WO2022163582A1 - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
WO2022163582A1
WO2022163582A1 PCT/JP2022/002441 JP2022002441W WO2022163582A1 WO 2022163582 A1 WO2022163582 A1 WO 2022163582A1 JP 2022002441 W JP2022002441 W JP 2022002441W WO 2022163582 A1 WO2022163582 A1 WO 2022163582A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge ring
plasma processing
annular member
substrate support
ring
Prior art date
Application number
PCT/JP2022/002441
Other languages
French (fr)
Japanese (ja)
Inventor
信峰 佐々木
徹治 佐藤
伸 松浦
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022163582A1 publication Critical patent/WO2022163582A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to a plasma processing apparatus.
  • Patent Document 1 discloses a substrate processing apparatus in which a substrate is placed in a processing chamber, a focus ring is placed so as to surround the substrate, and plasma processing is performed on the substrate.
  • This substrate processing apparatus includes a mounting table provided with a susceptor having a substrate mounting surface on which a substrate is mounted and a focus ring mounting surface on which a focus ring is mounted.
  • the substrate processing apparatus disclosed in Patent Document 1 includes lifter pins and a transfer arm.
  • the lifter pins are provided on the mounting table so as to protrude from the focus ring mounting surface, lift the focus ring together with the positioning pins, and detach from the focus ring mounting surface.
  • the transfer arm is provided outside the processing chamber, and exchanges the focus ring with the positioning pin attached to and from the lifter pin through the loading/unloading port provided in the processing chamber.
  • the technique according to the present disclosure determines the positional deviation of the annular member without increasing the size of the plasma processing apparatus.
  • One aspect of the present disclosure includes a plasma processing chamber, a substrate support disposed within the plasma processing chamber, and an annular substrate disposed on the substrate support to surround a substrate on the substrate support and having a lower surface.
  • an annular member the lower surface of the annular member having a recess, the recess having an inclined surface inclined with respect to a longitudinal direction; an elevating member capable of contacting the recess;
  • a driving unit configured to vertically move the elevating member relative to the substrate support; and configured to detect a first parameter related to the load of the driving unit.
  • a first detection unit configured to detect a second parameter related to the movement amount of the lifting member; and a control unit, wherein the control unit detects the first parameter based on the first parameter.
  • the positional deviation of the annular member can be determined without increasing the size of the plasma processing apparatus.
  • FIG. 1 is a plan view showing an outline of the configuration of a plasma processing system according to a first embodiment;
  • FIG. It is a longitudinal cross-sectional view showing the outline of a structure of a processing module.
  • It is a longitudinal cross-sectional view showing the outline of a structure of a processing module.
  • It is a top view of a wafer support.
  • 4 is a partially enlarged view of FIG. 3;
  • FIG. FIG. 4 is a diagram for explaining the principle of determination of positional deviation of edge rings;
  • FIG. 4 is a functional block diagram of a control device for determination of positional deviation of an edge ring;
  • 8 is a flowchart showing an example of an edge ring mounting process including a positional deviation determination process of the edge ring.
  • FIG. 10 is a diagram for explaining another example of the lifting member;
  • FIG. 10 is a diagram for explaining another example of the lifting member;
  • FIG. 10 is a diagram for explaining another example of the recess of the edge ring;
  • FIG. 10 is a diagram for explaining another example of the recess of the edge ring;
  • FIG. 11 is a diagram for explaining another example of edge rings;
  • FIG. 11 is a diagram for explaining another example of edge rings;
  • FIG. 10 is a diagram for explaining another example of the lifting member;
  • FIG. 16 is a top view of the wafer support when using the elevating member of FIG. 15;
  • FIG. 10 is a diagram for explaining another example of the fixing portion of the edge ring;
  • FIG. 10 is a diagram for explaining another example of the fixing portion of the edge ring;
  • FIG. 10 is a diagram for explaining another example of the fixing portion of the edge ring;
  • FIG. 10 is a diagram for explaining another example of the fixing portion of the edge ring;
  • FIG. 10 is a diagram for explaining another example of the fixing portion of the edge ring; It is a figure which shows the other example of an edge ring and a raising/lowering member.
  • FIG. 11 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support in the plasma processing apparatus according to the second embodiment;
  • FIG. 11 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support in the plasma processing apparatus according to the third embodiment;
  • FIG. 11 is a partially enlarged cross-sectional view showing an outline of the configuration around a wafer support in a plasma processing apparatus according to a fourth embodiment;
  • FIG. 11 is a partially enlarged cross-sectional view showing an outline of the configuration around a wafer support in a plasma processing apparatus according to a fifth embodiment;
  • plasma processing such as etching and film formation is performed using plasma on substrates such as semiconductor wafers (hereinafter referred to as "wafers").
  • substrates such as semiconductor wafers (hereinafter referred to as "wafers").
  • Plasma processing is performed in a state where a substrate is placed on a substrate support table in a decompressed processing chamber.
  • an annular ring in plan view called a focus ring, edge ring, etc. is provided so as to surround the periphery of the substrate on the substrate support table.
  • a member hereinafter referred to as "edge ring" may be placed.
  • the edge ring when the edge ring is replaced by using a transport device for transporting the edge ring, the edge ring may be placed on the substrate support table by the transport device.
  • the transfer arm of the transfer device supporting the edge ring enters from outside the processing chamber of the substrate processing apparatus into the processing chamber, and the edge ring is placed on the lift pins rising above the substrate support table, After that, the transfer arm is withdrawn from the processing chamber. Then, the lifting pins are lowered and the edge ring on the lifting pins is placed on the substrate support.
  • the accuracy required for placing the edge ring on the substrate support is on the order of ⁇ m (for example, 50 ⁇ m to 200 ⁇ m), and a large optical system or the like is required to determine the positional deviation with this accuracy. necessary.
  • the method using a camera requires an illumination device or the like for illuminating the imaging area of the camera. Therefore, when using the positional deviation of the edge ring using the camera as described above, the plasma processing apparatus becomes large.
  • a method of determining the positional deviation of the edge ring a method of disposing a sensor for the position of the edge ring on the substrate support and using this sensor is conceivable. As described above, the plasma processing apparatus may become large in size.
  • an annular member called a cover ring may be arranged to cover the circumferential outer surface of the edge ring, and the cover ring may be placed on the substrate support table by a transfer device. This case also has the same problem as the configuration using only the edge ring.
  • the technique according to the present disclosure determines the positional deviation of the annular member without increasing the size of the plasma processing apparatus.
  • FIG. 1 is a plan view showing the outline of the configuration of the plasma processing system according to the first embodiment.
  • plasma processing such as etching is performed on a wafer W as a substrate using plasma.
  • the plasma processing system 1 has an atmosphere section 10 and a decompression section 11, and the atmosphere section 10 and the decompression section 11 are integrally connected via load lock modules 20 and 21.
  • the atmospheric part 10 includes an atmospheric module that performs desired processing on the wafer W under atmospheric pressure.
  • the decompression unit 11 includes a processing module 60 that performs desired processing on the wafer W under a decompressed atmosphere (vacuum atmosphere).
  • the load lock modules 20 and 21 are provided to connect the loader module 30 included in the atmosphere section 10 and the transfer module 50 included in the decompression section 11 via gate valves (not shown).
  • the load lock modules 20, 21 are configured to hold the wafer W temporarily. Further, the load lock modules 20 and 21 are configured so that the inside can be switched between an atmospheric pressure atmosphere and a reduced pressure atmosphere.
  • the atmospheric part 10 has a loader module 30 equipped with a transport device 40, which will be described later, and a load port 32 on which FOUPs 31a and 31b are placed.
  • a plurality of wafers W can be stored in the FOUP 31a, and a plurality of edge rings F can be stored in the FOUP 31b.
  • the loader module 30 is connected to an orienter module (not shown) for adjusting the horizontal orientation of the wafer W and the edge ring F, a buffer module (not shown) for temporarily storing a plurality of wafers W, and the like. may have been
  • the loader module 30 has a rectangular housing, and the inside of the housing is maintained at atmospheric pressure.
  • a plurality of, for example, five load ports 32 are arranged side by side on one side surface that constitutes the long side of the housing of the loader module 30 .
  • Load-lock modules 20 and 21 are arranged side by side on the other side surface constituting the long side of the housing of the loader module 30 .
  • a transport device 40 configured to transport both the wafer W and the edge ring F is provided inside the housing of the loader module 30 .
  • the transfer device 40 has a transfer arm 41 that supports the wafer W or the edge ring F during transfer, a turntable 42 that rotatably supports the transfer arm 41, and a base 43 on which the turntable 42 is mounted.
  • a guide rail 44 extending in the longitudinal direction of the loader module 30 is provided inside the loader module 30 .
  • the base 43 is provided on guide rails 44 , and the conveying device 40 is configured to be movable along the guide rails 44 .
  • the decompression unit 11 has a transfer module 50 for transferring the wafer W and the edge ring F, and a processing module 60 as a plasma processing apparatus for performing desired plasma processing on the wafer W transferred from the transfer module 50 .
  • the interiors of the transfer module 50 and the processing module 60 (specifically, the interiors of the depressurized transfer chamber 51 and the plasma processing chamber 100 to be described later) are maintained in a depressurized atmosphere.
  • a plurality of, for example eight, processing modules 60 are provided for one transfer module 50 .
  • the number and arrangement of the processing modules 60 are not limited to those of this embodiment, and can be set arbitrarily.
  • the transfer module 50 includes a reduced pressure transfer chamber 51 having a polygonal (pentagonal in the illustrated example) housing, and the reduced pressure transfer chamber 51 is connected to the load lock modules 20 and 21 .
  • the transfer module 50 transfers the wafer W loaded into the load lock module 20 to one processing module 60, and transfers the wafer W, which has undergone desired plasma processing in the processing module 60, through the load lock module 21. It is carried out to the atmospheric part 10 . Further, the transfer module 50 transfers the edge ring F carried into the load lock module 20 to one processing module 60, and transfers the edge ring F to be replaced in the processing module 60 to the atmosphere through the load lock module 21. It is carried out to the part 10.
  • the processing module 60 performs plasma processing such as etching on the wafer W, for example. Also, the processing module 60 is connected to the transfer module 50 via a gate valve 61 . The configuration of this processing module 60 will be described later.
  • a transfer device 70 configured to transfer both the wafer W and the edge ring F is provided inside the reduced-pressure transfer chamber 51 of the transfer module 50.
  • the transfer device 70 like the transfer device 40 described above, includes a transfer arm 71 that supports the wafer W or the edge ring F during transfer, a turntable 72 that rotatably supports the transfer arm 71, and a base on which the turntable 72 is mounted. a platform 73;
  • a guide rail 74 extending in the longitudinal direction of the transfer module 50 is provided inside the reduced-pressure transfer chamber 51 of the transfer module 50 .
  • the base 73 is provided on guide rails 74 , and the transport device 70 is configured to be movable along the guide rails 74 .
  • the transfer arm 71 receives the wafer W or the edge ring F held in the load lock module 20 and carries it into the processing module 60 . Also, the transfer arm 71 receives the wafer W or the edge ring F held in the processing module 60 and unloads it to the load lock module 21 .
  • controller 80 processes computer-executable instructions that cause plasma processing system 1 to perform various operations described in this disclosure. Controller 80 may be configured to control each of the other elements of plasma processing system 1 to perform the various processes described herein. In one embodiment, some or all of controller 80 may be included in other elements of plasma processing system 1 . Controller 80 may include computer 90, for example.
  • the computer 90 may include a processing unit (CPU: Central Processing Unit) 91, a storage unit 92, and a communication interface 93, for example.
  • the processing unit 91 can be configured to perform various control operations based on programs stored in the storage unit 92 .
  • the storage unit 92 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof.
  • the communication interface 93 may communicate with other elements of the plasma processing system 1 via a communication line such as a LAN (Local Area Network).
  • the wafer W is taken out from the desired FOUP 31 a by the carrier device 40 and carried into the load lock module 20 . After that, the inside of the load lock module 20 is sealed and the pressure is reduced. After that, the inside of the load lock module 20 and the inside of the transfer module 50 are communicated.
  • the wafer W is held by the transfer device 70 and transferred from the load lock module 20 to the transfer module 50 .
  • the gate valve 61 is opened, and the wafer W is carried into the desired processing module 60 by the transfer device 70 . After that, the gate valve 61 is closed, and the wafer W is subjected to desired processing in the processing module 60 .
  • the processing performed on the wafer W in this processing module 60 will be described later.
  • the gate valve 61 is opened, and the wafer W is unloaded from the processing module 60 by the carrier device 70 . After that, the gate valve 61 is closed.
  • the wafer W is carried into the load lock module 21 by the carrier device 70 .
  • the inside of the load lock module 21 is sealed and opened to the atmosphere. After that, the inside of the load lock module 21 and the inside of the loader module 30 are communicated with each other.
  • the wafer W is held by the transfer device 40 and returned from the load lock module 21 via the loader module 30 to the desired FOUP 31a for storage.
  • a series of wafer processing in the plasma processing system 1 is now completed.
  • edge ring F between the FOUP 31b and the desired processing module 60 during the exchange of the edge ring F is the same as that between the FOUP 31a and the desired processing module 60 during the wafer processing described above. It is performed in the same manner as the transfer of the wafer W.
  • FIG. 2 and 3 are vertical cross-sectional views showing an outline of the configuration of the processing module 60.
  • FIG. 2 shows a portion corresponding to the AA section of FIG. 4
  • FIG. 3 shows a portion corresponding to the BB section of FIG.
  • FIG. 4 is a top view of a wafer support table 101 which will be described later.
  • 5 is a partially enlarged view of FIG. 3.
  • FIG. 3 is a vertical cross-sectional views showing an outline of the configuration of the processing module 60.
  • FIG. 2 shows a portion corresponding to the AA section of FIG. 4
  • FIG. 3 shows a portion corresponding to the BB section of FIG.
  • FIG. 4 is a top view of a wafer support table 101 which will be described later.
  • 5 is a partially enlarged view of FIG. 3.
  • FIG. 3 is a partially enlarged view of FIG. 3.
  • the processing module 60 includes a plasma processing chamber 100 as a processing container, a gas supply section 130, an RF (Radio Frequency) power supply section 140 and an exhaust system 150. Further, processing module 60 includes wafer support 101 and upper electrode 102 .
  • the wafer support table 101 is arranged in the lower region of the plasma processing space 100s in the plasma processing chamber 100 configured to be depressurized.
  • a top electrode 102 is positioned above the wafer support 101 and may serve as part of the ceiling of the plasma processing chamber 100 .
  • the wafer support table 101 is configured to support the wafer W in the plasma processing space 100s.
  • the wafer support 101 includes a lower electrode 103, an electrostatic chuck 104 as a substrate support, an insulator 105, a lifter L1 and a lifter L2, as shown in FIG.
  • wafer support 101 may include a temperature control module configured to control at least one of electrostatic chuck 104 and wafer W to a target temperature.
  • the temperature control module may include heaters, channels, or a combination thereof.
  • a temperature control fluid such as a refrigerant or a heat transfer gas flows through the flow path.
  • the lower electrode 103 is made of a conductive material such as aluminum. In one embodiment, the temperature control module described above may be provided in the lower electrode 103 .
  • An electrostatic chuck 104 is provided on the lower electrode 103 .
  • a wafer W is mounted on the electrostatic chuck 104, and an edge ring F as an annular member is mounted so as to surround the mounted substrate.
  • the electrostatic chuck 104 attracts and holds both the wafer W and the edge ring F by electrostatic force.
  • the upper surface of the central portion is formed higher than the upper surface of the peripheral portion.
  • a central upper surface 104a of the electrostatic chuck 104 is a wafer mounting surface 104a on which the wafer W is mounted.
  • An upper surface 104b of the peripheral portion of the electrostatic chuck 104 is a ring mounting surface 104b on which an edge ring F as an annular member is mounted.
  • the edge ring F is an annular member arranged on the electrostatic chuck 104 so as to surround the wafer W placed on the upper surface 104 a of the central portion of the electrostatic chuck 104 . Further, Si or SiC, for example, is used as the material of the edge ring F. As shown in FIG.
  • An electrode 108 is provided at the center of the electrostatic chuck 104 to hold the wafer W by electrostatic attraction.
  • An electrode 109 is provided on the peripheral portion of the electrostatic chuck 104 as a fixing portion for fixing the edge ring F to the electrostatic chuck 104 .
  • the electrode 109 holds the wafer W by electrostatic attraction.
  • the electrostatic chuck 104 has a configuration in which electrodes 108 and 109 are sandwiched between insulating materials made of an insulating material.
  • a DC voltage is applied to the electrode 108 from a DC power supply (not shown).
  • the wafer W is attracted and held on the upper surface 104 a of the electrostatic chuck 104 at the central portion by the electrostatic force generated thereby.
  • electrode 109 is applied with a DC voltage from a DC power supply (not shown).
  • the edge ring F is attracted and held on the upper surface 104b of the peripheral portion of the electrostatic chuck 104 by the electrostatic force generated thereby.
  • the electrodes 109 are, for example, bipolar, including a pair of electrodes 109a, 109b.
  • the central portion of the electrostatic chuck 104 where the electrode 108 is provided and the peripheral portion where the electrode 109 is provided are integrated, but the central portion and the peripheral portion may be separate bodies.
  • the electrode 109 for attracting and holding the edge ring F is of the bipolar type, but may be of the unipolar type.
  • the central portion of the electrostatic chuck 104 is formed, for example, to have a smaller diameter than the diameter of the wafer W, and as shown in FIG. A peripheral portion of W protrudes from the central portion of the electrostatic chuck 104 .
  • the edge ring F has a step formed on its upper portion, and the upper surface of the outer peripheral portion is formed higher than the upper surface of the inner peripheral portion.
  • the inner peripheral portion of the edge ring F is formed so as to go under the peripheral portion of the wafer W projecting from the central portion of the electrostatic chuck 104 . That is, the edge ring F has an inner diameter smaller than the outer diameter of the wafer W. As shown in FIG.
  • gas supply holes are formed in the wafer mounting surface 104a of the electrostatic chuck 104 in order to supply a heat transfer gas to the back surface of the wafer W mounted on the wafer mounting surface 104a.
  • a heat transfer gas is supplied from a gas supply section (not shown) through the gas supply holes.
  • a gas supply may include one or more gas sources and one or more pressure controllers.
  • the gas supply is configured to supply heat transfer gas, for example from a gas source, to the heat transfer gas supply holes via a pressure controller.
  • the insulator 105 is a cylindrical member made of ceramic or the like, and supports the lower electrode 103 .
  • the insulator 105 is formed, for example, to have an outer diameter equal to the outer diameter of the lower electrode 103 and supports the periphery of the lower electrode 103 .
  • the lifter L ⁇ b>1 is a member that moves up and down so as to project from the wafer mounting surface 104 a of the electrostatic chuck 104 .
  • the lifter L1 has lifter pins 106 made of, for example, ceramics and formed in a columnar shape. As shown in FIG. 4, there are three or more lifter pins 106 spaced apart from each other in the circumferential direction of the electrostatic chuck 104, specifically along the circumferential direction of the wafer mounting surface 104a. books) are provided.
  • the lifter pins 106 are provided, for example, at regular intervals along the circumferential direction.
  • the lifter pins 106 are provided to extend vertically, as shown in FIG.
  • the lifter pins 106 are connected to an elevating mechanism 110 that elevates the lifter pins 106 .
  • the elevating mechanism 110 has, for example, a support member 111 that supports the plurality of lifter pins 106, and a driving unit 112 that drives elevation of the plurality of lifter pins 106 (specifically, elevation of the support member 111).
  • the drive unit 112 has, for example, a motor (not shown) as a drive unit that generates a driving force for the above-described elevation.
  • the lifter pins 106 are inserted through the through holes 113 extending downward from the wafer mounting surface 104 a of the electrostatic chuck 104 to the bottom surface of the lower electrode 103 .
  • the through hole 113 is formed so as to penetrate the central portion of the electrostatic chuck 104 and the lower electrode 103 .
  • the lifter L2 is a member that moves up and down so as to protrude from the ring mounting surface 104b of the electrostatic chuck 104.
  • the lifter L2 has lifter pins 107 made of, for example, alumina, quartz, SUS, or the like and formed in a columnar shape.
  • three or more lifter pins 107 are spaced apart from each other along the circumferential direction of the electrostatic chuck 104, that is, along the circumferential direction of the wafer mounting surface 104a and the ring mounting surface 104b. Three in the example) are provided.
  • the lifter pins 107 are provided, for example, at regular intervals along the circumferential direction.
  • the lifter pins 107 are provided to extend vertically, as shown in FIG.
  • the lifter pins 107 are connected to an elevating mechanism 114 that elevates the lifter pins 107 .
  • the elevating mechanism 114 has, for example, a support member 115 that supports the plurality of lifter pins 107, and a driving unit 116 that drives elevation of the plurality of lifter pins 107 (specifically, elevation of the support member 115).
  • the drive unit 116 has, for example, a motor (not shown) as a drive unit that generates a driving force for the above-described elevation.
  • the lifter pins 107 are inserted through the through holes 117 extending downward from the ring mounting surface 104 b of the electrostatic chuck 104 to the bottom surface of the lower electrode 103 .
  • the through-hole 117 is formed so as to penetrate the peripheral portion of the electrostatic chuck 104 and the lower electrode 103 .
  • the lifter pin 107 as described above is a transfer member that supports and raises and lowers the edge ring F in order to transfer the edge ring F between the processing module 60 and the transfer module 50 .
  • the lifter pin 107 is configured to support the lower surface of the edge ring F with its upper end surface.
  • the wafer support table 101 further includes an elevating member 118, as shown in FIG.
  • the lifting member 118 is a member that moves up and down with respect to the electrostatic chuck 104 and whose upper end contacts the edge ring F mounted on the ring mounting surface 104b.
  • the elevating members 118 are separated from each other along the circumferential direction of the electrostatic chuck 104, that is, along the circumferential direction of the wafer mounting surface 104a and the ring mounting surface 104b, as shown in FIG. Three or more (three in the example in the figure) are provided at intervals.
  • the elevating members 118 are, for example, provided at regular intervals along the circumferential direction. As will be described later, these elevating members 118 are used to determine the positional deviation of the edge ring F on the electrostatic chuck 104 .
  • the elevating member 118 is connected to an elevating mechanism 119 that elevates the elevating member 118, as shown in FIG.
  • the elevating mechanism 119 has, for example, a support member 120 provided for each elevating member 118 and supporting the elevating member 118 so as to be movable in the horizontal direction.
  • the support member 120 has, for example, a thrust bearing in order to support the lifting member 118 so as to be movable in the horizontal direction.
  • the lifting mechanism 119 has a drive unit 121 .
  • the drive unit 121 is configured to drive the elevation of the elevation member 118 (specifically, elevation of the support member 120), that is, to move the elevation member 118 in the vertical direction.
  • the drive unit 121 has, for example, a motor 122 as a drive unit that generates a driving force for the above-described elevation.
  • the drive unit 121 also has an encoder 123 connected to the motor 122 .
  • the encoder 123 is an example of a detection unit (second detection unit according to the present disclosure) configured to detect a parameter (second parameter according to the present disclosure) regarding the amount of movement of the lifting member 118 .
  • the encoder 123 detects, as the parameter, the number of pulses according to the amount of movement of the lifting member 118 by the motor 122 .
  • the encoder 123 then outputs the detection result to the control device 80 .
  • a torque detection unit 124 is provided for the drive unit 121 .
  • the torque detection unit 124 is a detection unit ( It is an example of a first detection unit according to the present disclosure.
  • the torque detection unit 124 detects, for example, a parameter related to the torque of the motor 122 as a parameter related to the load of the drive unit 121 . Torque detection unit 124 then outputs the detection result to control device 80 .
  • a torque sensor that actually detects the torque of the motor 122 may be used as the torque detection unit 124 . That is, the parameter related to the torque of the motor 122 may be the torque of the motor 122 itself. Furthermore, since the load acting on the lifting member 118 driven by the drive unit 121 corresponds to the load of the motor 122, a load sensor is provided to detect the load acting on the lifting member 118, and the detection result is used as the torque. may be used as a parameter detection result for
  • the elevating member 118 is inserted through an insertion hole 125 extending downward from the ring mounting surface 104 b of the electrostatic chuck 104 to the bottom surface of the lower electrode 103 , for example.
  • the insertion hole 125 is formed so as to penetrate the peripheral portion of the electrostatic chuck 104 and the lower electrode 103 .
  • the insertion hole 125 is formed with a positional accuracy higher than at least the conveying accuracy of the edge ring F by the conveying device 70 .
  • the insertion hole 125 penetrates the peripheral portion of the electrostatic chuck 104 and the lower electrode 103 .
  • the insertion hole 125 does not have to penetrate the peripheral portion of the electrostatic chuck 104 and the lower electrode 103 .
  • the elevating member 118 is made of alumina, quartz, SUS, or the like, for example.
  • the elevating member 118 is formed in a cylindrical shape except for the upper end, and the upper end is formed in a shape that gradually tapers upward.
  • the upper end of the lifting member 118 is formed, for example, in an n (n is an arbitrary integer equal to or greater than 2) rotational symmetry about an axis passing through the center of the top and the center of the bottom. It is formed in a straight cone shape as shown in .
  • the upper end portion of the lifting member 118 may be formed in a columnar shape with a uniform thickness in the vertical direction, or may gradually become thicker upward. It may be shaped.
  • the elevating member 118 When the elevating member 118 is raised, its upper end abuts the lower surface of the edge ring F mounted on the ring mounting surface 104b. Concave portions F1 that are recessed upward are formed at positions corresponding to the respective lifting members 118 on the lower surface of the edge ring F. As shown in FIG. For example, when the edge ring F is positioned optimally on the electrostatic chuck 104, the edge ring F is adjusted such that the center of the concave portion F1 and the center of the upper end of the lifting member 118 are aligned in plan view. The concave portion F1 and the upper end portion of the lifting member 118 are formed.
  • the size D of the opening of the concave portion F1 of the edge ring F in plan view is a size through which at least the tip of the upper end portion of the lifting member 118 can pass.
  • the size (diameter in this example) D of the opening of the recess F1 of the edge ring F is, for example, 0.5 to 3 mm.
  • the recess F1 has an inclined surface F1a that is inclined with respect to the vertical direction and the horizontal direction.
  • the recess F1 is formed, for example, so as to be recessed in a shape that gradually tapers upward, thereby forming an inclined surface F1a.
  • the recess F1 is formed so as to be recessed in an n (n is an arbitrary integer of 2 or more) rotational symmetry about an axis passing through the center of the top and the center of the bottom. It is formed so as to be recessed in a right conical shape as shown in FIG.
  • the recess F1 may be formed so as to be recessed in a columnar shape with a uniform thickness in the vertical direction, or may be formed so as to gradually become thicker upward. It may be formed in any shape.
  • the upper electrode 102 also functions as a showerhead that supplies one or more processing gases from the gas supply section 130 to the plasma processing space 100s.
  • the top electrode 102 has a gas inlet 102a, a gas diffusion chamber 102b, and multiple gas outlets 102c.
  • Gas inlet 102a is, for example, in fluid communication with gas supply 130 and gas diffusion chamber 102b.
  • a plurality of gas outlets 102c are in fluid communication with the gas diffusion chamber 102b and the plasma processing space 100s.
  • the upper electrode 102 is configured to supply one or more process gases from a gas inlet 102a to the plasma processing space 100s via a gas diffusion chamber 102b and a plurality of gas outlets 102c.
  • the gas supply 130 may include one or more gas sources 131 and one or more flow controllers 132 .
  • gas supply 130 is configured, for example, to supply one or more process gases from respective gas sources 131 through respective flow controllers 132 to gas inlets 102a. be done.
  • Each flow controller 132 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • gas supply 130 may include one or more flow modulation devices that modulate or pulse the flow of one or more process gases.
  • RF power supply 140 provides RF power, eg, one or more RF signals, to one or more electrodes, such as bottom electrode 103, top electrode 102, or both bottom electrode 103 and top electrode 102. configured to Thereby, plasma is generated from one or more processing gases supplied to the plasma processing space 100s.
  • RF power supply 140 may function as at least part of a plasma generator configured to generate a plasma from one or more process gases in a plasma processing chamber.
  • the RF power supply 140 includes, for example, two RF generators 141a, 141b and two matching circuits 142a, 142b.
  • RF power supply 140 is configured to supply a first RF signal from first RF generator 141a to bottom electrode 103 through first matching circuit 142a.
  • the first RF signal may have a frequency within the range of 27MHz-100MHz.
  • the RF power supply 140 is configured to supply a second RF signal from the second RF generator 141b to the lower electrode 103 via the second matching circuit 142b.
  • the second RF signal may have a frequency within the range of 400 kHz to 13.56 MHz.
  • a DC (Direct Current) pulse generator may be used instead of the second RF generator 141b.
  • RF power supply 140 provides a first RF signal from an RF generator to bottom electrode 103, a second RF signal from another RF generator to bottom electrode 103, and A third RF signal may be configured to be supplied to the lower electrode 103 from yet another RF generator.
  • a DC voltage may be applied to the top electrode 102 .
  • the amplitude of one or more RF signals may be pulsed or modulated.
  • Amplitude modulation may involve pulsing the RF signal amplitude between an on state and an off state, or between two or more different on states.
  • the exhaust system 150 may be connected to an exhaust port 100e provided at the bottom of the plasma processing chamber 100, for example.
  • Exhaust system 150 may include a pressure valve and a vacuum pump.
  • Vacuum pumps may include turbomolecular pumps, roughing pumps, or combinations thereof.
  • FIG. 6A and 6B are diagrams for explaining the principle of determining the positional deviation of the edge ring F.
  • FIG. The bottom surface of the edge ring F is formed with the concave portion F1 as described above. Therefore, depending on the degree of displacement of the edge ring F on the electrostatic chuck 104, the height of the lifting member 118 when the upper end portion of the lifting member 118 contacts the lower surface of the edge ring F (hereinafter referred to as "edge ring F) is different.
  • the contact height of the elevating member 118 with respect to the lower surface of the edge ring F is the maximum, as indicated by symbol H1 in FIG.
  • the contact height is lowered as indicated by H2.
  • the contact height becomes lower as indicated by symbol H3. That is, the contact height of the lifting member 118 with respect to the lower surface of the edge ring F changes according to the amount of deviation of the edge ring F from the optimum position on the electrostatic chuck 104 .
  • positional deviation of the edge ring F is determined based on the contact height of the lifting member 118 with respect to the lower surface of the edge ring F, as described below.
  • FIG. 7 is a functional block diagram of the control device 80 regarding determination of positional deviation of the edge ring F.
  • the control device 80 includes a fixed control unit 81, a drive control unit 82, a detection unit 83, and a determination unit, which are implemented by a processor such as a CPU reading and executing a program stored in a storage unit.
  • a portion 84 is provided.
  • the fixing control unit 81 controls fixing of the edge ring F to the electrostatic chuck 104 .
  • the fixation controller 81 controls the electrostatic adsorption of the edge ring F by the electrode 109 .
  • the fixing control unit 81 controls a DC power supply (not shown) that applies a DC voltage to the electrode 109, and holds the edge ring F to the electrostatic chuck 104 by electrostatic force. Adsorb and fix.
  • the drive control unit 82 controls the drive unit 121 that drives the lifting member 118 to move up and down. For example, when determining the positional deviation of the edge ring F, the drive control unit 82 controls the drive unit 121 to raise the elevating member 118 from the reference height while the edge ring F is fixed to the electrostatic chuck 104. I will let you.
  • the reference height is, for example, the position where the tip of the lifting member 118 and the ring mounting surface 104b match, or may be the height at which the lifting member 118 is most lowered, that is, the lowest height.
  • the detection unit 83 and the determination unit 84 determine whether the edge ring F moves relative to the electrostatic chuck 104 in the horizontal direction based on parameters related to the load of the drive unit 121 and parameters related to the movement amount of the lifting member 118 . and is configured to determine if there is misalignment.
  • the detection unit 83 detects contact between the lifting member 118 and the lower surface of the edge ring F (specifically, the recess F1). For example, when the detection unit 83 determines the positional deviation of the edge ring F, when the drive control unit 82 lifts the lifting member 118 while the edge ring F is fixed to the electrostatic chuck 104, the driving Contact between the lifting member 118 and the recessed portion F1 of the edge ring F is detected based on the detection result of the parameter related to the load of the portion 121 .
  • the parameters related to the load of the drive unit 121 are parameters related to the torque of the motor 122 detected by the torque detection unit 124, for example.
  • the detection unit 83 detects that the lifting member 118 is in contact with the recessed portion F1 of the edge ring F. It is determined that contact has occurred.
  • the threshold is stored in the storage unit 92 .
  • the determining unit 84 determines the positional deviation of the edge ring F on the electrostatic chuck 104 based on information corresponding to the contact height of the lifting member 118 with respect to the lower surface of the edge ring F. determines whether there is misalignment with respect to electrostatic chuck 104 . Specifically, based on a parameter relating to the amount of movement of the lifting member 118, the determining unit 84 determines whether the lifting member 118 is at a height corresponding to the contact height of the lifting member 118 with respect to the lower surface of the edge ring F from the above-described reference height. The amount of elevation of the lifting member 118 until it contacts the lower surface of the edge ring F (specifically, the concave portion F1) is determined.
  • the parameter related to the amount of movement of the lifting member 118 is, for example, the output (number of pulses) of the encoder 123 . Then, the determination unit 84 determines whether or not the edge ring F is misaligned with respect to the electrostatic chuck 104 in the horizontal direction based on the amount of rise and the predetermined threshold value. More specifically, when the amount of rise is less than the threshold, the determination unit 84 determines that the edge ring F is misaligned on the electrostatic chuck 104 (that is, the edge ring F is not mounted on the electrostatic chuck 104). position is not appropriate).
  • the threshold value is calculated based on, for example, the shape of the concave portion F1 of the edge ring F, the shape of the upper end portion of the lifting member 118, and information on the reference height, and is stored in the storage section 92.
  • the wafer W is loaded into the plasma processing chamber 100 and placed on the electrostatic chuck 104 by raising and lowering the lifter pins 106 . After that, a DC voltage is applied to the electrode 108 of the electrostatic chuck 104, whereby the wafer W is electrostatically attracted to and held by the electrostatic chuck 104 by electrostatic force. After loading the wafer W, the inside of the plasma processing chamber 100 is depressurized to a predetermined degree of vacuum by the exhaust system 150 .
  • a processing gas is supplied from the gas supply unit 130 to the plasma processing space 100 s through the upper electrode 102 .
  • high-frequency power HF for plasma generation is supplied from the RF power supply unit 140 to the lower electrode 103, thereby exciting the processing gas and generating plasma.
  • high-frequency power LF for attracting ions may be supplied from the RF power supply unit 140 .
  • the wafer W is subjected to plasma processing by the action of the generated plasma.
  • a heat transfer gas such as He gas or Ar gas is passed through a heat transfer gas supply path (not shown) toward the bottom surface of the wafer W and the edge ring F attracted and held by the electrostatic chuck 104 . Gas is supplied.
  • the supply of high-frequency power HF from the RF power supply unit 140 and the supply of processing gas from the gas supply unit 130 are stopped. If the high-frequency power LF is being supplied during the plasma processing, the supply of the high-frequency power LF is also stopped. Next, the electrostatic chuck 104 stops holding the wafer W by attraction. Also, the supply of the heat transfer gas to the bottom surface of the wafer W may be stopped.
  • the wafer W is lifted by the lifter pins 106 and detached from the electrostatic chuck 104 . During this detachment, the wafer W may be subjected to static elimination processing. Then, the wafer W is unloaded from the plasma processing chamber 100, and a series of wafer processing is completed.
