WO2022162949A1 - リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 - Google Patents

リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
WO2022162949A1
WO2022162949A1 PCT/JP2021/003588 JP2021003588W WO2022162949A1 WO 2022162949 A1 WO2022162949 A1 WO 2022162949A1 JP 2021003588 W JP2021003588 W JP 2021003588W WO 2022162949 A1 WO2022162949 A1 WO 2022162949A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion secondary
electrode material
mixture
lithium ion
Prior art date
Application number
PCT/JP2021/003588
Other languages
English (en)
French (fr)
Inventor
喜幸 松本
崇 坂本
慶紀 内山
高志 久保田
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2021/003588 priority Critical patent/WO2022162949A1/ja
Priority to US18/008,971 priority patent/US20230246162A1/en
Priority to JP2022578038A priority patent/JPWO2022163014A1/ja
Priority to CN202180074793.XA priority patent/CN116420246A/zh
Priority to PCT/JP2021/035452 priority patent/WO2022163014A1/ja
Priority to EP21923021.6A priority patent/EP4148824A4/en
Publication of WO2022162949A1 publication Critical patent/WO2022162949A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a negative electrode material for a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
  • Lithium-ion secondary batteries have a higher energy density than other secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lead-acid batteries. used. Lithium-ion secondary batteries are expected to be used not only in relatively small electrical appliances but also in electric vehicles, power sources for power storage, and the like.
  • Graphite is widely used as a negative electrode material (negative electrode material) for lithium-ion secondary batteries.
  • a method for producing a negative electrode material using graphite for example, in Patent Document 1, a mixture obtained by mixing a carbon material and a binder or the like is pulverized, and the resulting pulverized product is molded using a mold. A method of performing a graphitization treatment and further pulverizing the obtained graphitized product is described.
  • lithium-ion secondary batteries for electrical appliances, electric vehicles, power sources for storage, etc.
  • lithium-ion secondary batteries with excellent cycle characteristics are desired.
  • the present inventors have found that when molding a mixture containing a graphitizable aggregate and a graphitizable binder, a lithium ion secondary battery having excellent cycle characteristics is formed by forming a molded product with a relatively low density. found that it is possible to manufacture
  • the present invention provides a method for producing a negative electrode material for a lithium ion secondary battery that is excellent in moldability when forming a molded product and capable of producing a lithium ion secondary battery, and a method for producing the negative electrode material.
  • An object of the present invention is to provide a method for manufacturing an ion secondary battery.
  • ⁇ 1> (a) obtaining a mixture containing a graphitizable aggregate, a graphitizable binder, and an aromatic compound; (b) molding the mixture to obtain a molding having a density of 1.3 g/cm 3 or less; (c) graphitizing the molded product to obtain a graphitized product; (d) A method for producing a negative electrode material for a lithium ion secondary battery, comprising the step of pulverizing the graphitized material to obtain a pulverized material.
  • the aromatic compound contains at least one compound selected from the group consisting of naphthalene, methylnaphthalene, acenaphthene, biphenyl, fluorene, benzopyrene, benzanthracene, dibenzoanthracene, diphenylene oxide, quinoline and isoquinoline ⁇ 1 >
  • the method for producing the negative electrode material for a lithium ion secondary battery according to ⁇ 3> The lithium according to ⁇ 1> or ⁇ 2>, wherein the content of the aromatic compound in the mixture is 1% by mass to 20% by mass with respect to a total of 100% by mass of the aggregate and the binder A method for producing a negative electrode material for an ion secondary battery.
  • ⁇ 4> The lithium according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the binder in the mixture is 25% by mass or less with respect to a total of 100% by mass of the aggregate and the binder.
  • a lithium ion secondary battery comprising a step of producing a negative electrode using a negative electrode material obtained by the method for producing a negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 4>. manufacturing method.
  • a method for producing a negative electrode material for a lithium ion secondary battery that is excellent in moldability when forming a molded product and capable of producing a lithium ion secondary battery, and a lithium ion secondary battery including the method for producing this negative electrode material.
  • a method for manufacturing a secondary battery can be provided.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • Particles corresponding to each component in the present disclosure may include a plurality of types.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term "layer” includes not only the case where the layer is formed in the entire region when observing the region where the layer exists, but also the case where it is formed only in part of the region. included.
  • a method for producing a negative electrode material for a lithium ion secondary battery of the present disclosure comprises: (a) obtaining a mixture comprising a graphitizable aggregate, a graphitizable binder and an aromatic compound; (b) molding the mixture to obtain a molding having a density of 1.3 g/cm 3 or less; (c) graphitizing the molded product to obtain a graphitized product; (d) pulverizing the graphitized material to obtain a pulverized material.
  • each process of the said method may be performed continuously, or may be performed discontinuously.
  • Each step of the above method may be performed at the same location or at different locations.
  • a mixture comprising a graphitizable aggregate, a graphitizable binder, and no aromatic compound was used, and the mixture was molded to a density of 1.5.
  • a molding with a weight of 3 g/cm 3 or less is obtained.
  • this method for comparison when obtaining a molded article with a relatively low density, there arises a problem that the appearance of the molded article deteriorates, and there are problems such as handling properties in the subsequent graphitization treatment and the like.
  • the production method of the present disclosure after obtaining a mixture containing a graphitizable aggregate, a graphitizable binder, and an aromatic compound, the mixture is molded to have a density of 1.3 g/cm 3 .
  • the following moldings are obtained.
  • a mixture containing an aromatic compound is used for forming a molding.
  • the appearance of the molded product is improved, and the strength of the molded product is also improved, so that the handleability in the subsequent graphitization treatment or the like is also improved. Therefore, in the production method of the present disclosure, good moldability is obtained when forming a molded product.
  • raw coke when raw coke was used, it was difficult to form, and it was necessary to improve the formability by heat-treating the raw coke.
  • the production method of the present disclosure even when raw coke is used without being heat-treated, a compact that is easy to handle can be obtained. Therefore, in the production method of the present disclosure, as the graphitizable aggregate, raw coke that has been heat-treated may be used to form the molded body, or raw coke that has not been heat-treated may be used to form the molded body. good too.
  • the molded product is graphitized, and then the graphitized product is pulverized to produce a lithium ion secondary battery with excellent cycle characteristics. be.
  • the graphitized material can be pulverized more easily than when pulverizing the graphitized material obtained using a molded article with a relatively high density, and as a result, a pulverized material with a small specific surface area can be obtained. be able to.
  • the contact area between the negative electrode material and the electrolyte can be reduced.
  • the decomposition reaction of the electrolytic solution is suppressed, and the life of the battery can be lengthened.
  • the cycle characteristics of the lithium ion secondary battery are excellent.
  • step (a) a mixture containing a graphitizable aggregate, a graphitizable binder, and an aromatic compound is obtained.
  • a method for obtaining the mixture is not particularly limited, and a kneader or the like can be used.
  • Mixing is preferably carried out at a temperature at which the graphitizable binder softens.
  • the temperature may be 50°C to 300°C
  • the temperature may be 20°C to 100°C. .
  • Graphitizable aggregates are not particularly limited as long as they are graphitized by graphitization. Specifically, coke such as fluid coke, needle coke, and mosaic coke can be mentioned, and needle coke is preferably used.
  • the graphitizable aggregate is preferably particulate.
  • the average particle size of the graphitizable aggregate is, for example, preferably 5 ⁇ m to 40 ⁇ m, more preferably 8 ⁇ m to 30 ⁇ m, and 8 ⁇ m to 25 ⁇ m. It is even more preferable to have The average particle size is, for example, the volume average particle size (D50) measured by the laser diffraction/scattering method described below.
  • the standard deviation of the particle size distribution of the graphitizable aggregate is, for example, preferably 0.20 or less, more preferably 0.18 or less, and even more preferably 0.16 or less.
  • the standard deviation of the particle size distribution of the aggregate is 0.20 or less, the variation in the particle size of the aggregate can be reduced, and the variation in the particle size of the obtained pulverized product can also be suppressed.
  • the resistance distribution in the negative electrode can be made uniform. As a result, the rapid charging performance of lithium ion secondary batteries tends to improve.
  • the standard deviation of the particle size distribution is, for example, a value (volume basis) measured by a laser diffraction/scattering method described later.
  • the lower limit of the standard deviation of the particle size distribution of the graphitizable aggregate is not particularly limited, and may be, for example, 0.05 or more, or 0.10 or more.
  • Examples of methods for adjusting the average particle size of the graphitizable aggregate and the standard deviation of the particle size distribution of the graphitizable aggregate to the ranges described above include classification with a sieve, air classification, and wet classification.
  • the graphitizable binder is not particularly limited as long as it can be graphitized by the graphitization treatment.
  • Specific examples include coal-based, petroleum-based, and artificial pitches and tars, thermoplastic resins, thermosetting resins, and the like.
  • the content of the graphitizable binder in the mixture is preferably 25% by mass or less, more preferably 20% by mass or less, with respect to the total 100% by mass of the aggregate and binder, and 5% by mass to It is more preferably 19% by mass, and particularly preferably 5% to 18% by mass.
  • the binder content is 5% by mass or more, it tends to function favorably as a binder for graphitizable aggregates.
  • the binder content is 25% by mass or less, the amount of fixed carbon in the mixture is sufficiently ensured, and the yield tends to be excellent.
  • the graphitizable aggregate and the graphitizable binder contained in the mixture may each be one type or two or more types.
  • the aromatic compound is not particularly limited as long as it is a compound having an aromatic ring.
  • the aromatic compound may be a compound having an aromatic ring and a molecular weight of 500 or less, or a compound having a molecular weight of 300 or less.
  • aromatic compounds include naphthalene, methylnaphthalene such as 1-methylnaphthalene and 2-methylnaphthalene, acenaphthene, biphenyl, fluorene, benzopyrene, benzanthracene, dibenzoanthracene, diphenylene oxide, quinoline, and isoquinoline.
  • the aromatic compounds contained in the mixture may be of one type or two or more types.
  • aromatic compound methylnaphthalene, naphthalene, and the like are preferable from the viewpoint of moldability when forming a molded product.
  • the content of the aromatic compound in the mixture is preferably 1% by mass to 20% by mass, more preferably 2% by mass to 18% by mass, with respect to the total 100% by mass of the aggregate and the binder. , 3% to 15% by mass.
  • the mixture may contain other components than the graphitizable aggregate, the graphitizable binder and the aromatic compound.
  • Other components include graphite, a dispersant, a graphitization catalyst, and the like.
  • the mixture may contain graphite.
  • graphite examples include natural graphite and artificial graphite.
  • Graphite is preferably particulate.
  • the mixture may contain only one type of graphite, or may contain two or more types.
  • the mixture preferably contains a dispersant.
  • a dispersing agent in the mixture, it is possible to suppress variations in the particle size of the pulverized material obtained by pulverizing the graphitized material, making it easier to obtain a pulverized material having a uniform particle size. As a result, the rapid charging performance of lithium ion secondary batteries tends to improve.
