WO2024028993A1 - リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 - Google Patents

リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
WO2024028993A1
WO2024028993A1 PCT/JP2022/029713 JP2022029713W WO2024028993A1 WO 2024028993 A1 WO2024028993 A1 WO 2024028993A1 JP 2022029713 W JP2022029713 W JP 2022029713W WO 2024028993 A1 WO2024028993 A1 WO 2024028993A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion secondary
electrode material
lithium ion
mixture
Prior art date
Application number
PCT/JP2022/029713
Other languages
English (en)
French (fr)
Inventor
喜幸 松本
慶紀 内山
秀介 土屋
宏生 小沼
祐一 上條
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2022/029713 priority Critical patent/WO2024028993A1/ja
Publication of WO2024028993A1 publication Critical patent/WO2024028993A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present disclosure relates to a method for manufacturing a negative electrode material for a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
  • Lithium-ion secondary batteries have a higher energy density than other secondary batteries such as nickel-cadmium batteries, nickel-metal hydride batteries, and lead-acid batteries, so they are widely used as power sources for portable electronic products such as notebook computers and mobile phones. It is used. In addition to relatively small electrical appliances, lithium-ion secondary batteries are also expected to be used in electric vehicles, power storage sources, etc.
  • Patent Document 1 discloses a method in which a mixture obtained by mixing a carbon material, a binder, etc. is pulverized, and the obtained pulverized material is molded using a mold. A method is described in which a graphitization treatment is performed and the obtained graphitized product is further pulverized.
  • the present inventors formed a mixture containing a graphitizable aggregate and a graphitizable binder, and graphitized the molded product to obtain a graphitized product. Furthermore, we are studying a method of producing negative electrode material for lithium ion secondary batteries by pulverizing graphitized material to obtain a pulverized material.
  • the method for producing the negative electrode material for a lithium ion secondary battery described above it is desirable to improve the strength of the molded product from the viewpoint of improving the handleability of the molded product (for example, the handleability during graphitization treatment, etc.). Furthermore, from the viewpoint of ease of manufacturing a negative electrode material for a lithium ion secondary battery, it is desirable that the graphitized product can be easily crushed when it is made into a graphitized product.
  • the present disclosure provides a method for producing a negative electrode material for a lithium ion secondary battery and a method for producing this negative electrode material, which can produce a molded product with excellent strength and easily crush a graphitized material.
  • An object of the present invention is to provide a method for manufacturing a lithium ion secondary battery containing the present invention.
  • ⁇ 2> The method for producing a negative electrode material for a lithium ion secondary battery according to ⁇ 1>, wherein in the step of obtaining the molded product, the mixture is molded to obtain a molded product having a density of 1.25 g/cm 3 or more.
  • ⁇ 5> The method for producing a negative electrode material for a lithium ion secondary battery according to ⁇ 3> or ⁇ 4>, wherein the binder includes an aqueous binder containing a water-soluble or water-absorbing polymer compound.
  • the water-soluble or water-absorbing polymer compound includes at least one selected from the group consisting of starch, amylose, amylopectin, polyacrylic acid, carboxymethyl cellulose, polyvinyl alcohol, and water-soluble protein ⁇ 1> , the method for producing a negative electrode material for a lithium ion secondary battery according to any one of ⁇ 2> and ⁇ 5>.
  • the moisture content in the mixture is 10% by mass to 50% by mass based on the total amount of the mixture.
  • a method for producing a negative electrode material for a lithium ion secondary battery For a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 7>, the content of the binder in the mixture is 3% by mass to 30% by mass based on the total amount of the mixture. Method for manufacturing negative electrode material. ⁇ 9> The method for producing a negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 8>, wherein the aggregate contains calcined coke.
  • ⁇ 10> The method for producing a negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 9>, wherein the aggregate contains raw coke that has not been heat treated.
  • a method for manufacturing a lithium ion secondary battery comprising: manufacturing a negative electrode using a negative electrode material for use in the manufacturing process.