  • FIG. 8 is a flow chart showing an example of this attachment process. Note that the following processing is performed under the control of the control device 80 .
  • Step S1 Conveyance and Placement of Edge Ring F
  • the edge ring F is transported to the processing module 60 to which the edge ring F is to be attached and placed on the electrostatic chuck 104 .
  • a loading/unloading port (not shown) is provided from the transfer module 50 in the vacuum atmosphere of the plasma processing system 1 into the depressurized plasma processing chamber 100 of the processing module 60 to which the edge ring F is attached.
  • the transfer arm 71 holding the edge ring F is inserted through the hole. Then, the edge ring F held by the transfer arm 71 is transferred to the transfer position above the ring mounting surface 104 b of the electrostatic chuck 104 .
  • the edge ring F is held by the transfer arm 71 with its circumferential orientation adjusted so that the concave portion F1 and the lifting member 118 can be aligned in a plan view.
  • the lifter pins 107 are lifted, and the edge ring F is transferred from the transfer arm 71 to the lifter pins 107 .
  • the transfer arm 71 is extracted from the plasma processing chamber 100 and the lifter pins 107 are lowered, whereby the edge ring F is placed on the ring placement surface 104 b of the electrostatic chuck 104 .
  • Step S2 Determination of positional deviation of edge ring F
  • Step S2a Fixing edge ring F
  • a DC voltage is applied to the electrode 109 under the control of the fixing control unit 81, and the edge ring F is attracted and fixed to the electrostatic chuck 104 by the electrostatic force generated thereby.
  • steps S2b to S2e are performed for each elevating member 118.
  • FIG. The processes of steps S2b to S2e described below may be performed simultaneously for all the lifting members 118, or may be performed for the lifting members 118 at different timings.
  • Step S2b Start of lifting of lifting member 118
  • the edge ring F fixed to the electrostatic chuck 104
  • all the lifting members 118 start to rise from the reference height under the control of the drive control unit 82 .
  • Step S2c Acquisition of torque of motor 122
  • the detection unit 83 acquires a parameter related to the torque of the motor 122 detected by the torque detection unit 124 .
  • Step S2d contact detection determination
  • the detection unit 83 detects the difference between the lifting member 118 and the lower surface of the edge ring F (specifically, the concave portion). It is determined whether contact with F1) has been detected. If the torque value of the motor 122 does not exceed the threshold, it is determined that contact between the lifting member 118 and the recessed portion F1 of the edge ring F has not been detected. In this case (NO), steps S2c and S2d are repeated.
  • Step S2e Stop lifting the lifting member 118
  • the torque value of the motor 122 exceeds the threshold, it is determined that contact between the lifting member 118 and the recessed portion F1 of the edge ring F has been detected. In this case (if YES), the elevation of the lifting member 118 is stopped under the control of the drive control section 82 .
  • Step S2f Determination of misalignment
  • the determination unit 84 determines the positional deviation of the edge ring F on the electrostatic chuck 104 . Specifically, the determining unit 84 outputs the amount of elevation of each lifting member 118 from the reference height until it contacts the concave portion F1 of the edge ring F from the encoder 123 corresponding to the lifting member 118. determined based on the number of pulses generated. Then, the determining unit 84 determines for each lifting member 118 whether or not the amount of rise is below a predetermined threshold value.
  • the edge ring F is out of position on the electrostatic chuck 104 . If it is determined that the positional deviation has not occurred (in the case of NO), the mounting process of the edge ring F ends.
  • Step S3 Position adjustment and re-mounting of edge ring F
  • the position of the edge ring F is adjusted and then placed on the electrostatic chuck 104 again.
  • the process of step S2 may be performed again.
  • the mounting position of the edge ring F on the electrostatic chuck 104 is adjusted. For example, all the lifting members 118 are lifted under the control of the drive control unit 82 , and the edge ring F is transferred from the electrostatic chuck 104 onto the lifting members 118 . After that, under the control of the drive control unit 82, all or some of the lifting members 118 are finely moved up and down, or the lifter pins 107 are lowered at different speeds, thereby adjusting the position of the edge ring F on the lifting member 118. is corrected. After correction, all the lifting members 118 are lowered under the control of the drive control unit 82, and the edge ring F is placed on the electrostatic chuck 104 again. Thereby, the mounting position of the edge ring F on the electrostatic chuck 104 can be adjusted.
  • step S2f the steps S2 and S3 may be repeated until it is determined in step S2f that the position of the edge ring F on the electrostatic chuck 104 has not occurred. If it is not determined in step S2f that the positional deviation has not occurred even after performing steps S2 and S3 a predetermined number of times, an error is reported via display means (not shown).
  • the position adjustment of the edge ring F is not limited to the first specific example described above.
  • the edge ring F is once returned from the electrostatic chuck 104 to the transfer arm 71 via the lifter pin 107, and then the transfer arm 71 is returned to the previous transfer. It is moved to a new transfer position shifted by a predetermined amount in a predetermined direction from the position. After that, the edge ring F is returned from the transfer arm 71 to the electrostatic chuck 104 via the lifter pins 107 . Also by this, the mounting position of the edge ring F on the electrostatic chuck 104 can be adjusted.
  • step S2 may be performed again after the process of step S3.
  • step S3 may be performed again and the transfer position may be shifted again by a predetermined amount in the same direction as step S3 previously performed. Then, step S2 may be further performed.
  • step S2f when it is determined in step S2f performed again that a positional deviation has occurred and the amount of elevation of the lifting member 118 obtained in step S2f has decreased, the degree of positional deviation of the edge ring F deteriorates. Therefore, the position adjustment of the edge ring F may be terminated, or the following may be performed. That is, if the transfer position P1 is displaced from the original transfer position P0 by a predetermined amount ⁇ p in the previous step S3, then in the next step S3, the transfer position P2 is shifted from the original transfer position It may be shifted from the position P0 by a predetermined amount ⁇ p in a direction different from the predetermined direction (for example, the opposite direction).
  • the transfer position of the edge ring F from the transfer arm 71 to the electrostatic chuck 104 is adjusted based on the determination result in step S2 using the parameter regarding the load of the drive unit 121 and the parameter regarding the movement amount of the lifting member 118.
  • the transport device 70 may be configured to adjust the position of the edge ring F with respect to the electrostatic chuck 104 based on the parameter regarding the load of the drive unit 121 and the parameter regarding the movement amount of the lifting member 118 .
  • the reference height is acquired as follows. That is, first, the edge ring F is placed on the electrostatic chuck 104 from the transfer arm 71 . At this time, by adjusting the circumferential orientation of the edge ring F before holding the edge ring F on the transfer arm 71, the concave portion F1 of the edge ring F and the lifting member 118 do not coincide with each other in plan view. and the upper end of the insertion hole 125 is closed with the edge ring F.
  • the elevating member 118 is raised from the lowermost height while the edge ring F is fixed. Then, when contact with the lower surface of the lifting member 118 is detected by the detection unit 83 based on the parameter related to the torque of the motor 122, it corresponds to the amount of movement of the lifting member 118 from the lowest lowered height to this contact height.
  • the output of the encoder 123 is acquired by the control device 80 and stored as the reference height.
  • the process of removing the edge ring F is carried out in reverse order to the process of step S1 in the process of attaching the edge ring F described above.
  • the edge ring F may be carried out from the plasma processing chamber 100 after the edge ring F is cleaned.
  • a camera or the like is not used. can be determined for the misalignment of the edge ring F at .
  • the edge ring F is fixed to the electrostatic chuck 104 when determining the positional deviation of the edge ring F, the lifting member 118 and the lower surface of the edge ring F ( Specifically, erroneous detection of contact with the concave portion F1) can be suppressed. Therefore, the positional deviation of the edge ring F on the electrostatic chuck 104 can be determined more accurately.
  • the edge ring F is fixed to the electrostatic chuck 104 when the positional deviation of the edge ring F is determined. can be prevented from shifting horizontally. Further, according to this embodiment, the positional deviation of the edge ring F can be determined without opening the plasma processing chamber 100 to the atmosphere. Therefore, it is possible to prevent the throughput of the processing module 60 from decreasing due to the determination of the positional deviation of the edge ring F.
  • the lifting member 118 is supported by the support member 120 so as to be horizontally movable. Therefore, when the electrostatic chuck 104 is deformed due to thermal expansion or thermal contraction, the elevating member 118 can move horizontally according to the deformation. Therefore, when the electrostatic chuck 104 is deformed due to thermal expansion or thermal contraction, it is possible to suppress an increase in the load on the drive unit 121 due to the deformation when the lifting member 118 is to be lifted. . As a result, erroneous detection of contact of the edge ring F of the lifting member 118 with the concave portion F1 can be suppressed, and positional deviation of the edge ring F on the electrostatic chuck 104 can be determined more accurately.
  • an elevating mechanism for elevating the elevating member 118 is provided for each elevating member 118 , but a common elevating mechanism may be provided for a plurality of elevating members 118 .
  • the lifting member 118 when the lifting member 118 is further driven to rise after the lifting member 118 contacts the recessed portion F1 of the edge ring F, the lifting member 118 moves along the lower surface of the edge ring F (specifically, the concave surface forming the recessed portion F1).
  • a guide (not shown) may be provided in the insertion hole 125 to regulate the moving direction of the lifting member 118 in the vertical direction.
  • at least one of the tip of the lifting member 118 and the concave surface forming the concave portion F1 may be roughened.
  • the contact between the lifting member 118 and the edge ring F when the lifting member 118 is lifted while the edge ring F is fixed to the electrostatic chuck 104 is used as a parameter related to the load of the driving unit 121. It is detected based on the detection result (specifically, the detection result of the parameter related to the torque of the motor 122).
  • the contact detection method is not limited to this.
  • a contact sensor for detecting contact with the lower surface of the edge ring F is provided at the upper end of the elevating member, and the contact between the elevating member 118 and the edge ring F is detected based on the detection result of this contact sensor. contact may be detected.
  • ⁇ Another example of lifting member> 9 and 10 are diagrams for explaining another example of the lifting member.
  • the upper end portion of the elevating member 118 is formed in the shape of a right cone. It may be formed in a hemispherical shape (including a semi-elliptical spherical shape) like the elevating member 118b. Both the truncated cone and the hemisphere have n (n is an arbitrary integer equal to or greater than 2) rotational symmetry about the axis passing through the center of the top and the center of the bottom, like the right cone.
  • the upper end portion of the lifting member 118 may be formed in a cone shape other than a right cone shape, a truncated cone shape other than a regular truncated cone shape, or a pyramid shape or a truncated pyramid shape. may be formed.
  • the recess F1 of the edge ring F is formed so as to be recessed in the shape of a right cone.
  • the recess Fa1 of the edge ring Fa in FIG. may be recessed in a hemispherical shape like the recess Fb1 of the edge ring Fb in FIG.
  • the recess F1 of the edge ring F may be recessed into a conical shape other than a right conical shape, a truncated conical shape other than a normal truncated conical shape, or a pyramid shape.
  • it may be formed to be recessed like a truncated pyramid.
  • ⁇ Other examples of edge rings> 13 and 14 are diagrams for explaining other examples of edge rings.
  • the portions of the lower surfaces of the edge rings F, Fa, and Fb in the above examples corresponding to the lifting member 118 are concave surfaces that form the concave portions F1, Fa1, and Fb1. It has both a surface that rises radially outward and a surface that rises radially inward when placed on the ring mounting surface 104b.
  • the shape of the portion corresponding to the lifting member 118 on the lower surface of the edge ring is not limited to the above example.
  • the shape of the portion corresponding to the lifting member 118 on the lower surface of the edge ring is such that the height of the lifting member 118 when the lifting member 118 abuts against the portion corresponds to the degree of misalignment of the edge ring on the electrostatic chuck 104 . may be formed differently depending on the By doing so, the degree of misalignment of the edge ring can be estimated from the lift amount of the elevating member 118 until it contacts the lower surface of the edge ring.
  • the portion of the lower surface of the edge ring Fc that corresponds to the lifting member 118 extends radially outward while the edge ring Fc is mounted on the ring mounting surface 161 of the electrostatic chuck 160. It is not necessary to have the inclined surface Fc1 that rises toward the inner side in the same radial direction.
  • the ring mounting surface 161 of the electrostatic chuck 160 is formed so as to be in close contact with, for example, a portion other than the portion corresponding to the lifting member 118 on the lower surface of the edge ring Fc.
  • the portion of the lower surface of the edge ring Fd corresponding to the lifting member 118 is radially inward when the edge ring Fd is mounted on the ring mounting surface 171 of the electrostatic chuck 170 . It may have the inclined surface Fd1 that rises toward the outer side in the radial direction and not have the inclined surface that rises toward the outer side in the radial direction.
  • the ring mounting surface 171 of the electrostatic chuck 170 is formed so as to be in close contact with, for example, a portion other than the portion corresponding to the lifting member 118 on the lower surface of the edge ring Fd.
  • edge ring position adjustment (specifically, placement position adjustment) in step S3 described above may be performed as follows.
  • the control device 80 controls the edge ring on the electrostatic chuck based on the amount of elevation until the edge ring lower surface of each lifting member 118 contacts the lower surface of the edge ring acquired in step S2f performed before this position adjustment. positional deviation direction and positional deviation amount are estimated. Based on these estimation results, the control device 80 adjusts and determines the transfer position, that is, the placement position of the transfer arm 71 so as to eliminate the positional deviation. Specifically, for example, if only one of the three elevating members 118 has a small amount of elevation obtained in step S2, the transfer position is adjusted so as to move away from the one elevating member 118. , if it is large, the transfer position is adjusted so as to approach the one lifting member 118 concerned. The amount of adjustment can be calculated based on the information about the inclination angle of the inclined surface of the lower surface of the edge ring (the inclined surfaces Fc1, Fd1, etc. in FIG. 13 or FIG. 14) and the amount of rise.
  • step S2 may or may not be performed again.
  • the position adjustment of the edge ring in step S3 may be performed as in specific examples 1 and 2 described above. Also, in the case of edge rings other than the edge rings shown in FIGS. 13 and 14, the position adjustment of the edge ring in step S3 may be performed as in the above specific example 3.
  • FIG. 15 is a diagram for explaining another example of the lifting member.
  • FIG. 16 is a top view of the wafer support when using the elevating member of FIG. 15.
  • FIG. The elevating member in the above example is provided separately from the lifter pin 107 that transfers the edge ring F to and from the transfer arm 71 .
  • the lifting member 180 in FIG. 15 also serves as the lifter pin 107 described above, and transfers the edge ring F to and from the transfer arm 71 .
  • the elevating member 180 is spaced three times along the circumferential direction of the electrostatic chuck 104, that is, along the circumferential direction of the wafer mounting surface 104a and the ring mounting surface 104b. More than this (three in the example of the figure) are provided. Note that only some of the plurality of lifting members 180 may also serve as the lifter pins 107 .
  • the elevating member also serves as a lifter, so that the processing module 60 can be manufactured at low cost.
  • the lifting member and the lifter such as the lifting member 118 shown in FIGS. 3 and 4
  • the following effects can be obtained. That is, even if the lifter, which has a high probability of failure due to a larger load than the lifter, fails, the lifter can still be used. It is possible to adopt an operation such as only replacing the edge ring using a lifter without performing the replacement.
  • the lifting member and its lifting mechanism adopt the optimum shape and configuration for judging the positional deviation of the edge ring, while the lifter and its lifting mechanism are used to transfer the edge ring. Optimum and configuration can be adopted.
  • ⁇ Another example of fixing portion of edge ring> 17 to 19 are diagrams for explaining other examples of the fixing portion of the edge ring.
  • the edge ring F is fixed to the electrostatic chuck 104 by electrostatic force generated by applying a DC voltage to the electrode 109 .
  • the electrode 109 is used as a fixing portion for fixing the edge ring F to the electrostatic chuck 104 .
  • the fixing portion for electrically fixing the edge ring F is not limited to fixing by electrostatic force, and may be fixed by Johnsen-Rahbek force.
  • the fixing portion is not limited to the one that electrically fixes as described above, and may be one that physically fixes, such as the clamp 190 in FIG. 17, for example.
  • the clamp 190 is fixed by sandwiching the edge ring F between the clamp 190 and the electrostatic chuck 104 .
  • the clamp 190 is configured to be movable between a clamping position and a retracted position described below.
  • the clamp position is the position where the edge ring F is sandwiched as described above, and the retracted position is the retracted position so as not to interfere with the transfer of the edge ring F between the transfer arm 71 and the electrostatic chuck 104 . position.
  • an adhesive sheet having adhesiveness is attached to at least one of the lower surface of the edge ring F and the ring mounting surface 104b of the electrostatic chuck 104, and the edge ring F is attached to the electrostatic chuck 104 by adhesive force. May be fixed.
  • an exhaust hole 191 for exhausting air between the edge ring Fh and the electrostatic chuck 104 may be provided.
  • Vent 191 is connected to an exhaust system (not shown).
  • This evacuation system includes, for example, a pressure valve and a vacuum pump, which includes, for example, a turbomolecular pump.
  • the insertion hole through which the lifting member 118 is inserted also serves as the exhaust hole 191 .
  • an exhaust hole 191 may be provided in the wafer support 101 in addition to the insertion hole.
  • the edge ring Fh can be fixed to the electrostatic chuck 104 by exhausting through the exhaust hole 191 so that the pressure between the edge ring Fh and the electrostatic chuck 104 is lower than the pressure in the plasma processing space 100s. .
  • annular groove Fh1 may be provided in a portion corresponding to the exhaust holes 191 on the lower surface of the edge ring Fh.
  • the annular groove Fh1 is, for example, recessed upward and formed in an annular shape in plan view.
  • the cross-sectional shape of the annular groove Fh1 is, for example, rectangular.
  • the recess F1 with which the lifting member 118 contacts is formed, for example, so as to be recessed upward from the top of the annular groove Fh1.
  • the depth D1 of the recess F1 is, for example, 0.5 to 1.0 mm.
  • the depth D2 of the annular groove Fh1 is, for example, 50 ⁇ m to 120 ⁇ m, more preferably 80 to 120 ⁇ m.
  • the shape of the annular groove Fh1 is not limited to the example shown in FIG.
  • it may have an inclined surface that is inclined with respect to the vertical direction and the horizontal direction.
  • the exhaust hole 191 In the case where the insertion hole through which the elevating member 118 is inserted also serves as the exhaust hole 191, or in the case where the exhaust hole 191 is provided separately from the insertion hole, when the wafer W is actually subjected to the etching process or the like, the exhaust gas is exhausted.
  • a heat transfer gas such as He gas may be supplied from the hole 191 between the edge ring Fh and the electrostatic chuck 104 .
  • fixing aspect of the edge ring Fh described above may also be used.
  • fixing via the exhaust hole 191 and another form of fixing for example, electrostatic adsorption using the electrode 109 may be used together.
  • FIG. 20 is a diagram showing another example of the edge ring and the elevating member.
  • the elevating member 118 contacts the lower surface of the edge ring F when protruding from the ring mounting surface 104b of the electrostatic chuck 104 .
  • a convex portion Fe1 projecting downward is formed in a portion corresponding to the lifting member on the lower surface thereof. It abuts on the lower surface of the edge ring F without protruding from the mounting surface 104b.
  • the convex portion Fe1 is formed, for example, in the shape of a right cone.
  • the positional deviation of the edge ring Fe can be determined based on the contact height of the lifting member with respect to the lower surface of the edge ring Fe.
  • the upper end portion of the lifting member may have a thin conical shape like the lifting member 118 shown in FIG. As shown, a concave portion 118c1 that is recessed downward may be formed on the upper surface.
  • FIG. 21 is a partially enlarged cross-sectional view showing an outline of the configuration around the wafer support 200 in the plasma processing apparatus according to the second embodiment.
  • the edge ring F is a replacement target and a positional deviation determination target
  • the cover ring C is a replacement target and a positional deviation determination target.
  • the cover ring C is an annular member that covers the circumferential outer surface of the edge ring Ff.
  • a wafer support 200 in FIG. 21 has a lower electrode 201 , an electrostatic chuck 202 , a support 203 , an insulator 204 and an elevating member 205 .
  • the lower electrode 103 and electrostatic chuck 104 shown in FIG. do not have. In this respect, the lower electrode 201 and electrostatic chuck 202 are different from the lower electrode 103 and electrostatic chuck 104 .
  • the support 203 is a member made of, for example, quartz and formed in a ring shape in a plan view, supports the lower electrode 201, and has the cover ring C mounted thereon.
  • An upper surface 203a of the support 203 serves as an annular member mounting surface on which a cover ring C as an annular member to be replaced and to be subjected to positional deviation determination is mounted. That is, the support 203 forms part of the substrate support.
  • the electrostatic chuck 202 and the support 203 constitute a substrate support.
  • the insulator 204 is a cylindrical member made of ceramic or the like, and supports the support 203 .
  • the insulator 204 is formed, for example, to have an outer diameter equal to that of the support 203 and supports the periphery of the support 203 .
  • the elevating member 118 shown in FIG. 3 and the like is inserted through the insertion hole 125 vertically penetrating the lower electrode 103 and the electrostatic chuck 104, whereas the elevating member 205 vertically moves the support 203 from the upper surface 203a. It is inserted through the through-hole 206 .
  • the lifting member 205 and the lifting member 118 are different. However, depending on the shape of the lifting member 205 , the insertion hole 206 may not pass through the support 203 .
  • the elevating member 205 is, for example, similar to the elevating member 180 in FIG. 15, a member used for determining positional deviation, and also serves as a lifter pin for transferring the cover ring C to and from the transport arm 71 when the cover ring C is replaced. Similarly to the lifting member 118 , three or more lifting members 205 are provided at intervals along the circumferential direction of the electrostatic chuck 202 .
  • the lifting member 205 is provided with a lifting mechanism having a drive unit for driving the lifting member 205 to move up and down, like the lifting member 118.
  • the lifting mechanism includes a drive unit such as a motor. and an encoder are provided, and a torque detector is also provided.
  • the upper end of the elevating member 205 is formed in the same shape as the elevating member exemplified above, such as a hemispherical shape.
  • the upper end of the lifting member 205 supports the lower surface of the cover ring C when the cover ring C is replaced. Further, the upper end of the elevating member 205 abuts on the lower surface of the cover ring C when the elevating member 205 is lifted during the determination of the positional deviation of the cover ring C.
  • Concave portions C ⁇ b>1 that are recessed upward are formed at positions corresponding to the lifting members 205 on the lower surface of the cover ring C. As shown in FIG.
  • the size of the opening of the concave portion C1 of the cover ring C in plan view is such that at least the tip of the upper end portion of the lifting member 205 can pass through.
  • the concave portion C1 is formed in the same shape as the concave portion of the edge ring exemplified above, for example, a right conical shape.
  • the lower surface of the edge ring Ff is a flat surface that is entirely horizontal when the edge ring Ff is mounted on the ring mounting surface 104b, unlike the edge ring F described above. good too.
  • a clamp 210 is provided as a fixing part for the wafer support table 200 .
  • the clamp 210 fixes the cover ring C by sandwiching the cover ring C between the clamp 210 and the support 203 .
  • the clamp 210 is configured to be movable between a clamp position and a retracted position.
  • the mounting process including the positional deviation determination process of the covering C on the support 203 and the removing process of the covering C are the same as the mounting process and the removing process of the edge ring F according to the first embodiment, The explanation is omitted.
  • FIG. 22 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support table 300 in the plasma processing apparatus according to the third embodiment.
  • the edge ring F is the object of replacement and the object of positional deviation determination
  • the cover ring C is the object of replacement and the object of positional deviation determination.
  • the covering C are both replacement targets and position deviation determination targets.
  • the edge ring F and the cover ring C are replaced separately and the positional deviation is determined.
  • the edge ring F is provided with an elevating member 118 and an insertion hole 125
  • the cover ring C is provided with an elevating member 205 and an insertion hole 206 .
  • the recesses F1 and C1 described above are formed in the bottom surface of the edge ring F and the bottom surface of the cover ring C, respectively.
  • the elevating member 118 is provided with the elevating mechanism 119 having the drive unit 121 for driving the elevation of the elevating member 118, as described with reference to FIG.
  • the lifting mechanism 119 is provided with an encoder 123 as a detection unit (second detection unit according to the present disclosure) configured to detect a parameter (second parameter according to the present disclosure) related to the amount of movement of the lifting member 118.
  • the drive unit 121 includes a torque detection unit 124 as a detection unit (first detection unit according to the present disclosure) configured to detect a parameter (first parameter according to the present disclosure) related to the load of the drive unit 121. is provided.
  • the elevating member 205 is provided with an elevating mechanism having a drive unit that drives the elevating member 205 to move up and down, like the elevating member 118 .
  • the lifting mechanism includes an encoder similar to the encoder 123 as a detection unit (fourth detection unit according to the present disclosure) configured to detect a parameter (fourth parameter according to the present disclosure) related to the movement amount of the lifting member 205. is provided. Further, in the driving unit for the lifting member 205, a torque A torque detector similar to detector 124 is provided.
  • control device 80 detects contact between the lifting member 205 and the concave portion C1 of the cover ring C based on a parameter (third parameter according to the present disclosure) related to the load of the drive unit on the lifting member 205 . Further, the control device 80 determines the amount of elevation of the lifting member 205 from the reference height until it contacts the concave portion C1 of the cover ring C, based on a parameter (fourth parameter according to the present disclosure) related to the amount of movement of the lifting member 205. decide. Then, the control device 80 determines whether or not the cover ring C is misaligned with respect to the wafer support 300 in the horizontal direction based on the amount of rise and the threshold value.
  • the edge ring F attachment processing (including the positional deviation determination processing of the edge ring F on the electrostatic chuck 104) and removal processing
  • the cover ring C attachment processing (cover ring C attachment processing on the support 203) (including positional deviation determination processing) and removal processing
  • the description is omitted.
  • FIG. 23 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support 400 in the plasma processing apparatus according to the fourth embodiment.
  • the edge ring F, in the second embodiment, the cover ring C, and in the third embodiment, both the edge ring F and the cover ring C are to be replaced.
  • the cover ring supporting the edge ring hereinafter sometimes abbreviated as "ring set" is to be replaced.
  • a wafer support table 400 in FIG. 1 A wafer support table 400 in FIG.
  • the lower electrode 401 and the electrostatic chuck 402 are provided with an insertion hole 406 through which the elevating member 405 is inserted.
  • the insertion hole 406 is formed, for example, so as to extend downward from the upper surface 402 a of the peripheral portion of the electrostatic chuck 402 to the bottom surface of the lower electrode 401 .
  • the insertion hole 406 is formed so as to penetrate the peripheral portion of the electrostatic chuck 104 and the lower electrode 401 .
  • the insertion hole 125 does not have to penetrate the peripheral portion of the electrostatic chuck 402 and the lower electrode 401 .
  • the support 403 is a member made of, for example, quartz and formed in a ring shape in plan view, and supports the lower electrode 401 .
  • a cover ring Ca supporting an edge ring Fg which is an annular member to be replaced according to the present embodiment, is placed on the upper surface 403a of the support 403 and the upper surface 402a of the peripheral portion of the electrostatic chuck 402. It becomes an annular member mounting surface.
  • the insulator 404 is a cylindrical member made of ceramic or the like, and supports the support 403 .
  • the insulator 404 is formed, for example, to have an outer diameter equal to that of the support 403 and supports the periphery of the support 403 .
  • the cover ring Ca is configured to support the edge ring Fg, and is formed so as to at least partially overlap the edge ring Fg in plan view.
  • the cover ring Ca supports, for example, the edge ring Fe substantially concentrically with the cover ring Ca.
  • the diameter of the innermost peripheral portion of the cover ring Ca is smaller than the diameter of the outermost peripheral portion of the edge ring Fg, and when the cover ring Ca and the edge ring Fg are arranged substantially concentrically, in plan view The inner peripheral portion of the cover ring Ca at least partially overlaps the outer periphery of the edge ring Fg.
  • the edge ring Fg has a radially inwardly recessed recess Fg1 on the outer circumference of the bottom, and the cover ring Ca has a radially inwardly protruding protrusion Ca1 on its bottom.
  • the edge ring Fg is supported by engagement between the projection Ca1 and the recess Fg1.
  • the edge ring Fg is formed with a step at its upper portion, similar to the edge ring F in FIG. is smaller than the outer diameter of the wafer W.
  • the elevating member 405 is, for example, similar to the elevating member 180 in FIG. 15, and is a member used for determining positional deviation, and also serves as a lifter for transferring the ring set to and from the transport arm 71 when the ring set is replaced. .
  • the elevating member 405 ascends and descends so as to protrude from, for example, a position overlapping the cover ring Ca in plan view on the upper surface 402a of the peripheral portion of the electrostatic chuck 402 (specifically, a position overlapping the convex portion Ca1).
  • the lifting member 205 is provided with a lifting mechanism having a drive unit for driving the lifting member 205 to move up and down, like the lifting member 118.
  • the lifting mechanism includes a drive unit such as a motor. and an encoder are provided, and a torque detector is also provided.
  • the upper end of the elevating member 405 is formed in the same shape as the elevating member exemplified above, such as a hemispherical shape.
  • the upper end of the lifting member 405 supports the lower surface of the projection Ca1 of the cover ring Ca, for example, when replacing the ring set. Further, the upper end of the elevating member 405 abuts on the lower surface of the convex portion Ca1 of the cover ring Ca when the elevating member 405 is lifted during determination of positional deviation of the ring set.
  • Concave portions Ca2 that are concave upward are formed at positions corresponding to the lifting members 405 on the bottom surface of the convex portion Ca1 of the cover ring Ca.
  • the size of the opening of the concave portion Ca2 of the cover ring Ca in plan view is such that at least the tip of the upper end portion of the lifting member 405 can pass through.
  • the concave portion Ca2 is formed in the same shape as the concave portion of the edge ring or cover ring exemplified above, for example, a right conical shape.
  • the mounting process (including the process of determining positional deviation of the ring set on the annular member mounting surface) and the removing process of the cover ring Ca supporting the edge ring Fg, that is, the ring set, are performed by the edge ring F according to the first embodiment. (including the positional deviation determination process of the edge ring F on the electrostatic chuck 104) and the removal process, the description thereof will be omitted.
  • the covering Ca needs to be fixed during the process of determining the positional deviation of the ring set.
  • the cover ring Ca may be fixed by the clamp 210, or the cover ring Ca may be fixed by applying a DC voltage to the electrode 109 to fix the edge ring Fg.
  • the edge ring Fg and the cover ring Ca can be replaced at the same time, so the time required for replacement of them can be further shortened. Moreover, since it is not necessary to separately provide a lifter for the edge ring Fg and a lifter for the cover ring Ca, cost reduction can be achieved.
  • FIG. 24 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support table 500 in the plasma processing apparatus according to the fifth embodiment.
  • a wafer support table 500 in FIG. 24 has a lower electrode 501, an electrostatic chuck 502, a support 503, and an elevating member 504 as an example of a lifter.
  • the support 503 is a member made of, for example, quartz and formed in a ring shape in a plan view, similar to the support 403 in the example of FIG. However, in the example of FIG. 23, the support 403 is thicker than the lower electrode 401, and the upper surface of the support 403 is positioned higher than the upper surface of the lower electrode 401. In the example of FIG. Its thickness is the same as that of the electrode 501 and the height of its upper surface is also the same as that of the lower electrode 501 .
  • the insertion hole 406 through which the elevating member 405 is inserted is provided so as to penetrate the lower electrode 401 and the electrostatic chuck 402 .
  • the insertion hole 505 through which the elevating member 504 is inserted is provided so as to penetrate only the lower electrode 501 .
  • the through hole 505 is formed to vertically penetrate the lower electrode 501 .
  • the cover ring Cb is configured to be able to support the edge ring Fa, and when concentric with the edge ring Fa, at least a portion of the edge ring Fa in plan view. formed to overlap.
  • the diameter of the innermost peripheral portion of the cover ring Cb is smaller than the diameter of the outermost peripheral portion of the edge ring Fa, and when the cover ring Cb and the edge ring Fa are arranged to overlap over the entire circumference, The inner peripheral portion of the cover ring Cb at least partially overlaps the outer peripheral portion of the edge ring Fa in plan view.
  • the cover ring Cb has a protrusion Cb1 that protrudes radially inward at its bottom, and supports the edge ring Fa by the protrusion Cb1.
  • the cover ring Cb is placed across the upper surface 503 a of the support 503 and the upper surface of the lower electrode 501 .
  • the edge ring Fa is mounted on the upper surface 502 a of the peripheral edge portion of the electrostatic chuck 502 so that the outer peripheral portion of the edge ring Fa extends outside the electrostatic chuck 104 . Then, the edge ring Fa is supported by the cover ring Cb at the outer peripheral portion projecting to the outside of the electrostatic chuck 502 during transportation.
  • the shape of the concave portion Fa1 is not limited to the example shown in the figure, and may be, for example, the shape shown in FIG.
  • the elevating member 504 can penetrate the inner peripheral portion of the cover ring Cb, ie, the convex portion Cb1, and contact the concave portion Fa1 of the edge ring Fa.
  • the cover ring Cb has through holes Cb2 at positions corresponding to the elevating members 504, which reach the concave portions Fa1 of the edge ring Fa, through which the elevating members 504 are inserted.
  • the through hole Cb2 is provided in the inner peripheral portion (specifically, for example, the convex portion Cb1) of the cover ring Cb overlapping the outer peripheral portion of the edge ring Fa in plan view.
  • the elevating member 504 is a member that is used to determine positional deviation, similar to the elevating member 118 and the like in FIG. This elevating member 504 elevates so as to protrude from the upper surface 501 a of the outer peripheral portion of the lower electrode 501 .
  • the lifting member 504 is configured to protrude from a position overlapping the edge ring Fa and the cover ring Cb in plan view on the upper surface 501a of the outer peripheral portion of the lower electrode 501 .
  • the insertion hole 505 through which the elevating member 504 is inserted is formed at a position overlapping the edge ring Fa and the cover ring Cb in plan view.
  • elevating members 504 are provided at intervals along the circumferential direction of the electrostatic chuck 502 in the same manner as the elevating member 118 and the like in FIG.
  • the shape of the upper end portion of the lifting member 504 is not limited to the illustrated example, and may be, for example, the shape shown in FIG. 5 or the like.
  • the elevating member 504 also serves as a lifter pin that supports and elevates the edge ring Fa and the cover ring Cb for delivery to and from the transfer arm 71 .
  • the upper end of the lifting member 504 constitutes an edge ring supporting portion that engages with the concave portion Fa1 of the edge ring Fa and supports the edge ring Fa.
  • the lifting member 504 has a cover ring support portion 504a that supports the cover ring Cb below the upper end that constitutes the edge ring support portion.
  • the cover ring support portion 504a is configured to contact the lower surface of the cover ring Cb without passing through the through hole Cb2 of the cover ring Cb, thereby supporting the cover ring Cb from the lower surface.
  • the elevating member 504 is provided with an elevating mechanism having a driving unit for driving the elevating member 504 to move up and down, like the elevating member 118.
  • the elevating mechanism includes a drive unit such as a motor. and an encoder are provided, and a torque detector is also provided. Therefore, also in this embodiment, it is possible to determine the positional deviation of the edge ring Fa in the same manner as in the above-described embodiment.
  • processing module 80 control device 100 plasma processing chambers 104, 202, 402, 502 electrostatic chucks 118, 118a, 118b, 118c, 180, 205, 405, 504 lifting member 121 driving unit 123 encoder 124 torque detecting unit 203, 403 support Body C, Ca, Cb Covering F, Fa, Fb, Fc, Fd, Fe, Fg, Fh Edge ring W Wafer