  • the inclusion of a dispersant in the mixture leads to a reduction in the amount of graphitizable binder, and improvement in battery characteristics such as the initial charge/discharge efficiency of the negative electrode material can be expected.
  • the type of dispersant is not particularly limited. Specifically, liquid paraffin, paraffin wax, hydrocarbons such as polyethylene wax, fatty acids such as stearic acid, oleic acid, erucic acid, 12-hydroxystearic acid, zinc stearate, lead stearate, aluminum stearate, calcium stearate, Fatty acid metal salts such as magnesium stearate, fatty acid amides such as stearic acid amide, oleic acid amide, erucic acid amide, methylenebisstearic acid amide, ethylenebisstearic acid amide, stearic acid monoglyceride, stearyl stearate, fatty acids such as hydrogenated oil Examples include higher alcohols such as esters and stearyl alcohol.
  • the mixture contains a dispersant
  • its amount is not particularly limited.
  • the content of the dispersant in the entire mixture may be 0.1% to 20% by weight, may be 0.5% to 10% by weight, or may be 0.5% to 5% by weight. may be
  • the mixture preferably contains a graphitization catalyst.
  • the type of graphitization catalyst is not particularly limited. Specific examples include substances having a graphitization catalytic action such as silicon, iron, nickel, titanium and boron, carbides of these substances, oxides of these substances, and nitrides of these substances.
  • the mixture contains a graphitization catalyst
  • its amount is not particularly limited.
  • the content of the graphitization catalyst with respect to the entire mixture may be 0.1% by mass to 50% by mass, may be 0.5% by mass to 40% by mass, and may be 0.5% by mass to 30% by mass. %.
  • step (b) the mixture obtained in step (a) is molded to obtain a molding.
  • a molding Preferably, it is molded into a predetermined shape by a uniaxial press or the like.
  • a uniaxial press or the like By forming the mixture in this way, it is possible to increase the amount charged to the graphitization furnace when graphitizing the mixture, thereby improving productivity and improving the effect of the graphitization catalyst.
  • the method of molding the mixture in step (b) is not particularly limited.
  • a molding method in which a mixture is placed in a container such as a mold and pressurized in a uniaxial direction, a mixture is placed in a container such as a mold, a weight is placed on the upper surface, and molding is performed by applying vibration and impact to the metal frame.
  • an extrusion molding method in which a mixture is extruded through a nozzle or the like using a horizontal press.
  • the density of the molded product obtained may be 1.3 g/cm 3 or less, and from the viewpoint of the productivity of the negative electrode material and the cycle characteristics of the lithium ion secondary battery, the density is 0.8 g/cm 3 to 0.8 g/cm 3 .
  • 1.3 g/cm 3 is preferred, 1.0 g/cm 3 to 1.25 g/cm 3 is more preferred, and 1.05 g/cm 3 to 1.2 g/cm 3 is even more preferred. This makes it possible to obtain a compact having a relatively low density, graphitize the compact, and then grind the graphitized product.
  • the graphitized material can be pulverized more easily than the case of pulverizing the graphitized material obtained by using a molding having a relatively high density. As a result, it tends to be possible to obtain a pulverized product with a small specific surface area.
  • a negative electrode material containing a pulverized material having a small specific surface area for manufacturing a lithium ion secondary battery the contact area between the negative electrode material and the electrolyte can be reduced. As described above, the decomposition reaction of the electrolytic solution is suppressed, the life of the battery can be extended, and there is a tendency to manufacture a lithium ion secondary battery having excellent cycle characteristics.
  • the molded product obtained in step (b) is preferably heat-treated before graphitizing the molded product in step (c).
  • the heat treatment tends to remove organic components contained in the mixture that do not contribute to graphitization, thereby suppressing gas generation and the like during the graphitization treatment.
  • the temperature of the heat treatment is not particularly limited, and is preferably lower than the temperature of the heat treatment in step (c). For example, it may be carried out within the range of 500°C to 1000°C.
  • step (c) the molded product obtained in step (b) is graphitized.
  • the method for graphitizing the molded product is not particularly limited as long as the graphitizable component contained in the mixture can be graphitized.
  • the atmosphere in which the mixture is hardly oxidized is not particularly limited, and examples thereof include inert atmospheres such as nitrogen and argon, and vacuum.
  • the temperature of the heat treatment for graphitization may be, for example, 1500°C or higher, 2000°C or higher, 2500°C or higher, or 2800°C or higher.
  • the upper limit of the heat treatment temperature is not particularly limited, it may be, for example, 3200° C. or lower.
  • the temperature of the heat treatment is 1500° C. or higher, the crystal tends to change and graphitization tends to proceed.
  • the heat treatment temperature is 2000° C. or higher, the graphite crystal tends to develop better.
  • the temperature of the heat treatment for graphitization is 3200° C. or lower, sublimation of a portion of the graphite tends to be suppressed.
  • step (d) the graphite obtained in step (c) is pulverized to obtain a pulverized product.
  • the pulverization method is not particularly limited, and can be carried out by a known method using a jet mill, vibration mill, pin mill, hammer mill, or the like.
  • the particle size of the pulverized material may be adjusted so as to obtain a desired size.
  • the method for adjusting the particle size is not particularly limited, and examples thereof include a method using the aforementioned pulverizing apparatus, a method using a sieve, and the like.
  • step (e) a step of disposing low-crystalline carbon on at least part of the surface of the pulverized material, (f) combining the pulverized material with another negative electrode active material A step of mixing and the like may be carried out.
  • a material that can be turned into low-crystalline carbon by heat treatment and the pulverized material are mixed and heat-treated.
  • the input/output characteristics such as rapid charge/discharge characteristics of a lithium ion secondary battery using this as a negative electrode material may be improved.
  • the method of mixing the pulverized material with another negative electrode active material in step (f) is not particularly limited.
  • By mixing the pulverized material with another negative electrode active material it may be possible to improve the desired characteristics of the lithium ion secondary battery compared to using only the pulverized material as the negative electrode active material.
  • Other negative electrode active materials include, but are not limited to, graphite particles such as natural graphite and artificial graphite, and particles containing an element capable of intercalating and deintercalating lithium ions.
  • Elements capable of intercalating and deintercalating lithium ions are not particularly limited, and examples thereof include Si, Sn, Ge, and In.
  • the pulverized material obtained in step (f) may contain particles in which a plurality of flat graphite particles are aggregated or bonded, and the plurality of flat graphite particles are the main part of the graphite particles. It may also contain particles in a state of being aggregated or bonded so that the planes are non-parallel to each other (hereinafter also referred to as secondary graphite particles).
  • flat graphite particles refer to non-spherical graphite particles having an anisotropic shape.
  • flat graphite particles include graphite particles having shapes such as scaly, scale-like, and partially block-like.
  • the flat graphite particles have an aspect ratio represented by A/B, where A is the length in the major axis direction and B is the length in the minor axis direction, for example, 1.2 to 20. is preferred, and 1.3 to 10 is more preferred.
  • A is the length in the major axis direction
  • B is the length in the minor axis direction
  • 1.2 to 20 is preferred, and 1.3 to 10 is more preferred.
  • the aspect ratio is 1.2 or more, the contact area between particles tends to increase and the conductivity tends to be further improved.
  • the aspect ratio is 20 or less, the input/output characteristics such as rapid charge/discharge characteristics of the lithium ion secondary battery tend to be further improved.
  • the aspect ratio is obtained by observing graphite particles under a microscope, arbitrarily selecting 100 graphite particles, measuring A/B of each, and taking the arithmetic mean of these measured values.
  • the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in a projected image of a graphite particle observed using a microscope, two parallel tangent lines circumscribing the outer periphery of the graphite particle, the tangent line a1 and the tangent line a2 having the maximum distance between them are selected. Let the distance between the tangent line a1 and the tangent line a2 be the length A in the major axis direction.
  • Two parallel tangent lines circumscribing the outer periphery of the graphite particle, the tangent line b1 and the tangent line b2 having the smallest distance are selected, and the distance between the tangent line b1 and the tangent line b2 is the length in the minor axis direction.
  • non-parallel main surfaces of graphite secondary particles means that the surfaces (main surfaces) having the largest cross-sectional area of a plurality of flat graphite particles are not aligned in a fixed direction. Whether or not the main surfaces of the flat graphite particles are non-parallel to each other can be confirmed by microscopic observation. Since a plurality of flat graphite particles are aggregated or bonded with their main surfaces not parallel to each other, an increase in the orientation of the main surfaces of the flat graphite particles in the negative electrode is suppressed, and charging is facilitated. The accompanying expansion of the negative electrode is suppressed, and the cycle characteristics of the lithium ion secondary battery tend to be further improved.
  • the graphite secondary particles may partially include a structure in which a plurality of flat graphite particles are aggregated or bonded so that their main surfaces are parallel to each other.
  • a state in which a plurality of flat graphite particles are aggregated or bonded refers to a state in which two or more flat graphite particles are aggregated or bonded.
  • Boding refers to a state in which particles are chemically bound to each other either directly or via a carbon substance.
  • Aggregation refers to a state in which particles are not chemically bonded to each other, but maintain the shape of an aggregate due to their shape or the like.
  • the flat graphite particles may be aggregated or bonded via carbon substances. Carbon materials include, for example, graphitized forms of graphitizable binders. From the viewpoint of mechanical strength, it is preferable that two or more flat graphite particles are bonded via a carbon substance. Whether or not the flat graphite particles are aggregated or bonded can be confirmed, for example, by observation with a scanning electron microscope.
  • the average particle size of the flat graphite particles is, for example, preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 25 ⁇ m, and 1 ⁇ m to 15 ⁇ m, from the viewpoint of ease of aggregation or bonding. More preferred.
  • Examples of the method for measuring the average particle size of the flat graphite particles include a method of measuring with a scanning electron microscope, and the average particle size of the flat graphite particles is, for example, 100 flat graphite particles. Arithmetic mean of diameters.
  • the flat graphite particles and their raw materials are not particularly limited, and include artificial graphite, scale-like natural graphite, scale-like natural graphite, coke, resin, tar, pitch, and the like.
  • artificial graphite, natural graphite, or graphite obtained from coke has a high degree of crystallinity and forms soft particles, so that the negative electrode tends to have a higher density.
  • the negative electrode material may contain spherical graphite particles.
  • the negative electrode material contains spherical graphite particles, since the spherical graphite particles themselves have a high density, there is a tendency that the pressing pressure required to obtain a desired electrode density can be reduced.
  • Spherical graphite particles include spherical artificial graphite and spherical natural graphite.
  • the spherical graphite particles are preferably high-density graphite particles.
  • it is preferably spherical natural graphite that has been subjected to a particle spheroidizing treatment to increase the tap density.
  • the negative electrode material layer containing spherical natural graphite has excellent peel strength, and tends to be difficult to peel off from the current collector even when pressed with a strong force.
  • the negative electrode material contains spherical graphite particles, it may contain the aforementioned flat graphite particles and spherical graphite particles.
  • the ratio of the two is not particularly limited, and is set according to the desired electrode density, pressure conditions during pressing, desired battery characteristics, etc. can.
