WO2023074260A1 - Plasma treatment system and plasma treatment device - Google Patents

Plasma treatment system and plasma treatment device Download PDF

Info

Publication number
WO2023074260A1
WO2023074260A1 PCT/JP2022/036807 JP2022036807W WO2023074260A1 WO 2023074260 A1 WO2023074260 A1 WO 2023074260A1 JP 2022036807 W JP2022036807 W JP 2022036807W WO 2023074260 A1 WO2023074260 A1 WO 2023074260A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
upper electrode
support
electrode plate
chamber
Prior art date
Application number
PCT/JP2022/036807
Other languages
French (fr)
Japanese (ja)
Inventor
晃汰 瀬野
文彬 有吉
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023074260A1 publication Critical patent/WO2023074260A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • Exemplary embodiments of the present disclosure relate to plasma processing systems, plasma processing apparatuses, and maintenance methods.
  • a capacitively coupled plasma processing device is used as a type of plasma processing device.
  • a capacitively-coupled plasma processing apparatus includes an upper electrode.
  • the upper electrode includes an electrode plate, ie, a top plate.
  • the top plate defines the internal space of the chamber from above. The top plate is exposed to plasma generated within the chamber.
  • the present disclosure provides a technology that enables easy replacement of the upper electrode plate of a capacitively coupled plasma processing apparatus.
  • a plasma processing system includes a plasma processing device and a transport device.
  • a plasma processing apparatus includes a plasma processing chamber, a substrate support, an upper electrode assembly, and a lifter unit.
  • a substrate support is positioned within the plasma processing chamber and includes a bottom electrode.
  • the upper electrode assembly is positioned above the substrate support and includes an electrode support and a replaceable upper electrode plate positioned below the electrode support.
  • the lifter unit is configured to move the replaceable upper electrode plate longitudinally between upper and lower positions within the plasma processing chamber.
  • the lifter unit is configured to secure the replaceable upper electrode plate to the electrode support when the replaceable upper electrode plate is in the upper position.
  • the transport device includes a transport chamber and a transport robot.
  • a transfer robot is disposed within the transfer chamber and configured to transfer the replaceable upper electrode plate between a lower position within the plasma processing chamber and the transfer chamber.
  • FIG. 1 illustrates a plasma processing system in accordance with one exemplary embodiment
  • FIG. 1 schematically illustrates a plasma processing apparatus according to one exemplary embodiment
  • FIG. FIG. 4 is a cross-sectional view of a top electrode according to one exemplary embodiment
  • FIG. 4 is a cross-sectional view showing details of a top electrode according to one exemplary embodiment
  • FIG. 4B is a view of the underside of the top support according to one exemplary embodiment
  • FIG. 4 illustrates multiple electrodes in an electrostatic chuck according to one exemplary embodiment
  • 4 is a flow diagram illustrating a method of maintaining a plasma processing system according to one exemplary embodiment
  • FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement.
  • FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement.
  • FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement.
  • FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement.
  • FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement.
  • FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement.
  • FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement.
  • FIG. 4B is a cross-sectional view of a top electrode according to another exemplary embodiment;
  • FIG. 1 is a diagram illustrating a plasma processing system according to one exemplary embodiment.
  • the plasma processing system PS shown in FIG. 1 includes process modules PM1 to PM6, a transfer module TM (substrate transfer module), and a controller MC.
  • the plasma processing system PS may further comprise pedestals 2a-2d, containers 4a-4d, aligners AN, load lock modules LL1 and LL2, and exchange station EX. Note that the number of stages, the number of vessels, and the number of load lock modules in the plasma processing system PS may be any number of one or more. Also, the number of process modules in the plasma processing system PS may be any number of one or more.
  • the platforms 2a-2d are arranged along one edge of the loader module LM.
  • Containers 4a-4d are mounted on platforms 2a-2d, respectively.
  • Each of the containers 4a to 4d is, for example, a container called a FOUP (Front Opening Unified Pod).
  • Each of the containers 4a-4d is configured to accommodate a substrate W therein.
  • the loader module LM has a chamber. The pressure inside the chamber of the loader module LM is set to atmospheric pressure.
  • the loader module LM has a transport robot RLM.
  • the transport robot RLM is controlled by the controller MC.
  • the transport robot RLM is configured to transport the substrate W through the chambers of the loader module LM.
  • the transfer robot RLM is arranged between each of the containers 4a to 4d and the aligner AN, between the aligner AN and each of the load lock modules LL1 and LL2, and between each of the load lock modules LL1 and LL2 and each of the containers 4a to 4d. In between, a substrate W may be transported.
  • the aligner AN is connected to the loader module LM.
  • the aligner AN is configured to adjust the position of the substrate W (position calibration).
  • Each of the load lock module LL1 and the load lock module LL2 is provided between the loader module LM and the transport module TM.
  • Each of load lock module LL1 and load lock module LL2 provides a pre-decompression chamber.
  • Each of load lock module LL1 and load lock module LL2 is connected to loader module LM via a gate valve.
  • each of the load lock module LL1 and the load lock module LL2 is connected to the transfer module TM via a gate valve.
  • the transfer module TM is configured to transfer substrates in a vacuum environment.
  • the transport module TM has a decompressible transport chamber TC and a transport robot RTM.
  • the transport robot RTM has an arm ARM and is controlled by the controller MC.
  • the transport robot RTM is configured to transport the substrate W through the transport chamber TC.
  • the transport robot RTM can transport the substrate W between each of the load lock modules LL1 and LL2 and each of the process modules PM1-PM6, and between any two process modules among the process modules PM1-PM6. .
  • the transport module TM may constitute a transport device according to one embodiment.
  • the transfer robot RTM can transfer a top plate 34 (replaceable upper electrode plate), which will be described later, to the internal space of the chamber of the process module, which is the plasma processing apparatus.
  • the transfer robot RTM is configured to transfer the top plate 34 (replaceable upper electrode plate) between a lower position within the plasma processing chamber of the process module of the plasma processing apparatus and the transfer chamber.
  • the arm ARM of the transfer robot RTM enters the chamber 10 through a passage 10p on the side wall of the chamber 10, which will be described later.
  • the top plate 34 is accommodated in the stocker.
  • the stockers can be process modules PM1-PM6, vessels 4a-4d, or other or additional modules of the plasma processing system.
  • Each of the process modules PM1-PM6 is connected to the transfer module TM via a gate valve.
  • Each of the process modules PM1-PM6 is an apparatus configured to perform dedicated substrate processing.
  • At least one of the process modules PM1-PM6 is a plasma processing apparatus.
  • the exchange station EX has a chamber (transfer chamber) and a transfer robot.
  • the transfer robot of the exchange station EX has an arm AEX and is controlled by the controller MC.
  • the exchange station EX may be configured to be movable for connection to a chamber of a process module (eg, process module PM5) that is a plasma processing apparatus. Further, the exchange station EX is configured to connect the internal space of the chamber of the process module, which is the plasma processing apparatus, with the internal space of the chamber of the exchange station EX while the internal spaces are decompressed.
  • the top plate 34 may be transferred from the chamber of the exchange station EX to the internal space of the chamber of the process module, which is the plasma processing apparatus, by the transfer robot.
  • the exchange station EX may be used as another transfer device that transfers the top plate 34 to the internal space of the chamber of the plasma processing apparatus.
  • the transfer robot of the exchange station EX moves the top plate 34 (exchangeable upper electrode plate) between the lower position in the plasma processing chamber of the process module, which is the plasma processing apparatus, and the transfer chamber of the exchange station EX.
  • the transfer robot arm AEX of the exchange station EX enters the chamber 10 through a passage 101p on the side wall of the chamber 10, which will be described later.
  • the controller MC is configured to control each part of the plasma processing system PS.
  • the control unit MC can be a computer including a processor, storage device, input device, display device, and the like.
  • the controller MC executes a control program stored in the storage device and controls each part of the plasma processing system PS based on the recipe data stored in the storage device.
  • a maintenance method according to an exemplary embodiment, which will be described later, can be executed in the plasma processing system PS by controlling each part of the plasma processing system PS by the controller MC.
  • FIG. 2 is a schematic diagram of a plasma processing apparatus according to one exemplary embodiment.
  • the plasma processing apparatus 1 shown in FIG. 2 can be used as one or more process modules of the plasma processing system PS.
  • the plasma processing apparatus 1 is a capacitively coupled plasma processing apparatus.
  • the plasma processing apparatus 1 includes a chamber 10 (plasma processing chamber).
  • the chamber 10 provides an interior space 10s therein.
  • Chamber 10 may include a chamber body 12 .
  • the chamber body 12 has a substantially cylindrical shape and provides an internal space 10s inside thereof.
  • the chamber body 12 is made of aluminum, for example.
  • the inner wall surface of the chamber main body 12 is treated with plasma resistance.
  • the inner wall surface of the chamber body 12 is anodized.
  • the chamber body 12 is electrically grounded.
  • the chamber 10 includes sidewalls.
  • the sidewalls provide passages 10p. Side walls may be provided by the chamber body 12 .
  • the substrate W passes through the passage 10p when it is carried into the internal space 10s and when it is carried out from the internal space 10s.
  • the passage 10p can be opened and closed by a gate valve 10g.
  • the sidewalls of chamber 10 may further provide passageways 101p.
  • the passage 101p can be opened and closed by a gate valve 101g.
  • Chamber 10 may further include a top wall 10u.
  • An upper wall 10 u is provided on the chamber body 12 and provides an upper end opening of the chamber 10 .
  • the plasma processing apparatus 1 further includes a substrate support section 14 .
  • a substrate support 14 is provided within the chamber 10 .
  • Substrate support 14 includes base 18 and electrostatic chuck 20 .
  • Substrate support 14 may further include an electrode plate 16 .
  • the substrate support section 14 may further include a support section 13 .
  • a support 13 is provided on the bottom of the chamber 10 .
  • the support portion 13 is made of an insulating material.
  • the support portion 13 has a substantially cylindrical shape.
  • the support 13 extends upward from the bottom of the chamber 10 within the interior space 10s.
  • the support portion 13 supports the base 18 , the electrostatic chuck 20 and the electrode plate 16 .
  • the electrode plate 16 is made of a conductive material such as aluminum and has a substantially disk shape.
  • a base 18 is provided on the electrode plate 16 .
  • Base 18 may be formed from a conductive material such as aluminum.
  • the base 18 has a substantially disk shape.
  • the base 18 is electrically connected to the electrode plate 16 .
  • base 18 constitutes the lower electrode of a capacitively coupled plasma processing apparatus.
  • the bottom electrode may be a conductive member of base 18 .
  • the bottom electrode may be at least one other electrode provided within the substrate support 14 .
  • the electrostatic chuck 20 is provided on the base 18 .
  • a substrate W is placed on the upper surface of the electrostatic chuck 20 .
  • the electrostatic chuck 20 holds the substrate W.
  • Electrostatic chuck 20 has a body formed from a dielectric.
  • a chuck electrode is provided in the main body of the electrostatic chuck 20 .
  • a chuck electrode is a membrane formed from a conductor.
  • the chuck electrode is connected to a DC power supply through a switch. When a voltage from the DC power supply is applied to the chuck electrode of the electrostatic chuck 20, an electrostatic attractive force is generated between the electrostatic chuck 20 and the substrate W.
  • the substrate W is attracted to the electrostatic chuck 20 and held by the electrostatic chuck 20 due to the generated electrostatic attraction.
  • the substrate support 14 may be configured to support the edge ring ER placed thereon.
  • the edge ring ER may be made of silicon, silicon carbide, quartz, or the like.
  • a substrate W is placed on the substrate support 14 in the area surrounded by the edge ring ER.
  • the base 18 provides a channel 18f therein.
  • 18 f of flow paths receive the refrigerant
  • a chiller unit is located outside the chamber 10 . Refrigerant flows through flow path 18f and is returned to the chiller unit via line 26b.
  • the plasma processing apparatus 1 may provide a gas supply line 28.
  • the gas supply line 28 supplies the gap between the upper surface of the electrostatic chuck 20 and the back surface of the substrate W with a heat transfer gas such as He gas from a heat transfer gas supply mechanism 28s.
  • the substrate support portion 14 may further include an outer peripheral portion 21, an insulating portion 22, and a cover ring CR.
  • the outer peripheral portion 21 has a substantially cylindrical shape and is made of metal such as aluminum.
  • the surface of the outer peripheral portion 21 may be made of a plasma-resistant material.
  • the outer peripheral portion 21 extends along the outer periphery of the support portion 13 .
  • the insulating portion 22 is provided on the outer peripheral portion 21 .
  • the insulating portion 22 has a substantially cylindrical shape and is made of an insulating material such as silicon oxide.
  • the insulating portion 22 extends along the outer peripheries of the support portion 13 and the electrostatic chuck 20 .
  • the cover ring CR has a substantially ring shape and is made of an insulating material such as silicon oxide.
  • the cover ring CR is provided on the insulating portion 22 .
  • the edge ring ER is arranged within the area enclosed by the covering ring CR.
  • the plasma processing apparatus 1 further includes an upper electrode 30 (upper electrode assembly).
  • the upper electrode 30 is provided above the substrate supporting portion 14 .
  • the top electrode 30 includes a top plate 34 (replaceable top electrode plate) and a support 37 (top support or electrode support).
  • the top plate 34 is arranged above the substrate support portion 14 and below the support portion 37 .
  • the top plate 34 has a substantially disk shape.
  • the bottom surface of the top plate 34 is the bottom surface on the side of the internal space 10s, and defines the internal space 10s.
  • the top plate 34 can be made of a low electric resistance conductor or semiconductor that generates little Joule heat.
  • the top plate 34 is made of silicon, for example.
  • the top plate 34 provides a plurality of gas holes 34a. The plurality of gas holes 34a pass through the top plate 34 in its plate thickness direction.
  • the support part 37 is provided inside the upper end opening of the chamber 10 .
  • the support 37 closes the top opening of the chamber 10 together with the member 32 .
  • the member 32 is interposed between the support 37 and the upper wall 10u of the chamber 10 and is made of an insulating material such as silicon oxide.
  • the support portion 37 includes a main body 37A (support member) and an electrostatic adsorption portion 35 (electrostatic adsorption layer).
  • Body 37A is formed from a conductive material such as aluminum.
  • the electrostatic adsorption part 35 is attached to the main body 37A.
  • the electrostatic attraction part 35 is formed on the lower surface of the main body 37A.
  • the electrostatic attraction portion 35 holds or electrostatically attracts the top plate 34 by generating an electrostatic attractive force between the top plate 34 and the electrostatic attraction portion 35 .
  • the details of the electrostatic adsorption portion 35 will be described later.
  • the main body 37A provides a channel 37c inside it.
  • the flow path 37c receives refrigerant supplied from the chiller unit.
  • a chiller unit is provided outside the chamber 10 .
  • the refrigerant flows through passage 37c and is returned to the chiller unit.
  • the temperature of the main body 37A is adjusted.
  • the temperature of the top plate 34 is adjusted by heat exchange between the main body 37A and the top plate 34 .
  • the main body 37A further provides a plurality of gas introduction paths 37a inside thereof.
  • a plurality of gas introduction paths 37a are formed so as to extend downward from the upper surface of the main body 37A to the inside of the main body 37A.
  • Body 37A further provides a plurality of gas diffusion chambers 37b therein.
  • the plurality of gas introduction paths 37a are respectively connected to the plurality of gas diffusion chambers 37b.
  • Body 37A further provides a plurality of gas passages 37e.
  • Each of the plurality of gas flow paths 37e extends from the corresponding gas diffusion chamber 37b toward the lower surface of the main body 37A (or the upper surface of the top plate 34).
  • the multiple gas flow paths 37 e supply the processing gas to the multiple gas holes 34 a of the top plate 34 .
  • Body 37A further provides a plurality of gas inlets 37d.
  • the plurality of gas introduction ports 37d are respectively connected to the plurality of gas introduction paths 37a.
  • a gas supply pipe 38 is connected to the plurality of
  • gas supply unit GS is connected to the gas supply pipe 38 .
  • gas supply GS includes gas source group 40 , valve group 42 , and flow controller group 44 .
  • a group of gas sources 40 are connected to the gas supply pipe 38 via a group of flow controllers 44 and a group of valves 42 .
  • Gas source group 40 includes a plurality of gas sources.
  • the multiple gas sources include sources of multiple gases that make up the process gas.
  • the valve group 42 includes a plurality of open/close valves.
  • Flow controller group 44 includes a plurality of flow controllers. Each of the plurality of flow controllers is a mass flow controller or a pressure controlled flow controller.
  • Each of the plurality of gas sources in gas source group 40 is connected to gas supply pipe 38 via a corresponding valve in valve group 42 and a corresponding flow controller in flow controller group 44 .
  • the plasma processing apparatus 1 further includes a high frequency power supply 62 and a bias power supply 64 .
  • the radio frequency power supply 62 is configured to generate source radio frequency power for plasma generation.
  • the frequency of the source RF power is, for example, a frequency within the range of 27 MHz to 100 MHz.
  • a high-frequency power supply 62 is connected to the lower electrode (for example, the base 18 ) through a matching device 66 and the electrode plate 16 .
  • the matching device 66 has a matching circuit for matching the input impedance on the load side of the high frequency power supply 62 with the output impedance of the high frequency power supply 62 .
  • the high-frequency power supply 62 may be connected to the upper electrode 30 via a matching device 66 .
  • the bias power supply 64 is configured to generate electrical bias energy for drawing ions into the substrate W.
  • the electrical bias energy has a frequency that is lower than the frequency of the source RF power, eg, in the range of 100 kHz to 13.56 MHz.
  • the electrical bias energy is, for example, bias RF power.
  • the bias power supply 64 is connected to the base 18 via the matching device 68 and the electrode plate 16.
  • FIG. The matching device 68 has a matching circuit for matching the input impedance on the load side of the bias power supply 64 with the output impedance of the bias power supply 64 .
  • the plasma processing apparatus 1 may further include a DC power supply section 70 .
  • a DC power supply unit 70 is connected to the upper electrode 30 .
  • the DC power supply section 70 can generate a negative DC voltage and apply the DC voltage to the upper electrode 30 .
  • FIG. 3 is a cross-sectional view of a top electrode according to one exemplary embodiment.
  • the upper electrode 30 has a structure in which a top plate 34 and a support portion 37 are stacked in order from the bottom.
  • the electrostatic attraction portion 35 is formed integrally with the main body 37A so as to be in contact with the lower surface of the main body 37A.
  • the electrostatic adsorption portion 35 is formed on the support portion 37 by thermal spraying, for example.
  • the electrostatic adsorption portion 35 is interposed between the top plate 34 and the main body 37A.
  • the top plate 34 is attracted to and held by the electrostatic adsorption section 35 so as to be in contact with the lower surface of the electrostatic adsorption section 35 .
  • the top plate 34 is electrically connected to the main body 37A.
  • FIG. 4 is a cross-sectional view showing details of a top electrode according to one exemplary embodiment.
  • FIG. 5 is a diagram illustrating the underside of a top support according to one exemplary embodiment.
  • FIG. 6 is a diagram showing multiple electrodes in an electrostatic chuck according to one exemplary embodiment.
  • the electrostatic attraction part 35 includes a main body 35a.
  • the body 35a is made of a dielectric such as alumina (Al 2 O 3 ), aluminum nitride (AlN).
  • the electrostatic adsorption part 35 further includes one or more electrodes 35b.
  • One or more electrodes 35b are membranes formed from a conductor and are provided within the body 35a.
  • One or more of the electrodes 35b may comprise a thermal spray film formed by thermal spraying, a plate formed from a conductor, or both.
  • One or more electrodes 35b are connected to one or more power sources. When a voltage from one or more power sources is applied to one or more electrodes 35b, electrostatic attraction is generated between the electrostatic adsorption portion 35 and the top plate 34. FIG. Due to the generated electrostatic attractive force, the top plate 34 is attracted to the electrostatic chucking portion 35 and held by the electrostatic chucking portion 35 .
  • One or more power sources connected to one or more electrodes 35b may be a DC power source or an AC power source.
  • the electrostatic attraction part 35 includes a plurality of electrodes 35b.
