WO2022163711A1 - 送風装置 - Google Patents

送風装置 Download PDF

Info

Publication number
WO2022163711A1
WO2022163711A1 PCT/JP2022/002909 JP2022002909W WO2022163711A1 WO 2022163711 A1 WO2022163711 A1 WO 2022163711A1 JP 2022002909 W JP2022002909 W JP 2022002909W WO 2022163711 A1 WO2022163711 A1 WO 2022163711A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
opening
outlet
closing
fan
Prior art date
Application number
PCT/JP2022/002909
Other languages
English (en)
French (fr)
Inventor
聡 中井
哲也 山下
英明 小西
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280011757.3A priority Critical patent/CN116802440A/zh
Priority to EP22745930.2A priority patent/EP4286763A4/en
Publication of WO2022163711A1 publication Critical patent/WO2022163711A1/ja
Priority to US18/227,462 priority patent/US20230366582A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/12Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit being adapted for mounting in apertures
    • F04D25/14Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit being adapted for mounting in apertures and having shutters, e.g. automatically closed when not in use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/524Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps shiftable members for obturating part of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 08-136038
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 08-136038
  • the blower device of the first aspect includes a fan, a casing, a first opening/closing member, a second opening/closing member, and a controller.
  • the fan has a rotating body elongated in a first direction along the rotation axis.
  • the casing accommodates the fan and is formed with an air outlet for blowing out the air generated by the fan.
  • the first opening/closing member opens and closes the first portion of the outlet.
  • the second opening/closing member opens and closes the second portion of the outlet.
  • the controller controls opening and closing of the first opening and closing member and the second opening and closing member.
  • the first opening/closing member and the second opening/closing member are arranged in the first direction.
  • the control unit performs opening/closing control so as to be in the first state when it is necessary to reduce the amount of air blown out from the outlet.
  • the first state is a state in which the first opening/closing member is in a posture of opening the first portion of the outlet, and the second opening/closing member is in a posture of closing or nearly closing the second portion of the outlet. is.
  • the control unit performs opening/closing control so as to enter the first state when it is necessary to reduce the amount of air blown out from the outlet.
  • the first state is a state in which the first opening/closing member is in a posture of opening the first portion of the outlet, and the second opening/closing member is in a posture of closing or nearly closing the second portion of the outlet. is.
  • the blower device according to the second aspect is the blower device according to the first aspect, and the second opening/closing member in the first state is in a state close to closing the second portion of the outlet.
  • the blower device of the second aspect can alleviate the occurrence of dew condensation on the second opening/closing member.
  • the blower device is the blower device according to the first aspect, and the control unit performs opening/closing control so as to repeat the first state and the second state.
  • the second state is a state in which the first opening/closing member is in a posture that closes or nearly closes the first portion of the outlet, and the second opening/closing member is in a posture that opens the second portion of the outlet. is.
  • the blower device of the third aspect can alleviate the occurrence of dew condensation on the first opening and closing member and the second opening and closing member.
  • a blower device is the blower device according to any one of the first aspect to the third aspect, wherein the control unit further reduces the amount of air blown out from the outlet after the rotational speed of the fan reaches a predetermined lower limit. Open/close control is performed when the air volume needs to be reduced.
  • the air blower of the fourth aspect can reduce the amount of air blown out from the air outlet while maintaining the rotational speed of the indoor fan at a predetermined lower limit.
  • FIG. 1 is a schematic configuration diagram of an air conditioner; FIG. It is a figure which shows the refrigerant circuit of an air conditioner. It is a sectional view of an indoor unit. It is a cross-sectional view of the vicinity of the first horizontal flap and the second horizontal flap of the indoor unit. It is a control block diagram of an indoor unit. It is a figure which shows the 1st horizontal flap which is a 1st state, and a 2nd horizontal flap. It is a figure which shows the 1st horizontal flap which is a 2nd state, and a 2nd horizontal flap. It is a flow chart which shows an example of processing of an indoor unit.
  • the air conditioner 1 uses a vapor compression refrigeration cycle to cool the target space SP (hereinafter sometimes referred to as cooling operation) and to heat the target space SP (hereinafter referred to as It may be described as heating operation.).
  • cooling operation the target space SP
  • heating operation the target space SP
  • the air conditioner 1 is not limited to a device capable of both cooling and heating, and may be, for example, a cooling-only device capable of only cooling.
  • FIG. 1 is a schematic configuration diagram of the air conditioner 1.
  • the air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, and refrigerant communication pipes 41 and 42, as shown in FIG. In this embodiment, the air conditioner 1 has only one indoor unit 3, but the air conditioner 1 may have a plurality of indoor units 3 connected in parallel.
  • the refrigerant communication pipes 41 and 42 include a liquid refrigerant communication pipe 41 and a gas refrigerant communication pipe 42 .
  • the refrigerant communication pipes 41 and 42 are pipes that connect the outdoor unit 2 and the indoor unit 3 .
  • the refrigerant communication pipes 41 and 42 are pipes constructed at the installation site when the air conditioner 1 is installed.
  • FIG. 2 is a diagram showing the refrigerant circuit 10 of the air conditioner 1.
  • the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 via a liquid refrigerant communication pipe 41 and a gas refrigerant communication pipe 42 .
  • the refrigerant circuit 10 mainly includes a compressor 21 of the outdoor unit 2, a flow direction switching mechanism 22, an outdoor heat exchanger 23, an expansion valve 24, and an indoor heat exchanger 31 of the indoor unit 3.
  • the indoor unit 3 (blower) is installed in the target space SP.
  • the indoor unit 3 is a wall-mounted unit.
  • the indoor unit 3 is not limited to a wall-mounted unit.
  • FIG. 3 is a cross-sectional view of the indoor unit 3.
  • the indoor unit 3 mainly includes an indoor fan 32, a casing 39, a first horizontal flap 35a1, a second horizontal flap 35a2, and an indoor controller 62, as shown in FIGS.
  • the indoor unit 3 has an indoor heat exchanger 31, as shown in FIGS.
  • the indoor unit 3 has various sensors.
  • the indoor unit 3 connects the liquid side end of the indoor heat exchanger 31 and the liquid refrigerant communication pipe 41 with the liquid refrigerant pipe 33, and connects the gas side end of the indoor heat exchanger 31 with the gas refrigerant communication pipe 42. and a gas refrigerant pipe 34 .
  • the casing 39 accommodates the indoor fan 32 as shown in FIG.
  • the casing 39 has a suction port 39a formed at its upper portion through which air is drawn in by the indoor fan 32 .
  • the casing 39 is formed with an outlet 39b for blowing out the air from the indoor fan 32 at its lower portion.
  • the indoor unit 3 drives the indoor fan 32 to suck the air in the target space SP from the suction port 39a, and blows off the air that has passed through the indoor heat exchanger 31 from the blowout port 39b.
  • the indoor heat exchanger 31 causes heat exchange between the refrigerant flowing through the indoor heat exchanger 31 and the air in the target space SP.
  • the indoor heat exchanger 31 has a plurality of heat transfer fins 311 and a plurality of heat transfer tubes 312, as shown in FIG.
  • the heat transfer tube 312 is folded multiple times and passes through one heat transfer fin 311 multiple times.
  • the indoor unit 3 drives the indoor fan 32 to suck air in the target space SP from the suction port 39a.
  • the sucked air in the target space SP passes between the heat transfer fins 311 .
  • heat exchange is performed between the refrigerant flowing through the heat transfer tubes 312 and the air in the target space SP.
  • the air that has passed through the indoor heat exchanger 31 is blown out from the outlet 39b.
  • the indoor heat exchanger 31 functions as an evaporator during cooling operation.
  • the indoor heat exchanger 31 functions as a condenser (radiator) during heating operation.
  • the indoor fan 32 (fan) has a rotating body that extends long in the left-right direction (first direction) (in FIG. 1, etc.) along the rotation axis.
  • the indoor fan 32 is a cross-flow fan.
  • the indoor fan 32 sucks air from the suction port 39a, supplies it to the indoor heat exchanger 31, and sends the air heat-exchanged with the refrigerant in the indoor heat exchanger 31 to the target space from the blowout port 39b. Blow out to SP.
  • the indoor fan 32 is driven by an indoor fan motor 32m, as shown in FIG.
  • the rotation speed of the indoor fan motor 32m can be controlled by an inverter.
  • the rotational speed of the indoor fan motor 32m has a predetermined lower limit (hereinafter sometimes referred to as a first lower limit). If the rotational speed of the indoor fan motor 32m falls below the first lower limit value, there is a possibility that troubles such as shortening the service life of the bearing (not shown) of the indoor fan motor 32m may occur.