  • the negative electrode material contains flat graphite particles and spherical graphite particles
  • the flat graphite particles and the spherical graphite particles are mixed, and the flat graphite particles and the spherical graphite particles are mixed.
  • a bonded state hereinafter also referred to as a composite particle
  • Composite particles include, for example, particles in which flat graphite particles and spherical graphite particles are bonded via organic carbides.
  • the composite particles can be produced, for example, by using a mixture containing flat graphite particles or raw materials thereof and spherical graphite particles as the mixture in step (a).
  • the average particle size of the negative electrode material produced by the above method is not particularly limited. For example, it is preferably 5 ⁇ m to 40 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m, even more preferably 10 ⁇ m to 25 ⁇ m.
  • the average particle size for example, may be measured with a scanning electron microscope in the same manner as the average particle size of the flat graphite particles described above, and is the volume average particle size (D50) measured by a laser diffraction/scattering method. may
  • a sample electrode is prepared, the electrode is embedded in epoxy resin, mirror-polished, and the cross section of the electrode is examined with a scanning electron microscope.
  • a scanning electron microscope e.g., Keyence Co., Ltd., "VE-7800” observation method, ion milling device (e.g., Hitachi High-Technologies Co., Ltd., "E-3500") to prepare an electrode cross section using scanning electron Examples include a method of measuring with a microscope (for example, "VE-7800” manufactured by Keyence Corporation).
  • the average particle size in this case is the median value of 100 particle sizes arbitrarily selected from observed particles.
  • sample electrode for example, a mixture of 98 parts by mass of the negative electrode material, 1 part by mass of styrene-butadiene resin as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener is used as a solid content, and water is added to prepare a dispersion liquid. Then, the above dispersion is coated on a copper foil having a thickness of 10 ⁇ m so as to have a thickness of about 70 ⁇ m (at the time of coating), and then dried at 105° C. for 1 hour.
  • the negative electrode material may have an orientation of 40 or less, 20 or less, or 15 or less when made into a negative electrode (a negative electrode after pressing if a pressing process is involved in manufacturing the negative electrode). good too.
  • the aforementioned orientation may be 10 or more.
  • the orientation of the negative electrode material is an index indicating the degree of orientation of the particles of the negative electrode material contained in the negative electrode.
  • a small orientation means that the particles of the negative electrode material are oriented in random directions. That is, it means that the orientation of the graphite particles along the surface of the current collector is suppressed by the pressure during pressing.
  • the specific surface area of the negative electrode material is preferably 3.0 m 2 /g or less, more preferably 0.5 m 2 /g to 2.5 m 2 /g, and 0 More preferably, it is between 0.7 m 2 /g and 2.0 m 2 /g.
  • a first embodiment of a method for manufacturing a lithium ion secondary battery of the present disclosure includes a step of manufacturing a negative electrode using the negative electrode material obtained by the method for manufacturing a negative electrode material described above.
  • a second embodiment of the method for manufacturing a lithium ion secondary battery of the present disclosure includes a step of manufacturing a negative electrode material by the above-described method of manufacturing a negative electrode material, and a step of manufacturing a negative electrode using the negative electrode material. .
  • the method of manufacturing the negative electrode using the negative electrode material is not particularly limited.
  • the binder contained in the composition is not particularly limited.
  • styrene-butadiene rubber polymer compounds containing ethylenically unsaturated carboxylic acid esters (methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hydroxyethyl (meth) acrylate, etc.) as polymerization components
  • Polymer compounds containing ethylenically unsaturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.) as polymerization components
  • polyvinylidene fluoride polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile , polyimide, and polyamideimide.
  • (Meth)acrylate in this disclosure means either or both of methacrylate and acrylate.
  • the solvent contained in the composition is not particularly limited. Specifically, organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, ⁇ -butyrolactone, and water are used.
  • the composition may contain a thickener to adjust the viscosity, if necessary.
  • thickeners include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, casein and the like.
  • the composition may be mixed with a conductive aid as needed.
  • conductive aids include carbon black, graphite, acetylene black, conductive oxides, and conductive nitrides.
  • the material and shape of the current collector used for manufacturing the negative electrode are not particularly limited.
  • materials such as strip-like foils, strip-like perforated foils, and strip-like meshes made of metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel can be used.
  • Porous materials such as porous metal (foamed metal) and carbon paper can also be used.
  • the method of forming a negative electrode layer on a current collector using the composition is not particularly limited, and may be a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, or gravure. It can be carried out by known methods such as a coating method and a screen printing method. When integrating the negative electrode material layer and the current collector, it can be carried out by a known method such as roll, press, or a combination thereof.
  • heat treatment After forming the negative electrode material layer on the current collector, heat treatment (drying) may be performed.
  • the heat treatment By performing the heat treatment, the solvent contained in the negative electrode material layer is removed, the strength is increased by hardening the binder, and the adhesion between the particles and between the particles and the current collector can be improved.
  • the heat treatment may be performed in an inert atmosphere such as helium, argon, or nitrogen, or in a vacuum atmosphere to prevent oxidation of the current collector during treatment.
  • a press treatment may be performed.
  • the electrode density of the negative electrode can be adjusted.
  • the electrode density of the negative electrode is not particularly limited, but may be 1.5 g/cm 3 to 1.9 g/cm 3 or 1.6 g/cm 3 to 1.8 g/cm 3 .
  • a higher electrode density tends to improve the volume capacity of the negative electrode, improve the adhesion of the negative electrode material layer to the current collector, and improve the cycle characteristics. Pressing is preferably performed before heat treatment.
  • the lithium-ion secondary battery produced by the above method may include a negative electrode, a positive electrode, and an electrolyte produced by the above method.
  • a lithium-ion secondary battery can have, for example, a structure in which a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolytic solution containing an electrolyte is injected.
  • the positive electrode may be produced by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode.
  • a material such as a strip-shaped foil, a strip-shaped perforated foil, or a strip-shaped mesh made of a metal or alloy such as aluminum, titanium, or stainless steel can be used.
  • separators include non-woven fabrics, cloths, microporous films, and combinations thereof whose main component is polyolefin such as polyethylene and polypropylene.
  • main component is polyolefin such as polyethylene and polypropylene.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3 -methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidin-2-one, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate , butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, etc
  • organic electrolytes Dissolved in a non-aqueous solvent of a single substance or a mixture of two or more components , so-called organic electrolytes can be used.
  • an electrolytic solution containing fluoroethylene carbonate is preferable because it tends to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material, thereby remarkably improving cycle characteristics.
  • the form of the lithium-ion secondary battery is not particularly limited, and examples include paper-type batteries, button-type batteries, coin-type batteries, laminated-type batteries, cylindrical batteries, and rectangular batteries.
  • the negative electrode material for lithium ion secondary batteries can be applied not only to lithium ion secondary batteries but also to electrochemical devices in general, such as hybrid capacitors, which have a charging and discharging mechanism of intercalating and deintercalating lithium ions. .
  • Example 1 (1) Formation of molded product After pulverizing calcined needle coke as a raw material using a free crusher manufactured by Nara Machinery Co., Ltd., using Turboplex (registered trademark) manufactured by Hosokawa Micron Co., Ltd. The following aggregates were prepared by air classification. Further, the materials shown below were used as raw materials. The average particle size of the aggregate and the negative electrode material and the standard deviation of the particle size distribution of the aggregate were each measured using a particle size distribution measuring device (SALD-3000, Shimadzu Corporation) using a laser diffraction/scattering method. . The standard deviation of the aggregate particle size distribution is the standard deviation defined on a logarithmic scale.
  • SALD-3000 particle size distribution measuring device
  • Aggregate Needle coke with an average particle size of 14 ⁇ m and a standard deviation of particle size distribution of 0.15
  • Binder Tar pitch
  • Aromatic compound Additive containing methylnaphthalene (total aromatic compound content of 77% by mass or more)
  • ⁇ Dispersant stearic acid
  • test force (N) at the time of crushing of the test piece was measured as follows. Specifically, 10 g of the mixture having the composition shown in Table 1 was used to prepare a test piece having a long side of 52.1 mm and a short side of 11.4 mm under the condition of a surface pressure of 75.8 MPa at room temperature. Table 1 shows the density (g/cm 3 ) of the obtained test piece. Using the prepared test piece and an autograph manufactured by Shimadzu Corporation, a three-point bending test was performed under the conditions of a test speed of 10 mm/min and a distance between fulcrums of 7 mm to measure the test force (N) at the time of crushing. Table 1 shows the results.
  • Example 1 The molded product obtained in Example 1 was evaluated for moldability based on the following evaluation criteria. In addition, moldability is so favorable that a numerical value is high. Table 1 shows the results.
  • -Evaluation criteria- 1 It disintegrated easily when touched with a hand, and handling was impossible. 2: It was easily peeled off when touched by hand, and handling was impossible. 3: It was possible to handle, but it was brittle and easily crumbled when lifted by hand. 4: It was handleable and did not crumble easily even when lifted by hand, but the surface was easily peeled off. 5: It was handleable, and even when lifted by hand, it did not crumble easily and the surface did not peel off.
  • Example 1 A molding was obtained in the same manner as in Example 1, except that the aromatic compound was not used in Example 1. Furthermore, in the same manner as in Example 1, evaluation of test force at crushing and evaluation of moldability were performed. Table 1 shows the results. In Comparative Example 1, the density of the test piece could not be evaluated because the block-shaped molding could not be formed well.
  • Example 2 A molding was obtained in the same manner as in Example 1, except that water was used instead of the aromatic compound. Furthermore, in the same manner as in Example 1, evaluation of test force at crushing and evaluation of moldability were performed. Table 1 shows the results.
  • Example 3 A molding was obtained in the same manner as in Example 1, except that acetone was used in place of the aromatic compound. Furthermore, in the same manner as in Example 1, evaluation of test force at crushing and evaluation of moldability were performed. Table 1 shows the results.
  • Example 2 A mixture was prepared in the same manner as in Example 1, except that methylnaphthalene was used as the aromatic compound and 3% by mass of methylnaphthalene was included with respect to the total of 100% by mass of the aggregate and binder. Next, the resulting mixture was molded at room temperature under conditions of a surface pressure of 10 MPa and a treatment time of 10 seconds to obtain a molded product having a long side of 140 mm and a short side of 30 mm.
  • Example 3 In Example 2, a mixture was prepared in the same manner as in Example 1 except that 10% by mass of methylnaphthalene was added to 100% by mass of aggregate and binder, and a molding was obtained.
  • Example 4 In Example 2, a mixture was prepared in the same manner as in Example 1, except that 15% by mass of methylnaphthalene was added to 100% by mass of aggregate and binder, and a molding was obtained.
  • the density of the molding in Example 2 is 1.13 g/ cm3
  • the density of the molding in Example 3 is 1.21 g/ cm3
  • the density of the molding in Example 4 is , 1.23 g/cm 3 .
  • the moldability of the molded products of Examples 2 to 4 was evaluated based on the evaluation criteria for the item (evaluation of moldability) above. In Examples 2 to 4, the numerical value was 5, indicating good moldability.