  • the plurality of electrodes 35b includes first electrodes 351b and second electrodes 352b.
  • the first electrode 351b is provided radially inward with respect to the second electrode 352b. That is, the first electrode 351b is provided in the central region Z1 (see FIGS. 5 and 6) of the main body 35a.
  • the second electrode 352b is provided in the outer region Z2 (see FIGS. 5 and 6) of the main body 35a.
  • a voltage from a power source 351p and a voltage from a power source 352p are applied to the first electrode 351b and the second electrode 352b, respectively.
  • Each of the power supply 351p and the power supply 352p may be a DC power supply or an AC power supply.
  • an electrostatic attractive force is generated between the electrostatic adsorption portion 35 and the top plate 34. Due to the generated electrostatic attractive force, the top plate 34 is attracted to the electrostatic chucking portion 35 and held by the electrostatic chucking portion 35 .
  • the DC voltage generated by the power supply 351p and the DC voltage generated by the power supply 352p may be different from each other or may be the same.
  • a DC voltage from a single DC power supply may be applied to the first electrode 351b and the second electrode 352b.
  • the electrostatic adsorption portion 35 may include only a single electrode as the one or more electrodes 35b.
  • the electrostatic attraction part 35 provides a plurality of through holes 35h. 35 h of several through-holes have penetrated the electrostatic adsorption
  • the plurality of through holes 35h are respectively aligned with the plurality of gas flow paths 37e of the support portion 37 and connected to the plurality of gas flow paths 37e.
  • the plurality of through holes 35h extend to the lower surface of the electrostatic adsorption portion 35.
  • the processing gas existing in the gas diffusion chamber 37 b passes through the plurality of gas flow paths 37 e and the plurality of through holes 35 h of the electrostatic adsorption section 35 and is supplied to the upper surface of the top plate 34 .
  • the electrostatic attraction part 35 provides a plurality of convex parts 35c.
  • the plurality of protrusions 35c protrude downward.
  • a plurality of convex portions 35 c constitute a part of the lower surface of the electrostatic attraction portion 35 .
  • the electrostatic chucking portion 35 is configured such that only the tip surfaces (that is, the chucking surfaces) of the plurality of convex portions 35c are in contact with the upper surface of the top plate 34.
  • the plurality of convex portions 35c form, for example, a dot pattern.
  • an annular convex portion 35d surrounding the entirety of the plurality of convex portions 35c may be provided on the outermost periphery of the plurality of convex portions 35c. Note that the annular projection 35d may be provided at an arbitrary position in the radial direction of the electrostatic adsorption portion 35. As shown in FIG.
  • the plurality of through-holes 35h of the electrostatic attraction portion 35 are open between the plurality of convex portions 35c. That is, the plurality of through-holes 35h and the plurality of gas flow paths 37e of the electrostatic adsorption portion 35 are arranged so as not to align with the plurality of protrusions 35c.
  • the processing gas supplied from the gas flow path 37e is temporarily concentrated in the space between the plurality of convex portions 35c of the electrostatic adsorption portion 35 and discharged into the internal space 10s of the chamber 10 through the plurality of gas holes 34a.
  • Such a structure can suppress the movement of radicals or gas in the internal space 10 s from the plurality of gas holes 34 a to the gas flow path 37 e of the support portion 37 . Moreover, it is possible to suppress the occurrence of abnormal discharge in the plurality of gas flow paths 37e.
  • the top plate 34 When the top plate 34 is removed from the electrostatic adsorption section 35, the application of the voltage (DC voltage or AC voltage) to the one or more electrodes 35b of the electrostatic adsorption section 35 is stopped, and the gas is supplied from the gas supply section GS. output. The top plate 34 is pushed down in a direction away from the electrostatic adsorption portion 35 by the pressure of the gas. As a result, the top plate 34 can be easily removed from the electrostatic chucking portion 35 .
  • the voltage DC voltage or AC voltage
  • the electrostatic adsorption portion 35 is directly formed on the lower surface of the main body 37A of the support portion 37. Therefore, the heat of the top plate 34 is efficiently conducted to the main body 37A. Therefore, it is possible to cool the top plate 34 efficiently.
  • the processing gas is supplied to the spaces between the plurality of convex portions 35c, the heat of the top plate 34 is transmitted to the main body 37A of the support portion 37 more efficiently.
  • the plurality of convex portions 35c form a dot pattern, the processing gas is uniformly diffused over the entire upper surface of the top plate 34. FIG. Therefore, the entire top plate 34 can be uniformly cooled.
  • the plasma processing system PS is configured such that the top plate 34 of the upper electrode 30 of the plasma processing apparatus 1 is replaceable.
  • the top plate 34 is conveyed to the internal space 10 s by an arm (arm ARM or arm AEX) and held by the electrostatic chuck 35 .
  • the top plate 34 is attachable/detachable to/from the electrostatic adsorption portion 35 .
  • the top plate 34 is carried into the chamber 10 by the arm (arm ARM or arm AEX) of the transfer robot described above, and is held by the electrostatic adsorption portion 35 of the support portion 37 by electrostatic attraction. Therefore, the top plate 34 can be easily replaced.
  • the plasma processing system PS may further include a lifter (lifter unit).
  • the lifter is configured to lift the top plate 34 transported by the arm (arm ARM or arm AEX) to just below the support portion 37 .
  • the lifter is configured to move the top plate 34 vertically between upper and lower positions within the chamber 10 .
  • the lifter is configured to fix the top plate 34 to the support portion 37 when the top plate 34 is in the upper position. Note that, in one embodiment, the top plate 34 is transferred by the transfer robot between the lower position within the chamber 10 and the transfer chamber, as described above.
  • the lifter includes a cylindrical wall structure and an actuator.
  • a cylindrical wall structure is positioned between the inner wall (side wall) of the chamber 10 and the substrate support 14 .
  • a cylindrical wall structure is configured to support the top plate 34 .
  • the actuator is configured to move the cylindrical wall structure longitudinally.
  • the cylindrical wall structure includes a cylindrical member and an annular member 39 .
  • the cylindrical member is shutter 71 .
  • the actuator is shutter driver 74 . That is, the lifter may include the shutter 71 , the shutter drive section 74 and the annular member 39 .
  • the shutter 71 and the annular member 39 are provided outside the substrate support portion 14 in the radial direction.
  • the shutter 71 has a cylindrical shape and is provided inside the chamber 10 . Shutter 71 extends along the sidewall of chamber 10 .
  • the shutter 71 is made of a conductor such as aluminum and is grounded.
  • the surface of the shutter 71 may be made of a plasma-resistant material.
  • the shutter 71 is moved up and down by a shutter driving section 74 to open and close the passages 10p and 101p.
  • the shutter driving section 74 is provided below the shutter 71 .
  • the shutter drive section 74 may include a rod 74r and a drive source 74d.
  • the rod 74r is connected to the lower end of the shutter 71 and extends downward.
  • the rod 74r is connected to the drive source 74d.
  • the drive source 74d generates power for moving the shutter 71 up and down via the rod 74r.
  • the drive source 74d may be a motor, or a hydraulic or pneumatic drive source.
  • the lifter may include a plurality of shutter driving units as shutter driving units for moving the shutter 71 up and down. A plurality of shutter driving units can be arranged at equal intervals along the circumferential direction in the area below the shutter 71 .
  • the plasma processing apparatus 1 may further include a baffle member 72.
  • the baffle member 72 extends between the shutter 71 and the outer periphery of the substrate support portion 14 .
  • the baffle member 72 provides a plurality of through holes that allow the upper and lower spaces to communicate with each other.
  • Baffle member 72 is formed from a conductor such as aluminum and is grounded.
  • the surface of the baffle member 72 may be made of a plasma-resistant material.
  • An outer edge of the baffle member 72 is fixed to the shutter 71 (for example, its lower end).
  • the inner edge of the baffle member 72 is arranged to provide a slight gap between the inner edge and the outer periphery of the substrate support 14 .
  • the annular member 39 has an annular shape.
  • the annular member 39 is made of a conductive material and is grounded.
  • the annular member 39 may be made of the same material as the top plate 34 .
  • the annular member 39 may be made of silicon.
  • the annular member 39 is used to cover the lower surface of the upper wall 10 u and the lower surface of the member 32 inside the chamber 10 of the plasma processing apparatus 1 .
  • the annular member 39 extends inwardly from the cylindrical member or shutter 71 and is configured to support the top plate 34 .
  • annular member 39 is positioned over and supported by shutter 71 .
  • the outer edge of annular member 39 is positioned over the upper end of shutter 71 .
  • the outer edge of the annular member 39 and the upper end of the shutter 71 may each provide stepped surfaces that face each other.
  • the stepped surface of the outer edge of the annular member 39 is arranged on the stepped surface of the upper end of the shutter 71 . Thereby, the annular member 39 is automatically positioned on the shutter 71 .
  • the annular member 39 includes an inner edge portion 39i.
  • the inner edge portion 39i is configured to support the top plate 34 (its peripheral edge portion).
  • the inner edge portion 39i may provide a stepped surface 39t (inner peripheral stepped surface), and the top plate 34 may be supported by the stepped surface 39t.
  • the stepped surface 39t includes a bottom surface 39b on which the peripheral edge of the top plate 34 is placed, and an inner peripheral surface 39s facing the end surface of the top plate 34 .
  • the top plate 34 is automatically positioned on the inner edge portion 39i of the annular member 39 by the step surface 39t.
  • portion 39r including the step surface 39t in the inner edge portion 39i may be made of an insulating material.
  • the top plate 34 and the annular member 39 are electrically insulated from each other.
  • portion 39r may form part of a cylindrical wall structure as an insulating member disposed on stepped surface 39t.
  • the plasma processing system PS may further include a plurality of lifter pins 27p and pin drivers 27d.
  • the plurality of lifter pins 27p are configured to support the top plate 34 at the lower position described above.
  • the plurality of lifter pins 27p are configured to be able to protrude upward from the upper surface of the substrate supporting portion 14 and retract downward from the upper surface of the substrate supporting portion 14 .
  • a plurality of lifter pins 27p are fixed to the link below the board support portion 14 .
  • the pin drive portion 27d is provided below the board support portion 14 and the link.
  • the link is fixed to the pin driving portion 27d.
  • the pin driving section 27d moves upward the plurality of lifter pins 27p so as to receive the top plate 34 conveyed by the arm.
  • the pin drive 27d may include a motor, or a hydraulic or pneumatic drive source.
  • the pin drive unit 27d moves the plurality of lifter pins 27p upward so that the top plate 34 conveyed by the arm (arm ARM or arm AEX) is received by the upper end of each of the plurality of lifter pins 27p.
  • the shutter drive unit 74 moves the annular member 39 and the shutter 71 upward so that the annular member 39 receives the top plate 34 from the plurality of lifter pins 27p after the arm (arm ARM or arm AEX) is retracted from the internal space 10s.
  • a plurality of lifter pins 27p may be configured to support the substrate W and/or edge ring ER above the substrate support 14 .
  • the plurality of lifter pins 27p may be configured to move the substrate W or edge ring ER placed on the substrate support 14 up and down over the substrate support 14 .
  • FIG. 7 is a flow diagram illustrating a method of maintaining a plasma processing system according to one exemplary embodiment.
  • FIGS. 8-14 illustrates one state of the plasma processing system according to one exemplary embodiment during top plate replacement.
  • each part of the plasma processing system PS is controlled by the controller MC.
  • the controller MC replaces the top plate 34 with another top plate 34 when the cumulative time of exposure of the top plate 34 to the plasma generated in the chamber 10 or the consumption amount of the top plate 34 satisfies a predetermined standard.
  • a predetermined standard may be configured to A predetermined criterion is met if the cumulative time that the top plate 34 is exposed to the plasma generated within the chamber 10 exceeds a predetermined amount of time.
  • the predetermined criterion is met when the amount of wear of the top plate 34 exceeds the predetermined amount of wear.
  • the wear amount of the top plate 34 may be optically measured using an optical measuring device such as an optical interferometer.
  • the top plate 34 is moved from the above-described upper position to the lower position by the actuator (shutter drive unit 74).
  • the top plate 34 is then transferred from the lower position within the chamber 10 to the transfer chamber by the transfer robot (eg, its arm).
  • the control unit MC controls the lifter (for example, the shutter driving unit 74) and the above-described transport robot.
  • a state is brought about in which the top plate 34 is carried out by the arm of the transfer robot (arm ARM or arm AEX). Then, a replacement top plate 34 (for example, a top plate before use) is carried into the chamber 10 and attached.
  • the control unit MC controls the lifter (for example, the shutter driving unit 74) and the transport robot described above.
  • the replacement top plate 34 is transported into the chamber 10 by the arm. That is, the replacement top plate 34 is transferred from the transfer chamber to a lower position within the chamber 10 .
  • the shutter driving section 74 moves the shutter 71 and the annular member 39 inside the internal space 10 s and outside the substrate supporting section 14 relative to the upper surface of the substrate supporting section 14 . is moved downwards.
  • the shutter drive section 74 is controlled by the control section MC.
  • the gate valve 10g is moved to open the passage 10p.
  • the internal space 10s of the chamber 10 and the internal space of the transfer chamber TC of the transfer module TM are maintained under reduced pressure until the passage 10p is closed by the gate valve 10g.
  • the gate valve 101g is moved to open the passage 101p. In this case, the internal space 10s of the chamber 10 and the internal space of the exchange station EX are maintained under reduced pressure until the passage 101p is closed by the gate valve 101g.
  • the transfer robot RTM of the transfer module TM is controlled by the controller MC, and the arm ARM supporting the top plate 34 enters the internal space 10s.
  • the transport robot of the exchange station is controlled by the controller MC.
  • the replacement top plate 34 is moved from the lower position to the upper position. That is, in step STb, the top plate 34 is lifted up to directly below the support portion 37 (electrostatic adsorption portion 35).
  • a plurality of lifter pins 27p are lifted upward by pin drivers 27d so as to receive top plate 34 from an arm (arm ARM or arm AEX) at the upper end of each of the plurality of lifter pins 27p. is moved to The pin driver 27d is controlled by the controller MC.
  • the arm (arm ARM or arm AEX) is retracted from the internal space 10s.
  • the gate valve 10g is moved to close the passage 10p.
  • the gate valve 101g is moved to close the passage 101p.
  • the annular member 39 and the shutter 71 are moved upward by the shutter driving section 74 so that the annular member 39 receives the top plate 34 from the plurality of lifter pins 27p.
  • the shutter drive section 74 is controlled by the control section MC.
  • the annular member 39 and the shutter 71 are moved upward by the shutter driving section 74 so as to move the top plate 34 to the area directly below the electrostatic attraction section 35 .
  • the shutter drive section 74 is controlled by the control section MC.
  • step STc is then performed.
  • the top plate 34 is held by the electrostatic adsorption portion 35 .
  • one or more power supplies (for example, power supplies 351p and 352p) apply a voltage (DC voltage or alternating voltage) is applied.
  • One or more power supplies are controlled by the controller MC.
  • the top plate 34 can be automatically and easily replaced without connecting the internal space 10s to the atmospheric space outside the chamber 10.
  • the plasma processing system PS may further include a pressure regulator.
  • the pressure regulator adjusts the pressure in the gap between the top plate 34 and the support portion 37 (the electrostatic adsorption portion 35 ) when the top plate 34 is held by the electrostatic adsorption portion 35 . 14 is configured to be lower than the pressure in the space between.
  • the pressure regulator may be the heat transfer gas supply mechanism 28s.
  • the heat transfer gas supply mechanism 28 s supplies the heat transfer gas to the space between the top plate 34 and the substrate support section 14 .
  • the pressure in the gap between the top plate 34 and the support portion 37 (the electrostatic adsorption portion 35 ) becomes lower than the pressure in the space between the top plate 34 and the substrate support portion 14 .
  • the pressure regulator may be the exhaust device 52 .
  • the evacuation device 52 includes a vacuum pump connected to the gas supply pipe 38 .
  • the exhaust device 52 reduces the pressure in the gap between the top plate 34 and the support portion 37 (electrostatic adsorption portion 35 ) to be lower than the pressure in the space between the top plate 34 and the substrate support portion 14 .
  • the exhaust device 50 may be connected to the gas supply pipe 38 instead of the exhaust device 52 . In this case, the exhaust device 50 can be used to reduce the pressure in the gap between the top plate 34 and the support portion 37 (electrostatic adsorption portion 35).
  • FIG. 15 is a cross-sectional view of a top electrode according to another exemplary embodiment;
  • the upper electrode shown in FIG. 15 further includes a resin sheet 33 arranged between the top plate 34 and the electrostatic adsorption portion 35 .
  • the resin sheet 33 is sandwiched between the top plate 34 and each of the plurality of projections 35 c of the electrostatic adsorption section 35 .
  • the resin sheet 33 improves the adhesion between the top plate 34 and the electrostatic adsorption portion 35 .
  • the resin sheet 33 may be transported by an arm together with the top plate 34 and replaced.
  • the arm may move the top plate 34 transported into the chamber 10 to a region immediately below the support portion 37 (electrostatic adsorption portion 35).
  • a plurality of lifter pins 27p may move the top plate 34 to a region immediately below the support portion 37 (electrostatic adsorption portion 35).
  • top plate 34 may be held by a mechanical clamp of the support portion 37 instead of the electrostatic adsorption portion 35 .
  • a capacitively coupled plasma processing apparatus a chamber having walls defining an interior space and providing a passageway; a substrate support provided within the chamber; a conductive top plate provided above the substrate support; a top plate supporting portion having an electrostatic adsorption portion, under which the top plate is arranged; the plasma processing apparatus comprising a conveying device having an arm configured to be able to enter the internal space through the passage; with The top plate is conveyed into the internal space by the arm and held by the electrostatic attraction unit.
  • Plasma processing system a conveying device having an arm configured to be able to enter the internal space through the passage; with The top plate is conveyed into the internal space by the arm and held by the electrostatic attraction unit.
  • the electrostatic attraction part of the top support part holds the top by electrostatic attraction. Therefore, the top plate is attachable to and detachable from the electrostatic attraction section. Also, the top plate is carried into the chamber by the arm and is held by the electrostatic attracting portion of the top plate support portion by electrostatic attraction. Therefore, the top plate can be easily replaced.
  • the lifter is a shutter having a cylindrical shape and provided within the chamber for opening and closing the passageway; a shutter driving unit configured to vertically move the shutter; an annular member supported by the shutter, the annular member including an inner edge supporting the top plate; including The shutter and the annular member are provided outside the substrate support portion in a radial direction,
  • the inner edge provides a stepped surface;
  • the plasma processing system of E3 wherein the step surface provides a bottom surface on which the peripheral edge of the top plate is placed, and an inner peripheral surface facing an end surface of the top plate.
  • a plurality of lifter pins configured to be protruded upward from the upper surface of the substrate supporting portion and retractable downward from the upper surface of the substrate supporting portion; a pin driving unit configured to vertically move the plurality of lifter pins; further comprising the pin driving unit moves the plurality of lifter pins upward so as to receive the top plate conveyed by the arm; The shutter drive unit moves the annular member and the shutter upward so that the annular member receives the top plate from the plurality of lifter pins after the arm is retracted from the internal space.
  • the lifter is a plurality of lifter pins configured to be protruded upward from the upper surface of the substrate supporting portion and retractable downward from the upper surface of the substrate supporting portion; a pin drive unit configured to vertically move the plurality of lifter pins supporting the top plate thereon;
  • the plasma processing system of E2 comprising:
  • the transport device is a transport module that has a transport chamber that provides a decompressible transport space and a transport robot that includes the arm, and is configured to transport the substrate into the internal space, or the transport
  • E16 The plasma processing system of E8, further comprising a controller configured to control the transport device, the pin drive, and the shutter drive.
  • the control unit replaces the top plate with another top plate when the accumulated time during which the top plate is exposed to the plasma generated in the chamber or the consumption amount of the top plate satisfies a predetermined standard.
  • PS plasma processing system
  • 1 plasma processing apparatus
  • 10 chamber
  • 14 substrate support
  • 30 upper electrode
  • 34 top plate
  • 37 support
  • 35 electrostatic chuck
  • TM transfer module
  • ARM ...arm