Abstract

This plasma processing device is provided with: a plasma processing chamber; a substrate supporting portion disposed inside the plasma processing chamber; an annular member which is disposed on the substrate supporting portion in such a way as to surround a substrate on the substrate supporting portion, and which has a lower surface including a recessed portion that has an inclined surface inclined with respect to the vertical direction; a raising and lowering member which is disposed below the annular member and which is capable of coming into contact with the recessed portion of the annular member; a drive portion configured to move the raising and lowering member in the vertical direction relative to the substrate supporting portion; a first detecting portion configured to detect a first parameter relating to a load on the drive portion; a second detecting portion configured to detect a second parameter relating to an amount of movement of the raising and lowering member; and a control portion. The control portion is configured to: detect contact between the raising and lowering member and the recessed portion of the annular member on the basis of the first parameter; determine an elevation amount, from a reference height, of the raising and lowering member until contact is made with the recessed portion of the annular member, on the basis of the second parameter; and determine whether the annular member is positionally displaced in the horizontal direction with respect to the substrate supporting portion on the basis of the elevation amount and a threshold.

Description

プラズマ処理装置Plasma processing equipment
 本開示は、プラズマ処理装置に関する。 The present disclosure relates to a plasma processing apparatus.
 特許文献1には、処理室内に基板を配置し、その基板の周囲を囲むようにフォーカスリングを配置して、基板に対するプラズマ処理を施す基板処理装置が開示されている。この基板処理装置は、基板を載置する基板載置面とフォーカスリングを載置するフォーカスリング載置面を有するサセプタを備えた載置台を備えている。また、特許文献1に開示の基板処理装置は、リフタピンと、搬送アームとを備える。リフタピンは、フォーカスリング載置面から突没するように載置台に設けられ、フォーカスリングを位置決めピンごと持ち上げて、フォーカスリング載置面から脱離させるものである。搬送アームは、処理室の外側に設けられ、処理室に設けられた搬出入口を介して、リフタピンとの間でフォーカスリングを位置決めピンが取り付けられたままやり取りするものである。 Patent Document 1 discloses a substrate processing apparatus in which a substrate is placed in a processing chamber, a focus ring is placed so as to surround the substrate, and plasma processing is performed on the substrate. This substrate processing apparatus includes a mounting table provided with a susceptor having a substrate mounting surface on which a substrate is mounted and a focus ring mounting surface on which a focus ring is mounted. Further, the substrate processing apparatus disclosed in Patent Document 1 includes lifter pins and a transfer arm. The lifter pins are provided on the mounting table so as to protrude from the focus ring mounting surface, lift the focus ring together with the positioning pins, and detach from the focus ring mounting surface. The transfer arm is provided outside the processing chamber, and exchanges the focus ring with the positioning pin attached to and from the lifter pin through the loading/unloading port provided in the processing chamber.
特開2011-054933号公報JP 2011-054933 A
 本開示にかかる技術は、プラズマ処理装置を大型化させずに、環状部材の位置ずれを判定する。 The technique according to the present disclosure determines the positional deviation of the annular member without increasing the size of the plasma processing apparatus.
 本開示の一態様は、プラズマ処理チャンバと、前記プラズマ処理チャンバ内に配置される基板支持部と、前記基板支持部上の基板を囲むように前記基板支持部上に配置され、下面を有する環状部材であり、前記環状部材の前記下面は、凹部を有し、前記凹部は、縦方向に対して傾斜する傾斜面を有する、環状部材と、前記環状部材の下方に配置され、前記環状部材の前記凹部に接触可能な昇降部材と、前記基板支持部に対して前記昇降部材を縦方向に移動させるように構成される駆動部と、前記駆動部の負荷に関する第1パラメータを検出するように構成される第1検出部と、前記昇降部材の移動量に関する第2パラメータを検出するように構成される第2検出部と、制御部と、を備え、前記制御部は、前記第1パラメータに基づいて、前記昇降部材と前記環状部材の前記凹部との接触を検知し、前記第2パラメータに基づいて、基準高さから前記環状部材の前記凹部と接触するまでの前記昇降部材の上昇量を決定し、前記上昇量と閾値とに基づいて、水平方向において前記環状部材が前記基板支持部に対して位置ずれがあるかどうかを決定するように構成される、プラズマ処理装置である。 One aspect of the present disclosure includes a plasma processing chamber, a substrate support disposed within the plasma processing chamber, and an annular substrate disposed on the substrate support to surround a substrate on the substrate support and having a lower surface. an annular member, the lower surface of the annular member having a recess, the recess having an inclined surface inclined with respect to a longitudinal direction; an elevating member capable of contacting the recess; a driving unit configured to vertically move the elevating member relative to the substrate support; and configured to detect a first parameter related to the load of the driving unit. a first detection unit configured to detect a second parameter related to the movement amount of the lifting member; and a control unit, wherein the control unit detects the first parameter based on the first parameter. to detect contact between the elevating member and the recess of the annular member, and based on the second parameter, determine a lift amount of the elevating member from a reference height to contact with the recess of the annular member. and determining whether or not the annular member is misaligned with respect to the substrate support in a horizontal direction based on the amount of elevation and the threshold value.
 本開示によれば、プラズマ処理装置を大型化させずに、環状部材の位置ずれを判定することができる。 According to the present disclosure, the positional deviation of the annular member can be determined without increasing the size of the plasma processing apparatus.
第1実施形態にかかるプラズマ処理システムの構成の概略を示す平面図である。1 is a plan view showing an outline of the configuration of a plasma processing system according to a first embodiment; FIG. 処理モジュールの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view showing the outline of a structure of a processing module. 処理モジュールの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view showing the outline of a structure of a processing module. ウェハ支持台の上面図である。It is a top view of a wafer support. 図3の部分拡大図である。4 is a partially enlarged view of FIG. 3; FIG. エッジリングの位置ずれの判定原理を説明するための図である。FIG. 4 is a diagram for explaining the principle of determination of positional deviation of edge rings; エッジリングの位置ずれの判定に関する制御装置の機能ブロック図である。FIG. 4 is a functional block diagram of a control device for determination of positional deviation of an edge ring; エッジリングの位置ずれの判定処理を含むエッジリングの取り付け処理の一例を示すフローチャートである。8 is a flowchart showing an example of an edge ring mounting process including a positional deviation determination process of the edge ring. 昇降部材の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the lifting member; 昇降部材の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the lifting member; エッジリングの凹部の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the recess of the edge ring; エッジリングの凹部の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the recess of the edge ring; エッジリングの他の例を説明するための図である。FIG. 11 is a diagram for explaining another example of edge rings; エッジリングの他の例を説明するための図である。FIG. 11 is a diagram for explaining another example of edge rings; 昇降部材の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the lifting member; 図15の昇降部材を用いる場合のウェハ支持台の上面図である。FIG. 16 is a top view of the wafer support when using the elevating member of FIG. 15; エッジリングの固定部の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the fixing portion of the edge ring; エッジリングの固定部の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the fixing portion of the edge ring; エッジリングの固定部の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the fixing portion of the edge ring; エッジリングと昇降部材の他の例を示す図である。It is a figure which shows the other example of an edge ring and a raising/lowering member. 第2実施形態にかかるプラズマ処理装置におけるウェハ支持台周辺の構成の概略を示す、部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support in the plasma processing apparatus according to the second embodiment; 第3実施形態にかかるプラズマ処理装置におけるウェハ支持台周辺の構成の概略を示す、部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support in the plasma processing apparatus according to the third embodiment; 第4実施形態にかかるプラズマ処理装置におけるウェハ支持台周辺の構成の概略を示す、部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view showing an outline of the configuration around a wafer support in a plasma processing apparatus according to a fourth embodiment; 第5実施形態にかかるプラズマ処理装置におけるウェハ支持台周辺の構成の概略を示す、部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view showing an outline of the configuration around a wafer support in a plasma processing apparatus according to a fifth embodiment;
 半導体デバイス等の製造プロセスでは、半導体ウェハ(以下、「ウェハ」という。)等の基板に対して、プラズマを用いて、エッチングや成膜等のプラズマ処理が行われる。プラズマ処理は、減圧された処理室内の基板支持台に基板が載置された状態で行われる。 In the manufacturing process of semiconductor devices, etc., plasma processing such as etching and film formation is performed using plasma on substrates such as semiconductor wafers (hereinafter referred to as "wafers"). Plasma processing is performed in a state where a substrate is placed on a substrate support table in a decompressed processing chamber.
 また、基板の中央部と周縁部とで良好且つ均一なプラズマ処理結果を得るために、基板支持台上の基板の周囲を囲むように、フォーカスリング、エッジリング等と称される平面視環状の部材(以下、「エッジリング」という。)が載置されることがある。 In addition, in order to obtain a good and uniform plasma processing result in the central portion and the peripheral portion of the substrate, an annular ring in plan view called a focus ring, edge ring, etc. is provided so as to surround the periphery of the substrate on the substrate support table. A member (hereinafter referred to as "edge ring") may be placed.
 ところで、エッジリングの交換を、エッジリングを搬送する搬送装置を用いて行う場合等、搬送装置によってエッジリングを基板支持台上に載置することがある。例えば、エッジリングを支持した搬送装置の搬送アームが基板処理装置の処理室の外から処理室内に進入し、基板支持台より上方に上昇している昇降ピンの上にエッジリングが載置され、その後、搬送アームが処理室から退避する。次いで、昇降ピンが下降して、昇降ピン上のエッジリングが基板支持台に載置される。
 また、エッジリングを用いる場合、基板周縁部において周方向に均一な処理結果が得られるように、エッジリングを基板支持台上の所望の位置に載置する必要がある。
By the way, when the edge ring is replaced by using a transport device for transporting the edge ring, the edge ring may be placed on the substrate support table by the transport device. For example, the transfer arm of the transfer device supporting the edge ring enters from outside the processing chamber of the substrate processing apparatus into the processing chamber, and the edge ring is placed on the lift pins rising above the substrate support table, After that, the transfer arm is withdrawn from the processing chamber. Then, the lifting pins are lowered and the edge ring on the lifting pins is placed on the substrate support.
Moreover, when using an edge ring, it is necessary to place the edge ring at a desired position on the substrate support table so as to obtain a uniform processing result in the peripheral direction of the substrate.
 そして、搬送装置によるエッジリングの搬送精度には限界がある。そのため、搬送装置によってエッジリングが基板支持台上に載置される場合において、エッジリングが基板支持台上の所望の位置に載置されているかを確認する技術、すなわち、基板支持台上におけるエッジリングの位置ずれを判定する技術、が求められている。このようなエッジリングの位置ずれの判定としては、例えば、カメラをプラズマ処理装置に搭載してそのカメラを利用する方法が考えられる。しかし、エッジリングを基板支持台上に載置する際に要求される精度はμmオーダー(例えば50μm~200μm)であり、この精度での位置ずれの判定をするためには大型の光学系等が必要となる。また、カメラを利用する方法では、カメラの撮像領域を照明する照明装置等が必要となる。そのため、上述のようにしてカメラを用いてエッジリングの位置ずれを利用する場合、プラズマ処理装置が大型化してしまう。なお、エッジリングの位置ずれの判定方法としては、エッジリングの位置に関するセンサを基板支持台に配設してこのセンサを利用する方法が考えられるが、センサの種類やセンサの配設位置によっては前述と同様にプラズマ処理装置が大型化してしまうことがある。 And there is a limit to the accuracy with which the edge ring can be conveyed by the conveying device. Therefore, when the edge ring is placed on the substrate support table by the transport device, a technique for confirming whether the edge ring is placed at a desired position on the substrate support table, that is, the edge ring on the substrate support table. There is a need for a technique for determining ring misalignment. As a method for determining such a positional deviation of the edge ring, for example, a method of mounting a camera on the plasma processing apparatus and using the camera is conceivable. However, the accuracy required for placing the edge ring on the substrate support is on the order of μm (for example, 50 μm to 200 μm), and a large optical system or the like is required to determine the positional deviation with this accuracy. necessary. Further, the method using a camera requires an illumination device or the like for illuminating the imaging area of the camera. Therefore, when using the positional deviation of the edge ring using the camera as described above, the plasma processing apparatus becomes large. As a method of determining the positional deviation of the edge ring, a method of disposing a sensor for the position of the edge ring on the substrate support and using this sensor is conceivable. As described above, the plasma processing apparatus may become large in size.
 また、プラズマ処理の際、エッジリングの周方向外側面を覆うカバーリングと称される環状部材を配置し、且つ、搬送装置によってカバーリングを基板支持台上に載置する場合がある。この場合も、エッジリングのみを用いる構成と同様な課題がある。 Also, during plasma processing, an annular member called a cover ring may be arranged to cover the circumferential outer surface of the edge ring, and the cover ring may be placed on the substrate support table by a transfer device. This case also has the same problem as the configuration using only the edge ring.
 そこで、本開示にかかる技術は、プラズマ処理装置を大型化させずに、環状部材の位置ずれを判定する。 Therefore, the technique according to the present disclosure determines the positional deviation of the annular member without increasing the size of the plasma processing apparatus.
 以下、本実施形態にかかるプラズマ処理装置及び環状部材の位置ずれ判定方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。 The plasma processing apparatus and method for determining positional deviation of the annular member according to the present embodiment will be described below with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
(第1実施形態)
<プラズマ処理システム>
 図1は、第1実施形態にかかるプラズマ処理システムの構成の概略を示す平面図である。
 図1のプラズマ処理システム1では、基板としてのウェハWに対して、プラズマを用いて例えばエッチング等のプラズマ処理を行う。
(First embodiment)
<Plasma processing system>
FIG. 1 is a plan view showing the outline of the configuration of the plasma processing system according to the first embodiment.
In the plasma processing system 1 of FIG. 1, plasma processing such as etching is performed on a wafer W as a substrate using plasma.
 図1に示すようにプラズマ処理システム1は、大気部10と減圧部11とを有し、これら大気部10と減圧部11とがロードロックモジュール20、21を介して一体に接続されている。大気部10は、大気圧雰囲気下においてウェハWに所望の処理を行う大気モジュールを備える。減圧部11は、減圧雰囲気(真空雰囲気)下においてウェハWに所望の処理を行う処理モジュール60を備える。 As shown in FIG. 1, the plasma processing system 1 has an atmosphere section 10 and a decompression section 11, and the atmosphere section 10 and the decompression section 11 are integrally connected via load lock modules 20 and 21. The atmospheric part 10 includes an atmospheric module that performs desired processing on the wafer W under atmospheric pressure. The decompression unit 11 includes a processing module 60 that performs desired processing on the wafer W under a decompressed atmosphere (vacuum atmosphere).
 ロードロックモジュール20、21は、ゲートバルブ(図示せず)を介して、大気部10に含まれるローダモジュール30と、減圧部11に含まれるトランスファモジュール50を連結するように設けられている。ロードロックモジュール20、21は、ウェハWを一時的に保持するように構成されている。また、ロードロックモジュール20、21は、内部を大気圧雰囲気と減圧雰囲気とに切り替えられるように構成されている。 The load lock modules 20 and 21 are provided to connect the loader module 30 included in the atmosphere section 10 and the transfer module 50 included in the decompression section 11 via gate valves (not shown). The load lock modules 20, 21 are configured to hold the wafer W temporarily. Further, the load lock modules 20 and 21 are configured so that the inside can be switched between an atmospheric pressure atmosphere and a reduced pressure atmosphere.
 大気部10は、後述する搬送装置40を備えたローダモジュール30と、フープ31a、31bを載置するロードポート32とを有している。フープ31aは、複数のウェハWを保管可能なものであり、フープ31bは、複数のエッジリングFを保管可能なものである。なお、ローダモジュール30には、ウェハWやエッジリングFの水平方向の向きを調節するオリエンタモジュール(図示せず)、複数のウェハWを一時的に格納するバッファモジュール(図示せず)等が接続されていてもよい。 The atmospheric part 10 has a loader module 30 equipped with a transport device 40, which will be described later, and a load port 32 on which FOUPs 31a and 31b are placed. A plurality of wafers W can be stored in the FOUP 31a, and a plurality of edge rings F can be stored in the FOUP 31b. The loader module 30 is connected to an orienter module (not shown) for adjusting the horizontal orientation of the wafer W and the edge ring F, a buffer module (not shown) for temporarily storing a plurality of wafers W, and the like. may have been
 ローダモジュール30は矩形の筐体を有し、筐体の内部は大気圧雰囲気に維持されている。ローダモジュール30の筐体の長辺を構成する一側面には、複数、例えば5つのロードポート32が並設されている。ローダモジュール30の筐体の長辺を構成する他側面には、ロードロックモジュール20、21が並設されている。 The loader module 30 has a rectangular housing, and the inside of the housing is maintained at atmospheric pressure. A plurality of, for example, five load ports 32 are arranged side by side on one side surface that constitutes the long side of the housing of the loader module 30 . Load- lock modules 20 and 21 are arranged side by side on the other side surface constituting the long side of the housing of the loader module 30 .
 ローダモジュール30の筐体の内部には、ウェハW及びエッジリングFの両方を搬送可能に構成された搬送装置40が設けられている。搬送装置40は、ウェハWまたはエッジリングFを搬送時に支持する搬送アーム41と、搬送アーム41を回転可能に支持する回転台42と、回転台42を搭載した基台43とを有している。また、ローダモジュール30の内部には、ローダモジュール30の長手方向に延伸するガイドレール44が設けられている。基台43はガイドレール44上に設けられ、搬送装置40はガイドレール44に沿って移動可能に構成されている。 A transport device 40 configured to transport both the wafer W and the edge ring F is provided inside the housing of the loader module 30 . The transfer device 40 has a transfer arm 41 that supports the wafer W or the edge ring F during transfer, a turntable 42 that rotatably supports the transfer arm 41, and a base 43 on which the turntable 42 is mounted. . A guide rail 44 extending in the longitudinal direction of the loader module 30 is provided inside the loader module 30 . The base 43 is provided on guide rails 44 , and the conveying device 40 is configured to be movable along the guide rails 44 .
 減圧部11は、ウェハW及びエッジリングFを搬送するトランスファモジュール50と、トランスファモジュール50から搬送されたウェハWに所望のプラズマ処理を行うプラズマ処理装置としての処理モジュール60を有している。トランスファモジュール50及び処理モジュール60の内部(具体的には後述の減圧搬送室51及びプラズマ処理チャンバ100の内部)はそれぞれ、減圧雰囲気に維持される。1つのトランスファモジュール50に対し、処理モジュール60は複数、例えば8つ設けられている。なお、処理モジュール60の数や配置は本実施形態に限定されず、任意に設定することができ、エッジリングFの交換が必要な少なくとも1つの処理モジュールが設けられていればよい。 The decompression unit 11 has a transfer module 50 for transferring the wafer W and the edge ring F, and a processing module 60 as a plasma processing apparatus for performing desired plasma processing on the wafer W transferred from the transfer module 50 . The interiors of the transfer module 50 and the processing module 60 (specifically, the interiors of the depressurized transfer chamber 51 and the plasma processing chamber 100 to be described later) are maintained in a depressurized atmosphere. A plurality of, for example eight, processing modules 60 are provided for one transfer module 50 . The number and arrangement of the processing modules 60 are not limited to those of this embodiment, and can be set arbitrarily.
 トランスファモジュール50は、多角形状(図示の例では五角形状)の筐体を有する減圧搬送室51を含み、減圧搬送室51がロードロックモジュール20、21に接続されている。トランスファモジュール50は、ロードロックモジュール20に搬入されたウェハWを一の処理モジュール60に搬送すると共に、処理モジュール60で所望のプラズマの処理が行われたウェハWを、ロードロックモジュール21を介して大気部10に搬出する。また、トランスファモジュール50は、ロードロックモジュール20に搬入されたエッジリングFを一の処理モジュール60に搬送すると共に、処理モジュール60内の交換対象のエッジリングFを、ロードロックモジュール21を介して大気部10に搬出する。 The transfer module 50 includes a reduced pressure transfer chamber 51 having a polygonal (pentagonal in the illustrated example) housing, and the reduced pressure transfer chamber 51 is connected to the load lock modules 20 and 21 . The transfer module 50 transfers the wafer W loaded into the load lock module 20 to one processing module 60, and transfers the wafer W, which has undergone desired plasma processing in the processing module 60, through the load lock module 21. It is carried out to the atmospheric part 10 . Further, the transfer module 50 transfers the edge ring F carried into the load lock module 20 to one processing module 60, and transfers the edge ring F to be replaced in the processing module 60 to the atmosphere through the load lock module 21. It is carried out to the part 10.
 処理モジュール60は、ウェハWに対し、例えばエッチング等のプラズマ処理を行う。また、処理モジュール60は、ゲートバルブ61を介してトランスファモジュール50に接続されている。なお、この処理モジュール60の構成は後述する。 The processing module 60 performs plasma processing such as etching on the wafer W, for example. Also, the processing module 60 is connected to the transfer module 50 via a gate valve 61 . The configuration of this processing module 60 will be described later.
 トランスファモジュール50の減圧搬送室51の内部には、ウェハW及びエッジリングFの両方を搬送可能に構成された搬送装置70が設けられている。搬送装置70は、前述の搬送装置40と同様、ウェハWまたはエッジリングFを搬送時に支持する搬送アーム71と、搬送アーム71を回転可能に支持する回転台72と、回転台72を搭載した基台73とを有している。また、トランスファモジュール50の減圧搬送室51の内部には、トランスファモジュール50の長手方向に延伸するガイドレール74が設けられている。基台73はガイドレール74上に設けられ、搬送装置70はガイドレール74に沿って移動可能に構成されている。 Inside the reduced-pressure transfer chamber 51 of the transfer module 50, a transfer device 70 configured to transfer both the wafer W and the edge ring F is provided. The transfer device 70, like the transfer device 40 described above, includes a transfer arm 71 that supports the wafer W or the edge ring F during transfer, a turntable 72 that rotatably supports the transfer arm 71, and a base on which the turntable 72 is mounted. a platform 73; A guide rail 74 extending in the longitudinal direction of the transfer module 50 is provided inside the reduced-pressure transfer chamber 51 of the transfer module 50 . The base 73 is provided on guide rails 74 , and the transport device 70 is configured to be movable along the guide rails 74 .
 トランスファモジュール50では、ロードロックモジュール20内で保持されたウェハWまたはエッジリングFを搬送アーム71が受け取り、処理モジュール60に搬入する。また、処理モジュール60内に保持されたウェハWまたはエッジリングFを搬送アーム71が受け取り、ロードロックモジュール21に搬出する。 In the transfer module 50 , the transfer arm 71 receives the wafer W or the edge ring F held in the load lock module 20 and carries it into the processing module 60 . Also, the transfer arm 71 receives the wafer W or the edge ring F held in the processing module 60 and unloads it to the load lock module 21 .
 さらに、プラズマ処理システム1は制御装置80を有する。一実施形態において、制御装置80は、本開示において述べられる種々の工程をプラズマ処理システム1に実行させるコンピュータ実行可能な命令を処理する。制御装置80は、ここで述べられる種々の工程を実行するようにプラズマ処理システム1の他の要素それぞれを制御するように構成され得る。一実施形態において、制御装置80の一部又は全てがプラズマ処理システム1の他の要素に含まれてもよい。制御装置80は、例えばコンピュータ90を含んでもよい。コンピュータ90は、例えば、処理部(CPU:Central Processing Unit)91、記憶部92、及び通信インターフェース93を含んでもよい。処理部91は、記憶部92に格納されたプログラムに基づいて種々の制御動作を行うように構成され得る。記憶部92は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース93は、LAN(Local Area Network)等の通信回線を介してプラズマ処理システム1の他の要素との間で通信してもよい。 Furthermore, the plasma processing system 1 has a controller 80 . In one embodiment, controller 80 processes computer-executable instructions that cause plasma processing system 1 to perform various operations described in this disclosure. Controller 80 may be configured to control each of the other elements of plasma processing system 1 to perform the various processes described herein. In one embodiment, some or all of controller 80 may be included in other elements of plasma processing system 1 . Controller 80 may include computer 90, for example. The computer 90 may include a processing unit (CPU: Central Processing Unit) 91, a storage unit 92, and a communication interface 93, for example. The processing unit 91 can be configured to perform various control operations based on programs stored in the storage unit 92 . The storage unit 92 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof. The communication interface 93 may communicate with other elements of the plasma processing system 1 via a communication line such as a LAN (Local Area Network).
<プラズマ処理システム1のウェハ処理>
 次に、以上のように構成されたプラズマ処理システム1を用いて行われるウェハ処理について説明する。
<Wafer Processing in Plasma Processing System 1>
Next, wafer processing performed using the plasma processing system 1 configured as described above will be described.
 まず、搬送装置40によって、所望のフープ31aからウェハWが取り出され、ロードロックモジュール20に搬入される。その後ロードロックモジュール20内が密閉され、減圧される。その後、ロードロックモジュール20の内部とトランスファモジュール50の内部が連通される。 First, the wafer W is taken out from the desired FOUP 31 a by the carrier device 40 and carried into the load lock module 20 . After that, the inside of the load lock module 20 is sealed and the pressure is reduced. After that, the inside of the load lock module 20 and the inside of the transfer module 50 are communicated.
 次に、搬送装置70によってウェハWが保持され、ロードロックモジュール20からトランスファモジュール50に搬送される。 Next, the wafer W is held by the transfer device 70 and transferred from the load lock module 20 to the transfer module 50 .
 次に、ゲートバルブ61が開放され、搬送装置70によって所望の処理モジュール60にウェハWが搬入される。その後、ゲートバルブ61が閉じられ、処理モジュール60においてウェハWに所望の処理が行われる。なお、この処理モジュール60においてウェハWに対して行われる処理については後述する。 Next, the gate valve 61 is opened, and the wafer W is carried into the desired processing module 60 by the transfer device 70 . After that, the gate valve 61 is closed, and the wafer W is subjected to desired processing in the processing module 60 . The processing performed on the wafer W in this processing module 60 will be described later.
 次に、ゲートバルブ61が開放され、搬送装置70によって処理モジュール60からウェハWが搬出される。その後、ゲートバルブ61が閉じられる。 Next, the gate valve 61 is opened, and the wafer W is unloaded from the processing module 60 by the carrier device 70 . After that, the gate valve 61 is closed.
 次に、搬送装置70によって、ロードロックモジュール21にウェハWが搬入される。ロードロックモジュール21にウェハWが搬入されると、ロードロックモジュール21内が密閉され、大気開放される。その後、ロードロックモジュール21の内部とローダモジュール30の内部が連通される。 Next, the wafer W is carried into the load lock module 21 by the carrier device 70 . When the wafer W is loaded into the load lock module 21, the inside of the load lock module 21 is sealed and opened to the atmosphere. After that, the inside of the load lock module 21 and the inside of the loader module 30 are communicated with each other.
 次に、搬送装置40によってウェハWが保持され、ロードロックモジュール21からローダモジュール30を介して所望のフープ31aに戻されて収容される。これで、プラズマ処理システム1における一連のウェハ処理が終了する。 Next, the wafer W is held by the transfer device 40 and returned from the load lock module 21 via the loader module 30 to the desired FOUP 31a for storage. A series of wafer processing in the plasma processing system 1 is now completed.
 なお、エッジリングFの交換時における、フープ31bと所望の処理モジュール60との間でのエッジリングFの搬送は、上述のウェハ処理時における、フープ31aと所望の処理モジュール60との間でのウェハWの搬送と同様に行われる。 It should be noted that the transportation of the edge ring F between the FOUP 31b and the desired processing module 60 during the exchange of the edge ring F is the same as that between the FOUP 31a and the desired processing module 60 during the wafer processing described above. It is performed in the same manner as the transfer of the wafer W.
<処理モジュール60>
 続いて、処理モジュール60について、図2~図5を用いて説明する。図2及び図3は、処理モジュール60の構成の概略を示す縦断面図である。図2は、図4のA-A断面に対応する部分を示し、図3は、図4のB-B断面に対応する部分を示している。図4は、後述のウェハ支持台101の上面図である。図5は、図3の部分拡大図である。
<Processing module 60>
Next, the processing module 60 will be explained using FIGS. 2 to 5. FIG. 2 and 3 are vertical cross-sectional views showing an outline of the configuration of the processing module 60. FIG. 2 shows a portion corresponding to the AA section of FIG. 4, and FIG. 3 shows a portion corresponding to the BB section of FIG. FIG. 4 is a top view of a wafer support table 101 which will be described later. 5 is a partially enlarged view of FIG. 3. FIG.
 図2及び図3に示すように処理モジュール60は、処理容器としてのプラズマ処理チャンバ100、ガス供給部130、RF(Radio Frequency:高周波)電力供給部140及び排気システム150を含む。さらに、処理モジュール60は、ウェハ支持台101及び上部電極102を含む。 As shown in FIGS. 2 and 3, the processing module 60 includes a plasma processing chamber 100 as a processing container, a gas supply section 130, an RF (Radio Frequency) power supply section 140 and an exhaust system 150. Further, processing module 60 includes wafer support 101 and upper electrode 102 .
 ウェハ支持台101は、減圧可能に構成されたプラズマ処理チャンバ100内のプラズマ処理空間100sの下部領域に配置される。上部電極102は、ウェハ支持台101の上方に配置され、プラズマ処理チャンバ100の天部(ceiling)の一部として機能し得る。 The wafer support table 101 is arranged in the lower region of the plasma processing space 100s in the plasma processing chamber 100 configured to be depressurized. A top electrode 102 is positioned above the wafer support 101 and may serve as part of the ceiling of the plasma processing chamber 100 .
 ウェハ支持台101は、プラズマ処理空間100sにおいてウェハWを支持するように構成される。一実施形態において、ウェハ支持台101は、図2に示すように、下部電極103、基板支持部としての静電チャック104、絶縁体105、リフタL1及びリフタL2を含む。図示は省略するが、一実施形態において、ウェハ支持台101は、静電チャック104及びウェハWのうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、流路、又はこれらの組み合わせを含んでもよい。流路には、冷媒、伝熱ガスのような温調流体が流れる。 The wafer support table 101 is configured to support the wafer W in the plasma processing space 100s. In one embodiment, the wafer support 101 includes a lower electrode 103, an electrostatic chuck 104 as a substrate support, an insulator 105, a lifter L1 and a lifter L2, as shown in FIG. Although not shown, in one embodiment, wafer support 101 may include a temperature control module configured to control at least one of electrostatic chuck 104 and wafer W to a target temperature. The temperature control module may include heaters, channels, or a combination thereof. A temperature control fluid such as a refrigerant or a heat transfer gas flows through the flow path.
 下部電極103は、例えばアルミニウム等の導電性材料で形成されている。一実施形態において、上述の温調モジュールは下部電極103に設けられていてもよい。 The lower electrode 103 is made of a conductive material such as aluminum. In one embodiment, the temperature control module described above may be provided in the lower electrode 103 .
 静電チャック104は、下部電極103上に設けられている。静電チャック104には、ウェハWが載置され、且つ、載置された基板を囲むように環状部材としてのエッジリングFが載置される。また、静電チャック104は、ウェハWとエッジリングFとの両方を静電力により吸着保持する。静電チャック104において周縁部の上面に比べて中央部の上面が高く形成されている。静電チャック104の中央部の上面104aは、ウェハWが載置されるウェハ載置面104aである。静電チャック104の周縁部の上面104bは、環状部材としてのエッジリングFが載置されるリング載置面104bである。
 エッジリングFは、静電チャック104の中央部の上面104aに載置されたウェハWを囲むように静電チャック104上に配置される、平面視円環状の部材である。また、エッジリングFの材料には例えばSiやSiCが用いられる。
An electrostatic chuck 104 is provided on the lower electrode 103 . A wafer W is mounted on the electrostatic chuck 104, and an edge ring F as an annular member is mounted so as to surround the mounted substrate. Also, the electrostatic chuck 104 attracts and holds both the wafer W and the edge ring F by electrostatic force. In the electrostatic chuck 104, the upper surface of the central portion is formed higher than the upper surface of the peripheral portion. A central upper surface 104a of the electrostatic chuck 104 is a wafer mounting surface 104a on which the wafer W is mounted. An upper surface 104b of the peripheral portion of the electrostatic chuck 104 is a ring mounting surface 104b on which an edge ring F as an annular member is mounted.
The edge ring F is an annular member arranged on the electrostatic chuck 104 so as to surround the wafer W placed on the upper surface 104 a of the central portion of the electrostatic chuck 104 . Further, Si or SiC, for example, is used as the material of the edge ring F. As shown in FIG.
 静電チャック104の中央部には、ウェハWを静電吸着により保持するための電極108が設けられている。静電チャック104の周縁部には、エッジリングFを静電チャック104に固定するための固定部として、電極109が設けられている。電極109は、静電吸着によりウェハWを保持する。静電チャック104は、絶縁材料からなる絶縁材の間に電極108、109を挟んだ構成を有する。 An electrode 108 is provided at the center of the electrostatic chuck 104 to hold the wafer W by electrostatic attraction. An electrode 109 is provided on the peripheral portion of the electrostatic chuck 104 as a fixing portion for fixing the edge ring F to the electrostatic chuck 104 . The electrode 109 holds the wafer W by electrostatic attraction. The electrostatic chuck 104 has a configuration in which electrodes 108 and 109 are sandwiched between insulating materials made of an insulating material.
 電極108には、直流電源(図示せず)からの直流電圧が印加される。これにより生じる静電力により、静電チャック104の中央部の上面104aにウェハWが吸着保持される。同様に、電極109には、直流電源(図示せず)からの直流電圧が印加される。これにより生じる静電力により、静電チャック104の周縁部の上面104bにエッジリングFが吸着保持される。電極109は、例えば、一対の電極109a、109bを含む双極型である。
 本実施形態において、電極108が設けられる静電チャック104の中央部と、電極109が設けられる周縁部とは一体となっているが、これら中央部と周縁部とは別体であってもよい。
 また、本実施形態において、エッジリングFを吸着保持するための電極109は、双極型であるものとしたが、単極型であってもよい。
A DC voltage is applied to the electrode 108 from a DC power supply (not shown). The wafer W is attracted and held on the upper surface 104 a of the electrostatic chuck 104 at the central portion by the electrostatic force generated thereby. Similarly, electrode 109 is applied with a DC voltage from a DC power supply (not shown). The edge ring F is attracted and held on the upper surface 104b of the peripheral portion of the electrostatic chuck 104 by the electrostatic force generated thereby. The electrodes 109 are, for example, bipolar, including a pair of electrodes 109a, 109b.
In this embodiment, the central portion of the electrostatic chuck 104 where the electrode 108 is provided and the peripheral portion where the electrode 109 is provided are integrated, but the central portion and the peripheral portion may be separate bodies. .
Further, in the present embodiment, the electrode 109 for attracting and holding the edge ring F is of the bipolar type, but may be of the unipolar type.
 また、静電チャック104の中央部は、例えば、ウェハWの直径よりも小径に形成されており、図2に示すように、ウェハWがウェハ載置面104aに載置されたときに、ウェハWの周縁部が静電チャック104の中央部から張り出すようになっている。
 なお、エッジリングFは、その上部に段差が形成されており、外周部の上面が内周部の上面より高く形成されている。エッジリングFの内周部は、静電チャック104の中央部から張り出したウェハWの周縁部の下側にもぐり込むように形成されている。つまり、エッジリングFは、その内径が、ウェハWの外径よりも小さく形成されている。
Further, the central portion of the electrostatic chuck 104 is formed, for example, to have a smaller diameter than the diameter of the wafer W, and as shown in FIG. A peripheral portion of W protrudes from the central portion of the electrostatic chuck 104 .
In addition, the edge ring F has a step formed on its upper portion, and the upper surface of the outer peripheral portion is formed higher than the upper surface of the inner peripheral portion. The inner peripheral portion of the edge ring F is formed so as to go under the peripheral portion of the wafer W projecting from the central portion of the electrostatic chuck 104 . That is, the edge ring F has an inner diameter smaller than the outer diameter of the wafer W. As shown in FIG.
 図示は省略するが、静電チャック104のウェハ載置面104aには、当該ウェハ載置面104aに載置されたウェハWの裏面に伝熱ガスを供給するため、ガス供給穴が形成されている。ガス供給穴からは、ガス供給部(図示せず)からの伝熱ガスが供給される。ガス供給部は、1又はそれ以上のガスソース及び1又はそれ以上の圧力制御器を含んでもよい。一実施形態において、ガス供給部は、例えば、ガスソースからの伝熱ガスを、圧力制御器を介して伝熱ガス供給穴に供給するように、構成される。 Although not shown, gas supply holes are formed in the wafer mounting surface 104a of the electrostatic chuck 104 in order to supply a heat transfer gas to the back surface of the wafer W mounted on the wafer mounting surface 104a. there is A heat transfer gas is supplied from a gas supply section (not shown) through the gas supply holes. A gas supply may include one or more gas sources and one or more pressure controllers. In one embodiment, the gas supply is configured to supply heat transfer gas, for example from a gas source, to the heat transfer gas supply holes via a pressure controller.