  • Example 5 Formation of Molding Raw needle coke that has not been heat treated was used instead of calcined needle coke as a raw material to prepare an aggregate having an average particle size of 9 ⁇ m and a standard deviation of particle size distribution of 0.15. Furthermore, the same binder, aromatic compound and dispersant as in Example 1 were used as raw materials and mixed at the blending proportions shown in Table 2 to prepare a mixture. Next, the obtained mixture was molded at room temperature under the molding pressure (unit: N) shown in FIG. 1 to obtain three kinds of moldings each having a long side of 52.1 mm and a short side of 11.4 mm. The densities (g/cm 3 ) of the three types of moldings in Example 5 are as indicated by the dots in FIG. In FIG. 1, the vertical axis represents the density of the molded article before or after the heat treatment, and the horizontal axis represents the molding pressure when producing the molded article, ie, the molding pressure before the heat treatment.
  • each of the three types of molded products obtained in Example 5 was heat-treated at 900°C.
  • the densities (g/cm 3 ) of the moldings after the three types of heat treatments in Example 5 are as indicated by the dots in FIG.
  • Example 6 Example 5 except that the content of the methylnaphthalene-containing additive was changed to 7% by mass with respect to the total 100% by mass of the aggregate and binder, and the molding pressure of the mixture was changed as shown in FIG. The same test as 5 was performed.
  • the densities (g/cm 3 ) of the moldings before and after the three types of heat treatment in Example 6 are as indicated by the dots in FIG.
  • Example 7 Example 5 except that the content of the methylnaphthalene-containing additive was changed to 15% by mass with respect to the total 100% by mass of the aggregate and binder, and the molding pressure of the mixture was changed as shown in FIG. The same test as 5 was performed.
  • the densities (g/cm 3 ) of the moldings before and after the three types of heat treatment in Example 7 are as indicated by the dots in FIG.
  • Example 8 Example 5 except that the content of the methylnaphthalene-containing additive was changed to 30% by mass with respect to the total 100% by mass of the aggregate and binder, and the molding pressure of the mixture was changed as shown in FIG. The same test as 5 was performed.
  • the densities (g/cm 3 ) of the moldings before and after the two types of heat treatment in Example 8 are as indicated by the dots in FIG.
  • the density of the molded article before heat treatment is greatly increased by adding the additive containing methylnaphthalene or by increasing the amount of the additive, the density of the molded article after heat treatment is It can be seen that there is no significant increase. Furthermore, it is presumed that the density of the graphitized material does not significantly increase even if the graphitization treatment is performed thereafter. Therefore, it is said that the increase in the density of the molded product before heat treatment does not adversely affect the pulverization process of the graphite (for example, the adverse effect that the specific surface area of the pulverized product increases due to the need for a large force for pulverizing the graphite). Conceivable.
  • the aggregate, binder, etc. which are raw materials shown in Table 3, were mixed using a kneader in the amounts (parts by mass) shown in Table 3 to obtain a mixture.
  • the resulting mixture was then molded at room temperature by a uniaxial press to obtain a molding.
  • the obtained molding was heat-treated in a nitrogen atmosphere at 800° C. to 850° C. for 8 hours and then graphitized at 2600° C. to 3100° C. for 30 hours to obtain a graphitized material.
  • the obtained graphite was pulverized to obtain graphite powders (negative electrode materials for lithium ion secondary batteries) of Reference Examples 1 to 4.
  • Density (g/cm 3 ) of molded product obtained in the above steps, density (g/cm 3 ) of graphitized material, average particle size ( ⁇ m) of negative electrode material, specific surface area (m 2 /g), saturated tap density (g/cm 3 ) are shown in Table 3, respectively.
  • the pulverized material obtained in each of the reference examples contained secondary particles in a state in which graphite particles, which were graphitized aggregates, were aggregated or combined such that the main surfaces were non-parallel to each other.
  • the initial discharge capacity (Ah/kg) and the initial charge/discharge efficiency (%) were measured using the produced evaluation cell. Specifically, the evaluation cell was placed in a constant temperature bath maintained at 25° C., and was charged at a constant current of 0.53 mA until it reached 0 V. Then, the current was a value corresponding to 0.026 mA at a constant voltage of 0 V. The battery was further charged until it decayed to , and the initial charge capacity was measured. After charging, the battery was rested for 30 minutes and then discharged. It was carried out at 0.53 mA until it reached 1.5 V, and the initial discharge capacity was measured. At this time, the capacity was converted to the mass of the negative electrode material used. The initial charge/discharge efficiency (%) was obtained by multiplying the value obtained by dividing the initial discharge capacity by the initial charge capacity by 100. Table 3 shows the results.
  • the evaluation cell was placed in a constant temperature bath maintained at 25° C., and after constant current charging at 0.92 mA to 4.2 V, the current was 0.046 mA at a constant voltage of 4.2 V. was further charged until it decayed to a value corresponding to . After charging, the battery was rested for 10 minutes and then discharged at 0.92 mA until it reached 2.75 V. This charging and discharging was repeated for 5 cycles.
  • a rapid charge test was performed using an aged evaluation cell. Specifically, the evaluation cell was placed in a constant temperature bath maintained at 25° C., and was charged at a constant current of 0.92 mA until it reached 4.2 V, and the charge capacity (1) was measured. After charging, the battery was rested for 10 minutes and then discharged. Discharge was performed at 4.6 mA to 2.75 V. Further, constant current charging was performed at 6.9 mA until the voltage reached 4.2 V, and the charging capacity (2) was measured. After charging, the battery was rested for 10 minutes and then discharged at 4.6 mA to 2.75V. The value obtained by dividing the charge capacity (2) by the charge capacity (1) and multiplying the result by 100 was taken as the quick charge capacity retention rate (%). Table 3 shows the results.
