WO2024038832A1 - Jig and positioning method - Google Patents

Jig and positioning method Download PDF

Info

Publication number
WO2024038832A1
WO2024038832A1 PCT/JP2023/029305 JP2023029305W WO2024038832A1 WO 2024038832 A1 WO2024038832 A1 WO 2024038832A1 JP 2023029305 W JP2023029305 W JP 2023029305W WO 2024038832 A1 WO2024038832 A1 WO 2024038832A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
jig
support surface
base plate
substrate support
Prior art date
Application number
PCT/JP2023/029305
Other languages
French (fr)
Japanese (ja)
Inventor
俊紀 赤間
信峰 佐々木
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024038832A1 publication Critical patent/WO2024038832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to a jig and an alignment method.
  • Patent Document 1 discloses an etching apparatus that includes an edge ring that is a ring member disposed to surround the outer periphery of a substrate supported by a substrate support in a plasma processing chamber.
  • the present disclosure provides a jig and an alignment method used for aligning a ring member when the ring member is transported and installed in a plasma processing chamber.
  • a jig used when installing a ring member on a ring support surface of an installed member comprising: a base plate; a fixing part fixed to the base plate;
  • a jig comprising: a sheet member having a protrusion protruding from a side surface of the base plate.
  • the ring member can be accurately aligned when the ring member is transported and installed in the plasma processing chamber.
  • An example of a diagram for explaining a configuration example of a plasma processing apparatus An example of a perspective view of a positioning jig. An example of a partially enlarged perspective view of a positioning jig. An example of a flowchart illustrating processing when installing an edge ring in an annular area of the main body.
  • An example of a partial enlarged sectional view of the substrate support part in each state An example of a partial enlarged sectional view of the substrate support part in each state.
  • An example of a partial enlarged sectional view of the substrate support part in each state An example of a partial enlarged sectional view of the substrate support part in each state.
  • An example of a partial enlarged sectional view of the substrate support part in each state An example of a flowchart illustrating a process when installing a covering ring in an annular area of a main body.
  • An example of a partial enlarged sectional view of the substrate support part in each state An example of a partial enlarged sectional view of the substrate support part in each state.
  • An example of a partial enlarged sectional view of the substrate support part in each state An example of a partial enlarged sectional view of the substrate support part in each state.
  • An example of a partial enlarged sectional view of the substrate support part in each state An example of a partial enlarged sectional view of the substrate support part in each state
  • FIG. 1 is a diagram showing an example of a substrate processing system according to an embodiment.
  • FIG. 1 is a diagram for explaining a configuration example of a plasma processing apparatus 1. As shown in FIG. 1,
  • the plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a control section 2.
  • the capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30, and an exhaust system 40. Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section.
  • the gas inlet is configured to introduce at least one processing gas into the plasma processing chamber 10 .
  • the gas introduction section includes a shower head 13.
  • Substrate support 11 is arranged within plasma processing chamber 10 .
  • the shower head 13 is arranged above the substrate support section 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 .
  • the plasma processing chamber 10 has a plasma processing space 10s defined by a shower head 13, a side wall 10a of the plasma processing chamber 10, and a substrate support 11.
  • the plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s, and at least one gas exhaust port for discharging gas from the plasma processing space 10s.
  • Plasma processing chamber 10 is grounded.
  • the shower head 13 and the substrate support section 11 are electrically insulated from the casing of the plasma processing chamber 10.
  • a side wall 10a of the plasma processing chamber 10 is provided with a substrate W, a ring member (for example, an edge ring 112 described later, a cover) between the plasma processing chamber 10 and a vacuum transfer chamber (not shown) provided adjacent to the plasma processing chamber 10.
  • a transport port (not shown) is provided for transporting the ring 113). The transfer port is opened and closed by a gate valve (not shown).
  • the substrate support section 11 includes a main body section 111 and a ring assembly 114.
  • the main body portion 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 114.
  • a wafer is an example of a substrate W.
  • the annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in plan view.
  • the substrate W is arranged on the central region 111a of the main body 111, and the ring assembly 114 is arranged on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 114.
  • the main body 111 includes a base 1110 and an electrostatic chuck 1111.
  • Base 1110 includes a conductive member.
  • the conductive member of the base 1110 can function as a bottom electrode.
  • Electrostatic chuck 1111 is placed on base 1110.
  • Electrostatic chuck 1111 includes a ceramic member 1111a and electrostatic electrodes 1111b and 1111c disposed within ceramic member 1111a.
  • Electrostatic electrode 1111b is provided in central region 111a.
  • the electrostatic electrode 1111c is provided in the annular region 111b.
  • Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b.
  • another member surrounding the electrostatic chuck 1111 such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
  • ring assembly 114 may be placed on the annular electrostatic chuck or the annular insulation member, or may be placed on both the electrostatic chuck 1111 and the annular insulation member.
  • at least one RF/DC electrode coupled to an RF (Radio Frequency) power source 31 and/or a DC (Direct Current) power source 32, which will be described later, may be disposed within the ceramic member 1111a. In this case, at least one RF/DC electrode functions as a bottom electrode.
  • An RF/DC electrode is also referred to as a bias electrode if a bias RF signal and/or a DC signal, as described below, is supplied to at least one RF/DC electrode.
  • the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of lower electrodes.
  • the electrostatic electrode 1111b may function as a lower electrode. Therefore, the substrate support 11 includes at least one lower electrode.
  • the ring assembly 114 includes one or more ring members (annular members).
  • the one or more ring members include one or more edge rings 112 and at least one cover ring 113.
  • Edge ring 112 is made of a conductive or insulating material
  • cover ring 113 is made of an insulating material.
  • the substrate support section 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 114, and the substrate W to a target temperature.
  • the temperature control module may include a heater, a heat transfer medium, a flow path 1110a, or a combination thereof.
  • a heat transfer fluid such as brine or gas flows through the flow path 1110a.
  • a channel 1110a is formed within the base 1110 and one or more heaters are disposed within the ceramic member 1111a of the electrostatic chuck 1111.
  • the substrate support section 11 may include a heat transfer gas supply section configured to supply heat transfer gas to the gap between the back surface of the substrate W and the central region 111a.
  • the substrate support section 11 may include, for example, three lift pins (first lift pins) 15 that can be raised and lowered from the substrate support surface of the central region 111a.
  • the lift pin 15 is raised or lowered by a lifting mechanism (not shown).
  • a transport device (not shown) receives the substrate W lifted by the lift pins 15. Further, the transport device delivers the substrate W to the lift pins 15.
  • the substrate W supported by the lift pins 15 is transferred to and supported by the substrate support surface.
  • the substrate support section 11 may include, for example, three lift pins (second lift pins) 16 that can be raised and lowered from the ring support surface of the annular region 111b.
  • the lift pin 16 is raised or lowered by a lifting mechanism (not shown).
  • the lift pin 16 lifts at least one ring member (eg, edge ring 112, cover ring 113) of the ring assembly 114 supported on the ring support surface.
  • a transport device (not shown) receives the ring member lifted by the lift pins 16. Further, the conveyance device delivers the ring member to the lift pin 16.
  • the ring member supported by the lift pin 16 is transferred to and supported by the ring support surface.
  • ring members such as the edge ring 112 and the cover ring 113 that have been consumed by the plasma processing are carried out from the plasma processing space 10s via the transport port. Further, new ring members such as the edge ring 112 and the cover ring 113 are carried into the plasma processing space 10s through the transfer port and installed on the ring support surface. In this way, ring members such as the edge ring 112 and the cover ring 113 are automatically replaced via the transfer port without opening the top of the plasma processing chamber 10.
  • the shower head 13 is configured to introduce at least one processing gas from the gas supply section 20 into the plasma processing space 10s.
  • the shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas introduction ports 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the plurality of gas introduction ports 13c.
  • the showerhead 13 also includes at least one upper electrode.
  • the gas introduction section may include one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
  • SGI side gas injectors
  • the gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22.
  • the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 to the showerhead 13 via a respective flow controller 22 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow rate of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • RF power source 31 is configured to supply at least one RF signal (RF power) to at least one bottom electrode and/or at least one top electrode.
  • RF power source 31 may function as at least part of a plasma generation unit configured to generate a plasma from one or more process gases in plasma processing chamber 10 .
  • a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generation section 31a and a second RF generation section 31b.
  • the first RF generation section 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit, and generates a source RF signal (source RF power) for plasma generation. It is configured as follows.
  • the source RF signal has a frequency within the range of 10 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to at least one bottom electrode and/or at least one top electrode.
  • the second RF generating section 31b is coupled to at least one lower electrode via at least one impedance matching circuit, and is configured to generate a bias RF signal (bias RF power).
  • the frequency of the bias RF signal may be the same or different than the frequency of the source RF signal.
  • the bias RF signal has a lower frequency than the frequency of the source RF signal.
  • the bias RF signal has a frequency within the range of 100kHz to 60MHz.
  • the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
  • the generated one or more bias RF signals are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • Power source 30 may also include a DC power source 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generation section 32a and a second DC generation section 32b.
  • the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal.
  • the generated first bias DC signal is applied to the at least one bottom electrode.
  • the second DC generator 32b is connected to the at least one upper electrode and configured to generate a second DC signal.
  • the generated second DC signal is applied to the at least one top electrode.
  • At least one of the first and second DC signals may be pulsed.
  • a sequence of voltage pulses is applied to at least one lower electrode and/or at least one upper electrode.
  • the voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof.
  • a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generation section 32a and the waveform generation section constitute a voltage pulse generation section.
  • the voltage pulse generation section is connected to at least one upper electrode.
  • the voltage pulse may have positive polarity or negative polarity.
  • the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one cycle.
  • the first and second DC generation units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generation unit 32a may be provided in place of the second RF generation unit 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Evacuation system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • the control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure.
  • the control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1.
  • the control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3.
  • the control unit 2 is realized by, for example, a computer 2a.
  • the processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
  • the acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1.
  • the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
  • the processing unit 2a1 may be a CPU (Central Processing Unit).
  • the storage unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof. Good.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 2 is an example of a perspective view of the alignment jig 200.
  • FIG. 3 is an example of a partially enlarged perspective view of the alignment jig 200.
  • the positioning jig 200 is used for positioning ring members such as the edge ring 112 and the cover ring 113 when installing the ring members on the ring support surface (annular region 111b) of the main body 111, which is the installed member. It is a jig that can be used. Specifically, the alignment jig 200 aligns the ring member with respect to the installed member by managing the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface. Align.
  • the alignment jig 200 includes a base plate 210 and a plurality of centering sheets (sheet members) 220.
  • the base plate 210 is a plate-shaped member. Further, the base plate 210 is formed in a shape that can be transported by a transport arm 500 (see FIG. 5 described later) of a transport device (not shown). Further, the base plate 210 is formed in a shape that can be installed in the central region 111a of the main body portion 111.
  • the base plate 210 is preferably formed as a disc of a conductive member such as a material that can be attracted by the electrostatic chuck 1111, such as silicon (Si). Note that the base plate 210 may be made of a material such as ceramic or resin.
  • the diameter of the base plate 210 is smaller than the diameter of the inner peripheral surface of the ring member to be aligned. That is, the diameter of the positioning jig 200 used for positioning the edge ring 112 is smaller than the diameter of the inner peripheral surface 112c of the edge ring 112 (see FIG. 8, which will be described later). The diameter of the positioning jig 200 used for positioning the cover ring 113 is smaller than the diameter of the inner circumferential surface 113c of the cover ring 113 (see FIG. 18 described later). This allows the base plate 210 to pass through the hole in the ring member.
  • the diameter of the base plate 210 is smaller than the diameter of the opposing surface that faces the inner circumferential surface of the ring member to be aligned. That is, the diameter of the alignment jig 200 used for aligning the edge ring 112 is smaller than the diameter of the edge ring opposing surface 111c1 (see FIG. 11 described later) that faces the inner peripheral surface 112c of the edge ring 112. It is preferable that The diameter of the positioning jig 200 used for positioning the cover ring 113 is smaller than the diameter of the cover ring facing surface 111c2 (see FIG. 21 described later) that faces the inner peripheral surface 113c of the cover ring 113. It is preferable.
  • the diameter of the base plate 210 is smaller than the diameter of the inner peripheral surface of the ring member to be aligned by at least 2X [mm].
  • the base plate can be supported by the substrate support surface in the hole of the ring member without interfering with the ring member. 210 can be passed.
  • the diameter of the base plate 210 is smaller than the diameter of the inner peripheral surface of the ring member by 0.6 mm or more.
  • the base plate 210 has a thickness that allows it to be transported by a transport device.
  • the base plate 210 may have the same thickness as the substrate W.
  • the alignment jig 200 can be transported by the transport device that transports the substrate W.
  • the centering sheet 220 has a fixed part 221 and a protruding part 222.
  • the centering sheet 220 has a fixed part 221 and a protruding part 222 formed integrally with each other, and is made of a flexible material.
  • the centering sheet 220 is preferably formed of a resin material such as polyimide.
  • the centering sheet 220 has translucency.
  • the centering sheet 220 preferably has a transmittance of 50% or more, more preferably 60% or more.
  • the fixing part 221 is fixed to the base plate 210.
  • the protrusion 222 protrudes radially outward from the side surface of the base plate 210.
  • the disc-shaped base plate 210 has a lower surface (first surface), an upper surface (second surface), and a side surface (third surface).
  • the lower surface of the base plate 210 is a surface that comes into contact with and is supported by the substrate support surface (center region 111a) of the main body 111 when the base plate 210 is placed on the substrate support surface (center region 111a).
  • the upper surface of base plate 210 is a surface opposite to the lower surface of base plate 210.
  • the side surface of the base plate 210 is a cylindrical surface whose one end is connected to the outer peripheral end of the lower surface and the other end is connected to the outer peripheral end of the upper surface.
  • Grooves 211, 212, and 213 are formed on the top surface of the base plate 210.
  • the internal space formed by the groove portion 211 communicates with an external space above the base plate 210 and with an external space outside the base plate 210 in the radial direction.
  • the fixing portion 221 of the centering sheet 220 is arranged in alignment with the groove portion 211.
  • the centering sheet 220 is then fixed to the base plate 210 by adhesive. By bringing the side wall 221a of the fixed portion 221 of the centering sheet 220 into contact with the side wall 211a of the groove portion 211, the length of the protruding portion 222 protruding radially outward from the side surface of the base plate 210 is managed.
  • a plurality of centering sheets 220 are provided along the outer periphery of the base plate 210.
  • six centering sheets 220 are provided on the base plate 210 at equal intervals.
  • the base plate 210 is provided with six grooves 211 at equal intervals, and each groove 211 is provided with a centering sheet 220, respectively.
  • the number of centering sheets 220 is not limited to this, and is preferably three or more.
  • the centering sheets 220 are provided at equal intervals in the circumferential direction of the base plate 210. Note that the centering sheets 220 do not need to be provided at equal intervals in the circumferential direction of the base plate 210.
  • the length of the protruding part 222 protruding from the side surface of the base plate 210 is the length of the protruding part 222 when the ring member is installed on the ring support surface and the protruding part 222 is bent. It is formed in a length that does not reach (do not come into contact with) the ring support surface of the member.
  • the length of the protrusion 222 is such that when the edge ring 112 is installed on the ring support surface and the protrusion 222 is bent, the edge ring 112
  • the edge ring support surface 111b1 is formed in such a length that it does not reach (do not come into contact with) the edge ring support surface 111b1 that supports the edge ring (see FIG. 11, which will be described later).
  • the length of the protrusion 222 is such that the cover ring 113 is supported when the cover ring 113 is installed on the ring support surface and the protrusion 222 is bent.
  • the cover ring support surface 111b2 is formed in such a length that it does not reach (do not come into contact with) the covering support surface 111b2 (see FIG. 21, which will be described later).
  • the length of the protruding part 222 protruding from the side surface of the base plate 210 (the length of the protruding part 222 in the radial direction of the base plate 210) is determined when the ring member is installed on the ring support surface and the protruding part 222 is bent. , is formed to have a length that reaches the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface.
  • the length of the protrusion 222 is such that when the edge ring 112 is installed on the ring support surface and the protrusion 222 is bent, the edge ring support The length is formed to reach the gap between the inner circumferential surface 112c of the edge ring 112 installed on the surface 111b1 and the edge ring opposing surface 111c1 (see FIG. 11 described later).
  • the length of the protrusion 222 is such that when the cover ring 113 is installed on the ring support surface and the protrusion 222 is bent, the length of the protrusion 222 is equal to that of the cover ring support surface 111b2
  • the length is formed to reach the gap between the inner circumferential surface 113c of the cover ring 113 installed in the cover ring 113 and the cover ring facing surface 111c2 (see FIG. 21 described later).
  • the width of the protrusion 222 (the length of the protrusion 222 in the direction perpendicular to the radial direction of the base plate 210) is not limited. It is preferable that the width of the protrusion 222 is, for example, 2.1 mm or more and 4.5 mm or less.
  • the width of the fixing part 221 may be formed wider than the width of the protruding part 222.
  • the contact area between the fixing part 221 and the groove part 211 of the base plate 210 can be increased, and the fixation of the centering sheet 220 fixed by adhesive can be improved.
  • the width of the protrusion 222 can be easily bent.
  • the thickness of the protruding portion 222 is designed based on the controlled dimension of the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface. It is preferable that the thickness of the protruding portion 222 is, for example, 0.05 mm or more and 0.125 mm or less.
  • the groove portion 211 may have an inclined surface 211b on the outer peripheral side of the base plate 210. Thereby, when the protruding portion 222 is bent downward, it can be bent along the inclined surface 211b. Therefore, when the protruding portion 222 bends downward, stress concentration occurring in the bending centering sheet 220 is suppressed.
  • grooves 212 are provided in the base plate 210 at equal intervals.
  • six grooves 213 are provided in the base plate 210 at equal intervals.
  • the grooves 212, 212, and 213 may have different shapes, or may have the same shape.
  • the alignment jig 200 can be replaced with a centering sheet 220 having a different shape (for example, the length of the protrusion 222, etc.) depending on the application.
  • the length of the protrusion 222 protruding from the outer periphery of the base plate 210 may be adjusted by varying the radial lengths of the grooves 211, 212, and 213.
  • the centering sheet 220 has been described as being fixed to the base plate 210 by adhesive, the fixing method is not limited to this. It may be physically fixed by fixing with bolts or by being sandwiched between other members. Further, the centering sheet 220 may be detachably fixed to the alignment jig 200. Accordingly, the alignment jig 200 may have a structure in which the length of the protrusion 222, the width of the protrusion 222, and the thickness of the protrusion 222 can be arbitrarily changed by replacing the centering sheet 220.
  • FIG. 4 is an example of a flowchart illustrating a process when installing the edge ring 112 in the annular region 111b of the main body portion 111.
  • 5 to 13 are examples of partially enlarged cross-sectional views of the substrate support portion 11 in each state. Note that in the following description, the inclined surface 211b formed in the groove portion 211 of the base plate 210 is omitted from illustration.
  • the structure of the substrate support section 11 will be further explained with reference to FIG. 5.
  • the main body portion 111 has a central region 111a (substrate support surface) for supporting the substrate W, and an annular region 111b for supporting the ring assembly 114.
  • the annular region 111b has an edge ring support surface 111b1 for supporting the edge ring 112 and a cover ring support surface 111b2 for supporting the cover ring 113.
  • the edge ring support surface 111b1 is provided radially outside the substrate support surface and is formed at a position lower than the substrate support surface.
  • An edge ring opposing surface 111c1 is provided between the substrate supporting surface and the edge ring supporting surface 111b1.
  • the edge ring opposing surface 111c1 is a cylindrical surface that faces the inner circumferential surface 112c of the edge ring 112 (see FIGS. 8 to 13) when the edge ring 112 is supported by the edge ring support surface 111b1.
  • the cover ring support surface 111b2 is provided radially outward from the substrate support surface and the edge ring support surface 111b1, and is formed at a position lower than the substrate support surface and the edge ring support surface 111b1.
  • a covering opposing surface 111c2 is provided between the edge ring supporting surface 111b1 and the covering supporting surface 111b2.
  • the cover ring facing surface 111c2 is a cylindrical surface, and is a surface that faces the inner circumferential surface 113c (see FIG. 5) of the cover ring 113 when the cover ring 113 is supported by the cover ring support surface 111b2.
  • the cover ring 113 has a bottom surface 113a.
  • the bottom surface 113a is a surface that comes into contact with and is supported by the cover ring support surface 111b2 when the cover ring 113 is placed on the ring support surface (annular region 111b) of the main body portion 111.
  • the upper surface of the cover ring 113 is formed with a step that is lower on the inner circumferential side and higher on the outer circumferential side.
  • An edge ring support surface 113b that supports the outer circumferential side of the edge ring 112 is formed on the inner circumferential upper surface of the cover ring 113.
  • the cover ring 113 which is a ring member, has a cylindrical inner peripheral surface 113c.
  • the cover ring 113 also has a through hole 113d that penetrates from the bottom surface 113a to the edge ring support surface 113b.
  • the edge ring 112 has a bottom surface 112a.
  • the bottom surface 112a is supported by the inner circumferential side in contact with the edge ring support surface 111b1, and the outer circumferential side in contact with the edge ring support surface 113b. It is a surface that is supported by Further, the edge ring 112, which is a ring member, has a cylindrical inner peripheral surface 112c.
  • the inner circumferential surface 112c of the edge ring 112 is the alignment target surface
  • the edge ring opposing surface 111c1 which is the surface facing the inner circumferential surface 112c, is the opposing surface facing the alignment target surface.
  • the edge ring 112 is installed on the ring support surface (annular region 111b) of the main body portion 111 while controlling the gap with the opposing surface. As a result, the edge ring 112 is centered and installed with respect to the main body portion 111, which is the member to be installed.
  • step S101 the alignment jig 200 is transported to the plasma processing chamber 10.
  • FIG. 5 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state in which the alignment jig 200 is transported into the plasma processing chamber 10 in step S101.
  • the control unit 2 opens the gate valve, controls the transport device, transports the transport arm 500 holding the alignment jig 200 from the transport port to the plasma processing chamber 10, and positions it above the central region 111a of the main body 111. Place the alignment jig 200.
  • step S102 the alignment jig 200 is received from the transfer arm 500 by the lift pins 15 and placed on the substrate support surface of the electrostatic chuck 1111.
  • FIG. 6 is an example of a partially enlarged cross-sectional view of the substrate support portion 11 in a state in which the alignment jig 200 is received by the lift pins 15 in step S102.
  • the control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 15. As a result, the upper end of the lift pin 15 comes into contact with the lower surface of the alignment jig 200, the alignment jig 200 is lifted from the transport arm 500 by the lift pin 15, and the alignment jig 200 is supported by the lift pin 15. Then, the control unit 2 controls the transfer device to retreat the transfer arm 500 from the transfer port, and closes the gate valve.
  • FIG. 7 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state where the alignment jig 200 is installed on the electrostatic chuck 1111 in step S102.
  • the control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 15.
  • the alignment jig 200 supported by the lift pins 15 is installed on the substrate support surface.
  • control unit 2 fixes the alignment jig 200 to the main body 111 by controlling an electrostatic chuck power source (not shown) and applying a voltage to the electrostatic electrode 1111b.
  • the method of fixing the positioning jig 200 to the main body portion 111 is not limited to this, and other fixing methods may be used.
  • the alignment jig 200 may be fixed to the main body portion 111.
  • the base plate 210 may be made of a material such as ceramic or resin.
  • the positioning jig 200 may be fixed to the main body portion 111 by its own weight.
  • step S103 the edge ring 112 is transported into the plasma processing chamber 10.
  • FIG. 8 is an example of a partially enlarged cross-sectional view of the substrate support part 11 in a state where the edge ring 112 is transported into the plasma processing chamber 10 in step S103.
  • the control unit 2 opens the gate valve, controls the transfer device, transfers the transfer arm 500 holding the edge ring 112 from the transfer port to the plasma processing chamber 10, and transfers the transfer arm 500 holding the edge ring 112 from the transfer port to the annular region 111b of the main body 111 (edge ring support surface 111b1). , the edge ring 112 is placed on the edge ring support surface 113b).
  • step S104 the edge ring 112 is received from the transport arm 500 by the lift pin 16 and placed on the ring support surface of the electrostatic chuck 1111.
  • FIG. 9 is an example of a partially enlarged sectional view of the substrate support portion 11 in a state in which the edge ring 112 is received by the lift pins 16 in step S104.
  • the control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 16.
  • the lift pin 16 has an upper small diameter portion 161 and a lower large diameter portion 162.
  • the small diameter portion 161 is inserted through the through hole 113d of the cover ring 113, and the upper end of the small diameter portion 161 of the lift pin 16 comes into contact with the lower surface of the edge ring 112.
  • the edge ring 112 is lifted from the transport arm 500 by the lift pin 16, and the edge ring 112 is supported by the lift pin 16.
  • the control unit 2 controls the transfer device to retreat the transfer arm 500 from the transfer port, and closes the gate valve.
  • FIG. 10 is an example of a partially enlarged cross-sectional view of the substrate support portion 11 in a state where the lift pins 16 are being lowered in step S104.
  • the control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 16.
  • the edge ring 112 descends, the bottom surface 112a comes into contact with the upper surface of the protrusion 222, and the protrusion 222 is deformed by the weight of the edge ring 112.
  • the protrusion 222 further deforms, the lower surface of the protrusion 222 comes into contact with the edge of the substrate support surface and the edge ring facing surface 111c1.
  • the protrusion 222 forms an inclination.