 絶縁体105は、セラミック等で形成された円筒状の部材であり、下部電極103を支持する。絶縁体105は、例えば、下部電極103の外径と同等の外径を有するように形成され、下部電極103の周縁部を支持する。 The insulator 105 is a cylindrical member made of ceramic or the like, and supports the lower electrode 103 . The insulator 105 is formed, for example, to have an outer diameter equal to the outer diameter of the lower electrode 103 and supports the periphery of the lower electrode 103 .
 リフタL1は、静電チャック104のウェハ載置面104aから突没するように昇降する部材である。リフタL1は、例えば、セラミック等を材料として柱状に形成されたリフタピン106を有する。リフタピン106は、図4に示すように、静電チャック104の周方向、具体的には、ウェハ載置面104aの周方向に沿って、互いに間隔を空けて3本以上(図の例では3本)設けられている。リフタピン106は、例えば、上記周方向に沿って等間隔で設けられている。リフタピン106は、図2に示すように、上下方向に延びるように設けられる。 The lifter L<b>1 is a member that moves up and down so as to project from the wafer mounting surface 104 a of the electrostatic chuck 104 . The lifter L1 has lifter pins 106 made of, for example, ceramics and formed in a columnar shape. As shown in FIG. 4, there are three or more lifter pins 106 spaced apart from each other in the circumferential direction of the electrostatic chuck 104, specifically along the circumferential direction of the wafer mounting surface 104a. books) are provided. The lifter pins 106 are provided, for example, at regular intervals along the circumferential direction. The lifter pins 106 are provided to extend vertically, as shown in FIG.
 リフタピン106は、リフタピン106を昇降させる昇降機構110に接続されている。昇降機構110は、例えば、複数のリフタピン106を支持する支持部材111と、複数のリフタピン106の昇降(具体的には支持部材111の昇降)を駆動する駆動部112とを有する。駆動部112は、上述の昇降のための駆動力を発生する駆動ユニットとして、例えばモータ(図示せず)を有する。 The lifter pins 106 are connected to an elevating mechanism 110 that elevates the lifter pins 106 . The elevating mechanism 110 has, for example, a support member 111 that supports the plurality of lifter pins 106, and a driving unit 112 that drives elevation of the plurality of lifter pins 106 (specifically, elevation of the support member 111). The drive unit 112 has, for example, a motor (not shown) as a drive unit that generates a driving force for the above-described elevation.
 リフタピン106は、静電チャック104のウェハ載置面104aから下方に延び下部電極103の底面まで至る貫通孔113に挿通される。貫通孔113は、言い換えると、静電チャック104の中央部及び下部電極103を貫通するように形成されている。 The lifter pins 106 are inserted through the through holes 113 extending downward from the wafer mounting surface 104 a of the electrostatic chuck 104 to the bottom surface of the lower electrode 103 . In other words, the through hole 113 is formed so as to penetrate the central portion of the electrostatic chuck 104 and the lower electrode 103 .
 リフタL2は、静電チャック104のリング載置面104bから突没するように昇降する部材である。リフタL2は、例えば、アルミナや石英、SUS等を材料として柱状に形成されたリフタピン107を有する。リフタピン107は、図4に示すように、静電チャック104の周方向、すなわち、ウェハ載置面104a及びリング載置面104bの周方向に沿って、互いに間隔を空けて3本以上(図の例では3本)設けられている。リフタピン107は、例えば、上記周方向に沿って等間隔で設けられている。リフタピン107は、図2に示すように、上下方向に延びるように設けられる。 The lifter L2 is a member that moves up and down so as to protrude from the ring mounting surface 104b of the electrostatic chuck 104. As shown in FIG. The lifter L2 has lifter pins 107 made of, for example, alumina, quartz, SUS, or the like and formed in a columnar shape. As shown in FIG. 4, three or more lifter pins 107 are spaced apart from each other along the circumferential direction of the electrostatic chuck 104, that is, along the circumferential direction of the wafer mounting surface 104a and the ring mounting surface 104b. Three in the example) are provided. The lifter pins 107 are provided, for example, at regular intervals along the circumferential direction. The lifter pins 107 are provided to extend vertically, as shown in FIG.
 リフタピン107は、リフタピン107を昇降させる昇降機構114に接続されている。昇降機構114は、例えば、複数のリフタピン107を支持する支持部材115と、複数のリフタピン107の昇降(具体的には支持部材115の昇降)を駆動する駆動部116とを有する。駆動部116は、上述の昇降のための駆動力を発生する駆動ユニットとして、例えばモータ(図示せず)を有する。 The lifter pins 107 are connected to an elevating mechanism 114 that elevates the lifter pins 107 . The elevating mechanism 114 has, for example, a support member 115 that supports the plurality of lifter pins 107, and a driving unit 116 that drives elevation of the plurality of lifter pins 107 (specifically, elevation of the support member 115). The drive unit 116 has, for example, a motor (not shown) as a drive unit that generates a driving force for the above-described elevation.
 リフタピン107は、静電チャック104のリング載置面104bから下方に延び下部電極103の底面まで至る貫通孔117に挿通される。貫通孔117は、言い換えると、静電チャック104の周縁部及び下部電極103を貫通するように形成されている。 The lifter pins 107 are inserted through the through holes 117 extending downward from the ring mounting surface 104 b of the electrostatic chuck 104 to the bottom surface of the lower electrode 103 . In other words, the through-hole 117 is formed so as to penetrate the peripheral portion of the electrostatic chuck 104 and the lower electrode 103 .
 上述のようなリフタピン107は、処理モジュール60とトランスファモジュール50との間でのエッジリングFの受け渡しのため当該エッジリングFを支持して昇降させる受渡部材である。リフタピン107は、その上端面でエッジリングFの下面を支持するように構成される。 The lifter pin 107 as described above is a transfer member that supports and raises and lowers the edge ring F in order to transfer the edge ring F between the processing module 60 and the transfer module 50 . The lifter pin 107 is configured to support the lower surface of the edge ring F with its upper end surface.
 ウェハ支持台101は、図3に示すように、昇降部材118をさらに含む。
 昇降部材118は、静電チャック104に対し昇降し、その上端部がリング載置面104bに載置されたエッジリングFに当接する部材である。昇降部材118は、例えば、リフタピン107と同様、図4に示すように、静電チャック104の周方向、すなわち、ウェハ載置面104a及びリング載置面104bの周方向に沿って、互いに間隔を空けて3本以上(図の例では3本)設けられている。昇降部材118は、例えば、上記周方向に沿って等間隔で設けられている。後述するように、これら昇降部材118を用いて、静電チャック104上におけるエッジリングFの位置ずれの判定が行われる。
The wafer support table 101 further includes an elevating member 118, as shown in FIG.
The lifting member 118 is a member that moves up and down with respect to the electrostatic chuck 104 and whose upper end contacts the edge ring F mounted on the ring mounting surface 104b. Like the lifter pins 107, the elevating members 118 are separated from each other along the circumferential direction of the electrostatic chuck 104, that is, along the circumferential direction of the wafer mounting surface 104a and the ring mounting surface 104b, as shown in FIG. Three or more (three in the example in the figure) are provided at intervals. The elevating members 118 are, for example, provided at regular intervals along the circumferential direction. As will be described later, these elevating members 118 are used to determine the positional deviation of the edge ring F on the electrostatic chuck 104 .
 昇降部材118は、図3に示すように、昇降部材118を昇降させる昇降機構119に接続されている。昇降機構119は、例えば、昇降部材118毎に設けられ、昇降部材118を水平方向に移動自在に支持する支持部材120を有する。支持部材120は、昇降部材118を水平方向に移動自在に支持するため、例えばスラスト軸受を有する。また、昇降機構119は、駆動部121を有する。駆動部121は、昇降部材118の昇降(具体的には支持部材120の昇降)を駆動し、すなわち、昇降部材118を縦方向に移動させるように構成される。 The elevating member 118 is connected to an elevating mechanism 119 that elevates the elevating member 118, as shown in FIG. The elevating mechanism 119 has, for example, a support member 120 provided for each elevating member 118 and supporting the elevating member 118 so as to be movable in the horizontal direction. The support member 120 has, for example, a thrust bearing in order to support the lifting member 118 so as to be movable in the horizontal direction. Also, the lifting mechanism 119 has a drive unit 121 . The drive unit 121 is configured to drive the elevation of the elevation member 118 (specifically, elevation of the support member 120), that is, to move the elevation member 118 in the vertical direction.
 駆動部121は、上述の昇降のための駆動力を発生する駆動ユニットとして、例えばモータ122を有する。また、駆動部121は、モータ122に接続されたエンコーダ123を有する。エンコーダ123は、昇降部材118の移動量に関するパラメータ(本開示にかかる第2パラメータ)を検出するように構成される検出部(本開示にかかる第2検出部)の一例である。エンコーダ123は、上記パラメータとして、モータ122による昇降部材118の移動量に応じたパルス数を、検出する。そして、エンコーダ123は、検出結果を制御装置80に出力する。 The drive unit 121 has, for example, a motor 122 as a drive unit that generates a driving force for the above-described elevation. The drive unit 121 also has an encoder 123 connected to the motor 122 . The encoder 123 is an example of a detection unit (second detection unit according to the present disclosure) configured to detect a parameter (second parameter according to the present disclosure) regarding the amount of movement of the lifting member 118 . The encoder 123 detects, as the parameter, the number of pulses according to the amount of movement of the lifting member 118 by the motor 122 . The encoder 123 then outputs the detection result to the control device 80 .
 また、駆動部121に対しては、トルク検出部124が設けられている。トルク検出部124は、エッジリングFと昇降部材118との接触/非接触に関するパラメータ(本開示にかかる第1パラメータ)として、駆動部121の負荷に関するパラメータを検出するように構成される検出部(本開示にかかる第1検出部)の一例である。トルク検出部124は、駆動部121の負荷に関するパラメータとして、例えば、モータ122のトルクに関するパラメータを検出し、具体的には、モータ122に流れる電流値を、モータ122のトルクに関するパラメータとして検出する。そして、トルク検出部124は、検出結果を制御装置80に出力する。 A torque detection unit 124 is provided for the drive unit 121 . The torque detection unit 124 is a detection unit ( It is an example of a first detection unit according to the present disclosure. The torque detection unit 124 detects, for example, a parameter related to the torque of the motor 122 as a parameter related to the load of the drive unit 121 . Torque detection unit 124 then outputs the detection result to control device 80 .
 なお、トルク検出部124によるモータ122のトルクに関するパラメータの検出には、その他の公知の手法も適用することができる。また、トルク検出部124として、実際にモータ122のトルクを検出するトルクセンサを用いてもよい。すなわち、モータ122のトルクに関するパラメータは、モータ122のトルク自体であってもよい。さらに、駆動部121により駆動される昇降部材118に作用する荷重は、モータ122の負荷に対応しているため、昇降部材118に作用する荷重を検出する荷重センサを設け、その検出結果を、トルクに関するパラメータの検出結果として用いてもよい。 It should be noted that other known methods can also be applied to the detection of the parameters relating to the torque of the motor 122 by the torque detection unit 124. A torque sensor that actually detects the torque of the motor 122 may be used as the torque detection unit 124 . That is, the parameter related to the torque of the motor 122 may be the torque of the motor 122 itself. Furthermore, since the load acting on the lifting member 118 driven by the drive unit 121 corresponds to the load of the motor 122, a load sensor is provided to detect the load acting on the lifting member 118, and the detection result is used as the torque. may be used as a parameter detection result for
 昇降部材118は、例えば、静電チャック104のリング載置面104bから下方に延び下部電極103の底面まで至る挿通孔125に挿通される。挿通孔125は、言い換えると、静電チャック104の周縁部及び下部電極103を貫通するように形成されている。
 この挿通孔125は、少なくとも、搬送装置70によるエッジリングFの搬送精度より高い位置精度で形成されている。
The elevating member 118 is inserted through an insertion hole 125 extending downward from the ring mounting surface 104 b of the electrostatic chuck 104 to the bottom surface of the lower electrode 103 , for example. In other words, the insertion hole 125 is formed so as to penetrate the peripheral portion of the electrostatic chuck 104 and the lower electrode 103 .
The insertion hole 125 is formed with a positional accuracy higher than at least the conveying accuracy of the edge ring F by the conveying device 70 .
 なお、図の例では、昇降部材118が長尺の柱状の部材であるため、挿通孔125が静電チャック104の周縁部及び下部電極103を貫通している。ただし、昇降部材118の形状によっては、挿通孔125は静電チャック104の周縁部及び下部電極103を貫通していなくてもよい。 In the illustrated example, since the lifting member 118 is an elongated columnar member, the insertion hole 125 penetrates the peripheral portion of the electrostatic chuck 104 and the lower electrode 103 . However, depending on the shape of the lifting member 118 , the insertion hole 125 does not have to penetrate the peripheral portion of the electrostatic chuck 104 and the lower electrode 103 .
 昇降部材118は、例えばアルミナや石英、SUS等から形成される。また、昇降部材118は、例えば、図5に示すように、上端部を除き円柱状に形成され、上端部は、上方に向けて漸次細くなる形状に形成されている。昇降部材118の上端部は、例えば、頂部の中心と底部の中心を通る軸についてn(nは2以上の任意の整数)回対称の形状に形成されており、より具体的には、図5に示すような直円錐状に形成されている。なお、エッジリングFの後述の凹部F1の形状によっては、昇降部材118の上端部は、上下方向に亘って均一な太さの柱状に形成されていてもよいし、上方に向けて漸次太くなる形状に形成されていてもよい。 The elevating member 118 is made of alumina, quartz, SUS, or the like, for example. For example, as shown in FIG. 5, the elevating member 118 is formed in a cylindrical shape except for the upper end, and the upper end is formed in a shape that gradually tapers upward. The upper end of the lifting member 118 is formed, for example, in an n (n is an arbitrary integer equal to or greater than 2) rotational symmetry about an axis passing through the center of the top and the center of the bottom. It is formed in a straight cone shape as shown in . Note that depending on the shape of the recessed portion F1 of the edge ring F, which will be described later, the upper end portion of the lifting member 118 may be formed in a columnar shape with a uniform thickness in the vertical direction, or may gradually become thicker upward. It may be shaped.
 昇降部材118は、上昇したときに、その上端部が、リング載置面104bに載置されたエッジリングFの下面に当接する。エッジリングFの下面における昇降部材118それぞれに対応する位置には、上方に凹む凹部F1が形成されている。例えば、エッジリングFが静電チャック104上の最適な位置にされている状態で、平面視において、凹部F1の中心と昇降部材118の上端部の中心とが一致するように、エッジリングFの凹部F1と昇降部材118の上端部は形成されている。 When the elevating member 118 is raised, its upper end abuts the lower surface of the edge ring F mounted on the ring mounting surface 104b. Concave portions F1 that are recessed upward are formed at positions corresponding to the respective lifting members 118 on the lower surface of the edge ring F. As shown in FIG. For example, when the edge ring F is positioned optimally on the electrostatic chuck 104, the edge ring F is adjusted such that the center of the concave portion F1 and the center of the upper end of the lifting member 118 are aligned in plan view. The concave portion F1 and the upper end portion of the lifting member 118 are formed.
 平面視におけるエッジリングFの凹部F1の開口部の大きさDは、昇降部材118の上端部の少なくとも先端が通過し得る大きさである。具体的には、平面視において、エッジリングFの凹部F1の開口部の大きさ(本例では直径)Dは、例えば0.5~3mmである。 The size D of the opening of the concave portion F1 of the edge ring F in plan view is a size through which at least the tip of the upper end portion of the lifting member 118 can pass. Specifically, in plan view, the size (diameter in this example) D of the opening of the recess F1 of the edge ring F is, for example, 0.5 to 3 mm.
 また、凹部F1は、縦方向及び水平方向に対して傾斜する傾斜面F1aを有している。凹部F1は、例えば、上方に向けて漸次細くなる形状に凹むように形成され、これにより傾斜面F1aが形成されている。具体的には、凹部F1は、頂部の中心と底部の中心を通る軸についてn(nは2以上の任意の整数)回対称の形状に凹むように形成されており、より具体的には、図5に示すような直円錐状に凹むように形成されている。なお、凹部F1は、昇降部材118の上端部の形状によっては、凹部F1は、上下方向に亘って均一な太さの柱状に凹むように形成されていてもよいし、上方に向けて漸次太くなる形状に形成されていてもよい。 In addition, the recess F1 has an inclined surface F1a that is inclined with respect to the vertical direction and the horizontal direction. The recess F1 is formed, for example, so as to be recessed in a shape that gradually tapers upward, thereby forming an inclined surface F1a. Specifically, the recess F1 is formed so as to be recessed in an n (n is an arbitrary integer of 2 or more) rotational symmetry about an axis passing through the center of the top and the center of the bottom. It is formed so as to be recessed in a right conical shape as shown in FIG. Depending on the shape of the upper end of the elevating member 118, the recess F1 may be formed so as to be recessed in a columnar shape with a uniform thickness in the vertical direction, or may be formed so as to gradually become thicker upward. It may be formed in any shape.
 図2の説明に戻る。
 上部電極102は、ガス供給部130からの1又はそれ以上の処理ガスをプラズマ処理空間100sに供給するシャワーヘッドとしても機能する。一実施形態において、上部電極102は、ガス入口102a、ガス拡散室102b、及び複数のガス出口102cを有する。ガス入口102aは、例えば、ガス供給部130及びガス拡散室102bと流体連通している。複数のガス出口102cは、ガス拡散室102b及びプラズマ処理空間100sと流体連通している。一実施形態において、上部電極102は、1又はそれ以上の処理ガスをガス入口102aからガス拡散室102b及び複数のガス出口102cを介してプラズマ処理空間100sに供給するように構成される。
Returning to the description of FIG.
The upper electrode 102 also functions as a showerhead that supplies one or more processing gases from the gas supply section 130 to the plasma processing space 100s. In one embodiment, the top electrode 102 has a gas inlet 102a, a gas diffusion chamber 102b, and multiple gas outlets 102c. Gas inlet 102a is, for example, in fluid communication with gas supply 130 and gas diffusion chamber 102b. A plurality of gas outlets 102c are in fluid communication with the gas diffusion chamber 102b and the plasma processing space 100s. In one embodiment, the upper electrode 102 is configured to supply one or more process gases from a gas inlet 102a to the plasma processing space 100s via a gas diffusion chamber 102b and a plurality of gas outlets 102c.
 ガス供給部130は、1又はそれ以上のガスソース131及び1又はそれ以上の流量制御器132を含んでもよい。一実施形態において、ガス供給部130は、例えば、1又はそれ以上の処理ガスを、それぞれに対応のガスソース131からそれぞれに対応の流量制御器132を介してガス入口102aに供給するように構成される。各流量制御器132は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部130は、1又はそれ以上の処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。 The gas supply 130 may include one or more gas sources 131 and one or more flow controllers 132 . In one embodiment, gas supply 130 is configured, for example, to supply one or more process gases from respective gas sources 131 through respective flow controllers 132 to gas inlets 102a. be done. Each flow controller 132 may include, for example, a mass flow controller or a pressure-controlled flow controller. Additionally, gas supply 130 may include one or more flow modulation devices that modulate or pulse the flow of one or more process gases.
 RF電力供給部140は、RF電力、例えば1又はそれ以上のRF信号を、下部電極103、上部電極102、又は、下部電極103及び上部電極102の双方のような1又はそれ以上の電極に供給するように構成される。これにより、プラズマ処理空間100sに供給された1又はそれ以上の処理ガスからプラズマが生成される。したがって、RF電力供給部140は、プラズマ処理チャンバにおいて1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。RF電力供給部140は、例えば、2つのRF生成部141a、141b及び2つの整合回路142a、142bを含む。一実施形態において、RF電力供給部140は、第1のRF信号を第1のRF生成部141aから第1の整合回路142aを介して下部電極103に供給するように構成される。例えば、第1のRF信号は、27MHz~100MHzの範囲内の周波数を有してもよい。 RF power supply 140 provides RF power, eg, one or more RF signals, to one or more electrodes, such as bottom electrode 103, top electrode 102, or both bottom electrode 103 and top electrode 102. configured to Thereby, plasma is generated from one or more processing gases supplied to the plasma processing space 100s. Accordingly, RF power supply 140 may function as at least part of a plasma generator configured to generate a plasma from one or more process gases in a plasma processing chamber. The RF power supply 140 includes, for example, two RF generators 141a, 141b and two matching circuits 142a, 142b. In one embodiment, RF power supply 140 is configured to supply a first RF signal from first RF generator 141a to bottom electrode 103 through first matching circuit 142a. For example, the first RF signal may have a frequency within the range of 27MHz-100MHz.
 また、一実施形態において、RF電力供給部140は、第2のRF信号を第2のRF生成部141bから第2の整合回路142bを介して下部電極103に供給するように構成される。例えば、第2のRF信号は、400kHz~13.56MHzの範囲内の周波数を有してもよい。代わりに、第2のRF生成部141bに代えて、DC(Direct Current)パルス生成部を用いてもよい。 Also, in one embodiment, the RF power supply 140 is configured to supply a second RF signal from the second RF generator 141b to the lower electrode 103 via the second matching circuit 142b. For example, the second RF signal may have a frequency within the range of 400 kHz to 13.56 MHz. Alternatively, a DC (Direct Current) pulse generator may be used instead of the second RF generator 141b.
 さらに、図示は省略するが、本開示においては他の実施形態が考えられる。例えば、代替実施形態において、RF電力供給部140は、第1のRF信号をRF生成部から下部電極103に供給し、第2のRF信号を他のRF生成部から下部電極103に供給し、第3のRF信号をさらに他のRF生成部から下部電極103に供給するように構成されてもよい。加えて、他の代替実施形態において、DC電圧が上部電極102に印加されてもよい。 Furthermore, although illustration is omitted, other embodiments are conceivable in the present disclosure. For example, in an alternative embodiment, RF power supply 140 provides a first RF signal from an RF generator to bottom electrode 103, a second RF signal from another RF generator to bottom electrode 103, and A third RF signal may be configured to be supplied to the lower electrode 103 from yet another RF generator. Additionally, in other alternative embodiments, a DC voltage may be applied to the top electrode 102 .
 またさらに、種々の実施形態において、1又はそれ以上のRF信号(すなわち、第1のRF信号、第2のRF信号等)の振幅がパルス化又は変調されてもよい。振幅変調は、オン状態とオフ状態との間、あるいは、2又はそれ以上の異なるオン状態の間でRF信号振幅をパルス化することを含んでもよい。 Furthermore, in various embodiments, the amplitude of one or more RF signals (ie, first RF signal, second RF signal, etc.) may be pulsed or modulated. Amplitude modulation may involve pulsing the RF signal amplitude between an on state and an off state, or between two or more different on states.
 排気システム150は、例えばプラズマ処理チャンバ100の底部に設けられた排気口100eに接続され得る。排気システム150は、圧力弁及び真空ポンプを含んでもよい。真空ポンプは、ターボ分子ポンプ、粗引きポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 150 may be connected to an exhaust port 100e provided at the bottom of the plasma processing chamber 100, for example. Exhaust system 150 may include a pressure valve and a vacuum pump. Vacuum pumps may include turbomolecular pumps, roughing pumps, or combinations thereof.
<位置ずれの検出原理>
 続いて、エッジリングFの位置ずれの判定原理について説明する。図6は、エッジリングFの位置ずれの判定原理を説明するための図である。
 エッジリングFの下面には前述のような凹部F1が形成されている。そのため、静電チャック104上におけるエッジリングFの位置ずれの度合いに応じて、エッジリングFの下面に昇降部材118の上端部が当接するときの当該昇降部材118の高さ(以下、「エッジリングFの下面に対する昇降部材118の当接高さ」と省略することがある。)が異なっている。
<Positional deviation detection principle>
Next, the principle of determining the positional deviation of the edge ring F will be described. 6A and 6B are diagrams for explaining the principle of determining the positional deviation of the edge ring F. FIG.
The bottom surface of the edge ring F is formed with the concave portion F1 as described above. Therefore, depending on the degree of displacement of the edge ring F on the electrostatic chuck 104, the height of the lifting member 118 when the upper end portion of the lifting member 118 contacts the lower surface of the edge ring F (hereinafter referred to as "edge ring F) is different.
 例えば、エッジリングFの下面に対する昇降部材118の当接高さは、エッジリングFが静電チャック104上の最適な位置に載置されている場合、図6において符号H1で示すように、最も高くなり、また、エッジリングFが上記最適な位置からずれた位置に載置された場合、符号H2で示すように、上記当接高さは低くなる。そして、エッジリングFがさらにずれた位置に載置されると、符号H3で示すように、上記当接高さは低くなる。つまり、エッジリングFの静電チャック104上の最適な位置からのずれ量に応じて、エッジリングFの下面に対する昇降部材118の当接高さは変わってくる。 For example, when the edge ring F is placed at the optimum position on the electrostatic chuck 104, the contact height of the elevating member 118 with respect to the lower surface of the edge ring F is the maximum, as indicated by symbol H1 in FIG. When the edge ring F is placed at a position deviated from the optimum position, the contact height is lowered as indicated by H2. Then, when the edge ring F is placed at a further displaced position, the contact height becomes lower as indicated by symbol H3. That is, the contact height of the lifting member 118 with respect to the lower surface of the edge ring F changes according to the amount of deviation of the edge ring F from the optimum position on the electrostatic chuck 104 .
 そこで、本実施形態では、以下に説明するように、エッジリングFの下面に対する昇降部材118の当接高さに基づいて、エッジリングFの位置ずれを判定する。 Therefore, in the present embodiment, positional deviation of the edge ring F is determined based on the contact height of the lifting member 118 with respect to the lower surface of the edge ring F, as described below.
<制御装置80>
 図7は、エッジリングFの位置ずれの判定に関する制御装置80の機能ブロック図である。
 制御装置80は、図7に示すように、CPU等のプロセッサが記憶部に記憶されたプログラムを読み出して実行することにより実現される、固定制御部81、駆動制御部82、検知部83及び判定部84を備える。
<Control device 80>
FIG. 7 is a functional block diagram of the control device 80 regarding determination of positional deviation of the edge ring F. As shown in FIG.
As shown in FIG. 7, the control device 80 includes a fixed control unit 81, a drive control unit 82, a detection unit 83, and a determination unit, which are implemented by a processor such as a CPU reading and executing a program stored in a storage unit. A portion 84 is provided.
 固定制御部81は、静電チャック104に対するエッジリングFの固定を制御する。本実施形態では、固定制御部81は、電極109によるエッジリングFの静電吸着を制御する。例えば、固定制御部81は、エッジリングFの位置ずれの判定の際、電極109に直流電圧を印加する直流電源(図示せず)を制御し、静電力によりエッジリングFを静電チャック104に吸着し固定する。 The fixing control unit 81 controls fixing of the edge ring F to the electrostatic chuck 104 . In this embodiment, the fixation controller 81 controls the electrostatic adsorption of the edge ring F by the electrode 109 . For example, when the positional deviation of the edge ring F is determined, the fixing control unit 81 controls a DC power supply (not shown) that applies a DC voltage to the electrode 109, and holds the edge ring F to the electrostatic chuck 104 by electrostatic force. Adsorb and fix.
 駆動制御部82は、昇降部材118の昇降を駆動する駆動部121を制御する。例えば、駆動制御部82は、エッジリングFの位置ずれの判定の際、エッジリングFが静電チャック104に固定された状態で、駆動部121を制御し、昇降部材118を基準高さから上昇させていく。基準高さは、例えば、昇降部材118の先端とリング載置面104bが一致する位置であり、また、昇降部材118が最も下降した高さすなわち最下降高さであってもよい。 The drive control unit 82 controls the drive unit 121 that drives the lifting member 118 to move up and down. For example, when determining the positional deviation of the edge ring F, the drive control unit 82 controls the drive unit 121 to raise the elevating member 118 from the reference height while the edge ring F is fixed to the electrostatic chuck 104. I will let you. The reference height is, for example, the position where the tip of the lifting member 118 and the ring mounting surface 104b match, or may be the height at which the lifting member 118 is most lowered, that is, the lowest height.
 検知部83及び判定部84は、以下に説明するように、駆動部121の負荷に関するパラメータと、昇降部材118の移動量に関するパラメータに基づいて、水平方向においてエッジリングFが静電チャック104に対して位置ずれがあるかどうかを決定するように構成されている。 As described below, the detection unit 83 and the determination unit 84 determine whether the edge ring F moves relative to the electrostatic chuck 104 in the horizontal direction based on parameters related to the load of the drive unit 121 and parameters related to the movement amount of the lifting member 118 . and is configured to determine if there is misalignment.
 検知部83は、昇降部材118とエッジリングFの下面(具体的には凹部F1)との接触を検知する。例えば、検知部83は、エッジリングFの位置ずれの判定の際、エッジリングFが静電チャック104に固定された状態で駆動制御部82が昇降部材118を上昇させていったときに、駆動部121の負荷に関するパラメータの検出結果に基づいて、昇降部材118とエッジリングFの凹部F1との接触を検知する。駆動部121の負荷に関するパラメータとは、例えば、トルク検出部124により検出されるモータ122のトルクに関するパラメータである。検知部83は、より具体的には、トルク検出部124により検出されたトルクに関するパラメータが示すトルク値が、予め定められた閾値を超えたときに、昇降部材118がエッジリングFの凹部F1と接触した、と判定する。上記閾値は、記憶部92に記憶されている。
 本実施形態のように駆動部121の負荷に関するパラメータに基づいて当接を検知する場合、エッジリングFを静電チャック104に固定しておくことで、誤検知を抑制すること等ができる。
The detection unit 83 detects contact between the lifting member 118 and the lower surface of the edge ring F (specifically, the recess F1). For example, when the detection unit 83 determines the positional deviation of the edge ring F, when the drive control unit 82 lifts the lifting member 118 while the edge ring F is fixed to the electrostatic chuck 104, the driving Contact between the lifting member 118 and the recessed portion F1 of the edge ring F is detected based on the detection result of the parameter related to the load of the portion 121 . The parameters related to the load of the drive unit 121 are parameters related to the torque of the motor 122 detected by the torque detection unit 124, for example. More specifically, when the torque value indicated by the torque parameter detected by the torque detection unit 124 exceeds a predetermined threshold value, the detection unit 83 detects that the lifting member 118 is in contact with the recessed portion F1 of the edge ring F. It is determined that contact has occurred. The threshold is stored in the storage unit 92 .
When contact is detected based on parameters related to the load of the drive unit 121 as in the present embodiment, erroneous detection can be suppressed by fixing the edge ring F to the electrostatic chuck 104 .
 判定部84は、エッジリングFの下面に対する昇降部材118の当接高さに相当する情報に基づいて、静電チャック104上におけるエッジリングFの位置ずれを判定し、すなわち水平方向においてエッジリングFが静電チャック104に対して位置ずれがあるかどうかを決定する。
 判定部84は、具体的には、昇降部材118の移動量に関するパラメータに基づいて、エッジリングFの下面に対する昇降部材118の当接高さに相当する、昇降部材118が前述の基準高さからエッジリングFの下面(具体的には凹部F1)に接触するまでの、昇降部材118の上昇量を決定する。昇降部材118の移動量に関するパラメータとは、例えば、エンコーダ123の出力(パルス数)である。
 そして、判定部84は、上記上昇量と予め定められた閾値とに基づいて、水平方向においてエッジリングFが静電チャック104に対して位置ずれがあるかどうかを決定する。より具体的には、判定部84は、上記上昇量が上記閾値を下回る場合、静電チャック104上におけるエッジリングFの位置ずれが生じている(すなわちエッジリングFの静電チャック104への載置位置が適切でない)と判定する。上記閾値は、例えば、エッジリングFの凹部F1の形状及び昇降部材118の上端部の形状と、基準高さの情報とに基づいて算出され、記憶部92に記憶されている。
The determining unit 84 determines the positional deviation of the edge ring F on the electrostatic chuck 104 based on information corresponding to the contact height of the lifting member 118 with respect to the lower surface of the edge ring F. determines whether there is misalignment with respect to electrostatic chuck 104 .
Specifically, based on a parameter relating to the amount of movement of the lifting member 118, the determining unit 84 determines whether the lifting member 118 is at a height corresponding to the contact height of the lifting member 118 with respect to the lower surface of the edge ring F from the above-described reference height. The amount of elevation of the lifting member 118 until it contacts the lower surface of the edge ring F (specifically, the concave portion F1) is determined. The parameter related to the amount of movement of the lifting member 118 is, for example, the output (number of pulses) of the encoder 123 .
Then, the determination unit 84 determines whether or not the edge ring F is misaligned with respect to the electrostatic chuck 104 in the horizontal direction based on the amount of rise and the predetermined threshold value. More specifically, when the amount of rise is less than the threshold, the determination unit 84 determines that the edge ring F is misaligned on the electrostatic chuck 104 (that is, the edge ring F is not mounted on the electrostatic chuck 104). position is not appropriate). The threshold value is calculated based on, for example, the shape of the concave portion F1 of the edge ring F, the shape of the upper end portion of the lifting member 118, and information on the reference height, and is stored in the storage section 92.
<処理モジュール60のウェハ処理>
 次に、処理モジュール60を用いて行われるウェハ処理の一例について説明する。なお、処理モジュール60では、ウェハWに対して、例えばエッチング処理等の処理を行う。
<Wafer Processing in Processing Module 60>
Next, an example of wafer processing performed using the processing module 60 will be described. In the processing module 60, the wafer W is subjected to processing such as etching processing.
 先ず、プラズマ処理チャンバ100の内部にウェハWが搬入され、リフタピン106の昇降により静電チャック104上にウェハWが載置される。その後、静電チャック104の電極108に直流電圧が印加され、これにより、ウェハWが、静電力によって静電チャック104に静電吸着され、保持される。また、ウェハWの搬入後、排気システム150によってプラズマ処理チャンバ100の内部が所定の真空度まで減圧される。 First, the wafer W is loaded into the plasma processing chamber 100 and placed on the electrostatic chuck 104 by raising and lowering the lifter pins 106 . After that, a DC voltage is applied to the electrode 108 of the electrostatic chuck 104, whereby the wafer W is electrostatically attracted to and held by the electrostatic chuck 104 by electrostatic force. After loading the wafer W, the inside of the plasma processing chamber 100 is depressurized to a predetermined degree of vacuum by the exhaust system 150 .
 次に、ガス供給部130から上部電極102を介してプラズマ処理空間100sに処理ガスが供給される。また、RF電力供給部140からプラズマ生成用の高周波電力HFが下部電極103に供給され、これにより、処理ガスを励起させて、プラズマを生成する。この際、RF電力供給部140からイオン引き込み用の高周波電力LFが供給されてもよい。そして、生成されたプラズマの作用によって、ウェハWにプラズマ処理が施される。 Next, a processing gas is supplied from the gas supply unit 130 to the plasma processing space 100 s through the upper electrode 102 . In addition, high-frequency power HF for plasma generation is supplied from the RF power supply unit 140 to the lower electrode 103, thereby exciting the processing gas and generating plasma. At this time, high-frequency power LF for attracting ions may be supplied from the RF power supply unit 140 . Then, the wafer W is subjected to plasma processing by the action of the generated plasma.
 なお、プラズマ処理中、静電チャック104に吸着保持されたウェハW及びエッジリングFの底面に向けて、伝熱ガス供給路(図示せず)を介して、HeガスやArガス等の伝熱ガスが供給される。 During plasma processing, a heat transfer gas such as He gas or Ar gas is passed through a heat transfer gas supply path (not shown) toward the bottom surface of the wafer W and the edge ring F attracted and held by the electrostatic chuck 104 . Gas is supplied.
 プラズマ処理を終了する際には、RF電力供給部140からの高周波電力HFの供給及びガス供給部130からの処理ガスの供給が停止される。プラズマ処理中に高周波電力LFを供給していた場合には、当該高周波電力LFの供給も停止される。次いで、静電チャック104によるウェハWの吸着保持が停止される。また、ウェハWの底面への伝熱ガスの供給が停止されるようにしてもよい。 When the plasma processing ends, the supply of high-frequency power HF from the RF power supply unit 140 and the supply of processing gas from the gas supply unit 130 are stopped. If the high-frequency power LF is being supplied during the plasma processing, the supply of the high-frequency power LF is also stopped. Next, the electrostatic chuck 104 stops holding the wafer W by attraction. Also, the supply of the heat transfer gas to the bottom surface of the wafer W may be stopped.
 その後、リフタピン106によりウェハWを上昇させ、静電チャック104からウェハWを離脱させる。この離脱の際には、ウェハWの除電処理を行ってもよい。そして、プラズマ処理チャンバ100からウェハWを搬出して、一連のウェハ処理が終了する。 After that, the wafer W is lifted by the lifter pins 106 and detached from the electrostatic chuck 104 . During this detachment, the wafer W may be subjected to static elimination processing. Then, the wafer W is unloaded from the plasma processing chamber 100, and a series of wafer processing is completed.
<エッジリングFの取り付け処理>
 続いて、前述のプラズマ処理システム1を用いて行われる、処理モジュール60内へのエッジリングFの取り付け処理であって、静電チャック104上におけるエッジリングFの位置ずれの判定処理を含む処理の一例を、図8を用いて説明する。図8は、本取り付け処理の一例を示すフローチャートである。なお、以下の処理は、制御装置80による制御の下、行われる。
<Mounting process of edge ring F>
Subsequently, a process of mounting the edge ring F in the processing module 60 performed using the plasma processing system 1 described above, which includes a process of determining the positional deviation of the edge ring F on the electrostatic chuck 104. An example will be described with reference to FIG. FIG. 8 is a flow chart showing an example of this attachment process. Note that the following processing is performed under the control of the control device 80 .
(ステップS1:エッジリングFの搬送及び載置)
 まず、エッジリングFが、エッジリングFの取り付け対象である処理モジュール60に搬送され、静電チャック104に載置される。
 具体的には、プラズマ処理システム1の真空雰囲気のトランスファモジュール50から、エッジリングFの取り付け対象である処理モジュール60が有する、減圧されたプラズマ処理チャンバ100内に、搬入出口(図示せず)を介して、エッジリングFを保持した搬送アーム71が挿入される。そして、静電チャック104のリング載置面104bの上方の受け渡し位置へ、搬送アーム71に保持されたエッジリングFが搬送される。なお、エッジリングFは、凹部F1と昇降部材118が平面視で一致し得るように、その周方向の向きが調整されて搬送アーム71に保持されている。次いで、リフタピン107の上昇が行われ、搬送アーム71からリフタピン107へ、エッジリングFが受け渡される。その後、搬送アーム71のプラズマ処理チャンバ100からの抜き出しと、リフタピン107の下降が行われ、これにより、エッジリングFが、静電チャック104のリング載置面104bに載置される。