  • the evaluation cells prepared using molded articles with lower densities in Reference Examples 1 to 3 are the evaluation cells prepared using molded articles with higher densities in Reference Example 4. Both the rapid charge capacity retention rate and the battery life retention rate were good.

Abstract

(a)黒鉛化可能な骨材と、黒鉛化可能なバインダーと、芳香族化合物と、を含む混合物を得る工程と、(b)前記混合物を成形し、密度が1.3g/cm以下である成形物を得る工程と、(c)前記成形物を黒鉛化して黒鉛化物を得る工程と、(d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を備えるリチウムイオン二次電池用負極材の製造方法。

Description

リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
 本発明は、リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法に関する。
 リチウムイオン二次電池は、ニッケル・カドミウム電池、ニッケル・水素電池、鉛蓄電池等の他の二次電池に比べてエネルギー密度が高いため、ノートパソコン、携帯電話等の携帯電化製品用の電源として広く用いられている。比較的小型の電化製品のみならず、電気自動車、蓄電用電源等へのリチウムイオン二次電池の利用も期待されている。
 リチウムイオン二次電池の負極の材料(負極材)としては、黒鉛が広く使用されている。黒鉛を用いた負極材の製造方法としては、例えば、特許文献1には炭素材料とバインダー等を混合して得た混合物を粉砕し、得られた粉砕物を金型を用いて成形した状態で黒鉛化処理を行い、得られた黒鉛化物をさらに粉砕する方法が記載されている。
国際公開第2015/147012号
 電化製品、電気自動車、蓄電用電源等へのリチウムイオン二次電池の需要が高まっており、それに伴ってサイクル特性に優れるリチウムイオン二次電池が望まれている。
 本発明者らは、黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を成形する際に、比較的密度の小さい成形物を形成することでサイクル特性に優れるリチウムイオン二次電池を製造できることを見出した。
 しかし、比較的密度の小さい成形物を形成する場合には、その後の黒鉛化処理等でのハンドリング性などが低下し、成形物を形成する際の成形性に改善の余地がある。
 本発明は上記事情に鑑み、成形物を形成する際の成形性に優れ、リチウムイオン二次電池を製造可能なリチウムイオン二次電池用負極材の製造方法及びこの負極材の製造方法を含むリチウムイオン二次電池の製造方法を提供することを課題とする。
 前記課題を解決するための具体的手段には以下の実施態様が含まれる。
<1> (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーと、芳香族化合物と、を含む混合物を得る工程と、
 (b)前記混合物を成形し、密度が1.3g/cm以下である成形物を得る工程と、
 (c)前記成形物を黒鉛化して黒鉛化物を得る工程と、
 (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を備えるリチウムイオン二次電池用負極材の製造方法。
<2> 前記芳香族化合物は、ナフタレン、メチルナフタレン、アセナフテン、ビフェニル、フルオレン、ベンゾピレン、ベンゾアントラセン、ジベンゾアントラセン、ジフェニレンオキシド、キノリン及びイソキノリンからなる群より選択される少なくとも一つの化合物を含む<1>に記載のリチウムイオン二次電池用負極材の製造方法。
<3> 前記混合物中の前記芳香族化合物の含有率は、前記骨材及び前記バインダーの合計100質量%に対して1質量%~20質量%である<1>又は<2>に記載のリチウムイオン二次電池用負極材の製造方法。
<4> 前記混合物中の前記バインダーの含有率は、前記骨材及び前記バインダーの合計100質量%に対して25質量%以下である<1>~<3>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法。
<5> <1>~<4>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法により得られる負極材を用いて負極を作製する工程を備える、リチウムイオン二次電池の製造方法。
<6> <1>~<5>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法によりリチウムイオン二次電池用負極材を製造する工程と、前記リチウムイオン二次電池用負極材を用いて負極を作製する工程と、を備える、リチウムイオン二次電池の製造方法。
 本発明によれば、成形物を形成する際の成形性に優れ、リチウムイオン二次電池を製造可能なリチウムイオン二次電池用負極材の製造方法及びこの負極材の製造方法を含むリチウムイオン二次電池の製造方法を提供することができる。
実施例5~8にて成形体作製時の成形圧力及びメチルナフタレン含有添加剤の含有率を変化させた際の熱処理前の成形体の密度と、熱処理後の成形体の密度との関係を示すグラフである。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<リチウムイオン二次電池用負極材の製造方法>
 本開示のリチウムイオン二次電池用負極材(以下、単に負極材とも称する)の製造方法は、
 (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーと、芳香族化合物と、を含む混合物を得る工程と、
 (b)前記混合物を成形し、密度が1.3g/cm以下である成形物を得る工程と、
 (c)前記成形物を黒鉛化して黒鉛化物を得る工程と、
 (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を備える。
 なお、上記方法の各工程は連続して行っても、連続せずに行ってもよい。上記方法の各工程は同じ場所で行っても、異なる場所で行ってもよい。
 本開示の製造方法の比較対象となる方法では、黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含み、芳香族化合物を含まない混合物を用い、当該混合物を成形して密度が1.3g/cm以下である成形物を得る。この比較対象の方法では、比較的密度が小さい成形物を得る際に、成形物の外見悪化の問題が生じてしまい、その後の黒鉛化処理等でのハンドリング性の課題等が存在する。
 一方、本開示の製造方法では、黒鉛化可能な骨材と、黒鉛化可能なバインダーと、芳香族化合物と、を含む混合物を得た後、混合物を成形して密度が1.3g/cm以下である成形物を得ている。本開示の製造方法では、成形物を形成するための混合物として芳香族化合物を含むものを用いている。これにより、成形物の外見が改善し、さらに、成形物の強度も向上するため、その後の黒鉛化処理等でのハンドリング性も向上する。したがって、本開示の製造方法では、成形物を形成する際の成形性が良好となる。従来は生コークスを使用した場合、成形が難しく、生コークスに熱処理を施す等により成形性を上げる必要があった。一方、本開示の製造方法では生コークスを熱処理せずに使用した場合でもハンドリングの良い成形体が得られる。従って、本開示の製造方法では、黒鉛化可能な骨材として、生コークスを熱処理したものを成形体の形成に使用してもよく、熱処理していない生コークスを成形体の形成に使用してもよい。
 成形物を形成するための混合物として芳香族化合物を含むものを用いることで、成形物の外観が改善し、さらに、成形物の強度が向上する理由としては、以下のように推測される。
 (1)黒鉛化可能な骨材を含む混合物に芳香族化合物の液体を添加することで、混合物の成形時に黒鉛化可能な骨材の表面が滑りやすくなって混合物の配列が進み、空隙が少なくなる。(2)黒鉛化可能なバインダーを混合物に溶解させ、バインダーを均一性高く分散させる。上記(1)及び(2)により、成形物の外観が改善し、成形物の強度も向上すると考えられる。
 さらに、本開示の製造方法では、比較的密度が小さい成形物を得た後に、その成形物を黒鉛化し、次いで黒鉛化物を粉砕することでサイクル特性に優れるリチウムイオン二次電池を製造できる傾向にある。この理由は以下のように推測される。本開示の製造方法では、比較的密度が大きい成形物を用いて得られた黒鉛化物を粉砕する場合よりも容易に黒鉛化物を粉砕することができ、その結果、比表面積が小さい粉砕物を得ることができる。比表面積が小さい粉砕物を含む負極材をリチウムイオン二次電池の作製に用いることにより、負極材の電解液との接触面積を少なくすることができる。これにより、電解液の分解反応が抑制されて電池の寿命を長くでき、その結果、リチウムイオン二次電池のサイクル特性に優れる。
 工程(a)では、黒鉛化可能な骨材と、黒鉛化可能なバインダーと、芳香族化合物と、を含む混合物を得る。混合物を得る方法は特に制限されず、ニーダー等を用いて行うことができる。混合は、黒鉛化可能なバインダーが軟化する温度で行うことが好ましい。具体的には、黒鉛化可能なバインダーがピッチ、タール等である場合には50℃~300℃であってもよく、熱硬化性樹脂である場合には20℃~100℃であってもよい。
 黒鉛化可能な骨材は、黒鉛化処理により黒鉛化するものであれば特に制限されない。具体的には、フルードコークス、ニードルコークス、モザイクコークス等のコークスが挙げられ、中でもニードルコークスを用いることが好ましい。黒鉛化可能な骨材は、粒子状であることが好ましい。
 黒鉛化可能な骨材が粒子状である場合、黒鉛化可能な骨材の平均粒子径は、例えば、5μm~40μmであることが好ましく、8μm~30μmであることがより好ましく、8μm~25μmであることがさらに好ましい。平均粒子径は、例えば、後述のレーザー回折・散乱法により測定される体積平均粒子径(D50)である。
 黒鉛化可能な骨材の粒度分布の標準偏差は、例えば、0.20以下であることが好ましく、0.18以下であることがより好ましく、0.16以下であることがさらに好ましい。前述の骨材の粒度分布の標準偏差が0.20以下であることにより、骨材の粒度のばらつきを減らすことができ、得られる粉砕物の粒度のばらつきも抑制できる。粒子径のバラつきが小さい粉砕物を含む負極材をリチウムイオン二次電池の作製に用いることにより、負極内での抵抗分布を均一化することができる。その結果、リチウムイオン二次電池の急速充電性能が向上する傾向にある。さらに、骨材の粒度のばらつきを減らすことで、黒鉛化可能なバインダーの含有率又は含有量を少なくしてもバインダーとしての機能を好適に確保することができる。粒度分布の標準偏差は、例えば、後述のレーザー回折・散乱法により測定される値(体積基準)である。
 黒鉛化可能な骨材の粒度分布の標準偏差の下限は特に限定されず、例えば、0.05以上であってもよく、0.10以上であってもよい。
 黒鉛化可能な骨材の平均粒子径及び黒鉛化可能な骨材の粒度分布の標準偏差を前述の範囲に調整する方法としては、篩による分級、風力分級、湿式分級等が挙げられる。
 黒鉛化可能なバインダーは、黒鉛化処理により黒鉛化するものであれば特に制限されない。具体的には、石炭系、石油系、人造等のピッチ及びタール、熱可塑性樹脂、熱硬化性樹脂などが挙げられる。
 混合物中の黒鉛化可能なバインダーの含有率は、骨材及びバインダーの合計100質量%に対し、25質量%以下であることが好ましく、20質量%以下であることがより好ましく、5質量%~19質量%であることがさらに好ましく、5質量%~18質量%であることが特に好ましい。バインダーの含有率が5質量%以上であると、黒鉛化可能な骨材のバインダーとして好適に機能する傾向にある。バインダーの含有率が25質量%以下であると、混合物中の固定炭素量が充分に確保され、収率に優れる傾向にある。
 混合物に含まれる黒鉛化可能な骨材及び黒鉛化可能なバインダーは、それぞれ1種のみでも2種以上であってもよい。
 芳香族化合物は、芳香環を有する化合物であれば特に限定されない。芳香族化合物としては、芳香環を有し、分子量が500以下の化合物であってもよく、分子量が300以下の化合物であってもよい。
 芳香族化合物としては、ナフタレン、1-メチルナフタレン、2-メチルナフタレン等のメチルナフタレン、アセナフテン、ビフェニル、フルオレン、ベンゾピレン、ベンゾアントラセン、ジベンゾアントラセン、ジフェニレンオキシド、キノリン、イソキノリンなどが挙げられる。
 混合物に含まれる芳香族化合物は、1種のみでも2種以上であってもよい。
 中でも、芳香族化合物としては、成形物を形成する際の成形性の観点から、メチルナフタレン及びナフタレン等が好ましい。
 混合物中の芳香族化合物の含有率は、骨材及び前記バインダーの合計100質量%に対し、1質量%~20質量%であることが好ましく、2質量%~18質量%であることがより好ましく、3質量%~15質量%であることがさらに好ましい。
 混合物は、黒鉛化可能な骨材、黒鉛化可能なバインダー及び芳香族化合物以外のその他の成分を含んでいてもよい。その他の成分としては、黒鉛、分散剤、黒鉛化触媒等が挙げられる。
 混合物は、黒鉛を含んでいてもよい。黒鉛としては、天然黒鉛、人造黒鉛等が挙げられる。黒鉛は、粒子状であることが好ましい。混合物は、黒鉛を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 工程(b)において混合物中の成分を分散しやすくする観点からは、混合物は分散剤を含むことが好ましい。混合物が分散剤を含むことにより、黒鉛化物を粉砕して得られる粉砕物の粒度のばらつきを抑えることができ、粒度のそろった粉砕物が得られやすくなる。その結果、リチウムイオン二次電池の急速充電性能が向上する傾向にある。
 さらに、混合物が分散剤を含むことは黒鉛化可能なバインダーの量を抑えることにつながり、負極材の初回充放電効率等の電池特性の改善も期待できる。
 分散剤の種類は特に制限されない。具体的には、流動パラフィン、パラフィンワックス、ポリエチレンワックス等の炭化水素、ステアリン酸、オレイン酸、エルカ酸、12ヒドロキシステアリン酸等の脂肪酸、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム等の脂肪酸金属塩、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等の脂肪酸エステル、ステアリルアルコール等の高級アルコールなどが挙げられる。これらの中でも、負極材の性能に影響を与えにくく、常温で固体であるため取扱いやすく、工程(a)の温度で溶融するために均一に分散し、黒鉛化処理までの過程で消失し、安価であることから、脂肪酸が好ましく、ステアリン酸がより好ましい。