Abstract

A plasma treatment system of this disclosure comprises a plasma treatment device and a conveyance device. The plasma treatment device includes: a plasma treatment chamber; a substrate support part; an upper electrode assembly; and a lifter unit. The upper electrode assembly is arranged above the substrate support part and includes an electrode support part and an exchangeable upper electrode plate disposed below the electrode support part. The lifter unit moves the exchangeable upper electrode plate in the vertical direction between an upper position and a lower position within the plasma treatment chamber. The lifter unit fixes the exchangeable upper electrode plate to the electrode support part when the exchangeable upper electrode plate is in the upper position. The conveyance device includes a conveyance chamber and a conveyance robot. The conveyance robot conveys the exchangeable upper electrode plate between the lower position in the plasma treatment chamber and the conveyance chamber.

Description

プラズマ処理システム及びプラズマ処理装置Plasma processing system and plasma processing apparatus
 本開示の例示的実施形態は、プラズマ処理システム、プラズマ処理装置、及び保守方法に関するものである。 Exemplary embodiments of the present disclosure relate to plasma processing systems, plasma processing apparatuses, and maintenance methods.
 プラズマ処理装置の一種として、容量結合型のプラズマ処理装置が用いられている。容量結合型のプラズマ処理装置は、上部電極を備える、上部電極は、電極板、即ち天板を含む。天板は、チャンバの内部空間を上方から画成している。天板は、チャンバ内で生成されるプラズマに晒される。 A capacitively coupled plasma processing device is used as a type of plasma processing device. A capacitively-coupled plasma processing apparatus includes an upper electrode. The upper electrode includes an electrode plate, ie, a top plate. The top plate defines the internal space of the chamber from above. The top plate is exposed to plasma generated within the chamber.
特開2012-129356号公報JP 2012-129356 A
 本開示は、容量結合型のプラズマ処理装置の上部電極プレートを容易に交換可能とする技術を提供する。 The present disclosure provides a technology that enables easy replacement of the upper electrode plate of a capacitively coupled plasma processing apparatus.
 一つの例示的実施形態において、プラズマ処理システムが提供される。プラズマ処理システムは、プラズマ処理装置及び搬送装置を備える。プラズマ処理装置は、プラズマ処理チャンバ、基板支持部、上部電極アセンブリ、及びリフタユニットを含む。基板支持部は、プラズマ処理チャンバ内に配置され、下部電極を含む。上部電極アセンブリは、基板支持部の上方に配置され、電極支持部と、電極支持部の下方に配置される交換式上部電極プレートと、を含む。リフタユニットは、交換式上部電極プレートをプラズマ処理チャンバ内の上側位置と下側位置との間で縦方向に移動させるように構成されている。リフタユニットは、交換式上部電極プレートが上側位置にあるときに交換式上部電極プレートを電極支持部に固定するように構成される。搬送装置は、搬送チャンバ及び搬送ロボットを含む。搬送ロボットは、搬送チャンバ内に配置され、交換式上部電極プレートをプラズマ処理チャンバ内の下側位置と搬送チャンバとの間で搬送するように構成される。 In one exemplary embodiment, a plasma processing system is provided. A plasma processing system includes a plasma processing device and a transport device. A plasma processing apparatus includes a plasma processing chamber, a substrate support, an upper electrode assembly, and a lifter unit. A substrate support is positioned within the plasma processing chamber and includes a bottom electrode. The upper electrode assembly is positioned above the substrate support and includes an electrode support and a replaceable upper electrode plate positioned below the electrode support. The lifter unit is configured to move the replaceable upper electrode plate longitudinally between upper and lower positions within the plasma processing chamber. The lifter unit is configured to secure the replaceable upper electrode plate to the electrode support when the replaceable upper electrode plate is in the upper position. The transport device includes a transport chamber and a transport robot. A transfer robot is disposed within the transfer chamber and configured to transfer the replaceable upper electrode plate between a lower position within the plasma processing chamber and the transfer chamber.
 一つの例示的実施形態によれば、容量結合型のプラズマ処理装置の上部電極プレートを容易に交換することが可能となる。 According to one exemplary embodiment, it is possible to easily replace the upper electrode plate of a capacitively coupled plasma processing apparatus.
一つの例示的実施形態に係るプラズマ処理システムを示す図である。1 illustrates a plasma processing system in accordance with one exemplary embodiment; FIG. 一つの例示的実施形態に係るプラズマ処理装置を概略的に示す図である。1 schematically illustrates a plasma processing apparatus according to one exemplary embodiment; FIG. 一つの例示的実施形態に係る上部電極の断面図である。FIG. 4 is a cross-sectional view of a top electrode according to one exemplary embodiment; 一つの例示的実施形態に係る上部電極の詳細を示す断面図である。FIG. 4 is a cross-sectional view showing details of a top electrode according to one exemplary embodiment; 一つの例示的実施形態に係る天板支持部の下面を示す図である。FIG. 4B is a view of the underside of the top support according to one exemplary embodiment; 一つの例示的実施形態に係る静電吸着部における複数の電極を示す図である。FIG. 4 illustrates multiple electrodes in an electrostatic chuck according to one exemplary embodiment; 一つの例示的実施形態に係るプラズマ処理システムの保守方法を示す流れ図である。4 is a flow diagram illustrating a method of maintaining a plasma processing system according to one exemplary embodiment; 一つの例示的実施形態に係るプラズマ処理システムの、天板の交換の際の一状態を示す図である。FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement. 一つの例示的実施形態に係るプラズマ処理システムの、天板の交換の際の一状態を示す図である。FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement. 一つの例示的実施形態に係るプラズマ処理システムの、天板の交換の際の一状態を示す図である。FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement. 一つの例示的実施形態に係るプラズマ処理システムの、天板の交換の際の一状態を示す図である。FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement. 一つの例示的実施形態に係るプラズマ処理システムの、天板の交換の際の一状態を示す図である。FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement. 一つの例示的実施形態に係るプラズマ処理システムの、天板の交換の際の一状態を示す図である。FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement. 一つの例示的実施形態に係るプラズマ処理システムの、天板の交換の際の一状態を示す図である。FIG. 4 is a diagram illustrating one state of a plasma processing system according to one exemplary embodiment during top replacement. 別の例示的実施形態に係る上部電極の断面図である。FIG. 4B is a cross-sectional view of a top electrode according to another exemplary embodiment;
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。 Various exemplary embodiments are described in detail below with reference to the drawings. In addition, suppose that the same code|symbol is attached|subjected to the part which is the same or equivalent in each drawing.
 図1は、一つの例示的実施形態に係るプラズマ処理システムを示す図である。図1に示すプラズマ処理システムPSは、プロセスモジュールPM1~PM6、搬送モジュールTM(基板搬送モジュール)、及び制御部MCを備えている。 FIG. 1 is a diagram illustrating a plasma processing system according to one exemplary embodiment. The plasma processing system PS shown in FIG. 1 includes process modules PM1 to PM6, a transfer module TM (substrate transfer module), and a controller MC.
 プラズマ処理システムPSは、台2a~2d、容器4a~4d、アライナAN、ロードロックモジュールLL1,LL2、及び交換ステーションEXを更に備えていてもよい。なお、プラズマ処理システムPSにおける台の個数、容器の個数、ロードロックモジュールの個数は一つ以上の任意の個数であり得る。また、プラズマ処理システムPSにおけるプロセスモジュールの個数は、一つ以上の任意の個数であり得る。 The plasma processing system PS may further comprise pedestals 2a-2d, containers 4a-4d, aligners AN, load lock modules LL1 and LL2, and exchange station EX. Note that the number of stages, the number of vessels, and the number of load lock modules in the plasma processing system PS may be any number of one or more. Also, the number of process modules in the plasma processing system PS may be any number of one or more.
 台2a~2dは、ローダモジュールLMの一縁に沿って配列されている。容器4a~4dはそれぞれ、台2a~2d上に搭載されている。容器4a~4dの各々は、例えば、FOUP(Front Opening Unified Pod)と称される容器である。容器4a~4dの各々は、その内部に基板Wを収容するように構成されている。 The platforms 2a-2d are arranged along one edge of the loader module LM. Containers 4a-4d are mounted on platforms 2a-2d, respectively. Each of the containers 4a to 4d is, for example, a container called a FOUP (Front Opening Unified Pod). Each of the containers 4a-4d is configured to accommodate a substrate W therein.
 ローダモジュールLMは、チャンバを有する。ローダモジュールLMのチャンバ内の圧力は、大気圧に設定される。ローダモジュールLMは、搬送ロボットRLMを有する。搬送ロボットRLMは、制御部MCによって制御される。搬送ロボットRLMは、ローダモジュールLMのチャンバを介して基板Wを搬送するように構成されている。搬送ロボットRLMは、容器4a~4dの各々とアライナANとの間、アライナANとロードロックモジュールLL1,LL2の各々との間、ロードロックモジュールLL1,LL2の各々と容器4a~4dの各々との間で、基板Wを搬送し得る。アライナANは、ローダモジュールLMに接続されている。アライナANは、基板Wの位置の調整(位置の較正)を行うように構成されている。 The loader module LM has a chamber. The pressure inside the chamber of the loader module LM is set to atmospheric pressure. The loader module LM has a transport robot RLM. The transport robot RLM is controlled by the controller MC. The transport robot RLM is configured to transport the substrate W through the chambers of the loader module LM. The transfer robot RLM is arranged between each of the containers 4a to 4d and the aligner AN, between the aligner AN and each of the load lock modules LL1 and LL2, and between each of the load lock modules LL1 and LL2 and each of the containers 4a to 4d. In between, a substrate W may be transported. The aligner AN is connected to the loader module LM. The aligner AN is configured to adjust the position of the substrate W (position calibration).
 ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、ローダモジュールLMと搬送モジュールTMとの間に設けられている。ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、予備減圧室を提供している。ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、ゲートバルブを介して、ローダモジュールLMに接続されている。また、ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、ゲートバルブを介して搬送モジュールTMに接続されている。 Each of the load lock module LL1 and the load lock module LL2 is provided between the loader module LM and the transport module TM. Each of load lock module LL1 and load lock module LL2 provides a pre-decompression chamber. Each of load lock module LL1 and load lock module LL2 is connected to loader module LM via a gate valve. Also, each of the load lock module LL1 and the load lock module LL2 is connected to the transfer module TM via a gate valve.
 搬送モジュールTMは、真空環境下で基板を搬送するように構成されている。搬送モジュールTMは、減圧可能な搬送チャンバTC及び搬送ロボットRTMを有している。搬送ロボットRTMは、アームARMを有し、制御部MCによって制御される。搬送ロボットRTMは、搬送チャンバTCを介して基板Wを搬送するように構成されている。搬送ロボットRTMは、ロードロックモジュールLL1,LL2の各々とプロセスモジュールPM1~PM6の各々との間、及び、プロセスモジュールPM1~PM6のうち任意の二つのプロセスモジュールの間において、基板Wを搬送し得る。 The transfer module TM is configured to transfer substrates in a vacuum environment. The transport module TM has a decompressible transport chamber TC and a transport robot RTM. The transport robot RTM has an arm ARM and is controlled by the controller MC. The transport robot RTM is configured to transport the substrate W through the transport chamber TC. The transport robot RTM can transport the substrate W between each of the load lock modules LL1 and LL2 and each of the process modules PM1-PM6, and between any two process modules among the process modules PM1-PM6. .
 搬送モジュールTMは、一実施形態に係る搬送装置を構成していてもよい。この場合に、搬送ロボットRTMは、後述する天板34(交換式上部電極プレート)をプラズマ処理装置であるプロセスモジュールのチャンバの内部空間に搬送し得る。一実施形態において、搬送ロボットRTMは、天板34(交換式上部電極プレート)を、プラズマ処理装置であるプロセスモジュールのプラズマ処理チャンバ内の下側位置と搬送チャンバとの間で搬送するように構成され得る。搬送ロボットRTMのアームARMは、後述するチャンバ10の側壁の通路10pを通って、チャンバ10内に進入する。天板34は、ストッカー内に収容されている。ストッカーは、プロセスモジュールPM1~PM6、容器4a~4d、又はプラズマ処理システムの他のモジュール若しくは追加のモジュールであり得る。 The transport module TM may constitute a transport device according to one embodiment. In this case, the transfer robot RTM can transfer a top plate 34 (replaceable upper electrode plate), which will be described later, to the internal space of the chamber of the process module, which is the plasma processing apparatus. In one embodiment, the transfer robot RTM is configured to transfer the top plate 34 (replaceable upper electrode plate) between a lower position within the plasma processing chamber of the process module of the plasma processing apparatus and the transfer chamber. can be The arm ARM of the transfer robot RTM enters the chamber 10 through a passage 10p on the side wall of the chamber 10, which will be described later. The top plate 34 is accommodated in the stocker. The stockers can be process modules PM1-PM6, vessels 4a-4d, or other or additional modules of the plasma processing system.
 プロセスモジュールPM1~PM6の各々は、ゲートバルブを介して搬送モジュールTMに接続されている。プロセスモジュールPM1~PM6の各々は、専用の基板処理を行うように構成された装置である。プロセスモジュールPM1~PM6のうち少なくとも一つのプロセスモジュールは、プラズマ処理装置である。 Each of the process modules PM1-PM6 is connected to the transfer module TM via a gate valve. Each of the process modules PM1-PM6 is an apparatus configured to perform dedicated substrate processing. At least one of the process modules PM1-PM6 is a plasma processing apparatus.
 交換ステーションEXは、チャンバ(搬送チャンバ)及び搬送ロボットを有している。交換ステーションEXの搬送ロボットは、アームAEXを有し、制御部MCによって制御される。交換ステーションEXは、プラズマ処理装置であるプロセスモジュール(例えば、プロセスモジュールPM5)のチャンバに接続するために移動可能であるように構成されていてもよい。また、交換ステーションEXは、プラズマ処理装置であるプロセスモジュールのチャンバの内部空間と交換ステーションEXのチャンバの内部空間とを、これら内部空間が減圧された状態で互いに接続するように構成されている。天板34は、搬送ロボットによって、交換ステーションEXのチャンバからプラズマ処理装置であるプロセスモジュールのチャンバの内部空間に搬送されてもよい。即ち、交換ステーションEXは、天板34を、プラズマ処理装置のチャンバの内部空間に搬送する別の搬送装置として用いられてもよい。一実施形態において、交換ステーションEXの搬送ロボットは、天板34(交換式上部電極プレート)を、プラズマ処理装置であるプロセスモジュールのプラズマ処理チャンバ内の下側位置と交換ステーションEXの搬送チャンバとの間で搬送するように構成され得る。交換ステーションEXの搬送ロボットのアームAEXは、後述するチャンバ10の側壁の通路101pを通って、チャンバ10内に進入する。 The exchange station EX has a chamber (transfer chamber) and a transfer robot. The transfer robot of the exchange station EX has an arm AEX and is controlled by the controller MC. The exchange station EX may be configured to be movable for connection to a chamber of a process module (eg, process module PM5) that is a plasma processing apparatus. Further, the exchange station EX is configured to connect the internal space of the chamber of the process module, which is the plasma processing apparatus, with the internal space of the chamber of the exchange station EX while the internal spaces are decompressed. The top plate 34 may be transferred from the chamber of the exchange station EX to the internal space of the chamber of the process module, which is the plasma processing apparatus, by the transfer robot. That is, the exchange station EX may be used as another transfer device that transfers the top plate 34 to the internal space of the chamber of the plasma processing apparatus. In one embodiment, the transfer robot of the exchange station EX moves the top plate 34 (exchangeable upper electrode plate) between the lower position in the plasma processing chamber of the process module, which is the plasma processing apparatus, and the transfer chamber of the exchange station EX. can be configured to transport between The transfer robot arm AEX of the exchange station EX enters the chamber 10 through a passage 101p on the side wall of the chamber 10, which will be described later.
 制御部MCは、プラズマ処理システムPSの各部を制御するように構成されている。制御部MCは、プロセッサ、記憶装置、入力装置、表示装置等を備えるコンピュータであり得る。制御部MCは、記憶装置に記憶されている制御プログラムを実行し、当該記憶装置に記憶されているレシピデータに基づいてプラズマ処理システムPSの各部を制御する。後述する例示的実施形態に係る保守方法は、制御部MCによるプラズマ処理システムPSの各部の制御により、プラズマ処理システムPSにおいて実行され得る。 The controller MC is configured to control each part of the plasma processing system PS. The control unit MC can be a computer including a processor, storage device, input device, display device, and the like. The controller MC executes a control program stored in the storage device and controls each part of the plasma processing system PS based on the recipe data stored in the storage device. A maintenance method according to an exemplary embodiment, which will be described later, can be executed in the plasma processing system PS by controlling each part of the plasma processing system PS by the controller MC.
 以下、図2を参照して、例示的実施形態に係るプラズマ処理装置について説明する。図2は、一つの例示的実施形態に係るプラズマ処理装置を概略的に示す図である。図2に示すプラズマ処理装置1は、プラズマ処理システムPSの一つ以上のプロセスモジュールとして用いられ得る。 A plasma processing apparatus according to an exemplary embodiment will be described below with reference to FIG. FIG. 2 is a schematic diagram of a plasma processing apparatus according to one exemplary embodiment. The plasma processing apparatus 1 shown in FIG. 2 can be used as one or more process modules of the plasma processing system PS.
 プラズマ処理装置1は、容量結合型のプラズマ処理装置である。プラズマ処理装置1は、チャンバ10(プラズマ処理チャンバ)を備える。チャンバ10は、その中に内部空間10sを提供している。チャンバ10は、チャンバ本体12を含んでいてもよい。チャンバ本体12は、略円筒形状を有しており、その内側において内部空間10sを提供する。チャンバ本体12は、例えばアルミニウムから形成される。チャンバ本体12の内壁面には、耐プラズマ性を有する処理が施される。例えば、チャンバ本体12の内壁面には、陽極酸化処理が施されている。チャンバ本体12は、電気的に接地されている。 The plasma processing apparatus 1 is a capacitively coupled plasma processing apparatus. The plasma processing apparatus 1 includes a chamber 10 (plasma processing chamber). The chamber 10 provides an interior space 10s therein. Chamber 10 may include a chamber body 12 . The chamber body 12 has a substantially cylindrical shape and provides an internal space 10s inside thereof. The chamber body 12 is made of aluminum, for example. The inner wall surface of the chamber main body 12 is treated with plasma resistance. For example, the inner wall surface of the chamber body 12 is anodized. The chamber body 12 is electrically grounded.
 チャンバ10は、側壁を含む。側壁は、通路10pを提供する。側壁は、チャンバ本体12によって提供され得る。基板Wは、内部空間10sの中に搬入されるとき、また、内部空間10sから搬出されるときに、通路10pを通る。通路10pは、ゲートバルブ10gにより開閉可能である。チャンバ10の側壁は、通路101pを更に提供していてもよい。通路101pは、ゲートバルブ101gにより開閉可能である。チャンバ10は、上壁10uを更に含んでいてもよい。上壁10uは、チャンバ本体12上に設けられており、チャンバ10の上端開口を提供している。 The chamber 10 includes sidewalls. The sidewalls provide passages 10p. Side walls may be provided by the chamber body 12 . The substrate W passes through the passage 10p when it is carried into the internal space 10s and when it is carried out from the internal space 10s. The passage 10p can be opened and closed by a gate valve 10g. The sidewalls of chamber 10 may further provide passageways 101p. The passage 101p can be opened and closed by a gate valve 101g. Chamber 10 may further include a top wall 10u. An upper wall 10 u is provided on the chamber body 12 and provides an upper end opening of the chamber 10 .
 プラズマ処理装置1は、基板支持部14を更に備える。基板支持部14は、チャンバ10内に設けられている。基板支持部14は、基台18及び静電チャック20を含む。基板支持部14は、電極プレート16を更に含んでいてもよい。 The plasma processing apparatus 1 further includes a substrate support section 14 . A substrate support 14 is provided within the chamber 10 . Substrate support 14 includes base 18 and electrostatic chuck 20 . Substrate support 14 may further include an electrode plate 16 .
 基板支持部14は、支持部13を更に含んでいてもよい。支持部13は、チャンバ10の底部上に設けられている。支持部13は、絶縁材料から形成されている。支持部13は、略円筒形状を有する。支持部13は、内部空間10sの中で、チャンバ10の底部から上方に延在する。支持部13は、基台18、静電チャック20、及び電極プレート16を支持している。 The substrate support section 14 may further include a support section 13 . A support 13 is provided on the bottom of the chamber 10 . The support portion 13 is made of an insulating material. The support portion 13 has a substantially cylindrical shape. The support 13 extends upward from the bottom of the chamber 10 within the interior space 10s. The support portion 13 supports the base 18 , the electrostatic chuck 20 and the electrode plate 16 .
 電極プレート16は、アルミニウムのような導電性材料から形成されており、略円盤形状を有している。基台18は、電極プレート16上に設けられている。基台18は、アルミニウムのような導電性材料から形成されていてもよい。基台18は、略円盤形状を有している。基台18は、電極プレート16に電気的に接続されている。一実施形態において、基台18は、容量結合型プラズマ処理装置の下部電極を構成する。下部電極は、基台18の導電性部材であってもよい。或いは、下部電極は、基板支持部14内に設けられた少なくとも一つの他の電極であってもよい。 The electrode plate 16 is made of a conductive material such as aluminum and has a substantially disk shape. A base 18 is provided on the electrode plate 16 . Base 18 may be formed from a conductive material such as aluminum. The base 18 has a substantially disk shape. The base 18 is electrically connected to the electrode plate 16 . In one embodiment, base 18 constitutes the lower electrode of a capacitively coupled plasma processing apparatus. The bottom electrode may be a conductive member of base 18 . Alternatively, the bottom electrode may be at least one other electrode provided within the substrate support 14 .
 静電チャック20は、基台18上に設けられている。基板Wは、静電チャック20の上面の上に載置される。静電チャック20は、基板Wを保持する。静電チャック20は、誘電体から形成された本体を有する。静電チャック20の本体内には、チャック電極が設けられている。チャック電極は、導体から形成された膜である。チャック電極は、スイッチを介して直流電源に接続される。直流電源からの電圧が静電チャック20のチャック電極に印加されると、静電チャック20と基板Wとの間で静電引力が発生する。発生した静電引力により、基板Wは静電チャック20に引き付けられ、静電チャック20によって保持される。 The electrostatic chuck 20 is provided on the base 18 . A substrate W is placed on the upper surface of the electrostatic chuck 20 . The electrostatic chuck 20 holds the substrate W. As shown in FIG. Electrostatic chuck 20 has a body formed from a dielectric. A chuck electrode is provided in the main body of the electrostatic chuck 20 . A chuck electrode is a membrane formed from a conductor. The chuck electrode is connected to a DC power supply through a switch. When a voltage from the DC power supply is applied to the chuck electrode of the electrostatic chuck 20, an electrostatic attractive force is generated between the electrostatic chuck 20 and the substrate W. As shown in FIG. The substrate W is attracted to the electrostatic chuck 20 and held by the electrostatic chuck 20 due to the generated electrostatic attraction.
 基板支持部14は、その上に載置されるエッジリングERを支持するように構成されていてもよい。エッジリングERは、シリコン、炭化シリコン、又は石英などから形成され得る。基板Wは、基板支持部14上でエッジリングERによって囲まれた領域の中に配置される。 The substrate support 14 may be configured to support the edge ring ER placed thereon. The edge ring ER may be made of silicon, silicon carbide, quartz, or the like. A substrate W is placed on the substrate support 14 in the area surrounded by the edge ring ER.
 基台18は、その内において流路18fを提供している。流路18fは、チラーユニットから配管26aを介して供給される冷媒を受ける。チラーユニットは、チャンバ10の外部に配置されている。冷媒は、流路18fの中を流れて、配管26bを介してチラーユニットに戻される。 The base 18 provides a channel 18f therein. 18 f of flow paths receive the refrigerant|coolant supplied through the piping 26a from a chiller unit. A chiller unit is located outside the chamber 10 . Refrigerant flows through flow path 18f and is returned to the chiller unit via line 26b.
 プラズマ処理装置1は、ガス供給ライン28を提供していてもよい。ガス供給ライン28は、伝熱ガス供給機構28sからの伝熱ガス、例えばHeガスを、静電チャック20の上面と基板Wの裏面との間の間隙に供給する。 The plasma processing apparatus 1 may provide a gas supply line 28. The gas supply line 28 supplies the gap between the upper surface of the electrostatic chuck 20 and the back surface of the substrate W with a heat transfer gas such as He gas from a heat transfer gas supply mechanism 28s.
 基板支持部14は、外周部21、絶縁部22、及びカバーリングCRを更に含んでいてもよい。外周部21は、略円筒形状を有しており、アルミニウムのような金属から形成されている。外周部21の表面は、耐プラズマ性を有する材料から形成されていてもよい。外周部21は、支持部13の外周に沿って延在している。 The substrate support portion 14 may further include an outer peripheral portion 21, an insulating portion 22, and a cover ring CR. The outer peripheral portion 21 has a substantially cylindrical shape and is made of metal such as aluminum. The surface of the outer peripheral portion 21 may be made of a plasma-resistant material. The outer peripheral portion 21 extends along the outer periphery of the support portion 13 .
 絶縁部22は、外周部21上に設けられている。絶縁部22は、略円筒形状を有しており、酸化シリコンのような絶縁材料から形成されている。絶縁部22は、支持部13及び静電チャック20の外周に沿って延在している。カバーリングCRは、略環形状を有しており、酸化シリコンのような絶縁材料から形成されている。カバーリングCRは、絶縁部22上に設けられている。エッジリングERは、カバーリングCRによって囲まれた領域内に配置される。 The insulating portion 22 is provided on the outer peripheral portion 21 . The insulating portion 22 has a substantially cylindrical shape and is made of an insulating material such as silicon oxide. The insulating portion 22 extends along the outer peripheries of the support portion 13 and the electrostatic chuck 20 . The cover ring CR has a substantially ring shape and is made of an insulating material such as silicon oxide. The cover ring CR is provided on the insulating portion 22 . The edge ring ER is arranged within the area enclosed by the covering ring CR.
 プラズマ処理装置1は、上部電極30(上部電極アセンブリ)を更に備えている。上部電極30は、基板支持部14の上方に設けられる。上部電極30は、天板34(交換式上部電極プレート)及び支持部37(天板支持体又は電極支持部)を含む。天板34は、基板支持部14の上方、且つ、支持部37の下に配置される。天板34は、略円盤形状を有する。天板34の下面は、内部空間10s側の下面であり、内部空間10sを画成する。天板34は、発生するジュール熱の少ない低電気抵抗の導電体又は半導体から形成され得る。天板34は、例えばシリコンから形成される。天板34は、複数のガス孔34aを提供している。複数のガス孔34aは、天板34をその板厚方向に貫通している。 The plasma processing apparatus 1 further includes an upper electrode 30 (upper electrode assembly). The upper electrode 30 is provided above the substrate supporting portion 14 . The top electrode 30 includes a top plate 34 (replaceable top electrode plate) and a support 37 (top support or electrode support). The top plate 34 is arranged above the substrate support portion 14 and below the support portion 37 . The top plate 34 has a substantially disk shape. The bottom surface of the top plate 34 is the bottom surface on the side of the internal space 10s, and defines the internal space 10s. The top plate 34 can be made of a low electric resistance conductor or semiconductor that generates little Joule heat. The top plate 34 is made of silicon, for example. The top plate 34 provides a plurality of gas holes 34a. The plurality of gas holes 34a pass through the top plate 34 in its plate thickness direction.
 支持部37は、チャンバ10の上端開口の中に設けられている。支持部37は、部材32と共にチャンバ10の上端開口を閉じている。部材32は、支持部37とチャンバ10の上壁10uとの間に介在しており、酸化シリコンのような絶縁材料から形成されている。 The support part 37 is provided inside the upper end opening of the chamber 10 . The support 37 closes the top opening of the chamber 10 together with the member 32 . The member 32 is interposed between the support 37 and the upper wall 10u of the chamber 10 and is made of an insulating material such as silicon oxide.
 支持部37は、本体37A(支持部材)及び静電吸着部35(静電吸着層)を含む。本体37Aは、アルミニウムのような導電性材料から形成されている。静電吸着部35は、本体37Aに取り付けられている。一実施形態において、静電吸着部35は、本体37Aの下面に形成されている。静電吸着部35は、天板34と静電吸着部35との間で静電引力を発生することにより、天板34を保持又は静電吸着する。静電吸着部35の詳細については、後述する。 The support portion 37 includes a main body 37A (support member) and an electrostatic adsorption portion 35 (electrostatic adsorption layer). Body 37A is formed from a conductive material such as aluminum. The electrostatic adsorption part 35 is attached to the main body 37A. In one embodiment, the electrostatic attraction part 35 is formed on the lower surface of the main body 37A. The electrostatic attraction portion 35 holds or electrostatically attracts the top plate 34 by generating an electrostatic attractive force between the top plate 34 and the electrostatic attraction portion 35 . The details of the electrostatic adsorption portion 35 will be described later.
 本体37Aは、その内部において流路37cを提供している。流路37cは、チラーユニットから供給される冷媒を受ける。チラーユニットは、チャンバ10の外部に設けられている。冷媒は、流路37cの中を流れて、チラーユニットに戻される。これにより、本体37Aの温度が調整される。プラズマ処理装置1では、天板34の温度は、本体37Aと天板34との間の熱交換によって調整される。 The main body 37A provides a channel 37c inside it. The flow path 37c receives refrigerant supplied from the chiller unit. A chiller unit is provided outside the chamber 10 . The refrigerant flows through passage 37c and is returned to the chiller unit. Thereby, the temperature of the main body 37A is adjusted. In the plasma processing apparatus 1 , the temperature of the top plate 34 is adjusted by heat exchange between the main body 37A and the top plate 34 .
 本体37Aは、その内部において、複数のガス導入路37aを更に提供している。複数のガス導入路37aは、本体37Aの上面から本体37Aの内部まで下方に延びるように形成されている。本体37Aは、その内部において、複数のガス拡散室37bを更に提供している。複数のガス導入路37aはそれぞれ、複数のガス拡散室37bに接続している。本体37Aは、複数のガス流路37eを更に提供している。複数のガス流路37eの各々は、対応のガス拡散室37bから本体37Aの下面(又は天板34の上面)に向けて延びている。複数のガス流路37eは、天板34の複数のガス孔34aに処理ガスを供給する。本体37Aは、複数のガス導入口37dを更に提供している。複数のガス導入口37dはそれぞれ、複数のガス導入路37aに接続されている。複数のガス導入口37dには、ガス供給管38が接続されている。 The main body 37A further provides a plurality of gas introduction paths 37a inside thereof. A plurality of gas introduction paths 37a are formed so as to extend downward from the upper surface of the main body 37A to the inside of the main body 37A. Body 37A further provides a plurality of gas diffusion chambers 37b therein. The plurality of gas introduction paths 37a are respectively connected to the plurality of gas diffusion chambers 37b. Body 37A further provides a plurality of gas passages 37e. Each of the plurality of gas flow paths 37e extends from the corresponding gas diffusion chamber 37b toward the lower surface of the main body 37A (or the upper surface of the top plate 34). The multiple gas flow paths 37 e supply the processing gas to the multiple gas holes 34 a of the top plate 34 . Body 37A further provides a plurality of gas inlets 37d. The plurality of gas introduction ports 37d are respectively connected to the plurality of gas introduction paths 37a. A gas supply pipe 38 is connected to the plurality of gas introduction ports 37d.
 ガス供給管38には、ガス供給部GSが接続されている。一実施形態では、ガス供給部GSは、ガスソース群40、バルブ群42、及び流量制御器群44を含む。ガスソース群40は、流量制御器群44及びバルブ群42を介して、ガス供給管38に接続される。ガスソース群40は、複数のガスソースを含む。複数のガスソースは、処理ガスを構成する複数のガスのソースを含む。バルブ群42は、複数の開閉バルブを含む。流量制御器群44は、複数の流量制御器を含む。複数の流量制御器の各々は、マスフローコントローラ又は圧力制御式の流量制御器である。ガスソース群40の複数のガスソースの各々は、バルブ群42の対応のバルブ及び流量制御器群44の対応の流量制御器を介して、ガス供給管38に接続される。 A gas supply unit GS is connected to the gas supply pipe 38 . In one embodiment, gas supply GS includes gas source group 40 , valve group 42 , and flow controller group 44 . A group of gas sources 40 are connected to the gas supply pipe 38 via a group of flow controllers 44 and a group of valves 42 . Gas source group 40 includes a plurality of gas sources. The multiple gas sources include sources of multiple gases that make up the process gas. The valve group 42 includes a plurality of open/close valves. Flow controller group 44 includes a plurality of flow controllers. Each of the plurality of flow controllers is a mass flow controller or a pressure controlled flow controller. Each of the plurality of gas sources in gas source group 40 is connected to gas supply pipe 38 via a corresponding valve in valve group 42 and a corresponding flow controller in flow controller group 44 .
 プラズマ処理装置1は、高周波電源62及びバイアス電源64を更に備える。高周波電源62は、プラズマ生成用のソース高周波電力を発生するように構成されている。ソース高周波電力の周波数は、例えば、27MHz~100MHzの範囲内の周波数である。高周波電源62は、整合器66及び電極プレート16を介して下部電極(例えば、基台18)に接続されている。整合器66は、高周波電源62の負荷側の入力インピーダンスを、高周波電源62の出力インピーダンスに整合させるための整合回路を有する。なお、高周波電源62は、整合器66を介して、上部電極30に接続されていてもよい。 The plasma processing apparatus 1 further includes a high frequency power supply 62 and a bias power supply 64 . The radio frequency power supply 62 is configured to generate source radio frequency power for plasma generation. The frequency of the source RF power is, for example, a frequency within the range of 27 MHz to 100 MHz. A high-frequency power supply 62 is connected to the lower electrode (for example, the base 18 ) through a matching device 66 and the electrode plate 16 . The matching device 66 has a matching circuit for matching the input impedance on the load side of the high frequency power supply 62 with the output impedance of the high frequency power supply 62 . The high-frequency power supply 62 may be connected to the upper electrode 30 via a matching device 66 .
 バイアス電源64は、基板Wにイオンを引き込むための電気バイアスエネルギーを発生するように構成されている。電気バイアスエネルギーは、ソース高周波電力の周波数よりも低い周波数、例えば100kHz~13.56MHzの範囲内の周波数を有する。電気バイアスエネルギーは、例えばバイアス高周波電力である。この場合に、バイアス電源64は、整合器68及び電極プレート16を介して基台18に接続される。整合器68は、バイアス電源64の負荷側の入力インピーダンスを、バイアス電源64の出力インピーダンスに整合させるための整合回路を有する。 The bias power supply 64 is configured to generate electrical bias energy for drawing ions into the substrate W. The electrical bias energy has a frequency that is lower than the frequency of the source RF power, eg, in the range of 100 kHz to 13.56 MHz. The electrical bias energy is, for example, bias RF power. In this case, the bias power supply 64 is connected to the base 18 via the matching device 68 and the electrode plate 16. FIG. The matching device 68 has a matching circuit for matching the input impedance on the load side of the bias power supply 64 with the output impedance of the bias power supply 64 .
 プラズマ処理装置1は、直流電源部70を更に備えていてもよい。直流電源部70は、上部電極30に接続される。直流電源部70は、負の直流電圧を発生し、当該直流電圧を上部電極30に印加することが可能である。 The plasma processing apparatus 1 may further include a DC power supply section 70 . A DC power supply unit 70 is connected to the upper electrode 30 . The DC power supply section 70 can generate a negative DC voltage and apply the DC voltage to the upper electrode 30 .
 以下、図2と共に、図3を参照する。図3は、一つの例示的実施形態に係る上部電極の断面図である。図3に示すように、上部電極30は、天板34及び支持部37が下から順に重ねられた構造を有する。支持部37において、静電吸着部35は、本体37Aの下面に接するように、本体37Aと一体的に形成されている。静電吸着部35は、例えば、溶射によって支持部37に形成される。静電吸着部35は、天板34と本体37Aとの間に介在する。天板34は、静電吸着部35の下面に接するように静電吸着部35に引き付けられて、静電吸着部35によって保持される。また、天板34は、本体37Aと電気的に接続される。 Below, FIG. 3 will be referred to along with FIG. FIG. 3 is a cross-sectional view of a top electrode according to one exemplary embodiment. As shown in FIG. 3, the upper electrode 30 has a structure in which a top plate 34 and a support portion 37 are stacked in order from the bottom. In the support portion 37, the electrostatic attraction portion 35 is formed integrally with the main body 37A so as to be in contact with the lower surface of the main body 37A. The electrostatic adsorption portion 35 is formed on the support portion 37 by thermal spraying, for example. The electrostatic adsorption portion 35 is interposed between the top plate 34 and the main body 37A. The top plate 34 is attracted to and held by the electrostatic adsorption section 35 so as to be in contact with the lower surface of the electrostatic adsorption section 35 . Also, the top plate 34 is electrically connected to the main body 37A.
 以下、図2及び図3と共に図4~図6を参照する。図4は、一つの例示的実施形態に係る上部電極の詳細を示す断面図である。図5は、一つの例示的実施形態に係る天板支持部の下面を示す図である。図6は、一つの例示的実施形態に係る静電吸着部における複数の電極を示す図である。静電吸着部35は、本体35aを含む。本体35aは、アルミナ(Al)、窒化アルミニウム(AlN)のような誘電体から形成されている。静電吸着部35は、一つ以上の電極35bを更に含む。一つ以上の電極35bは、導体から形成された膜であり、本体35aの中に設けられている。一つ以上の電極35bは、溶射により形成された溶射膜、導体から形成された板、又はこれらの双方を含んでいてもよい。一つ以上の電極35bは、一つ以上の電源に接続されている。一つ以上の電源からの電圧が一つ以上の電極35bに印加されると、静電吸着部35と天板34との間で静電引力が発生する。発生した静電引力により、天板34は静電吸着部35に引き付けられ、静電吸着部35によって保持される。なお、一つ以上の電極35bに接続される一つ以上の電源は、直流電源であってもよく、交流電源であってもよい。 4 to 6 together with FIGS. 2 and 3. FIG. FIG. 4 is a cross-sectional view showing details of a top electrode according to one exemplary embodiment. FIG. 5 is a diagram illustrating the underside of a top support according to one exemplary embodiment. FIG. 6 is a diagram showing multiple electrodes in an electrostatic chuck according to one exemplary embodiment. The electrostatic attraction part 35 includes a main body 35a. The body 35a is made of a dielectric such as alumina (Al 2 O 3 ), aluminum nitride (AlN). The electrostatic adsorption part 35 further includes one or more electrodes 35b. One or more electrodes 35b are membranes formed from a conductor and are provided within the body 35a. One or more of the electrodes 35b may comprise a thermal spray film formed by thermal spraying, a plate formed from a conductor, or both. One or more electrodes 35b are connected to one or more power sources. When a voltage from one or more power sources is applied to one or more electrodes 35b, electrostatic attraction is generated between the electrostatic adsorption portion 35 and the top plate 34. FIG. Due to the generated electrostatic attractive force, the top plate 34 is attracted to the electrostatic chucking portion 35 and held by the electrostatic chucking portion 35 . One or more power sources connected to one or more electrodes 35b may be a DC power source or an AC power source.
 一実施形態では、静電吸着部35は、複数の電極35bを含む。複数の電極35bは、第1の電極351b及び第2の電極352bを含む。第1の電極351bは、第2の電極352bに対して径方向において内側に設けられている。即ち、第1の電極351bは、本体35aの中央領域Z1(図5及び図6参照)の中に設けられている。第2の電極352bは、本体35aの外側領域Z2(図5及び図6参照)の中に設けられている。第1の電極351b及び第2の電極352bには、電源351pからの電圧及び電源352pからの電圧がそれぞれ印加される。電源351p及び電源352pの各々は、直流電源であってもよく、交流電源であってもよい。電源351pからの電圧及び電源352pからの電圧が第1の電極351b及び第2の電極352bにそれぞれ印加されると、静電吸着部35と天板34との間で静電引力が発生する。発生した静電引力により、天板34は静電吸着部35に引き付けられ、静電吸着部35によって保持される。 In one embodiment, the electrostatic attraction part 35 includes a plurality of electrodes 35b. The plurality of electrodes 35b includes first electrodes 351b and second electrodes 352b. The first electrode 351b is provided radially inward with respect to the second electrode 352b. That is, the first electrode 351b is provided in the central region Z1 (see FIGS. 5 and 6) of the main body 35a. The second electrode 352b is provided in the outer region Z2 (see FIGS. 5 and 6) of the main body 35a. A voltage from a power source 351p and a voltage from a power source 352p are applied to the first electrode 351b and the second electrode 352b, respectively. Each of the power supply 351p and the power supply 352p may be a DC power supply or an AC power supply. When the voltage from the power source 351p and the voltage from the power source 352p are applied to the first electrode 351b and the second electrode 352b, respectively, an electrostatic attractive force is generated between the electrostatic adsorption portion 35 and the top plate 34. Due to the generated electrostatic attractive force, the top plate 34 is attracted to the electrostatic chucking portion 35 and held by the electrostatic chucking portion 35 .
 なお、電源351pが発生する直流電圧と電源352pが発生する直流電圧は、互いに異なっていてもよく、同一であってもよい。また、単一の直流電源からの直流電圧が、第1の電極351b及び第2の電極352bに印加されてもよい。また、静電吸着部35は、一つ以上の電極35bとして、単一の電極のみを含んでいてもよい。 The DC voltage generated by the power supply 351p and the DC voltage generated by the power supply 352p may be different from each other or may be the same. Alternatively, a DC voltage from a single DC power supply may be applied to the first electrode 351b and the second electrode 352b. Alternatively, the electrostatic adsorption portion 35 may include only a single electrode as the one or more electrodes 35b.