(Step S1: Conveyance and Placement of Edge Ring F)
First, the edge ring F is transported to the processing module 60 to which the edge ring F is to be attached and placed on the electrostatic chuck 104 .
Specifically, a loading/unloading port (not shown) is provided from the transfer module 50 in the vacuum atmosphere of the plasma processing system 1 into the depressurized plasma processing chamber 100 of the processing module 60 to which the edge ring F is attached. The transfer arm 71 holding the edge ring F is inserted through the hole. Then, the edge ring F held by the transfer arm 71 is transferred to the transfer position above the ring mounting surface 104 b of the electrostatic chuck 104 . The edge ring F is held by the transfer arm 71 with its circumferential orientation adjusted so that the concave portion F1 and the lifting member 118 can be aligned in a plan view. Next, the lifter pins 107 are lifted, and the edge ring F is transferred from the transfer arm 71 to the lifter pins 107 . After that, the transfer arm 71 is extracted from the plasma processing chamber 100 and the lifter pins 107 are lowered, whereby the edge ring F is placed on the ring placement surface 104 b of the electrostatic chuck 104 .
(ステップS2:エッジリングFの位置ずれの判定)
 その後、静電チャック104上におけるエッジリングFの位置ずれが判定される。
(Step S2: Determination of positional deviation of edge ring F)
After that, the positional deviation of the edge ring F on the electrostatic chuck 104 is determined.
(ステップS2a:エッジリングFの固定)
 具体的には、まず、固定制御部81の制御の下、電極109に直流電圧が印加され、これによる生じる静電力によりエッジリングFが静電チャック104に吸着され固定される。
 その後、以下のステップS2b~ステップS2eの工程が、昇降部材118毎に行われる。なお、以下のステップS2b~ステップS2eの工程は、全ての昇降部材118について同時に行われてもよいし、昇降部材118間で異なるタイミングで行われてもよい。
(Step S2a: Fixing edge ring F)
Specifically, first, a DC voltage is applied to the electrode 109 under the control of the fixing control unit 81, and the edge ring F is attracted and fixed to the electrostatic chuck 104 by the electrostatic force generated thereby.
After that, the following steps S2b to S2e are performed for each elevating member 118. FIG. The processes of steps S2b to S2e described below may be performed simultaneously for all the lifting members 118, or may be performed for the lifting members 118 at different timings.
(ステップS2b:昇降部材118の上昇の開始)
 上述のように、エッジリングFが静電チャック104に固定された状態で、駆動制御部82の制御の下、全ての昇降部材118の基準高さからの上昇が開始される。
(Step S2b: Start of lifting of lifting member 118)
As described above, with the edge ring F fixed to the electrostatic chuck 104 , all the lifting members 118 start to rise from the reference height under the control of the drive control unit 82 .
(ステップS2c:モータ122のトルクの取得)
 上昇中、トルク検出部124に検出されたモータ122のトルクに関するパラメータが検知部83に取得される。
(Step S2c: Acquisition of torque of motor 122)
During the ascent, the detection unit 83 acquires a parameter related to the torque of the motor 122 detected by the torque detection unit 124 .
(ステップS2d:当接検知判定)
 そして、検知部83によって、取得されたモータ122のトルクに関するパラメータが示すトルク値が予め定められた閾値を超えたか否かに基づいて、昇降部材118とエッジリングFの下面(具体的には凹部F1)への接触が検知されたか否かが判定される。
 モータ122のトルク値が上記閾値を超えないと、昇降部材118とエッジリングFの凹部F1と接触が検知されなかったと判定される。この場合(NOの場合)、ステップS2c及びステップS2dの工程が繰り返し行われる。
(Step S2d: contact detection determination)
Then, based on whether or not the torque value indicated by the acquired parameter related to the torque of the motor 122 exceeds a predetermined threshold value, the detection unit 83 detects the difference between the lifting member 118 and the lower surface of the edge ring F (specifically, the concave portion). It is determined whether contact with F1) has been detected.
If the torque value of the motor 122 does not exceed the threshold, it is determined that contact between the lifting member 118 and the recessed portion F1 of the edge ring F has not been detected. In this case (NO), steps S2c and S2d are repeated.
(ステップS2e:昇降部材118の上昇の停止)
 モータ122のトルク値が上記閾値を超えると、昇降部材118とエッジリングFの凹部F1との接触が検知されたと判定される。この場合(YESの場合)、駆動制御部82の制御の下、昇降部材118の上昇が停止される。
(Step S2e: Stop lifting the lifting member 118)
When the torque value of the motor 122 exceeds the threshold, it is determined that contact between the lifting member 118 and the recessed portion F1 of the edge ring F has been detected. In this case (if YES), the elevation of the lifting member 118 is stopped under the control of the drive control section 82 .
(ステップS2f:位置ずれの判定)
 全ての昇降部材118の上昇が停止されると、判定部84によって、静電チャック104上におけるエッジリングFの位置ずれが判定される。
 具体的には、判定部84によって、昇降部材118毎に、基準高さからエッジリングFの凹部F1に当接するまでの昇降部材118の上昇量が、当該昇降部材118に対応するエンコーダ123から出力されたパルス数に基づいて決定される。そして、判定部84により、上記上昇量が予め定められた閾値を下回るか否かが、昇降部材118毎に判定される。そして、少なくとも1つの昇降部材118について、上記パルス数が上記閾値を下回る場合、静電チャック104上におけるエッジリングFの位置ずれが生じていると判定される。
 上記位置ずれが生じていないと判定された場合(NOの場合)、エッジリングFの取り付け処理は終了する。
(Step S2f: Determination of misalignment)
When all the lifting members 118 stop rising, the determination unit 84 determines the positional deviation of the edge ring F on the electrostatic chuck 104 .
Specifically, the determining unit 84 outputs the amount of elevation of each lifting member 118 from the reference height until it contacts the concave portion F1 of the edge ring F from the encoder 123 corresponding to the lifting member 118. determined based on the number of pulses generated. Then, the determining unit 84 determines for each lifting member 118 whether or not the amount of rise is below a predetermined threshold value. When the number of pulses for at least one elevating member 118 is less than the threshold value, it is determined that the edge ring F is out of position on the electrostatic chuck 104 .
If it is determined that the positional deviation has not occurred (in the case of NO), the mounting process of the edge ring F ends.
(ステップS3:エッジリングFの位置調整及び再載置)
 一方、上記位置ずれが生じていると判定された場合(YESの場合)、エッジリングFが位置調整され、その後、静電チャック104に再度載置される。
 ステップS3の工程後、ステップS2の工程が再度行われてもよい。
(Step S3: Position adjustment and re-mounting of edge ring F)
On the other hand, if it is determined that the positional deviation has occurred (YES), the position of the edge ring F is adjusted and then placed on the electrostatic chuck 104 again.
After the process of step S3, the process of step S2 may be performed again.
<エッジリングFの位置調整の具体例1>
 例えば、まず、固定制御部81の制御の下、電極109への直流電圧の印加が停止され、静電吸着による静電チャック104へのエッジリングFの固定が解除される。
<Specific example 1 of position adjustment of edge ring F>
For example, first, under the control of the fixation controller 81, the application of the DC voltage to the electrode 109 is stopped, and the fixation of the edge ring F to the electrostatic chuck 104 by electrostatic attraction is released.
 次いで、静電チャック104上におけるエッジリングFの載置位置の調整が行われる。
 例えば、駆動制御部82の制御の下、全ての昇降部材118の上昇が行われ、静電チャック104から昇降部材118の上へエッジリングFが受け渡される。その後、駆動制御部82の制御の下、全ての又は一部の昇降部材118を細かく上下動させたりリフタピン107毎に異なる速度で下降させたりすることにより、昇降部材118上におけるエッジリングFの位置が修正される。
 修正後、駆動制御部82の制御の下、全ての昇降部材118の下降が行われ、エッジリングFが静電チャック104に再度載置される。これにより、静電チャック104上におけるエッジリングFの載置位置を調整することができる。
Next, the mounting position of the edge ring F on the electrostatic chuck 104 is adjusted.
For example, all the lifting members 118 are lifted under the control of the drive control unit 82 , and the edge ring F is transferred from the electrostatic chuck 104 onto the lifting members 118 . After that, under the control of the drive control unit 82, all or some of the lifting members 118 are finely moved up and down, or the lifter pins 107 are lowered at different speeds, thereby adjusting the position of the edge ring F on the lifting member 118. is corrected.
After correction, all the lifting members 118 are lowered under the control of the drive control unit 82, and the edge ring F is placed on the electrostatic chuck 104 again. Thereby, the mounting position of the edge ring F on the electrostatic chuck 104 can be adjusted.
 この具体例1の場合、ステップS2及びステップS3の工程は、ステップS2fにおいて、静電チャック104上におけるエッジリングFの位置ずれが生じていないと判定されるまで、繰り返し行われてもよい。そして、ステップS2及びステップS3の工程を予め定められた回数行ってもステップS2fにおいて上記位置ずれが生じていないと判定されない場合は、エラーが表示手段(図示せず)を介して報知されるようにしてもよい。 In the case of this specific example 1, the steps S2 and S3 may be repeated until it is determined in step S2f that the position of the edge ring F on the electrostatic chuck 104 has not occurred. If it is not determined in step S2f that the positional deviation has not occurred even after performing steps S2 and S3 a predetermined number of times, an error is reported via display means (not shown). can be
<エッジリングFの位置調整の具体例2>
 エッジリングFの位置調整は、上述の具体例1に限られない。
 例えば、具体例1と同様にエッジリングFの固定を解除した後、エッジリングFを静電チャック104からリフタピン107を介して搬送アーム71に一旦戻させ、次いで、搬送アーム71を、先の受け渡し位置から所定方向に所定量ずれた新たな受け渡し位置に移動させる。その後、エッジリングFを搬送アーム71からリフタピン107を介して静電チャック104に戻させる。これによっても、静電チャック104上におけるエッジリングFの載置位置を調整することができる。
<Specific example 2 of position adjustment of edge ring F>
The position adjustment of the edge ring F is not limited to the first specific example described above.
For example, after releasing the fixing of the edge ring F, the edge ring F is once returned from the electrostatic chuck 104 to the transfer arm 71 via the lifter pin 107, and then the transfer arm 71 is returned to the previous transfer. It is moved to a new transfer position shifted by a predetermined amount in a predetermined direction from the position. After that, the edge ring F is returned from the transfer arm 71 to the electrostatic chuck 104 via the lifter pins 107 . Also by this, the mounting position of the edge ring F on the electrostatic chuck 104 can be adjusted.
 ステップS3において本具体例2のように位置調整を行ったときも、ステップS3の工程後、ステップS2の工程が再度行われてもよい。この場合において、例えば、再度行ったステップS2fで位置ずれが生じていると判定され且つ同ステップS2fで取得された昇降部材118の上昇量が増大していたときは、エッジリングFの位置ずれ度合いが向上しているため、ステップS3が再度行われ、受け渡し位置が、先に行われたステップS3と同じ方向に再度所定量ずらされてもよい。そして、さらにステップS2が行われてもよい。 Even when position adjustment is performed in step S3 as in this specific example 2, the process of step S2 may be performed again after the process of step S3. In this case, for example, when it is determined that there is a positional deviation in step S2f performed again and the amount of elevation of the lifting member 118 acquired in step S2f has increased, the degree of positional deviation of the edge ring F is improved, step S3 may be performed again and the transfer position may be shifted again by a predetermined amount in the same direction as step S3 previously performed. Then, step S2 may be further performed.
 一方、再度行ったステップS2fで位置ずれが生じていると判定され且つ同ステップS2fで取得された昇降部材118の上昇量が減少していたときは、エッジリングFの位置ずれ度合いが悪化しているため、エッジリングFの位置調整を終了してもよいし、また、以下のようにしてもよい。すなわち、先に行われたステップS3において、受け渡し位置P1が、元の受け渡し位置Pから所定方向に所定量Δpずらされていた場合は、次のステップS3では、受け渡し位置P2が、元の受け渡し位置Pから上記所定方向とは異なる方向(例えば反対方向)に所定量Δpずらされてもよい。 On the other hand, when it is determined in step S2f performed again that a positional deviation has occurred and the amount of elevation of the lifting member 118 obtained in step S2f has decreased, the degree of positional deviation of the edge ring F deteriorates. Therefore, the position adjustment of the edge ring F may be terminated, or the following may be performed. That is, if the transfer position P1 is displaced from the original transfer position P0 by a predetermined amount Δp in the previous step S3, then in the next step S3, the transfer position P2 is shifted from the original transfer position It may be shifted from the position P0 by a predetermined amount Δp in a direction different from the predetermined direction (for example, the opposite direction).
 このように、駆動部121の負荷に関するパラメータ及び昇降部材118の移動量に関するパラメータを用いるステップS2での判定結果に基づいて、搬送アーム71から静電チャック104へのエッジリングFの受け渡し位置を調整してもよい。すなわち、搬送装置70は、駆動部121の負荷に関するパラメータ及び昇降部材118の移動量に関するパラメータに基づいて、静電チャック104に対するエッジリングFの位置を調節するように構成されていてもよい。 In this way, the transfer position of the edge ring F from the transfer arm 71 to the electrostatic chuck 104 is adjusted based on the determination result in step S2 using the parameter regarding the load of the drive unit 121 and the parameter regarding the movement amount of the lifting member 118. You may That is, the transport device 70 may be configured to adjust the position of the edge ring F with respect to the electrostatic chuck 104 based on the parameter regarding the load of the drive unit 121 and the parameter regarding the movement amount of the lifting member 118 .
<基準高さの取得方法>
 なお、昇降部材118に対する前述の基準高さを、昇降部材118の先端とリング載置面104bが一致する位置とする場合、当該基準高さは例えば以下のようにして取得される。すなわち、まず、エッジリングFを搬送アーム71から静電チャック104上に載置させる。このとき、搬送アーム71にエッジリングFを保持させる前に当該エッジリングFの周方向の向きを調整しておくこと等により、エッジリングFの凹部F1と昇降部材118が平面視で一致しないようにし、挿通孔125の上端がエッジリングFで塞がれるようにする。次いで、エッジリングFを固定させた状態で昇降部材118を最下降高さから上昇させる。そして、モータ122のトルクに関するパラメータに基づいて、昇降部材118の下面への当接が検知部83により検知されると、最下降高さからこの当接高さまでの昇降部材118の移動量に相当するエンコーダ123の出力が制御装置80に取得され、基準高さとして記憶される。
<How to obtain the reference height>
In addition, when the above-mentioned reference height for the lifting member 118 is set to the position where the tip of the lifting member 118 and the ring mounting surface 104b match, the reference height is acquired as follows. That is, first, the edge ring F is placed on the electrostatic chuck 104 from the transfer arm 71 . At this time, by adjusting the circumferential orientation of the edge ring F before holding the edge ring F on the transfer arm 71, the concave portion F1 of the edge ring F and the lifting member 118 do not coincide with each other in plan view. and the upper end of the insertion hole 125 is closed with the edge ring F. Next, the elevating member 118 is raised from the lowermost height while the edge ring F is fixed. Then, when contact with the lower surface of the lifting member 118 is detected by the detection unit 83 based on the parameter related to the torque of the motor 122, it corresponds to the amount of movement of the lifting member 118 from the lowest lowered height to this contact height. The output of the encoder 123 is acquired by the control device 80 and stored as the reference height.
 エッジリングFの取り外し処理は、上述のエッジリングFの取り付け処理におけるステップS1の工程と逆の手順で行われる。
 なお、エッジリングFの取り外しの際は、エッジリングFのクリーニング処理を行ってから、エッジリングFをプラズマ処理チャンバ100から搬出するようにしてもよい。
The process of removing the edge ring F is carried out in reverse order to the process of step S1 in the process of attaching the edge ring F described above.
When removing the edge ring F, the edge ring F may be carried out from the plasma processing chamber 100 after the edge ring F is cleaned.
<第1実施形態の主な効果>
 以上のように、本実施形態にかかるエッジリングFの位置ずれ判定方法によれば、カメラ等を用いていないため、プラズマ処理を行う処理モジュール60の大型化を抑制しながら、静電チャック104上におけるエッジリングFの位置ずれを判定することができる。
 また、本実施形態によれば、エッジリングFの位置ずれの判定時に当該エッジリングFを静電チャック104に固定しているため、上記判定に必要な、昇降部材118とエッジリングFの下面(具体的には凹部F1)との接触に関する誤検知を、抑制することができる。したがって、静電チャック104上におけるエッジリングFの位置ずれをより正確に判定することができる。
 さらに、本実施形態によれば、エッジリングFの位置ずれの判定時に当該エッジリングFを静電チャック104に固定しているため、昇降部材118がエッジリングFに接触したときに当該エッジリングFが水平方向にずれることを防止することができる。
 また、本実施形態によれば、プラズマ処理チャンバ100を大気開放せずに、エッジリングFの位置ずれを判定することができる。そのため、エッジリングFの位置ずれの判定のために処理モジュール60のスループットが低下することを抑制することができる。
<Main effects of the first embodiment>
As described above, according to the positional deviation determination method of the edge ring F according to the present embodiment, a camera or the like is not used. can be determined for the misalignment of the edge ring F at .
Further, according to the present embodiment, since the edge ring F is fixed to the electrostatic chuck 104 when determining the positional deviation of the edge ring F, the lifting member 118 and the lower surface of the edge ring F ( Specifically, erroneous detection of contact with the concave portion F1) can be suppressed. Therefore, the positional deviation of the edge ring F on the electrostatic chuck 104 can be determined more accurately.
Furthermore, according to the present embodiment, the edge ring F is fixed to the electrostatic chuck 104 when the positional deviation of the edge ring F is determined. can be prevented from shifting horizontally.
Further, according to this embodiment, the positional deviation of the edge ring F can be determined without opening the plasma processing chamber 100 to the atmosphere. Therefore, it is possible to prevent the throughput of the processing module 60 from decreasing due to the determination of the positional deviation of the edge ring F. FIG.
 さらに、本実施形態では、昇降部材118が支持部材120により水平方向に移動自在に支持されている。そのため、静電チャック104が熱膨張または熱収縮により変形したときに、その変形に合わせて、昇降部材118が水平方向に移動することができる。したがって、静電チャック104が熱膨張または熱収縮により変形したときに、昇降部材118を上昇させようとするときの駆動部121の負荷が上記変形に起因して増大するのを抑制することができる。その結果、昇降部材118のエッジリングFの凹部F1への接触に関する誤検知を抑制することができ、静電チャック104上におけるエッジリングFの位置ずれをより正確に判定することができる。 Furthermore, in this embodiment, the lifting member 118 is supported by the support member 120 so as to be horizontally movable. Therefore, when the electrostatic chuck 104 is deformed due to thermal expansion or thermal contraction, the elevating member 118 can move horizontally according to the deformation. Therefore, when the electrostatic chuck 104 is deformed due to thermal expansion or thermal contraction, it is possible to suppress an increase in the load on the drive unit 121 due to the deformation when the lifting member 118 is to be lifted. . As a result, erroneous detection of contact of the edge ring F of the lifting member 118 with the concave portion F1 can be suppressed, and positional deviation of the edge ring F on the electrostatic chuck 104 can be determined more accurately.
<第1実施形態の変形例>
 以上の例では、昇降部材118を昇降させる昇降機構は昇降部材118毎に設けられていたが、複数の昇降部材118に対して共通の昇降機構が設けられていてもよい。
<Modified Example of First Embodiment>
In the above example, an elevating mechanism for elevating the elevating member 118 is provided for each elevating member 118 , but a common elevating mechanism may be provided for a plurality of elevating members 118 .
 なお、昇降部材118がエッジリングFの凹部F1に接触した後にさらに昇降部材118の上昇を駆動したときに、エッジリングFの下面(具体的には凹部F1を形成する凹面)に沿って昇降部材118が摺動することを抑制するために、昇降部材118の移動方向を上下方向に規定するガイド(図示せず)を挿通孔125に設けてもよい。上述の摺動を抑制するために、昇降部材118の先端及び凹部F1を形成する凹面の少なくともいずれか一方に対し粗面化処理を施しておいてもよい。 In addition, when the lifting member 118 is further driven to rise after the lifting member 118 contacts the recessed portion F1 of the edge ring F, the lifting member 118 moves along the lower surface of the edge ring F (specifically, the concave surface forming the recessed portion F1). In order to suppress the sliding of the lifting member 118, a guide (not shown) may be provided in the insertion hole 125 to regulate the moving direction of the lifting member 118 in the vertical direction. In order to suppress the sliding described above, at least one of the tip of the lifting member 118 and the concave surface forming the concave portion F1 may be roughened.
 以上の例では、エッジリングFが静電チャック104に固定された状態で昇降部材118を上昇させていったときの昇降部材118とエッジリングFとの接触を、駆動部121の負荷に関するパラメータの検出結果(具体的にはモータ122のトルクに関するパラメータの検出結果)に基づいて、検知していた。上記当接の検知方法は、これに限られない。例えば、昇降部材の上端にエッジリングFの下面との接触を検出する接触式センサを設けておき、この接触式センサでの検出結果に基づいて、上述の昇降部材118とエッジリングFとの当接を検知してもよい。 In the above example, the contact between the lifting member 118 and the edge ring F when the lifting member 118 is lifted while the edge ring F is fixed to the electrostatic chuck 104 is used as a parameter related to the load of the driving unit 121. It is detected based on the detection result (specifically, the detection result of the parameter related to the torque of the motor 122). The contact detection method is not limited to this. For example, a contact sensor for detecting contact with the lower surface of the edge ring F is provided at the upper end of the elevating member, and the contact between the elevating member 118 and the edge ring F is detected based on the detection result of this contact sensor. contact may be detected.
<昇降部材の他の例>
 図9及び図10は、昇降部材の他の例を説明するための図である。
 以上の例では、昇降部材118の上端部は、直円錐状に形成されているものとしたが、図9の昇降部材118aのように正円錐台状に形成されていてもよいし、図10の昇降部材118bのように半球状(半楕円球状を含む)に形成されていてもよい。
 なお、円錐台も半球も、直円錐と同様、頂部の中心と底部の中心を通る軸についてn(nは2以上の任意の整数)回対称である。
 図示は省略するが、昇降部材118の上端部は、直円錐状以外の円錐状、または、正円錐台状以外の円錐台状に形成されていてもよいし、角錘状または角錐台状に形成されていてもよい。
<Another example of lifting member>
9 and 10 are diagrams for explaining another example of the lifting member.
In the above example, the upper end portion of the elevating member 118 is formed in the shape of a right cone. It may be formed in a hemispherical shape (including a semi-elliptical spherical shape) like the elevating member 118b.
Both the truncated cone and the hemisphere have n (n is an arbitrary integer equal to or greater than 2) rotational symmetry about the axis passing through the center of the top and the center of the bottom, like the right cone.
Although illustration is omitted, the upper end portion of the lifting member 118 may be formed in a cone shape other than a right cone shape, a truncated cone shape other than a regular truncated cone shape, or a pyramid shape or a truncated pyramid shape. may be formed.
<エッジリングの凹部の他の例>
 図11及び図12は、エッジリングの凹部の他の例を説明するための図である。
 以上の例では、エッジリングFの凹部F1は、直円錐状に凹むように形成されているものとしたが、図11のエッジリングFaの凹部Fa1のように正円錐台状に凹むように形成されていてもよいし、図12のエッジリングFbの凹部Fb1のように半球状に凹むように形成されていてもよい。
 なお、図示は省略するが、エッジリングFの凹部F1は、直円錐状以外の円錐状、または、正円錐台状以外の円錐台状に凹むように形成されていてもよいし、角錘状または角錐台状に凹むように形成されていてもよい。
<Another example of the concave portion of the edge ring>
11 and 12 are diagrams for explaining another example of the recess of the edge ring.
In the above example, the recess F1 of the edge ring F is formed so as to be recessed in the shape of a right cone. However, like the recess Fa1 of the edge ring Fa in FIG. Alternatively, it may be recessed in a hemispherical shape like the recess Fb1 of the edge ring Fb in FIG.
Although not shown, the recess F1 of the edge ring F may be recessed into a conical shape other than a right conical shape, a truncated conical shape other than a normal truncated conical shape, or a pyramid shape. Alternatively, it may be formed to be recessed like a truncated pyramid.
<エッジリングの他の例>
 図13及び図14は、エッジリングの他の例を説明するための図である。
 以上の例のエッジリングF、Fa、Fbの下面における昇降部材118に対応する部分は、凹部F1、Fa1、Fb1を形成する凹面となっており、エッジリングF、Fa、Fbが静電チャック104のリング載置面104bに載置された状態で径方向外側に向けて高くなる面と径方向内側に向けて高くなる面の両方を有している。エッジリングの下面における昇降部材118に対応する部分の形状は、上述の例に限られない。エッジリングの下面における昇降部材118に対応する部分の形状は、当該部分に対して昇降部材118が当接するときの当該昇降部材118の高さが静電チャック104上におけるエッジリングの位置ずれの度合いに応じて異なるように形成されていればよい。そうすれば、エッジリングの下面に当接するまでの昇降部材118の上昇量から、エッジリングの位置ずれ度合いを推定できる。
<Other examples of edge rings>
13 and 14 are diagrams for explaining other examples of edge rings.
The portions of the lower surfaces of the edge rings F, Fa, and Fb in the above examples corresponding to the lifting member 118 are concave surfaces that form the concave portions F1, Fa1, and Fb1. It has both a surface that rises radially outward and a surface that rises radially inward when placed on the ring mounting surface 104b. The shape of the portion corresponding to the lifting member 118 on the lower surface of the edge ring is not limited to the above example. The shape of the portion corresponding to the lifting member 118 on the lower surface of the edge ring is such that the height of the lifting member 118 when the lifting member 118 abuts against the portion corresponds to the degree of misalignment of the edge ring on the electrostatic chuck 104 . may be formed differently depending on the By doing so, the degree of misalignment of the edge ring can be estimated from the lift amount of the elevating member 118 until it contacts the lower surface of the edge ring.
 例えば、図13に示すように、エッジリングFcの下面における昇降部材118に対応する部分が、当該エッジリングFcが静電チャック160のリング載置面161に載置された状態で径方向外側に向けて高くなる傾斜面Fc1を有し、同径方向内側に向けて高くなる傾斜面を有していなくてもよい。なお、静電チャック160のリング載置面161は、例えば、エッジリングFcの下面における昇降部材118に対応する部分以外の部分と密接可能に形成されている。 For example, as shown in FIG. 13, the portion of the lower surface of the edge ring Fc that corresponds to the lifting member 118 extends radially outward while the edge ring Fc is mounted on the ring mounting surface 161 of the electrostatic chuck 160. It is not necessary to have the inclined surface Fc1 that rises toward the inner side in the same radial direction. In addition, the ring mounting surface 161 of the electrostatic chuck 160 is formed so as to be in close contact with, for example, a portion other than the portion corresponding to the lifting member 118 on the lower surface of the edge ring Fc.
 また、図14に示すように、エッジリングFdの下面における昇降部材118に対応する部分が、当該エッジリングFdが静電チャック170のリング載置面171に載置された状態で径方向内側に向けて高くなる傾斜面Fd1を有し、同径方向外側に向けて高くなる傾斜面を有していなくてもよい。なお、静電チャック170のリング載置面171は、例えば、エッジリングFdの下面における昇降部材118に対応する部分以外の部分と密接可能に形成されている。 Further, as shown in FIG. 14 , the portion of the lower surface of the edge ring Fd corresponding to the lifting member 118 is radially inward when the edge ring Fd is mounted on the ring mounting surface 171 of the electrostatic chuck 170 . It may have the inclined surface Fd1 that rises toward the outer side in the radial direction and not have the inclined surface that rises toward the outer side in the radial direction. In addition, the ring mounting surface 171 of the electrostatic chuck 170 is formed so as to be in close contact with, for example, a portion other than the portion corresponding to the lifting member 118 on the lower surface of the edge ring Fd.
<エッジリングの位置調整の具体例3>
 図13及び図14に示したようなエッジリングを用いる場合、前述のステップS3におけるエッジリングの位置調整(具体的には載置位置調整)を以下のようにして行ってもよい。
<Specific example 3 of edge ring position adjustment>
When using the edge ring as shown in FIGS. 13 and 14, the edge ring position adjustment (specifically, placement position adjustment) in step S3 described above may be performed as follows.
 例えば、この位置調整の前に行われたステップS2fで取得された、各昇降部材118のエッジリング下面に接触するまでの上昇量に基づいて、制御装置80が、静電チャック上でのエッジリングの位置ずれ方向及び位置ずれ量を推定する。そして、制御装置80が、これら推定結果に基づいて、上記位置ずれが解消されるように、搬送アーム71の受け渡し位置すなわち載置位置を調整し決定する。具体的には、例えば、3つの昇降部材118のうち、1つの昇降部材118のみ、ステップS2で取得された上記上昇量が小さい場合、当該1つの昇降部材118から離れるように受け渡し位置を調整し、大きい場合は、当該1つの昇降部材118に近づくように受け渡し位置を調整する。調整量は、エッジリングの下面の傾斜面(図13または図14の傾斜面Fc1、Fd1等)の傾斜角に関する情報と、上記上昇量とに基づいて算出することができる。 For example, the control device 80 controls the edge ring on the electrostatic chuck based on the amount of elevation until the edge ring lower surface of each lifting member 118 contacts the lower surface of the edge ring acquired in step S2f performed before this position adjustment. positional deviation direction and positional deviation amount are estimated. Based on these estimation results, the control device 80 adjusts and determines the transfer position, that is, the placement position of the transfer arm 71 so as to eliminate the positional deviation. Specifically, for example, if only one of the three elevating members 118 has a small amount of elevation obtained in step S2, the transfer position is adjusted so as to move away from the one elevating member 118. , if it is large, the transfer position is adjusted so as to approach the one lifting member 118 concerned. The amount of adjustment can be calculated based on the information about the inclination angle of the inclined surface of the lower surface of the edge ring (the inclined surfaces Fc1, Fd1, etc. in FIG. 13 or FIG. 14) and the amount of rise.
 このような位置調整後にエッジリングを載置した後は、ステップS2の工程が再度行われてもよいし、行われなくてもよい。 After placing the edge ring after such position adjustment, step S2 may or may not be performed again.
 なお、図13及び図14に示したようなエッジリングの場合に、ステップS3のエッジリングの位置調整を、前述の具体例1、2のように行ってもよい。また、図13及び図14に示したようなエッジリング以外のエッジリングの場合に、ステップS3のエッジリングの位置調整を、上記具体例3のように行ってもよい。 In the case of edge rings as shown in FIGS. 13 and 14, the position adjustment of the edge ring in step S3 may be performed as in specific examples 1 and 2 described above. Also, in the case of edge rings other than the edge rings shown in FIGS. 13 and 14, the position adjustment of the edge ring in step S3 may be performed as in the above specific example 3.
<昇降部材の他の例>
 図15は、昇降部材の他の例を説明するための図である。図16は、図15の昇降部材を用いる場合のウェハ支持台の上面図である。
 以上の例の昇降部材は、搬送アーム71との間でエッジリングFを受け渡すリフタピン107とは別に設けられていた。それに対し、図15の昇降部材180は、上述のリフタピン107も兼ね、搬送アーム71との間でエッジリングFの受け渡しも行う。
<Another example of lifting member>
FIG. 15 is a diagram for explaining another example of the lifting member. FIG. 16 is a top view of the wafer support when using the elevating member of FIG. 15. FIG.
The elevating member in the above example is provided separately from the lifter pin 107 that transfers the edge ring F to and from the transfer arm 71 . On the other hand, the lifting member 180 in FIG. 15 also serves as the lifter pin 107 described above, and transfers the edge ring F to and from the transfer arm 71 .
 この場合も、昇降部材180は、図16に示すように、静電チャック104の周方向、すなわち、ウェハ載置面104a及びリング載置面104bの周方向に沿って、互いに間隔を空けて3本以上(図の例では3本)設けられる。
 なお、複数の昇降部材180の一部のみが、リフタピン107を兼ねてもよい。
In this case also, as shown in FIG. 16, the elevating member 180 is spaced three times along the circumferential direction of the electrostatic chuck 104, that is, along the circumferential direction of the wafer mounting surface 104a and the ring mounting surface 104b. More than this (three in the example of the figure) are provided.
Note that only some of the plurality of lifting members 180 may also serve as the lifter pins 107 .
 昇降部材180のように、昇降部材がリフタを兼ねることで、低コストで処理モジュール60を作製することができる。
 一方、図3及び図4に示した昇降部材118等のように、昇降部材とリフタを別に設けることで、以下の効果がある。すなわち、リフタに比べて大きな負荷がかかるため故障の可能性が高い昇降部材が故障しても、リフタは利用できるため、昇降部材が故障したときには当該昇降部材を用いたエッジリングの位置ずれの判定は行わずに、リフタを用いたエッジリングの交換のみ行う、等といった運用を採用することができる。また、昇降部材とリフタを別に設けることで、昇降部材とその昇降機構についてはエッジリングの位置ずれの判定に最適な形状及び構成を採用しつつ、リフタとその昇降機構についてはエッジリングの受け渡しに最適な及び構成を採用することができる。
Like the elevating member 180, the elevating member also serves as a lifter, so that the processing module 60 can be manufactured at low cost.
On the other hand, by separately providing the lifting member and the lifter, such as the lifting member 118 shown in FIGS. 3 and 4, the following effects can be obtained. That is, even if the lifter, which has a high probability of failure due to a larger load than the lifter, fails, the lifter can still be used. It is possible to adopt an operation such as only replacing the edge ring using a lifter without performing the replacement. In addition, by separately providing the lifting member and the lifter, the lifting member and its lifting mechanism adopt the optimum shape and configuration for judging the positional deviation of the edge ring, while the lifter and its lifting mechanism are used to transfer the edge ring. Optimum and configuration can be adopted.
<エッジリングの固定部の他の例>
 図17~図19は、エッジリングの固定部の他の例を説明するための図である。
 以上の例では、電極109に直流電圧を印加することにより生じる静電力によりエッジリングFを静電チャック104に固定していた。言い換えると、以上の例ではエッジリングFを静電チャック104に固定する固定部として電極109を用いていた。
 エッジリングFを電気的に固定する固定部としては、静電力により固定するものに限られず、ジョンセン・ラーベック力により固定するものであってもよい。
<Another example of fixing portion of edge ring>
17 to 19 are diagrams for explaining other examples of the fixing portion of the edge ring.
In the above example, the edge ring F is fixed to the electrostatic chuck 104 by electrostatic force generated by applying a DC voltage to the electrode 109 . In other words, in the above example, the electrode 109 is used as a fixing portion for fixing the edge ring F to the electrostatic chuck 104 .
The fixing portion for electrically fixing the edge ring F is not limited to fixing by electrostatic force, and may be fixed by Johnsen-Rahbek force.
 また、固定部は、上述のように電気的に固定するものに限られず、例えば図17のクランプ190のように物理的に固定するものであってもよい。クランプ190は、当該クランプ190と静電チャック104との間にエッジリングFを挟み込むことで固定する。また、クランプ190は、以下のクランプ位置と退避位置との間を移動自在に構成されている。クランプ位置とは、上述のようにエッジリングFを挟み込む位置であり、退避位置は、搬送アーム71と静電チャック104との間でエッジリングFを受け渡すときに当該受け渡しを妨げないように退避する位置である。 Further, the fixing portion is not limited to the one that electrically fixes as described above, and may be one that physically fixes, such as the clamp 190 in FIG. 17, for example. The clamp 190 is fixed by sandwiching the edge ring F between the clamp 190 and the electrostatic chuck 104 . Also, the clamp 190 is configured to be movable between a clamping position and a retracted position described below. The clamp position is the position where the edge ring F is sandwiched as described above, and the retracted position is the retracted position so as not to interfere with the transfer of the edge ring F between the transfer arm 71 and the electrostatic chuck 104 . position.
 なお、例えば、エッジリングFの下面及び静電チャック104のリング載置面104bの少なくともいずれか一方に粘着性を有する粘着シートを貼り付けておき、粘着力によりエッジリングFを静電チャック104に固定してもよい。 For example, an adhesive sheet having adhesiveness is attached to at least one of the lower surface of the edge ring F and the ring mounting surface 104b of the electrostatic chuck 104, and the edge ring F is attached to the electrostatic chuck 104 by adhesive force. May be fixed.
 さらに、図18に示すように、エッジリングFhを静電チャック104に固定する固定部として、エッジリングFhと静電チャック104との間を排気する排気孔191を有していてもよい。排気孔191は、排気システム(図示せず)に接続されている。この排気システムは、例えば圧力弁及び真空ポンプを含み、真空ポンプとしては例えばターボ分子ポンプを含む。一実施形態において、昇降部材118が挿通される挿通孔が排気孔191を兼ねる。ただし、上記挿通孔とは別に排気孔191がウェハ支持台101に設けられていてもよい。 Furthermore, as shown in FIG. 18, as a fixing portion for fixing the edge ring Fh to the electrostatic chuck 104, an exhaust hole 191 for exhausting air between the edge ring Fh and the electrostatic chuck 104 may be provided. Vent 191 is connected to an exhaust system (not shown). This evacuation system includes, for example, a pressure valve and a vacuum pump, which includes, for example, a turbomolecular pump. In one embodiment, the insertion hole through which the lifting member 118 is inserted also serves as the exhaust hole 191 . However, an exhaust hole 191 may be provided in the wafer support 101 in addition to the insertion hole.
 エッジリングFhと静電チャック104との間の圧力がプラズマ処理空間100sの圧力より低くなるように排気孔191を介して排気することにより、エッジリングFhを静電チャック104に固定することができる。 The edge ring Fh can be fixed to the electrostatic chuck 104 by exhausting through the exhaust hole 191 so that the pressure between the edge ring Fh and the electrostatic chuck 104 is lower than the pressure in the plasma processing space 100s. .
 排気孔191を設ける場合、エッジリングFhの下面における、排気孔191に対応する部分に環状溝Fh1が設けられていてもよい。環状溝Fh1は、例えば上方に凹み且つ平面視環状に形成される。環状溝Fh1の断面形状は例えば長方形である。また、昇降部材118が接触する凹部F1は、例えば、環状溝Fh1の頂部から上方に凹むように形成される。この場合、凹部F1の深さD1は例えば0.5~1.0mmである。また、環状溝Fh1の深さD2は、例えば、50μm~120μm、より好ましくは80~120μmである。