  • a method for producing a negative electrode material for a lithium ion secondary battery that can produce a molded product with excellent strength and easily crush a graphitized material, and a method for producing a lithium ion secondary battery including the method for producing the negative electrode material
  • a method for manufacturing an ion secondary battery can be provided.
  • each component may contain multiple types of corresponding substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
  • each component may include a plurality of types of particles.
  • the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.
  • the term "layer” includes not only the case where the layer is formed in the entire area when observing the area where the layer exists, but also the case where the layer is formed only in a part of the area. included.
  • a method for manufacturing a negative electrode material for a lithium ion secondary battery includes: (a) obtaining a mixture comprising a graphitizable aggregate and a graphitizable binder; (b) molding the mixture to obtain a molded product; (c) graphitizing the molded product to obtain a graphitized product; (d) pulverizing the graphitized material to obtain a pulverized product;
  • the binder includes a water-based binder containing a water-soluble or water-absorbing polymer compound.
  • each process of the said method may be performed continuously, or may be performed non-consecutively.
  • Each step of the above method may be performed at the same location or at different locations.
  • a water-based binder containing a water-soluble or water-absorbing polymer compound is used. This improves the strength of the molded product, which also improves handling properties during subsequent graphitization treatment and the like. When the strength of a molded product is improved, the graphitized material after graphitizing the molded product generally tends to be difficult to crush. However, in the manufacturing method of the present embodiment, by using the aqueous binder described above, it is possible to easily crush the graphitized material while improving the strength of the molded product.
  • the molded product is heat-treated by heating if necessary, and then the molded product is graphitized to obtain a graphitized product.
  • a water-based binder water evaporates during heat treatment, graphitization, etc. Therefore, a molded product before heat treatment, graphitization, etc. has a high density, but a graphitized product after graphitization has a reduced density. Therefore, the graphitized material can be easily crushed.
  • the graphitized material can be easily pulverized, and as a result, a pulverized material with a small specific surface area can be easily obtained.
  • a negative electrode material containing a pulverized product with a small specific surface area for producing a lithium ion secondary battery the contact area of the negative electrode material with the electrolyte can be reduced. As a result, the decomposition reaction of the electrolyte is suppressed and the life of the battery can be extended, and as a result, the cycle characteristics of the lithium ion secondary battery tend to be excellent.
  • the manufacturing method of this embodiment since the strength of the molded product is excellent, there is no need to pack the mixture into a crucible or the like for graphitization when performing graphitization. In other words, there is no need to use a crucible or the like for graphitization, and graphitization can be performed by placing only the molded product in a graphitization furnace. Therefore, compared to the case where a graphitization crucible or the like is used, the manufacturing efficiency of negative electrode materials for lithium ion secondary batteries tends to be excellent.
  • the strength of the molded product can be increased.
  • the amount of the graphitizable binder is excessive, the density of the graphitized material is high and the graphitized material tends to be difficult to crush, and battery characteristics such as the initial charge/discharge efficiency of the negative electrode material tend to deteriorate.
  • by reducing the amount of binder it becomes easier to coat the surface of the pulverized material with hard carbon, which tends to improve the input characteristics of lithium ion secondary batteries.
  • a mixture containing a graphitizable aggregate and a graphitizable binder is obtained.
  • the aforementioned graphitizable binder includes a water-based binder containing a water-soluble or water-absorbing polymer compound.
  • the method for obtaining the mixture is not particularly limited, and can be performed using a kneader or the like. Mixing may be performed at room temperature or may be performed by heating.
  • a water-based binder it is possible to avoid using pitch, tar, etc. as a graphitizable binder, or to reduce the amount of pitch, tar, etc. used. Therefore, there is no need to mix at a temperature at which the graphitizable binder softens, and treatments such as heating can be omitted.
  • the time for mixing the graphitizable aggregate and the graphitizable binder by kneading or the like is not particularly limited, and may be, for example, 10 seconds to 30 minutes, or even 30 seconds to 20 minutes. Usually, it may be from 1 minute to 15 minutes. As the mixing time increases, the density and strength of the molded product tend to improve.