 静電吸着部35は、複数の貫通孔35hを提供している。複数の貫通孔35hは、静電吸着部35をその厚さ方向(鉛直方向)に貫通している。複数の貫通孔35hはそれぞれ、支持部37の複数のガス流路37eと整列されており、複数のガス流路37eに接続されている。複数の貫通孔35hは、静電吸着部35の下面まで延びている。ガス拡散室37bに存在する処理ガスは、複数のガス流路37e及び静電吸着部35の複数の貫通孔35hを通過して、天板34の上面に供給される。 The electrostatic attraction part 35 provides a plurality of through holes 35h. 35 h of several through-holes have penetrated the electrostatic adsorption|suction part 35 in the thickness direction (vertical direction). The plurality of through holes 35h are respectively aligned with the plurality of gas flow paths 37e of the support portion 37 and connected to the plurality of gas flow paths 37e. The plurality of through holes 35h extend to the lower surface of the electrostatic adsorption portion 35. As shown in FIG. The processing gas existing in the gas diffusion chamber 37 b passes through the plurality of gas flow paths 37 e and the plurality of through holes 35 h of the electrostatic adsorption section 35 and is supplied to the upper surface of the top plate 34 .
 静電吸着部35は、複数の凸部35cを提供している。複数の凸部35cは、下方に突き出している。複数の凸部35cは、静電吸着部35の下面の一部を構成している。静電吸着部35は、複数の凸部35cの先端面(即ち吸着面)だけが天板34の上面に接触するように構成されている。複数の凸部35cは、例えば、ドットパターンを形成する。また、複数の凸部35cの最外周には、複数の凸部35cの全体を囲む環状凸部35dが設けられていてもよい。なお、環状凸部35dは、静電吸着部35の径方向の任意の位置に設けられていてもよい。 The electrostatic attraction part 35 provides a plurality of convex parts 35c. The plurality of protrusions 35c protrude downward. A plurality of convex portions 35 c constitute a part of the lower surface of the electrostatic attraction portion 35 . The electrostatic chucking portion 35 is configured such that only the tip surfaces (that is, the chucking surfaces) of the plurality of convex portions 35c are in contact with the upper surface of the top plate 34. As shown in FIG. The plurality of convex portions 35c form, for example, a dot pattern. Further, an annular convex portion 35d surrounding the entirety of the plurality of convex portions 35c may be provided on the outermost periphery of the plurality of convex portions 35c. Note that the annular projection 35d may be provided at an arbitrary position in the radial direction of the electrostatic adsorption portion 35. As shown in FIG.
 静電吸着部35の複数の貫通孔35hは、複数の凸部35cの間で開口している。即ち、静電吸着部35の複数の貫通孔35h及び複数のガス流路37eは、複数の凸部35cと整列しないように配置されている。ガス流路37eから供給された処理ガスは、静電吸着部35の複数の凸部35cの間の空間で一旦集約されて、複数のガス孔34aからチャンバ10の内部空間10sに吐出される。かかる構造により、内部空間10sのラジカル又はガスが複数のガス孔34aから支持部37のガス流路37eへ移動することを抑制することができる。また、複数のガス流路37eにおいて異常放電が発生することを抑制することができる。 The plurality of through-holes 35h of the electrostatic attraction portion 35 are open between the plurality of convex portions 35c. That is, the plurality of through-holes 35h and the plurality of gas flow paths 37e of the electrostatic adsorption portion 35 are arranged so as not to align with the plurality of protrusions 35c. The processing gas supplied from the gas flow path 37e is temporarily concentrated in the space between the plurality of convex portions 35c of the electrostatic adsorption portion 35 and discharged into the internal space 10s of the chamber 10 through the plurality of gas holes 34a. Such a structure can suppress the movement of radicals or gas in the internal space 10 s from the plurality of gas holes 34 a to the gas flow path 37 e of the support portion 37 . Moreover, it is possible to suppress the occurrence of abnormal discharge in the plurality of gas flow paths 37e.
 天板34が静電吸着部35から取り外される際には、静電吸着部35の一つ以上の電極35bに対する電圧(直流電圧又は交流電圧)の印加が停止され、ガス供給部GSからガスが出力される。天板34は、ガスの圧力によって静電吸着部35から離間する方向に押し下げられる。その結果、天板34が、静電吸着部35から容易に取り外される。 When the top plate 34 is removed from the electrostatic adsorption section 35, the application of the voltage (DC voltage or AC voltage) to the one or more electrodes 35b of the electrostatic adsorption section 35 is stopped, and the gas is supplied from the gas supply section GS. output. The top plate 34 is pushed down in a direction away from the electrostatic adsorption portion 35 by the pressure of the gas. As a result, the top plate 34 can be easily removed from the electrostatic chucking portion 35 .
 以上説明した上部電極30では、静電吸着部35が支持部37の本体37Aの下面に直接的に形成されている。したがって、天板34の熱が本体37Aへ効率良く伝導される。故に、天板34を効率良く冷却することが可能である。また、複数の凸部35cの間の空間に処理ガスが供給されるので、天板34の熱は、支持部37の本体37Aに更に効率良く伝達される。また、複数の凸部35cがドットパターンを形成しているので、処理ガスは、天板34の上面全体に対して均一に拡散される。したがって、天板34の全体を均一に冷却することが可能となる。 In the upper electrode 30 described above, the electrostatic adsorption portion 35 is directly formed on the lower surface of the main body 37A of the support portion 37. Therefore, the heat of the top plate 34 is efficiently conducted to the main body 37A. Therefore, it is possible to cool the top plate 34 efficiently. In addition, since the processing gas is supplied to the spaces between the plurality of convex portions 35c, the heat of the top plate 34 is transmitted to the main body 37A of the support portion 37 more efficiently. Further, since the plurality of convex portions 35c form a dot pattern, the processing gas is uniformly diffused over the entire upper surface of the top plate 34. FIG. Therefore, the entire top plate 34 can be uniformly cooled.
 再び図2を参照する。プラズマ処理システムPSは、プラズマ処理装置1の上部電極30の天板34を交換可能であるように構成されている。天板34は、アーム(アームARM又はアームAEX)によって内部空間10sに搬送されて静電吸着部35によって保持される。 Refer to Figure 2 again. The plasma processing system PS is configured such that the top plate 34 of the upper electrode 30 of the plasma processing apparatus 1 is replaceable. The top plate 34 is conveyed to the internal space 10 s by an arm (arm ARM or arm AEX) and held by the electrostatic chuck 35 .
 天板34は、静電吸着部35に対して着脱可能である。また、天板34は、上述の搬送ロボットのアーム(アームARM又はアームAEX)によってチャンバ10内に搬入されて、支持部37の静電吸着部35に静電引力によって保持される。したがって、天板34は、容易に交換され得る。 The top plate 34 is attachable/detachable to/from the electrostatic adsorption portion 35 . The top plate 34 is carried into the chamber 10 by the arm (arm ARM or arm AEX) of the transfer robot described above, and is held by the electrostatic adsorption portion 35 of the support portion 37 by electrostatic attraction. Therefore, the top plate 34 can be easily replaced.
 一実施形態において、プラズマ処理システムPSは、リフタ(リフタユニット)を更に備えていてもよい。リフタは、アーム(アームARM又はアームAEX)によって搬送された天板34を支持部37の直下まで持ち上げるように構成されている。一実施形態では、リフタは、天板34をチャンバ10内の上側位置と下側位置との間で縦方向に移動させるように構成される。リフタは、天板34が上側位置にあるときに天板34を支持部37に固定するように構成される。なお、一実施形態において、天板34は、上述したように、チャンバ10内の下側位置と搬送チャンバとの間で搬送ロボットによって搬送される。 In one embodiment, the plasma processing system PS may further include a lifter (lifter unit). The lifter is configured to lift the top plate 34 transported by the arm (arm ARM or arm AEX) to just below the support portion 37 . In one embodiment, the lifter is configured to move the top plate 34 vertically between upper and lower positions within the chamber 10 . The lifter is configured to fix the top plate 34 to the support portion 37 when the top plate 34 is in the upper position. Note that, in one embodiment, the top plate 34 is transferred by the transfer robot between the lower position within the chamber 10 and the transfer chamber, as described above.
 図2及び図3に示すように、リフタは、円筒壁構造体及びアクチュエータを含む。円筒壁構造体は、チャンバ10の内壁(側壁)と基板支持部14との間に配置される。円筒壁構造体は、天板34を支持するように構成される。アクチュエータは、円筒壁構造体を縦方向に移動させるように構成される。一実施形態において、円筒壁構造体は、円筒部材及び環状部材39を含む。一例において、円筒部材は、シャッタ71である。一例において、アクチュエータは、シャッタ駆動部74である。即ち、リフタは、シャッタ71、シャッタ駆動部74、及び環状部材39を含んでいてもよい。シャッタ71及び環状部材39は、径方向において基板支持部14の外側に設けられている。シャッタ71は、円筒形状を有しており、チャンバ10内に設けられている。シャッタ71は、チャンバ10の側壁に沿って延在している。シャッタ71は、アルミニウムのような導体から形成されており、接地されている。シャッタ71の表面は、耐プラズマ性を有する材料から形成されていてもよい。 As shown in Figures 2 and 3, the lifter includes a cylindrical wall structure and an actuator. A cylindrical wall structure is positioned between the inner wall (side wall) of the chamber 10 and the substrate support 14 . A cylindrical wall structure is configured to support the top plate 34 . The actuator is configured to move the cylindrical wall structure longitudinally. In one embodiment, the cylindrical wall structure includes a cylindrical member and an annular member 39 . In one example, the cylindrical member is shutter 71 . In one example, the actuator is shutter driver 74 . That is, the lifter may include the shutter 71 , the shutter drive section 74 and the annular member 39 . The shutter 71 and the annular member 39 are provided outside the substrate support portion 14 in the radial direction. The shutter 71 has a cylindrical shape and is provided inside the chamber 10 . Shutter 71 extends along the sidewall of chamber 10 . The shutter 71 is made of a conductor such as aluminum and is grounded. The surface of the shutter 71 may be made of a plasma-resistant material.
 シャッタ71は、通路10p及び101pを開閉するために、シャッタ駆動部74によって上下に移動される。シャッタ駆動部74は、シャッタ71の下方に設けられている。シャッタ駆動部74は、ロッド74r及び駆動源74dを含んでいてもよい。ロッド74rは、シャッタ71の下端に結合されており、下方に延びている。ロッド74rは、駆動源74dに接続されている。駆動源74dは、ロッド74rを介してシャッタ71を上下に移動させる動力を発生する。駆動源74dは、モータ、又は油圧若しくはエア圧式の駆動源であってもよい。なお、リフタは、シャッタ71を上下に移動させるシャッタ駆動部として、複数のシャッタ駆動部を含んでいてもよい。複数のシャッタ駆動部は、シャッタ71の下方の領域で、周方向に沿って等間隔で配列され得る。 The shutter 71 is moved up and down by a shutter driving section 74 to open and close the passages 10p and 101p. The shutter driving section 74 is provided below the shutter 71 . The shutter drive section 74 may include a rod 74r and a drive source 74d. The rod 74r is connected to the lower end of the shutter 71 and extends downward. The rod 74r is connected to the drive source 74d. The drive source 74d generates power for moving the shutter 71 up and down via the rod 74r. The drive source 74d may be a motor, or a hydraulic or pneumatic drive source. In addition, the lifter may include a plurality of shutter driving units as shutter driving units for moving the shutter 71 up and down. A plurality of shutter driving units can be arranged at equal intervals along the circumferential direction in the area below the shutter 71 .
 プラズマ処理装置1は、バッフル部材72を更に備えていてもよい。バッフル部材72は、シャッタ71と基板支持部14の外周との間で延在している。バッフル部材72は、その上下の空間を互いに連通させる複数の貫通孔を提供している。バッフル部材72は、アルミニウムのような導体から形成されており、接地されている。バッフル部材72の表面は、耐プラズマ性を有する材料から形成されていてもよい。バッフル部材72の外縁部は、シャッタ71(例えば、その下端部)に固定されている。バッフル部材72の内縁部は、当該内縁部と基板支持部14の外周との間に僅かな隙間を提供するように配置されている。バッフル部材72の下方、且つ、チャンバ10の底部には、排気口10eが設けられている。排気口10eには、排気装置50が接続される。排気装置50は、圧力制御弁、及び、ターボ分子ポンプといった真空ポンプを有する。 The plasma processing apparatus 1 may further include a baffle member 72. The baffle member 72 extends between the shutter 71 and the outer periphery of the substrate support portion 14 . The baffle member 72 provides a plurality of through holes that allow the upper and lower spaces to communicate with each other. Baffle member 72 is formed from a conductor such as aluminum and is grounded. The surface of the baffle member 72 may be made of a plasma-resistant material. An outer edge of the baffle member 72 is fixed to the shutter 71 (for example, its lower end). The inner edge of the baffle member 72 is arranged to provide a slight gap between the inner edge and the outer periphery of the substrate support 14 . Below the baffle member 72 and at the bottom of the chamber 10, an exhaust port 10e is provided. An exhaust device 50 is connected to the exhaust port 10e. The evacuation device 50 has a pressure control valve and a vacuum pump such as a turbomolecular pump.
 環状部材39は、環形状を有する。環状部材39は、導電性材料から形成されており、接地されている。環状部材39は、天板34と同じ材料から形成されていてもよい。環状部材39は、シリコンから形成されていてもよい。環状部材39は、プラズマ処理装置1のチャンバ10内において上壁10uの下面及び部材32の下面を覆うように用いられる。 The annular member 39 has an annular shape. The annular member 39 is made of a conductive material and is grounded. The annular member 39 may be made of the same material as the top plate 34 . The annular member 39 may be made of silicon. The annular member 39 is used to cover the lower surface of the upper wall 10 u and the lower surface of the member 32 inside the chamber 10 of the plasma processing apparatus 1 .
 環状部材39は、円筒部材、即ちシャッタ71から内方に延在しており、天板34を支持するように構成される。一実施形態において、環状部材39は、シャッタ71上に配置されて、シャッタ71によって支持される。一実施形態では、環状部材39の外縁部がシャッタ71の上端部の上に配置される。環状部材39の外縁部及びシャッタ71の上端部は、互いに対面する段差面をそれぞれ提供していてもよい。環状部材39の外縁部の段差面は、シャッタ71の上端部の段差面上に配置される。これにより、環状部材39は、シャッタ71上で自動的に位置決めされる。 The annular member 39 extends inwardly from the cylindrical member or shutter 71 and is configured to support the top plate 34 . In one embodiment, annular member 39 is positioned over and supported by shutter 71 . In one embodiment, the outer edge of annular member 39 is positioned over the upper end of shutter 71 . The outer edge of the annular member 39 and the upper end of the shutter 71 may each provide stepped surfaces that face each other. The stepped surface of the outer edge of the annular member 39 is arranged on the stepped surface of the upper end of the shutter 71 . Thereby, the annular member 39 is automatically positioned on the shutter 71 .
 図3に示すように、環状部材39は、内縁部39iを含む。内縁部39iは、天板34(その周縁部)を支持するように構成されている。一実施形態において、内縁部39iは、段差面39t(内周段差面)を提供していてもよく、天板34は、段差面39tにより支持されてもよい。段差面39tは、その上に天板34の周縁部が載置される底面39bと、天板34の端面に対面する内周面39sを含む。かかる段差面39tにより、天板34は、環状部材39の内縁部39i上で自動的に位置決めされる。 As shown in FIG. 3, the annular member 39 includes an inner edge portion 39i. The inner edge portion 39i is configured to support the top plate 34 (its peripheral edge portion). In one embodiment, the inner edge portion 39i may provide a stepped surface 39t (inner peripheral stepped surface), and the top plate 34 may be supported by the stepped surface 39t. The stepped surface 39t includes a bottom surface 39b on which the peripheral edge of the top plate 34 is placed, and an inner peripheral surface 39s facing the end surface of the top plate 34 . The top plate 34 is automatically positioned on the inner edge portion 39i of the annular member 39 by the step surface 39t.
 一実施形態では、内縁部39iにおいて段差面39tを含む部分39rは、絶縁材料から形成されていてもよい。この場合には、天板34と環状部材39は、互いに電気的に絶縁される。一実施形態においては、部分39rは、段差面39t上に配置される絶縁部材として、円筒壁構造体の一部を構成していてもよい。 In one embodiment, the portion 39r including the step surface 39t in the inner edge portion 39i may be made of an insulating material. In this case, the top plate 34 and the annular member 39 are electrically insulated from each other. In one embodiment, portion 39r may form part of a cylindrical wall structure as an insulating member disposed on stepped surface 39t.
 一実施形態において、プラズマ処理システムPSは、複数のリフタピン27p及びピン駆動部27dを更に備えていてもよい。複数のリフタピン27pは、天板34を上述の下側位置で支持するように構成される。複数のリフタピン27pは、基板支持部14の上面から上方に突き出し可能、且つ、基板支持部14の上面から下方に退避可能であるように構成されている。複数のリフタピン27pは、基板支持部14の下方でリンクに固定されている。ピン駆動部27dは、基板支持部14及びリンクの下方に設けられている。リンクは、ピン駆動部27dに固定されている。ピン駆動部27dは、アームによって搬送された天板34を受け取るように、複数のリフタピン27pを上方に移動させる。ピン駆動部27dは、モータ、又は油圧若しくはエア圧式の駆動源を含んでいてもよい。 In one embodiment, the plasma processing system PS may further include a plurality of lifter pins 27p and pin drivers 27d. The plurality of lifter pins 27p are configured to support the top plate 34 at the lower position described above. The plurality of lifter pins 27p are configured to be able to protrude upward from the upper surface of the substrate supporting portion 14 and retract downward from the upper surface of the substrate supporting portion 14 . A plurality of lifter pins 27p are fixed to the link below the board support portion 14 . The pin drive portion 27d is provided below the board support portion 14 and the link. The link is fixed to the pin driving portion 27d. The pin driving section 27d moves upward the plurality of lifter pins 27p so as to receive the top plate 34 conveyed by the arm. The pin drive 27d may include a motor, or a hydraulic or pneumatic drive source.
 ピン駆動部27dは、アーム(アームARM又はアームAEX)によって搬送された天板34を複数のリフタピン27pそれぞれの上端で受け取るように、複数のリフタピン27pを上方に移動させる。シャッタ駆動部74は、アーム(アームARM又はアームAEX)が内部空間10sから退避した後に、環状部材39が複数のリフタピン27pから天板34を受け取るように、環状部材39及びシャッタ71を上方に移動させる。複数のリフタピン27pは、基板支持部14の上方で基板W及び/又はエッジリングERを支持するように構成されていてもよい。一実施形態において、複数のリフタピン27pは、基板支持部14上に載置される基板W又はエッジリングERを基板支持部14の上で上下に移動させるように構成されていてもよい。 The pin drive unit 27d moves the plurality of lifter pins 27p upward so that the top plate 34 conveyed by the arm (arm ARM or arm AEX) is received by the upper end of each of the plurality of lifter pins 27p. The shutter drive unit 74 moves the annular member 39 and the shutter 71 upward so that the annular member 39 receives the top plate 34 from the plurality of lifter pins 27p after the arm (arm ARM or arm AEX) is retracted from the internal space 10s. Let A plurality of lifter pins 27p may be configured to support the substrate W and/or edge ring ER above the substrate support 14 . In one embodiment, the plurality of lifter pins 27p may be configured to move the substrate W or edge ring ER placed on the substrate support 14 up and down over the substrate support 14 .
 以下、図7~図14を参照して、プラズマ処理システムPSの保守方法及びプラズマ処理システムPSの各部の動作について説明する。図7は、一つの例示的実施形態に係るプラズマ処理システムの保守方法を示す流れ図である。図8~図14の各々は、一つの例示的実施形態に係るプラズマ処理システムの、天板の交換の際の一状態を示す図である。 The maintenance method of the plasma processing system PS and the operation of each part of the plasma processing system PS will be described below with reference to FIGS. 7 to 14. FIG. FIG. 7 is a flow diagram illustrating a method of maintaining a plasma processing system according to one exemplary embodiment. Each of FIGS. 8-14 illustrates one state of the plasma processing system according to one exemplary embodiment during top plate replacement.
 図7に示す保守方法(以下、「方法MT」という)において、プラズマ処理システムPSの各部は、制御部MCによって制御される。制御部MCは、天板34がチャンバ10内で生成されたプラズマに晒された積算時間又は天板34の消耗量が所定の基準を満たす場合に、天板34を別の天板34に交換するように構成されていてもよい。所定の基準は、天板34がチャンバ10内で生成されたプラズマに晒された積算時間が所定時間を越える場合に満たされる。或いは、所定の基準は、天板34の消耗量が所定の消耗量を超える場合に満たされる。天板34の消耗量は、例えば光干渉計のような光学的測定装置を用いて光学的に測定されてもよい。 In the maintenance method (hereinafter referred to as "method MT") shown in FIG. 7, each part of the plasma processing system PS is controlled by the controller MC. The controller MC replaces the top plate 34 with another top plate 34 when the cumulative time of exposure of the top plate 34 to the plasma generated in the chamber 10 or the consumption amount of the top plate 34 satisfies a predetermined standard. may be configured to A predetermined criterion is met if the cumulative time that the top plate 34 is exposed to the plasma generated within the chamber 10 exceeds a predetermined amount of time. Alternatively, the predetermined criterion is met when the amount of wear of the top plate 34 exceeds the predetermined amount of wear. The wear amount of the top plate 34 may be optically measured using an optical measuring device such as an optical interferometer.
 方法MTにおいては、天板34を交換するために、天板34が上述の上側位置から下側位置まで、アクチュエータ(シャッタ駆動部74)によって移動される。次いで、天板34が、チャンバ10内の下側位置から搬送チャンバに、搬送ロボット(例えば、そのアーム)によって搬出される。天板34を搬出するために、制御部MCは、リフタ(例えば、シャッタ駆動部74)及び上述の搬送ロボットを制御する。 In method MT, in order to replace the top plate 34, the top plate 34 is moved from the above-described upper position to the lower position by the actuator (shutter drive unit 74). The top plate 34 is then transferred from the lower position within the chamber 10 to the transfer chamber by the transfer robot (eg, its arm). In order to carry out the top plate 34, the control unit MC controls the lifter (for example, the shutter driving unit 74) and the above-described transport robot.