 混合物が分散剤を含む場合、その量は特に制限されない。例えば、混合物全体に対する分散剤の含有率は0.1質量%~20質量%であってもよく、0.5質量%~10質量%であってもよく、0.5質量%~5質量%であってもよい。
 黒鉛化可能な骨材又はバインダーの黒鉛化を促進する観点からは、混合物は黒鉛化触媒を含むことが好ましい。黒鉛化触媒の種類は特に制限されない。具体的には、ケイ素、鉄、ニッケル、チタン、ホウ素等の黒鉛化触媒作用を有する物質、これらの物質の炭化物、これらの物質の酸化物、これらの物質の窒化物などが挙げられる。
 混合物が黒鉛化触媒を含む場合、その量は特に制限されない。例えば、混合物全体に対する黒鉛化触媒の含有率は0.1質量%~50質量%であってもよく、0.5質量%~40質量%であってもよく、0.5質量%~30質量%であってもよい。
 工程(b)では、工程(a)で得た混合物を成形して成形物を得る。好ましくは、1軸プレス等により所定形状に成形するとよい。このように成形することで、混合物を黒鉛化する際に黒鉛化炉への詰量を増やして生産性を向上させたり、黒鉛化触媒の効果を向上させたりすることができる。
 工程(b)において、混合物を成形する方法は特に制限されない。例えば、金型等の容器内に混合物を入れて一軸方向に加圧するモールド成形法、金型等の容器内に混合物を入れて、上面に重鎮を載せ、金枠に振動及び衝撃を与えて成形する振動成形法、混合物を横押しプレスでノズル等から押し出して成形する押出成形法等が挙げられる。
 工程(b)において、得られる成形物の密度は1.3g/cm以下であればよく、負極材の生産性及びリチウムイオン二次電池のサイクル特性の観点から、0.8g/cm~1.3g/cmが好ましく、1.0g/cm~1.25g/cmがより好ましく、1.05g/cm~1.2g/cmがさらに好ましい。これにより、比較的密度が小さい成形物を得た後に、その成形物を黒鉛化し、次いで黒鉛化物を粉砕することができる。このため、比較的密度が大きい成形物を用いて得られた黒鉛化物を粉砕する場合よりも容易に黒鉛化物を粉砕することができる。その結果、比表面積が小さい粉砕物を得ることができる傾向にある。比表面積が小さい粉砕物を含む負極材をリチウムイオン二次電池の作製に用いることにより、負極材の電解液との接触面積を少なくすることができる。以上により、電解液の分解反応が抑制されて電池の寿命を長くでき、サイクル特性に優れるリチウムイオン二次電池を製造できる傾向にある。
 工程(b)で得られる成形物は、工程(c)において成形物を黒鉛化する前に、熱処理を施されることが好ましい。熱処理を施すことにより、混合物に含まれる黒鉛化に寄与しない有機物成分が除去され、黒鉛化処理におけるガス発生等が抑制される傾向にある。
 上記熱処理の温度は特に制限されず、工程(c)における熱処理の温度よりも低い温度であることが好ましい。例えば、500℃~1000℃の範囲内で行ってもよい。
 工程(c)では、工程(b)で得られた成形物を黒鉛化する。成形物を黒鉛化する方法は、混合物に含まれる黒鉛化可能な成分が黒鉛化しうる条件であれば特に制限されない。例えば、混合物が酸化し難い雰囲気で熱処理する方法が挙げられる。混合物が酸化し難い雰囲気は特に制限されず、窒素、アルゴン等の不活性雰囲気、真空などが挙げられる。
 黒鉛化のための熱処理の温度は、例えば、1500℃以上であってもよく、2000℃以上であってもよく、2500℃以上であってもよく、2800℃以上であってもよい。熱処理の温度の上限は特に制限されないが、例えば、3200℃以下であってもよい。熱処理の温度が1500℃以上であると、結晶の変化が生じて黒鉛化が進みやすい傾向にある。熱処理の温度が2000℃以上であると、黒鉛の結晶の発達がより良好となる傾向にある。一方、黒鉛化のための熱処理の温度が3200℃以下であると、黒鉛の一部が昇華するのが抑制される傾向にある。
 工程(d)では、工程(c)で得られた黒鉛化物を粉砕して粉砕物を得る。粉砕の方法は特に制限されず、ジェットミル、振動ミル、ピンミル、ハンマーミル等を用いて既知の方法により行うことができる。粉砕物は、所望の大きさとなるように粒子径を調整してもよい。粒子径の調整方法は特に制限されず、上述した粉砕用の装置を用いて行う方法、篩を用いる方法等が挙げられる。
 必要に応じ、工程(d)で得られた粉砕物に対し、(e)粉砕物の表面の少なくとも一部に低結晶性炭素を配置する工程、(f)粉砕物を他の負極活物質と混合する工程等を実施してもよい。
 工程(e)において粉砕物の表面の少なくとも一部に低結晶性炭素を配置する方法としては、例えば、熱処理により低結晶性炭素になりうる物質(樹脂等)と粉砕物とを混合して熱処理する方法が挙げられる。粉砕物の表面の少なくとも一部に低結晶性炭素が配置されていると、これを負極材とするリチウムイオン二次電池の急速充放電特性等の入出力特性が向上する場合がある。
 工程(f)において粉砕物を他の負極活物質と混合する方法は特に制限されない。粉砕物と他の負極活物質とを混合することで、粉砕物のみを負極活物質として用いる場合に比べてリチウムイオン二次電池の所望の特性を改善できる場合がある。他の負極活物質としては天然黒鉛、人造黒鉛等の黒鉛粒子、リチウムイオンを吸蔵及び放出可能な元素を含む粒子などが挙げられるが、これらに制限されない。リチウムイオンを吸蔵及び放出可能な元素としては、特に限定されず、例えば、Si、Sn、Ge、In等が挙げられる。
 工程(f)で得られる粉砕物は、複数の扁平状の黒鉛粒子が、集合又は結合した状態の粒子を含むものであってもよく、複数の扁平状の黒鉛粒子が、前記黒鉛粒子の主面が互いに非平行となるように集合又は結合した状態の粒子(以下、黒鉛二次粒子とも称する)を含むものであってもよい。
 粉砕物が黒鉛二次粒子の状態であると、負極の高密度化のためのプレスを行ったときに負極材の粒子が集電体の方向に沿って配向する現象が抑制され、負極材を出入りするリチウムイオンの経路が充分に確保される傾向にある。
 さらに、複数の扁平状の黒鉛粒子が集合又は結合した状態の粒子を含むことで、複数の扁平状の黒鉛粒子の間に存在する空隙によってプレス時に加える圧力が個々の黒鉛粒子に与える影響が軽減され、黒鉛粒子の破壊、亀裂の発生等が抑制される傾向にある。
 本開示において「扁平状の黒鉛粒子」とは、形状に異方性を有する非球状の黒鉛粒子をいう。扁平状の黒鉛粒子としては、鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。
 扁平状の黒鉛粒子は、長軸方向の長さをA、短軸方向の長さをBとしたときに、A/Bで表されるアスペクト比が、例えば、1.2~20であることが好ましく、1.3~10であることがより好ましい。アスペクト比が1.2以上であると、粒子間の接触面積が増加して、導電性がより向上する傾向にある。アスペクト比が20以下であると、リチウムイオン二次電池の急速充放電特性等の入出力特性がより向上する傾向にある。
 アスペクト比は、黒鉛粒子を顕微鏡で観察し、任意に100個の黒鉛粒子を選択してそれぞれのA/Bを測定し、それらの測定値の算術平均値をとったものである。アスペクト比の観察において、長軸方向の長さA及び短軸方向の長さBは、以下のようにして測定される。すなわち、顕微鏡を用いて観察される黒鉛粒子の投影像において、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a1及び接線a2を選択して、この接線a1及び接線a2の間の距離を長軸方向の長さAとする。黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最小となる接線b1及び接線b2を選択して、この接線b1及び接線b2の間の距離を短軸方向の長さBとする。
 本開示において黒鉛二次粒子の「主面が非平行である」とは、複数の扁平状の黒鉛粒子の最も断面積の大きい面(主面)が一定方向に揃っていないことをいう。複数の扁平状の黒鉛粒子の主面が互いに非平行であるか否かは、顕微鏡観察により確認することができる。複数の扁平状の黒鉛粒子が、主面が互いに非平行な状態で集合又は結合していることにより、扁平状の黒鉛粒子の負極内での主面の配向性の高まりが抑制され、充電に伴う負極の膨張が抑制され、リチウムイオン二次電池のサイクル特性がより向上する傾向にある。
 なお、黒鉛二次粒子は、複数の扁平状の黒鉛粒子が、それぞれの主面が平行となるように集合又は結合した状態の構造を部分的に含んでいてもよい。
 本開示において複数の扁平状の黒鉛粒子が「集合又は結合している状態」とは、2個以上の扁平状の黒鉛粒子が集合又は結合している状態をいう。「結合」とは、互いの粒子が直接又は炭素物質を介して、化学的に結合している状態をいう。「集合」とは、互いの粒子が化学的に結合してはいないが、その形状等に起因して、集合体としての形状を保っている状態をいう。扁平状の黒鉛粒子は、炭素物質を介して集合又は結合していてもよい。炭素物質としては、例えば、黒鉛化可能なバインダーの黒鉛化物が挙げられる。機械的な強度の観点からは、2個以上の扁平状の黒鉛粒子が炭素物質を介して結合している状態であることが好ましい。扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。
 扁平状の黒鉛粒子の平均粒子径は、集合又は結合のし易さの観点から、例えば、1μm~50μmであることが好ましく、1μm~25μmであることがより好ましく、1μm~15μmであることがさらに好ましい。扁平状の黒鉛粒子の平均粒子径の測定方法としては、走査型電子顕微鏡で測定する方法が挙げられ、扁平状の黒鉛粒子の平均粒子径は、例えば、100個の扁平状の黒鉛粒子の粒子径の算術平均値である。
 扁平状の黒鉛粒子及びその原料は特に制限されず、人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。中でも、人造黒鉛、天然黒鉛、又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるため、負極の高密度化がし易くなる傾向にある。
 負極材は、球状の黒鉛粒子を含むものであってもよい。負極材が球状の黒鉛粒子を含む場合、球状の黒鉛粒子はそれ自体が高密度であるため、所望の電極密度を得るために必要なプレス圧を軽減できる傾向にある。
 球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。負極の高密度化の観点からは、球状の黒鉛粒子は高密度な黒鉛粒子であることが好ましい。具体的には、粒子球形化処理を施して高タップ密度化できるようにされた球状天然黒鉛であることが好ましい。さらに、球状天然黒鉛を含む負極材層は剥離強度に優れ、強い力でプレスしても集電体から剥がれにくい傾向にある。
 負極材が球状の黒鉛粒子を含む場合、上述した扁平状の黒鉛粒子と、球状の黒鉛粒子とを含むものであってもよい。負極材が上述した扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む場合、両者の割合は特に制限されず、所望の電極密度、プレス時の圧力条件、所望の電池特性等に応じて設定できる。
 負極材が扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む場合としては、扁平状の黒鉛粒子と球状の黒鉛粒子とが混合された状態、扁平状の黒鉛粒子と球状の黒鉛粒子とが結合した状態(以下、複合粒子とも称する)等が挙げられる。複合粒子としては、例えば、扁平状の黒鉛粒子と球状の黒鉛粒子とが有機物の炭化物を介して結合した状態の粒子が挙げられる。
 上記複合粒子は、例えば、工程(a)における混合物として扁平状の黒鉛粒子又はその原料と、球状の黒鉛粒子とを含むものを用いることで製造することができる。
 上記方法で製造される負極材の平均粒子径は、特に制限されない。例えば、5μm~40μmであることが好ましく、10μm~30μmであることがより好ましく、10μm~25μmであることがさらに好ましい。平均粒子径は、例えば、上述した扁平状の黒鉛粒子の平均粒子径と同様に走査型電子顕微鏡で測定してもよく、レーザー回折・散乱法により測定される体積平均粒子径(D50)であってもよい。
 負極材を用いて電極(負極)を製造した場合の平均粒子径の測定方法としては、試料電極を作製し、その電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で観察する方法、イオンミリング装置(例えば、株式会社日立ハイテクノロジーズ製、「E-3500」)を用いて電極断面を作製して走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で測定する方法等が挙げられる。この場合の平均粒子径は、観察される粒子から任意に選択した100個の粒子径の中央値である。
 上記試料電極は、例えば、負極材98質量部、バインダーとしてのスチレンブタジエン樹脂1質量部、及び増粘剤としてのカルボキシメチルセルロース1質量部の混合物を固形分として、水を添加して分散液を作製し、前記分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、105℃で1時間乾燥させることによって作製することができる。
 負極材は、負極(負極の作製にプレス工程を伴う場合は、プレス後の負極)としたときの配向性が40以下であってもよく、20以下であってもよく、15以下であってもよい。前述の配向性は10以上であってもよい。
 負極材の配向性は、負極に含まれる負極材の粒子の配向の度合いを示す指標である。配向性が小さいことは、負極材の粒子がランダムな方向を向いていることを意味する。すなわち、プレス時の圧力によって黒鉛粒子が集電体の面に沿って配向するのが抑制されていることを意味する。
 本開示において、負極の配向性は、CuKα線をX線源とするX線回折装置により、試料電極の表面を測定することにより求める。具体的には、試料電極の表面のX線回折パターンを測定し、回折角2θ=53°~56°付近に検出される炭素(004)面回折ピークと、回折角2θ=70°~80°付近に検出される炭素(110)面回折ピークとの強度から下記式(1)により求める。
 (004)面回折ピーク強度/(110)面回折ピーク強度 ・・・・式(1)
 負極材の比表面積は、サイクル特性及び保存特性の観点から、3.0m/g以下であることが好ましく、0.5m/g~2.5m/gであることがより好ましく、0.7m/g~2.0m/gであることがさらに好ましい。
 負極材の比表面積は、比表面積/細孔分布測定装置(例えば、フローソーブ III 2310、株式会社島津製作所)を用いて、窒素とヘリウムの混合ガス(窒素:ヘリウム=3:7)を使用し、液体窒素温度(77K)での窒素吸着を相対圧0.3の一点法で測定してBET法により算出すればよい。
<リチウムイオン二次電池の製造方法>