  • the flap 35 includes a first horizontal flap 35a1 (first opening/closing member), a second horizontal flap 35a2 (second opening/closing member), and a vertical flap 35b.
  • the first horizontal flap 35a1 and the second horizontal flap 35a2 change the wind direction of the air blown out from the outlet 39b up and down.
  • the first horizontal flap 35a1 and the second horizontal flap 35a2 are independently driven by the first horizontal flap motor 35a1m and the second horizontal flap motor 35a2m, respectively.
  • the first horizontal flap 35a1 and the second horizontal flap 35a2 are arranged in the horizontal direction as shown in FIG.
  • the first horizontal flap 35a1 opens and closes a first portion 39b1, which is the left portion of the outlet 39b.
  • the second horizontal flap 35a2 opens and closes a second portion 39b2, which is the right portion of the outlet 39b.
  • a first portion 39b1 and a second portion 39b2 of the outlet 39b are closed by a first horizontal flap 35a1 and a second horizontal flap 35a2, respectively.
  • the first portion 39b1 of the outlet 39b is opened by the first horizontal flap 35a1 and the second portion 39b2 of the outlet 39b is closed by the second horizontal flap 35a2.
  • FIG. 4 is a sectional view around the first horizontal flap 35a1 and the second horizontal flap 35a2 of the indoor unit 3.
  • FIG. 4 the first horizontal flap 35a1 and the second horizontal flap 35a2 are independently connected to the casing 39 via members 90 serving as respective rotation shafts.
  • the vertical flap 35b is configured to be able to change the direction of the air blown out from the outlet 39b to the left or right.
  • the vertical flap 35b is driven by a vertical flap motor 35bm.
  • the indoor unit 3 has various sensors including an indoor temperature sensor 71 and an indoor heat exchanger temperature sensor 74, as shown in FIG.
  • the indoor temperature sensor 71 measures the temperature of the air in the target space SP.
  • the indoor temperature sensor 71 is, for example, a thermistor.
  • the indoor temperature sensor 71 is installed on the right side surface of the indoor unit 3, as shown in FIG.
  • the indoor heat exchanger temperature sensor 74 measures the temperature of the refrigerant flowing through the indoor heat exchanger 31 .
  • the indoor heat exchanger temperature sensor 74 is, for example, a thermistor.
  • the indoor heat exchanger temperature sensor 74 is installed in the indoor heat exchanger 31, as shown in FIG.
  • the indoor control section 62 controls the operation of each section that configures the indoor unit 3 .
  • FIG. 5 is a control block diagram of the indoor unit 3.
  • the indoor control unit 62 controls various devices and electrical equipment of the indoor unit 3, including the indoor fan motor 32m, the first horizontal flap motor 35a1m, the second horizontal flap motor 35a2m, and the vertical flap motor 35bm. properly connected.
  • the indoor controller 62 is communicably connected to various sensors provided in the indoor unit 3 including the indoor temperature sensor 71 and the indoor heat exchanger temperature sensor 74 .
  • the indoor control unit 62 has a control arithmetic device and a storage device.
  • the control arithmetic device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM and flash memory.
  • the control arithmetic device reads out a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part that constitutes the indoor unit 3 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the indoor controller 62 has a timer.
  • the indoor control unit 62 is configured to be able to receive various signals transmitted from a remote controller (not shown) for operating the air conditioner 1 .
  • the various signals include, for example, signals for instructing start and stop of operation and signals for various settings.
  • Signals related to various settings include, for example, signals related to set temperature and set humidity.
  • the indoor controller 62 exchanges various signals with the outdoor controller 61 of the outdoor unit 2 via a communication line. The indoor controller 62 and the outdoor controller 61 cooperate to control the overall operation of the air conditioner 1 .
  • the indoor control unit 62 mainly controls the opening and closing of the first horizontal flap 35a1 and the second horizontal flap 35a2. Specifically, after the number of rotations of the indoor fan 32 reaches the first lower limit, the indoor control unit 62 sets the state to the first state when it is necessary to further decrease the amount of air blown out from the outlet 39b. Then, open/close control is performed. In the first state, the first horizontal flap 35a1 takes a posture of opening the first portion 39b1 of the outlet 39b, and the second horizontal flap 35a2 takes a posture of closing the second portion 39b2 of the outlet 39b. state.
  • FIG. 6 shows the first horizontal flap 35a1 and the second horizontal flap 35a2 in the first state.
  • the outdoor unit 2 is installed, for example, on the roof of the building where the air conditioner 1 is installed, in the machine room, or around the building, although the installation location is not limited.
  • the outdoor unit 2 as shown in FIG. , gas shutoff valve 28 , and outdoor control unit 61 .
  • the outdoor unit 2 also has various sensors (not shown).
  • the outdoor unit 2 has a suction pipe 10a, a discharge pipe 10b, a first gas refrigerant pipe 10c, a liquid refrigerant pipe 10d, and a second gas refrigerant pipe 10e.
  • the suction pipe 10 a connects the flow direction switching mechanism 22 and the suction end of the compressor 21 .
  • the discharge pipe 10 b connects the discharge end of the compressor 21 and the flow direction switching mechanism 22 .
  • the first gas refrigerant pipe 10 c connects the flow direction switching mechanism 22 and the gas side end of the outdoor heat exchanger 23 .
  • the liquid refrigerant pipe 10 d connects the liquid side end of the outdoor heat exchanger 23 and the liquid refrigerant communication pipe 41 .
  • a liquid shut-off valve 27 is provided at the connection between the liquid refrigerant pipe 10d and the liquid refrigerant communication pipe 41 .
  • An expansion valve 24 is provided in the liquid refrigerant pipe 10d.
  • the second gas refrigerant pipe 10 e connects the flow direction switching mechanism 22 and the gas refrigerant communication pipe 42 .
  • a gas shut-off valve 28 is provided at the connecting portion of the second gas refrigerant pipe 10 e to the gas refrigerant communication pipe 42 .
  • the liquid shutoff valve 27 and the gas shutoff valve 28 are manually opened and closed valves.
  • the compressor 21 is a device that compresses and discharges refrigerant using a compression mechanism 21a.
  • Compressor 21 pressurizes low-pressure refrigerant in the refrigeration cycle to high pressure in the refrigeration cycle.
  • the compressor 21 is, for example, a volumetric compressor such as a rotary type or a scroll type, although the type is not limited.
  • a compression mechanism 21a of the compressor 21 is driven by a compressor motor 21m. The rotation speed of the compressor motor 21m can be controlled by an inverter.
  • the flow direction switching mechanism 22 is a mechanism for switching the flow direction of the refrigerant discharged from the compressor 21, as shown in FIG.
  • the flow direction switching mechanism 22 is a mechanism for switching the flow direction of the refrigerant in the refrigerant circuit 10 .
  • the flow direction switching mechanism 22 is a four-way switching valve.
  • the air conditioner 1 switches between the heating operation of the air conditioner 1 and the cooling operation of the air conditioner 1 by switching the flow direction of the refrigerant with the flow direction switching mechanism 22 .
  • the flow direction switching mechanism 22 communicates the suction pipe 10a with the second gas refrigerant pipe 10e, and connects the discharge pipe 10b with the first gas refrigerant pipe, as indicated by the solid line in the flow direction switching mechanism 22 in FIG. 10c.
  • the flow direction switching mechanism 22 connecting the refrigerant pipes in this manner, the refrigerant discharged from the compressor 21 flows through the refrigerant circuit 10 during cooling operation through the outdoor heat exchanger 23, the expansion valve 24, and the indoor heat exchanger. 31 and return to the suction end of the compressor 21 .
  • the outdoor heat exchanger 23 functions as a condenser
  • the indoor heat exchanger 31 functions as an evaporator.
  • the flow direction switching mechanism 22 communicates the suction pipe 10a with the first gas refrigerant pipe 10c, and the discharge pipe 10b with the second gas refrigerant pipe, as indicated by the dashed line in the flow direction switching mechanism 22 in FIG. 10e.
  • the flow direction switching mechanism 22 connecting the refrigerant pipes in this manner, the refrigerant discharged from the compressor 21 during heating operation flows through the refrigerant circuit 10 through the indoor heat exchanger 31, the expansion valve 24, and the outdoor heat exchanger. 23 and return to the suction end of the compressor 21 .
  • the indoor heat exchanger 31 functions as a condenser
  • the outdoor heat exchanger 23 functions as an evaporator.
  • Outdoor heat exchanger 23 Although the structure of the outdoor heat exchanger 23 is not limited, for example, a cross fin composed of a heat transfer tube (not shown) and a large number of fins (not shown) fin-and-tube heat exchanger. In the outdoor heat exchanger 23, heat is exchanged between the refrigerant flowing through the outdoor heat exchanger 23 and the heat source air.
  • the outdoor heat exchanger 23 functions as a condenser during cooling operation.
  • the outdoor heat exchanger 23 functions as an evaporator during heating operation.
  • the expansion valve 24 is an electronic expansion valve capable of adjusting the degree of opening used for adjusting the flow rate of refrigerant.
  • the expansion valve 24 is provided in the liquid refrigerant pipe 10d, as shown in FIG.