 上述の制御により、方法MTでは、図8に示すように、天板34が搬送ロボットのアーム(アームARM又はアームAEX)によって搬出された状態がもたらされる。そして、交換品の天板34(例えば、使用前の天板)のチャンバ10内への搬入及び取り付けが行われる。交換品の天板34のチャンバ10内への搬入及び取り付けにおいて、制御部MCは、リフタ(例えば、シャッタ駆動部74)及び上述の搬送ロボットを制御する。 By the above-described control, in method MT, as shown in FIG. 8, a state is brought about in which the top plate 34 is carried out by the arm of the transfer robot (arm ARM or arm AEX). Then, a replacement top plate 34 (for example, a top plate before use) is carried into the chamber 10 and attached. In carrying the replacement top plate 34 into the chamber 10 and attaching it, the control unit MC controls the lifter (for example, the shutter driving unit 74) and the transport robot described above.
 方法MTの工程STaでは、交換品の天板34がチャンバ10内にアームによって搬送される。即ち、交換品の天板34が、搬送チャンバからチャンバ10内の下側位置へ搬送される。一実施形態においては、まず、図9に示すように、シャッタ駆動部74により、シャッタ71及び環状部材39が、内部空間10s内且つ基板支持部14の外側で、基板支持部14の上面よりも下方に移動される。シャッタ駆動部74は、制御部MCによって制御される。 In the process STa of the method MT, the replacement top plate 34 is transported into the chamber 10 by the arm. That is, the replacement top plate 34 is transferred from the transfer chamber to a lower position within the chamber 10 . In one embodiment, first, as shown in FIG. 9 , the shutter driving section 74 moves the shutter 71 and the annular member 39 inside the internal space 10 s and outside the substrate supporting section 14 relative to the upper surface of the substrate supporting section 14 . is moved downwards. The shutter drive section 74 is controlled by the control section MC.
 次いで、アームARMが天板34の搬送のために用いられる場合には、ゲートバルブ10gが通路10pを開放するように移動される。通路10pがゲートバルブ10gによって閉じられるまでの間、チャンバ10の内部空間10s及び搬送モジュールTMの搬送チャンバTCの内部空間が、減圧された状態で維持される。なお、アームAEXが天板34の搬送のために用いられる場合には、ゲートバルブ101gが通路101pを開放するように移動される。この場合には、通路101pがゲートバルブ101gによって閉じられるまでの間、チャンバ10の内部空間10s及び交換ステーションEXのチャンバの内部空間が、減圧された状態で維持される。 Next, when the arm ARM is used for transporting the top plate 34, the gate valve 10g is moved to open the passage 10p. The internal space 10s of the chamber 10 and the internal space of the transfer chamber TC of the transfer module TM are maintained under reduced pressure until the passage 10p is closed by the gate valve 10g. When the arm AEX is used to transport the top plate 34, the gate valve 101g is moved to open the passage 101p. In this case, the internal space 10s of the chamber 10 and the internal space of the exchange station EX are maintained under reduced pressure until the passage 101p is closed by the gate valve 101g.
 次いで、図10に示すように、制御部MCによって搬送モジュールTMの搬送ロボットRTMが制御されて、天板34を支持したアームARMが内部空間10sに進入する。なお、アームAEXが天板34の搬送のために用いられる場合には、制御部MCによって交換ステーションの搬送ロボットが制御される。 Next, as shown in FIG. 10, the transfer robot RTM of the transfer module TM is controlled by the controller MC, and the arm ARM supporting the top plate 34 enters the internal space 10s. When the arm AEX is used for transporting the table top 34, the transport robot of the exchange station is controlled by the controller MC.
 そして、交換品の天板34が下側位置から上側位置まで移動される。即ち、工程STbにおいて、天板34が支持部37(静電吸着部35)の直下までリフトアップされる。一実施形態にでは、図11に示すように、複数のリフタピン27pが、天板34をアーム(アームARM又はアームAEX)から複数のリフタピン27pそれぞれの上端で受け取るように、ピン駆動部27dによって上方に移動される。ピン駆動部27dは、制御部MCによって制御される。 Then, the replacement top plate 34 is moved from the lower position to the upper position. That is, in step STb, the top plate 34 is lifted up to directly below the support portion 37 (electrostatic adsorption portion 35). In one embodiment, as shown in FIG. 11, a plurality of lifter pins 27p are lifted upward by pin drivers 27d so as to receive top plate 34 from an arm (arm ARM or arm AEX) at the upper end of each of the plurality of lifter pins 27p. is moved to The pin driver 27d is controlled by the controller MC.
 次いで、図12に示すように、アーム(アームARM又はアームAEX)が内部空間10sから退避される。天板34の搬送にアームARMが用いられた場合には、ゲートバルブ10gが通路10pを閉じるように移動される。天板34の搬送にアームAEXが用いられた場合には、ゲートバルブ101gが通路101pを閉じるように移動される。 Then, as shown in FIG. 12, the arm (arm ARM or arm AEX) is retracted from the internal space 10s. When the arm ARM is used to transport the top plate 34, the gate valve 10g is moved to close the passage 10p. When the arm AEX is used to transport the top plate 34, the gate valve 101g is moved to close the passage 101p.
 しかる後に、図13に示すように、環状部材39が複数のリフタピン27pから天板34を受け取るように、環状部材39及びシャッタ71が、シャッタ駆動部74によって上方に移動される。シャッタ駆動部74は、制御部MCによって制御される。 After that, as shown in FIG. 13, the annular member 39 and the shutter 71 are moved upward by the shutter driving section 74 so that the annular member 39 receives the top plate 34 from the plurality of lifter pins 27p. The shutter drive section 74 is controlled by the control section MC.
 そして、図14に示すように、天板34を静電吸着部35の直下の領域に移動させるよう、環状部材39及びシャッタ71が、シャッタ駆動部74によって上方に移動される。シャッタ駆動部74は、制御部MCによって制御される。 Then, as shown in FIG. 14, the annular member 39 and the shutter 71 are moved upward by the shutter driving section 74 so as to move the top plate 34 to the area directly below the electrostatic attraction section 35 . The shutter drive section 74 is controlled by the control section MC.
 方法MTでは、次いで、工程STcが行われる。工程STcでは、天板34が静電吸着部35によって保持される。工程STcにおいては、一つ以上の電源(例えば電源351p及び352p)によって、静電吸着部35の一つ以上の電極35b(例えば第1の電極351b及び第2の電極352b)に電圧(直流電圧又は交流電圧)が印加される。一つ以上の電源は、制御部MCによって制御される。 In method MT, step STc is then performed. In step STc, the top plate 34 is held by the electrostatic adsorption portion 35 . In step STc, one or more power supplies (for example, power supplies 351p and 352p) apply a voltage (DC voltage or alternating voltage) is applied. One or more power supplies are controlled by the controller MC.
 以上説明したように、天板34は、内部空間10sをチャンバ10の外側の大気空間に連通させることなく、自動的且つ容易に交換され得る。 As described above, the top plate 34 can be automatically and easily replaced without connecting the internal space 10s to the atmospheric space outside the chamber 10.
 一実施形態において、プラズマ処理システムPSは、圧力調整器を更に備えていてもよい。圧力調整器は、静電吸着部35によって天板34を保持する際に、天板34と支持部37(静電吸着部35)との間の間隙の圧力を、天板34と基板支持部14との間の空間の圧力よりも低くするように構成されている。圧力調整器は、伝熱ガス供給機構28sであってもよい。伝熱ガス供給機構28sは、天板34と基板支持部14との間の空間に伝熱ガスを供給する。これにより、天板34と支持部37(静電吸着部35)との間の間隙の圧力が、天板34と基板支持部14との間の空間の圧力よりも低くなる。 In one embodiment, the plasma processing system PS may further include a pressure regulator. The pressure regulator adjusts the pressure in the gap between the top plate 34 and the support portion 37 (the electrostatic adsorption portion 35 ) when the top plate 34 is held by the electrostatic adsorption portion 35 . 14 is configured to be lower than the pressure in the space between. The pressure regulator may be the heat transfer gas supply mechanism 28s. The heat transfer gas supply mechanism 28 s supplies the heat transfer gas to the space between the top plate 34 and the substrate support section 14 . As a result, the pressure in the gap between the top plate 34 and the support portion 37 (the electrostatic adsorption portion 35 ) becomes lower than the pressure in the space between the top plate 34 and the substrate support portion 14 .
 或いは、圧力調整器は、排気装置52であってもよい。排気装置52は、ガス供給管38に接続された減圧ポンプを含む。排気装置52は、天板34と支持部37(静電吸着部35)との間の間隙の圧力を減圧させて、天板34と基板支持部14との間の空間の圧力よりも低くする。なお、排気装置52の代わりに、排気装置50がガス供給管38に接続されていてもよい。この場合には、排気装置50を用いて、天板34と支持部37(静電吸着部35)との間の間隙の圧力を減圧させることができる。 Alternatively, the pressure regulator may be the exhaust device 52 . The evacuation device 52 includes a vacuum pump connected to the gas supply pipe 38 . The exhaust device 52 reduces the pressure in the gap between the top plate 34 and the support portion 37 (electrostatic adsorption portion 35 ) to be lower than the pressure in the space between the top plate 34 and the substrate support portion 14 . . Note that the exhaust device 50 may be connected to the gas supply pipe 38 instead of the exhaust device 52 . In this case, the exhaust device 50 can be used to reduce the pressure in the gap between the top plate 34 and the support portion 37 (electrostatic adsorption portion 35).
 以下、図15を参照する。図15は、別の例示的実施形態に係る上部電極の断面図である。図15に示す上部電極は、天板34と静電吸着部35との間に配置される樹脂シート33を更に含んでいる。樹脂シート33は、天板34と静電吸着部35の複数の凸部35cの各々との間で挟持される。樹脂シート33は、天板34と静電吸着部35との間の密着性を向上させる。なお、樹脂シート33は、天板34と共にアームによって搬送されて交換されてもよい。 FIG. 15 will be referred to below. FIG. 15 is a cross-sectional view of a top electrode according to another exemplary embodiment; The upper electrode shown in FIG. 15 further includes a resin sheet 33 arranged between the top plate 34 and the electrostatic adsorption portion 35 . The resin sheet 33 is sandwiched between the top plate 34 and each of the plurality of projections 35 c of the electrostatic adsorption section 35 . The resin sheet 33 improves the adhesion between the top plate 34 and the electrostatic adsorption portion 35 . The resin sheet 33 may be transported by an arm together with the top plate 34 and replaced.
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な追加、省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。 Although various exemplary embodiments have been described above, various additions, omissions, substitutions, and modifications may be made without being limited to the exemplary embodiments described above. Also, elements from different embodiments can be combined to form other embodiments.
 例えば、プラズマ処理システムPSにおいて、アーム(アームARM又はアームAEX)が、チャンバ10内に搬送した天板34を、支持部37(静電吸着部35)の直下の領域に移動させてもよい。或いは、複数のリフタピン27pが、天板34を、支持部37(静電吸着部35)の直下の領域に移動させてもよい。 For example, in the plasma processing system PS, the arm (arm ARM or arm AEX) may move the top plate 34 transported into the chamber 10 to a region immediately below the support portion 37 (electrostatic adsorption portion 35). Alternatively, a plurality of lifter pins 27p may move the top plate 34 to a region immediately below the support portion 37 (electrostatic adsorption portion 35).
 また、天板34は、静電吸着部35ではなく、支持部37のメカニカルクランプによって保持されてもよい。 Also, the top plate 34 may be held by a mechanical clamp of the support portion 37 instead of the electrostatic adsorption portion 35 .
 ここで、本開示に含まれる種々の例示的実施形態を、以下の[E1]~[E18]に記載する。 Various exemplary embodiments included in the present disclosure are now described in [E1] to [E18] below.
[E1]
 容量結合型のプラズマ処理装置であり、
  内部空間を画成し、通路を提供する壁を有するチャンバと、
  前記チャンバ内に設けられた基板支持部と、
  導電性を有し、前記基板支持部の上方に設けられる天板と、
  静電吸着部を有し、その下に前記天板が配置される天板支持部と、
 を含む、該プラズマ処理装置と、
 前記通路を介して前記内部空間に進入可能に構成されたアームを有する搬送装置と、
を備え、
 前記天板は、前記アームによって前記内部空間に搬送されて前記静電吸着部によって保持される、
プラズマ処理システム。
[E1]
A capacitively coupled plasma processing apparatus,
a chamber having walls defining an interior space and providing a passageway;
a substrate support provided within the chamber;
a conductive top plate provided above the substrate support;
a top plate supporting portion having an electrostatic adsorption portion, under which the top plate is arranged;
the plasma processing apparatus comprising
a conveying device having an arm configured to be able to enter the internal space through the passage;
with
The top plate is conveyed into the internal space by the arm and held by the electrostatic attraction unit.
Plasma processing system.
 E1の実施形態では、天板支持部の静電吸着部は、天板を静電引力により保持する。したがって、天板は、静電吸着部に対して着脱可能である。また、天板は、アームによってチャンバ内に搬入されて、天板支持部の静電吸着部に静電引力によって保持される。したがって、天板は、容易に交換され得る。 In the embodiment of E1, the electrostatic attraction part of the top support part holds the top by electrostatic attraction. Therefore, the top plate is attachable to and detachable from the electrostatic attraction section. Also, the top plate is carried into the chamber by the arm and is held by the electrostatic attracting portion of the top plate support portion by electrostatic attraction. Therefore, the top plate can be easily replaced.
[E2]
 前記アームによって搬送された前記天板を前記天板支持部の直下まで持ち上げるように構成されたリフタを更に備える、E1に記載のプラズマ処理システム。
[E2]
The plasma processing system according to E1, further comprising a lifter configured to lift the top plate conveyed by the arm to directly below the top plate support.
[E3]
 前記リフタは、
  円筒形状を有し、前記通路を開閉するために前記チャンバ内に設けられたシャッタと、
  前記シャッタを上下動させるように構成されたシャッタ駆動部と、
  前記シャッタによって支持された環状部材であり、前記天板を支持する内縁部を含む、該環状部材と、
 を含み、
 前記シャッタ及び前記環状部材は、径方向において前記基板支持部の外側に設けられている、
E2に記載のプラズマ処理システム。
[E3]
The lifter is
a shutter having a cylindrical shape and provided within the chamber for opening and closing the passageway;
a shutter driving unit configured to vertically move the shutter;
an annular member supported by the shutter, the annular member including an inner edge supporting the top plate;
including
The shutter and the annular member are provided outside the substrate support portion in a radial direction,
The plasma processing system of E2.
[E4]
 前記内縁部は、段差面を提供し、
 前記段差面は、その上に前記天板の周縁部が載置される底面と、前記天板の端面に対面する内周面を提供する、E3に記載のプラズマ処理システム。
[E4]
the inner edge provides a stepped surface;
The plasma processing system of E3, wherein the step surface provides a bottom surface on which the peripheral edge of the top plate is placed, and an inner peripheral surface facing an end surface of the top plate.
[E5]
 前記内縁部において前記段差面を含む部分は、絶縁材料から形成されている、E4に記載のプラズマ処理システム。
[E5]
The plasma processing system of E4, wherein the portion of the inner edge including the step surface is made of an insulating material.
[E6]
 前記環状部材は、前記天板と同じ材料から形成されている、E3~E5の何れか一項に記載のプラズマ処理システム。
[E6]
The plasma processing system of any one of E3-E5, wherein the annular member is made of the same material as the top plate.
[E7]
 前記環状部材は、シリコンから形成されている、E6に記載のプラズマ処理システム。
[E7]
The plasma processing system of E6, wherein the annular member is formed from silicon.
[E8]
 前記基板支持部の上面から上方に突き出し可能、且つ、前記基板支持部の該上面から下方に退避可能であるように構成された複数のリフタピンと、
 前記複数のリフタピンを上下に移動させるように構成されたピン駆動部と、
を更に備え、
 前記ピン駆動部は、前記アームによって搬送された前記天板を受け取るように、前記複数のリフタピンを上方に移動させ、
 前記シャッタ駆動部は、前記アームが前記内部空間から退避した後に、前記環状部材が前記複数のリフタピンから前記天板を受け取るように、前記環状部材及び前記シャッタを上方に移動させる、
E3~E7の何れか一項に記載のプラズマ処理システム。
[E8]
a plurality of lifter pins configured to be protruded upward from the upper surface of the substrate supporting portion and retractable downward from the upper surface of the substrate supporting portion;
a pin driving unit configured to vertically move the plurality of lifter pins;
further comprising
the pin driving unit moves the plurality of lifter pins upward so as to receive the top plate conveyed by the arm;
The shutter drive unit moves the annular member and the shutter upward so that the annular member receives the top plate from the plurality of lifter pins after the arm is retracted from the internal space.
The plasma processing system of any one of E3-E7.
[E9]
 前記リフタは、
  前記基板支持部の上面から上方に突き出し可能、且つ、前記基板支持部の該上面から下方に退避可能であるように構成された複数のリフタピンと、
  その上に前記天板を支持した前記複数のリフタピンを上下に移動させるように構成されたピン駆動部と、
 を含む、E2に記載のプラズマ処理システム。
[E9]
The lifter is
a plurality of lifter pins configured to be protruded upward from the upper surface of the substrate supporting portion and retractable downward from the upper surface of the substrate supporting portion;
a pin drive unit configured to vertically move the plurality of lifter pins supporting the top plate thereon;
The plasma processing system of E2, comprising:
[E10]
 前記複数のリフタピンは、前記基板支持部上に載置される基板又はエッジリングを該基板支持部の上で上下に移動させるように構成されている、E8又はE9に記載のプラズマ処理システム。
[E10]
The plasma processing system of E8 or E9, wherein the plurality of lifter pins are configured to move a substrate or edge ring resting on the substrate support up and down over the substrate support.
[E11]
 前記搬送装置は、減圧可能な搬送空間を提供する搬送チャンバと、前記アームを含む搬送ロボットと、を有し、前記内部空間に基板を搬送するように構成された搬送モジュールであるか、前記搬送モジュールとは別の交換ステーションである、E1~E10の何れか一項に記載のプラズマ処理システム。
[E11]
The transport device is a transport module that has a transport chamber that provides a decompressible transport space and a transport robot that includes the arm, and is configured to transport the substrate into the internal space, or the transport The plasma processing system of any one of E1-E10, which is an exchange station separate from the modules.
[E12]
 前記天板と前記天板支持部との間の間隙の圧力を、前記天板と前記基板支持部との間の空間の圧力よりも低くするように構成された圧力調整器を更に備える、E1~E11の何れか一項に記載のプラズマ処理システム。
[E12]
Further comprising a pressure regulator configured to make the pressure in the gap between the top plate and the top plate support lower than the pressure in the space between the top plate and the substrate support, E1 The plasma processing system of any one of Clauses -E11.
[E13]
 前記圧力調整器は、前記天板と前記天板支持部との間の間隙の圧力を減圧するように構成された排気装置を含む、E12に記載のプラズマ処理システム。
[E13]
The plasma processing system of E12, wherein the pressure regulator includes an exhaust device configured to reduce pressure in a gap between the top plate and the top plate support.
[E14]
 前記天板と前記静電吸着部との間に配置される樹脂シートを更に備える、E1~E12の何れか一項に記載のプラズマ処理システム。
[E14]
The plasma processing system according to any one of items E1 to E12, further comprising a resin sheet arranged between the top plate and the electrostatic adsorption section.
[E15]
 前記搬送装置を制御するように構成された制御部を更に備える、E1~E14の何れか一項に記載のプラズマ処理システム。
[E15]
The plasma processing system of any one of E1-E14, further comprising a controller configured to control the transport device.
[E16]
 前記搬送装置、前記ピン駆動部、及び前記シャッタ駆動部を制御するように構成された制御部を更に備える、E8に記載のプラズマ処理システム。
[E16]
The plasma processing system of E8, further comprising a controller configured to control the transport device, the pin drive, and the shutter drive.
[E17]
 前記制御部は、前記天板が前記チャンバ内で生成されたプラズマに晒される積算時間又は前記天板の消耗量が所定の基準を満たす場合に、前記天板を別の天板に交換するように構成されている、E15又はE16に記載のプラズマ処理システム。
[E17]
The control unit replaces the top plate with another top plate when the accumulated time during which the top plate is exposed to the plasma generated in the chamber or the consumption amount of the top plate satisfies a predetermined standard. The plasma processing system of E15 or E16, wherein the plasma processing system is configured to:
[E18]
 E1~E17の何れか一項に記載のプラズマ処理システムの保守方法であって、
 前記アームを用いて前記天板を前記チャンバ内に搬送する工程と、
 前記天板を前記静電吸着部によって保持する工程と、
を含む保守方法。
[E18]
The plasma processing system maintenance method according to any one of E1 to E17,
transporting the top plate into the chamber using the arm;
a step of holding the top plate by the electrostatic attraction part;
maintenance methods including;
 以上の説明から、本開示の種々の実施形態は、説明の目的で本明細書で説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。 From the foregoing description, it will be appreciated that various embodiments of the present disclosure have been set forth herein for purposes of illustration, and that various changes may be made without departing from the scope and spirit of the present disclosure. Will. Therefore, the various embodiments disclosed herein are not intended to be limiting, with a true scope and spirit being indicated by the following claims.
 PS…プラズマ処理システム、1…プラズマ処理装置、10…チャンバ、14…基板支持部、30…上部電極、34…天板、37…支持部、35…静電吸着部、TM…搬送モジュール、ARM…アーム。 PS: plasma processing system, 1: plasma processing apparatus, 10: chamber, 14: substrate support, 30: upper electrode, 34: top plate, 37: support, 35: electrostatic chuck, TM: transfer module, ARM …arm.