 エッジリングFhの下面に環状溝Fh1を設けることにより、エッジリングFhをより強く静電チャック104に固定することができる。
When the exhaust holes 191 are provided, an annular groove Fh1 may be provided in a portion corresponding to the exhaust holes 191 on the lower surface of the edge ring Fh. The annular groove Fh1 is, for example, recessed upward and formed in an annular shape in plan view. The cross-sectional shape of the annular groove Fh1 is, for example, rectangular. Further, the recess F1 with which the lifting member 118 contacts is formed, for example, so as to be recessed upward from the top of the annular groove Fh1. In this case, the depth D1 of the recess F1 is, for example, 0.5 to 1.0 mm. Also, the depth D2 of the annular groove Fh1 is, for example, 50 μm to 120 μm, more preferably 80 to 120 μm.
By providing the annular groove Fh1 in the lower surface of the edge ring Fh, the edge ring Fh can be fixed to the electrostatic chuck 104 more strongly.
 環状溝Fh1の形状は図18の例に限られない。例えば、図19の環状溝Fh2のように、縦方向及び水平方向に対して傾斜する傾斜面を有していてもよい。 The shape of the annular groove Fh1 is not limited to the example shown in FIG. For example, like the annular groove Fh2 in FIG. 19, it may have an inclined surface that is inclined with respect to the vertical direction and the horizontal direction.
 昇降部材118が挿通される挿通孔が排気孔191を兼ねる場合も、上記挿通孔とは別に排気孔191が設けられる場合も、実際にウェハWに対しエッチング処理等の処理が行われる時に、排気孔191からエッジリングFhと静電チャック104との間にHeガス等の伝熱ガスを供給してもよい。 In the case where the insertion hole through which the elevating member 118 is inserted also serves as the exhaust hole 191, or in the case where the exhaust hole 191 is provided separately from the insertion hole, when the wafer W is actually subjected to the etching process or the like, the exhaust gas is exhausted. A heat transfer gas such as He gas may be supplied from the hole 191 between the edge ring Fh and the electrostatic chuck 104 .
 なお、上述したエッジリングFhの固定の態様を併用してもよい。例えば、排気孔191を介した固定と、別の形態の固定(例えば電極109を用いた静電吸着)を併用してもよい。 Note that the fixing aspect of the edge ring Fh described above may also be used. For example, fixing via the exhaust hole 191 and another form of fixing (for example, electrostatic adsorption using the electrode 109) may be used together.
<エッジリングと昇降部材の他の例>
 図20は、エッジリングと昇降部材の他の例を示す図である。
 以上の例では、昇降部材118が、静電チャック104のリング載置面104bから突出したときに、エッジリングFの下面に当接していた。
 それに対し、図20のエッジリングFeには、その下面における昇降部材に対応する部分に、下方に突出する凸部Fe1が形成され、当該凸部Fe1が挿通孔125に収まり、昇降部材がリング載置面104bから突出せずに、エッジリングFの下面に当接している。凸部Fe1は例えば直円錐状に形成される。この場合も、エッジリングFeの下面に対する昇降部材の当接高さに基づいて、エッジリングFeの位置ずれを判定することができる。
 エッジリングFeに凸部Fe1が形成されている場合、昇降部材の上端部は、図3等に示した昇降部材118と同様に細い錘状であってもよいし、図20の昇降部材118cのように、その上面に下方に凹む凹部118c1が形成されていてもよい。
<Other examples of edge ring and elevating member>
FIG. 20 is a diagram showing another example of the edge ring and the elevating member.
In the above example, the elevating member 118 contacts the lower surface of the edge ring F when protruding from the ring mounting surface 104b of the electrostatic chuck 104 .
On the other hand, in the edge ring Fe of FIG. 20, a convex portion Fe1 projecting downward is formed in a portion corresponding to the lifting member on the lower surface thereof. It abuts on the lower surface of the edge ring F without protruding from the mounting surface 104b. The convex portion Fe1 is formed, for example, in the shape of a right cone. Also in this case, the positional deviation of the edge ring Fe can be determined based on the contact height of the lifting member with respect to the lower surface of the edge ring Fe.
When the edge ring Fe is formed with the convex portion Fe1, the upper end portion of the lifting member may have a thin conical shape like the lifting member 118 shown in FIG. As shown, a concave portion 118c1 that is recessed downward may be formed on the upper surface.
(第2実施形態)
 図21は、第2実施形態にかかるプラズマ処理装置におけるウェハ支持台200周辺の構成の概略を示す、部分拡大断面図である。
 第1実施形態では、エッジリングFが交換対象且つ位置ずれ判定対象であったが、本実施形態では、カバーリングCが交換対象且つ位置ずれ判定対象である。カバーリングCは、エッジリングFfの周方向外側面を覆う環状部材である。
(Second embodiment)
FIG. 21 is a partially enlarged cross-sectional view showing an outline of the configuration around the wafer support 200 in the plasma processing apparatus according to the second embodiment.
In the first embodiment, the edge ring F is a replacement target and a positional deviation determination target, but in the present embodiment, the cover ring C is a replacement target and a positional deviation determination target. The cover ring C is an annular member that covers the circumferential outer surface of the edge ring Ff.
 図21のウェハ支持台200は、下部電極201、静電チャック202、支持体203、絶縁体204、昇降部材205を有する。
 図2等に示した下部電極103及び静電チャック104には、これらを貫通するように挿通孔125が設けられていたが、下部電極201及び静電チャック202には挿通孔125は設けられていない。この点で、下部電極201及び静電チャック202と、下部電極103及び静電チャック104は異なる。
A wafer support 200 in FIG. 21 has a lower electrode 201 , an electrostatic chuck 202 , a support 203 , an insulator 204 and an elevating member 205 .
The lower electrode 103 and electrostatic chuck 104 shown in FIG. do not have. In this respect, the lower electrode 201 and electrostatic chuck 202 are different from the lower electrode 103 and electrostatic chuck 104 .
 支持体203は、例えば石英等を用いて、平面視環状に形成された部材であり、下部電極201を支持すると共に、カバーリングCが載置される。支持体203の上面203aは、交換対象且つ位置ずれ判定対象の環状部材としてのカバーリングCが載置される環状部材載置面となる。つまり、支持体203は、基板支持部の一部を構成する。本実施形態において、静電チャック202及び支持体203が基板支持部を構成する。 The support 203 is a member made of, for example, quartz and formed in a ring shape in a plan view, supports the lower electrode 201, and has the cover ring C mounted thereon. An upper surface 203a of the support 203 serves as an annular member mounting surface on which a cover ring C as an annular member to be replaced and to be subjected to positional deviation determination is mounted. That is, the support 203 forms part of the substrate support. In this embodiment, the electrostatic chuck 202 and the support 203 constitute a substrate support.
 絶縁体204は、セラミック等で形成された円筒状の部材であり、支持体203を支持する。絶縁体204は、例えば、支持体203の外径と同等の外径を有するように形成され、支持体203の周縁部を支持する。 The insulator 204 is a cylindrical member made of ceramic or the like, and supports the support 203 . The insulator 204 is formed, for example, to have an outer diameter equal to that of the support 203 and supports the periphery of the support 203 .
 図3等の昇降部材118は、下部電極103及び静電チャック104を上下方向に貫通する挿通孔125に挿通されているのに対し、昇降部材205は、支持体203を上面203aから上下方向に貫通する挿通孔206に挿通される。この点で、昇降部材205と、昇降部材118は異なる。ただし、昇降部材205の形状によっては、挿通孔206は支持体203を貫通していなくてもよい。 The elevating member 118 shown in FIG. 3 and the like is inserted through the insertion hole 125 vertically penetrating the lower electrode 103 and the electrostatic chuck 104, whereas the elevating member 205 vertically moves the support 203 from the upper surface 203a. It is inserted through the through-hole 206 . In this respect, the lifting member 205 and the lifting member 118 are different. However, depending on the shape of the lifting member 205 , the insertion hole 206 may not pass through the support 203 .
 昇降部材205は、例えば、図15の昇降部材180と同様、位置ずれの判定に用いられる部材であり、カバーリングCの交換時に搬送アーム71との間でカバーリングCを受け渡すリフタピンを兼ねる。
 また、昇降部材205は、昇降部材118と同様、静電チャック202の周方向に沿って、互いに間隔を空けて3本以上設けられている。
The elevating member 205 is, for example, similar to the elevating member 180 in FIG. 15, a member used for determining positional deviation, and also serves as a lifter pin for transferring the cover ring C to and from the transport arm 71 when the cover ring C is replaced.
Similarly to the lifting member 118 , three or more lifting members 205 are provided at intervals along the circumferential direction of the electrostatic chuck 202 .
 さらに、図示は省略するが、昇降部材205には、昇降部材118と同様、昇降部材205の昇降を駆動する駆動部を有する昇降機構が設けられており、この昇降機構にはモータ等の駆動ユニット及びエンコーダが設けられており、トルク検出部も設けられている。 Furthermore, although illustration is omitted, the lifting member 205 is provided with a lifting mechanism having a drive unit for driving the lifting member 205 to move up and down, like the lifting member 118. The lifting mechanism includes a drive unit such as a motor. and an encoder are provided, and a torque detector is also provided.
 昇降部材205の上端部は、以上で例示した昇降部材と同様な形状、例えば半球状に形成されている。昇降部材205の上端部は、カバーリングCの交換時に、カバーリングCの下面を支持する。また、昇降部材205の上端部は、カバーリングCの位置ずれの判定の際に昇降部材205が上昇したときに、カバーリングCの下面に当接する。カバーリングCの下面における昇降部材205それぞれに対応する位置には、上方に凹む凹部C1が形成されている。 The upper end of the elevating member 205 is formed in the same shape as the elevating member exemplified above, such as a hemispherical shape. The upper end of the lifting member 205 supports the lower surface of the cover ring C when the cover ring C is replaced. Further, the upper end of the elevating member 205 abuts on the lower surface of the cover ring C when the elevating member 205 is lifted during the determination of the positional deviation of the cover ring C. As shown in FIG. Concave portions C<b>1 that are recessed upward are formed at positions corresponding to the lifting members 205 on the lower surface of the cover ring C. As shown in FIG.
 平面視におけるカバーリングCの凹部C1の開口部の大きさは、昇降部材205の上端部の少なくとも先端が通過し得る大きさである。
 凹部C1は、以上で例示したエッジリングの凹部と同様な形状、例えば直円錐状に形成されている。
 本実施形態において、エッジリングFfの下面は、前述のエッジリングF等と異なり、その全体が、当該エッジリングFfがリング載置面104bに載置された状態で水平となる平坦面であってもよい。
The size of the opening of the concave portion C1 of the cover ring C in plan view is such that at least the tip of the upper end portion of the lifting member 205 can pass through.
The concave portion C1 is formed in the same shape as the concave portion of the edge ring exemplified above, for example, a right conical shape.
In this embodiment, the lower surface of the edge ring Ff is a flat surface that is entirely horizontal when the edge ring Ff is mounted on the ring mounting surface 104b, unlike the edge ring F described above. good too.
 また、ウェハ支持台200に対して、固定部としてのクランプ210が設けられている。クランプ210は、当該クランプ210と支持体203との間にカバーリングCを挟み込むことで当該カバーリングCを固定する。また、クランプ210は、クランプ位置と退避位置との間を移動自在に構成されている。 Also, a clamp 210 is provided as a fixing part for the wafer support table 200 . The clamp 210 fixes the cover ring C by sandwiching the cover ring C between the clamp 210 and the support 203 . Also, the clamp 210 is configured to be movable between a clamp position and a retracted position.
 カバーリングCの取り付け処理(支持体203上におけるカバーリングCの位置ずれの判定処理を含む)及び取り外し処理は、第1実施形態にかかるエッジリングFの取り付け処理及び取り外し処理と同様であるため、その説明を省略する。 Since the mounting process (including the positional deviation determination process of the covering C on the support 203) and the removing process of the covering C are the same as the mounting process and the removing process of the edge ring F according to the first embodiment, The explanation is omitted.
(第3実施形態)
 図22は、第3実施形態にかかるプラズマ処理装置におけるウェハ支持台300周辺の構成の概略を示す、部分拡大断面図である。
 第1実施形態では、エッジリングFが交換対象且つ位置ずれ判定対象であり、第2実施形態では、カバーリングCが交換対象且つ位置ずれ判定対象であったが、本実施形態では、エッジリングF及びカバーリングCの両方が交換対象且つ位置ずれ判定対象である。
(Third embodiment)
FIG. 22 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support table 300 in the plasma processing apparatus according to the third embodiment.
In the first embodiment, the edge ring F is the object of replacement and the object of positional deviation determination, and in the second embodiment, the cover ring C is the object of replacement and the object of positional deviation determination. , and the covering C are both replacement targets and position deviation determination targets.
 なお、本実施形態では、エッジリングF及びカバーリングCはそれぞれ別個に交換され且つ位置ずれ判定がなされる。
 そのため、例えばエッジリングFに対し、昇降部材118と挿通孔125が設けられ、カバーリングCに対し、昇降部材205と挿通孔206が設けられている。また、前述の凹部F1、C1がそれぞれ、エッジリングFの底面、カバーリングCの底面に形成されている。
 さらに、昇降部材118には、図3を用いて説明したように、昇降部材118の昇降を駆動する駆動部121を有する昇降機構119が設けられている。昇降機構119には、昇降部材118の移動量に関するパラメータ(本開示にかかる第2パラメータ)を検出するように構成される検出部(本開示にかかる第2検出部)として、エンコーダ123が設けられている。また、駆動部121には、駆動部121の負荷に関するパラメータ(本開示にかかる第1パラメータ)を検出するように構成される検出部(本開示にかかる第1検出部)として、トルク検出部124が設けられている。
In this embodiment, the edge ring F and the cover ring C are replaced separately and the positional deviation is determined.
For this reason, for example, the edge ring F is provided with an elevating member 118 and an insertion hole 125 , and the cover ring C is provided with an elevating member 205 and an insertion hole 206 . Further, the recesses F1 and C1 described above are formed in the bottom surface of the edge ring F and the bottom surface of the cover ring C, respectively.
Further, the elevating member 118 is provided with the elevating mechanism 119 having the drive unit 121 for driving the elevation of the elevating member 118, as described with reference to FIG. The lifting mechanism 119 is provided with an encoder 123 as a detection unit (second detection unit according to the present disclosure) configured to detect a parameter (second parameter according to the present disclosure) related to the amount of movement of the lifting member 118. ing. Further, the drive unit 121 includes a torque detection unit 124 as a detection unit (first detection unit according to the present disclosure) configured to detect a parameter (first parameter according to the present disclosure) related to the load of the drive unit 121. is provided.
 昇降部材205には、図示は省略するが、昇降部材118と同様、昇降部材205の昇降を駆動する駆動部を有する昇降機構が設けられている。昇降機構には、昇降部材205の移動量に関するパラメータ(本開示にかかる第4パラメータ)を検出するように構成される検出部(本開示にかかる第4検出部)として、エンコーダ123と同様なエンコーダが設けられている。また、昇降部材205に対する駆動部には、当該駆動部の負荷に関するパラメータ(本開示にかかる第3パラメータ)を検出するように構成される検出部(本開示にかかる第3検出部)として、トルク検出部124と同様なトルク検出部が設けられている。 Although not shown, the elevating member 205 is provided with an elevating mechanism having a drive unit that drives the elevating member 205 to move up and down, like the elevating member 118 . The lifting mechanism includes an encoder similar to the encoder 123 as a detection unit (fourth detection unit according to the present disclosure) configured to detect a parameter (fourth parameter according to the present disclosure) related to the movement amount of the lifting member 205. is provided. Further, in the driving unit for the lifting member 205, a torque A torque detector similar to detector 124 is provided.
 さらに、制御装置80が、昇降部材205に対する駆動部の負荷に関するパラメータ(本開示にかかる第3パラメータ)に基づいて、昇降部材205とカバーリングCの凹部C1との接触を検知する。また、制御装置80が、昇降部材205の移動量に関するパラメータ(本開示にかかる第4パラメータ)に基づいて、昇降部材205の基準高さからカバーリングCの凹部C1と接触するまでの上昇量を決定する。そして、制御装置80が、上記上昇量と閾値とに基づいて、水平方向においてカバーリングCがウェハ支持台300に対して位置ずれがあるかどうかを決定する。 Furthermore, the control device 80 detects contact between the lifting member 205 and the concave portion C1 of the cover ring C based on a parameter (third parameter according to the present disclosure) related to the load of the drive unit on the lifting member 205 . Further, the control device 80 determines the amount of elevation of the lifting member 205 from the reference height until it contacts the concave portion C1 of the cover ring C, based on a parameter (fourth parameter according to the present disclosure) related to the amount of movement of the lifting member 205. decide. Then, the control device 80 determines whether or not the cover ring C is misaligned with respect to the wafer support 300 in the horizontal direction based on the amount of rise and the threshold value.
 本実施形態における、エッジリングFの取り付け処理(静電チャック104上におけるエッジリングFの位置ずれの判定処理を含む)及び取り外し処理、カバーリングCの取り付け処理(支持体203上におけるカバーリングCの位置ずれの判定処理を含む)及び取り外し処理は、第1実施形態にかかるエッジリングFの取り付け処理(静電チャック104上におけるエッジリングFの位置ずれの判定処理を含む)及び取り外し処理と同様であるため、その説明を省略する。 In the present embodiment, the edge ring F attachment processing (including the positional deviation determination processing of the edge ring F on the electrostatic chuck 104) and removal processing, the cover ring C attachment processing (cover ring C attachment processing on the support 203) (including positional deviation determination processing) and removal processing are the same as the attachment processing (including positional deviation determination processing of the edge ring F on the electrostatic chuck 104) and removal processing of the edge ring F according to the first embodiment. Therefore, the description is omitted.
(第4実施形態)
 図23は、第4実施形態にかかるプラズマ処理装置におけるウェハ支持台400周辺の構成の概略を示す、部分拡大断面図である。
 第1実施形態では、エッジリングFが、第2実施形態では、カバーリングCが、第3実施形態では、エッジリングF及びカバーリングCの両方が、交換対象であった。それに対し、本実施形態では、エッジリングを支持したカバーリング(以下、「リングセット」と省略することがある。)が交換対象である。
(Fourth embodiment)
FIG. 23 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support 400 in the plasma processing apparatus according to the fourth embodiment.
In the first embodiment, the edge ring F, in the second embodiment, the cover ring C, and in the third embodiment, both the edge ring F and the cover ring C are to be replaced. In contrast, in the present embodiment, the cover ring supporting the edge ring (hereinafter sometimes abbreviated as "ring set") is to be replaced.
 図23のウェハ支持台400は、下部電極401、静電チャック402、支持体403、絶縁体404、昇降部材405を有する。 A wafer support table 400 in FIG.
 下部電極401及び静電チャック402には、昇降部材405が挿通される挿通孔406が設けられている。挿通孔406は、例えば静電チャック402の周縁部の上面402aから下方に延び下部電極401の底面まで至るように形成されている。挿通孔406は、言い換えると、静電チャック104の周縁部及び下部電極401を貫通するように形成されている。ただし、昇降部材405の形状によっては、挿通孔125は静電チャック402の周縁部及び下部電極401を貫通していなくてもよい。 The lower electrode 401 and the electrostatic chuck 402 are provided with an insertion hole 406 through which the elevating member 405 is inserted. The insertion hole 406 is formed, for example, so as to extend downward from the upper surface 402 a of the peripheral portion of the electrostatic chuck 402 to the bottom surface of the lower electrode 401 . In other words, the insertion hole 406 is formed so as to penetrate the peripheral portion of the electrostatic chuck 104 and the lower electrode 401 . However, depending on the shape of the lifting member 405 , the insertion hole 125 does not have to penetrate the peripheral portion of the electrostatic chuck 402 and the lower electrode 401 .
 支持体403は、例えば石英等を用いて、平面視環状に形成された部材であり、下部電極401を支持する。 The support 403 is a member made of, for example, quartz and formed in a ring shape in plan view, and supports the lower electrode 401 .
 この支持体403の上面403aと、静電チャック402の周縁部の上面402aとが、本実施形態にかかる交換対象の環状部材としての、エッジリングFgを支持したカバーリングCaが載置される、環状部材載置面となる。 A cover ring Ca supporting an edge ring Fg, which is an annular member to be replaced according to the present embodiment, is placed on the upper surface 403a of the support 403 and the upper surface 402a of the peripheral portion of the electrostatic chuck 402. It becomes an annular member mounting surface.
 絶縁体404は、セラミック等で形成された円筒状の部材であり、支持体403を支持する。絶縁体404は、例えば、支持体403の外径と同等の外径を有するように形成され、支持体403の周縁部を支持する。 The insulator 404 is a cylindrical member made of ceramic or the like, and supports the support 403 . The insulator 404 is formed, for example, to have an outer diameter equal to that of the support 403 and supports the periphery of the support 403 .
 本実施形態において、カバーリングCaは、エッジリングFgを支持可能に構成されており、平面視で当該エッジリングFgと少なくとも一部重なるように形成されている。カバーリングCaは例えばエッジリングFeを当該カバーリングCaと略同心の状態で支持する。一実施形態において、カバーリングCaの最内周部の直径が、エッジリングFgの最外周部の直径よりも小さく、カバーリングCaとエッジリングFgとを略同心に配置したときに、平面視でカバーリングCaの内周部がエッジリングFgの外周と少なくとも一部重なる。例えば、一実施形態において、エッジリングFgが、底部の外周部に、径方向内側に凹む凹所Fg1を有し、カバーリングCaが、その底部に径方向内側に突出する凸部Ca1を有しており、凸部Ca1と凹所Fg1との係合により、エッジリングFgを支持する。 In this embodiment, the cover ring Ca is configured to support the edge ring Fg, and is formed so as to at least partially overlap the edge ring Fg in plan view. The cover ring Ca supports, for example, the edge ring Fe substantially concentrically with the cover ring Ca. In one embodiment, the diameter of the innermost peripheral portion of the cover ring Ca is smaller than the diameter of the outermost peripheral portion of the edge ring Fg, and when the cover ring Ca and the edge ring Fg are arranged substantially concentrically, in plan view The inner peripheral portion of the cover ring Ca at least partially overlaps the outer periphery of the edge ring Fg. For example, in one embodiment, the edge ring Fg has a radially inwardly recessed recess Fg1 on the outer circumference of the bottom, and the cover ring Ca has a radially inwardly protruding protrusion Ca1 on its bottom. The edge ring Fg is supported by engagement between the projection Ca1 and the recess Fg1.
 なお、本実施形態において、エッジリングFgは、図2のエッジリングFと同様、その上部に段差が形成されており、外周部の上面が内周部の上面より高く形成され、また、その内径が、ウェハWの外径よりも小さく形成されている。 In the present embodiment, the edge ring Fg is formed with a step at its upper portion, similar to the edge ring F in FIG. is smaller than the outer diameter of the wafer W.
 昇降部材405は、例えば、図15の昇降部材180等と同様、位置ずれの判定に用いられる部材であり、リングセットの交換時に、当該リングセットを搬送アーム71との間で受け渡すリフタを兼ねる。昇降部材405は、例えば、静電チャック402の周縁部の上面402aにおける平面視でカバーリングCaと重なる位置(具体的には凸部Ca1と重なる位置)から突出可能に昇降する。 The elevating member 405 is, for example, similar to the elevating member 180 in FIG. 15, and is a member used for determining positional deviation, and also serves as a lifter for transferring the ring set to and from the transport arm 71 when the ring set is replaced. . The elevating member 405 ascends and descends so as to protrude from, for example, a position overlapping the cover ring Ca in plan view on the upper surface 402a of the peripheral portion of the electrostatic chuck 402 (specifically, a position overlapping the convex portion Ca1).
 また、昇降部材405は、昇降部材180と同様、静電チャック402の周方向に沿って、互いに間隔を空けて3つ以上設けられている。
 さらに、図示は省略するが、昇降部材205には、昇降部材118と同様、昇降部材205の昇降を駆動する駆動部を有する昇降機構が設けられており、この昇降機構にはモータ等の駆動ユニット及びエンコーダが設けられており、トルク検出部も設けられている。
Similarly to the lifting member 180 , three or more lifting members 405 are provided at intervals along the circumferential direction of the electrostatic chuck 402 .
Furthermore, although illustration is omitted, the lifting member 205 is provided with a lifting mechanism having a drive unit for driving the lifting member 205 to move up and down, like the lifting member 118. The lifting mechanism includes a drive unit such as a motor. and an encoder are provided, and a torque detector is also provided.
 昇降部材405の上端部は、以上で例示した昇降部材と同様な形状、例えば半球状に形成されている。昇降部材405の上端部は、例えば、リングセットの交換時に、カバーリングCaの凸部Ca1の下面を支持する。また、昇降部材405の上端部は、リングセットの位置ずれの判定の際に昇降部材405が上昇したときに、カバーリングCaの凸部Ca1の下面に当接する。カバーリングCaの凸部Ca1の底面における昇降部材405それぞれに対応する位置には、上方に凹む凹部Ca2が形成されている。 The upper end of the elevating member 405 is formed in the same shape as the elevating member exemplified above, such as a hemispherical shape. The upper end of the lifting member 405 supports the lower surface of the projection Ca1 of the cover ring Ca, for example, when replacing the ring set. Further, the upper end of the elevating member 405 abuts on the lower surface of the convex portion Ca1 of the cover ring Ca when the elevating member 405 is lifted during determination of positional deviation of the ring set. Concave portions Ca2 that are concave upward are formed at positions corresponding to the lifting members 405 on the bottom surface of the convex portion Ca1 of the cover ring Ca.
 平面視におけるカバーリングCaの凹部Ca2の開口部の大きさは、昇降部材405の上端部の少なくとも先端が通過し得る大きさである。
 凹部Ca2は、以上で例示したエッジリングまたはカバーリングの凹部と同様な形状、例えば直円錐状に形成されている。
The size of the opening of the concave portion Ca2 of the cover ring Ca in plan view is such that at least the tip of the upper end portion of the lifting member 405 can pass through.
The concave portion Ca2 is formed in the same shape as the concave portion of the edge ring or cover ring exemplified above, for example, a right conical shape.
 エッジリングFgを支持した状態のカバーリングCaすなわちリングセットの取り付け処理(環状部材載置面上におけるリングセットの位置ずれの判定処理を含む)及び取り外し処理は、第1実施形態にかかるエッジリングFの取り付け処理(静電チャック104上におけるエッジリングFの位置ずれの判定処理を含む)及び取り外し処理と同様であるため、その説明を省略する。 The mounting process (including the process of determining positional deviation of the ring set on the annular member mounting surface) and the removing process of the cover ring Ca supporting the edge ring Fg, that is, the ring set, are performed by the edge ring F according to the first embodiment. (including the positional deviation determination process of the edge ring F on the electrostatic chuck 104) and the removal process, the description thereof will be omitted.
 なお、リングセットの位置ずれの判定の処理の際、少なくともカバーリングCaを固定する必要がある。例えば、クランプ210でカバーリングCaを固定してもよいし、電極109に直流電圧を印加してエッジリングFgを固定することによりカバーリングCaを固定するようにしてもよい。 It should be noted that at least the covering Ca needs to be fixed during the process of determining the positional deviation of the ring set. For example, the cover ring Ca may be fixed by the clamp 210, or the cover ring Ca may be fixed by applying a DC voltage to the electrode 109 to fix the edge ring Fg.
 本実施形態によれば、エッジリングFgとカバーリングCaとを同時に交換することができるため、これらの交換に要する時間をより短縮することができる。また、エッジリングFg用のリフタと、カバーリングCa用のリフタを別々に設ける必要がないため、低コスト化を図ることができる。 According to this embodiment, the edge ring Fg and the cover ring Ca can be replaced at the same time, so the time required for replacement of them can be further shortened. Moreover, since it is not necessary to separately provide a lifter for the edge ring Fg and a lifter for the cover ring Ca, cost reduction can be achieved.
(第5実施形態)
 図24は、第5実施形態にかかるプラズマ処理装置におけるウェハ支持台500周辺の構成の概略を示す、部分拡大断面図である。
(Fifth embodiment)
FIG. 24 is a partially enlarged cross-sectional view showing the outline of the configuration around the wafer support table 500 in the plasma processing apparatus according to the fifth embodiment.
 図24のウェハ支持台500は、下部電極501、静電チャック502、支持体503、リフタの一例としての昇降部材504を有する。 A wafer support table 500 in FIG. 24 has a lower electrode 501, an electrostatic chuck 502, a support 503, and an elevating member 504 as an example of a lifter.
 支持体503は、図23の例の支持体403と同様、例えば石英等を用いて、平面視環状に形成された部材であり、下部電極501を支持する。ただし、図23の例では、支持体403は、下部電極401より厚く、支持体403の上面が下部電極401の上面より高い位置に位置するが、図24の例では、支持体503は、下部電極501と厚さが同じであり、その上面の高さも下部電極501と同じである。 The support 503 is a member made of, for example, quartz and formed in a ring shape in a plan view, similar to the support 403 in the example of FIG. However, in the example of FIG. 23, the support 403 is thicker than the lower electrode 401, and the upper surface of the support 403 is positioned higher than the upper surface of the lower electrode 401. In the example of FIG. Its thickness is the same as that of the electrode 501 and the height of its upper surface is also the same as that of the lower electrode 501 .
 また、図23の例では、昇降部材405が挿通される挿通孔406が、下部電極401及び静電チャック402を貫通するように設けられていた。それに対し、図23の例では、昇降部材504が挿通される挿通孔505は、下部電極501のみを貫通するように設けられている。挿通孔505は、下部電極501を縦方向に貫通するように形成されている。 Further, in the example of FIG. 23, the insertion hole 406 through which the elevating member 405 is inserted is provided so as to penetrate the lower electrode 401 and the electrostatic chuck 402 . On the other hand, in the example of FIG. 23, the insertion hole 505 through which the elevating member 504 is inserted is provided so as to penetrate only the lower electrode 501 . The through hole 505 is formed to vertically penetrate the lower electrode 501 .
 本実施形態において、第4実施形態と同様、カバーリングCbは、エッジリングFaを支持可能に構成されており、エッジリングFaと同心としたときに、平面視で当該エッジリングFaと少なくとも一部重なるように形成されている。一実施形態において、カバーリングCbの最内周部の直径が、エッジリングFaの最外周部の直径よりも小さく、カバーリングCbとエッジリングFaとが全周にわたり重なるように配置したときに、平面視でカバーリングCbの内周部がエッジリングFaの外周部と少なくとも一部重なる。例えば、一実施形態において、カバーリングCbが、その底部に径方向内側に突出する凸部Cb1を有しており、凸部Cb1により、エッジリングFaを支持する。 In the present embodiment, as in the fourth embodiment, the cover ring Cb is configured to be able to support the edge ring Fa, and when concentric with the edge ring Fa, at least a portion of the edge ring Fa in plan view. formed to overlap. In one embodiment, the diameter of the innermost peripheral portion of the cover ring Cb is smaller than the diameter of the outermost peripheral portion of the edge ring Fa, and when the cover ring Cb and the edge ring Fa are arranged to overlap over the entire circumference, The inner peripheral portion of the cover ring Cb at least partially overlaps the outer peripheral portion of the edge ring Fa in plan view. For example, in one embodiment, the cover ring Cb has a protrusion Cb1 that protrudes radially inward at its bottom, and supports the edge ring Fa by the protrusion Cb1.
 カバーリングCbは、支持体503の上面503aと下部電極501の上面に跨って載置される。一方、エッジリングFaは、その外周部が静電チャック104の外側に張り出すように、静電チャック502の周縁部の上面502a上に載置される。そして、エッジリングFaは、静電チャック502の外側に張り出す外周部が、カバーリングCbにより搬送時に支持される。 The cover ring Cb is placed across the upper surface 503 a of the support 503 and the upper surface of the lower electrode 501 . On the other hand, the edge ring Fa is mounted on the upper surface 502 a of the peripheral edge portion of the electrostatic chuck 502 so that the outer peripheral portion of the edge ring Fa extends outside the electrostatic chuck 104 . Then, the edge ring Fa is supported by the cover ring Cb at the outer peripheral portion projecting to the outside of the electrostatic chuck 502 during transportation.
 エッジリングFaの外周部の底面には、昇降部材504それぞれに対応する位置に、凹部Fa1が設けられている。凹部Fa1の形状は、図の例に限られず、例えば図5等に示した形状であってもよい。昇降部材504は、カバーリングCbの内周部すなわち凸部Cb1を貫通して、エッジリングFaの凹部Fa1に接触可能である。 On the bottom surface of the outer peripheral portion of the edge ring Fa, recesses Fa1 are provided at positions corresponding to the lifting members 504 respectively. The shape of the concave portion Fa1 is not limited to the example shown in the figure, and may be, for example, the shape shown in FIG. The elevating member 504 can penetrate the inner peripheral portion of the cover ring Cb, ie, the convex portion Cb1, and contact the concave portion Fa1 of the edge ring Fa.
 カバーリングCbは、昇降部材504それぞれに対応する位置に、昇降部材504が挿通される、エッジリングFaの凹部Fa1に至る貫通孔Cb2を有する。貫通孔Cb2は、平面視でエッジリングFaの外周部と重なるカバーリングCbの内周部(具体的には例えば凸部Cb1)に設けられている。 The cover ring Cb has through holes Cb2 at positions corresponding to the elevating members 504, which reach the concave portions Fa1 of the edge ring Fa, through which the elevating members 504 are inserted. The through hole Cb2 is provided in the inner peripheral portion (specifically, for example, the convex portion Cb1) of the cover ring Cb overlapping the outer peripheral portion of the edge ring Fa in plan view.
 昇降部材504は、図5の昇降部材118等と同様、位置ずれの判定に用いられる部材である。この昇降部材504は、下部電極501の外周部の上面501aから突出可能に昇降する。昇降部材504は、具体的には、下部電極501の外周部の上面501aにおける平面視でエッジリングFa及びカバーリングCbと重なる位置から突出可能に構成されている。昇降部材504が挿通される挿通孔505は、平面視でエッジリングFa及びカバーリングCbと重なる位置に形成されている。 The elevating member 504 is a member that is used to determine positional deviation, similar to the elevating member 118 and the like in FIG. This elevating member 504 elevates so as to protrude from the upper surface 501 a of the outer peripheral portion of the lower electrode 501 . Specifically, the lifting member 504 is configured to protrude from a position overlapping the edge ring Fa and the cover ring Cb in plan view on the upper surface 501a of the outer peripheral portion of the lower electrode 501 . The insertion hole 505 through which the elevating member 504 is inserted is formed at a position overlapping the edge ring Fa and the cover ring Cb in plan view.
 また、昇降部材504は、図5の昇降部材118等と同様、静電チャック502の周方向に沿って、互いに間隔を空けて3本以上設けられている。
 昇降部材504の上端部の形状は、図の例に限られず、例えば図5等に示した形状であってもよい。
In addition, three or more elevating members 504 are provided at intervals along the circumferential direction of the electrostatic chuck 502 in the same manner as the elevating member 118 and the like in FIG.
The shape of the upper end portion of the lifting member 504 is not limited to the illustrated example, and may be, for example, the shape shown in FIG. 5 or the like.
 一実施形態において、昇降部材504は、搬送アーム71との間で受け渡しのために、エッジリングFa及びカバーリングCbを支持して昇降するリフタピンを兼ねる。 In one embodiment, the elevating member 504 also serves as a lifter pin that supports and elevates the edge ring Fa and the cover ring Cb for delivery to and from the transfer arm 71 .
 この場合、昇降部材504の上端部は、エッジリングFaの凹部Fa1と係合しエッジリングFaを支持するエッジリング支持部を構成する。昇降部材504は、上昇したときに、その上端部が、カバーリングCbの貫通孔Cb2を通過し、エッジリングFaの下面の凹部Fa1に当接し、これにより、エッジリングFaを下面から支持するよう構成されている。
 そして、昇降部材504は、エッジリング支持部を構成する上端部の下方に、カバーリングCbを支持するカバーリング支持部504aを有する。カバーリング支持部504aは、カバーリングCbの貫通孔Cb2を通過せずカバーリングCbの下面に当接し、これにより、カバーリングCbを下面から支持するように構成されている。
In this case, the upper end of the lifting member 504 constitutes an edge ring supporting portion that engages with the concave portion Fa1 of the edge ring Fa and supports the edge ring Fa. When the elevating member 504 is raised, its upper end passes through the through hole Cb2 of the cover ring Cb and contacts the recess Fa1 on the lower surface of the edge ring Fa, thereby supporting the edge ring Fa from the lower surface. It is configured.
The lifting member 504 has a cover ring support portion 504a that supports the cover ring Cb below the upper end that constitutes the edge ring support portion. The cover ring support portion 504a is configured to contact the lower surface of the cover ring Cb without passing through the through hole Cb2 of the cover ring Cb, thereby supporting the cover ring Cb from the lower surface.
 なお、図示は省略するが、昇降部材504には、昇降部材118と同様、昇降部材504の昇降を駆動する駆動部を有する昇降機構が設けられており、この昇降機構にはモータ等の駆動ユニット及びエンコーダが設けられており、トルク検出部も設けられている。
 したがって、本実施形態においても、前述の実施形態と同様にして、エッジリングFaの位置ずれの判定を行うことができる。
Although illustration is omitted, the elevating member 504 is provided with an elevating mechanism having a driving unit for driving the elevating member 504 to move up and down, like the elevating member 118. The elevating mechanism includes a drive unit such as a motor. and an encoder are provided, and a torque detector is also provided.
Therefore, also in this embodiment, it is possible to determine the positional deviation of the edge ring Fa in the same manner as in the above-described embodiment.
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な追加、省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。 Although various exemplary embodiments have been described above, various additions, omissions, substitutions, and modifications may be made without being limited to the exemplary embodiments described above. Also, elements from different embodiments can be combined to form other embodiments.
60 処理モジュール
80 制御装置
100 プラズマ処理チャンバ
104、202、402、502 静電チャック
118、118a、118b、118c、180、205、405、504 昇降部材
121 駆動部
123 エンコーダ
124 トルク検出部
203、403 支持体
C、Ca、Cb カバーリング
F、Fa、Fb、Fc、Fd、Fe、Fg、Fh エッジリング
W ウェハ
60 processing module 80 control device 100 plasma processing chambers 104, 202, 402, 502 electrostatic chucks 118, 118a, 118b, 118c, 180, 205, 405, 504 lifting member 121 driving unit 123 encoder 124 torque detecting unit 203, 403 support Body C, Ca, Cb Covering F, Fa, Fb, Fc, Fd, Fe, Fg, Fh Edge ring W Wafer

Claims (16)

  1. プラズマ処理チャンバと、
    前記プラズマ処理チャンバ内に配置される基板支持部と、
    前記基板支持部上の基板を囲むように前記基板支持部上に配置され、下面を有する環状部材であり、前記環状部材の前記下面は、凹部を有し、前記凹部は、縦方向に対して傾斜する傾斜面を有する、環状部材と、
    前記環状部材の下方に配置され、前記環状部材の前記凹部に接触可能な昇降部材と、
    前記基板支持部に対して前記昇降部材を縦方向に移動させるように構成される駆動部と、
    前記駆動部の負荷に関する第1パラメータを検出するように構成される第1検出部と、
    前記昇降部材の移動量に関する第2パラメータを検出するように構成される第2検出部と、
    制御部と、を備え、
    前記制御部は、
    前記第1パラメータに基づいて、前記昇降部材と前記環状部材の前記凹部との接触を検知し、
    前記第2パラメータに基づいて、基準高さから前記環状部材の前記凹部と接触するまでの前記昇降部材の上昇量を決定し、
    前記上昇量と閾値とに基づいて、水平方向において前記環状部材が前記基板支持部に対して位置ずれがあるかどうかを決定するように構成される、プラズマ処理装置。
    a plasma processing chamber;
    a substrate support positioned within the plasma processing chamber;
    An annular member disposed on the substrate support so as to surround the substrate on the substrate support and having a lower surface, the lower surface of the annular member having a recess, the recess extending in the longitudinal direction an annular member having an angled surface;
    a lifting member disposed below the annular member and capable of coming into contact with the recess of the annular member;
    a drive unit configured to vertically move the elevating member with respect to the substrate support;
    a first detector configured to detect a first parameter related to the load of the drive;
    a second detection unit configured to detect a second parameter related to the amount of movement of the lifting member;
    a control unit;
    The control unit
    detecting contact between the lifting member and the recess of the annular member based on the first parameter;
    Based on the second parameter, determine the amount of elevation of the lifting member from a reference height to contact with the recess of the annular member;
    A plasma processing apparatus configured to determine whether the annular member is misaligned with respect to the substrate support in a horizontal direction based on the amount of elevation and a threshold.
  2. 前記第1パラメータは、前記駆動部の負荷である、請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein said first parameter is the load of said drive unit.
  3. 前記第2検出部は、前記駆動部内に配置されるエンコーダであり、前記第2パラメータは、パルス数である、請求項1または2に記載のプラズマ処理装置。 3. The plasma processing apparatus according to claim 1, wherein said second detection section is an encoder disposed within said drive section, and said second parameter is the number of pulses.
  4. 前記基板支持部内に配置され、前記環状部材を前記基板支持部に静電吸着するように構成される電極をさらに備える、請求項1~3のいずれか1項に記載のプラズマ処理装置。 4. The plasma processing apparatus according to claim 1, further comprising an electrode disposed within said substrate support and configured to electrostatically attract said annular member to said substrate support.
  5. 前記基板支持部は、前記基板支持部と前記環状部材との間を排気する排気孔が形成されている、請求項1~4のいずれか1項に記載のプラズマ処理装置。 5. The plasma processing apparatus according to claim 1, wherein said substrate supporting portion is formed with an exhaust hole for exhausting air between said substrate supporting portion and said annular member.
  6. 前記環状部材を支持するように構成される複数のリフタピンと、
    前記基板支持部に対して前記複数のリフタピンを縦方向に移動させるように構成される少なくとも1つの追加の駆動部と、を備える、請求項1~5のいずれか1項に記載のプラズマ処理装置。
    a plurality of lifter pins configured to support the annular member;
    and at least one additional drive configured to vertically move the plurality of lifter pins relative to the substrate support. .
  7. 前記昇降部材は、前記環状部材を支持するように構成されるリフタピンである、請求項1~5のいずれか1項に記載のプラズマ処理装置。 6. The plasma processing apparatus according to claim 1, wherein said elevating member is a lifter pin configured to support said annular member.
  8. 前記環状部材は、Si材料又はSiC材料で形成されるエッジリングである、請求項1~7のいずれか1項に記載のプラズマ処理装置。 8. The plasma processing apparatus according to claim 1, wherein said annular member is an edge ring made of Si material or SiC material.
  9. 前記エッジリングを囲むように前記基板支持部上に配置されるカバーリングをさらに備える、請求項8に記載のプラズマ処理装置。 9. The plasma processing apparatus according to claim 8, further comprising a cover ring arranged on said substrate support so as to surround said edge ring.
  10. 前記昇降部材は、前記カバーリングを貫通して前記エッジリングの前記凹部に接触可能である、請求項9に記載のプラズマ処理装置。 10. The plasma processing apparatus according to claim 9, wherein said elevating member can penetrate said cover ring and come into contact with said recess of said edge ring.
  11. 前記カバーリングは下面を有し、前記カバーリングの前記下面は、凹部を有し、前記カバーリングの前記凹部は、縦方向に対して傾斜する傾斜面を有し、
    前記カバーリングの下方に配置され、前記カバーリングの前記凹部に接触可能な追加の昇降部材と、
    前記基板支持部に対して前記追加の昇降部材を縦方向に移動させるように構成される追加の駆動部と、
    前記追加の駆動部の負荷に関する第3パラメータを検出するように構成される第3検出部と、
    前記追加の昇降部材の移動量に関する第4パラメータを検出するように構成される第4検出部と、をさらに備え、
    前記制御部は、
    前記第3パラメータに基づいて、前記追加の昇降部材と前記カバーリングの前記凹部との接触を検知し、
    前記第4パラメータに基づいて、基準高さから前記カバーリングの前記凹部と接触するまでの前記追加の昇降部材の上昇量を決定し、
    前記追加の昇降部材の上昇量と閾値とに基づいて、水平方向において前記カバーリングが前記基板支持部に対して位置ずれがあるかどうかを決定するように構成される、請求項9または10に記載のプラズマ処理装置。
    The cover ring has a lower surface, the lower surface of the cover ring has a recess, the recess of the cover ring has an inclined surface that is inclined with respect to the longitudinal direction,
    an additional elevating member disposed below the cover ring and capable of contacting the recess of the cover ring;
    an additional drive configured to vertically move the additional lifting member relative to the substrate support;
    a third detector configured to detect a third parameter related to the load of the additional drive;
    a fourth detection unit configured to detect a fourth parameter related to the amount of movement of the additional lifting member;
    The control unit
    detecting contact between the additional lifting member and the recess of the cover ring based on the third parameter;
    Determining the amount of elevation of the additional lifting member from a reference height to contacting the recess of the cover ring based on the fourth parameter;
    11. The method according to claim 9 or 10, configured to determine whether the cover ring is misaligned with respect to the substrate support in a horizontal direction based on the amount of elevation of the additional elevating member and a threshold value. The plasma processing apparatus described.
  12. 前記環状部材は、前記基板支持部上の基板を囲むように前記基板支持部上に配置されるエッジリングの外側面を覆うカバーリングである、請求項1~7のいずれか1項に記載のプラズマ処理装置。 8. The annular member according to any one of claims 1 to 7, wherein the annular member is a cover ring covering an outer surface of an edge ring arranged on the substrate support so as to surround the substrate on the substrate support. Plasma processing equipment.
  13. 前記カバーリングは、前記エッジリングを支持するように構成される、請求項12に記載のプラズマ処理装置。 13. The plasma processing apparatus of Claim 12, wherein the cover ring is configured to support the edge ring.
  14. 前記カバーリングは、前記エッジリングを前記基板支持部に固定することにより前記基板支持部に固定される、請求項13に記載のプラズマ処理装置。 14. The plasma processing apparatus of claim 13, wherein the cover ring is secured to the substrate support by securing the edge ring to the substrate support.
  15. プラズマ処理チャンバと、
    前記プラズマ処理チャンバ内に配置される基板支持部と、
    前記基板支持部上の基板を囲むように前記基板支持部上に配置される環状部材と、
    前記環状部材の下方に配置され、前記環状部材に接触可能な昇降部材と、
    前記基板支持部に対して前記昇降部材を縦方向に移動させるように構成される駆動部と、
    前記環状部材と前記昇降部材との接触/非接触に関する第1パラメータを検出するように構成される第1検出部と、
    前記昇降部材の移動量に関する第2パラメータを検出するように構成される第2検出部と、
    前記第1パラメータ及び前記第2パラメータに基づいて、水平方向において前記環状部材が前記基板支持部に対して位置ずれがあるかどうかを決定するように構成される制御部と、を備える、プラズマ処理装置。
    a plasma processing chamber;
    a substrate support positioned within the plasma processing chamber;
    an annular member arranged on the substrate support so as to surround the substrate on the substrate support;
    a lifting member disposed below the annular member and capable of coming into contact with the annular member;
    a drive unit configured to vertically move the elevating member with respect to the substrate support;
    a first detection unit configured to detect a first parameter relating to contact/non-contact between the annular member and the elevating member;
    a second detection unit configured to detect a second parameter related to the amount of movement of the lifting member;
    a controller configured to determine whether the annular member is misaligned relative to the substrate support in a horizontal direction based on the first parameter and the second parameter. Device.
  16. プラズマ処理チャンバと、
    前記プラズマ処理チャンバ内に配置される基板支持部と、
    前記基板支持部上の基板を囲むように前記基板支持部上に配置される環状部材と、
    前記環状部材の下方に配置され、前記環状部材に接触可能な昇降部材と、
    前記基板支持部に対して前記昇降部材を縦方向に移動させるように構成される駆動部と、
    前記環状部材と前記昇降部材との接触/非接触に関する第1パラメータを検出するように構成される第1検出部と、
    前記昇降部材の移動量に関する第2パラメータを検出するように構成される第2検出部と、
    前記第1パラメータ及び前記第2パラメータに基づいて、前記基板支持部に対する前記環状部材の位置を調節するように構成される搬送装置と、を備える、プラズマ処理装置。
     
     
     
    a plasma processing chamber;
    a substrate support positioned within the plasma processing chamber;
    an annular member arranged on the substrate support so as to surround the substrate on the substrate support;
    a lifting member disposed below the annular member and capable of coming into contact with the annular member;
    a drive unit configured to vertically move the elevating member with respect to the substrate support;
    a first detection unit configured to detect a first parameter relating to contact/non-contact between the annular member and the elevating member;
    a second detection unit configured to detect a second parameter related to the amount of movement of the lifting member;
    a transport apparatus configured to adjust the position of the annular member relative to the substrate support based on the first parameter and the second parameter.


PCT/JP2022/002441 2021-01-29 2022-01-24 Plasma processing device WO2022163582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021012887 2021-01-29
JP2021-012887 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163582A1 true WO2022163582A1 (en) 2022-08-04

Family

ID=82654457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002441 WO2022163582A1 (en) 2021-01-29 2022-01-24 Plasma processing device

Country Status (2)

Country Link
TW (1) TW202247237A (en)
WO (1) WO2022163582A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340693A (en) * 2004-05-31 2005-12-08 Nec Kansai Ltd Plasma etching equipment
JP2016146472A (en) * 2015-01-16 2016-08-12 ラム リサーチ コーポレーションLam Research Corporation Moveable edge coupling ring for edge process control during semiconductor wafer processing
JP2020057712A (en) * 2018-10-03 2020-04-09 東京エレクトロン株式会社 Plasma processing apparatus and ring member thickness measurement method
JP2020115499A (en) * 2019-01-17 2020-07-30 東京エレクトロン株式会社 Plasma processing apparatus and ring member position deviation measuring method
JP2020161827A (en) * 2020-06-05 2020-10-01 東京エレクトロン株式会社 Processing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340693A (en) * 2004-05-31 2005-12-08 Nec Kansai Ltd Plasma etching equipment
JP2016146472A (en) * 2015-01-16 2016-08-12 ラム リサーチ コーポレーションLam Research Corporation Moveable edge coupling ring for edge process control during semiconductor wafer processing
JP2020057712A (en) * 2018-10-03 2020-04-09 東京エレクトロン株式会社 Plasma processing apparatus and ring member thickness measurement method
JP2020115499A (en) * 2019-01-17 2020-07-30 東京エレクトロン株式会社 Plasma processing apparatus and ring member position deviation measuring method
JP2020161827A (en) * 2020-06-05 2020-10-01 東京エレクトロン株式会社 Processing system

Also Published As

Publication number Publication date
TW202247237A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
CN111630627A (en) Joining system and joining method
JP5470460B2 (en) Substrate transfer method and substrate transfer system
US20210280396A1 (en) Substrate support, plasma processing system, and method of placing annular member
US20210305022A1 (en) Edge ring, substrate support, plasma processing system and method of replacing edge ring
KR20210111700A (en) Plasma processing system and edge ring replacement method
JP2022148699A (en) Plasma processing system and method for fitting annular member
US11901163B2 (en) Plasma processing system and edge ring replacement method
US20220157575A1 (en) Apparatus for plasma processing and plasma processing system
WO2022163582A1 (en) Plasma processing device
CN111211031A (en) Focus ring height control device and substrate etching device having the same
JP7441711B2 (en) How to place the substrate support stand, plasma processing system, and edge ring
US20240136158A1 (en) Plasma processing system and edge ring replacement method
KR20080034725A (en) Loadlock chamber and method for loading and unloading wafers
US20210398783A1 (en) Plasma processing system, plasma processing apparatus, and method for replacing edge ring
US20230178417A1 (en) Substrate support, plasma processing apparatus, and ring replacement method
WO2024038832A1 (en) Jig and positioning method
JP2022135646A (en) Substrate support and plasma processing device
JP2022136624A (en) Plasma treatment system and attachment method of consumption member
US20230420286A1 (en) Substrate processing apparatus and transfer method
WO2024071073A1 (en) Substrate treatment system
WO2024071020A1 (en) Substrate processing system and transport method
KR20090048202A (en) Apparatus for chucking a substrate and method of chucking the substrate
TW202137359A (en) Probe card holding apparatus and inspection apparatus
KR20210027647A (en) Apparatus for treating substrate and method for teaching a position of hand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745803

Country of ref document: EP

Kind code of ref document: A1