  • the expansion valve 24 reduces the pressure of the refrigerant flowing from the outdoor heat exchanger 23 toward the indoor heat exchanger 31 or the refrigerant flowing from the indoor heat exchanger 31 toward the outdoor heat exchanger 23 .
  • the accumulator 25 is a container having a gas-liquid separation function to separate the inflowing refrigerant into gas refrigerant and liquid refrigerant.
  • the accumulator 25 is provided in the intake pipe 10a, as shown in FIG. In other words, the accumulator 25 is arranged upstream of the compressor 21 in the refrigerant flow direction.
  • the refrigerant flowing into the accumulator 25 is divided into gas refrigerant and liquid refrigerant, and the gas refrigerant collected in the upper space flows into the compressor 21 .
  • Outdoor fan 26 draws heat source air (air at the location where the outdoor unit 2 is installed) into the outdoor unit 2, supplies it to the outdoor heat exchanger 23, and in the outdoor heat exchanger 23 It is a fan that discharges the air that has undergone heat exchange with the refrigerant to the outside of the outdoor unit 2 .
  • the outdoor fan 26 supplies air to the outdoor heat exchanger 23 as an evaporator during the heating operation of the air conditioner 1 .
  • the outdoor fan 26 is, for example, an axial fan such as a propeller fan. However, the type of the outdoor fan 26 is not limited to the axial fan, and may be selected as appropriate.
  • the outdoor fan 26 is driven by an outdoor fan motor 26m. The rotation speed of the outdoor fan motor 26m can be controlled by an inverter.
  • the outdoor control section 61 controls the operation of each section that configures the outdoor unit 2 .
  • the outdoor control unit 61 is electrically connected to various devices of the outdoor unit 2, including the compressor motor 21m, the flow direction switching mechanism 22, the expansion valve 24, and the outdoor fan motor 26m. In addition, the outdoor control unit 61 is communicably connected to various sensors provided in the outdoor unit 2 .
  • the outdoor control unit 61 has a control arithmetic device and a storage device.
  • the control arithmetic device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM and flash memory.
  • the control arithmetic unit reads out a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part that constitutes the outdoor unit 2 .
  • the control arithmetic unit can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the outdoor controller 61 has a timer.
  • the outdoor controller 61 exchanges various signals with the indoor controller 62 of the indoor unit 3 via a communication line.
  • the outdoor controller 61 and the indoor controller 62 cooperate to control the overall operation of the air conditioner 1 .
  • the indoor unit 3 starts heating operation in cooperation with the outdoor unit 2, as shown in step S1.
  • step S2 After finishing step S1, the indoor unit 3, as shown in step S2, for example, because the temperature of the air in the target space SP measured by the indoor temperature sensor 71 is higher than the set temperature by a predetermined value or more. , to temporarily stop the compressor 21 in cooperation with the outdoor unit 2 for energy saving.
  • step S2 the indoor unit 3 blows cool air from the outlet 39b in response to a decrease in the temperature of the refrigerant flowing through the indoor heat exchanger 31 measured by the indoor heat exchanger temperature sensor 74, as shown in step S3.
  • the number of revolutions of the indoor fan 32 is reduced to reduce the amount of air blown out from the outlet 39b.
  • step S3 the indoor unit 3 determines whether or not the rotation speed of the indoor fan 32 has reached the first lower limit, as shown in step S4. When the rotation speed of the indoor fan 32 reaches the first lower limit value, the indoor unit 3 proceeds to step S5. Otherwise, the indoor unit 3 further reduces the rotational speed of the indoor fan 32 .
  • step S5 the indoor unit 3 performs opening/closing control as shown in step S5 to bring the first horizontal flap 35a1 and the second horizontal flap 35a2 into the first state.
  • the bearing life of the indoor fan motor will be shortened if the number of rotations of the indoor fan drops below a predetermined number.
  • problems such as speeding up may occur.
  • the rotation speed of the indoor fan is lowered, the wind speed of the air blown out from the outlet is lowered, so there is a problem that the air may flow back to the outlet and cause abnormal noise.
  • the air velocity of the air blowing out from the air outlet decreases, the distance the air blows out from the air outlet shortens. There is a problem that it may become impossible to measure.
  • the indoor unit 3 of this embodiment includes an indoor fan 32, a casing 39, a first horizontal flap 35a1, a second horizontal flap 35a2, and an indoor controller 62.
  • the indoor fan 32 has a rotating body elongated in the left-right direction along the rotation axis.
  • the casing 39 accommodates the indoor fan 32 and has an air outlet 39b through which the air generated by the indoor fan 32 is blown out.
  • the first horizontal flap 35a1 opens and closes the first portion 39b1 of the outlet 39b.
  • the second horizontal flap 35a2 opens and closes the second portion 39b2 of the outlet 39b.
  • the indoor controller 62 controls the opening and closing of the first horizontal flap 35a1 and the second horizontal flap 35a2.
  • the first horizontal flap 35a1 and the second horizontal flap 35a2 are arranged in the horizontal direction. After the number of rotations of the indoor fan 32 reaches the first lower limit value, the indoor control unit 62 performs opening/closing control so as to enter the first state when it is necessary to further decrease the amount of air blown out from the outlet 39b. .
  • the first state is a state in which the first horizontal flap 35a1 takes a posture of opening the first portion 39b1 of the blowout port 39b, and the second horizontal flap 35a2 takes a posture of closing the second portion 39b2 of the blowout port 39b. is.
  • the indoor controller 62 after the number of rotations of the indoor fan 32 reaches the first lower limit, further reduces the amount of air blown out from the outlet 39b, the first state Open/close control is performed so that
  • the first state is a state in which the first horizontal flap 35a1 takes a posture to open the first portion 39b1 of the blowout port 39b, and the second horizontal flap 35a2 takes a posture to close the second portion 39b2 of the blowout port 39b. is.
  • the second horizontal flap 35a2 side of the indoor fan 32 idles, and air does not blow out from the second portion 39b2 of the outlet 39b. While maintaining the value, the amount of air blown out from the outlet 39b can be reduced.
  • the indoor unit 3 can maintain a constant wind speed for the air blown out from the air outlet 39b, it is possible to prevent the air from flowing back to the air outlet 39b and causing abnormal noise.
  • the indoor unit 3 can maintain a constant wind speed for the air blown out from the air outlet 39b, it is difficult for warm air or cold air to accumulate around the indoor unit 3, and the indoor temperature sensor 71 detects the normal indoor temperature. can be measured.
  • the indoor control unit 62 may perform opening/closing control so as to repeat the first state and the second state.
  • the second state is a state in which the first horizontal flap 35a1 is in a posture of closing the first portion 39b1 of the outlet 39b, and the second horizontal flap 35a2 is in a posture of opening the second portion 39b2 of the outlet 39b. is.
  • FIG. 7 shows the first horizontal flap 35a1 and the second horizontal flap 35a2 in the second state.
  • the indoor control unit 62 may repeat the first state and the second state at predetermined time intervals.
  • the predetermined time is, for example, 5 minutes.
  • the indoor unit 3 repeats the first state and the second state, and the air generated by the indoor fan 32 flows around the first horizontal flap 35a1 and the second horizontal flap 35a2. Dew condensation on the surfaces of 35a1 and second horizontal flap 35a2 can be alleviated.
  • the first state is the state in which the second horizontal flap 35a2 is in a posture of closing the second portion 39b2 of the outlet 39b.
  • the second horizontal flap 35a2 in the first state may take a posture close to closing the second portion 39b2 of the outlet 39b.
  • the second state is the state in which the first horizontal flap 35a1 is in the posture of closing the first portion 39b1 of the outlet 39b.
  • the first horizontal flap 35a1 in the second state may take a posture close to closing the first portion 39b1 of the outlet 39b.
  • the "posture close to the closed state” is, for example, a posture having a degree of opening that is 20% or less of the degree of opening of the "open posture”.
  • the wind from the indoor fan 32 flows around the first horizontal flap 35a1 and the second horizontal flap 35a2, so that the indoor unit 3 , the occurrence of dew condensation on the surfaces of the first horizontal flap 35a1 and the second horizontal flap 35a2 can be alleviated.
  • the indoor unit 3 is provided with two horizontal flaps (opening/closing members) at the outlet 39b to perform opening/closing control.
  • the indoor unit 3 may be provided with three or more horizontal flaps (opening/closing members) at the outlet 39b to perform opening/closing control.
  • the indoor unit 3 can finely adjust the amount of air blown out from the outlet 39b while maintaining the predetermined rotation speed of the indoor fan 32 at the first lower limit.
  • the indoor unit 3 performs open/close control when decreasing the rotational speed of the indoor fan 32 after temporarily stopping the compressor 21 .
  • the indoor unit 3 may perform opening/closing control when the rotational speed of the indoor fan 32 is lowered before the compressor 21 is temporarily stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Air Conditioning Control Device (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air-Flow Control Members (AREA)

Abstract

室内ファンの回転数が所定の回転数より低くなった場合に、室内ファンモータのベアリングの寿命が早くなる等の不具合が生じる恐れがある、という課題がある。室内機(3)は、ファンと、ケーシング(39)と、第1水平フラップ(35a1)と、第2水平フラップ(35a2)と、室内制御部と、を備える。ケーシング(39)は、ファンを収容し、ファンによる空気を吹き出す吹出口、が形成されている。室内制御部は、吹出口から吹き出す空気の風量を下げる必要がある場合、第1状態になるように、開閉制御を行う。第1状態は、第1水平フラップ(35a1)が吹出口の第1部分(39b1)を開く姿勢を取っており、第2水平フラップ(35a2)が吹出口の第2部分(39b2)を閉じる姿勢あるいは閉じる状態に近い姿勢を取っている、状態である。

Description

送風装置
 送風装置に関する。
 特許文献1(特開平08-136038)に示されているように、空調装置における暖房の一時停止時などに、室内機の吹出口から冷風が吹き出ることを防止するため、室内ファンの回転数を下げ、吹出口から吹き出す空気の風量を下げる技術がある。
 特許文献1のように、吹出口から吹き出す空気の風量を下げることに応じて、室内ファンの回転数を下げていくと、室内ファンの回転数が所定の回転数より低くなった場合に、室内ファンモータのベアリングの寿命が早くなる等の不具合が生じる恐れがある、という課題がある。
 第1観点の送風装置は、ファンと、ケーシングと、第1開閉部材と、第2開閉部材と、制御部と、を備える。ファンは、回転軸に沿った第1方向に長く延びる回転体、を有する。ケーシングは、ファンを収容し、ファンによる空気を吹き出す吹出口、が形成されている。第1開閉部材は、吹出口の第1部分を開閉する。第2開閉部材は、吹出口の第2部分を開閉する。制御部は、第1開閉部材ならびに第2開閉部材の開閉制御を行う。第1開閉部材と第2開閉部材とは、第1方向に並んでいる。制御部は、吹出口から吹き出す空気の風量を下げる必要がある場合、第1状態になるように、開閉制御を行う。第1状態は、第1開閉部材が吹出口の第1部分を開く姿勢を取っており、第2開閉部材が吹出口の第2部分を閉じる姿勢あるいは閉じる状態に近い姿勢を取っている、状態である。
 第1観点の送風装置では、制御部は、吹出口から吹き出す空気の風量を下げる必要がある場合、第1状態になるように、開閉制御を行う。第1状態は、第1開閉部材が吹出口の第1部分を開く姿勢を取っており、第2開閉部材が吹出口の第2部分を閉じる姿勢あるいは閉じる状態に近い姿勢を取っている、状態である。その結果、送風装置は、ファンの第2開閉部材側が空回りし、吹出口の第2部分から空気が吹き出ることがなくなるため、室内ファンの所定の回転数を保ったまま、吹出口から吹き出る空気の風量を下げることができる。
 第2観点の送風装置は、第1観点の送風装置であって、第1状態における第2開閉部材は、吹出口の第2部分を閉じる状態に近い姿勢を取っている。
 第2観点の送風装置は、このような構成により、第2開閉部材に、結露が生じることを緩和することができる。
 第3観点の送風装置は、第1観点の送風装置であって、制御部は、第1状態と、第2状態と、を繰り返すように、開閉制御を行う。第2状態は、第1開閉部材が吹出口の第1部分を閉じる姿勢あるいは閉じる状態に近い姿勢を取っており、第2開閉部材が吹出口の第2部分を開く姿勢を取っている、状態である。
 第3観点の送風装置は、このような構成により、第1開閉部材及び第2開閉部材に、結露が生じることを緩和することができる。
 第4観点の送風装置は、第1観点から第3観点のいずれかの送風装置であって、制御部は、ファンの回転数が所定の下限値に達した後、さらに吹出口から吹き出す空気の風量を下げる必要がある場合に、開閉制御を行う。
 第4観点の送風装置は、このような構成により、室内ファンの回転数を所定の下限値に保ったまま、吹出口から吹き出す空気の風量を下げることができる。
空調装置の概略構成図である。 空調装置の冷媒回路を示す図である。 室内機の断面図である。 室内機の第1水平フラップ及び第2水平フラップ付近の断面図である。 室内機の制御ブロック図である。 第1状態である第1水平フラップ及び第2水平フラップを示す図である。 第2状態である第1水平フラップ及び第2水平フラップを示す図である。 室内機の処理の一例を示すフローチャートである。
 (1)全体構成
 空調装置1は、蒸気圧縮式の冷凍サイクルを利用して、対象空間SPの冷房(以下、冷房運転と記載することがある。)、及び、対象空間SPの暖房(以下、暖房運転と記載することがある。)を行う装置である。ただし、空調装置1は、冷房及び暖房の両方を行うことが可能な装置に限定されず、例えば、冷房だけを行うことが可能な冷房専用装置であってもよい。
 図1は、空調装置1の概略構成図である。空調装置1は、図1に示すように、主として、室外機2と、室内機3と、冷媒連絡管41,42と、を有する。本実施形態では、空調装置1は、室内機3を1台だけ有するが、空調装置1は、互いに並列に接続される複数の室内機3を有してもよい。冷媒連絡管41,42は、液冷媒連絡管41と、ガス冷媒連絡管42と、を含む。冷媒連絡管41,42は、室外機2と室内機3とを接続する配管である。冷媒連絡管41,42は、空調装置1の設置の際に、設置現場で施工される配管である。
 図2は、空調装置1の冷媒回路10を示す図である。空調装置1の冷媒回路10は、図2に示すように、室外機2と室内機3とが、液冷媒連絡管41及びガス冷媒連絡管42を介して接続されることで構成される。冷媒回路10は、主として、室外機2の圧縮機21、流向切換機構22、室外熱交換器23、及び膨張弁24と、室内機3の室内熱交換器31と、を含む。
 (2)詳細構成
 (2-1)室内機
 室内機3(送風装置)は、図1に示すように、対象空間SP内に設置されている。本実施形態では、室内機3は、壁掛型のユニットである。しかし、室内機3は、壁掛型のユニットに限定されない。
 図3は、室内機3の断面図である。室内機3は、図2及び図3に示すように、主として、室内ファン32と、ケーシング39と、第1水平フラップ35a1と、第2水平フラップ35a2と、室内制御部62と、を備える。また、室内機3は、図2及び図3に示すように、室内熱交換器31を有する。また、室内機3は、各種センサを有する。また、室内機3は、室内熱交換器31の液側端と液冷媒連絡管41とを接続する液冷媒管33と、室内熱交換器31のガス側端とガス冷媒連絡管42とを接続するガス冷媒管34と、を有する。
 (2-1-1)ケーシング
 ケーシング39は、図3に示すように、室内ファン32を収容している。ケーシング39は、上部に室内ファン32によって空気を吸入する吸込口39a、が形成されている。また、ケーシング39は、下部に室内ファン32による空気を吹き出す吹出口39b、が形成されている。室内機3は、室内ファン32を駆動して、対象空間SPの空気を吸込口39aから吸い込み、室内熱交換器31を通過した空気を吹出口39bから吹き出す。
 (2-1-2)室内熱交換器
 室内熱交換器31は、室内熱交換器31を流れる冷媒と、対象空間SPの空気との間で熱交換を行わせる。室内熱交換器31は、図3に示すように、複数の伝熱フィン311と、複数の伝熱管312と、を有している。伝熱管312は、複数折り返されていて1つの伝熱フィン311を複数回貫通する。室内機3は、室内ファン32を駆動して、対象空間SPの空気を吸込口39aから吸い込む。吸い込まれた対象空間SPの空気は、複数の伝熱フィン311の間を通過する。このとき、伝熱管312には、冷媒が流れているため、伝熱管312を流れる冷媒と、対象空間SPの空気との間で熱交換が行われる。室内熱交換器31を通過した空気は、吹出口39bから吹き出される。
 室内熱交換器31は、冷房運転時には蒸発器として機能する。室内熱交換器31は、暖房運転時には凝縮器(放熱器)として機能する。
 (2-1-3)室内ファン
 室内ファン32(ファン)は、回転軸に沿った(図1等の)左右方向(第1方向)に長く延びる回転体、を有する。本実施形態では、室内ファン32は、クロスフローファンである。
 室内ファン32は、図3に示すように、吸込口39aから空気を吸入して室内熱交換器31に供給し、室内熱交換器31において冷媒と熱交換した空気を、吹出口39bから対象空間SPに吹き出す。
 室内ファン32は、図2に示すように、室内ファンモータ32mによって駆動される。室内ファンモータ32mの回転数は、インバータにより制御可能である。室内ファンモータ32mの回転数には、所定の下限値(以下、第1下限値と記載することがある。)が存在する。室内ファンモータ32mの回転数が第1下限値を下まわると、室内ファンモータ32mのベアリング(図示省略)の寿命が早くなる等の不具合が生じる恐れがある。
 (2-1-4)フラップ
 フラップ35は、図1及び図3に示すように、吹出口39bに設置されている。フラップ35は、吹出口39bから吹き出される空気の風向を調整する。
 フラップ35は、第1水平フラップ35a1(第1開閉部材)と、第2水平フラップ35a2(第2開閉部材)と、垂直フラップ35bとを含む。
 第1水平フラップ35a1、及び、第2水平フラップ35a2は、吹出口39bから吹出される空気の風向を上下に変更する。第1水平フラップ35a1、及び、第2水平フラップ35a2は、それぞれ独立して、第1水平フラップモータ35a1m、及び、第2水平フラップモータ35a2mによって駆動される。第1水平フラップ35a1と第2水平フラップ35a2とは、図1に示すように、左右方向に並んでいる。第1水平フラップ35a1は、吹出口39bの左側部分である第1部分39b1を開閉する。第2水平フラップ35a2は、吹出口39bの右側部分である第2部分39b2を開閉する。図1では、吹出口39bの第1部分39b1、及び、第2部分39b2は、それぞれ、第1水平フラップ35a1、及び、第2水平フラップ35a2によって閉じられている。図3では、吹出口39bの第1部分39b1は、第1水平フラップ35a1によって開かれ、吹出口39bの第2部分39b2は、第2水平フラップ35a2によって閉じられている。
 図4は、室内機3の第1水平フラップ35a1、及び、第2水平フラップ35a2付近の断面図である。図4に示すように、第1水平フラップ35a1、及び、第2水平フラップ35a2は、独立に、それぞれの回転軸となる部材90を介して、ケーシング39と連結される。
 垂直フラップ35bは、吹出口39bから吹出される空気の風向を左右に変更することができるように構成されている。垂直フラップ35bは、垂直フラップモータ35bmによって駆動される。
 (2-1-5)センサ
 室内機3は、図2に示すように、室内温度センサ71及び室内熱交温度センサ74を含む、各種センサを有する。
 室内温度センサ71は、対象空間SPの空気の温度を測定する。室内温度センサ71は、例えば、サーミスタである。本実施形態では、室内温度センサ71は、図1に示すように、室内機3の右側側面に設置されている。
 室内熱交温度センサ74は、室内熱交換器31を流れる冷媒の温度を測定する。室内熱交温度センサ74は、例えばサーミスタである。室内熱交温度センサ74は、図2に示すように、室内熱交換器31に設置されている。
 (2-1-6)室内制御部
 室内制御部62(制御部)は、室内機3を構成する各部の動作を制御する。
 図5は、室内機3の制御ブロック図である。室内制御部62は、図5に示すように、室内ファンモータ32m、第1水平フラップモータ35a1m、第2水平フラップモータ35a2m、及び、垂直フラップモータ35bmを含む、室内機3が有する各種機器と電気的に接続されている。また、室内制御部62は、室内温度センサ71、及び、室内熱交温度センサ74を含む、室内機3に設けられている各種センサと通信可能に接続されている。
 室内制御部62は、制御演算装置及び記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM及びフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、室内機3を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。また、室内制御部62は、タイマーを有する。
 室内制御部62は、空調装置1の操作用リモコン(図示省略)から送信される各種信号を、受信可能に構成されている。各種信号には、例えば、運転の開始及び停止を指示する信号や、各種設定に関する信号が含まれる。各種設定に関する信号には、例えば、設定温度や設定湿度に関する信号が含まれる。また、室内制御部62は、通信回線を介し、室外機2の室外制御部61との間で各種信号等のやりとりを行う。室内制御部62及び室外制御部61は、協働して空調装置1の全体動作を制御する。
 室内制御部62は、主として、第1水平フラップ35a1ならびに第2水平フラップ35a2の開閉制御を行う。具体的には、室内制御部62は、室内ファン32の回転数が第1下限値に達した後、さらに吹出口39bから吹き出す空気の風量を下げる必要がある場合に、第1状態になるように、開閉制御を行う。第1状態とは、第1水平フラップ35a1が吹出口39bの第1部分39b1を開く姿勢を取っており、第2水平フラップ35a2が吹出口39bの第2部分39b2を閉じる姿勢を取っている、状態である。図6は、第1状態である第1水平フラップ35a1及び第2水平フラップ35a2を示している。
 (2-2)室外機
 室外機2は、設置場所を限定するものではないが、例えば、空調装置1が設置される建物の屋上や機械室、建物の周辺等に設置されている。
 室外機2は、図2に示すように、主として、圧縮機21と、流向切換機構22と、室外熱交換器23と、膨張弁24と、アキュムレータ25と、室外ファン26と、液閉鎖弁27と、ガス閉鎖弁28と、室外制御部61と、有する。また、室外機2は、各種センサ(図示省略)を有する。