Claims (20)

  1.  プラズマ処理装置であり、
      プラズマ処理チャンバと、
      前記プラズマ処理チャンバ内に配置され、下部電極を含む基板支持部と、
      前記基板支持部の上方に配置される上部電極アセンブリであり、該上部電極アセンブリは、電極支持部と、前記電極支持部の下方に配置される交換式上部電極プレートと、を含む、該上部電極アセンブリと、
      前記交換式上部電極プレートを前記プラズマ処理チャンバ内の上側位置と下側位置との間で縦方向に移動させるように構成されるリフタユニットであり、該リフタユニットは、前記交換式上部電極プレートが前記上側位置にあるときに前記交換式上部電極プレートを前記電極支持部に固定するように構成される、該リフタユニットと、
     を含む、該プラズマ処理装置と、
     搬送装置であり、
      搬送チャンバと、
      前記搬送チャンバ内に配置され、前記交換式上部電極プレートを前記プラズマ処理チャンバ内の前記下側位置と前記搬送チャンバとの間で搬送するように構成される搬送ロボットと、
     を含む、該搬送装置と、
    を備えるプラズマ処理システム。
    A plasma processing apparatus,
    a plasma processing chamber;
    a substrate support disposed within the plasma processing chamber and including a bottom electrode;
    an upper electrode assembly positioned above the substrate support, the upper electrode assembly including an electrode support and a replaceable upper electrode plate positioned below the electrode support; assembly;
    a lifter unit configured to vertically move the replaceable upper electrode plate between an upper position and a lower position within the plasma processing chamber, the lifter unit configured to move the replaceable upper electrode plate the lifter unit configured to secure the replaceable upper electrode plate to the electrode support when in the upper position;
    the plasma processing apparatus comprising
    a conveying device,
    a transfer chamber;
    a transfer robot disposed within the transfer chamber and configured to transfer the replaceable upper electrode plate between the lower position within the plasma processing chamber and the transfer chamber;
    the transport device comprising
    A plasma processing system comprising:
  2.  前記リフタユニットは、
      前記プラズマ処理チャンバの内壁と前記基板支持部との間に配置され、前記交換式上部電極プレートを支持するように構成される円筒壁構造体と、
      前記円筒壁構造体を縦方向に移動させるように構成されるアクチュエータと、
     を含む、請求項1に記載のプラズマ処理システム。
    The lifter unit is
    a cylindrical wall structure positioned between an inner wall of the plasma processing chamber and the substrate support and configured to support the replaceable upper electrode plate;
    an actuator configured to move the cylindrical wall structure longitudinally;
    2. The plasma processing system of claim 1, comprising:
  3.  前記円筒壁構造体は、
      円筒部材と、
      前記円筒部材から内方に延在しており、前記交換式上部電極プレートを支持するように構成される環状部材と、
     を含む、請求項2に記載のプラズマ処理システム。
    The cylindrical wall structure comprises:
    a cylindrical member;
    an annular member extending inwardly from the cylindrical member and configured to support the replaceable upper electrode plate;
    3. The plasma processing system of claim 2, comprising:
  4.  前記環状部材は、内周段差面を有し、前記交換式上部電極プレートは、前記内周段差面により支持される、請求項3に記載のプラズマ処理システム。 4. The plasma processing system according to claim 3, wherein said annular member has an inner peripheral stepped surface, and said replaceable upper electrode plate is supported by said inner peripheral stepped surface.
  5.  前記円筒壁構造体は、前記内周段差面上に配置される絶縁部材を更に含む、請求項4に記載のプラズマ処理システム。 5. The plasma processing system according to claim 4, wherein said cylindrical wall structure further includes an insulating member disposed on said inner peripheral stepped surface.
  6.  前記環状部材は、前記交換式上部電極プレートと同じ材料から形成されている、請求項3に記載のプラズマ処理システム。 4. The plasma processing system of claim 3, wherein said annular member is made of the same material as said replaceable upper electrode plate.
  7.  前記交換式上部電極プレート及び前記環状部材は、シリコンから形成されている、請求項3に記載のプラズマ処理システム。 4. The plasma processing system of claim 3, wherein said replaceable upper electrode plate and said annular member are made of silicon.
  8.  前記基板支持部は、前記交換式上部電極プレートを前記下側位置で支持するように構成される複数のリフタピンを含む、請求項1~7の何れか一項に記載のプラズマ処理システム。 The plasma processing system of any one of claims 1 to 7, wherein the substrate support includes a plurality of lifter pins configured to support the replaceable upper electrode plate at the lower position.
  9.  前記複数のリフタピンは、前記基板支持部の上方で基板を支持するように構成される、請求項8に記載のプラズマ処理システム。 9. The plasma processing system of claim 8, wherein said plurality of lifter pins are configured to support a substrate above said substrate support.
  10.  前記複数のリフタピンは、前記基板支持部の上方でエッジリングを支持するように構成される、請求項8に記載のプラズマ処理システム。 9. The plasma processing system of claim 8, wherein said plurality of lifter pins are configured to support an edge ring above said substrate support.
  11.  前記搬送装置は、真空環境下で基板を搬送するように構成される基板搬送モジュールである、請求項1~7の何れか一項に記載のプラズマ処理システム。 The plasma processing system according to any one of claims 1 to 7, wherein said transfer device is a substrate transfer module configured to transfer a substrate in a vacuum environment.
  12.  前記交換式上部電極プレートと前記電極支持部との間の間隙の圧力を、前記交換式上部電極プレートと前記基板支持部との間の空間の圧力よりも低くするように構成された圧力調整器を更に備える、請求項1~7の何れか一項に記載のプラズマ処理システム。 A pressure regulator configured to provide a pressure in a gap between the replaceable upper electrode plate and the electrode support lower than a pressure in a space between the replaceable upper electrode plate and the substrate support. The plasma processing system of any one of claims 1-7, further comprising:
  13.  前記圧力調整器は、前記交換式上部電極プレートと前記電極支持部との間の間隙の圧力を減圧するように構成された排気装置を含む、請求項12に記載のプラズマ処理システム。 13. The plasma processing system of claim 12, wherein the pressure regulator includes an exhaust device configured to reduce pressure in a gap between the replaceable upper electrode plate and the electrode support.
  14.  前記電極支持部は、
      支持部材と、
      前記支持部材に取り付けられ、前記交換式上部電極プレートを静電吸着するように構成される静電吸着層と、
     を含む、請求項1~7の何れか一項に記載のプラズマ処理システム。
    The electrode support part is
    a support member;
    an electrostatic attraction layer attached to the support member and configured to electrostatically attract the replaceable upper electrode plate;
    The plasma processing system of any one of claims 1-7, comprising a
  15.  前記電極支持部は、前記交換式上部電極プレートと前記静電吸着層との間に配置される樹脂シートを含む、請求項14に記載のプラズマ処理システム。 15. The plasma processing system of claim 14, wherein the electrode support includes a resin sheet disposed between the replaceable upper electrode plate and the electrostatic adsorption layer.
  16.  前記交換式上部電極プレートを前記上側位置から前記下側位置まで移動させる工程と、
     前記交換式上部電極プレートを前記プラズマ処理チャンバ内の前記下側位置から前記搬送チャンバへ搬送する工程と、
    を行うように前記リフタユニット及び前記搬送ロボットを制御するように構成される制御部を更に備える、請求項1~7の何れか一項に記載のプラズマ処理システム。
    moving the replaceable upper electrode plate from the upper position to the lower position;
    transferring the replaceable upper electrode plate from the lower position within the plasma processing chamber to the transfer chamber;
    8. The plasma processing system according to any one of claims 1 to 7, further comprising a controller configured to control the lifter unit and the transfer robot to perform
  17.  前記制御部は、
      使用前の交換式上部電極プレートを前記搬送チャンバから前記プラズマ処理チャンバ内の前記下側位置へ搬送する工程と、
      前記使用前の交換式上部電極プレートを前記下側位置から前記上側位置まで移動させる工程と、
     を行うように前記リフタユニット及び前記搬送ロボットを制御するように構成される、請求項16に記載のプラズマ処理システム。
    The control unit
    transferring a pre-use replaceable upper electrode plate from the transfer chamber to the lower position within the plasma processing chamber;
    moving the pre-use replaceable upper electrode plate from the lower position to the upper position;
    17. The plasma processing system of claim 16, configured to control the lifter unit and the transfer robot to perform a.
  18.  プラズマ処理チャンバと、
     前記プラズマ処理チャンバ内に配置され、下部電極を含む基板支持部と、
     前記基板支持部の上方に配置される上部電極アセンブリであり、該上部電極アセンブリは、電極支持部と、前記電極支持部の下方に配置される交換式上部電極プレートとを含む、該上部電極アセンブリと、
     前記交換式上部電極プレートを前記プラズマ処理チャンバ内の上側位置と下側位置との間で縦方向に移動させるように構成されるリフタユニットであり、該リフタユニットは、前記交換式上部電極プレートが前記上側位置にあるときに前記交換式上部電極プレートを前記電極支持部に固定するように構成される、該リフタユニットと、
    を備えるプラズマ処理装置。
    a plasma processing chamber;
    a substrate support disposed within the plasma processing chamber and including a bottom electrode;
    an upper electrode assembly positioned above the substrate support, the upper electrode assembly including an electrode support and a replaceable upper electrode plate positioned below the electrode support; and,
    a lifter unit configured to vertically move the replaceable upper electrode plate between an upper position and a lower position within the plasma processing chamber, the lifter unit configured to move the replaceable upper electrode plate the lifter unit configured to secure the replaceable upper electrode plate to the electrode support when in the upper position;
    A plasma processing apparatus comprising:
  19.  前記リフタユニットは、
      前記プラズマ処理チャンバの内壁と前記基板支持部との間に配置され、前記交換式上部電極プレートを支持するように構成される円筒壁構造体と、
      前記円筒壁構造体を縦方向に移動させるように構成されるアクチュエータと、
     を含む、請求項18に記載のプラズマ処理装置。
    The lifter unit is
    a cylindrical wall structure positioned between an inner wall of the plasma processing chamber and the substrate support and configured to support the replaceable upper electrode plate;
    an actuator configured to move the cylindrical wall structure longitudinally;
    19. The plasma processing apparatus of claim 18, comprising:
  20.  容量結合型のプラズマ処理装置であり、
      内部空間を画成し、通路を提供する壁を有するチャンバと、
      前記チャンバ内に設けられた基板支持部と、
      導電性を有し、前記基板支持部の上方に設けられる天板と、
      静電吸着部を有し、その下に前記天板が配置される天板支持部と、
     を含む、該プラズマ処理装置と、
     前記通路を介して前記内部空間に進入可能に構成されたアームを有する搬送装置と、
    を備え、
     前記天板は、前記アームによって前記内部空間に搬送されて前記静電吸着部によって保持される、
    プラズマ処理システム。
    A capacitively coupled plasma processing apparatus,
    a chamber having walls defining an interior space and providing a passageway;
    a substrate support provided within the chamber;
    a conductive top plate provided above the substrate support;
    a top plate supporting portion having an electrostatic adsorption portion, under which the top plate is arranged;
    the plasma processing apparatus comprising
    a conveying device having an arm configured to be able to enter the internal space through the passage;
    with
    The top plate is conveyed into the internal space by the arm and held by the electrostatic attraction unit.
    Plasma processing system.
PCT/JP2022/036807 2021-10-29 2022-09-30 Plasma treatment system and plasma treatment device WO2023074260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177166 2021-10-29
JP2021-177166 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074260A1 true WO2023074260A1 (en) 2023-05-04