  • the inclination of the protrusion 222 guides the horizontal position of the descending edge ring 112. For example, if the center position of the edge ring 112 supported by the lift pin 16 is shifted from the center position of the main body part 111, the edge ring 112 is guided by the inclination of the protruding part 222, and the edge ring 112 is horizontal. The position of the direction is adjusted. This prevents the edge ring 112 from riding on the substrate support surface and becoming unable to be installed on the ring support surface.
  • FIG. 11 is an example of a partially enlarged cross-sectional view of the substrate support part 11 in a state where the edge ring 112 is installed on the electrostatic chuck 1111 in step S104.
  • the control unit 2 controls a lifting mechanism (not shown) to further lower the lift pin 16.
  • the edge ring 112 is supported in contact with the edge ring support surfaces 111b1 and 113b.
  • the length of the protrusion 222 is set to reach the gap between the inner circumferential surface 112c of the edge ring 112 and the edge ring facing surface 111c1.
  • the protruding portion 222 is placed between the edge ring facing surface 111c1 and the inner circumferential surface 112c.
  • the gap between the edge ring facing surface 111c1 and the inner circumferential surface 112c is managed by the thickness of the protruding portion 222 at a plurality of positions in the circumferential direction. be done. As a result, the edge ring 112 is centered and installed with respect to the main body portion 111.
  • the length of the protruding portion 222 is formed to a length that does not reach the edge ring support surface 111b1. This prevents the protrusion 222 from being pinched between the bottom surface 112a of the edge ring 112 and the edge ring support surface 111b1.
  • step S105 the edge ring 112 is fixed.
  • the annular region 111b of the main body portion 111 is provided with a through hole in which the lift pin 16 is arranged and a supply hole for supplying heat transfer gas to the gap between the back surface of the edge ring 112 and the edge ring support surface 111b1. ing. While the edge ring 112 is supported by the ring support surface, the pressure in the gap between the back surface of the edge ring 112 and the edge ring support surface 111b1 is reduced by exhausting air from the through hole and/or the supply hole.
  • the gap between the back surface of the edge ring 112 and the edge ring support surface 111b1 is made into a higher vacuum than the plasma processing space 10s, and the pressure difference between the upper surface side and the lower surface side of the edge ring 112 moves the edge ring 112 into the main body.
  • Fixed to 111 temporaryly fixed.
  • the control unit 2 may fix (mainly fix) the edge ring 112 to the main body 111 by controlling an electrostatic chuck power source (not shown) and applying a voltage to the electrostatic electrode 1111c.
  • the fixing method for fixing temporary fixing, permanent fixing
  • the edge ring 112 to the main body portion 111 is not limited to this, and other fixing methods may be used.
  • step S105 the centering sheet 220 is fixed (temporarily fixed, permanently fixed) in a state in which the protrusion 222 of the centering sheet 220 is sandwiched between the edge ring facing surface 111c1 and the inner peripheral surface 112c.
  • step S106 the alignment jig 200 is supported by the lift pins 15.
  • step S102 if the alignment jig 200 is fixed to the main body part 111, the alignment jig 200 is released from fixation.
  • control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 15.
  • a lifting mechanism (not shown) to raise the lift pin 15.
  • the upper ends of the lift pins 15 come into contact with the lower surface of the alignment jig 200
  • the alignment jig 200 is lifted from the substrate support surface by the lift pins 15, and the alignment jig 200 is separated from the substrate support surface.
  • the protrusion 222 that was disposed in the gap between the edge ring facing surface 111c1 and the inner circumferential surface 112c is pulled out.
  • the edge ring 112 is fixed (temporarily or permanently fixed) to the main body 111, and when the protrusion 222 is pulled out from between the edge ring facing surface 111c1 and the inner peripheral surface 112c, the position of the edge ring 112 is to prevent it from shifting. Then, due to the restoring force of the centering sheet 220, the protrusion 222 returns to a substantially horizontal position.
  • step S107 the alignment jig 200 is carried out from the plasma processing chamber 10.
  • FIG. 12 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state in which the alignment jig 200 is transported into the plasma processing chamber 10 in step S107.
  • the control section 2 opens the gate valve, controls the transfer device, transfers the transfer arm 500 from the transfer port to the plasma processing chamber 10, and places it between the main body section 111 and the alignment jig 200.
  • the control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 15.
  • the positioning jig 200 supported by the lift pins 15 is held by the transport arm 500.
  • the control unit 2 controls the transport device to retreat the transport arm 500 holding the positioning jig 200 from the transport port, and closes the gate valve.
  • edge ring 112 may be permanently fixed before the protrusion 222 is pulled out. Further, the edge ring 112 may be permanently fixed after the protrusion 222 is pulled out.
  • FIG. 13 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state where the process of step S107 has been completed.
  • the edge ring 112 can be automatically replaced via the transfer port without opening the top of the plasma processing chamber 10. Further, the edge ring 112 is installed on the ring support surface without riding on the substrate support surface. Further, the gap between the edge ring facing surface 111c1 and the inner circumferential surface 112c is controlled by the thickness of the protrusion 222 at multiple positions in the circumferential direction, and the edge ring 112 is centered with respect to the main body 111. It will be installed.
  • the centering of the edge ring 112 can be controlled by the thickness of the centering sheet 220, it is possible to center the edge ring 112 with higher accuracy than the conveyance accuracy of the edge ring 112 by the conveyance arm 500 of the conveyance device.
  • FIG. 14 is an example of a flowchart illustrating a process when installing the covering ring 113 in the annular region 111b of the main body portion 111.
  • 15 to 23 are examples of partially enlarged cross-sectional views of the substrate support portion 11 in each state. Note that in the following description, the inclined surface 211b formed in the groove portion 211 of the base plate 210 is omitted from illustration.
  • the inner circumferential surface 113c of the cover ring 113 is the alignment target surface
  • the covering opposing surface 111c2 which is the surface facing the inner circumferential surface 113c
  • the cover ring 113 is installed on the ring support surface (annular region 111b) of the main body portion 111 while controlling the gap between the cover ring 113 and the opposing surface. As a result, the cover ring 113 is centered and installed with respect to the main body portion 111, which is the member to be installed.
  • step S201 the alignment jig 200 is transported to the plasma processing chamber 10.
  • FIG. 15 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state in which the alignment jig 200 is transported into the plasma processing chamber 10 in step S201.
  • the control unit 2 opens the gate valve, controls the transport device, transports the transport arm 500 holding the alignment jig 200 from the transport port to the plasma processing chamber 10, and positions it above the central region 111a of the main body 111. Place the alignment jig 200.
  • step S202 the alignment jig 200 is received from the transfer arm 500 by the lift pins 15 and installed on the substrate support surface of the electrostatic chuck 1111.
  • FIG. 16 is an example of a partially enlarged sectional view of the substrate support portion 11 in a state in which the alignment jig 200 is received by the lift pins 15 in step S202.
  • the control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 15. As a result, the upper end of the lift pin 15 comes into contact with the lower surface of the alignment jig 200, the alignment jig 200 is lifted from the transport arm 500 by the lift pin 15, and the alignment jig 200 is supported by the lift pin 15. Then, the control unit 2 controls the transfer device to retreat the transfer arm 500 from the transfer port, and closes the gate valve.
  • FIG. 17 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state where the alignment jig 200 is installed on the electrostatic chuck 1111 in step S202.
  • the control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 15.
  • the alignment jig 200 supported by the lift pins 15 is installed on the substrate support surface.
  • control unit 2 fixes the alignment jig 200 to the main body 111 by controlling an electrostatic chuck power source (not shown) and applying a voltage to the electrostatic electrode 1111b.
  • the method of fixing the positioning jig 200 to the main body portion 111 is not limited to this, and other fixing methods may be used.
  • the alignment jig 200 may be fixed to the main body portion 111.
  • the base plate 210 may be made of a material such as ceramic or resin.
  • the positioning jig 200 may be fixed to the main body portion 111 by its own weight.
  • step S203 the cover ring 113 is transported into the plasma processing chamber 10.
  • FIG. 18 is an example of a partially enlarged sectional view of the substrate support part 11 in a state where the cover ring 113 is transported into the plasma processing chamber 10 in step S203.
  • the control section 2 opens the gate valve and controls the transfer device to transfer the transfer arm 500 holding the cover ring 113 from the transfer port to the plasma processing chamber 10, and transfers the transfer arm 500 holding the cover ring 113 from the transfer port to the annular region 111b of the main body section 111 (covering support surface 111b2). )
  • a covering ring 113 is placed on top of the cover ring 113.
  • step S204 the cover ring 113 is received from the transport arm 500 by the lift pin 16 and placed on the ring support surface of the electrostatic chuck 1111.
  • FIG. 19 is an example of a partially enlarged sectional view of the substrate support portion 11 in a state in which the cover ring 113 is received by the lift pins 16 in step S204.
  • the control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 16.
  • the lift pin 16 has an upper small diameter portion 161 and a lower large diameter portion 162.
  • the small diameter portion 161 is inserted through the through hole 113d of the cover ring 113, and the upper end of the large diameter portion 162 of the lift pin 16 comes into contact with the lower surface of the cover ring 113.
  • the cover ring 113 is lifted from the transport arm 500 by the lift pin 16, and the cover ring 113 is supported by the lift pin 16.
  • the control unit 2 controls the transfer device to retreat the transfer arm 500 from the transfer port, and closes the gate valve.
  • FIG. 20 is an example of a partially enlarged cross-sectional view of the substrate support portion 11 in a state where the lift pins 16 are being lowered in step S204.
  • the control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 16.
  • the cover ring 113 descends, the bottom surface 112a comes into contact with the upper surface of the protrusion 222, and the protrusion 222 is deformed by the weight of the cover ring 113.
  • the protrusion 222 further deforms, the lower surface of the protrusion 222 comes into contact with the edge of the substrate support surface and the covering surface 111c2. As a result, the protrusion 222 forms an inclination.
  • the horizontal position of the descending cover ring 113 is guided by the inclination of the protrusion 222.
  • the cover ring 113 is guided by the inclination of the protrusion part 222, and the cover ring 113 is horizontal.
  • the position of the direction is adjusted. This prevents the cover ring 113 from riding on the substrate support surface and becoming unable to be installed on the ring support surface.
  • FIG. 21 is an example of a partially enlarged cross-sectional view of the substrate support portion 11 in a state where the cover ring 113 is installed on the electrostatic chuck 1111 in step S204.
  • the control unit 2 controls a lifting mechanism (not shown) to further lower the lift pin 16.
  • the cover ring 113 is supported in contact with the cover ring support surface 111b2.
  • the length of the protrusion 222 is set to reach the gap between the inner circumferential surface 113c of the cover ring 113 and the cover ring facing surface 111c2.
  • the protruding portion 222 is placed between the covering ring facing surface 111c2 and the inner circumferential surface 113c.
  • the gap between the covering facing surface 111c2 and the inner circumferential surface 113c is managed by the thickness of the protruding portion 222 at a plurality of positions in the circumferential direction. be done. Thereby, the cover ring 113 is centered and installed with respect to the main body part 111.
  • the length of the protruding portion 222 is formed to a length that does not reach the covering ring support surface 111b2. This prevents the protrusion 222 from being pinched between the bottom surface 112a of the cover ring 113 and the cover ring support surface 111b2.
  • cover ring 113 is fixed to the main body part 111 by its own weight.
  • step S205 the alignment jig 200 is supported by the lift pins 15.
  • step S202 if the alignment jig 200 is fixed to the main body part 111, the alignment jig 200 is released from fixation.
  • control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 15.
  • a lifting mechanism (not shown) to raise the lift pin 15.
  • the upper ends of the lift pins 15 come into contact with the lower surface of the alignment jig 200
  • the alignment jig 200 is lifted from the substrate support surface by the lift pins 15, and the alignment jig 200 is separated from the substrate support surface.
  • the protrusion 222 that was disposed in the gap between the covering surface 111c2 and the inner circumferential surface 113c is pulled out.
  • the cover ring 113 is fixed to the main body part 111 by its own weight, and the position of the cover ring 113 is prevented from shifting when the protrusion part 222 is pulled out from between the cover ring facing surface 111c2 and the inner peripheral surface 113c. do. Then, due to the restoring force of the centering sheet 220, the protrusion 222 returns to a substantially horizontal position.
  • step S206 the alignment jig 200 is carried out from the plasma processing chamber 10.
  • FIG. 22 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state in which the alignment jig 200 is transported into the plasma processing chamber 10 in step S206.
  • the control section 2 opens the gate valve, controls the transfer device, transfers the transfer arm 500 from the transfer port to the plasma processing chamber 10, and places it between the main body section 111 and the alignment jig 200.
  • the control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 15.
  • the positioning jig 200 supported by the lift pins 15 is held by the transport arm 500.
  • the control unit 2 controls the transport device to retreat the transport arm 500 holding the positioning jig 200 from the transport port, and closes the gate valve.
  • FIG. 23 is an example of a partially enlarged sectional view of the substrate support section 11 in a state where the process of step S206 has been completed.
  • the cover ring 113 can be automatically replaced via the transfer port without opening the top of the plasma processing chamber 10. Further, the cover ring 113 is installed on the ring support surface without riding on the substrate support surface. Furthermore, the gap between the covering ring facing surface 111c2 and the inner circumferential surface 113c is controlled by the thickness of the protruding portion 222 at a plurality of positions in the circumferential direction, so that the covering ring 113 is not centered with respect to the main body portion 111. It will be installed. Furthermore, since the centering of the covering ring 113 can be controlled by the thickness of the centering sheet 220, it is possible to center the covering ring 113 with higher precision than the transport accuracy of the covering ring 113 by the transport arm 500 of the transport device.
  • the present invention is not limited thereto.
  • edge ring 112 and the cover ring 113 have been described as examples of ring members installed in alignment, the ring members are not limited thereto. The present invention may also be applied to the installation of other ring members in the plasma processing chamber 10.
  • centering sheet 220 is not limited to this.
  • the centering sheet 220 may be formed in a ring shape around the entire circumference of the base plate 210.
  • the electrostatic electrode 1111b may be a monopolar electrostatic chuck or a bipolar electrostatic chuck. In the case of a single pole, the alignment jig 200 is attracted and held on the main body 111 by the potential difference between the plasma and the electrostatic electrode 1111b. In the case of bipolar, the electrostatic electrode 1111b is divided into an inner circumferential electrode and an outer circumferential electrode (not shown), and the positioning jig 200 is moved to the main body part 111 by the potential difference between the inner circumferential electrode and the outer circumferential electrode. Hold it by adsorption. Similarly, the electrostatic electrode 1111c may be a monopolar electrostatic chuck or a bipolar electrostatic chuck.
  • the length of the protrusion 222 is determined by the length of the protrusion 222 when the ring member (edge ring 112, cover ring 113) is installed on the ring support surface (edge ring support surface 111b1, cover ring support surface 111b2) and the protrusion 222 is bent. In the above description, it is assumed that the length does not reach (do not come into contact with) the ring support surface of the ring member, but the length is not limited to this.
  • FIG. 23 is another example of a partially enlarged cross-sectional view of the substrate support part 11.
  • the edge ring 112 may have an annular counterbore (notch) 112d formed on the inner peripheral side of the bottom surface 112a.
  • notch annular counterbore
  • the tip of the protrusion 222 is counter-sunk. 112d and the edge ring support surface 111b1.
  • the side surface 12d1 of the counterbore 112d is formed at a position where the tip of the protrusion 222 cannot reach (do not come into contact with). This prevents the protrusion 222 from being pinched between the bottom surface 112a of the edge ring 112 and the edge ring support surface 111b1.
  • the cover ring 113 may have an annular counterbore (notch) formed on the inner peripheral side of the bottom surface 113a.
  • the tip of the protrusion 222 is counter-sunk. and the covering support surface 111b2.
  • the side surface of the counterbore is formed at a position where the tip of the protruding portion 222 cannot reach (do not come into contact with). This prevents the protrusion 222 from being pinched between the bottom surface 113a of the cover ring 113 and the cover ring support surface 111b2.
  • FIG. 25 is a diagram showing an example of the substrate processing system PS according to the embodiment.
  • the substrate processing system PS is a system that can perform various treatments such as plasma processing on the substrate W.
  • the substrate W may be, for example, a semiconductor wafer.
  • the substrate processing system PS includes a vacuum transfer module TM, a plurality of processing modules PM1 to PM7, a ring storage module RSM, a plurality of load lock modules LL1 to LL3, an atmospheric transfer module LM, and load ports LP1 to LP4. It has an aligner AN and a control unit CU.
  • the vacuum transfer module TM is also referred to as a transfer module.
  • the processing modules PM1 to PM7 are also referred to as process modules.
  • the ring storage module RSM is also referred to as a ring stocker module.
  • the atmospheric transport module LM is also referred to as a loader module.
  • the vacuum transfer module TM has a rectangular shape in plan view. Processing modules PM1 to PM7, load lock modules LL1 to LL3, and ring storage module RSM are connected to vacuum transfer module TM.
  • the vacuum transfer module TM has a vacuum transfer chamber. The inside of the vacuum transfer chamber is maintained in a vacuum atmosphere.
  • a transfer robot TR1 is provided in the vacuum transfer chamber (inside the vacuum transfer module TM).
  • the transport robot TR1 is configured to be able to rotate, extend and contract, and move up and down.
  • the transport robot TR1 has an upper fork FK1 and a lower fork FK2.
  • the upper fork FK1 and the lower fork FK2 of the transfer robot TR1 are configured to be able to hold each of the substrate W, the annular member (edge ring 112, cover ring 113), and positioning jig 100.
  • the transfer robot TR1 transfers the substrate W, the annular member (edge ring 112, cover ring 113), and positioning jig 100 between the processing modules PM1 to PM7, the load lock modules LL1 to LL3, and the ring storage module RSM. Hold and transport.
  • the upper fork FK1 is provided with a position detection sensor S1.
  • the lower fork FK2 is provided with a position detection sensor S2.
  • the position detection sensors S1 and S2 detect the positions of the substrate W, the annular member (edge ring 112, cover ring 113), and alignment jig 100 placed on the processing modules PM1 to PM7.
  • the position detection sensors S1 and S2 may be, for example, optical displacement sensors, cameras, or the like.
  • the position detection sensors S1 and S2 detect the edges of the base plate 210 at a plurality of points, for example, and calculate the center position of the base plate 210.
  • the centering sheet 220 is translucent, and the position detection sensors S1 and S2 can transmit the centering sheet 220 and detect the edge of the base plate 210.
  • the vacuum transfer module TM may be provided with position detection sensors S11 and S12.
  • the position detection sensors S11 and S12 are provided on the transport path of the substrate W, the annular member (edge ring 112, cover ring 113), and positioning jig 100 that are transported from the vacuum transport module TM to the processing module PM1.
  • the position detection sensors S11 and S12 are used when transporting either the substrate W, the annular member (edge ring 112, cover ring 113), or positioning jig 100 from the vacuum transfer module TM to the processing module PM1, and from the processing module PM1. It is used when transporting either the substrate W, the annular member (edge ring 112, cover ring 113), or positioning jig 100 to the vacuum transport module TM.
  • the position detection sensors S11 and S12 are provided, for example, near a gate valve (not shown) that partitions the vacuum transfer module TM and the processing module PM1.
  • the position detection sensors S11 and S12 are arranged such that, for example, the distance between them is smaller than the outer diameter of the substrate W and smaller than the inner diameter of the edge ring 112.
  • the position detection sensors S11 and S12 are optical sensors, and detect the edges of the base plate 210 at a plurality of points, for example, and calculate the center position of the base plate 210.
  • the centering sheet 220 is translucent, and the position detection sensors S11 and S12 can transmit through the centering sheet 220 and detect the edge of the base plate 210.
  • the control unit CU controls the alignment jig 100.
  • the transport robot TR1 is controlled so that its center coincides with the center of the substrate support section 11.
  • the vacuum transfer module TM may be provided with position detection sensors S21, S22, S31, S32, S41, S42, S51, S52, S61, S62, S71, and S72 similarly to the position detection sensors S11 and S12.
  • the processing modules PM1 to PM7 are connected to the vacuum transfer module TM.
  • Processing modules PM1 to PM7 have vacuum processing chambers.
  • a substrate support section 11 (see FIG. 1) is provided inside the vacuum processing chamber. After the substrate W is placed on the substrate support 11, the processing modules PM1 to PM7 reduce the pressure inside, introduce a processing gas, apply RF power to generate plasma, and apply the plasma to the substrate W. Perform plasma treatment.
  • the vacuum transfer module TM and the processing modules PM1 to PM7 are separated by a gate valve (not shown) that can be opened and closed.
  • the ring storage module RSM is an example of a device that stores annular members (edge ring 112, cover ring 113) having a larger diameter than the substrate W, and is connected to the vacuum transfer module TM.
  • the ring storage module RSM stores, for example, an edge ring 112 and a cover ring 113 that constitute a ring assembly 114.
  • the ring storage module RSM may be configured to store only the edge ring 112.
  • the ring storage module RSM may be configured to store only the cover ring 113.
  • the edge ring 112 and the cover ring 113 are transported between the processing modules PM1 to PM7 and the ring storage module RSM by the transport robot TR1.
  • the vacuum transfer module TM and the ring storage module RSM are separated by a gate valve (not shown) that can be opened and closed.
  • the ring storage module RSM accommodates an alignment jig 200 having a larger diameter than the substrate W.
  • the positioning jig 200 is transported between the processing modules PM1 to PM7 and the ring storage module RSM by the transport robot TR1. In this way, the alignment jig 200 having a larger diameter than the substrate W can be accommodated in the ring storage module RSM.
  • the load lock modules LL1 to LL3 are provided between the vacuum transfer module TM and the atmospheric transfer module LM.
  • the load lock modules LL1 to LL3 are connected to the vacuum transfer module TM and the atmospheric transfer module LM.
  • Each of the load lock modules LL1 to LL3 has a variable internal pressure chamber that can be switched between vacuum and atmospheric pressure.
  • the variable internal pressure chamber is provided with a stage (not shown) on which the substrate W can be placed.
  • the load lock modules LL1 to LL3 When transporting the substrate W from the vacuum transport module TM to the atmospheric transport module LM, the load lock modules LL1 to LL3 maintain the internal pressure variable chamber in a vacuum, receive the substrate W from the vacuum transport module TM, and then transfer the internal pressure variable chamber to the atmospheric transport module LM. The pressure is increased to atmospheric pressure and the substrate W is transferred to the atmospheric transport module LM.
  • the load lock modules LL1 to LL3 and the vacuum transfer module TM are separated by a gate valve (not shown) that can be opened and closed.
  • the load lock modules LL1 to LL3 and the atmospheric transport module LM are separated by a gate valve (not shown) that can be opened and closed.
  • the atmospheric transfer module LM is provided opposite the vacuum transfer module TM.
  • the atmospheric transport module LM may be, for example, an EFEM (Equipment Front End Module).
  • the atmospheric transport module LM has a rectangular shape in plan view.
  • the atmospheric transport module LM has an atmospheric transport chamber. The interior of the atmospheric transfer chamber is maintained at atmospheric pressure.
  • a transport robot TR2 is provided inside the atmospheric transport chamber.
  • the transport robot TR2 is configured to be able to rotate, extend and contract, and move up and down.
  • the transport robot TR2 also has two forks (an upper fork and a lower fork) capable of holding and transporting the substrate W.
  • the transport robot TR2 holds and transports the substrate W between the load ports LP1 to LP4, the aligner AN, and the load lock modules LL1 to LL3.
  • the atmospheric transport module LM may include an FFU (Fan Filter Unit).
  • the load ports LP1 to LP4 are connected to the atmospheric transport module LM.
  • a plurality of substrate storage containers CS1 are placed in the load ports LP1 to LP4.
  • the substrate storage container CS1 may be, for example, a FOUP (Front-Opening Unified Pod) that stores a plurality of (for example, 25) substrates W.
  • FOUP Front-Opening Unified Pod
  • the aligner AN is connected to the atmospheric transport module LM.
  • the aligner AN is configured to adjust the position of the substrate W.
  • the aligner AN may be provided inside the atmospheric transfer chamber.
  • the control unit CU controls each part of the substrate processing system PS.
  • the control unit CU controls, for example, the operation of the transfer robot TR1 provided in the vacuum transfer module TM, the operation of the transfer robot TR2 provided in the atmospheric transfer module LM, and the opening and closing of a gate valve.
  • the control unit CU may be, for example, a computer.
  • the control unit CU includes a CPU (Central Processing Unit) that is a processor, a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device, and the like.
  • the CPU operates based on a program stored in the ROM or auxiliary storage device, and controls each part of the substrate processing system PS.
  • the base plate includes three or more of the sheet members, The jig described in Appendix 1.
  • the protruding portion is When the ring member is installed on the ring support surface, the ring member reaches the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface, and is attached to the ring support surface.
  • the unreachable has length, The jig described in Appendix 1 or 2.
  • the sheet member is made of polyimide.
  • the base plate is made of silicon.
  • the base plate has a groove in which the fixing part is arranged.
  • the base plate is a first surface that comes into contact with and is supported by the substrate support surface when the base plate is placed on the substrate support surface of the installed member; a second surface that is an opposite surface to the first surface; The groove portion is formed on the second surface.
  • the jig described in Appendix 6. (Appendix 8) The fixing part is fixed to the groove part by adhesive.
  • the jig described in Appendix 6 or Appendix 7. (Appendix 9) installing a jig including a base plate and a sheet member having a fixing part fixed to the base plate and a protruding part protruding from a side surface of the base plate on a substrate supporting surface of the installed member;
  • the sheet member is arranged in a gap between the positioning target surface of the ring member and the opposing surface of the installed member opposite to the positioning target surface by deforming the protruding part, a step of installing it on a supporting surface; separating the jig from the substrate support surface and pulling out the sheet member from the gap between the alignment target surface and the opposing surface; Alignment method.
  • the installed member is a main body part of a substrate support part
  • the step of installing the jig on the substrate support surface includes: a step of raising a first lift pin that is movable up and down from the substrate support surface; supporting the jig with the first lift pin; lowering the first lift pin and placing the jig on the substrate support surface
  • the step of installing the ring member on the ring support surface includes: a step of raising a second lift pin that is movable up and down from the ring support surface; supporting the ring member with the second lift pin; lowering the second lift pin to place the ring member on the ring support surface
  • the step of separating the jig from the substrate support surface includes: a step of raising the first lift pin to separate the jig from the substrate support surface; The alignment method described in Appendix 9.
  • the method further includes a step of fixing the ring member.
  • the alignment method according to any one of Supplementary notes 9 to 12.
  • the step of fixing the ring member includes: vacuum adsorbing the ring member; The positioning method described in Appendix 13.
  • the step of fixing the ring member includes: electrostatically adsorbing the ring member; The positioning method described in Appendix 13.
  • Substrate support section 15 Lift pin (first lift pin) 16 Lift pin (second lift pin) 111 Main body portion 111a Central region 111b Annular region 111b1 Edge ring support surface 111b2 Cover ring support surface 111c1 Edge ring opposing surface (opposing surface) 111c2 Covering opposing surface (opposing surface) 112 Edge ring (ring member) 112a Bottom surface 112c Inner peripheral surface (positioning target surface) 113 Cover ring (ring member) 113a Bottom surface 113b Edge ring support surface 113c Inner peripheral surface (alignment target surface) 114 Ring assembly 1110 Base 1110a Channel 1111 Electrostatic chuck 1111a Ceramic member 1111b Electrostatic electrode 1111c Electrostatic electrode 200 Positioning jig (jig) 210 Base plate 211 Groove portion 211a Side wall 211b Inclined surface 220 Centering sheet 221 Fixed portion 221a Side wall 222 Projection portion