 室外機2は、図2に示すように、吸入管10aと、吐出管10bと、第1ガス冷媒管10cと、液冷媒管10dと、第2ガス冷媒管10eと、を有する。吸入管10aは、流向切換機構22と圧縮機21の吸入端とを接続する。吐出管10bは、圧縮機21の吐出端と流向切換機構22とを接続する。第1ガス冷媒管10cは、流向切換機構22と室外熱交換器23のガス側端とを接続する。液冷媒管10dは、室外熱交換器23の液側端と液冷媒連絡管41とを接続する。液冷媒管10dの液冷媒連絡管41との接続部には、液閉鎖弁27が設けられている。液冷媒管10dには、膨張弁24が設けられている。第2ガス冷媒管10eは、流向切換機構22とガス冷媒連絡管42とを接続する。第2ガス冷媒管10eのガス冷媒連絡管42との接続部には、ガス閉鎖弁28が設けられている。液閉鎖弁27及びガス閉鎖弁28は、手動で開閉される弁である。
 (2-2-1)圧縮機
 圧縮機21は、図2に示すように、圧縮機構21aにより冷媒を圧縮して吐出する機器である。圧縮機21は、冷凍サイクルにおける低圧の冷媒を、冷凍サイクルにおける高圧にまで加圧する。圧縮機21は、タイプを限定するものではないが、例えば、ロータリ式やスクロール式等の容積圧縮機である。圧縮機21の圧縮機構21aは、圧縮機モータ21mによって駆動される。圧縮機モータ21mの回転数は、インバータにより制御可能である。
 (2-2-2)流向切換機構
 流向切換機構22は、図2に示すように、圧縮機21が吐出する冷媒の流向を切り換える機構である。言い換えれば、流向切換機構22は、冷媒回路10における冷媒の流向を切り換える機構である。本実施形態では、流向切換機構22は四路切換弁である。
 空調装置1は、流向切換機構22により冷媒の流向を切り換えることで、空調装置1の暖房運転と、空調装置1の冷房運転と、を切り換える。
 流向切換機構22は、冷房運転の際には、図2の流向切換機構22内の実線のように、吸入管10aを第2ガス冷媒管10eと連通させ、吐出管10bを第1ガス冷媒管10cと連通させる。流向切換機構22がこのように冷媒管を接続する結果、冷房運転の際、圧縮機21から吐出される冷媒は、冷媒回路10内を、室外熱交換器23、膨張弁24、室内熱交換器31、の順に流れ、圧縮機21の吸入端へと戻る。冷房運転時には、室外熱交換器23は凝縮器として機能し、室内熱交換器31は蒸発器として機能する。
 流向切換機構22は、暖房運転の際には、図2の流向切換機構22内の破線のように、吸入管10aを第1ガス冷媒管10cと連通させ、吐出管10bを第2ガス冷媒管10eと連通させる。流向切換機構22がこのように冷媒管を接続する結果、暖房運転の際、圧縮機21から吐出される冷媒は、冷媒回路10内を、室内熱交換器31、膨張弁24、室外熱交換器23、の順に流れ、圧縮機21の吸入端へと戻る。暖房運転時には、室内熱交換器31は凝縮器として機能し、室外熱交換器23は蒸発器として機能する。
 (2-2-3)室外熱交換器
 室外熱交換器23は、構造を限定するものではないが、例えば、伝熱管(図示省略)と多数のフィン(図示省略)とにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器である。室外熱交換器23では、室外熱交換器23を流れる冷媒と熱源空気との間で熱交換が行われる。
 室外熱交換器23は、冷房運転時には凝縮器として機能する。室外熱交換器23は、暖房運転時には蒸発器として機能する。
 (2-2-4)膨張弁
 膨張弁24は、冷媒の流量の調節等に用いられる開度調節が可能な電子膨張弁である。
 膨張弁24は、図2に示すように、液冷媒管10dに設けられている。膨張弁24は、室外熱交換器23から室内熱交換器31に向かって流れる冷媒、又は、室内熱交換器31から室外熱交換器23に向かって流れる冷媒を減圧する。
 (2-2-5)アキュムレータ
 アキュムレータ25は、流入する冷媒をガス冷媒と液冷媒とに分ける気液分離機能を有する容器である。アキュムレータ25は、図2に示すように、吸入管10aに設けられる。言い換えれば、アキュムレータ25は、冷媒の流れ方向における圧縮機21の上流側に配置される。アキュムレータ25に流入する冷媒は、ガス冷媒と液冷媒とに分かれ、上部空間に集まるガス冷媒が圧縮機21へと流入する。
 (2-2-6)室外ファン
 室外ファン26は、室外機2内に熱源空気(室外機2の設置場所の空気)を吸入して室外熱交換器23に供給し、室外熱交換器23において冷媒と熱交換した空気を、室外機2外に排出するファンである。室外ファン26は、空調装置1の暖房運転時には、蒸発器としての室外熱交換器23に空気を供給する。
 室外ファン26は、例えば、プロペラファン等の軸流ファンである。ただし、室外ファン26のタイプは、軸流ファンに限定されるものではなく、適宜選択されればよい。室外ファン26は、室外ファンモータ26mによって駆動される。室外ファンモータ26mの回転数は、インバータにより制御可能である。
 (2-2-7)室外制御部
 室外制御部61は、室外機2を構成する各部の動作を制御する。
 室外制御部61は、圧縮機モータ21m、流向切換機構22、膨張弁24、及び室外ファンモータ26mを含む、室外機2が有する各種機器に電気的に接続されている。また、室外制御部61は、室外機2に設けられている各種センサと、通信可能に接続されている。
 室外制御部61は、制御演算装置及び記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM及びフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、室外機2を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。また、室外制御部61は、タイマーを有する。
 室外制御部61は、通信回線を介し、室内機3の室内制御部62との間で各種信号等のやりとりを行う。室外制御部61及び室内制御部62は、協働して空調装置1の全体動作を制御する。
 (3)処理
 室内機3の処理の一例を、図7のフローチャートを用いて説明する。
 室内機3は、ステップS1に示すように、室外機2と協働して暖房運転を開始する。
 室内機3は、ステップS1を終えると、ステップS2に示すように、例えば、室内温度センサ71によって測定した対象空間SPの空気の温度が、設定温度よりも所定値以上高くなったことを理由に、省エネ等のため、室外機2と協働して圧縮機21を一時停止させる。
 室内機3は、ステップS2を終えると、ステップS3に示すように、室内熱交温度センサ74によって測定した室内熱交換器31を流れる冷媒の温度が低くなることに応じて、吹出口39bから冷風が吹き出ることを防止するため、室内ファン32の回転数を下げ、吹出口39bから吹き出す空気の風量を下げる。
 室内機3は、ステップS3を終えると、ステップS4に示すように、室内ファン32の回転数が第1下限値に達したか否かを判定する。室内機3は、室内ファン32の回転数が第1下限値に達した場合、ステップS5に進む。そうではない場合、室内機3は、さらに室内ファン32の回転数を下げる。
 室内機3は、ステップS4からステップS5に進むと、ステップS5に示すように、開閉制御を行い、第1水平フラップ35a1、及び、第2水平フラップ35a2を、第1状態にする。
 (4)特徴
 (4-1)
 従来、空調装置における暖房の一時停止時などに、室内機の吹出口から冷風が吹き出ることを防止するため、室内ファンの回転数を下げ、吹出口から吹き出す空気の風量を下げる技術がある。
 吹出口から吹き出す空気の風量を下げることに応じて、室内ファンの回転数を下げていくと、室内ファンの回転数が所定の回転数より低くなった場合に、室内ファンモータのベアリングの寿命が早くなる等の不具合が生じる恐れがある、という課題がある。また、室内ファンの回転数を下げると、吹出口から吹き出す空気の風速が下がるため、吹出口に空気が逆流し、異音が生じる恐れがある、という課題がある。また、吹出口から吹き出す空気の風速が下がると、吹出口から吹き出す空気の到達距離が短くなるため、室内機の周囲に暖気溜まりや冷気溜まりが生じやすくなり、室内温度センサによって正常な室内温度を測定できなくなる恐れがある、という課題がある。
 本実施形態の室内機3は、室内ファン32と、ケーシング39と、第1水平フラップ35a1と、第2水平フラップ35a2と、室内制御部62と、を備える。室内ファン32は、回転軸に沿った左右方向に長く延びる回転体、を有する。ケーシング39は、室内ファン32を収容し、室内ファン32による空気を吹き出す吹出口39b、が形成されている。第1水平フラップ35a1は、吹出口39bの第1部分39b1を開閉する。第2水平フラップ35a2は、吹出口39bの第2部分39b2を開閉する。室内制御部62は、第1水平フラップ35a1ならびに第2水平フラップ35a2の開閉制御を行う。第1水平フラップ35a1と第2水平フラップ35a2とは、左右方向に並んでいる。室内制御部62は、室内ファン32の回転数が第1下限値に達した後、さらに吹出口39bから吹き出す空気の風量を下げる必要がある場合、第1状態になるように、開閉制御を行う。第1状態は、第1水平フラップ35a1が吹出口39bの第1部分39b1を開く姿勢を取っており、第2水平フラップ35a2が吹出口39bの第2部分39b2を閉じる姿勢を取っている、状態である。
 本実施形態の室内機3では、室内制御部62は、室内ファン32の回転数が第1下限値に達した後、さらに吹出口39bから吹き出す空気の風量を下げる必要がある場合、第1状態になるように、開閉制御を行う。第1状態は、第1水平フラップ35a1が吹出口39bの第1部分39b1を開く姿勢を取っており、第2水平フラップ35a2が吹出口39bの第2部分39b2を閉じる姿勢を取っている、状態である。
 その結果、室内機3は、室内ファン32の第2水平フラップ35a2側が空回りし、吹出口39bの第2部分39b2から空気が吹き出ることがなくなるため、室内ファン32の所定の回転数を第1下限値に保ったまま、吹出口39bから吹き出る空気の風量を下げることができる。また、室内機3は、吹出口39bから吹き出る空気について、一定の風速を保つことができるため、吹出口39bに空気が逆流し、異音が生じることを防止することができる。また、室内機3は、吹出口39bから吹き出る空気について、一定の風速を保つことができるため、室内機3の周囲に暖気溜まりや冷気溜まりが生じにくくなり、室内温度センサ71によって正常な室内温度を測定することができる。
 (5)変形例
 (5-1)変形例1A
 本実施形態では、室内制御部62は、第1水平フラップ35a1及び第2水平フラップ35a2が、第1状態になるように、開閉制御を行った。
 しかし、室内制御部62は、第1状態と、第2状態と、を繰り返すように、開閉制御を行ってもよい。第2状態は、第1水平フラップ35a1が吹出口39bの第1部分39b1を閉じる姿勢を取っており、第2水平フラップ35a2が吹出口39bの第2部分39b2を開く姿勢を取っている、状態である。図7は、第2状態である第1水平フラップ35a1及び第2水平フラップ35a2を示している。
 室内制御部62は、所定の時間ごとに、第1状態と、第2状態と、を繰り返してもよい。所定の時間は、例えば、5分間である。
 例えば、第2水平フラップ35a2が、吹出口39bの第2部分39b2を閉じる姿勢を常に取っていると、室内熱交換器31を流れる冷媒の温度が低くなる(室内熱交換器31が冷たくなる)ことにより、輻射によって第2水平フラップ35a2が冷え、第2水平フラップ35a2の表面に結露が生じる。そのため、室内機3は、第1状態と、第2状態と、を繰り返すことにより、第1水平フラップ35a1及び第2水平フラップ35a2の周りに室内ファン32による風が流れることで、第1水平フラップ35a1及び第2水平フラップ35a2の表面に結露が生じることを緩和することができる。
 (5-2)変形例1B
 本実施形態では、第1状態は、第2水平フラップ35a2が吹出口39bの第2部分39b2を閉じる姿勢を取っている状態であった。しかし、第1状態における第2水平フラップ35a2は、吹出口39bの第2部分39b2を閉じる状態に近い姿勢を取っていてもよい。
 上記の変形例1Aでは、第2状態は、第1水平フラップ35a1が吹出口39bの第1部分39b1を閉じる姿勢を取っている状態であった。しかし、第2状態における第1水平フラップ35a1は、吹出口39bの第1部分39b1を閉じる状態に近い姿勢を取っていてもよい。
 なお、「閉じる状態に近い姿勢」とは、例えば、「開く姿勢」の開口度合いの20%以下の開口度合いを有する姿勢である。
 第1水平フラップ35a1及び第2水平フラップ35a2が、少しでも開いた姿勢を取ることにより、第1水平フラップ35a1及び第2水平フラップ35a2の周りに室内ファン32による風が流れるため、室内機3は、第1水平フラップ35a1及び第2水平フラップ35a2の表面に結露が生じることを緩和することができる。
 (5-3)変形例1C
 本実施形態では、室内機3は、吹出口39bに2つの水平フラップ(開閉部材)を設置して、開閉制御を行った。しかし、室内機3は、吹出口39bに3つ以上の水平フラップ(開閉部材)を設置して、開閉制御を行ってもよい。
 その結果、室内機3は、室内ファン32の所定の回転数を第1下限値に保ったまま、吹出口39bから吹き出る空気の風量を、細かく調整することができる。
 (5-4)変形例1D
 本実施形態では、室内機3は、圧縮機21を一時停止した後、室内ファン32の回転数を下げる場合に、開閉制御を行った。しかし、室内機3は、圧縮機21を一時停止する前に、室内ファン32の回転数を下げておく場合に、開閉制御を行ってもよい。
 (5-5)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 3    室内機(送風装置)
 32   室内ファン(ファン)
 39   ケーシング
 35a1 第1水平フラップ(第1開閉部材)
 35a2 第2水平フラップ(第2開閉部材)
 39b  吹出口
 39b1 第1部分
 39b2 第2部分
 62   室内制御部(制御部)
特開平08-136038

Claims (4)

  1.  回転軸に沿った第1方向に長く延びる回転体、を有する、ファン(32)と、
     前記ファンを収容し、前記ファンによる空気を吹き出す吹出口(39b)、が形成された、ケーシング(39)と、
     前記吹出口の第1部分(39b1)を開閉する、第1開閉部材(35a1)と、
     前記吹出口の第2部分(39b2)を開閉する、第2開閉部材(35a2)と、
     前記第1開閉部材ならびに前記第2開閉部材の開閉制御を行う、制御部(62)と、
    を備え、
     前記第1開閉部材と前記第2開閉部材とが前記第1方向に並んでおり、
     前記制御部は、
    前記吹出口から吹き出す空気の風量を下げる必要がある場合、
    前記第1開閉部材が前記吹出口の前記第1部分を開く姿勢を取っており、前記第2開閉部材が前記吹出口の前記第2部分を閉じる姿勢あるいは閉じる状態に近い姿勢を取っている、第1状態、
    になるように、前記開閉制御を行う、
    送風装置(3)。
  2.  前記第1状態における前記第2開閉部材は、前記吹出口の前記第2部分を閉じる状態に近い姿勢を取っている、
    請求項1に記載の送風装置(3)。
  3.  前記制御部は、
    前記第1状態と、
    前記第1開閉部材が前記吹出口の前記第1部分を閉じる姿勢あるいは閉じる状態に近い姿勢を取っており、前記第2開閉部材が前記吹出口の前記第2部分を開く姿勢を取っている、第2状態と、
    を繰り返すように前記開閉制御を行う、
    請求項1に記載の送風装置(3)。
  4.  前記制御部は、前記ファンの回転数が所定の下限値に達した後、さらに前記吹出口から吹き出す空気の風量を下げる必要がある場合に、前記開閉制御を行う、
    請求項1から3のいずれか1つに記載の送風装置(3)。
PCT/JP2022/002909 2021-01-29 2022-01-26 送風装置 WO2022163711A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280011757.3A CN116802440A (zh) 2021-01-29 2022-01-26 送风装置
EP22745930.2A EP4286763A4 (en) 2021-01-29 2022-01-26 BLOWER DEVICE
US18/227,462 US20230366582A1 (en) 2021-01-29 2023-07-28 Air blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013344 2021-01-29
JP2021013344A JP7252480B2 (ja) 2021-01-29 2021-01-29 送風装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/227,462 Continuation US20230366582A1 (en) 2021-01-29 2023-07-28 Air blower

Publications (1)

Publication Number Publication Date
WO2022163711A1 true WO2022163711A1 (ja) 2022-08-04

Family

ID=82654530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002909 WO2022163711A1 (ja) 2021-01-29 2022-01-26 送風装置

Country Status (5)

Country Link
US (1) US20230366582A1 (ja)
EP (1) EP4286763A4 (ja)
JP (1) JP7252480B2 (ja)
CN (1) CN116802440A (ja)
WO (1) WO2022163711A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115875835A (zh) * 2022-10-17 2023-03-31 青岛海尔空调器有限总公司 空调及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664246A (en) * 1979-10-29 1981-06-01 Matsushita Electric Ind Co Ltd Changing device for injected air direction
JPH05196292A (ja) * 1992-01-17 1993-08-06 Toshiba Corp 空気調和装置
JPH08136038A (ja) 1994-11-09 1996-05-31 Daikin Ind Ltd ヒートポンプ式空気調和機
JP2001116327A (ja) * 1999-10-12 2001-04-27 Matsushita Electric Ind Co Ltd 空気調和機の風向制御方法
JP2001227805A (ja) * 2000-02-18 2001-08-24 Matsushita Electric Ind Co Ltd 空気調和機の送風ファン制御方法
CN211345519U (zh) * 2019-12-06 2020-08-25 青岛海尔空调器有限总公司 一种壁挂式空调器的导风结构及壁挂式空调器
CN211822783U (zh) * 2020-02-26 2020-10-30 青岛海尔空调器有限总公司 壁挂式空调室内机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268668B2 (ja) 2009-01-16 2013-08-21 三菱電機株式会社 空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664246A (en) * 1979-10-29 1981-06-01 Matsushita Electric Ind Co Ltd Changing device for injected air direction
JPH05196292A (ja) * 1992-01-17 1993-08-06 Toshiba Corp 空気調和装置
JPH08136038A (ja) 1994-11-09 1996-05-31 Daikin Ind Ltd ヒートポンプ式空気調和機
JP2001116327A (ja) * 1999-10-12 2001-04-27 Matsushita Electric Ind Co Ltd 空気調和機の風向制御方法
JP2001227805A (ja) * 2000-02-18 2001-08-24 Matsushita Electric Ind Co Ltd 空気調和機の送風ファン制御方法
CN211345519U (zh) * 2019-12-06 2020-08-25 青岛海尔空调器有限总公司 一种壁挂式空调器的导风结构及壁挂式空调器
CN211822783U (zh) * 2020-02-26 2020-10-30 青岛海尔空调器有限总公司 壁挂式空调室内机

Also Published As

Publication number Publication date
EP4286763A4 (en) 2024-06-05
US20230366582A1 (en) 2023-11-16
CN116802440A (zh) 2023-09-22
EP4286763A1 (en) 2023-12-06
JP7252480B2 (ja) 2023-04-05
JP2022116916A (ja) 2022-08-10

Similar Documents

Publication Publication Date Title
JP5281373B2 (ja) 空気調和機およびその制御方法
KR101070186B1 (ko) 냉매 흐름량 변화에 따른 송풍기 풍량 자동 제어 장치를 구비한 직접팽창방식 공조기
US7624587B2 (en) Multi-stage operation type air conditioner
JP5244411B2 (ja) 空気調和機の省エネ運転方法および空気調和機
WO2022163711A1 (ja) 送風装置
JP2012102926A (ja) 空気調和装置
EP1674807A2 (en) Air conditioner
JPH0432634A (ja) 空気調和機
JP6918221B2 (ja) 空気調和機
KR20060012837A (ko) 멀티 에어컨 시스템 및 멀티 에어컨 시스템의 운전방법
KR100784840B1 (ko) 루버부를 구비한 공기조화기
KR101029988B1 (ko) 직접팽창방식 공조기의 냉매 흐름량 변화에 따른 송풍기 풍량 자동 제어 방법
WO2022239397A1 (ja) 室内機
WO2020213656A1 (ja) 空気調和システム
JP2008157503A (ja) 空気調和装置
JP7216309B2 (ja) 空気調和装置
WO2022163624A1 (ja) 暖房装置
JPH074686A (ja) 空気調和機
JP6745895B2 (ja) 空調システム
KR101116209B1 (ko) 다단 운전 공기 조화기
JP7406124B2 (ja) 空気調和装置
JPH10185280A (ja) 空気調和装置
JP2001201155A (ja) 空気調和機の制御装置
KR100597954B1 (ko) 에어컨 실내기의 토출구 이중 차단구조
JP2022172985A (ja) 空気調和装置の室内機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011757.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745930

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745930

Country of ref document: EP

Effective date: 20230829