 本開示のリチウムイオン二次電池の製造方法の第1の実施形態は、上述した負極材の製造方法により得られる負極材を用いて負極を作製する工程を備える。
 本開示のリチウムイオン二次電池の製造方法の第2の実施形態は、上述した負極材の製造方法により負極材を製造する工程と、前記負極材を用いて負極を作製する工程と、を備える。
 負極材を用いて負極を作製する方法は、特に制限されない。例えば、負極材と、バインダーと、溶剤とを含む組成物を用いて集電体上に負極材層を形成し、必要に応じて熱処理、プレス処理等を行う方法が挙げられる。
 組成物に含まれるバインダーは特に制限されない。例えば、スチレン-ブタジエンゴム、エチレン性不飽和カルボン酸エステル(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等)を重合成分とする高分子化合物、エチレン性不飽和カルボン酸(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)を重合成分とする高分子化合物、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。本開示において(メタ)アクリレートは、メタアクリレートとアクリレートのいずれか又は両方を意味する。
 組成物に含まれる溶剤は特に制限されない。具体的には、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ-ブチロラクトン等の有機溶剤、水などが用いられる。
 組成物は、必要に応じて、粘度を調整するための増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
 組成物は、必要に応じて、導電助剤を混合してもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。
 負極の作製に用いる集電体の材質及び形状は、特に制限されない。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。
 組成物を用いて集電体上に負極材層を形成する方法は特に限定されず、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により行うことができる。上記負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。
 負極材層を集電体上に形成した後は、熱処理(乾燥)を行ってもよい。熱処理を行うことにより、負極材層に含まれる溶剤が除去され、バインダーの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性を向上できる。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行ってもよい。
 負極材層を集電体上に形成した後は、プレス処理を行ってもよい。プレス処理することにより、負極の電極密度を調整することができる。負極の電極密度は特に制限されないが、1.5g/cm~1.9g/cmであってもよく、1.6g/cm~1.8g/cmであってもよい。電極密度が高いほど負極の体積容量が向上し、集電体への負極材層の密着性が向上し、サイクル特性が向上する傾向にある。プレス処理は、熱処理を行う前に行うことが好ましい。
 上記方法により製造されるリチウムイオン二次電池は、上記方法により作製される負極と、正極と、電解質とを備えるものであってもよい。リチウムイオン二次電池は、例えば、負極と正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成とすることができる。
 正極は、負極と同様にして、集電体表面上に正極層を形成して作製されるものであってもよい。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。
 正極層に含まれる正極材料は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、及び導電性高分子材料が挙げられる。さらには、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などを単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)は、容量が高いために正極材料として好適である。
 セパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム及びそれらの組み合わせが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。
 電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体又は2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。なかでも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、サイクル特性が著しく向上するために好適である。
 リチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。前記リチウムイオン二次電池用負極材は、リチウムイオン二次電池以外にもリチウムイオンを挿入脱離することを充放電機構とする、ハイブリッドキャパシタ等の電気化学装置全般に適用することが可能である。
 以下、実施例に基づき上記実施形態をより具体的に説明するが、上記実施形態は下記の実施例に制限するものではない。
[実施例1]
(1)成形物の形成
 原料であるか焼したニードルコークスを株式会社奈良機械製作所製の自由粉砕機を用いてコークスを微粉砕した後、ホソカワミクロン株式会社製のターボプレックス(登録商標)を用いて風力分級することにより、以下に示す骨材を準備した。さらに以下に示す材料を原料として用いた。骨材及び負極材の平均粒子径、及び骨材の粒度分布の標準偏差は、レーザー回折・散乱法を利用した粒子径分布測定装置(株式会社島津製作所、SALD-3000)を用いてそれぞれ測定した。骨材の粒度分布の標準偏差は、対数スケール上で定義された標準偏差である。
・骨材…平均粒子径14μm、粒度分布の標準偏差が0.15のニードルコークス
・バインダー…タールピッチ
・芳香族化合物…メチルナフタレン含有添加剤(芳香族化合物の合計含有率77質量%以上)
・分散剤…ステアリン酸
(圧壊時試験力の評価)
 以下のようにして試験片の圧壊時試験力(N)を測定した。
 具体的には、表1に示す組成の混合物10gを用い、室温で面圧75.8MPaの条件にて長辺52.1mm及び短辺11.4mmの試験片を作製した。得られた試験片の密度(g/cm)を表1に示す。作製された試験片及び株式会社島津製作所製のオートグラフを用い、試験速度10mm/分及び支点間距離7mmの条件にて3点曲げ試験を行い、圧壊時試験力(N)を測定した。
 結果を表1に示す。
(成形性の評価)
 実施例1にて得られた成形物について以下の評価基準に基づいて成形性の評価を行った。なお、数値が高いほど成形性が良好である。
 結果を表1に示す。
-評価基準-
 1:手で触れると容易に崩壊し、ハンドリングが不可能であった。
 2:手で触れると容易に剥離し、ハンドリングが不可能であった。
 3:ハンドリング可能であったが、手で持ちあげると脆く崩れやすかった。
 4:ハンドリング可能であり、手で持ちあげても崩れにくいが、表面は剥離しやすかった。
 5:ハンドリング可能であり、さらに手で持ちあげても崩れにくく表面も剥離しなかった。
[比較例1]
 実施例1にて芳香族化合物を用いなかった以外は実施例1と同様にして成形物を得た。さらに、実施例1と同様にして圧壊時試験力の評価及び成形性の評価を行った。
 結果を表1に示す。
 比較例1では、ブロック状の成形物を上手く形成できなかったため、試験片の密度の評価ができなかった。
[比較例2]
 実施例1にて芳香族化合物の替わりに水を用いた以外は実施例1と同様にして成形物を得た。さらに、実施例1と同様にして圧壊時試験力の評価及び成形性の評価を行った。
 結果を表1に示す。
[比較例3]
 実施例1にて芳香族化合物の替わりにアセトンを用いた以外は実施例1と同様にして成形物を得た。さらに、実施例1と同様にして圧壊時試験力の評価及び成形性の評価を行った。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 実施例1にて、芳香族化合物としてメチルナフタレンを用い、骨材及びバインダーの合計100質量%に対してメチルナフタレンを3質量%含む以外は実施例1と同様にして混合物を調製した。次いで、得られた混合物を室温で面圧10MPa、処理時間10秒の条件にて成形して、長辺140mm及び短辺30mmの成形物を得た。
[実施例3]
 実施例2にて、骨材及びバインダーの合計100質量%に対してメチルナフタレンを10質量%含む以外は実施例1と同様にして、混合物の調製を行い、さらに成形物を得た。
[実施例4]
 実施例2にて、骨材及びバインダーの合計100質量%に対してメチルナフタレンを15質量%含む以外は実施例1と同様にして、混合物の調製を行い、さらに成形物を得た。
 実施例2での成形物の密度は、1.13g/cmであり、実施例3での成形物の密度は、1.21g/cmであり、実施例4での成形物の密度は、1.23g/cmであった。
 さらに、実施例2~4の成形物について、上記(成形性の評価)の項目の評価基準に基づいて成形性を評価した。実施例2~4では、いずれも数値5であり、成形性が良好であった。
[実施例5]
 (1)成形物の形成
 原料としてか焼したニードルコークスの代わりに熱処理されていない生ニードルコークスを使用し、平均粒子径9μm、粒度分布の標準偏差が0.15の骨材を準備した。さらに、実施例1と同様のバインダー、芳香族化合物及び分散剤を原料として用い、表2に示す配合割合で混合して混合物を調製した。次いで、得られた混合物を室温で図1に示す成形圧力(単位N)にてそれぞれ成形して長辺52.1mm及び短辺11.4mmの成形物を3種得た。実施例5での3種の成形物の密度(g/cm)は、図1のドットで示す通りである。図1では、縦軸は、熱処理前又は熱処理後の成形物の密度を意味し、横軸は、成形体作製時の成形圧力、すなわち、熱処理前の成形圧力を意味する。
 成形物に含まれる黒鉛化に寄与しない有機物成分を除去するため、実施例5にて得られた3種の成形物をそれぞれ900℃の条件で熱処理した。実施例5での3種の熱処理後の成形物の密度(g/cm)は、図1のドットで示す通りである。
[実施例6]
 実施例5にてメチルナフタレン含有添加剤の含有率を骨材及びバインダーの合計100質量%に対して7質量%に変更し、混合物の成形圧力を図1に示す通りに変更した以外は実施例5と同様の試験を行った。実施例6での3種の熱処理前後の成形物の密度(g/cm)は、図1のドットで示す通りである。
[実施例7]
 実施例5にてメチルナフタレン含有添加剤の含有率を骨材及びバインダーの合計100質量%に対して15質量%に変更し、混合物の成形圧力を図1に示す通りに変更した以外は実施例5と同様の試験を行った。実施例7での3種の熱処理前後の成形物の密度(g/cm)は、図1のドットで示す通りである。
[実施例8]
 実施例5にてメチルナフタレン含有添加剤の含有率を骨材及びバインダーの合計100質量%に対して30質量%に変更し、混合物の成形圧力を図1に示す通りに変更した以外は実施例5と同様の試験を行った。実施例8での2種の熱処理前後の成形物の密度(g/cm)は、図1のドットで示す通りである。
 図1に示すようにメチルナフタレン含有添加剤の含有率が同じ場合では、成形圧力が高いほど熱処理後の成形物の密度が高くなる傾向にあった。
 図1に示すようにメチルナフタレン含有添加剤が増加するにつれて同一成形圧力での熱処理前の成形物の密度が高くなる傾向にあった。一方、同一成形圧力の条件にて、メチルナフタレン含有添加剤が増加しても熱処理後の成形物の密度は増加する傾向を示さず、いずれも点線で示す1.0g/cm以下であった。
 以上の結果から、メチルナフタレン含有添加剤を添加すること、あるいは、その添加量を増加させることで熱処理前の成形物の密度が大きく上昇した場合であっても、熱処理後の成形物の密度は大きく増加しないことが分かる。さらに、その後に黒鉛化処理を行った場合であっても黒鉛化物の密度も大きく増加しないことが推測される。そのため、熱処理前の成形物の密度上昇が黒鉛化物の粉砕工程に悪影響(例えば、黒鉛化物粉砕により大きな力が必要となることで、粉砕物の比表面積が大きくなるという悪影響)を及ぼさない、と考えられる。
Figure JPOXMLDOC01-appb-T000002
[参考例1~4]
(1)負極材の調製
 原料であるニードルコークスを株式会社奈良機械製作所製の自由粉砕機を用いてコークスを微粉砕した後、ホソカワミクロン株式会社製のターボプレックス(登録商標)を用いて風力分級することにより、以下に示す骨材を準備した。さらに以下に示す材料を原料として用いた。骨材及び負極材の平均粒子径、及び骨材の粒度分布の標準偏差は、レーザー回折・散乱法を利用した粒子径分布測定装置(株式会社島津製作所、SALD-3000)を用いてそれぞれ測定した。骨材の粒度分布の標準偏差は、対数スケール上で定義された標準偏差である。
・骨材…平均粒子径14μm、粒度分布の標準偏差が0.15のニードルコークス
・バインダー…タールピッチ
・分散剤…ステアリン酸
 表3に示す原料である骨材、バインダー等を表3に記載の量(質量部)でニーダーを用いて混合し、混合物を得た。次いで、得られた混合物を室温で、1軸プレスにより成形して、成形物を得た。次いで、得られた成形物を窒素雰囲気中で800℃~850℃で8時間熱処理した後、2600℃~3100℃で30時間かけて黒鉛化して、黒鉛化物を得た。得られた黒鉛化物を粉砕して、参考例1~4の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
 上記工程で得られた成形物の密度(g/cm)、黒鉛化物の密度(g/cm)及び負極材の平均粒子径(μm)、比表面積(m/g)、飽和タップ密度(g/cm)をそれぞれ表3に示す。
 なお、各参考例で得られた粉砕物は、いずれも骨材の黒鉛化物である黒鉛粒子の主面が互いに非平行となるように集合又は結合した状態の二次粒子を含んでいた。
(2)負極の作製と配向性の評価
 作製した負極材96質量部、スチレンブタジエンゴム(BM-400B、日本ゼオン株式会社製)1.5質量部、及びカルボキシメチルセルロース(CMC1380、株式会社ダイセル製)1.5質量部、及びカーボンブラック(SuperP、イメリスGC社製)1.0質量部を混合した後、水を加えて粘度を調整して得た組成物を集電体(厚さ10μmの銅箔)に塗布量が10mg/cmになるように塗布し、組成物層を形成した。組成物層を加圧して加圧後電極とした後、真空乾燥機を用いて130℃で8時間乾燥した。加圧は、真空乾燥後の密度が1.60g/cmとなるように行った。作製した負極について、上述した方法により配向性を評価した。