Abstract

Provided are: a positioning jig that is used in positioning a ring member when the ring member is transported within a plasma treatment chamber and installed; and a positioning method. This jig is used when a ring member is installed on a ring support surface of an installation-receiving member, the jig comprising a base plate and a sheet member that has a fixed part fixed to the base plate and a protruding part protruding from a side surface of the base plate.

Description

治具及び位置合わせ方法Jig and positioning method
 本開示は、治具及び位置合わせ方法に関する。 The present disclosure relates to a jig and an alignment method.
 特許文献1には、プラズマ処理チャンバ内の基板支持部に支持された基板の外周を囲むように配置されたリング部材であるエッジリングを備えるエッチング装置が開示されている。 Patent Document 1 discloses an etching apparatus that includes an edge ring that is a ring member disposed to surround the outer periphery of a substrate supported by a substrate support in a plasma processing chamber.
特開2022-14879号公報Japanese Patent Application Publication No. 2022-14879
 一の側面では、本開示は、リング部材をプラズマ処理チャンバ内に搬送して設置する際にリング部材の位置合わせに用いられる治具及び位置合わせ方法を提供する。 In one aspect, the present disclosure provides a jig and an alignment method used for aligning a ring member when the ring member is transported and installed in a plasma processing chamber.
 上記課題を解決するために、一の態様によれば、リング部材を被設置部材のリング支持面に設置する際に用いられる治具であって、ベースプレートと、前記ベースプレートに固定される固定部及び前記ベースプレートの側面から突出する突出部を有するシート部材と、を備える、治具が提供される。 In order to solve the above problems, according to one aspect, there is provided a jig used when installing a ring member on a ring support surface of an installed member, the jig comprising: a base plate; a fixing part fixed to the base plate; A jig is provided, comprising: a sheet member having a protrusion protruding from a side surface of the base plate.
 一の側面によれば、リング部材をプラズマ処理チャンバ内に搬送して設置する際にリング部材を精度よく位置合わせすることができる。 According to one aspect, the ring member can be accurately aligned when the ring member is transported and installed in the plasma processing chamber.
プラズマ処理装置の構成例を説明するための図の一例。An example of a diagram for explaining a configuration example of a plasma processing apparatus. 位置合わせ治具の斜視図の一例。An example of a perspective view of a positioning jig. 位置合わせ治具の部分拡大斜視図の一例。An example of a partially enlarged perspective view of a positioning jig. エッジリングを本体部の環状領域に設置する際の処理を説明するフローチャートの一例。An example of a flowchart illustrating processing when installing an edge ring in an annular area of the main body. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. カバーリングを本体部の環状領域に設置する際の処理を説明するフローチャートの一例。An example of a flowchart illustrating a process when installing a covering ring in an annular area of a main body. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 各状態における基板支持部の部分拡大断面図の一例。An example of a partial enlarged sectional view of the substrate support part in each state. 基板支持部の部分拡大断面図の他の一例。Another example of a partially enlarged sectional view of the substrate support part. 実施形態に係る基板処理システムの一例を示す図。FIG. 1 is a diagram showing an example of a substrate processing system according to an embodiment.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, embodiments for implementing the present disclosure will be described with reference to the drawings. In each drawing, the same components are given the same reference numerals, and redundant explanations may be omitted.
<プラズマ処理装置>
 まず、プラズマ処理装置1の構成例について、図1を用いて説明する。図1は、プラズマ処理装置1の構成例を説明するための図である。
<Plasma processing equipment>
First, a configuration example of the plasma processing apparatus 1 will be described using FIG. 1. FIG. 1 is a diagram for explaining a configuration example of a plasma processing apparatus 1. As shown in FIG.
 プラズマ処理システムは、容量結合型のプラズマ処理装置1及び制御部2を含む。容量結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間10sに供給するための少なくとも1つのガス供給口と、プラズマ処理空間10sからガスを排出するための少なくとも1つのガス排出口とを有する。プラズマ処理チャンバ10は接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10の筐体とは電気的に絶縁される。 The plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a control section 2. The capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30, and an exhaust system 40. Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas inlet is configured to introduce at least one processing gas into the plasma processing chamber 10 . The gas introduction section includes a shower head 13. Substrate support 11 is arranged within plasma processing chamber 10 . The shower head 13 is arranged above the substrate support section 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 . The plasma processing chamber 10 has a plasma processing space 10s defined by a shower head 13, a side wall 10a of the plasma processing chamber 10, and a substrate support 11. The plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s, and at least one gas exhaust port for discharging gas from the plasma processing space 10s. Plasma processing chamber 10 is grounded. The shower head 13 and the substrate support section 11 are electrically insulated from the casing of the plasma processing chamber 10.
 プラズマ処理チャンバ10の側壁10aには、プラズマ処理チャンバ10と隣接して設けられた真空搬送室(図示せず)との間で基板Wや後述するリング部材(例えば、後述するエッジリング112、カバーリング113)の搬送を行うための搬送口(図示せず)が設けられている。搬送口は、ゲートバルブ(図示せず)によって開閉される。 A side wall 10a of the plasma processing chamber 10 is provided with a substrate W, a ring member (for example, an edge ring 112 described later, a cover) between the plasma processing chamber 10 and a vacuum transfer chamber (not shown) provided adjacent to the plasma processing chamber 10. A transport port (not shown) is provided for transporting the ring 113). The transfer port is opened and closed by a gate valve (not shown).
 基板支持部11は、本体部111及びリングアセンブリ114を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ114を支持するための環状領域111bとを有する。ウェハは基板Wの一例である。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ114は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、リングアセンブリ114を支持するためのリング支持面とも呼ばれる。 The substrate support section 11 includes a main body section 111 and a ring assembly 114. The main body portion 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 114. A wafer is an example of a substrate W. The annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in plan view. The substrate W is arranged on the central region 111a of the main body 111, and the ring assembly 114 is arranged on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 114.
 一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材は下部電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111b,1111cとを含む。静電電極1111bは、中央領域111aに設けられる。静電電極1111cは、環状領域111bに設けられる。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ114は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、後述するRF(Radio Frequency)電源31及び/又はDC(Direct Current)電源32に結合される少なくとも1つのRF/DC電極がセラミック部材1111a内に配置されてもよい。この場合、少なくとも1つのRF/DC電極が下部電極として機能する。後述するバイアスRF信号及び/又はDC信号が少なくとも1つのRF/DC電極に供給される場合、RF/DC電極はバイアス電極とも呼ばれる。なお、基台1110の導電性部材と少なくとも1つのRF/DC電極とが複数の下部電極として機能してもよい。また、静電電極1111bが下部電極として機能してもよい。従って、基板支持部11は、少なくとも1つの下部電極を含む。 In one embodiment, the main body 111 includes a base 1110 and an electrostatic chuck 1111. Base 1110 includes a conductive member. The conductive member of the base 1110 can function as a bottom electrode. Electrostatic chuck 1111 is placed on base 1110. Electrostatic chuck 1111 includes a ceramic member 1111a and electrostatic electrodes 1111b and 1111c disposed within ceramic member 1111a. Electrostatic electrode 1111b is provided in central region 111a. The electrostatic electrode 1111c is provided in the annular region 111b. Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b. In this case, ring assembly 114 may be placed on the annular electrostatic chuck or the annular insulation member, or may be placed on both the electrostatic chuck 1111 and the annular insulation member. Further, at least one RF/DC electrode coupled to an RF (Radio Frequency) power source 31 and/or a DC (Direct Current) power source 32, which will be described later, may be disposed within the ceramic member 1111a. In this case, at least one RF/DC electrode functions as a bottom electrode. An RF/DC electrode is also referred to as a bias electrode if a bias RF signal and/or a DC signal, as described below, is supplied to at least one RF/DC electrode. Note that the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of lower electrodes. Further, the electrostatic electrode 1111b may function as a lower electrode. Therefore, the substrate support 11 includes at least one lower electrode.
 リングアセンブリ114は、1又は複数のリング部材(環状部材)を含む。一実施形態において、1又は複数のリング部材は、1又は複数のエッジリング112と少なくとも1つのカバーリング113とを含む。エッジリング112は、導電性材料又は絶縁材料で形成され、カバーリング113は、絶縁材料で形成される。 The ring assembly 114 includes one or more ring members (annular members). In one embodiment, the one or more ring members include one or more edge rings 112 and at least one cover ring 113. Edge ring 112 is made of a conductive or insulating material, and cover ring 113 is made of an insulating material.
 また、基板支持部11は、静電チャック1111、リングアセンブリ114及び基板Wのうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間の間隙に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。 Further, the substrate support section 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 114, and the substrate W to a target temperature. The temperature control module may include a heater, a heat transfer medium, a flow path 1110a, or a combination thereof. A heat transfer fluid such as brine or gas flows through the flow path 1110a. In one embodiment, a channel 1110a is formed within the base 1110 and one or more heaters are disposed within the ceramic member 1111a of the electrostatic chuck 1111. Further, the substrate support section 11 may include a heat transfer gas supply section configured to supply heat transfer gas to the gap between the back surface of the substrate W and the central region 111a.
 また、基板支持部11は、中央領域111aの基板支持面から昇降可能な例えば3本のリフトピン(第1リフトピン)15を含んでもよい。リフトピン15は、昇降機構(図示せず)により上昇または下降する。基板支持面からリフトピン15が上昇することにより、基板支持面に支持された基板Wはリフトピン15で持ち上がる。搬送装置(図示せず)は、リフトピン15で持ち上げられた基板Wを受け取る。また、搬送装置は、リフトピン15に基板Wを受け渡す。基板支持面においてリフトピン15が下降することにより、リフトピン15で支持された基板Wを基板支持面に受け渡して支持する。 Further, the substrate support section 11 may include, for example, three lift pins (first lift pins) 15 that can be raised and lowered from the substrate support surface of the central region 111a. The lift pin 15 is raised or lowered by a lifting mechanism (not shown). As the lift pins 15 rise from the substrate support surface, the substrate W supported on the substrate support surface is lifted by the lift pins 15. A transport device (not shown) receives the substrate W lifted by the lift pins 15. Further, the transport device delivers the substrate W to the lift pins 15. By lowering the lift pins 15 on the substrate support surface, the substrate W supported by the lift pins 15 is transferred to and supported by the substrate support surface.
 また、基板支持部11は、環状領域111bのリング支持面から昇降可能な例えば3本のリフトピン(第2リフトピン)16を含んでもよい。リフトピン16は、昇降機構(図示せず)により上昇または下降する。リング支持面からリフトピン16が上昇することにより、リング支持面に支持されたリングアセンブリ114のうち少なくとも1つのリング部材(例えばエッジリング112、カバーリング113)をリフトピン16で持ち上げる。搬送装置(図示せず)は、リフトピン16で持ち上げられたリング部材を受け取る。また、搬送装置は、リフトピン16にリング部材を受け渡す。リング支持面においてリフトピン16が下降することにより、リフトピン16で支持されたリング部材をリング支持面に受け渡して支持する。 Further, the substrate support section 11 may include, for example, three lift pins (second lift pins) 16 that can be raised and lowered from the ring support surface of the annular region 111b. The lift pin 16 is raised or lowered by a lifting mechanism (not shown). As the lift pin 16 rises from the ring support surface, the lift pin 16 lifts at least one ring member (eg, edge ring 112, cover ring 113) of the ring assembly 114 supported on the ring support surface. A transport device (not shown) receives the ring member lifted by the lift pins 16. Further, the conveyance device delivers the ring member to the lift pin 16. By lowering the lift pin 16 on the ring support surface, the ring member supported by the lift pin 16 is transferred to and supported by the ring support surface.
 即ち、プラズマ処理によって消耗したエッジリング112やカバーリング113等のリング部材は、搬送口を介してプラズマ処理空間10sから搬出される。また、新たなエッジリング112やカバーリング113等のリング部材は、搬送口を介してプラズマ処理空間10s内に搬入され、リング支持面に設置される。このように、エッジリング112やカバーリング113等のリング部材は、プラズマ処理チャンバ10の天部を開放することなく、搬送口を介して自動で交換される。 That is, ring members such as the edge ring 112 and the cover ring 113 that have been consumed by the plasma processing are carried out from the plasma processing space 10s via the transport port. Further, new ring members such as the edge ring 112 and the cover ring 113 are carried into the plasma processing space 10s through the transfer port and installed on the ring support surface. In this way, ring members such as the edge ring 112 and the cover ring 113 are automatically replaced via the transfer port without opening the top of the plasma processing chamber 10.
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、少なくとも1つの上部電極を含む。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。 The shower head 13 is configured to introduce at least one processing gas from the gas supply section 20 into the plasma processing space 10s. The shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas introduction ports 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the plurality of gas introduction ports 13c. The showerhead 13 also includes at least one upper electrode. In addition to the shower head 13, the gas introduction section may include one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。 The gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22. In one embodiment, the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 to the showerhead 13 via a respective flow controller 22 . Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller. Additionally, gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow rate of at least one process gas.
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、少なくとも1つのRF信号(RF電力)を少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ処理チャンバ10において1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つの下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。 Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit. RF power source 31 is configured to supply at least one RF signal (RF power) to at least one bottom electrode and/or at least one top electrode. Thereby, plasma is formed from at least one processing gas supplied to the plasma processing space 10s. Accordingly, RF power source 31 may function as at least part of a plasma generation unit configured to generate a plasma from one or more process gases in plasma processing chamber 10 . Further, by supplying a bias RF signal to at least one lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、10MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給される。 In one embodiment, the RF power supply 31 includes a first RF generation section 31a and a second RF generation section 31b. The first RF generation section 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit, and generates a source RF signal (source RF power) for plasma generation. It is configured as follows. In one embodiment, the source RF signal has a frequency within the range of 10 MHz to 150 MHz. In one embodiment, the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to at least one bottom electrode and/or at least one top electrode.
 第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。バイアスRF信号の周波数は、ソースRF信号の周波数と同じであっても異なっていてもよい。一実施形態において、バイアスRF信号は、ソースRF信号の周波数よりも低い周波数を有する。一実施形態において、バイアスRF信号は、100kHz~60MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、少なくとも1つの下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。 The second RF generating section 31b is coupled to at least one lower electrode via at least one impedance matching circuit, and is configured to generate a bias RF signal (bias RF power). The frequency of the bias RF signal may be the same or different than the frequency of the source RF signal. In one embodiment, the bias RF signal has a lower frequency than the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 100kHz to 60MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. The generated one or more bias RF signals are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、少なくとも1つの下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のバイアスDC信号は、少なくとも1つの下部電極に印加される。一実施形態において、第2のDC生成部32bは、少なくとも1つの上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、少なくとも1つの上部電極に印加される。 Power source 30 may also include a DC power source 32 coupled to plasma processing chamber 10 . The DC power supply 32 includes a first DC generation section 32a and a second DC generation section 32b. In one embodiment, the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal. The generated first bias DC signal is applied to the at least one bottom electrode. In one embodiment, the second DC generator 32b is connected to the at least one upper electrode and configured to generate a second DC signal. The generated second DC signal is applied to the at least one top electrode.
 種々の実施形態において、第1及び第2のDC信号のうち少なくとも1つがパルス化されてもよい。この場合、電圧パルスのシーケンスが少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に印加される。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部が第1のDC生成部32aと少なくとも1つの下部電極との間に接続される。従って、第1のDC生成部32a及び波形生成部は、電圧パルス生成部を構成する。第2のDC生成部32b及び波形生成部が電圧パルス生成部を構成する場合、電圧パルス生成部は、少なくとも1つの上部電極に接続される。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に1又は複数の正極性電圧パルスと1又は複数の負極性電圧パルスとを含んでもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。 In various embodiments, at least one of the first and second DC signals may be pulsed. In this case, a sequence of voltage pulses is applied to at least one lower electrode and/or at least one upper electrode. The voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof. In one embodiment, a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generation section 32a and the waveform generation section constitute a voltage pulse generation section. When the second DC generation section 32b and the waveform generation section constitute a voltage pulse generation section, the voltage pulse generation section is connected to at least one upper electrode. The voltage pulse may have positive polarity or negative polarity. Furthermore, the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one cycle. Note that the first and second DC generation units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generation unit 32a may be provided in place of the second RF generation unit 31b. good.
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example. Evacuation system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve. The vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、処理部2a1、記憶部2a2及び通信インターフェース2a3を含んでもよい。制御部2は、例えばコンピュータ2aにより実現される。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。処理部2a1は、CPU(Central Processing Unit)であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。 The control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure. The control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1. The control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3. The control unit 2 is realized by, for example, a computer 2a. The processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary. The acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1. The medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3. The processing unit 2a1 may be a CPU (Central Processing Unit). The storage unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof. Good. The communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
<位置合わせ治具>
 次に、位置合わせ治具(治具)200について、図2及び図3を用いて説明する。図2は、位置合わせ治具200の斜視図の一例である。図3は、位置合わせ治具200の部分拡大斜視図の一例である。
<Positioning jig>
Next, the positioning jig (jig) 200 will be explained using FIGS. 2 and 3. FIG. 2 is an example of a perspective view of the alignment jig 200. FIG. 3 is an example of a partially enlarged perspective view of the alignment jig 200.
 位置合わせ治具200は、エッジリング112やカバーリング113等のリング部材を、被設置部材である本体部111のリング支持面(環状領域111b)に設置する際に、リング部材の位置合わせに用いられる治具である。具体的には、位置合わせ治具200は、リング部材の位置合わせ対象面と位置合わせ対象面と対向する被設置部材の対向面との隙間を管理することにより、被設置部材に対してリング部材を位置合わせする。位置合わせ治具200は、ベースプレート210と、複数のセンタリングシート(シート部材)220と、を有する。 The positioning jig 200 is used for positioning ring members such as the edge ring 112 and the cover ring 113 when installing the ring members on the ring support surface (annular region 111b) of the main body 111, which is the installed member. It is a jig that can be used. Specifically, the alignment jig 200 aligns the ring member with respect to the installed member by managing the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface. Align. The alignment jig 200 includes a base plate 210 and a plurality of centering sheets (sheet members) 220.
 ベースプレート210は、板状の部材である。また、ベースプレート210は、搬送装置(図示せず)の搬送アーム500(後述する図5参照)によって搬送可能な形状に形成されている。また、ベースプレート210は、本体部111の中央領域111aに設置可能な形状に形成されている。 The base plate 210 is a plate-shaped member. Further, the base plate 210 is formed in a shape that can be transported by a transport arm 500 (see FIG. 5 described later) of a transport device (not shown). Further, the base plate 210 is formed in a shape that can be installed in the central region 111a of the main body portion 111.
 ベースプレート210は、静電チャック1111によって吸着可能な材料、例えばシリコン(Si)等の導電性部材の円板として形成されることが好ましい。なお、ベースプレート210は、セラミックや樹脂等の材料で形成されていてもよい。 The base plate 210 is preferably formed as a disc of a conductive member such as a material that can be attracted by the electrostatic chuck 1111, such as silicon (Si). Note that the base plate 210 may be made of a material such as ceramic or resin.
 また、ベースプレート210の直径は、位置合わせするリング部材の内周面の直径よりも小さく形成されている。即ち、エッジリング112の位置合わせに用いられる位置合わせ治具200の直径は、エッジリング112の内周面112c(後述する図8参照)の直径よりも小さく形成されている。カバーリング113の位置合わせに用いられる位置合わせ治具200の直径は、カバーリング113の内周面113c(後述する図18参照)の直径よりも小さく形成されている。これにより、リング部材の穴にベースプレート210を通過させることができる。 Furthermore, the diameter of the base plate 210 is smaller than the diameter of the inner peripheral surface of the ring member to be aligned. That is, the diameter of the positioning jig 200 used for positioning the edge ring 112 is smaller than the diameter of the inner peripheral surface 112c of the edge ring 112 (see FIG. 8, which will be described later). The diameter of the positioning jig 200 used for positioning the cover ring 113 is smaller than the diameter of the inner circumferential surface 113c of the cover ring 113 (see FIG. 18 described later). This allows the base plate 210 to pass through the hole in the ring member.
 また、ベースプレート210の直径は、位置合わせするリング部材の内周面と対向する対向面の直径よりも小さく形成されていることが好ましい。即ち、エッジリング112の位置合わせに用いられる位置合わせ治具200の直径は、エッジリング112の内周面112cと対向するエッジリング対向面111c1(後述する図11参照)の直径よりも小さく形成されていることが好ましい。カバーリング113の位置合わせに用いられる位置合わせ治具200の直径は、カバーリング113の内周面113cと対向するカバーリング対向面111c2(後述する図21参照)の直径よりも小さく形成されていることが好ましい。 Furthermore, it is preferable that the diameter of the base plate 210 is smaller than the diameter of the opposing surface that faces the inner circumferential surface of the ring member to be aligned. That is, the diameter of the alignment jig 200 used for aligning the edge ring 112 is smaller than the diameter of the edge ring opposing surface 111c1 (see FIG. 11 described later) that faces the inner peripheral surface 112c of the edge ring 112. It is preferable that The diameter of the positioning jig 200 used for positioning the cover ring 113 is smaller than the diameter of the cover ring facing surface 111c2 (see FIG. 21 described later) that faces the inner peripheral surface 113c of the cover ring 113. It is preferable.
 ここで、搬送装置の搬送精度をX[mm]とすると、ベースプレート210とリング部材(エッジリング112、カバーリング113)との中心位置のずれ量は最大で2X[mm]となる。このため、ベースプレート210の直径は、位置合わせするリング部材の内周面の直径よりも2X[mm]以上小さく形成されていることが好ましい。これにより、搬送装置の搬送精度によってベースプレート210とリング部材との中心位置にずれが生じていた場合であっても、リング部材に干渉することなくリング部材の穴に基板支持面で支持されたベースプレート210を通過させることができる。例えば、搬送装置の搬送精度が0.3mmである場合、ベースプレート210の直径は、リング部材の内周面の直径よりも0.6mm以上小さく形成されることが好ましい。 Here, if the conveyance accuracy of the conveyance device is X [mm], the amount of deviation between the center positions of the base plate 210 and the ring members (edge ring 112, cover ring 113) is 2X [mm] at maximum. For this reason, it is preferable that the diameter of the base plate 210 is smaller than the diameter of the inner peripheral surface of the ring member to be aligned by at least 2X [mm]. As a result, even if the center positions of the base plate 210 and the ring member are misaligned due to the transport accuracy of the transport device, the base plate can be supported by the substrate support surface in the hole of the ring member without interfering with the ring member. 210 can be passed. For example, when the conveyance accuracy of the conveyance device is 0.3 mm, it is preferable that the diameter of the base plate 210 is smaller than the diameter of the inner peripheral surface of the ring member by 0.6 mm or more.
 また、ベースプレート210の板厚は、搬送装置によって搬送可能な厚さとすることが好ましい。例えば、ベースプレート210の板厚は、基板Wと同様な板厚を有していてもよい。これにより、基板Wを搬送する搬送装置によって位置合わせ治具200を搬送することができる。 Furthermore, it is preferable that the base plate 210 has a thickness that allows it to be transported by a transport device. For example, the base plate 210 may have the same thickness as the substrate W. Thereby, the alignment jig 200 can be transported by the transport device that transports the substrate W.
 図3に示すように、センタリングシート220は、固定部221と、突出部222と、を有する。センタリングシート220は、固定部221と突出部222とが一体に形成され、可撓性を有する材料で形成される。具体的には、センタリングシート220は、ポリイミド等の樹脂材料で形成されることが好ましい。また、センタリングシート220は、透光性を有する。センタリングシート220は、透過率が50%以上が好ましく、60%以上であることが更に好ましい。ベースプレート210のエッジの位置等を検出することでベースプレート210の中心位置を検出する際、センタリングシート220を透過して光学式のセンサ(図25で後述する位置検出センサS1~S2,S11~S72等)でベースプレート210のエッジの位置等を検出することができる。固定部221は、ベースプレート210に固定される。突出部222は、ベースプレート210の側面から径方向外側に向かって突出する。 As shown in FIG. 3, the centering sheet 220 has a fixed part 221 and a protruding part 222. The centering sheet 220 has a fixed part 221 and a protruding part 222 formed integrally with each other, and is made of a flexible material. Specifically, the centering sheet 220 is preferably formed of a resin material such as polyimide. Furthermore, the centering sheet 220 has translucency. The centering sheet 220 preferably has a transmittance of 50% or more, more preferably 60% or more. When detecting the center position of the base plate 210 by detecting the position of the edge of the base plate 210, optical sensors (such as position detection sensors S1 to S2, S11 to S72, which will be described later in FIG. 25) pass through the centering sheet 220. ) can detect the position of the edge of the base plate 210, etc. The fixing part 221 is fixed to the base plate 210. The protrusion 222 protrudes radially outward from the side surface of the base plate 210.
 円板形状のベースプレート210は、下面(第1面)と、上面(第2面)と、側面(第3面)とを有する。ベースプレート210の下面は、ベースプレート210を本体部111の基板支持面(中央領域111a)に配置した際に、基板支持面と当接して支持される面である。ベースプレート210の上面は、ベースプレート210の下面と反対側の面である。ベースプレート210の側面は、一端が下面の外周端と接続され、他端が上面の外周端と接続される円筒面である。 The disc-shaped base plate 210 has a lower surface (first surface), an upper surface (second surface), and a side surface (third surface). The lower surface of the base plate 210 is a surface that comes into contact with and is supported by the substrate support surface (center region 111a) of the main body 111 when the base plate 210 is placed on the substrate support surface (center region 111a). The upper surface of base plate 210 is a surface opposite to the lower surface of base plate 210. The side surface of the base plate 210 is a cylindrical surface whose one end is connected to the outer peripheral end of the lower surface and the other end is connected to the outer peripheral end of the upper surface.
 ベースプレート210の上面には、溝部211,212,213が形成されている。溝部211によって形成される内部空間は、ベースプレート210の上方の外部空間と連通し、ベースプレート210の径方向外側の外部空間と連通している。センタリングシート220の固定部221は、溝部211に合わせ込んで配置される。そして、センタリングシート220は、接着によってベースプレート210に固定される。センタリングシート220の固定部221の側壁221aと溝部211の側壁211aとを当接させることで、突出部222がベースプレート210の側面から径方向外側に向かって突出する長さを管理する。 Grooves 211, 212, and 213 are formed on the top surface of the base plate 210. The internal space formed by the groove portion 211 communicates with an external space above the base plate 210 and with an external space outside the base plate 210 in the radial direction. The fixing portion 221 of the centering sheet 220 is arranged in alignment with the groove portion 211. The centering sheet 220 is then fixed to the base plate 210 by adhesive. By bringing the side wall 221a of the fixed portion 221 of the centering sheet 220 into contact with the side wall 211a of the groove portion 211, the length of the protruding portion 222 protruding radially outward from the side surface of the base plate 210 is managed.
 また、センタリングシート220は、ベースプレート210の外周にそって、複数設けられている。図2に示す例では、ベースプレート210に6つのセンタリングシート220が等間隔に設けられている。換言すれば、ベースプレート210には、6つの溝部211が等間隔に6つ設けられており、各溝部211にそれぞれセンタリングシート220が設けられている。なお、センタリングシート220の数は、これに限られるものではなく、3つ以上であれば好ましい。また、センタリングシート220は、ベースプレート210の周方向に等間隔に設けられていることが好ましい。なお、センタリングシート220は、ベースプレート210の周方向に等間隔に設けられていなくてもよい。 Furthermore, a plurality of centering sheets 220 are provided along the outer periphery of the base plate 210. In the example shown in FIG. 2, six centering sheets 220 are provided on the base plate 210 at equal intervals. In other words, the base plate 210 is provided with six grooves 211 at equal intervals, and each groove 211 is provided with a centering sheet 220, respectively. Note that the number of centering sheets 220 is not limited to this, and is preferably three or more. Moreover, it is preferable that the centering sheets 220 are provided at equal intervals in the circumferential direction of the base plate 210. Note that the centering sheets 220 do not need to be provided at equal intervals in the circumferential direction of the base plate 210.
 ベースプレート210の側面から突出する突出部222の長さ(ベースプレート210の径方向における突出部222の長さ)は、リング部材をリング支持面に設置して突出部222が撓んだ際に、リング部材のリング支持面に届かない(接触しない)長さに形成されている。即ち、エッジリング112の位置合わせに用いられる位置合わせ治具200において、突出部222の長さは、エッジリング112をリング支持面に設置して突出部222が撓んだ際に、エッジリング112を支持するエッジリング支持面111b1に届かない(接触しない)長さに形成されている(後述する図11参照)。カバーリング113の位置合わせに用いられる位置合わせ治具200において、突出部222の長さは、カバーリング113をリング支持面に設置して突出部222が撓んだ際に、カバーリング113を支持するカバーリング支持面111b2に届かない(接触しない)長さに形成されている(後述する図21参照)。 The length of the protruding part 222 protruding from the side surface of the base plate 210 (the length of the protruding part 222 in the radial direction of the base plate 210) is the length of the protruding part 222 when the ring member is installed on the ring support surface and the protruding part 222 is bent. It is formed in a length that does not reach (do not come into contact with) the ring support surface of the member. That is, in the alignment jig 200 used for positioning the edge ring 112, the length of the protrusion 222 is such that when the edge ring 112 is installed on the ring support surface and the protrusion 222 is bent, the edge ring 112 The edge ring support surface 111b1 is formed in such a length that it does not reach (do not come into contact with) the edge ring support surface 111b1 that supports the edge ring (see FIG. 11, which will be described later). In the alignment jig 200 used for positioning the cover ring 113, the length of the protrusion 222 is such that the cover ring 113 is supported when the cover ring 113 is installed on the ring support surface and the protrusion 222 is bent. The cover ring support surface 111b2 is formed in such a length that it does not reach (do not come into contact with) the covering support surface 111b2 (see FIG. 21, which will be described later).
 また、ベースプレート210の側面から突出する突出部222の長さ(ベースプレート210の径方向における突出部222の長さ)は、リング部材をリング支持面に設置して突出部222が撓んだ際に、リング部材の位置合わせ対象面と位置合わせ対象面と対向する被設置部材の対向面との隙間に届く長さに形成されている。即ち、エッジリング112の位置合わせに用いられる位置合わせ治具200において、突出部222の長さは、エッジリング112をリング支持面に設置して突出部222が撓んだ際に、エッジリング支持面111b1に設置されたエッジリング112の内周面112cとエッジリング対向面111c1との隙間に届く長さに形成されている(後述する図11参照)。カバーリング113の位置合わせに用いられる位置合わせ治具200において、突出部222の長さは、カバーリング113をリング支持面に設置して突出部222が撓んだ際に、カバーリング支持面111b2に設置されたカバーリング113の内周面113cとカバーリング対向面111c2との隙間に届く長さに形成されている(後述する図21参照)。 Further, the length of the protruding part 222 protruding from the side surface of the base plate 210 (the length of the protruding part 222 in the radial direction of the base plate 210) is determined when the ring member is installed on the ring support surface and the protruding part 222 is bent. , is formed to have a length that reaches the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface. That is, in the alignment jig 200 used for positioning the edge ring 112, the length of the protrusion 222 is such that when the edge ring 112 is installed on the ring support surface and the protrusion 222 is bent, the edge ring support The length is formed to reach the gap between the inner circumferential surface 112c of the edge ring 112 installed on the surface 111b1 and the edge ring opposing surface 111c1 (see FIG. 11 described later). In the alignment jig 200 used for positioning the cover ring 113, the length of the protrusion 222 is such that when the cover ring 113 is installed on the ring support surface and the protrusion 222 is bent, the length of the protrusion 222 is equal to that of the cover ring support surface 111b2 The length is formed to reach the gap between the inner circumferential surface 113c of the cover ring 113 installed in the cover ring 113 and the cover ring facing surface 111c2 (see FIG. 21 described later).
 また、ベースプレート210の周方向おいて、突出部222の幅(ベースプレート210の径方向と直交する方向の突出部222の長さ)は、限定されるものではない。突出部222の幅は、例えば2.1mm以上4.5mm以下に形成されていることが好ましい。 Further, in the circumferential direction of the base plate 210, the width of the protrusion 222 (the length of the protrusion 222 in the direction perpendicular to the radial direction of the base plate 210) is not limited. It is preferable that the width of the protrusion 222 is, for example, 2.1 mm or more and 4.5 mm or less.
 また、図2及び図3に示すように、固定部221の幅は、突出部222の幅よりも広く形成されていてもよい。これにより、固定部221とベースプレート210の溝部211との接触面積を大きくすることができ、接着によって固定されるセンタリングシート220の固定を向上させることができる。また、突出部222の幅を固定部221の幅よりも狭く形成することにより、突出部222が容易に撓むことができる。 Furthermore, as shown in FIGS. 2 and 3, the width of the fixing part 221 may be formed wider than the width of the protruding part 222. Thereby, the contact area between the fixing part 221 and the groove part 211 of the base plate 210 can be increased, and the fixation of the centering sheet 220 fixed by adhesive can be improved. Moreover, by forming the width of the protrusion 222 to be narrower than the width of the fixing part 221, the protrusion 222 can be easily bent.
 また、突出部222の厚さは、リング部材の位置合わせ対象面と位置合わせ対象面と対向する被設置部材の対向面との隙間の管理される寸法に基づいて設計される。突出部222の厚さは、例えば0.05mm以上0.125mm以下に形成されていることが好ましい。 Further, the thickness of the protruding portion 222 is designed based on the controlled dimension of the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface. It is preferable that the thickness of the protruding portion 222 is, for example, 0.05 mm or more and 0.125 mm or less.
 また、溝部211は、ベースプレート210の外周側で傾斜面211bを有していてもよい。これにより、突出部222が下方向に撓む際、傾斜面211bに沿って撓むことができる。よって、突出部222が下方向に撓む際、屈曲するセンタリングシート220に生じる応力集中を抑制する。 Further, the groove portion 211 may have an inclined surface 211b on the outer peripheral side of the base plate 210. Thereby, when the protruding portion 222 is bent downward, it can be bent along the inclined surface 211b. Therefore, when the protruding portion 222 bends downward, stress concentration occurring in the bending centering sheet 220 is suppressed.
 また、ベースプレート210には、6つの溝部212が等間隔に6つ設けられている。また、ベースプレート210には、6つの溝部213が等間隔に6つ設けられている。溝部212,212,213は、それぞれ形状が異なっていてもよく、同じ形状であってもよい。位置合わせ治具200は、用途に応じて、形状(例えば突出部222の長さ等)の異なるセンタリングシート220に交換することができる。例えば、溝部211,212,213の径方向長さが異なることにより、ベースプレート210の外周から突出する突出部222の長さを調整する構成であってもよい。 Additionally, six grooves 212 are provided in the base plate 210 at equal intervals. Furthermore, six grooves 213 are provided in the base plate 210 at equal intervals. The grooves 212, 212, and 213 may have different shapes, or may have the same shape. The alignment jig 200 can be replaced with a centering sheet 220 having a different shape (for example, the length of the protrusion 222, etc.) depending on the application. For example, the length of the protrusion 222 protruding from the outer periphery of the base plate 210 may be adjusted by varying the radial lengths of the grooves 211, 212, and 213.
 なお、センタリングシート220は、接着によってベースプレート210に固定されているものとして説明したが、固定方法はこれに限られるものではない。ボルトによる固定や他部材での挟み込み等によって物理的に固定してもよい。また、位置合わせ治具200は、センタリングシート220を着脱可能に固定されていてもよい。これにより、位置合わせ治具200は、センタリングシート220を交換することにより、突出部222の長さ、突出部222の幅、突出部222の厚さを任意に変更可能な構造としてもよい。 Although the centering sheet 220 has been described as being fixed to the base plate 210 by adhesive, the fixing method is not limited to this. It may be physically fixed by fixing with bolts or by being sandwiched between other members. Further, the centering sheet 220 may be detachably fixed to the alignment jig 200. Accordingly, the alignment jig 200 may have a structure in which the length of the protrusion 222, the width of the protrusion 222, and the thickness of the protrusion 222 can be arbitrarily changed by replacing the centering sheet 220.
<エッジリングの設置処理>
 エッジリング112を本体部111の環状領域111bに設置する際の処理について、図4から図13を用いて説明する。図4は、エッジリング112を本体部111の環状領域111bに設置する際の処理を説明するフローチャートの一例である。図5から図13は、各状態における基板支持部11の部分拡大断面図の一例である。なお、以下の説明においては、ベースプレート210の溝部211に形成される傾斜面211bは省略して図示している。
<Edge ring installation process>
Processing when installing the edge ring 112 in the annular region 111b of the main body portion 111 will be described using FIGS. 4 to 13. FIG. 4 is an example of a flowchart illustrating a process when installing the edge ring 112 in the annular region 111b of the main body portion 111. 5 to 13 are examples of partially enlarged cross-sectional views of the substrate support portion 11 in each state. Note that in the following description, the inclined surface 211b formed in the groove portion 211 of the base plate 210 is omitted from illustration.
 ここで、基板支持部11の構造について、図5を参照して、更に説明する。 Here, the structure of the substrate support section 11 will be further explained with reference to FIG. 5.
 本体部111は、基板Wを支持するための中央領域111a(基板支持面)と、リングアセンブリ114を支持するための環状領域111bとを有する。環状領域111bは、エッジリング112を支持するためのエッジリング支持面111b1と、カバーリング113を支持するためのカバーリング支持面111b2と、を有する。 The main body portion 111 has a central region 111a (substrate support surface) for supporting the substrate W, and an annular region 111b for supporting the ring assembly 114. The annular region 111b has an edge ring support surface 111b1 for supporting the edge ring 112 and a cover ring support surface 111b2 for supporting the cover ring 113.
 エッジリング支持面111b1は、基板支持面よりも径方向外側に設けられ、基板支持面よりも低い位置に形成されている。基板支持面とエッジリング支持面111b1との間には、エッジリング対向面111c1を有する。エッジリング対向面111c1は円筒面であって、エッジリング112をエッジリング支持面111b1で支持した際、エッジリング112の内周面112c(図8から図13参照)と対向する面である。 The edge ring support surface 111b1 is provided radially outside the substrate support surface and is formed at a position lower than the substrate support surface. An edge ring opposing surface 111c1 is provided between the substrate supporting surface and the edge ring supporting surface 111b1. The edge ring opposing surface 111c1 is a cylindrical surface that faces the inner circumferential surface 112c of the edge ring 112 (see FIGS. 8 to 13) when the edge ring 112 is supported by the edge ring support surface 111b1.
 カバーリング支持面111b2は、基板支持面及びエッジリング支持面111b1よりも径方向外側に設けられ、基板支持面及びエッジリング支持面111b1よりも低い位置に形成されている。エッジリング支持面111b1とカバーリング支持面111b2との間には、カバーリング対向面111c2を有する。カバーリング対向面111c2は円筒面であって、カバーリング113をカバーリング支持面111b2で支持した際、カバーリング113の内周面113c(図5参照)と対向する面である。 The cover ring support surface 111b2 is provided radially outward from the substrate support surface and the edge ring support surface 111b1, and is formed at a position lower than the substrate support surface and the edge ring support surface 111b1. A covering opposing surface 111c2 is provided between the edge ring supporting surface 111b1 and the covering supporting surface 111b2. The cover ring facing surface 111c2 is a cylindrical surface, and is a surface that faces the inner circumferential surface 113c (see FIG. 5) of the cover ring 113 when the cover ring 113 is supported by the cover ring support surface 111b2.
 カバーリング113は、底面113aを有する。底面113aは、カバーリング113を本体部111のリング支持面(環状領域111b)に配置した際、カバーリング支持面111b2と当接して支持される面である。カバーリング113の上面には、内周側が低く外周側が高く形成された段差が形成されている。カバーリング113の内周側上面には、エッジリング112の外周側を支持するエッジリング支持面113bが形成されている。また、リング部材であるカバーリング113は、円筒形状の内周面113cを有する。また、カバーリング113は、底面113aからエッジリング支持面113bに貫通する貫通孔113dを有する。 The cover ring 113 has a bottom surface 113a. The bottom surface 113a is a surface that comes into contact with and is supported by the cover ring support surface 111b2 when the cover ring 113 is placed on the ring support surface (annular region 111b) of the main body portion 111. The upper surface of the cover ring 113 is formed with a step that is lower on the inner circumferential side and higher on the outer circumferential side. An edge ring support surface 113b that supports the outer circumferential side of the edge ring 112 is formed on the inner circumferential upper surface of the cover ring 113. Further, the cover ring 113, which is a ring member, has a cylindrical inner peripheral surface 113c. The cover ring 113 also has a through hole 113d that penetrates from the bottom surface 113a to the edge ring support surface 113b.
 図8から図13に示すように、エッジリング112は、底面112aを有する。底面112aは、エッジリング112を本体部111のリング支持面(環状領域111b)に配置した際、内周側がエッジリング支持面111b1と当接して支持され、外周側がエッジリング支持面113bと当接して支持される面である。また、リング部材であるエッジリング112は、円筒形状の内周面112cを有する。 As shown in FIGS. 8 to 13, the edge ring 112 has a bottom surface 112a. When the edge ring 112 is placed on the ring support surface (annular region 111b) of the main body 111, the bottom surface 112a is supported by the inner circumferential side in contact with the edge ring support surface 111b1, and the outer circumferential side in contact with the edge ring support surface 113b. It is a surface that is supported by Further, the edge ring 112, which is a ring member, has a cylindrical inner peripheral surface 112c.
 次に、図4及び適宜図5から図13を参照して、エッジリング112を本体部111の環状領域111bに設置する際の処理について説明する。ここでは、エッジリング112の内周面112cを位置合わせ対象面とし、内周面112cと対向する面であるエッジリング対向面111c1を位置合わせ対象面と対向する対向面として、位置合わせ対象面と対向面との隙間を管理してエッジリング112を本体部111のリング支持面(環状領域111b)に設置する。これにより、被設置部材である本体部111に対してエッジリング112がセンタリングされて設置される。 Next, a process for installing the edge ring 112 in the annular region 111b of the main body portion 111 will be described with reference to FIG. 4 and FIGS. 5 to 13 as appropriate. Here, the inner circumferential surface 112c of the edge ring 112 is the alignment target surface, and the edge ring opposing surface 111c1, which is the surface facing the inner circumferential surface 112c, is the opposing surface facing the alignment target surface. The edge ring 112 is installed on the ring support surface (annular region 111b) of the main body portion 111 while controlling the gap with the opposing surface. As a result, the edge ring 112 is centered and installed with respect to the main body portion 111, which is the member to be installed.
 ステップS101において、位置合わせ治具200をプラズマ処理チャンバ10に搬送する。 In step S101, the alignment jig 200 is transported to the plasma processing chamber 10.
 図5は、ステップS101において、位置合わせ治具200をプラズマ処理チャンバ10内に搬送した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、ゲートバルブを開き、搬送装置を制御して位置合わせ治具200を保持した搬送アーム500を搬送口からプラズマ処理チャンバ10に搬送し、本体部111の中央領域111aの上に位置合わせ治具200を配置する。 FIG. 5 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state in which the alignment jig 200 is transported into the plasma processing chamber 10 in step S101. The control unit 2 opens the gate valve, controls the transport device, transports the transport arm 500 holding the alignment jig 200 from the transport port to the plasma processing chamber 10, and positions it above the central region 111a of the main body 111. Place the alignment jig 200.
 ステップS102において、位置合わせ治具200を搬送アーム500からリフトピン15で受け取り、静電チャック1111の基板支持面に設置する。 In step S102, the alignment jig 200 is received from the transfer arm 500 by the lift pins 15 and placed on the substrate support surface of the electrostatic chuck 1111.
 図6は、ステップS102において、位置合わせ治具200をリフトピン15で受け取った状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン15を上昇させる。これにより、リフトピン15の上端が位置合わせ治具200の下面と当接して、リフトピン15によって搬送アーム500から位置合わせ治具200が持ち上げられ、リフトピン15で位置合わせ治具200が支持される。そして、制御部2は、搬送装置を制御して搬送アーム500を搬送口から退避させ、ゲートバルブを閉じる。 FIG. 6 is an example of a partially enlarged cross-sectional view of the substrate support portion 11 in a state in which the alignment jig 200 is received by the lift pins 15 in step S102. The control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 15. As a result, the upper end of the lift pin 15 comes into contact with the lower surface of the alignment jig 200, the alignment jig 200 is lifted from the transport arm 500 by the lift pin 15, and the alignment jig 200 is supported by the lift pin 15. Then, the control unit 2 controls the transfer device to retreat the transfer arm 500 from the transfer port, and closes the gate valve.
 図7は、ステップS102において、位置合わせ治具200を静電チャック1111に設置した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン15を下降させる。これにより、リフトピン15に支持された位置合わせ治具200が基板支持面に設置される。 FIG. 7 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state where the alignment jig 200 is installed on the electrostatic chuck 1111 in step S102. The control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 15. As a result, the alignment jig 200 supported by the lift pins 15 is installed on the substrate support surface.
 また、制御部2は、静電チャック電源(図示せず)を制御して、静電電極1111bに電圧を印加することにより、位置合わせ治具200を本体部111に固定する。なお、位置合わせ治具200を本体部111に固定する固定方法は、これに限られるものではなく、他の固定方法で固定してもよい。例えば、位置合わせ治具200の裏面と中央領域111aとの間の間隙をプラズマ処理空間10sよりも高真空にして、位置合わせ治具200の上面側と下面側の圧力差によって位置合わせ治具200を本体部111に固定する構成であってもよい。この場合、ベースプレート210は、セラミックや樹脂等の材料で形成されていてもよい。また、位置合わせ治具200の自重によって本体部111に固定する構成であってもよい。 Furthermore, the control unit 2 fixes the alignment jig 200 to the main body 111 by controlling an electrostatic chuck power source (not shown) and applying a voltage to the electrostatic electrode 1111b. Note that the method of fixing the positioning jig 200 to the main body portion 111 is not limited to this, and other fixing methods may be used. For example, by making the gap between the back surface of the alignment jig 200 and the central region 111a a higher vacuum than the plasma processing space 10s, and applying pressure difference between the upper surface side and the lower surface side of the alignment jig 200, the alignment jig 200 may be fixed to the main body portion 111. In this case, the base plate 210 may be made of a material such as ceramic or resin. Alternatively, the positioning jig 200 may be fixed to the main body portion 111 by its own weight.
 ステップS103において、エッジリング112をプラズマ処理チャンバ10内に搬送する。 In step S103, the edge ring 112 is transported into the plasma processing chamber 10.
 図8は、ステップS103において、エッジリング112をプラズマ処理チャンバ10内に搬送した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、ゲートバルブを開き、搬送装置を制御してエッジリング112を保持した搬送アーム500を搬送口からプラズマ処理チャンバ10に搬送し、本体部111の環状領域111b(エッジリング支持面111b1、エッジリング支持面113b)の上にエッジリング112を配置する。 FIG. 8 is an example of a partially enlarged cross-sectional view of the substrate support part 11 in a state where the edge ring 112 is transported into the plasma processing chamber 10 in step S103. The control unit 2 opens the gate valve, controls the transfer device, transfers the transfer arm 500 holding the edge ring 112 from the transfer port to the plasma processing chamber 10, and transfers the transfer arm 500 holding the edge ring 112 from the transfer port to the annular region 111b of the main body 111 (edge ring support surface 111b1). , the edge ring 112 is placed on the edge ring support surface 113b).
 ステップS104において、エッジリング112を搬送アーム500からリフトピン16で受け取り、静電チャック1111のリング支持面に設置する。 In step S104, the edge ring 112 is received from the transport arm 500 by the lift pin 16 and placed on the ring support surface of the electrostatic chuck 1111.
 図9は、ステップS104において、エッジリング112をリフトピン16で受け取った状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン16を上昇させる。ここで、リフトピン16は、上側の小径部161と、下側の大径部162と、を有する。小径部161がカバーリング113の貫通孔113dを挿通し、リフトピン16の小径部161の上端がエッジリング112の下面と当接する。リフトピン16によって搬送アーム500からエッジリング112が持ち上げられ、リフトピン16でエッジリング112が支持される。そして、制御部2は、搬送装置を制御して搬送アーム500を搬送口から退避させ、ゲートバルブを閉じる。 FIG. 9 is an example of a partially enlarged sectional view of the substrate support portion 11 in a state in which the edge ring 112 is received by the lift pins 16 in step S104. The control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 16. Here, the lift pin 16 has an upper small diameter portion 161 and a lower large diameter portion 162. The small diameter portion 161 is inserted through the through hole 113d of the cover ring 113, and the upper end of the small diameter portion 161 of the lift pin 16 comes into contact with the lower surface of the edge ring 112. The edge ring 112 is lifted from the transport arm 500 by the lift pin 16, and the edge ring 112 is supported by the lift pin 16. Then, the control unit 2 controls the transfer device to retreat the transfer arm 500 from the transfer port, and closes the gate valve.
 図10は、ステップS104において、リフトピン16の下降中の状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン16を下降させる。ここで、エッジリング112が下降することにより、底面112aが突出部222の上面と接触し、エッジリング112の自重によって突出部222が変形する。そして、突出部222がさらに変形することで、突出部222の下面が基板支持面とエッジリング対向面111c1とのエッジに当接する。これにより、突出部222は、傾斜を形成する。この突出部222の傾斜によって、下降するエッジリング112の水平方向の位置がガイドされる。例えば、リフトピン16で支持されたエッジリング112の中心位置が本体部111の中心位置に対してズレて配置されていた場合、突出部222の傾斜によってエッジリング112がガイドされ、エッジリング112の水平方向の位置が調整される。これにより、エッジリング112が基板支持面に乗り上げてリング支持面に設置できなくなることを防止する。 FIG. 10 is an example of a partially enlarged cross-sectional view of the substrate support portion 11 in a state where the lift pins 16 are being lowered in step S104. The control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 16. Here, as the edge ring 112 descends, the bottom surface 112a comes into contact with the upper surface of the protrusion 222, and the protrusion 222 is deformed by the weight of the edge ring 112. Then, as the protrusion 222 further deforms, the lower surface of the protrusion 222 comes into contact with the edge of the substrate support surface and the edge ring facing surface 111c1. As a result, the protrusion 222 forms an inclination. The inclination of the protrusion 222 guides the horizontal position of the descending edge ring 112. For example, if the center position of the edge ring 112 supported by the lift pin 16 is shifted from the center position of the main body part 111, the edge ring 112 is guided by the inclination of the protruding part 222, and the edge ring 112 is horizontal. The position of the direction is adjusted. This prevents the edge ring 112 from riding on the substrate support surface and becoming unable to be installed on the ring support surface.
 図11は、ステップS104において、エッジリング112を静電チャック1111に設置した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン16を更に下降させる。これにより、エッジリング112は、エッジリング支持面111b1,113bと当接して支持される。また、突出部222の長さは、エッジリング112の内周面112cとエッジリング対向面111c1との隙間に届く長さに形成されている。これにより、突出部222は、エッジリング対向面111c1と内周面112cとの隙間に挟まれて配置される。ここで、センタリングシート220は周方向に複数設けられていることにより、エッジリング対向面111c1と内周面112cとの隙間の間隔は、周方向の複数の位置で突出部222の厚さで管理される。これにより、本体部111に対してエッジリング112がセンタリングされて設置される。 FIG. 11 is an example of a partially enlarged cross-sectional view of the substrate support part 11 in a state where the edge ring 112 is installed on the electrostatic chuck 1111 in step S104. The control unit 2 controls a lifting mechanism (not shown) to further lower the lift pin 16. Thereby, the edge ring 112 is supported in contact with the edge ring support surfaces 111b1 and 113b. Further, the length of the protrusion 222 is set to reach the gap between the inner circumferential surface 112c of the edge ring 112 and the edge ring facing surface 111c1. As a result, the protruding portion 222 is placed between the edge ring facing surface 111c1 and the inner circumferential surface 112c. Here, since a plurality of centering sheets 220 are provided in the circumferential direction, the gap between the edge ring facing surface 111c1 and the inner circumferential surface 112c is managed by the thickness of the protruding portion 222 at a plurality of positions in the circumferential direction. be done. As a result, the edge ring 112 is centered and installed with respect to the main body portion 111.
 また突出部222の長さは、エッジリング支持面111b1に届かない長さに形成されている。これにより、エッジリング112の底面112aとエッジリング支持面111b1との間に突出部222が挟まれることを防止する。 Furthermore, the length of the protruding portion 222 is formed to a length that does not reach the edge ring support surface 111b1. This prevents the protrusion 222 from being pinched between the bottom surface 112a of the edge ring 112 and the edge ring support surface 111b1.
 ステップS105において、エッジリング112を固定する。ここで、本体部111の環状領域111bには、リフトピン16が配置される貫通孔及びエッジリング112の裏面とエッジリング支持面111b1との間の間隙に伝熱ガスを供給する供給孔が設けられている。エッジリング112がリング支持面に支持された状態において、貫通孔及び/又は供給孔から排気することにより、エッジリング112の裏面とエッジリング支持面111b1との間の間隙を減圧する。これにより、エッジリング112の裏面とエッジリング支持面111b1との間の間隙をプラズマ処理空間10sよりも高真空にして、エッジリング112の上面側と下面側の圧力差によってエッジリング112を本体部111に固定(仮固定)する。更に、制御部2は、静電チャック電源(図示せず)を制御して、静電電極1111cに電圧を印加することにより、エッジリング112を本体部111に固定(本固定)してもよい。なお、エッジリング112を本体部111に固定(仮固定、本固定)する固定方法は、これに限られるものではなく、他の固定方法で固定してもよい。 In step S105, the edge ring 112 is fixed. Here, the annular region 111b of the main body portion 111 is provided with a through hole in which the lift pin 16 is arranged and a supply hole for supplying heat transfer gas to the gap between the back surface of the edge ring 112 and the edge ring support surface 111b1. ing. While the edge ring 112 is supported by the ring support surface, the pressure in the gap between the back surface of the edge ring 112 and the edge ring support surface 111b1 is reduced by exhausting air from the through hole and/or the supply hole. As a result, the gap between the back surface of the edge ring 112 and the edge ring support surface 111b1 is made into a higher vacuum than the plasma processing space 10s, and the pressure difference between the upper surface side and the lower surface side of the edge ring 112 moves the edge ring 112 into the main body. Fixed to 111 (temporarily fixed). Furthermore, the control unit 2 may fix (mainly fix) the edge ring 112 to the main body 111 by controlling an electrostatic chuck power source (not shown) and applying a voltage to the electrostatic electrode 1111c. . Note that the fixing method for fixing (temporary fixing, permanent fixing) the edge ring 112 to the main body portion 111 is not limited to this, and other fixing methods may be used.
 ここで、エッジリング112を本体部111に固定(仮固定、本固定)する際、エッジリング112が圧力差等によって水平方向に動き、好適な位置からずれてしまうおそれがある。これに対し、ステップS105では、エッジリング対向面111c1と内周面112cとの間にセンタリングシート220の突出部222が挟まれた状態で固定(仮固定、本固定)する。これにより、エッジリング112を本体部111に固定する際にエッジリング112に好適な位置からずれてしまうことを防止することができる。 Here, when fixing the edge ring 112 to the main body part 111 (temporary fixing, permanent fixing), there is a risk that the edge ring 112 will move in the horizontal direction due to the pressure difference or the like and be deviated from a suitable position. On the other hand, in step S105, the centering sheet 220 is fixed (temporarily fixed, permanently fixed) in a state in which the protrusion 222 of the centering sheet 220 is sandwiched between the edge ring facing surface 111c1 and the inner peripheral surface 112c. Thereby, when fixing the edge ring 112 to the main body portion 111, it is possible to prevent the edge ring 112 from shifting from a suitable position.
 ステップS106において、位置合わせ治具200をリフトピン15で支持する。 In step S106, the alignment jig 200 is supported by the lift pins 15.
 まず、ステップS102において、位置合わせ治具200を本体部111に固定していた場合、位置合わせ治具200の固定を解除する。 First, in step S102, if the alignment jig 200 is fixed to the main body part 111, the alignment jig 200 is released from fixation.
 次に、制御部2は、昇降機構(図示せず)を制御して、リフトピン15を上昇させる。これにより、リフトピン15の上端が位置合わせ治具200の下面と当接して、リフトピン15によって基板支持面から位置合わせ治具200が持ち上げられ、位置合わせ治具200が基板支持面から離間する。また、エッジリング対向面111c1と内周面112cとの隙間に配置されていた突出部222が引き抜かれる。この際、エッジリング112は本体部111に固定(仮固定または本固定)されており、突出部222をエッジリング対向面111c1と内周面112cとの間から引き抜く際に、エッジリング112の位置がずれることを防止する。そして、センタリングシート220の復元力によって、突出部222は略水平に復帰する。 Next, the control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 15. As a result, the upper ends of the lift pins 15 come into contact with the lower surface of the alignment jig 200, the alignment jig 200 is lifted from the substrate support surface by the lift pins 15, and the alignment jig 200 is separated from the substrate support surface. Furthermore, the protrusion 222 that was disposed in the gap between the edge ring facing surface 111c1 and the inner circumferential surface 112c is pulled out. At this time, the edge ring 112 is fixed (temporarily or permanently fixed) to the main body 111, and when the protrusion 222 is pulled out from between the edge ring facing surface 111c1 and the inner peripheral surface 112c, the position of the edge ring 112 is to prevent it from shifting. Then, due to the restoring force of the centering sheet 220, the protrusion 222 returns to a substantially horizontal position.
 ステップS107において、位置合わせ治具200をプラズマ処理チャンバ10から搬出する。 In step S107, the alignment jig 200 is carried out from the plasma processing chamber 10.
 図12は、ステップS107において、位置合わせ治具200をプラズマ処理チャンバ10内に搬送した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、ゲートバルブを開き、搬送装置を制御して搬送アーム500を搬送口からプラズマ処理チャンバ10に搬送し、本体部111と位置合わせ治具200との間に配置する。次に、制御部2は、昇降機構(図示せず)を制御して、リフトピン15を下降させる。これにより、リフトピン15に支持された位置合わせ治具200が搬送アーム500に保持される。そして、制御部2は、搬送装置を制御して位置合わせ治具200を保持した搬送アーム500を搬送口から退避させ、ゲートバルブを閉じる。 FIG. 12 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state in which the alignment jig 200 is transported into the plasma processing chamber 10 in step S107. The control section 2 opens the gate valve, controls the transfer device, transfers the transfer arm 500 from the transfer port to the plasma processing chamber 10, and places it between the main body section 111 and the alignment jig 200. Next, the control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 15. As a result, the positioning jig 200 supported by the lift pins 15 is held by the transport arm 500. Then, the control unit 2 controls the transport device to retreat the transport arm 500 holding the positioning jig 200 from the transport port, and closes the gate valve.
 なお、ステップS105において、エッジリング112を仮固定のみしていた場合には、突出部222を引き抜く前にエッジリング112を本固定してもよい。また、突出部222を引き抜いた後にエッジリング112を本固定してもよい。 Note that if the edge ring 112 is only temporarily fixed in step S105, the edge ring 112 may be permanently fixed before the protrusion 222 is pulled out. Further, the edge ring 112 may be permanently fixed after the protrusion 222 is pulled out.
 図13は、ステップS107の処理が終了した状態における基板支持部11の部分拡大断面図の一例である。以上のように、エッジリング112は、プラズマ処理チャンバ10の天部を開放することなく、搬送口を介して自動で交換することができる。また、エッジリング112が基板支持面に乗り上げることなく、リング支持面に設置される。また、エッジリング対向面111c1と内周面112cとの隙間の間隔は、周方向の複数の位置で突出部222の厚さで管理されており、本体部111に対してエッジリング112がセンタリングされて設置される。また、エッジリング112がセンタリングは、センタリングシート220の厚さで管理することができるので、搬送装置の搬送アーム500によるエッジリング112の搬送精度よりも高い精度でセンタリングすることができる。 FIG. 13 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state where the process of step S107 has been completed. As described above, the edge ring 112 can be automatically replaced via the transfer port without opening the top of the plasma processing chamber 10. Further, the edge ring 112 is installed on the ring support surface without riding on the substrate support surface. Further, the gap between the edge ring facing surface 111c1 and the inner circumferential surface 112c is controlled by the thickness of the protrusion 222 at multiple positions in the circumferential direction, and the edge ring 112 is centered with respect to the main body 111. It will be installed. Furthermore, since the centering of the edge ring 112 can be controlled by the thickness of the centering sheet 220, it is possible to center the edge ring 112 with higher accuracy than the conveyance accuracy of the edge ring 112 by the conveyance arm 500 of the conveyance device.
<カバーリングの設置処理>
 カバーリング113を本体部111の環状領域111bに設置する際の処理について、図14から図23を用いて説明する。図14は、カバーリング113を本体部111の環状領域111bに設置する際の処理を説明するフローチャートの一例である。図15から図23は、各状態における基板支持部11の部分拡大断面図の一例である。なお、以下の説明においては、ベースプレート210の溝部211に形成される傾斜面211bは省略して図示している。
<Covering installation process>
Processing when installing the cover ring 113 in the annular region 111b of the main body portion 111 will be described using FIGS. 14 to 23. FIG. 14 is an example of a flowchart illustrating a process when installing the covering ring 113 in the annular region 111b of the main body portion 111. 15 to 23 are examples of partially enlarged cross-sectional views of the substrate support portion 11 in each state. Note that in the following description, the inclined surface 211b formed in the groove portion 211 of the base plate 210 is omitted from illustration.
 図14及び適宜図15から図23を参照して、カバーリング113を本体部111の環状領域111bに設置する際の処理について説明する。ここでは、カバーリング113の内周面113cを位置合わせ対象面とし、内周面113cと対向する面であるカバーリング対向面111c2を位置合わせ対象面と対向する対向面として、位置合わせ対象面と対向面との隙間を管理してカバーリング113を本体部111のリング支持面(環状領域111b)に設置する。これにより、被設置部材である本体部111に対してカバーリング113がセンタリングされて設置される。 Processing when installing the cover ring 113 in the annular region 111b of the main body portion 111 will be described with reference to FIG. 14 and FIGS. 15 to 23 as appropriate. Here, the inner circumferential surface 113c of the cover ring 113 is the alignment target surface, and the covering opposing surface 111c2, which is the surface facing the inner circumferential surface 113c, is the opposing surface facing the alignment target surface. The cover ring 113 is installed on the ring support surface (annular region 111b) of the main body portion 111 while controlling the gap between the cover ring 113 and the opposing surface. As a result, the cover ring 113 is centered and installed with respect to the main body portion 111, which is the member to be installed.
 ステップS201において、位置合わせ治具200をプラズマ処理チャンバ10に搬送する。 In step S201, the alignment jig 200 is transported to the plasma processing chamber 10.
 図15は、ステップS201において、位置合わせ治具200をプラズマ処理チャンバ10内に搬送した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、ゲートバルブを開き、搬送装置を制御して位置合わせ治具200を保持した搬送アーム500を搬送口からプラズマ処理チャンバ10に搬送し、本体部111の中央領域111aの上に位置合わせ治具200を配置する。 FIG. 15 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state in which the alignment jig 200 is transported into the plasma processing chamber 10 in step S201. The control unit 2 opens the gate valve, controls the transport device, transports the transport arm 500 holding the alignment jig 200 from the transport port to the plasma processing chamber 10, and positions it above the central region 111a of the main body 111. Place the alignment jig 200.
 ステップS202において、位置合わせ治具200を搬送アーム500からリフトピン15で受け取り、静電チャック1111の基板支持面に設置する。 In step S202, the alignment jig 200 is received from the transfer arm 500 by the lift pins 15 and installed on the substrate support surface of the electrostatic chuck 1111.
 図16は、ステップS202において、位置合わせ治具200をリフトピン15で受け取った状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン15を上昇させる。これにより、リフトピン15の上端が位置合わせ治具200の下面と当接して、リフトピン15によって搬送アーム500から位置合わせ治具200が持ち上げられ、リフトピン15で位置合わせ治具200が支持される。そして、制御部2は、搬送装置を制御して搬送アーム500を搬送口から退避させ、ゲートバルブを閉じる。 FIG. 16 is an example of a partially enlarged sectional view of the substrate support portion 11 in a state in which the alignment jig 200 is received by the lift pins 15 in step S202. The control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 15. As a result, the upper end of the lift pin 15 comes into contact with the lower surface of the alignment jig 200, the alignment jig 200 is lifted from the transport arm 500 by the lift pin 15, and the alignment jig 200 is supported by the lift pin 15. Then, the control unit 2 controls the transfer device to retreat the transfer arm 500 from the transfer port, and closes the gate valve.
 図17は、ステップS202において、位置合わせ治具200を静電チャック1111に設置した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン15を下降させる。これにより、リフトピン15に支持された位置合わせ治具200が基板支持面に設置される。 FIG. 17 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state where the alignment jig 200 is installed on the electrostatic chuck 1111 in step S202. The control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 15. As a result, the alignment jig 200 supported by the lift pins 15 is installed on the substrate support surface.
 また、制御部2は、静電チャック電源(図示せず)を制御して、静電電極1111bに電圧を印加することにより、位置合わせ治具200を本体部111に固定する。なお、位置合わせ治具200を本体部111に固定する固定方法は、これに限られるものではなく、他の固定方法で固定してもよい。例えば、位置合わせ治具200の裏面と中央領域111aとの間の間隙をプラズマ処理空間10sよりも高真空にして、位置合わせ治具200の上面側と下面側の圧力差によって位置合わせ治具200を本体部111に固定する構成であってもよい。この場合、ベースプレート210は、セラミックや樹脂等の材料で形成されていてもよい。また、位置合わせ治具200の自重によって本体部111に固定する構成であってもよい。 Furthermore, the control unit 2 fixes the alignment jig 200 to the main body 111 by controlling an electrostatic chuck power source (not shown) and applying a voltage to the electrostatic electrode 1111b. Note that the method of fixing the positioning jig 200 to the main body portion 111 is not limited to this, and other fixing methods may be used. For example, by making the gap between the back surface of the alignment jig 200 and the central region 111a a higher vacuum than the plasma processing space 10s, and applying pressure difference between the upper surface side and the lower surface side of the alignment jig 200, the alignment jig 200 may be fixed to the main body portion 111. In this case, the base plate 210 may be made of a material such as ceramic or resin. Alternatively, the positioning jig 200 may be fixed to the main body portion 111 by its own weight.
 ステップS203において、カバーリング113をプラズマ処理チャンバ10内に搬送する。 In step S203, the cover ring 113 is transported into the plasma processing chamber 10.
 図18は、ステップS203において、カバーリング113をプラズマ処理チャンバ10内に搬送した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、ゲートバルブを開き、搬送装置を制御してカバーリング113を保持した搬送アーム500を搬送口からプラズマ処理チャンバ10に搬送し、本体部111の環状領域111b(カバーリング支持面111b2)の上にカバーリング113を配置する。 FIG. 18 is an example of a partially enlarged sectional view of the substrate support part 11 in a state where the cover ring 113 is transported into the plasma processing chamber 10 in step S203. The control section 2 opens the gate valve and controls the transfer device to transfer the transfer arm 500 holding the cover ring 113 from the transfer port to the plasma processing chamber 10, and transfers the transfer arm 500 holding the cover ring 113 from the transfer port to the annular region 111b of the main body section 111 (covering support surface 111b2). ) A covering ring 113 is placed on top of the cover ring 113.
 ステップS204において、カバーリング113を搬送アーム500からリフトピン16で受け取り、静電チャック1111のリング支持面に設置する。 In step S204, the cover ring 113 is received from the transport arm 500 by the lift pin 16 and placed on the ring support surface of the electrostatic chuck 1111.
 図19は、ステップS204において、カバーリング113をリフトピン16で受け取った状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン16を上昇させる。ここで、リフトピン16は、上側の小径部161と、下側の大径部162と、を有する。小径部161がカバーリング113の貫通孔113dを挿通し、リフトピン16の大径部162の上端がカバーリング113の下面と当接する。リフトピン16によって搬送アーム500からカバーリング113が持ち上げられ、リフトピン16でカバーリング113が支持される。そして、制御部2は、搬送装置を制御して搬送アーム500を搬送口から退避させ、ゲートバルブを閉じる。 FIG. 19 is an example of a partially enlarged sectional view of the substrate support portion 11 in a state in which the cover ring 113 is received by the lift pins 16 in step S204. The control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 16. Here, the lift pin 16 has an upper small diameter portion 161 and a lower large diameter portion 162. The small diameter portion 161 is inserted through the through hole 113d of the cover ring 113, and the upper end of the large diameter portion 162 of the lift pin 16 comes into contact with the lower surface of the cover ring 113. The cover ring 113 is lifted from the transport arm 500 by the lift pin 16, and the cover ring 113 is supported by the lift pin 16. Then, the control unit 2 controls the transfer device to retreat the transfer arm 500 from the transfer port, and closes the gate valve.
 図20は、ステップS204において、リフトピン16の下降中の状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン16を下降させる。ここで、カバーリング113が下降することにより、底面112aが突出部222の上面と接触し、カバーリング113の自重によって突出部222が変形する。そして、突出部222がさらに変形することで、突出部222の下面が基板支持面とカバーリング対向面111c2とのエッジに当接する。これにより、突出部222は、傾斜を形成する。この突出部222の傾斜によって、下降するカバーリング113の水平方向の位置がガイドされる。例えば、リフトピン16で支持されたカバーリング113の中心位置が本体部111の中心位置に対してズレて配置されていた場合、突出部222の傾斜によってカバーリング113がガイドされ、カバーリング113の水平方向の位置が調整される。これにより、カバーリング113が基板支持面に乗り上げてリング支持面に設置できなくなることを防止する。 FIG. 20 is an example of a partially enlarged cross-sectional view of the substrate support portion 11 in a state where the lift pins 16 are being lowered in step S204. The control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 16. Here, as the cover ring 113 descends, the bottom surface 112a comes into contact with the upper surface of the protrusion 222, and the protrusion 222 is deformed by the weight of the cover ring 113. Then, as the protrusion 222 further deforms, the lower surface of the protrusion 222 comes into contact with the edge of the substrate support surface and the covering surface 111c2. As a result, the protrusion 222 forms an inclination. The horizontal position of the descending cover ring 113 is guided by the inclination of the protrusion 222. For example, if the center position of the cover ring 113 supported by the lift pin 16 is shifted from the center position of the main body part 111, the cover ring 113 is guided by the inclination of the protrusion part 222, and the cover ring 113 is horizontal. The position of the direction is adjusted. This prevents the cover ring 113 from riding on the substrate support surface and becoming unable to be installed on the ring support surface.
 図21は、ステップS204において、カバーリング113を静電チャック1111に設置した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、昇降機構(図示せず)を制御して、リフトピン16を更に下降させる。これにより、カバーリング113は、カバーリング支持面111b2と当接して支持される。また、突出部222の長さは、カバーリング113の内周面113cとカバーリング対向面111c2との隙間に届く長さに形成されている。これにより、突出部222は、カバーリング対向面111c2と内周面113cとの隙間に挟まれて配置される。ここで、センタリングシート220は周方向に複数設けられていることにより、カバーリング対向面111c2と内周面113cとの隙間の間隔は、周方向の複数の位置で突出部222の厚さで管理される。これにより、本体部111に対してカバーリング113がセンタリングされて設置される。 FIG. 21 is an example of a partially enlarged cross-sectional view of the substrate support portion 11 in a state where the cover ring 113 is installed on the electrostatic chuck 1111 in step S204. The control unit 2 controls a lifting mechanism (not shown) to further lower the lift pin 16. Thereby, the cover ring 113 is supported in contact with the cover ring support surface 111b2. Further, the length of the protrusion 222 is set to reach the gap between the inner circumferential surface 113c of the cover ring 113 and the cover ring facing surface 111c2. As a result, the protruding portion 222 is placed between the covering ring facing surface 111c2 and the inner circumferential surface 113c. Here, since a plurality of centering sheets 220 are provided in the circumferential direction, the gap between the covering facing surface 111c2 and the inner circumferential surface 113c is managed by the thickness of the protruding portion 222 at a plurality of positions in the circumferential direction. be done. Thereby, the cover ring 113 is centered and installed with respect to the main body part 111.
 また突出部222の長さは、カバーリング支持面111b2に届かない長さに形成されている。これにより、カバーリング113の底面112aとカバーリング支持面111b2との間に突出部222が挟まれることを防止する。 Further, the length of the protruding portion 222 is formed to a length that does not reach the covering ring support surface 111b2. This prevents the protrusion 222 from being pinched between the bottom surface 112a of the cover ring 113 and the cover ring support surface 111b2.
 なお、カバーリング113は、自重によって本体部111に固定される。 Note that the cover ring 113 is fixed to the main body part 111 by its own weight.
 ステップS205において、位置合わせ治具200をリフトピン15で支持する。 In step S205, the alignment jig 200 is supported by the lift pins 15.
 まず、ステップS202において、位置合わせ治具200を本体部111に固定していた場合、位置合わせ治具200の固定を解除する。 First, in step S202, if the alignment jig 200 is fixed to the main body part 111, the alignment jig 200 is released from fixation.
 次に、制御部2は、昇降機構(図示せず)を制御して、リフトピン15を上昇させる。これにより、リフトピン15の上端が位置合わせ治具200の下面と当接して、リフトピン15によって基板支持面から位置合わせ治具200が持ち上げられ、位置合わせ治具200が基板支持面から離間する。また、カバーリング対向面111c2と内周面113cとの隙間に配置されていた突出部222が引き抜かれる。この際、カバーリング113は自重によって本体部111に固定されており、突出部222をカバーリング対向面111c2と内周面113cとの間から引き抜く際に、カバーリング113の位置がずれることを防止する。そして、センタリングシート220の復元力によって、突出部222は略水平に復帰する。 Next, the control unit 2 controls a lifting mechanism (not shown) to raise the lift pin 15. As a result, the upper ends of the lift pins 15 come into contact with the lower surface of the alignment jig 200, the alignment jig 200 is lifted from the substrate support surface by the lift pins 15, and the alignment jig 200 is separated from the substrate support surface. Furthermore, the protrusion 222 that was disposed in the gap between the covering surface 111c2 and the inner circumferential surface 113c is pulled out. At this time, the cover ring 113 is fixed to the main body part 111 by its own weight, and the position of the cover ring 113 is prevented from shifting when the protrusion part 222 is pulled out from between the cover ring facing surface 111c2 and the inner peripheral surface 113c. do. Then, due to the restoring force of the centering sheet 220, the protrusion 222 returns to a substantially horizontal position.
 ステップS206において、位置合わせ治具200をプラズマ処理チャンバ10から搬出する。 In step S206, the alignment jig 200 is carried out from the plasma processing chamber 10.
 図22は、ステップS206において、位置合わせ治具200をプラズマ処理チャンバ10内に搬送した状態における基板支持部11の部分拡大断面図の一例である。制御部2は、ゲートバルブを開き、搬送装置を制御して搬送アーム500を搬送口からプラズマ処理チャンバ10に搬送し、本体部111と位置合わせ治具200との間に配置する。次に、制御部2は、昇降機構(図示せず)を制御して、リフトピン15を下降させる。これにより、リフトピン15に支持された位置合わせ治具200が搬送アーム500に保持される。そして、制御部2は、搬送装置を制御して位置合わせ治具200を保持した搬送アーム500を搬送口から退避させ、ゲートバルブを閉じる。 FIG. 22 is an example of a partially enlarged cross-sectional view of the substrate support section 11 in a state in which the alignment jig 200 is transported into the plasma processing chamber 10 in step S206. The control section 2 opens the gate valve, controls the transfer device, transfers the transfer arm 500 from the transfer port to the plasma processing chamber 10, and places it between the main body section 111 and the alignment jig 200. Next, the control unit 2 controls a lifting mechanism (not shown) to lower the lift pin 15. As a result, the positioning jig 200 supported by the lift pins 15 is held by the transport arm 500. Then, the control unit 2 controls the transport device to retreat the transport arm 500 holding the positioning jig 200 from the transport port, and closes the gate valve.
 図23は、ステップS206の処理が終了した状態における基板支持部11の部分拡大断面図の一例である。以上のように、カバーリング113は、プラズマ処理チャンバ10の天部を開放することなく、搬送口を介して自動で交換することができる。また、カバーリング113が基板支持面に乗り上げることなく、リング支持面に設置される。また、カバーリング対向面111c2と内周面113cとの隙間の間隔は、周方向の複数の位置で突出部222の厚さで管理されており、本体部111に対してカバーリング113がセンタリングされて設置される。また、カバーリング113がセンタリングは、センタリングシート220の厚さで管理することができるので、搬送装置の搬送アーム500によるカバーリング113の搬送精度よりも高い精度でセンタリングすることができる。 FIG. 23 is an example of a partially enlarged sectional view of the substrate support section 11 in a state where the process of step S206 has been completed. As described above, the cover ring 113 can be automatically replaced via the transfer port without opening the top of the plasma processing chamber 10. Further, the cover ring 113 is installed on the ring support surface without riding on the substrate support surface. Furthermore, the gap between the covering ring facing surface 111c2 and the inner circumferential surface 113c is controlled by the thickness of the protruding portion 222 at a plurality of positions in the circumferential direction, so that the covering ring 113 is not centered with respect to the main body portion 111. It will be installed. Furthermore, since the centering of the covering ring 113 can be controlled by the thickness of the centering sheet 220, it is possible to center the covering ring 113 with higher precision than the transport accuracy of the covering ring 113 by the transport arm 500 of the transport device.
 以上のように、位置合わせ治具200及び位置合わせ治具200を用いたリング部材の設置処理について説明したが、これに限られるものではない。 Although the alignment jig 200 and the ring member installation process using the alignment jig 200 have been described above, the present invention is not limited thereto.
 位置合わせして設置されるリング部材は、エッジリング112及びカバーリング113を例に説明したが、これに限られるものではない。プラズマ処理チャンバ10の他のリング部材の設置する場合に適用してもよい。 Although the edge ring 112 and the cover ring 113 have been described as examples of ring members installed in alignment, the ring members are not limited thereto. The present invention may also be applied to the installation of other ring members in the plasma processing chamber 10.
 また、センタリングシート220は、ベースプレート210の外周にそって、複数設けられているものとして説明したがこれに限られるものではない。センタリングシート220はベースプレート210の全周にわたってリング状に形成されていてもよい。 Furthermore, although it has been described that a plurality of centering sheets 220 are provided along the outer periphery of the base plate 210, the centering sheet 220 is not limited to this. The centering sheet 220 may be formed in a ring shape around the entire circumference of the base plate 210.
 静電電極1111bは、単極型の静電チャックであってもよいし、双極型の静電チャックであってもよい。単極の場合にはプラズマと静電電極1111bとの間の電位差により位置合わせ治具200を本体部111に吸着保持する。双極の場合には、静電電極1111bは、内周電極及び外周電極(図示せず)に分割されており、内周電極と外周電極との間の電位差により位置合わせ治具200を本体部111に吸着保持する。同様に、静電電極1111cは、単極型の静電チャックであってもよいし、双極型の静電チャックであってもよい。 The electrostatic electrode 1111b may be a monopolar electrostatic chuck or a bipolar electrostatic chuck. In the case of a single pole, the alignment jig 200 is attracted and held on the main body 111 by the potential difference between the plasma and the electrostatic electrode 1111b. In the case of bipolar, the electrostatic electrode 1111b is divided into an inner circumferential electrode and an outer circumferential electrode (not shown), and the positioning jig 200 is moved to the main body part 111 by the potential difference between the inner circumferential electrode and the outer circumferential electrode. Hold it by adsorption. Similarly, the electrostatic electrode 1111c may be a monopolar electrostatic chuck or a bipolar electrostatic chuck.
 なお、突出部222の長さは、リング部材(エッジリング112、カバーリング113)をリング支持面(エッジリング支持面111b1、カバーリング支持面111b2)に設置して突出部222が撓んだ際に、リング部材のリング支持面に届かない(接触しない)長さに形成されているものとして説明したが、これに限られるものではない。 The length of the protrusion 222 is determined by the length of the protrusion 222 when the ring member (edge ring 112, cover ring 113) is installed on the ring support surface (edge ring support surface 111b1, cover ring support surface 111b2) and the protrusion 222 is bent. In the above description, it is assumed that the length does not reach (do not come into contact with) the ring support surface of the ring member, but the length is not limited to this.
 図23は、基板支持部11の部分拡大断面図の他の一例である。エッジリング112は、底面112aの内周側に円環状のザグリ(切り欠き)112dが形成されていてもよい。これにより、突出部222がエッジリング支持面111b1に届く長さに形成されていた場合であっても、エッジリング112をエッジリング支持面111b1に載置した際、突出部222の先端部分をザグリ112dとエッジリング支持面111b1との間の空間に配置することができる。なお、ザグリ112dの側面12d1は、突出部222の先端が届かない(接触しない)位置に形成されている。これにより、エッジリング112の底面112aとエッジリング支持面111b1との間に突出部222が挟まれることを防止する。 FIG. 23 is another example of a partially enlarged cross-sectional view of the substrate support part 11. The edge ring 112 may have an annular counterbore (notch) 112d formed on the inner peripheral side of the bottom surface 112a. As a result, even if the protrusion 222 is formed in a length that reaches the edge ring support surface 111b1, when the edge ring 112 is placed on the edge ring support surface 111b1, the tip of the protrusion 222 is counter-sunk. 112d and the edge ring support surface 111b1. Note that the side surface 12d1 of the counterbore 112d is formed at a position where the tip of the protrusion 222 cannot reach (do not come into contact with). This prevents the protrusion 222 from being pinched between the bottom surface 112a of the edge ring 112 and the edge ring support surface 111b1.
 同様に、カバーリング113は、底面113aの内周側に円環状のザグリ(切り欠き)が形成されていてもよい。これにより、突出部222がカバーリング支持面111b2に届く長さに形成されていた場合であっても、カバーリング113をカバーリング支持面111b2に載置した際、突出部222の先端部分をザグリとカバーリング支持面111b2との間の空間に配置することができる。なお、ザグリの側面は、突出部222の先端が届かない(接触しない)位置に形成されている。これにより、カバーリング113の底面113aとカバーリング支持面111b2との間に突出部222が挟まれることを防止する。 Similarly, the cover ring 113 may have an annular counterbore (notch) formed on the inner peripheral side of the bottom surface 113a. As a result, even if the protrusion 222 is formed in a length that reaches the cover ring support surface 111b2, when the cover ring 113 is placed on the cover ring support surface 111b2, the tip of the protrusion 222 is counter-sunk. and the covering support surface 111b2. Note that the side surface of the counterbore is formed at a position where the tip of the protruding portion 222 cannot reach (do not come into contact with). This prevents the protrusion 222 from being pinched between the bottom surface 113a of the cover ring 113 and the cover ring support surface 111b2.
 [基板処理システム]
 図25を参照し、実施形態に係る基板処理システムPSについて説明する。図25は、実施形態に係る基板処理システムPSの一例を示す図である。図25に示されるように、基板処理システムPSは、プラズマ処理等の各種処理を基板Wに施すことが可能なシステムである。基板Wは、例えば半導体ウエハであってよい。
[Substrate processing system]
With reference to FIG. 25, the substrate processing system PS according to the embodiment will be described. FIG. 25 is a diagram showing an example of the substrate processing system PS according to the embodiment. As shown in FIG. 25, the substrate processing system PS is a system that can perform various treatments such as plasma processing on the substrate W. The substrate W may be, for example, a semiconductor wafer.
 基板処理システムPSは、真空搬送モジュールTMと、複数の処理モジュールPM1~PM7と、リング収納モジュールRSMと、複数のロードロックモジュールLL1~LL3と、大気搬送モジュールLMと、ロードポートLP1~LP4と、アライナANと、制御部CUとを有する。真空搬送モジュールTMは、トランスファモジュールとも称される。処理モジュールPM1~PM7は、プロセスモジュールとも称される。リング収納モジュールRSMは、リングストッカモジュールとも称される。大気搬送モジュールLMは、ローダモジュールとも称される。 The substrate processing system PS includes a vacuum transfer module TM, a plurality of processing modules PM1 to PM7, a ring storage module RSM, a plurality of load lock modules LL1 to LL3, an atmospheric transfer module LM, and load ports LP1 to LP4. It has an aligner AN and a control unit CU. The vacuum transfer module TM is also referred to as a transfer module. The processing modules PM1 to PM7 are also referred to as process modules. The ring storage module RSM is also referred to as a ring stocker module. The atmospheric transport module LM is also referred to as a loader module.
 真空搬送モジュールTMは、平面視において四角形状を有する。真空搬送モジュールTMには、処理モジュールPM1~PM7と、ロードロックモジュールLL1~LL3と、リング収納モジュールRSMとが接続される。真空搬送モジュールTMは、真空搬送室を有する。真空搬送室の内部は、真空雰囲気に維持される。真空搬送室(真空搬送モジュールTMの内部)には、搬送ロボットTR1が設けられる。 The vacuum transfer module TM has a rectangular shape in plan view. Processing modules PM1 to PM7, load lock modules LL1 to LL3, and ring storage module RSM are connected to vacuum transfer module TM. The vacuum transfer module TM has a vacuum transfer chamber. The inside of the vacuum transfer chamber is maintained in a vacuum atmosphere. A transfer robot TR1 is provided in the vacuum transfer chamber (inside the vacuum transfer module TM).
 搬送ロボットTR1は、旋回、伸縮、昇降自在に構成される。搬送ロボットTR1は、上フォークFK1と、下フォークFK2とを有する。搬送ロボットTR1の上フォークFK1および下フォークFK2は、基板W、環状部材(エッジリング112、カバーリング113)及び位置合わせ治具100の各々を保持可能に構成される。搬送ロボットTR1は、処理モジュールPM1~PM7と、ロードロックモジュールLL1~LL3と、リング収納モジュールRSMとの間で、基板W、環状部材(エッジリング112、カバーリング113)及び位置合わせ治具100を保持して搬送する。 The transport robot TR1 is configured to be able to rotate, extend and contract, and move up and down. The transport robot TR1 has an upper fork FK1 and a lower fork FK2. The upper fork FK1 and the lower fork FK2 of the transfer robot TR1 are configured to be able to hold each of the substrate W, the annular member (edge ring 112, cover ring 113), and positioning jig 100. The transfer robot TR1 transfers the substrate W, the annular member (edge ring 112, cover ring 113), and positioning jig 100 between the processing modules PM1 to PM7, the load lock modules LL1 to LL3, and the ring storage module RSM. Hold and transport.
 上フォークFK1には、位置検出センサS1が設けられる。下フォークFK2には、位置検出センサS2が設けられる。位置検出センサS1、S2は、処理モジュールPM1~PM7に載置される基板W、環状部材(エッジリング112、カバーリング113)及び位置合わせ治具100の位置を検出する。位置検出センサS1、S2は、例えば光学式の変位センサ、カメラ等であってもよい。位置検出センサS1、S2は、例えばベースプレート210のエッジを複数点で検出し、ベースプレート210の中心位置を算出する。なお、センタリングシート220は透光性を有しており、位置検出センサS1、S2は、センタリングシート220を透過して、ベースプレート210のエッジを検出することができる。 The upper fork FK1 is provided with a position detection sensor S1. The lower fork FK2 is provided with a position detection sensor S2. The position detection sensors S1 and S2 detect the positions of the substrate W, the annular member (edge ring 112, cover ring 113), and alignment jig 100 placed on the processing modules PM1 to PM7. The position detection sensors S1 and S2 may be, for example, optical displacement sensors, cameras, or the like. The position detection sensors S1 and S2 detect the edges of the base plate 210 at a plurality of points, for example, and calculate the center position of the base plate 210. Note that the centering sheet 220 is translucent, and the position detection sensors S1 and S2 can transmit the centering sheet 220 and detect the edge of the base plate 210.
 真空搬送モジュールTMには、位置検出センサS11、S12が設けられてもよい。位置検出センサS11、S12は、真空搬送モジュールTMから処理モジュールPM1へ搬送される基板W、環状部材(エッジリング112、カバーリング113)及び位置合わせ治具100の搬送経路上に設けられる。位置検出センサS11、S12は、真空搬送モジュールTMから処理モジュールPM1に基板W、環状部材(エッジリング112、カバーリング113)及び位置合わせ治具100のいずれかを搬入する際、および処理モジュールPM1から真空搬送モジュールTMに基板W、環状部材(エッジリング112、カバーリング113)及び位置合わせ治具100のいずれかを搬出する際に用いられる。位置検出センサS11、S12は、例えば真空搬送モジュールTMと処理モジュールPM1とを仕切るゲートバルブ(不図示)の近傍に設けられる。位置検出センサS11、S12は、例えば互いの距離が基板Wの外径よりも小さく、かつエッジリング112の内径よりも小さくなるように配置される。位置検出センサS11、S12は、光学式のセンサであって、例えばベースプレート210のエッジを複数点で検出し、ベースプレート210の中心位置を算出する。なお、センタリングシート220は透光性を有しており、位置検出センサS11、S12は、センタリングシート220を透過して、ベースプレート210のエッジを検出することができる。これにより、位置検出センサS11、S12で検出したベースプレート210の中心位置が基板Wを保持するフォークFK1(又は、FK2)の基準位置からずれていた場合、制御部CUは、位置合わせ治具100の中心が基板支持部11の中心と一致するように搬送ロボットTR1を制御する。真空搬送モジュールTMには、位置検出センサS11、S12と同様に、位置検出センサS21、S22、S31、S32、S41、S42、S51、S52、S61、S62、S71、S72が設けられてもよい。 The vacuum transfer module TM may be provided with position detection sensors S11 and S12. The position detection sensors S11 and S12 are provided on the transport path of the substrate W, the annular member (edge ring 112, cover ring 113), and positioning jig 100 that are transported from the vacuum transport module TM to the processing module PM1. The position detection sensors S11 and S12 are used when transporting either the substrate W, the annular member (edge ring 112, cover ring 113), or positioning jig 100 from the vacuum transfer module TM to the processing module PM1, and from the processing module PM1. It is used when transporting either the substrate W, the annular member (edge ring 112, cover ring 113), or positioning jig 100 to the vacuum transport module TM. The position detection sensors S11 and S12 are provided, for example, near a gate valve (not shown) that partitions the vacuum transfer module TM and the processing module PM1. The position detection sensors S11 and S12 are arranged such that, for example, the distance between them is smaller than the outer diameter of the substrate W and smaller than the inner diameter of the edge ring 112. The position detection sensors S11 and S12 are optical sensors, and detect the edges of the base plate 210 at a plurality of points, for example, and calculate the center position of the base plate 210. Note that the centering sheet 220 is translucent, and the position detection sensors S11 and S12 can transmit through the centering sheet 220 and detect the edge of the base plate 210. As a result, if the center position of the base plate 210 detected by the position detection sensors S11 and S12 deviates from the reference position of the fork FK1 (or FK2) that holds the substrate W, the control unit CU controls the alignment jig 100. The transport robot TR1 is controlled so that its center coincides with the center of the substrate support section 11. The vacuum transfer module TM may be provided with position detection sensors S21, S22, S31, S32, S41, S42, S51, S52, S61, S62, S71, and S72 similarly to the position detection sensors S11 and S12.
 処理モジュールPM1~PM7は、真空搬送モジュールTMに接続される。処理モジュールPM1~PM7は、真空処理室を有する。真空処理室の内部には、基板支持部11(図1参照)が設けられる。処理モジュールPM1~PM7は、基板支持部11の上に基板Wが載置された後、内部を減圧して処理ガスを導入し、RF電力を印加してプラズマを生成し、プラズマによって基板Wにプラズマ処理を施す。真空搬送モジュールTMと処理モジュールPM1~PM7とは、開閉自在なゲートバルブ(不図示)で仕切られる。 The processing modules PM1 to PM7 are connected to the vacuum transfer module TM. Processing modules PM1 to PM7 have vacuum processing chambers. A substrate support section 11 (see FIG. 1) is provided inside the vacuum processing chamber. After the substrate W is placed on the substrate support 11, the processing modules PM1 to PM7 reduce the pressure inside, introduce a processing gas, apply RF power to generate plasma, and apply the plasma to the substrate W. Perform plasma treatment. The vacuum transfer module TM and the processing modules PM1 to PM7 are separated by a gate valve (not shown) that can be opened and closed.
 リング収納モジュールRSMは、基板Wよりも大径の環状部材(エッジリング112、カバーリング113)を収納する装置の一例であり、真空搬送モジュールTMに接続される。リング収納モジュールRSMは、例えば、リングアセンブリ114を構成するエッジリング112およびカバーリング113を収納する。リング収納モジュールRSMは、エッジリング112のみを収納するように構成されてもよい。リング収納モジュールRSMは、カバーリング113のみを収納するように構成されてもよい。エッジリング112およびカバーリング113は、搬送ロボットTR1により、処理モジュールPM1~PM7とリング収納モジュールRSMとの間で搬送される。真空搬送モジュールTMとリング収納モジュールRSMとは、開閉自在なゲートバルブ(図示せず)で仕切られる。 The ring storage module RSM is an example of a device that stores annular members (edge ring 112, cover ring 113) having a larger diameter than the substrate W, and is connected to the vacuum transfer module TM. The ring storage module RSM stores, for example, an edge ring 112 and a cover ring 113 that constitute a ring assembly 114. The ring storage module RSM may be configured to store only the edge ring 112. The ring storage module RSM may be configured to store only the cover ring 113. The edge ring 112 and the cover ring 113 are transported between the processing modules PM1 to PM7 and the ring storage module RSM by the transport robot TR1. The vacuum transfer module TM and the ring storage module RSM are separated by a gate valve (not shown) that can be opened and closed.
 また、リング収納モジュールRSMは、基板Wよりも大径の位置合わせ治具200を収容する。位置合わせ治具200は、搬送ロボットTR1により、処理モジュールPM1~PM7とリング収納モジュールRSMとの間で搬送される。このように、基板Wよりも大径となる位置合わせ治具200をリング収納モジュールRSMに収容することができる。 Furthermore, the ring storage module RSM accommodates an alignment jig 200 having a larger diameter than the substrate W. The positioning jig 200 is transported between the processing modules PM1 to PM7 and the ring storage module RSM by the transport robot TR1. In this way, the alignment jig 200 having a larger diameter than the substrate W can be accommodated in the ring storage module RSM.
 ロードロックモジュールLL1~LL3は、真空搬送モジュールTMと大気搬送モジュールLMとの間に設けられる。ロードロックモジュールLL1~LL3は、真空搬送モジュールTMおよび大気搬送モジュールLMに接続される。ロードロックモジュールLL1~LL3は、真空と大気圧との間で切り換え可能な内圧可変室を内部に有する。内圧可変室には、基板Wを載置可能なステージ(不図示)が設けられる。ロードロックモジュールLL1~LL3は、大気搬送モジュールLMから真空搬送モジュールTMへ基板Wを搬送する場合、内圧可変室を大気圧に維持して大気搬送モジュールLMから基板Wを受け取り、その後に内圧可変室を減圧して真空搬送モジュールTMへ基板Wを渡す。ロードロックモジュールLL1~LL3は、真空搬送モジュールTMから大気搬送モジュールLMへ基板Wを搬送する場合、内圧可変室を真空に維持して真空搬送モジュールTMから基板Wを受け取り、その後に内圧可変室を大気圧まで昇圧して大気搬送モジュールLMへ基板Wを渡す。ロードロックモジュールLL1~LL3と真空搬送モジュールTMとは、開閉自在なゲートバルブ(不図示)で仕切られる。ロードロックモジュールLL1~LL3と大気搬送モジュールLMとは、開閉自在なゲートバルブ(不図示)で仕切られる。 The load lock modules LL1 to LL3 are provided between the vacuum transfer module TM and the atmospheric transfer module LM. The load lock modules LL1 to LL3 are connected to the vacuum transfer module TM and the atmospheric transfer module LM. Each of the load lock modules LL1 to LL3 has a variable internal pressure chamber that can be switched between vacuum and atmospheric pressure. The variable internal pressure chamber is provided with a stage (not shown) on which the substrate W can be placed. When transporting the substrate W from the atmospheric transport module LM to the vacuum transport module TM, the load lock modules LL1 to LL3 maintain the internal pressure variable chamber at atmospheric pressure, receive the substrate W from the atmospheric transport module LM, and then receive the substrate W from the internal pressure variable chamber. is depressurized and the substrate W is transferred to the vacuum transfer module TM. When transporting the substrate W from the vacuum transport module TM to the atmospheric transport module LM, the load lock modules LL1 to LL3 maintain the internal pressure variable chamber in a vacuum, receive the substrate W from the vacuum transport module TM, and then transfer the internal pressure variable chamber to the atmospheric transport module LM. The pressure is increased to atmospheric pressure and the substrate W is transferred to the atmospheric transport module LM. The load lock modules LL1 to LL3 and the vacuum transfer module TM are separated by a gate valve (not shown) that can be opened and closed. The load lock modules LL1 to LL3 and the atmospheric transport module LM are separated by a gate valve (not shown) that can be opened and closed.
 大気搬送モジュールLMは、真空搬送モジュールTMに対向して設けられる。大気搬送モジュールLMは、例えばEFEM(Equipment Front End Module)であってよい。大気搬送モジュールLMは、平面視において四角形状を有する。大気搬送モジュールLMは、大気搬送室を有する。大気搬送室の内部は、大気圧雰囲気に保持される。大気搬送室の内部には、搬送ロボットTR2が設けられる。搬送ロボットTR2は、旋回、伸縮、昇降自在に構成される。搬送ロボットTR2も、搬送ロボットTR1と同様に、基板Wを保持して搬送可能な2つのフォーク(上フォーク、下フォーク)を有する。搬送ロボットTR2は、ロードポートLP1~LP4と、アライナANと、ロードロックモジュールLL1~LL3との間で、基板Wを保持して搬送する。大気搬送モジュールLMは、FFU(Fan Filter Unit)を有してもよい。 The atmospheric transfer module LM is provided opposite the vacuum transfer module TM. The atmospheric transport module LM may be, for example, an EFEM (Equipment Front End Module). The atmospheric transport module LM has a rectangular shape in plan view. The atmospheric transport module LM has an atmospheric transport chamber. The interior of the atmospheric transfer chamber is maintained at atmospheric pressure. A transport robot TR2 is provided inside the atmospheric transport chamber. The transport robot TR2 is configured to be able to rotate, extend and contract, and move up and down. Like the transport robot TR1, the transport robot TR2 also has two forks (an upper fork and a lower fork) capable of holding and transporting the substrate W. The transport robot TR2 holds and transports the substrate W between the load ports LP1 to LP4, the aligner AN, and the load lock modules LL1 to LL3. The atmospheric transport module LM may include an FFU (Fan Filter Unit).
 ロードポートLP1~LP4は、大気搬送モジュールLMに接続される。ロードポートLP1~LP4には、複数の基板収納容器CS1が載置される。基板収納容器CS1は、例えば複数(例えば25枚)の基板Wを収納するFOUP(Front-Opening Unified Pod)であってよい。 The load ports LP1 to LP4 are connected to the atmospheric transport module LM. A plurality of substrate storage containers CS1 are placed in the load ports LP1 to LP4. The substrate storage container CS1 may be, for example, a FOUP (Front-Opening Unified Pod) that stores a plurality of (for example, 25) substrates W.
 アライナANは、大気搬送モジュールLMに接続される。アライナANは、基板Wの位置の調整を行うように構成される。アライナANは、大気搬送室の内部に設けられてもよい。 The aligner AN is connected to the atmospheric transport module LM. The aligner AN is configured to adjust the position of the substrate W. The aligner AN may be provided inside the atmospheric transfer chamber.
 制御部CUは、基板処理システムPSの各部を制御する。制御部CUは、例えば真空搬送モジュールTMに設けられる搬送ロボットTR1の動作、大気搬送モジュールLMに設けられる搬送ロボットTR2の動作、ゲートバルブの開閉を制御する。制御部CUは、例えばコンピュータであってよい。制御部CUは、プロセッサであるCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を有する。CPUは、ROMまたは補助記憶装置に格納されたプログラムに基づいて動作し、基板処理システムPSの各部を制御する。 The control unit CU controls each part of the substrate processing system PS. The control unit CU controls, for example, the operation of the transfer robot TR1 provided in the vacuum transfer module TM, the operation of the transfer robot TR2 provided in the atmospheric transfer module LM, and the opening and closing of a gate valve. The control unit CU may be, for example, a computer. The control unit CU includes a CPU (Central Processing Unit) that is a processor, a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device, and the like. The CPU operates based on a program stored in the ROM or auxiliary storage device, and controls each part of the substrate processing system PS.
 以上に開示された実施形態は、例えば、以下の態様を含む。
(付記1)
 リング部材を被設置部材のリング支持面に設置する際に用いられる治具であって、
 ベースプレートと、
 前記ベースプレートに固定される固定部及び前記ベースプレートの側面から突出する突出部を有するシート部材と、を備える、
治具。
(付記2)
 前記ベースプレートは、前記シート部材を3つ以上備える、
付記1に記載の治具。
(付記3)
 前記突出部は、
 前記リング部材を前記リング支持面に設置した際、前記リング部材の位置合わせ対象面と前記位置合わせ対象面と対向する前記被設置部材の対向面との隙間に届き、かつ、前記リング支持面に届かない、長さを有する、
付記1または付記2に記載の治具。
(付記4)
 前記シート部材は、ポリイミドで形成される、
付記1乃至付記3のいずれか1項に記載の治具。
(付記5)
 前記ベースプレートは、シリコンで形成される、
付記1乃至付記4のいずれか1項に記載の治具。
(付記6)
 前記ベースプレートは、前記固定部が配置される溝部を有する、
付記1乃至付記5のいずれか1項に記載の治具。
(付記7)
 前記ベースプレートは、
 該ベースプレートを前記被設置部材の基板支持面に配置した際に前記基板支持面と当接して支持される第1面と、
 前記第1面と反対側の面である第2面と、を有し、
 前記溝部は、前記第2面に形成される、
付記6に記載の治具。
(付記8)
 前記固定部は、前記溝部に接着によって固定される、
付記6または付記7に記載の治具。
(付記9)
 ベースプレートと、前記ベースプレートに固定される固定部及び前記ベースプレートの側面から突出する突出部を有するシート部材と、を備える治具を、被設置部材の基板支持面に設置する工程と、
 前記突出部を変形させてリング部材の位置合わせ対象面と前記位置合わせ対象面と対向する被設置部材の対向面との隙間に前記シート部材を配置し、前記リング部材を前記被設置部材のリング支持面に設置する工程と、
 前記治具を前記基板支持面から離間させ、前記位置合わせ対象面と前記対向面との隙間から前記シート部材を引き抜く工程と、を有する、
位置合わせ方法。
(付記10)
 前記被設置部材は、基板支持部の本体部であって、
 前記治具を前記基板支持面に設置する工程は、
 前記基板支持面から昇降可能な第1リフトピンを上昇させる工程と、
 前記第1リフトピンで前記治具を支持する工程と、
 前記第1リフトピンを下降させて、前記治具を前記基板支持面に載置する工程と、を含み、
 前記リング部材を前記リング支持面に設置する工程は、
 前記リング支持面から昇降可能な第2リフトピンを上昇させる工程と、
 前記第2リフトピンで前記リング部材を支持する工程と、
 前記第2リフトピンを下降させて、前記リング部材を前記リング支持面に載置する工程と、を含み、
 前記治具を前記基板支持面から離間させる工程は、
 前記第1リフトピンを上昇させて、前記治具を前記基板支持面から離間させる工程を含む、
付記9に記載の位置合わせ方法。
(付記11)
 前記リング部材は、エッジリングである、
付記9または付記10に記載の位置合わせ方法。
(付記12)
 前記リング部材は、カバーリングである、
付記9または付記10に記載の位置合わせ方法。
(付記13)
 前記リング部材を前記リング支持面に設置する工程の後、前記治具を前記基板支持面から離間させる工程の前に、前記リング部材を固定する工程をさらに有する、
付記9乃至付記12のいずれか1項に記載の位置合わせ方法。
(付記14)
 前記リング部材を固定する工程は、
 前記リング部材を真空吸着する、
付記13に記載の位置合わせ方法。
(付記15)
 前記リング部材を固定する工程は、
 前記リング部材を静電吸着する、
付記13に記載の位置合わせ方法。
The embodiments disclosed above include, for example, the following aspects.
(Additional note 1)
A jig used when installing a ring member on a ring support surface of an installed member,
base plate and
a sheet member having a fixing portion fixed to the base plate and a protruding portion protruding from a side surface of the base plate;
jig.
(Additional note 2)
The base plate includes three or more of the sheet members,
The jig described in Appendix 1.
(Additional note 3)
The protruding portion is
When the ring member is installed on the ring support surface, the ring member reaches the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface, and is attached to the ring support surface. unreachable, has length,
The jig described in Appendix 1 or 2.
(Additional note 4)
The sheet member is made of polyimide.
The jig according to any one of Supplementary Notes 1 to 3.
(Appendix 5)
The base plate is made of silicon.
The jig according to any one of Supplementary Notes 1 to 4.
(Appendix 6)
The base plate has a groove in which the fixing part is arranged.
The jig according to any one of Supplementary Notes 1 to 5.
(Appendix 7)
The base plate is
a first surface that comes into contact with and is supported by the substrate support surface when the base plate is placed on the substrate support surface of the installed member;
a second surface that is an opposite surface to the first surface;
The groove portion is formed on the second surface.
The jig described in Appendix 6.
(Appendix 8)
The fixing part is fixed to the groove part by adhesive.
The jig described in Appendix 6 or Appendix 7.
(Appendix 9)
installing a jig including a base plate and a sheet member having a fixing part fixed to the base plate and a protruding part protruding from a side surface of the base plate on a substrate supporting surface of the installed member;
The sheet member is arranged in a gap between the positioning target surface of the ring member and the opposing surface of the installed member opposite to the positioning target surface by deforming the protruding part, a step of installing it on a supporting surface;
separating the jig from the substrate support surface and pulling out the sheet member from the gap between the alignment target surface and the opposing surface;
Alignment method.
(Appendix 10)
The installed member is a main body part of a substrate support part,
The step of installing the jig on the substrate support surface includes:
a step of raising a first lift pin that is movable up and down from the substrate support surface;
supporting the jig with the first lift pin;
lowering the first lift pin and placing the jig on the substrate support surface,
The step of installing the ring member on the ring support surface includes:
a step of raising a second lift pin that is movable up and down from the ring support surface;
supporting the ring member with the second lift pin;
lowering the second lift pin to place the ring member on the ring support surface,
The step of separating the jig from the substrate support surface includes:
a step of raising the first lift pin to separate the jig from the substrate support surface;
The alignment method described in Appendix 9.
(Appendix 11)
the ring member is an edge ring;
The positioning method described in Appendix 9 or Appendix 10.
(Appendix 12)
The ring member is a cover ring,
The positioning method described in Appendix 9 or Appendix 10.
(Appendix 13)
After the step of installing the ring member on the ring support surface and before the step of separating the jig from the substrate support surface, the method further includes a step of fixing the ring member.
The alignment method according to any one of Supplementary notes 9 to 12.
(Appendix 14)
The step of fixing the ring member includes:
vacuum adsorbing the ring member;
The positioning method described in Appendix 13.
(Additional note 15)
The step of fixing the ring member includes:
electrostatically adsorbing the ring member;
The positioning method described in Appendix 13.
 なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせ等、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。 Note that the present invention is not limited to the configurations shown in the above embodiments, such as combinations with other elements, and the like. These points can be modified without departing from the spirit of the present invention, and can be appropriately determined depending on the application thereof.
 尚、本願は、2022年8月19日に出願した日本国特許出願2022-131235号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 Additionally, this application claims priority based on Japanese patent application No. 2022-131235 filed on August 19, 2022, and the entire contents of these Japanese patent applications are incorporated by reference into this application.
1     プラズマ処理装置
2     制御部
11    基板支持部
15    リフトピン(第1リフトピン)
16    リフトピン(第2リフトピン)
111   本体部
111a  中央領域
111b  環状領域
111b1 エッジリング支持面
111b2 カバーリング支持面
111c1 エッジリング対向面(対向面)
111c2 カバーリング対向面(対向面)
112   エッジリング(リング部材)
112a  底面
112c  内周面(位置合わせ対象面)
113   カバーリング(リング部材)
113a  底面
113b  エッジリング支持面
113c  内周面(位置合わせ対象面)
114   リングアセンブリ
1110  基台
1110a 流路
1111  静電チャック
1111a セラミック部材
1111b 静電電極
1111c 静電電極
200   位置合わせ治具(治具)
210   ベースプレート
211   溝部
211a  側壁
211b  傾斜面
220   センタリングシート
221   固定部
221a  側壁
222   突出部
1 Plasma processing apparatus 2 Control section 11 Substrate support section 15 Lift pin (first lift pin)
16 Lift pin (second lift pin)
111 Main body portion 111a Central region 111b Annular region 111b1 Edge ring support surface 111b2 Cover ring support surface 111c1 Edge ring opposing surface (opposing surface)
111c2 Covering opposing surface (opposing surface)
112 Edge ring (ring member)
112a Bottom surface 112c Inner peripheral surface (positioning target surface)
113 Cover ring (ring member)
113a Bottom surface 113b Edge ring support surface 113c Inner peripheral surface (alignment target surface)
114 Ring assembly 1110 Base 1110a Channel 1111 Electrostatic chuck 1111a Ceramic member 1111b Electrostatic electrode 1111c Electrostatic electrode 200 Positioning jig (jig)
210 Base plate 211 Groove portion 211a Side wall 211b Inclined surface 220 Centering sheet 221 Fixed portion 221a Side wall 222 Projection portion

Claims (15)

  1.  リング部材を被設置部材のリング支持面に設置する際に用いられる治具であって、
     ベースプレートと、
     前記ベースプレートに固定される固定部及び前記ベースプレートの側面から突出する突出部を有するシート部材と、を備える、
    治具。
    A jig used when installing a ring member on a ring support surface of an installed member,
    base plate and
    a sheet member having a fixing portion fixed to the base plate and a protruding portion protruding from a side surface of the base plate;
    jig.
  2.  前記ベースプレートは、前記シート部材を3つ以上備える、
    請求項1に記載の治具。
    The base plate includes three or more of the sheet members,
    The jig according to claim 1.
  3.  前記突出部は、
     前記リング部材を前記リング支持面に設置した際、前記リング部材の位置合わせ対象面と前記位置合わせ対象面と対向する前記被設置部材の対向面との隙間に届き、かつ、前記リング支持面に届かない、長さを有する、
    請求項2に記載の治具。
    The protruding portion is
    When the ring member is installed on the ring support surface, the ring member reaches the gap between the alignment target surface of the ring member and the opposing surface of the installed member that faces the alignment target surface, and is attached to the ring support surface. unreachable, has length,
    The jig according to claim 2.
  4.  前記シート部材は、ポリイミドで形成される、
    請求項3に記載の治具。
    The sheet member is made of polyimide.
    The jig according to claim 3.
  5.  前記ベースプレートは、シリコンで形成される、
    請求項4に記載の治具。
    The base plate is made of silicon.
    The jig according to claim 4.
  6.  前記ベースプレートは、前記固定部が配置される溝部を有する、
    請求項1に記載の治具。
    The base plate has a groove in which the fixing part is arranged.
    The jig according to claim 1.
  7.  前記ベースプレートは、
     該ベースプレートを前記被設置部材の基板支持面に配置した際に前記基板支持面と当接して支持される第1面と、
     前記第1面と反対側の面である第2面と、を有し、
     前記溝部は、前記第2面に形成される、
    請求項6に記載の治具。
    The base plate is
    a first surface that comes into contact with and is supported by the substrate support surface when the base plate is placed on the substrate support surface of the installed member;
    a second surface that is an opposite surface to the first surface;
    The groove portion is formed on the second surface.
    The jig according to claim 6.
  8.  前記固定部は、前記溝部に接着によって固定される、
    請求項6に記載の治具。
    The fixing part is fixed to the groove part by adhesive.
    The jig according to claim 6.
  9.  ベースプレートと、前記ベースプレートに固定される固定部及び前記ベースプレートの側面から突出する突出部を有するシート部材と、を備える治具を、被設置部材の基板支持面に設置する工程と、
     前記突出部を変形させてリング部材の位置合わせ対象面と前記位置合わせ対象面と対向する被設置部材の対向面との隙間に前記シート部材を配置し、前記リング部材を前記被設置部材のリング支持面に設置する工程と、
     前記治具を前記基板支持面から離間させ、前記位置合わせ対象面と前記対向面との隙間から前記シート部材を引き抜く工程と、を有する、
    位置合わせ方法。
    installing a jig including a base plate, a sheet member having a fixing part fixed to the base plate and a protruding part protruding from a side surface of the base plate on a substrate supporting surface of the installed member;
    The sheet member is arranged in a gap between the positioning target surface of the ring member and the opposing surface of the installed member opposite to the positioning target surface by deforming the protruding part, and the ring member is moved into the ring of the installed member. a step of installing it on a supporting surface;
    separating the jig from the substrate support surface and pulling out the sheet member from the gap between the alignment target surface and the opposing surface;
    Alignment method.
  10.  前記被設置部材は、基板支持部の本体部であって、
     前記治具を前記基板支持面に設置する工程は、
     前記基板支持面から昇降可能な第1リフトピンを上昇させる工程と、
     前記第1リフトピンで前記治具を支持する工程と、
     前記第1リフトピンを下降させて、前記治具を前記基板支持面に載置する工程と、を含み、
     前記リング部材を前記リング支持面に設置する工程は、
     前記リング支持面から昇降可能な第2リフトピンを上昇させる工程と、
     前記第2リフトピンで前記リング部材を支持する工程と、
     前記第2リフトピンを下降させて、前記リング部材を前記リング支持面に載置する工程と、を含み、
     前記治具を前記基板支持面から離間させる工程は、
     前記第1リフトピンを上昇させて、前記治具を前記基板支持面から離間させる工程を含む、
    請求項9に記載の位置合わせ方法。
    The installed member is a main body part of a substrate support part,
    The step of installing the jig on the substrate support surface includes:
    a step of raising a first lift pin that is movable up and down from the substrate support surface;
    supporting the jig with the first lift pin;
    lowering the first lift pin and placing the jig on the substrate support surface,
    The step of installing the ring member on the ring support surface includes:
    a step of raising a second lift pin that is movable up and down from the ring support surface;
    supporting the ring member with the second lift pin;
    lowering the second lift pin to place the ring member on the ring support surface,
    The step of separating the jig from the substrate support surface includes:
    a step of raising the first lift pin to separate the jig from the substrate support surface;
    The alignment method according to claim 9.
  11.  前記リング部材は、エッジリングである、
    請求項10に記載の位置合わせ方法。
    the ring member is an edge ring;
    The alignment method according to claim 10.
  12.  前記リング部材は、カバーリングである、
    請求項10に記載の位置合わせ方法。
    The ring member is a cover ring,
    The alignment method according to claim 10.
  13.  前記リング部材を前記リング支持面に設置する工程の後、前記治具を前記基板支持面から離間させる工程の前に、前記リング部材を固定する工程をさらに有する、
    請求項11に記載の位置合わせ方法。
    After the step of installing the ring member on the ring support surface and before the step of separating the jig from the substrate support surface, the method further includes a step of fixing the ring member.
    The alignment method according to claim 11.
  14.  前記リング部材を固定する工程は、
     前記リング部材を真空吸着する、
    請求項13に記載の位置合わせ方法。
    The step of fixing the ring member includes:
    vacuum adsorbing the ring member;
    The alignment method according to claim 13.
  15.  前記リング部材を固定する工程は、
     前記リング部材を静電吸着する、
    請求項13に記載の位置合わせ方法。
    The step of fixing the ring member includes:
    electrostatically adsorbing the ring member;
    The alignment method according to claim 13.
PCT/JP2023/029305 2022-08-19 2023-08-10 Jig and positioning method WO2024038832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022131235 2022-08-19
JP2022-131235 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024038832A1 true WO2024038832A1 (en) 2024-02-22

Family

ID=89941688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029305 WO2024038832A1 (en) 2022-08-19 2023-08-10 Jig and positioning method

Country Status (1)

Country Link
WO (1) WO2024038832A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020166762A1 (en) * 2001-01-05 2002-11-14 Hixson Robert B. Physical vapor deposition apparatus with modified shutter disk and cover ring
US20040126924A1 (en) * 2002-12-31 2004-07-01 Winbond Electronics Corporation Wafer center calibrator
JP2007200965A (en) * 2006-01-24 2007-08-09 Shin Etsu Handotai Co Ltd Jig for alignment between semiconductor wafer and external circumferential ring, and plasma etching metehod of semiconductor wafer
JP2011054933A (en) * 2009-08-07 2011-03-17 Tokyo Electron Ltd Substrate treatment device, method for positioning, and method for installing focus ring
JP2020077654A (en) * 2018-11-05 2020-05-21 東京エレクトロン株式会社 Mounting table and substrate processing apparatus
JP2020136622A (en) * 2019-02-26 2020-08-31 東京エレクトロン株式会社 Jig for adjustment, adjustment method, and position deviation measurement method
JP2022536683A (en) * 2019-06-11 2022-08-18 アプライド マテリアルズ インコーポレイテッド process kit ring wear detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020166762A1 (en) * 2001-01-05 2002-11-14 Hixson Robert B. Physical vapor deposition apparatus with modified shutter disk and cover ring
US20040126924A1 (en) * 2002-12-31 2004-07-01 Winbond Electronics Corporation Wafer center calibrator
JP2007200965A (en) * 2006-01-24 2007-08-09 Shin Etsu Handotai Co Ltd Jig for alignment between semiconductor wafer and external circumferential ring, and plasma etching metehod of semiconductor wafer
JP2011054933A (en) * 2009-08-07 2011-03-17 Tokyo Electron Ltd Substrate treatment device, method for positioning, and method for installing focus ring
JP2020077654A (en) * 2018-11-05 2020-05-21 東京エレクトロン株式会社 Mounting table and substrate processing apparatus
JP2020136622A (en) * 2019-02-26 2020-08-31 東京エレクトロン株式会社 Jig for adjustment, adjustment method, and position deviation measurement method
JP2022536683A (en) * 2019-06-11 2022-08-18 アプライド マテリアルズ インコーポレイテッド process kit ring wear detector

Similar Documents

Publication Publication Date Title
US10699935B2 (en) Semiconductor manufacturing device and processing method
US6958098B2 (en) Semiconductor wafer support lift-pin assembly
JP6663994B2 (en) Electrostatic chuck mechanism and semiconductor processing device
US8409995B2 (en) Substrate processing apparatus, positioning method and focus ring installation method
KR101247712B1 (en) Method and apparatus for dechucking a substrate
US6572708B2 (en) Semiconductor wafer support lift-pin assembly
JP4146905B2 (en) Processing equipment
US8485128B2 (en) Movable ground ring for a plasma processing chamber
TW202205347A (en) Edge ring, substrate support, plasma processing system and method of replacing edge ring
KR20210019951A (en) Conveyance method in substrate processing system
US8197638B2 (en) Semiconductor manufacturing device and method for manufacturing semiconductor devices
US6492612B1 (en) Plasma apparatus and lower electrode thereof
CN102254847A (en) Plamsa processing apparatus
TW202201467A (en) Sheath and temperature control of a process kit in a substrate processing chamber
JP2021141305A (en) Plasma processing system and edge ring exchanging method
JP3224900U (en) Apparatus for reducing polymer deposition
US11037767B2 (en) Substrate support, substrate processing apparatus, substrate processing system, and method of detecting erosion of adhesive in substrate support
WO2021021831A1 (en) Sheath and temperature control of process kit
WO2024038832A1 (en) Jig and positioning method
US20200168442A1 (en) Focus ring height adjusting device and wafer etching apparatus including the same
US11189467B2 (en) Apparatus and method of attaching pad on edge ring
WO2022163582A1 (en) Plasma processing device
US20220319800A1 (en) Plasma processing system, transfer arm, and method of transferring annular member
WO2023074260A1 (en) Plasma treatment system and plasma treatment device
US20230141911A1 (en) Substrate processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854866

Country of ref document: EP

Kind code of ref document: A1