Family

ID=86157890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036807 WO2023074260A1 (en) 2021-10-29 2022-09-30 Plasma treatment system and plasma treatment device

Country Status (2)

Country Link
TW (1) TW202336800A (en)
WO (1) WO2023074260A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435565B2 (en) * 2001-08-08 2010-03-17 ラム リサーチ コーポレーション Electrode plate holding device, showerhead electrode assembly assembly method, and semiconductor substrate processing method
JP2015216261A (en) * 2014-05-12 2015-12-03 東京エレクトロン株式会社 Upper electrode structure of plasma processing device, plasma processing device, and method for operating plasma processing device
JP2017504725A (en) * 2014-01-21 2017-02-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Atomic layer deposition processing chamber allowing low pressure tool change
JP2021141305A (en) * 2020-03-03 2021-09-16 東京エレクトロン株式会社 Plasma processing system and edge ring exchanging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435565B2 (en) * 2001-08-08 2010-03-17 ラム リサーチ コーポレーション Electrode plate holding device, showerhead electrode assembly assembly method, and semiconductor substrate processing method
JP2017504725A (en) * 2014-01-21 2017-02-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Atomic layer deposition processing chamber allowing low pressure tool change
JP2015216261A (en) * 2014-05-12 2015-12-03 東京エレクトロン株式会社 Upper electrode structure of plasma processing device, plasma processing device, and method for operating plasma processing device
JP2021141305A (en) * 2020-03-03 2021-09-16 東京エレクトロン株式会社 Plasma processing system and edge ring exchanging method

Also Published As

Publication number Publication date
TW202336800A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
KR101731003B1 (en) Plasma processing apparatus
US20230326725A1 (en) Plasma processing apparatus
KR101247712B1 (en) Method and apparatus for dechucking a substrate
US7381291B2 (en) Dual-chamber plasma processing apparatus
US6958098B2 (en) Semiconductor wafer support lift-pin assembly
US6572708B2 (en) Semiconductor wafer support lift-pin assembly
KR20210119296A (en) Edge ring, substrate support, plasma processing system and method of replacing edge ring
US11387080B2 (en) Substrate support and plasma processing apparatus
US20180122679A1 (en) Stress balanced electrostatic substrate carrier with contacts
TW202201467A (en) Sheath and temperature control of a process kit in a substrate processing chamber
US20220301833A1 (en) Substrate support and plasma processing apparatus
KR20220037498A (en) Sheath and temperature control in process kits
CN115132558A (en) Plasma processing system and method for mounting ring member
US20210118648A1 (en) Substrate processing system and method for replacing edge ring
US20200312623A1 (en) Substrate processing apparatus and substrate processing method
WO2023074260A1 (en) Plasma treatment system and plasma treatment device
US11692639B2 (en) Valve device
US11380573B2 (en) Structure for automatic in-situ replacement of a part of an electrostatic chuck
US11587820B2 (en) Mounting table, substrate processing apparatus, and control method
KR20230017305A (en) Substrate processing system
US20200312634A1 (en) Plasma processing apparatus
US11189467B2 (en) Apparatus and method of attaching pad on edge ring
US20220319800A1 (en) Plasma processing system, transfer arm, and method of transferring annular member
WO2023058480A1 (en) Upper electrode structure, and plasma processing device
WO2024071130A1 (en) Substrate processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886592

Country of ref document: EP

Kind code of ref document: A1