(3)評価用セルの作製
 上記で得られた負極を電極面積1.54cmの円形に打ち抜き、正極として金属リチウム、電解液として1.0M LiPFを含むエチレンカーボネート/エチルメチルカーボネート(3/7体積比)とビニレンカーボネート(0.5質量%)の混合液、セパレータとして厚さ25μmのポリエチレン製微孔膜、及びスペーサーとして厚さ230μmの銅板を用いて作製した2016型コインセルを評価用セルとした。
(4)電池特性の評価
 作製した評価用セルを用いて、初回放電容量(Ah/kg)と初回充放電効率(%)を測定した。具体的には、評価用セルを25℃に保持した恒温槽内に入れ、0.53mAで0Vになるまで定電流充電を行った後、0Vの定電圧で電流が0.026mAに相当する値に減衰するまでさらに充電し、初回充電容量を測定した。充電後、30分間の休止を入れたのちに放電を行った。0.53mAで1.5Vになるまで行い、初回放電容量を測定した。このとき、容量は用いた負極材料の質量あたりに換算した。初回放電容量を初回充電容量で割った値に100を乗じたものを初回充放電効率(%)とした。結果を表3に示す。
(5)急速充電容量維持率の評価
 上記で得られた負極を電極面積2.00cmの円形に打ち抜き、正極としてコバルト酸リチウムをアルミ箔に塗布した電極、電解液として1.0M LiPFを含むエチレンカーボネート/エチルメチルカーボネート(3/7体積比)とビニレンカーボネート(0.5質量%)との混合液、セパレータとして厚さ25μmのポリエチレン製微孔膜、及びスペーサーとしてスプリングスペーサーを用いて2016型コインセルを作製した。このコインセルを評価用セルとした。
 作製した評価用セルを用いて、急速充電試験前のエージング処理を行った。具体的には、評価用セルを25℃に保持した恒温槽内に入れ、0.92mAで4.2Vになるまで定電流充電を行った後、4.2Vの定電圧で電流が0.046mAに相当する値に減衰するまでさらに充電した。充電後、10分間の休止を入れたのちに放電を0.92mAで2.75Vになるまで行い、放電した。この充電及び放電を5サイクル繰り返した。
 エージングした評価用セルを用いて、急速充電試験を行った。具体的には、評価用セルを25℃に保持した恒温槽内に入れ、0.92mAで4.2Vになるまで定電流充電を行い、充電容量(1)を測定した。充電後、10分間の休止を入れたのちに放電を行った。放電は、4.6mAで2.75Vになるまで行った。さらに、6.9mAで4.2Vになるまで定電流充電を行い、充電容量(2)を測定した。充電後、10分間の休止を入れた後に放電を4.6mAで2.75Vになるまで行った。
 充電容量(2)を充電容量(1)で割った値に100を乗じたものを急速充電容量維持率(%)とした。結果を表3に示す。
(6)電池寿命の評価
 前述の(5)と同様にして評価用セルの作製及び評価用セルのエージング処理を行った。エージングした評価用セルを用いて、サイクル試験を行い、電池寿命の評価を行った。具体的には、評価用セルを25℃に保持した恒温槽内に入れ、4.6mAで4.2Vになるまで定電流充電を行った後、4.2Vの定電圧で電流が0.046mAに相当する値に減衰するまでさらに充電した。充電後、10分間の休止を入れたのちに放電を4.6mAで2.75Vになるまで行い、初期放電容量を測定した。この充電と放電をさらに299サイクル繰り返し、300サイクル目の放電容量を測定した。
 この300サイクル目の放電容量を初期放電容量で割った値に100を乗じたものを電池寿命維持率(%)とした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、参考例1~3にて密度がより小さい成形物を用いて作製された評価用セルは、参考例4にて密度がより大きい成形物を用いて作製された評価セルと比較して急速充電容量維持率及び電池寿命維持率の評価がいずれも良好であった。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーと、芳香族化合物と、を含む混合物を得る工程と、
     (b)前記混合物を成形し、密度が1.3g/cm以下である成形物を得る工程と、
     (c)前記成形物を黒鉛化して黒鉛化物を得る工程と、
     (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を備えるリチウムイオン二次電池用負極材の製造方法。
  2.  前記芳香族化合物は、ナフタレン、メチルナフタレン、アセナフテン、ビフェニル、フルオレン、ベンゾピレン、ベンゾアントラセン、ジベンゾアントラセン、ジフェニレンオキシド、キノリン及びイソキノリンからなる群より選択される少なくとも一つの化合物を含む請求項1に記載のリチウムイオン二次電池用負極材の製造方法。
  3.  前記混合物中の前記芳香族化合物の含有率は、前記骨材及び前記バインダーの合計100質量%に対して1質量%~20質量%である請求項1又は請求項2に記載のリチウムイオン二次電池用負極材の製造方法。
  4.  前記混合物中の前記バインダーの含有率は、前記骨材及び前記バインダーの合計100質量%に対して25質量%以下である請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  5.  請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法により得られる負極材を用いて負極を作製する工程を備える、リチウムイオン二次電池の製造方法。
  6.  請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法によりリチウムイオン二次電池用負極材を製造する工程と、前記リチウムイオン二次電池用負極材を用いて負極を作製する工程と、を備える、リチウムイオン二次電池の製造方法。
PCT/JP2021/003588 2021-02-01 2021-02-01 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 WO2022162949A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2021/003588 WO2022162949A1 (ja) 2021-02-01 2021-02-01 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
US18/008,971 US20230246162A1 (en) 2021-02-01 2021-09-27 Method of manufacturing anode material for lithium-ion secondary battery, and method of manufacturing lithium-ion secondary battery
JP2022578038A JPWO2022163014A1 (ja) 2021-02-01 2021-09-27
CN202180074793.XA CN116420246A (zh) 2021-02-01 2021-09-27 锂离子二次电池用负极材料的制造方法和锂离子二次电池的制造方法
PCT/JP2021/035452 WO2022163014A1 (ja) 2021-02-01 2021-09-27 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
EP21923021.6A EP4148824A4 (en) 2021-02-01 2021-09-27 METHOD FOR PRODUCING A NEGATIVE ELECTRODE MATERIAL FOR A LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING A LITHIUM ION SECONDARY BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003588 WO2022162949A1 (ja) 2021-02-01 2021-02-01 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2022162949A1 true WO2022162949A1 (ja) 2022-08-04

Family

ID=82653220

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/003588 WO2022162949A1 (ja) 2021-02-01 2021-02-01 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
PCT/JP2021/035452 WO2022163014A1 (ja) 2021-02-01 2021-09-27 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035452 WO2022163014A1 (ja) 2021-02-01 2021-09-27 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Country Status (5)

Country Link
US (1) US20230246162A1 (ja)
EP (1) EP4148824A4 (ja)
JP (1) JPWO2022163014A1 (ja)
CN (1) CN116420246A (ja)
WO (2) WO2022162949A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112319A (ja) * 1996-10-03 1998-04-28 Petoca:Kk リチウム二次電池用炭素材およびその製造方法
JPH10284062A (ja) * 1997-04-04 1998-10-23 Nippon Steel Corp リチウム二次電池負極用炭素材料の焼成方法
JP2012124114A (ja) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2014089887A (ja) * 2012-10-30 2014-05-15 Hitachi Chemical Co Ltd リチウムイオン二次電池用負極材及びリチウムイオン二次電池
WO2014119776A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 リチウムイオン二次電池負極活物質用黒鉛粉

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565463B (zh) 2014-03-25 2021-07-16 昭和电工材料株式会社 锂离子二次电池用负极材料及其制造方法、其浆料、锂离子二次电池及用于其的负极
JP7226559B2 (ja) * 2019-07-31 2023-02-21 株式会社レゾナック リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112319A (ja) * 1996-10-03 1998-04-28 Petoca:Kk リチウム二次電池用炭素材およびその製造方法
JPH10284062A (ja) * 1997-04-04 1998-10-23 Nippon Steel Corp リチウム二次電池負極用炭素材料の焼成方法
JP2012124114A (ja) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2014089887A (ja) * 2012-10-30 2014-05-15 Hitachi Chemical Co Ltd リチウムイオン二次電池用負極材及びリチウムイオン二次電池
WO2014119776A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 リチウムイオン二次電池負極活物質用黒鉛粉

Also Published As

Publication number Publication date
WO2022163014A1 (ja) 2022-08-04
EP4148824A1 (en) 2023-03-15
US20230246162A1 (en) 2023-08-03
EP4148824A4 (en) 2023-12-20
JPWO2022163014A1 (ja) 2022-08-04
CN116420246A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US10601044B2 (en) Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2022550820A (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
CN110870114B (zh) 锂离子二次电池用负极材料的制造方法及锂离子二次电池用负极材料
JP7238884B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7226559B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JPWO2019186828A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7447907B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7004093B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2022162949A1 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP7226558B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP7371689B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7238885B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
WO2024028993A1 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
WO2022168692A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材組成物、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
US20210028441A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP