil, and stainless steel foil may be used. When the thickness of the metal film is thin, the substrate 21 becomes a flexible substrate. A metal adhesion film such as Ti or Ni may be inserted between the substrate 21 and the leakage current suppressing layer 15 .
 リーク電流抑制層15がアモルファス絶縁層として形成される場合、リーク電流抑制層5は、圧電体層13の下地配向膜として機能することができる。基板21と圧電体層13の間にアモルファスの絶縁層を配置することで、基板21の結晶状態の影響をほとんど受けずに、圧電体層13を配向性良く成長することができる。 When the leakage current suppression layer 15 is formed as an amorphous insulating layer, the leakage current suppression layer 5 can function as an underlying alignment film for the piezoelectric layer 13 . By arranging an amorphous insulating layer between the substrate 21 and the piezoelectric layer 13, the piezoelectric layer 13 can be grown with good orientation without being affected by the crystalline state of the substrate 21. FIG.
 圧電体層13の単位面積当たりの静電容量CPIEZに対するリーク電流抑制層15の単位面積当たりの静電容量CLSの比CLS/CPIEZは、1.20以上60.00未満となるように、圧電体層13の材料と厚さ、及びリーク電流抑制層15の材料と厚さが設計されている。これにより、微小なリーク電流が抑制され圧電特性が向上する。 The ratio C LS /C PIEZ of the capacitance C LS per unit area of the leakage current suppression layer 15 to the capacitance C PIEZ per unit area of the piezoelectric layer 13 is set to 1.20 or more and less than 60.00. 2, the material and thickness of the piezoelectric layer 13 and the material and thickness of the leakage current suppression layer 15 are designed. As a result, minute leakage current is suppressed and the piezoelectric characteristics are improved.
 図1Eの構成で、基板21と電極16の間でリークパスの発生が抑制され、微小なリーク電流が抑制される。また圧電体層13の結晶性が良くなり圧電特性がさらに向上する。 With the configuration of FIG. 1E, the occurrence of a leak path between the substrate 21 and the electrode 16 is suppressed, and a minute leak current is suppressed. In addition, the crystallinity of the piezoelectric layer 13 is improved, and the piezoelectric characteristics are further improved.
 図1Fは、実施形態の第6の構成例である圧電素子10Fの模式図である。圧電素子10Fでも、導電性の基板21を用いる。基板21の上に、圧電体層13と電極16がこの順で積層されている。基板21と圧電体層13の間にリーク電流抑制層15-1が設けられ、圧電体層13と電極16の間にリーク電流抑制層15-2が設けられている。 FIG. 1F is a schematic diagram of a piezoelectric element 10F that is a sixth configuration example of the embodiment. The conductive substrate 21 is also used in the piezoelectric element 10F. A piezoelectric layer 13 and an electrode 16 are laminated in this order on a substrate 21 . A leakage current suppression layer 15-1 is provided between the substrate 21 and the piezoelectric layer 13, and a leakage current suppression layer 15-2 is provided between the piezoelectric layer 13 and the electrode 16. FIG.
 図1Dと同様に、基板21は金属の基板であってもよいし、ITO、IZO、IZTO、IGZOなどの導電性透明基板であってもよい。金属の基板21を用いる場合、Al箔、Cu箔、Al-Ti合金箔、Cu-Ti合金箔、ステンレス箔などの金属膜を用いてもよい。金属膜の厚さが薄い場合、基板21は可撓性の基板となる。基板21とリーク電流抑制層15の間にTi、Niなどの金属密着膜を挿入してもよい。 As in FIG. 1D, the substrate 21 may be a metal substrate or a conductive transparent substrate such as ITO, IZO, IZTO, IGZO. When a metal substrate 21 is used, a metal film such as Al foil, Cu foil, Al--Ti alloy foil, Cu--Ti alloy foil, and stainless steel foil may be used. When the thickness of the metal film is thin, the substrate 21 becomes a flexible substrate. A metal adhesion film such as Ti or Ni may be inserted between the substrate 21 and the leakage current suppressing layer 15 .
 リーク電流抑制層15-1がアモルファス絶縁層として形成される場合、リーク電流抑制層15-1は、圧電体層13の下地配向膜として機能することができる。基板21と圧電体層13の間にアモルファスの絶縁層を配置することで、基板21の結晶状態の影響をほとんど受けずに、圧電体層13を配向性良く成長することができる。リーク電流抑制層15-2がアモルファス絶縁層として形成される場合、電極16の下地配向膜として機能することもできる。 When the leakage current suppression layer 15-1 is formed as an amorphous insulating layer, the leakage current suppression layer 15-1 can function as an underlying alignment film for the piezoelectric layer 13. By arranging an amorphous insulating layer between the substrate 21 and the piezoelectric layer 13, the piezoelectric layer 13 can be grown with good orientation without being affected by the crystalline state of the substrate 21. FIG. When the leakage current suppressing layer 15-2 is formed as an amorphous insulating layer, it can also function as an underlying alignment film for the electrode 16. FIG.
 図1Fの構成におけるリーク電流抑制層15-1及び5-12の2層の単位面積当たりの静電容量CLSは、図1Cを参照して説明したとおりであり、CLS/CPIEZが1.20以上60.00未満となるように設計されている。基板21と圧電体層13の間にリーク電流抑制層15-1を設け、圧電体層13と電極16の間にリーク電流抑制層15-2を設けることで圧電体層13の基板21側と電極16側の両方で、リークパスの発生が抑制される。また、圧電体層13と電極16の結晶性が良くなり、圧電特性がさらに向上する。 The capacitance C LS per unit area of the two leakage current suppression layers 15-1 and 5-12 in the configuration of FIG. 1F is as described with reference to FIG. 1C, and C LS /C PIEZ is 1. .20 or more and less than 60.00. By providing a leakage current suppression layer 15-1 between the substrate 21 and the piezoelectric layer 13 and providing a leakage current suppression layer 15-2 between the piezoelectric layer 13 and the electrode 16, the piezoelectric layer 13 is separated from the substrate 21 side. The occurrence of leak paths is suppressed on both sides of the electrode 16 . In addition, the crystallinity of the piezoelectric layer 13 and the electrodes 16 is improved, further improving the piezoelectric characteristics.
 <特性評価>
 上述のように、実施形態の圧電素子10は、リーク電流抑制層15と圧電体層13の静電容量関係が所定の関係を満たすように設計されている。以下で、実際に作製した複数のサンプルで測定・評価した結果から導かれる、上記の静電容量簡易系の根拠を説明する。
<Characteristic evaluation>
As described above, the piezoelectric element 10 of the embodiment is designed so that the capacitance relationship between the leakage current suppression layer 15 and the piezoelectric layer 13 satisfies a predetermined relationship. In the following, the grounds for the above simple capacitance system derived from the results of measurement and evaluation of a plurality of actually manufactured samples will be described.
 図2は、実施例のサンプルと比較例のサンプルの緒元を示す。比較例1を除いて、すべてのサンプルにリーク電流抑制層が形成されている。サンプル構成は、図1Aの構成を採用し、比較例1を除いて、電極16(第1の電極)と圧電体層13の間にリーク電流抑制層15が設けられる。後述するように、リーク電流抑制層15のない比較例1の圧電特性を基準として各サンプルの特性を評価する。すべてのサンプルに共通する固定条件は、以下のとおりである。 Fig. 2 shows the specifications of the sample of the example and the sample of the comparative example. Except for Comparative Example 1, all the samples had a leakage current suppression layer. 1A, except for Comparative Example 1, a leakage current suppressing layer 15 is provided between the electrode 16 (first electrode) and the piezoelectric layer 13. In FIG. As will be described later, the characteristics of each sample are evaluated based on the piezoelectric characteristics of Comparative Example 1 without the leakage current suppression layer 15 . Fixing conditions common to all samples are as follows.
 基板11として、厚さ50μmのPETフィルムを用いる。PETフィルム上に、第2の電極12として、バッチスパッタ装置を用いて、厚さ100nmのIZO膜を形成する。成膜電力はDC400W、成膜圧力は0.4Pa、アルゴン(Ar)ガスと1%の酸素(O)の混合ガス雰囲気で成膜する。 A PET film having a thickness of 50 μm is used as the substrate 11 . An IZO film with a thickness of 100 nm is formed on the PET film as the second electrode 12 using a batch sputtering apparatus. The film formation power is DC 400 W, the film formation pressure is 0.4 Pa, and the film is formed in a mixed gas atmosphere of argon (Ar) gas and 1% oxygen (O 2 ).
 第2の電極12の上に、同じ成膜装置で圧電体層13をMgZnOで形成する。成膜電力はRF500W、成膜圧力は0.2Pa、Arガスと13%のOの混合ガス雰囲気で成膜する。圧電体層13中のMgの組成は12wt.%である。この圧電体層13の比誘電率εrPIEZは9、MgZnO(002)面でX線回折ロッキングカーブ法により得られたFWHMは、4.6°である。ここまでが、すべてのサンプルに共通する条件である。 A piezoelectric layer 13 of MgZnO is formed on the second electrode 12 using the same film forming apparatus. The film formation power is RF 500 W, the film formation pressure is 0.2 Pa, and the film is formed in a mixed gas atmosphere of Ar gas and 13% O 2 . The composition of Mg in the piezoelectric layer 13 is 12 wt.%. The piezoelectric layer 13 has a dielectric constant εr PIEZ of 9 and a FWHM of 4.6° obtained by the X-ray diffraction rocking curve method on the MgZnO (002) plane. These are the conditions common to all samples.
 次に、リーク電流抑制層15の有無、種類、膜厚、及び圧電体層13の厚さを変えて、複数のサンプルを作製し、圧電体層13の単位面積当たりの静電容量に対するリーク電流抑制層15の単位面積当たりの静電容量の比CLS/CPIEZを計算する。また、圧電特性として、各サンプルの圧電定数d33[pC/N]を測定する。d33は、分極方向への伸縮モードを表わす値であり、分極方向に印加する単位圧力あたりの分極電荷量で表される。実施形態の構成では、膜厚方向、すなわちc軸方向の伸縮モードを表す。 Next, a plurality of samples were prepared by changing the presence/absence, type, and thickness of the leakage current suppressing layer 15 and the thickness of the piezoelectric layer 13, and the leakage current with respect to the capacitance per unit area of the piezoelectric layer 13 was measured. The ratio C LS /C PIEZ of the capacitance per unit area of the suppression layer 15 is calculated. Also, as a piezoelectric characteristic, the piezoelectric constant d33 [pC/N] of each sample is measured. d33 is a value representing the expansion/contraction mode in the polarization direction, and is represented by the amount of polarization charge per unit pressure applied in the polarization direction. In the configuration of the embodiment, the expansion/contraction mode in the film thickness direction, that is, in the c-axis direction is represented.
 圧電定数d33は、以下の手順で評価する。ステージ上に第2の電極12を下側にしてサンプルを載せ、サンプルの上面から圧子で所定の圧力を印加し、c軸(膜厚)方向の分極により生じる電荷を測定する。印加荷重5Nから6Nに変化させたときの発生電荷量を荷重差である1Nで割った値をd33値とする。 The piezoelectric constant d33 is evaluated by the following procedure. A sample is placed on the stage with the second electrode 12 facing downward, a predetermined pressure is applied from the upper surface of the sample with an indenter, and the charge generated by polarization in the c-axis (film thickness) direction is measured. The d33 value is obtained by dividing the amount of charge generated when the applied load is changed from 5N to 6N by the load difference of 1N.
 実施例1~4、6、9、10で、リーク電流抑制層15としてAlを形成する。Al膜はバッチスパッタ装置を用い、電力RF300W、圧力0.3Paの条件で、Arガスと11.5%のOとの混合ガス雰囲気で成膜する。Alの比誘電率は9である。まず、リーク電流抑制層15としてAl膜を設けた実施例1~4、6、9、10について説明する。 In Examples 1 to 4, 6, 9, and 10, Al 2 O 3 is formed as the leakage current suppressing layer 15 . The Al 2 O 3 film is formed in a mixed gas atmosphere of Ar gas and 11.5% O 2 under the conditions of power RF of 300 W and pressure of 0.3 Pa using a batch sputtering apparatus. Al 2 O 3 has a dielectric constant of 9. First, Examples 1 to 4, 6, 9, and 10 in which an Al 2 O 3 film is provided as the leakage current suppressing layer 15 will be described.
 実施例1の圧電体層13の厚さは200nm、リーク電流抑制層15の膜厚は25nmである。このサンプルの圧電定数d33は19.8pC/N、静電容量の比CLS/CPIEZは8.000である。 The thickness of the piezoelectric layer 13 of Example 1 is 200 nm, and the thickness of the leakage current suppression layer 15 is 25 nm. The piezoelectric constant d33 of this sample is 19.8 pC/N, and the capacitance ratio C LS /C PIEZ is 8.000.
 実施例2の圧電体層13の厚さは200nm、リーク電流抑制層15の膜厚は50nmである。このサンプルの圧電定数d33は14.7pC/N、静電容量の比CLS/CPIEZは4.000である。 In Example 2, the thickness of the piezoelectric layer 13 is 200 nm, and the thickness of the leakage current suppression layer 15 is 50 nm. The piezoelectric constant d33 of this sample is 14.7 pC/N, and the capacitance ratio C LS /C PIEZ is 4.000.
 実施例3の圧電体層13の厚さは200nm、リーク電流抑制層15の膜厚は75nmである。このサンプルの圧電定数d33は13.4pC/N、静電容量の比CLS/CPIEZは2.667である。 The thickness of the piezoelectric layer 13 of Example 3 is 200 nm, and the thickness of the leakage current suppression layer 15 is 75 nm. The piezoelectric constant d33 of this sample is 13.4 pC/N, and the capacitance ratio C LS /C PIEZ is 2.667.
 実施例4の圧電体層13の厚さは200nm、リーク電流抑制層15の膜厚は125nmである。このサンプルの圧電定数d33は12.1pC/N、静電容量の比CLS/CPIEZは1.600である。実施例1~4までで、圧電体層13の厚さに対するリーク電流抑制層15の膜厚の比率は静電容量比CLS/CPIEZに反映されており、膜厚比が小さい場合に静電容量比と圧電定数d33が大きくなる傾向がある。 The thickness of the piezoelectric layer 13 of Example 4 is 200 nm, and the thickness of the leakage current suppression layer 15 is 125 nm. The piezoelectric constant d33 of this sample is 12.1 pC/N, and the capacitance ratio C LS /C PIEZ is 1.600. In Examples 1 to 4, the ratio of the thickness of the leakage current suppressing layer 15 to the thickness of the piezoelectric layer 13 is reflected in the capacitance ratio C LS /C PIEZ . There is a tendency for the capacitance ratio and the piezoelectric constant d33 to increase.
 実施例6の圧電体層13の厚さを500nm、リーク電流抑制層15の膜厚は100nmである。このサンプルの圧電定数d33は15.1pC/N、静電容量の比CLS/CPIEZは5.000である。 The thickness of the piezoelectric layer 13 of Example 6 is 500 nm, and the thickness of the leakage current suppression layer 15 is 100 nm. The piezoelectric constant d33 of this sample is 15.1 pC/N, and the capacitance ratio C LS /C PIEZ is 5.000.
 実施例9の圧電体層13の厚さは300nm、リーク電流抑制層15の膜厚は10nmである。このサンプルの圧電定数d33は20.9pC/N、静電容量の比CLS/CPIEZは30.000である。 The thickness of the piezoelectric layer 13 of Example 9 is 300 nm, and the thickness of the leakage current suppression layer 15 is 10 nm. The piezoelectric constant d33 of this sample is 20.9 pC/N, and the capacitance ratio C LS /C PIEZ is 30.000.
 実施例10の圧電体層13の厚さは500nm、リーク電流抑制層15の膜厚は10nmである。このサンプルの圧電定数d33は25.0pC/N、静電容量の比CLS/CPIEZは50.000である。 The thickness of the piezoelectric layer 13 in Example 10 is 500 nm, and the thickness of the leakage current suppression layer 15 is 10 nm. The piezoelectric constant d33 of this sample is 25.0 pC/N, and the capacitance ratio C LS /C PIEZ is 50.000.
 実施例9と10は、実施例1~4と比較して圧電体層13の厚さを増やしたことで圧電定数d33が向上している。一方、実施例6では、圧電体層13の厚さは実施例10と同じであるが、リーク電流抑制層15の膜厚が実施例10の10倍と厚い。圧電体層13に対するリーク電流抑制層15の膜厚比の違いにより圧電特性に差がでているが、実施例6、9、10ともに、良好な圧電定数d33の値を示す。 In Examples 9 and 10, the piezoelectric constant d33 is improved by increasing the thickness of the piezoelectric layer 13 compared to Examples 1-4. On the other hand, in Example 6, the thickness of the piezoelectric layer 13 is the same as that of the tenth example, but the thickness of the leakage current suppressing layer 15 is ten times as thick as that of the tenth example. Although the piezoelectric characteristics differ due to the difference in the film thickness ratio of the leak current suppressing layer 15 to the piezoelectric layer 13, all of Examples 6, 9, and 10 show good values of the piezoelectric constant d33.
 次に、リーク電流抑制層15として、SiO膜を用いたときの特性を説明する。SiO2膜は、実施例5と実施例8で用いられている。実施例5では、厚さ200nmの圧電体層13を形成し、リーク電流抑制層15として、膜厚15nmのSiOを形成する。SiO膜は、Alを成膜したのと同じバッチスパッタ装置を用い、電力RF300W、圧力0.3Paの条件で、Arガスと5.4%のOの混合ガス雰囲気で成膜する。SiOの比誘電率は4である。実施例5のサンプルの圧電定数d33は15.3pC/N、静電容量の比CLS/CPIEZは5.926である。 Next, characteristics when a SiO 2 film is used as the leakage current suppressing layer 15 will be described. The SiO2 film is used in Examples 5 and 8. FIG. In Example 5, the piezoelectric layer 13 is formed with a thickness of 200 nm, and the leakage current suppression layer 15 is formed of SiO 2 with a thickness of 15 nm. The SiO 2 film was formed in a mixed gas atmosphere of Ar gas and 5.4% O 2 under the conditions of power RF of 300 W and pressure of 0.3 Pa using the same batch sputtering apparatus that was used to form the Al 2 O 3 film. do. The dielectric constant of SiO2 is 4. The piezoelectric constant d33 of the sample of Example 5 is 15.3 pC/N, and the capacitance ratio C LS /C PIEZ is 5.926.
 実施例8では、厚さ500nmの圧電体層13を形成し、リーク電流抑制層15として、膜厚50nmのSiOを形成する。SiO膜は、Alを成膜したのと同じバッチスパッタ装置を用い、電力RF300W、圧力0.3Paの条件で、Arガスと5.4%のOの混合ガス雰囲気で成膜する。SiOの比誘電率は4である。実施例8のサンプルの圧電定数d33は14.8pC/N、静電容量の比CLS/CPIEZは4.444である。実施例5と実施例8で測定結果がわずかに異なるのは、圧電体層13とリーク電流抑制層15の膜厚比が多少異なるためと考えられる。しかし、実施例5、8ともに、良好な圧電定数d33の値が得られ、SiO膜がリーク電流抑制層として有効に機能していることがわかる。 In Example 8, the piezoelectric layer 13 is formed with a thickness of 500 nm, and the leakage current suppression layer 15 is formed of SiO 2 with a thickness of 50 nm. The SiO 2 film was formed in a mixed gas atmosphere of Ar gas and 5.4% O 2 under the conditions of power RF of 300 W and pressure of 0.3 Pa using the same batch sputtering apparatus that was used to form the Al 2 O 3 film. do. The dielectric constant of SiO2 is 4. The piezoelectric constant d33 of the sample of Example 8 is 14.8 pC/N, and the capacitance ratio C LS /C PIEZ is 4.444. The reason why the measurement results are slightly different between Example 5 and Example 8 is considered to be that the film thickness ratio between the piezoelectric layer 13 and the leakage current suppressing layer 15 is slightly different. However, in both Examples 5 and 8, good values of the piezoelectric constant d33 were obtained, and it can be seen that the SiO 2 film functions effectively as a leakage current suppressing layer.
 次に、リーク電流抑制層15として、Si膜を用いたときの特性を説明する。Si膜は、実施例7で用いられている。実施例7では、厚さ500nmの圧電体層13を形成し、リーク電流抑制層15として、膜厚50nmのSi膜を形成する。Si膜は、Alを成膜したのと同じバッチスパッタ装置を用い、電力RF300W、圧力0.3Paの条件で、Arガスと、20%のNガスの混合ガス雰囲気で成膜する。Siの比誘電率は8である。実施例7のサンプルの圧電定数d33は18.5pC/N、静電容量の比CLS/CPIEZは8.889である。実施形態7でも良好な圧電定数d33の値が得られ、Si膜がリーク電流抑制層として有効に機能していることがわかる。 Next, characteristics when a Si 3 N 4 film is used as the leakage current suppressing layer 15 will be described. A Si 3 N 4 film is used in Example 7. In Example 7, the piezoelectric layer 13 is formed with a thickness of 500 nm, and a Si 3 N 4 film with a thickness of 50 nm is formed as the leakage current suppression layer 15 . The Si 3 N 4 film was formed in a mixed gas atmosphere of Ar gas and 20% N 2 gas using the same batch sputtering apparatus as used for forming the Al 2 O 3 film under the conditions of power RF 300 W and pressure 0.3 Pa. form a film. Si 3 N 4 has a dielectric constant of 8. The piezoelectric constant d33 of the sample of Example 7 is 18.5 pC/N, and the capacitance ratio C LS /C PIEZ is 8.889. A good value of the piezoelectric constant d33 is obtained in the seventh embodiment as well, and it can be seen that the Si 3 N 4 film functions effectively as a leakage current suppressing layer.
 次に、比較例について説明する。比較例1では、厚さ200nmの圧電体層13を設けるが、リーク電流抑制層15を用いない。このサンプルの圧電定数d33は、10.2pC/Nである。比較例1の圧電特性を評価の基準とする。 Next, a comparative example will be explained. In Comparative Example 1, the piezoelectric layer 13 having a thickness of 200 nm is provided, but the leak current suppressing layer 15 is not used. The piezoelectric constant d33 of this sample is 10.2 pC/N. The piezoelectric properties of Comparative Example 1 are used as evaluation criteria.
 比較例2では、厚さ200nmの圧電体層13を設け、リーク電流抑制層15として、膜厚225nmのAl膜を形成する。このサンプルの圧電定数d33は8.3pC/N、静電容量の比CLS/CPIEZは0.889である。実施例1~4と比較してリーク電流抑制層15の厚さが増大した、分静電容量比が小さくなって、圧電特性が低下している。 In Comparative Example 2, a piezoelectric layer 13 with a thickness of 200 nm is provided, and an Al 2 O 3 film with a thickness of 225 nm is formed as the leakage current suppression layer 15 . The piezoelectric constant d33 of this sample is 8.3 pC/N, and the capacitance ratio C LS /C PIEZ is 0.889. As compared with Examples 1 to 4, the thickness of the leakage current suppressing layer 15 is increased, and the capacitance ratio is decreased, resulting in deterioration of the piezoelectric characteristics.
 比較例3では、厚さ200nmの圧電体層13を設け、リーク電流抑制層15として、膜厚300nmのAl膜を形成する。このサンプルの圧電定数d33は7.5pC/N、静電容量の比CLS/CPIEZは、0.667である。リーク電流抑制層15の厚さが比較例2よりもさらに増大し、静電容量比が小さくなり、圧電特性が低下している。 In Comparative Example 3, a piezoelectric layer 13 with a thickness of 200 nm is provided, and an Al 2 O 3 film with a thickness of 300 nm is formed as the leakage current suppression layer 15 . The piezoelectric constant d33 of this sample is 7.5 pC/N, and the capacitance ratio C LS /C PIEZ is 0.667. The thickness of the leakage current suppression layer 15 is further increased than in Comparative Example 2, the capacitance ratio is decreased, and the piezoelectric characteristics are degraded.
 比較例4では、厚さ200nmの圧電体層13を設け、リーク電流抑制層15として、膜厚80nmのSiO膜を形成する。このサンプルの圧電定数d33は9.0pC/N、静電容量の比CLS/CPIEZは、1.111である。実施例5と同じSiO膜をリーク電流抑制層15として用いているが、リーク電流抑制層15の厚さが実施例5よりも増大した分、静電容量比が小さくなり、圧電特性が低下している。 In Comparative Example 4, a piezoelectric layer 13 with a thickness of 200 nm is provided, and a SiO 2 film with a thickness of 80 nm is formed as the leakage current suppression layer 15 . The piezoelectric constant d33 of this sample is 9.0 pC/N, and the capacitance ratio C LS /C PIEZ is 1.111. Although the same SiO 2 film as in Example 5 is used as the leakage current suppression layer 15, the thickness of the leakage current suppression layer 15 is increased compared to Example 5, so the capacitance ratio is reduced and the piezoelectric characteristics are lowered. is doing.
 比較例5では、厚さ300nmの圧電体層13を設け、リーク電流抑制層15として、膜厚5nmのAl膜を形成する。このサンプルの圧電定数d33は9.5pC/N、静電容量の比CLS/CPIEZは、60.000である。実施例1~4、6、9,10と同じAl膜をリーク電流抑制層15として用いているが、リーク電流抑制層15の厚さが5nmと薄く、静電容量比は増大しているが、基準となる比較例1よりも圧電特性が低下している。リーク電流抑制層15の厚さが薄すぎると、リーク電流抑制効果が得られないことがわかる。 In Comparative Example 5, a piezoelectric layer 13 with a thickness of 300 nm is provided, and an Al 2 O 3 film with a thickness of 5 nm is formed as the leakage current suppression layer 15 . The piezoelectric constant d33 of this sample is 9.5 pC/N, and the capacitance ratio C LS /C PIEZ is 60.000. Although the same Al 2 O 3 film as in Examples 1 to 4, 6, 9, and 10 is used as the leakage current suppression layer 15, the thickness of the leakage current suppression layer 15 is as thin as 5 nm, and the capacitance ratio does not increase. However, the piezoelectric characteristics are lower than those of Comparative Example 1, which serves as a reference. It can be seen that if the thickness of the leakage current suppression layer 15 is too thin, the leakage current suppression effect cannot be obtained.
 図3は、図2の評価結果に基づいてリーク電流抑制層15の膜厚と圧電定数d33の関係をプロットした図である。リーク電流抑制層15を設けない比較例1を基準(初期特性)とし、初期よりも圧電特性が向上した実施例1~10のサンプルを、有効なサンプルとする。図3で比較例1の圧電特性は、縦軸上に白の△で示されている。横軸と水平な点線が基準線である。比較例2~5の圧電特性は基準よりも低い。このうち、比較例2、3、4は、圧電体層13に対するリーク電流抑制層15の膜厚比が大きすぎるために静電容量比が低下して十分な圧電特性が得られていない。これに対して、比較例5では、圧電体層13に対するリーク電流抑制層15の膜厚比が小さすぎるために、静電容量比は増大するが、リーク電流抑制層15でリーク電流抑制効果が発揮できずに、圧電特性が低下している。 FIG. 3 is a diagram plotting the relationship between the film thickness of the leak current suppression layer 15 and the piezoelectric constant d33 based on the evaluation results of FIG. Comparative Example 1 in which the leakage current suppressing layer 15 is not provided is used as a reference (initial characteristics), and the samples of Examples 1 to 10, in which the piezoelectric characteristics are improved from the initial characteristics, are regarded as effective samples. In FIG. 3, the piezoelectric properties of Comparative Example 1 are indicated by white triangles on the vertical axis. A dotted line parallel to the horizontal axis is the reference line. The piezoelectric properties of Comparative Examples 2-5 are lower than the reference. Of these, in Comparative Examples 2, 3, and 4, the film thickness ratio of the leak current suppressing layer 15 to the piezoelectric layer 13 is too large, so the capacitance ratio is lowered and sufficient piezoelectric characteristics are not obtained. On the other hand, in Comparative Example 5, since the film thickness ratio of the leakage current suppression layer 15 to the piezoelectric layer 13 is too small, the electrostatic capacitance ratio increases, but the leakage current suppression effect of the leakage current suppression layer 15 is increased. Piezoelectric characteristics are degraded because they cannot be exhibited.
 図4Aと図4Bは、静電容量の比CLS/CPIEZの関数として圧電定数d33をプロットした図である。図5は、図4Aと図4Bの閾値近傍の拡大図である。図4Aでは、静電容量の比CLS/CPIEZが0以上10以下の範囲で圧電定数d33の分布を示し、図4Bでは、静電容量の比CLS/CPIEZが0以上70以下の範囲で圧電定数d33の分布を示す。図4Aだけを見ると、静電容量比を大きくすることで圧電特性が向上するように見える。図4Bを参照することで、静電容量比が大きくなりすぎても、すなわち、リーク電流抑制層15が薄すぎても、十分な圧電統制が得られないことがわかる。図4Bから、静電容量比は、60.00未満であることが望ましい。 4A and 4B are plots of the piezoelectric constant d33 as a function of the capacitance ratio C LS /C PIEZ . FIG. 5 is an enlarged view near the threshold in FIGS. 4A and 4B. FIG. 4A shows the distribution of the piezoelectric constant d33 when the capacitance ratio C LS /C PIEZ is in the range of 0 to 10, and FIG . The distribution of the piezoelectric constant d33 is shown in the range. Looking only at FIG. 4A, it appears that increasing the capacitance ratio improves the piezoelectric properties. By referring to FIG. 4B, it can be seen that sufficient piezoelectric control cannot be obtained even if the capacitance ratio is too large, that is, if the leakage current suppression layer 15 is too thin. From FIG. 4B, it is desirable that the capacitance ratio be less than 60.00.
 図5では、静電容量の比CLS/CPIEZの下限の閾値を求めるために、横軸と水平な基準線(点線)の近傍のデータ点を用いてフィッティングする。基準線近傍のデータ点から得られるフィッティングカーブは、y=4.4272In(x)+9.0353で表される。このフィッティングカーブの決定係数Rは0.9479であり、極めて強い相関が認められる。 In FIG. 5, in order to obtain the lower threshold of the capacitance ratio C LS /C PIEZ , fitting is performed using data points near the reference line (dotted line) horizontal to the horizontal axis. A fitting curve obtained from data points near the baseline is given by y=4.4272In(x)+9.0353. The coefficient of determination R2 of this fitting curve is 0.9479, indicating a very strong correlation.
 リーク電流抑制層15を設けない比較例1の圧電特性を基準とすると、圧電特性が初期
特性と同等、または向上するのは、静電容量の比CLS/CPIEZが1.20以上6.00未満、好ましくは、1.25以上60.00未満、さらに好ましくは1.29以上60.00未満のときである。比CLS/CPIEZが1.20のときのd33値は、初期特性から±3%の範囲内、比CLS/CPIEZが1.25のときのd33値は、初期特性から±2%の範囲内であり、誤差の範囲内とみなすことができるからである。ここから、圧電素子10のリーク電流抑制層15と圧電体層13の静電容量関係として、
   1.20≦CLS/CPIEZ<6.00
が導かれる。
Based on the piezoelectric characteristics of Comparative Example 1 in which the leakage current suppression layer 15 is not provided, the piezoelectric characteristics are equivalent to or improved from the initial characteristics when the capacitance ratio C LS /C PIEZ is 1.20 or more. 00, preferably 1.25 or more and less than 60.00, more preferably 1.29 or more and less than 60.00. The d33 value when the ratio C LS /C PIEZ is 1.20 is within the range of ±3% from the initial characteristics, and the d33 value when the ratio C LS /C PIEZ is 1.25 is ±2% from the initial characteristics. is within the range of , and can be regarded as within the range of error. From this, the capacitance relationship between the leak current suppression layer 15 and the piezoelectric layer 13 of the piezoelectric element 10 is as follows:
1.20≦C LS /C PIEZ <6.00
is guided.
 図6は、実施形態の圧電素子10を用いたセンサ100の模式図である。センサ100は、圧電素子10とチャージアンプ24と表示デバイス25を有する。圧電素子10に機械的な力が印加されると、圧電効果により印加された力に比例する量の電荷が発生する。生成された電荷をチャージアンプ24で増幅して、表示デバイス25に出力することで、圧力センサとして用いられる。 FIG. 6 is a schematic diagram of a sensor 100 using the piezoelectric element 10 of the embodiment. The sensor 100 has a piezoelectric element 10 , a charge amplifier 24 and a display device 25 . When a mechanical force is applied to the piezoelectric element 10, the piezoelectric effect generates an amount of electric charge proportional to the applied force. By amplifying the generated charge with the charge amplifier 24 and outputting it to the display device 25, it is used as a pressure sensor.
 生成された電荷量を直接測定する構成に替えて、歪による抵抗変化を測定してもよい。この場合、第1の電極16と第2の電極12の間(導電性の基板21を用いる場合は第1の電極16と基板21の間)をブリッジ回路に接続し、抵抗変化を電圧変化に変換し、増幅、アナログ-デジタル変換等をして出力してもよい。 Instead of directly measuring the generated charge amount, the resistance change due to strain may be measured. In this case, a bridge circuit is connected between the first electrode 16 and the second electrode 12 (between the first electrode 16 and the substrate 21 when a conductive substrate 21 is used) to convert the resistance change into a voltage change. It may be converted, amplified, analog-to-digital converted, etc., and then output.
 圧電素子10の逆圧電効果を利用する場合は、電界印加手段を用い、圧電素子10に印加する電界を制御してアクチュエータとして用いてもよい。逆圧電効果により、印加された電界に応じた歪が発生する。圧電素子では、リーク電流抑制層15により分極方向の伸縮モードを表すd33特性が良好なので、駆動効率の良いアクチュエータが得られる。 When using the inverse piezoelectric effect of the piezoelectric element 10, an electric field applying means may be used to control the electric field applied to the piezoelectric element 10 and use it as an actuator. Due to the inverse piezoelectric effect, strain occurs according to the applied electric field. In the piezoelectric element, the leakage current suppressing layer 15 provides good d33 characteristics representing the expansion/contraction mode in the polarization direction, so an actuator with good drive efficiency can be obtained.
 圧電効果を利用する場合も、逆圧電効果を利用する場合も、圧電素子10では圧電体層13における微小なリーク電流の発生が抑制され、圧電素子10が適用されるデバイスで良好な圧電特性が示される。 In both the case of using the piezoelectric effect and the case of using the inverse piezoelectric effect, the piezoelectric element 10 suppresses the generation of minute leakage current in the piezoelectric layer 13, and the device to which the piezoelectric element 10 is applied has good piezoelectric characteristics. shown.
 以上、特定の実施例に基づいて本発明を説明してきたが、本発明は上述した構成例に限定されない。たとえば、圧電体層13を、2層以上の圧電体膜の積層で形成してもよい。各圧電体膜の主成分を同じ材料としてもよいし、異なる材料としてもよい。格子定数の整合性の観点からは、主成分に同じ材料を用いてもよい。少なくとも一部の圧電体膜に副成分を添加してもよい。各層で添加する副成分は同じであっても、異なっていてもよい。いずれの場合も、圧電体層の全体としての膜厚が、5μm以下、好ましくは3μm以下、さ
らに好ましくは2μm以下、さらに好ましくは1μm以下、さらに好ましくは500nm以下となるように成膜する。リーク電流抑制層の材料と厚さは、圧電体層全体の比誘電率と膜厚との関係で、1.20≦CLS/CPIEZ<60.00が満たされるように決定される。この静電容量比の条件を満たす範囲で、リーク電流抑制層をAl、SiO、Si以外に、ZrO、TiO、AlN、Ta5、またはこれらの2種以上の組み合わせを用いてもよい。リーク電流抑制層の誘電率が高すぎると高周波信号が通りにくくなり、信号波形がなまる場合がある。圧電素子を高周波デバイスに適用する場合は、上記の材料のうちAl、SiO、Siが、特にリーク電流抑制層に適している。
Although the present invention has been described based on specific embodiments, the present invention is not limited to the above-described configuration examples. For example, the piezoelectric layer 13 may be formed by stacking two or more layers of piezoelectric films. The main component of each piezoelectric film may be the same material or may be different materials. From the viewpoint of lattice constant matching, the same material may be used for the main component. A subcomponent may be added to at least a part of the piezoelectric film. The subcomponents added in each layer may be the same or different. In any case, the film thickness of the piezoelectric layer as a whole is 5 μm or less, preferably 3 μm or less, more preferably 2 μm or less, more preferably 1 μm or less, and further preferably 500 nm or less. The material and thickness of the leakage current suppressing layer are determined so that 1.20≦C LS /C PIEZ <60.00 is satisfied in relation to the dielectric constant and film thickness of the entire piezoelectric layer. The leakage current suppression layer is made of ZrO2, TiO2 , AlN, Ta2O5 , or two of these, in addition to Al2O3 , SiO2 , and Si3N4 , within the range that satisfies this capacitance ratio condition. Combinations of the above may also be used. If the dielectric constant of the leakage current suppressing layer is too high, it may become difficult for high-frequency signals to pass through, resulting in a dull signal waveform. Among the above materials, Al 2 O 3 , SiO 2 and Si 3 N 4 are particularly suitable for the leakage current suppression layer when the piezoelectric element is applied to a high frequency device.
 この出願は、2021年2月1日に出願された日本国特許出願第2021-014369号、及び、2022年1月24日に出願された日本国特許出願第2022-008468号に基づいてその優先権を主張するものであり、これらの日本国特許出願の全内容を含む。 This application is based on Japanese Patent Application No. 2021-014369 filed on February 1, 2021 and Japanese Patent Application No. 2022-008468 filed on January 24, 2022. It claims the right and includes the entire contents of these Japanese patent applications.
10A~10F 圧電素子
11、21 基板
12 電極(第2の電極)
13 圧電体層
15、15-1、15-2 リーク電流抑制層
16 電極(第1の電極)
100 センサ
10A to 10F piezoelectric elements 11, 21 substrate 12 electrode (second electrode)
13 piezoelectric layers 15, 15-1, 15-2 leakage current suppression layer 16 electrode (first electrode)
100 sensor

Claims (11)

  1.  基板上に、圧電体層と第1の電極がこの順で積層されており、
     前記第1の電極と前記圧電体層の間、または前記基板と前記圧電体層の間の少なくとも
    一方にリーク電流抑制層が配置されており、
     前記圧電体層の単位面積当たりの静電容量に対する前記リーク電流抑制層の単位面積当
    たりの静電容量の比が1.20以上60.00未満である、
    圧電素子。
    A piezoelectric layer and a first electrode are laminated in this order on a substrate,
    A leakage current suppression layer is disposed between at least one of the first electrode and the piezoelectric layer or between the substrate and the piezoelectric layer,
    A ratio of the capacitance per unit area of the leakage current suppression layer to the capacitance per unit area of the piezoelectric layer is 1.20 or more and less than 60.00.
    Piezoelectric element.
  2.  前記圧電体層の単位面積当たりの静電容量に対する前記リーク電流抑制層の単位面
    積当たりの静電容量の比が1.29以上60.00未満である、
    請求項1に記載の圧電素子。
    A ratio of the capacitance per unit area of the leakage current suppression layer to the capacitance per unit area of the piezoelectric layer is 1.29 or more and less than 60.00.
    The piezoelectric element according to claim 1.
  3.  前記基板は可撓性基板である、
    請求項1または2に記載の圧電素子。
    wherein the substrate is a flexible substrate;
    The piezoelectric element according to claim 1 or 2.
  4.  前記基板は導電性基板である請求項1~3のいずれか1項に記載の圧電素子。 The piezoelectric element according to any one of claims 1 to 3, wherein the substrate is a conductive substrate.
  5.  前記基板は絶縁性基板であり、
     前記基板と前記圧電体層の間に第2の電極が配置されている、
    請求項1~3のいずれか1項に記載の圧電素子。
    the substrate is an insulating substrate;
    a second electrode disposed between the substrate and the piezoelectric layer;
    A piezoelectric element according to any one of claims 1 to 3.
  6.  前記圧電体層はウルツ鉱型結晶構造を有する、
    請求項1~5のいずれか1項に記載の圧電素子。
    The piezoelectric layer has a wurtzite crystal structure,
    The piezoelectric element according to any one of claims 1-5.
  7.  前記リーク電流抑制層は、アモルファス絶縁層である
    請求項1~6のいずれか1項に記載の圧電素子。
    The piezoelectric element according to any one of claims 1 to 6, wherein the leakage current suppressing layer is an amorphous insulating layer.
  8.  前記リーク電流抑制層は、Al、SiO、Si、ZrO、TiO、AlN、Ta5、またはこれらの2種以上の組み合わせのアモルファス層である、
    請求項1~7のいずれか1項に記載の圧電素子。
    The leakage current suppression layer is an amorphous layer of Al2O3 , SiO2 , Si3N4 , ZrO2, TiO2 , AlN, Ta2O5 , or a combination of two or more thereof.
    The piezoelectric element according to any one of claims 1-7.
  9.  前記圧電体層のX線ロッキングカーブ法による半値全幅は5°以下である、
    請求項1~8のいずれか1項に記載の圧電素子。
    The full width at half maximum of the piezoelectric layer according to the X-ray rocking curve method is 5° or less.
    The piezoelectric element according to any one of claims 1-8.
  10.  請求項1~9のいずれか1項に記載の圧電素子を用いたセンサ。 A sensor using the piezoelectric element according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の圧電素子と、
     前記圧電素子に所定の電界を印加する電界印加手段と、
    を有するアクチュエータ。
    A piezoelectric element according to any one of claims 1 to 9;
    an electric field applying means for applying a predetermined electric field to the piezoelectric element;
    actuator.
PCT/JP2022/002951 2021-02-01 2022-01-26 Piezoelectric element, and sensor and actuator employing same WO2022163722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578454A JPWO2022163722A1 (en) 2021-02-01 2022-01-26

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-014369 2021-02-01
JP2021014369 2021-02-01
JP2022008468 2022-01-24
JP2022-008468 2022-01-24

Publications (1)

Publication Number Publication Date
WO2022163722A1 true WO2022163722A1 (en) 2022-08-04

Family

ID=82654619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002951 WO2022163722A1 (en) 2021-02-01 2022-01-26 Piezoelectric element, and sensor and actuator employing same

Country Status (3)

Country Link
JP (1) JPWO2022163722A1 (en)
TW (1) TW202303106A (en)
WO (1) WO2022163722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070712A1 (en) * 2022-09-30 2024-04-04 日東電工株式会社 Piezoelectric element and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130182A (en) * 2007-11-26 2009-06-11 Hitachi Cable Ltd Piezoelectric thin film element
JP2019161098A (en) * 2018-03-15 2019-09-19 セイコーエプソン株式会社 Piezoelectric element and liquid discharge head
JP2020057785A (en) * 2018-09-28 2020-04-09 日東電工株式会社 Piezoelectric device and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130182A (en) * 2007-11-26 2009-06-11 Hitachi Cable Ltd Piezoelectric thin film element
JP2019161098A (en) * 2018-03-15 2019-09-19 セイコーエプソン株式会社 Piezoelectric element and liquid discharge head
JP2020057785A (en) * 2018-09-28 2020-04-09 日東電工株式会社 Piezoelectric device and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070712A1 (en) * 2022-09-30 2024-04-04 日東電工株式会社 Piezoelectric element and electronic device

Also Published As

Publication number Publication date
TW202303106A (en) 2023-01-16
JPWO2022163722A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
EP3605627B1 (en) Piezoelectric device and manufacturing method thereof
EP3859799A1 (en) Piezoelectric device and method for producing piezoelectric device
KR102647953B1 (en) Piezoelectric device and method of manufacturing piezoelectric device
JP7077287B2 (en) Piezoelectric device and manufacturing method of piezoelectric device
WO2022163722A1 (en) Piezoelectric element, and sensor and actuator employing same
US20210343927A1 (en) Piezoelectric device and method of manufacturing the same
JP2018170488A (en) ZnO-based piezoelectric film and piezoelectric element
WO2020189397A1 (en) Laminate, piezoelectric device in which same is used, and method for manufacturing piezoelectric device
WO2022210563A1 (en) Piezoelectric film, piezoelectric film manufacturing method, piezoelectric element and piezoelectric device
WO2024070712A1 (en) Piezoelectric element and electronic device
WO2020189413A1 (en) Piezoelectric device and method for manufacturing piezoelectric device
JP2021153169A (en) Laminate, piezoelectric device using the same, production method for laminate, and production method for piezoelectric device
JP2019057699A (en) Piezoelectric element and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022578454

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745941

Country of ref document: EP

Kind code of ref document: A1