  • the graphitizable aggregate is not particularly limited as long as it can be graphitized by graphitization treatment.
  • coke such as fluid coke, needle coke, and mosaic coke can be mentioned, and among them, from the viewpoint that it is possible to easily crush the graphitized product by suppressing the increase in the density of the graphitized product produced
  • needle coke is used.
  • the graphitizable aggregate is in particulate form.
  • the number of graphitizable aggregates contained in the mixture may be one or two or more.
  • the coke When coke is used as the graphitizable aggregate, the coke may contain calcined coke from the viewpoint of improving the strength of the molded product.
  • raw coke that has not been heat-treated may be used to form the molded product, since the molded product has excellent strength.
  • the average particle size of the graphitizable aggregate is, for example, preferably 5 ⁇ m to 40 ⁇ m, more preferably 8 ⁇ m to 30 ⁇ m, and 8 ⁇ m to 25 ⁇ m. It is even more preferable that there be.
  • the average particle diameter is, for example, the volume average particle diameter (D50) measured by the laser diffraction/scattering method described below.
  • the volume average particle diameter (D50) is the particle diameter at which the cumulative volume distribution curve is 50% when a volume cumulative distribution curve is drawn from the small diameter side in the particle diameter distribution.
  • the standard deviation of the particle size distribution of the graphitizable aggregate is, for example, preferably 0.25 or less, more preferably 0.20 or less, even more preferably 0.18 or less, and 0.25 or less, more preferably 0.20 or less, even more preferably 0.18 or less, and 0. It is particularly preferably 16 or less.
  • the standard deviation of the particle size distribution of the aggregate is 0.20 or less, variations in the particle size of the aggregate can be reduced, and variations in the particle size of the obtained crushed product can also be suppressed.
  • the resistance distribution within the negative electrode can be made uniform.
  • the rapid charging performance of lithium ion secondary batteries tends to improve. Furthermore, by reducing the variation in particle size of the aggregate, the function as a binder can be suitably ensured even if the content rate or content of the graphitizable binder is reduced.
  • the standard deviation of the particle size distribution is, for example, a value (volume basis) measured by the laser diffraction/scattering method described below.
  • the lower limit of the standard deviation of the particle size distribution of the graphitizable aggregate is not particularly limited, and may be, for example, 0.05 or more, or 0.10 or more.
  • Examples of methods for adjusting the average particle diameter of the graphitizable aggregate and the standard deviation of the particle size distribution of the graphitizable aggregate to the above-mentioned ranges include classification using a sieve, air classification, wet classification, etc.
  • the graphitizable binder is not particularly limited as long as it includes a water-based binder containing a water-soluble or water-absorbing polymer compound and can be graphitized by graphitization treatment.
  • the water-based binder include a composition containing a water-soluble or water-absorbing polymer compound and water.
  • the graphitizable binder may contain one type of water-soluble or water-absorbing polymer compound, or may contain two or more water-soluble or water-absorbing polymer compounds.
  • the adhesion force of the aqueous binder is preferably 0.2 N or more from the viewpoint of suppressing cracking of the molded product, and preferably 0.4 N or more from the viewpoint of obtaining a molded product with better strength.
  • the adhesion force of the water-based binder is measured as follows. First, 25 g of binder and 100 g of water are mixed and mixed for 1 hour using a roller mixer to prepare a sample. Fill a mold with a diameter of 20 mm with 20 to 30 g of the sample, push it 10 mm at a descending speed of 60 mm/min using a small tabletop testing machine EZ-S manufactured by Shimadzu Corporation, and then perform a tensile test at a rising speed of 600 mm/min.
  • the adhesion force of a water-based binder tends to increase as the binder concentration increases, so by keeping the binder concentration below a certain level and securing moisture, the function of the binder can be fully demonstrated and the binding force can be maintained. There is a tendency.
  • the graphitizable binder may contain components other than water-based binders, such as coal-based, petroleum-based, artificial pitch and tar, thermoplastic resins, thermosetting resins, and other binders. good.
  • the water-soluble or water-absorbing polymer compound is not particularly limited, and includes, for example, at least one selected from the group consisting of starch, amylose, amylopectin, polyacrylic acid, carboxymethyl cellulose, polyvinyl alcohol, and water-soluble protein. It may be something.
  • the content of the aqueous binder in the graphitizable binder is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and more preferably 90% by mass to 100% by mass, based on the total amount of the binder. More preferably, it is 100% by mass.
  • a water-based binder refers to a composition of water, a water-soluble or water-absorbing polymer compound that functions as a binder, and a water-soluble or water-absorbing monomer component that is included as necessary. .
  • the content of water in the mixture is preferably 10% by mass to 50% by mass, more preferably 12% by mass to 40% by mass, based on the total amount of the mixture, from the viewpoint of moldability and strength of the molded product.
  • the content is preferably 15% by mass to 35% by mass, more preferably 15% by mass to 35% by mass.
  • the content of the water-soluble or water-absorbing polymer compound in the binder is preferably 10% by mass to 70% by mass, and 15% by mass based on the total amount of the binder, from the viewpoint of moldability and strength of the molded product. It is more preferably from 15% to 50% by weight, and even more preferably from 15% to 50% by weight.
  • the content of the water-soluble or water-absorbing polymer compound in the mixture is preferably 3% by mass to 30% by mass, and 4% by mass based on the total amount of the mixture, from the viewpoint of moldability and strength of the molded product. It is more preferably 25% by mass, and even more preferably 5% by mass to 20% by mass.
  • the water content in the aqueous binder is preferably 30% to 90% by mass, and preferably 40% to 85% by mass, based on the total amount of the binder, from the viewpoint of moldability and strength of the molded product. More preferably, it is 50% by mass to 85% by mass.
  • the mixture may or may not contain components other than the graphitizable aggregate or graphitizable binder (hereinafter also referred to as "other components").
  • Other components include aromatic compounds, graphite, dispersants, graphitization catalysts, and the like.
  • the aromatic compound is not particularly limited as long as it has an aromatic ring.
  • the aromatic compound may be a compound having an aromatic ring and having a molecular weight of 500 or less, or a compound having a molecular weight of 300 or less.
  • Examples of the aromatic compound include naphthalene, methylnaphthalene such as 1-methylnaphthalene and 2-methylnaphthalene, acenaphthene, biphenyl, fluorene, benzopyrene, benzanthracene, dibenzaanthracene, diphenylene oxide, quinoline, and isoquinoline.
  • the number of aromatic compounds contained in the mixture may be one or two or more.
  • methylnaphthalene and naphthalene are preferred from the viewpoint of moldability when forming a molded article.
  • the amount is not particularly limited.
  • the content of the aromatic compound in the mixture is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0% by mass, based on the total amount of the mixture.
  • the mixture may contain graphite.
  • graphite examples include natural graphite and artificial graphite.
  • the graphite is preferably in particulate form.
  • the mixture may contain only one type of graphite, or may contain two or more types of graphite.
  • the mixture preferably contains a dispersant.
  • the mixture contains a dispersant, variations in the particle size of the pulverized product obtained by pulverizing the graphitized material can be suppressed, and a pulverized product with uniform particle size can be easily obtained. As a result, the rapid charging performance of lithium ion secondary batteries tends to improve.
  • the inclusion of a dispersant in the mixture leads to suppressing the amount of graphitizable binder, and it is also expected to improve battery characteristics such as initial charge/discharge efficiency of the negative electrode material.
  • the type of dispersant is not particularly limited. Specifically, hydrocarbons such as liquid paraffin, paraffin wax, and polyethylene wax, fatty acids such as stearic acid, oleic acid, erucic acid, and 12-hydroxystearic acid, zinc stearate, lead stearate, aluminum stearate, calcium stearate, Fatty acid metal salts such as magnesium stearate, fatty acid amides such as stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, etc., fatty acids such as stearic acid monoglyceride, stearyl stearate, hydrogenated oil, etc.
  • hydrocarbons such as liquid paraffin, paraffin wax, and polyethylene wax
  • fatty acids such as stearic acid, oleic acid, erucic acid, and 12-hydroxystearic acid, zinc stearate, lead stearate,
  • Examples include higher alcohols such as esters and stearyl alcohol.
  • fatty acids are preferred, and stearic acid is more preferred, since it does not easily affect the performance of the negative electrode material, is solid at room temperature, is easy to handle, disappears during the process up to graphitization, and is inexpensive.
  • the amount is not particularly limited.
  • the content of the dispersant in the entire mixture may be 0.1% by mass to 20% by mass, 0.5% by mass to 10% by mass, or 0.5% by mass to 5% by mass. It may be.
  • the mixture preferably contains a graphitization catalyst.
  • the type of graphitization catalyst is not particularly limited. Specific examples include substances having a graphitization catalytic effect such as silicon, iron, nickel, titanium, and boron, carbides of these substances, oxides of these substances, and nitrides of these substances.
  • the mixture contains a graphitization catalyst
  • its amount is not particularly limited.
  • the content of the graphitization catalyst in the entire mixture may be 0.1% by mass to 50% by mass, 0.5% by mass to 40% by mass, or 0.5% by mass to 30% by mass. It may be %.
  • step (b) the mixture obtained in step (a) is molded to obtain a molded product.
  • a molded product Preferably, it is preferably formed into a predetermined shape by uniaxial pressing or the like.
  • the method of molding the mixture is not particularly limited.
  • a mold forming method in which a mixture is placed in a container such as a mold and pressurized in a uniaxial direction, a mixture is placed in a container such as a mold, a heavy weight is placed on the top, and the metal frame is subjected to vibration and impact.
  • Examples include a vibration molding method in which the mixture is molded by extruding the mixture through a nozzle or the like using a horizontal press.
  • step (b) it is preferable to mold the mixture by extrusion molding to obtain a molded product.
  • the production efficiency of the molded product is excellent, and the density of the molded product is improved and the handling properties are improved.
  • the density of the molded product becomes high, so the density of the graphitized product also becomes high, which tends to cause the problem that the graphitized product cannot be easily crushed.
  • water evaporates during heat treatment, graphitization, etc. so even if extrusion molding is used, the density of the graphitized material decreases, making it difficult to crush the graphitized material. It becomes possible.
  • the density of the molded product obtained is not particularly limited, and may be, for example, 0.90 g/cm 3 or more, 0.95 g/cm 3 or more, or 1.00 g/cm 3 or more. cm 3 or more, 1.25 g/cm 3 or more, 1.30 g/cm 3 or more, or more than 1.30 g/cm 3 .
  • the density of the obtained molded product may be 1.70 g/cm 3 or less, 1.60 g/cm 3 or less, or 1.55 g/cm 3 or less.
  • the manufacturing method of this embodiment uses a water-based binder, the strength of the molded product tends to improve even when the density of the molded product is relatively low (for example, less than 1.25 g/cm 3 ). It is in.
  • a water-based binder water evaporates during heat treatment, graphitization, etc., so even if the density of the molded product is relatively high (for example, 1.25 g/cm 3 or more), graphite The density of compounds tends to decrease.
  • the graphitized material can be easily pulverized, and a pulverized material with a small specific surface area tends to be obtained.
  • the contact area of the negative electrode material with the electrolyte can be reduced.
  • the decomposition reaction of the electrolytic solution is suppressed, the life of the battery can be extended, and a lithium ion secondary battery with excellent cycle characteristics can be manufactured.
  • the molded product obtained in step (b) is preferably subjected to heat treatment before graphitizing the molded product in step (c).
  • heat treatment organic components that do not contribute to graphitization contained in the mixture are removed, and gas generation and the like during the graphitization treatment tends to be suppressed.
  • the temperature of the heat treatment is not particularly limited, and is preferably lower than the temperature of the heat treatment during graphitization in step (c).
  • the temperature may be within the range of 500°C to 1000°C.
  • step (c) the molded product obtained in step (b) is graphitized.
  • the method for graphitizing the molded product is not particularly limited as long as the conditions are such that the graphitizable components contained in the mixture can be graphitized.
  • the atmosphere in which the mixture is difficult to oxidize is not particularly limited, and examples thereof include inert atmospheres such as nitrogen and argon, vacuum, and the like.
  • the temperature of the heat treatment for graphitization may be, for example, 1500°C or higher, 2000°C or higher, 2500°C or higher, or 2800°C or higher.
  • the upper limit of the heat treatment temperature is not particularly limited, and may be, for example, 3200° C. or lower. If the heat treatment temperature is 1500° C. or higher, crystal changes tend to occur and graphitization tends to proceed. When the heat treatment temperature is 2000° C. or higher, graphite crystals tend to develop better. On the other hand, when the temperature of the heat treatment for graphitization is 3200° C. or lower, sublimation of a part of graphite tends to be suppressed.
  • the density of the graphitized product obtained is not particularly limited, and from the viewpoint of handling of the graphitized product, it may be, for example, 0.80 g/cm 3 or more, or 0.85 g/cm 3 or more.
  • the amount may be 0.90 g/cm 3 or more.
  • the density of the graphitized product obtained may be 1.50 g/cm 3 or less, 1.30 g/cm 3 or less, or 1.20 g/cm 3 or less, from the viewpoint of ease of crushing the graphitized product. cm 3 or less, 1.15 g/cm 3 or less, 1.12 g/cm 3 or less, or 1.10 g/cm 3 or less.
  • step (d) the graphitized material obtained in step (c) is pulverized to obtain a pulverized product.
  • the method of pulverization is not particularly limited, and can be carried out by a known method using a jet mill, a vibration mill, a pin mill, a hammer mill, or the like.
  • the particle size of the pulverized product may be adjusted to a desired size.
  • the method for adjusting the particle size is not particularly limited, and examples thereof include a method using the above-mentioned pulverizing device, a method using a sieve, and the like.
  • step (e) placing low crystalline carbon on at least a part of the surface of the pulverized material, (f) combining the pulverized material with another negative electrode active material.
  • a mixing step or the like may also be performed.
  • the method of arranging low crystalline carbon on at least a part of the surface of the pulverized material includes, for example, mixing the pulverized material with a substance (resin, etc.) that can become low crystalline carbon by heat treatment, and then heat-treating the material.
  • a substance resin, etc.
  • One method is to do so.
  • input/output characteristics such as rapid charge/discharge characteristics of a lithium ion secondary battery using this as a negative electrode material may be improved.
  • the method of mixing the pulverized material with other negative electrode active materials in step (f) is not particularly limited.
  • desired characteristics of a lithium ion secondary battery may be improved compared to the case where only the pulverized material is used as the negative electrode active material.
  • other negative electrode active materials include, but are not limited to, graphite particles such as natural graphite and artificial graphite, and particles containing an element capable of intercalating and deintercalating lithium ions.
  • the element capable of intercalating and deintercalating lithium ions is not particularly limited, and examples thereof include Si, Sn, Ge, In, and the like.
  • the pulverized product obtained in step (f) may contain particles in which a plurality of flat graphite particles are aggregated or combined, and the plurality of flat graphite particles are mainly composed of the graphite particles. It may contain particles (hereinafter also referred to as secondary graphite particles) that are aggregated or combined so that their surfaces are non-parallel to each other.
  • flat graphite particles refer to non-spherical graphite particles having anisotropy in shape.
  • examples of the flat graphite particles include graphite particles having shapes such as scales, scales, and partially lumpy shapes.
  • the flat graphite particles have an aspect ratio of A/B, for example, 1.2 to 20, where A is the length in the major axis direction and B is the length in the minor axis direction. is preferable, and more preferably from 1.3 to 10.
  • A/B for example, 1.2 to 20
  • B is the length in the minor axis direction.
  • the aspect ratio is 1.2 or more, the contact area between particles increases, and the conductivity tends to be further improved.
  • the aspect ratio is 20 or less, input/output characteristics such as rapid charge/discharge characteristics of the lithium ion secondary battery tend to be further improved.
  • the aspect ratio is determined by observing the graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A/B of each, and taking the arithmetic average value of these measured values.
  • the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in a projected image of a graphite particle observed using a microscope, two parallel tangents circumscribed to the outer periphery of the graphite particle, tangent a1 and tangent a2 whose distance is maximum, are selected and Let the distance between the tangent a1 and the tangent a2 be the length A in the major axis direction.
  • the main surfaces of the graphite secondary particles are non-parallel means that the surfaces (main surfaces) having the largest cross-sectional area of the plurality of flat graphite particles are not aligned in a certain direction. Whether the main surfaces of the plurality of flat graphite particles are non-parallel to each other can be confirmed by microscopic observation. Because the plurality of flat graphite particles are aggregated or combined with their main surfaces non-parallel to each other, the increase in the orientation of the main surfaces of the flat graphite particles within the negative electrode is suppressed, and this facilitates charging. The accompanying expansion of the negative electrode is suppressed, and the cycle characteristics of the lithium ion secondary battery tend to be further improved. Note that the graphite secondary particles may partially include a structure in which a plurality of flat graphite particles are aggregated or combined so that their respective main surfaces are parallel.
  • a state in which a plurality of flat graphite particles are aggregated or combined refers to a state in which two or more flat graphite particles are aggregated or combined.
  • “Bond” refers to a state in which particles are chemically bonded to each other directly or via a carbon substance.
  • “Aggregation” refers to a state in which particles are not chemically bonded to each other, but maintain the shape of an aggregate due to their shape.
  • the flat graphite particles may be aggregated or bonded via a carbon substance. Examples of the carbon material include graphitized binders that can be graphitized. From the viewpoint of mechanical strength, it is preferable that two or more flat graphite particles are bonded via a carbon substance. Whether the flat graphite particles are aggregated or bonded can be confirmed, for example, by observation using a scanning electron microscope.
  • the average particle diameter of the flat graphite particles is, for example, preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 25 ⁇ m, and preferably 1 ⁇ m to 15 ⁇ m. More preferred.
  • a method for measuring the average particle diameter of flat graphite particles includes a method of measuring with a scanning electron microscope. This is the arithmetic mean value of the diameter.
  • the flat graphite particles and their raw materials are not particularly limited, and include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, pitch, and the like.
  • artificial graphite, natural graphite, or graphite obtained from coke has a high degree of crystallinity and forms soft particles, so it tends to be easier to increase the density of the negative electrode.
  • the negative electrode material may include spherical graphite particles.
  • the negative electrode material includes spherical graphite particles, since the spherical graphite particles themselves have a high density, the press pressure required to obtain a desired electrode density tends to be reduced.
  • the spherical graphite particles include spherical artificial graphite, spherical natural graphite, and the like. From the viewpoint of increasing the density of the negative electrode, the spherical graphite particles are preferably high-density graphite particles. Specifically, it is preferable to use spherical natural graphite that has been subjected to a particle spheroidization treatment so that it can have a high tap density. Furthermore, the negative electrode material layer containing spherical natural graphite has excellent peel strength and tends to be difficult to peel off from the current collector even when pressed with strong force.
  • the negative electrode material may contain the above-mentioned flat graphite particles and spherical graphite particles.
  • the ratio of the two is not particularly limited, and is set according to the desired electrode density, pressure conditions during pressing, desired battery characteristics, etc. can.
  • the negative electrode material contains flat graphite particles and spherical graphite particles
  • the flat graphite particles and spherical graphite particles are mixed, and the flat graphite particles and spherical graphite particles are mixed.
  • Examples include a bonded state (hereinafter also referred to as composite particle).
  • the composite particles include particles in which flat graphite particles and spherical graphite particles are bonded via organic carbide.
  • the above-mentioned composite particles can be produced, for example, by using a mixture containing flat graphite particles or a raw material thereof and spherical graphite particles as the mixture in step (a).
  • the average particle diameter of the negative electrode material produced by the above method is not particularly limited. For example, it is preferably 5 ⁇ m to 40 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m, even more preferably 10 ⁇ m to 25 ⁇ m.
  • the average particle diameter may be measured using a scanning electron microscope, for example, in the same manner as the average particle diameter of the flat graphite particles described above, or may be the volume average particle diameter (D50) measured by a laser diffraction/scattering method. You can.
  • a sample electrode is prepared, embedded in epoxy resin, mirror polished, and the cross section of the electrode is examined using a scanning electron microscope.
  • a scanning electron microscope e.g., "VE-7800” manufactured by Keyence Corporation
  • an ion milling device e.g., "E-3500” manufactured by Hitachi High-Technologies Corporation
  • scanning electron Examples include a method of measuring with a microscope (for example, "VE-7800” manufactured by Keyence Corporation).
  • the average particle diameter in this case is the median of 100 particle diameters arbitrarily selected from the observed particles.
  • the above sample electrode is prepared by adding water to a solid mixture of 98 parts by mass of the negative electrode material, 1 part by mass of styrene-butadiene resin as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener to prepare a dispersion liquid.
  • a dispersion liquid can be produced by coating the dispersion liquid on a copper foil having a thickness of 10 ⁇ m to a thickness of about 70 ⁇ m (at the time of coating), and then drying it at 105° C. for 1 hour.
  • the negative electrode material may have an orientation of 40 or less, 20 or less, or 15 or less when used as a negative electrode (or negative electrode after pressing if the production of the negative electrode involves a pressing process). Good too.
  • the above-mentioned orientation may be 10 or more.
  • the orientation of the negative electrode material is an index indicating the degree of orientation of the particles of the negative electrode material contained in the negative electrode. Low orientation means that the particles of the negative electrode material are oriented in random directions. That is, this means that the graphite particles are prevented from being oriented along the surface of the current collector due to pressure during pressing.
  • the specific surface area of the negative electrode material is preferably 3.0 m 2 /g or less, more preferably 2.8 m 2 /g or less, and 0.5 m 2 /g to It is more preferably 2.5 m 2 /g, particularly preferably 0.7 m 2 /g to 2.0 m 2 /g.
  • the method for manufacturing a negative electrode material according to the second embodiment of the present disclosure includes: (a) obtaining a mixture comprising a graphitizable aggregate and a graphitizable binder; (b) molding the mixture to obtain a molded product having a density of 1.25 g/cm 3 or more; (c) graphitizing the molded product to obtain a graphitized product having a density of 1.20 g/cm 3 or less; (d) A step of pulverizing the graphitized material to obtain a pulverized material.
  • the necessary configurations and preferred configurations in each embodiment may be combined as appropriate.
  • Preferred conditions for step (b) and step (c) other than the density of the molded product and the density of the graphitized product are the same as the preferred conditions for step (b) and step (c) in the first embodiment described above.
  • the density of the molded product obtained in step (b) is 1.25 g/cm 3 or more, thereby improving the strength of the molded product. Therefore, handling properties in subsequent graphitization treatment and the like are also improved.
  • the density of the graphitized product obtained in step (c) is 1.20 g/cm 3 or less, the graphitized product can be easily crushed.
  • the graphitized material can be easily pulverized, and as a result, a pulverized material with a small specific surface area can be easily obtained.
  • a negative electrode material containing a pulverized product with a small specific surface area for producing a lithium ion secondary battery the contact area of the negative electrode material with the electrolyte can be reduced. As a result, the decomposition reaction of the electrolyte is suppressed and the life of the battery can be extended, and as a result, the cycle characteristics of the lithium ion secondary battery tend to be excellent.
  • the method of molding the mixture in step (b) is not particularly limited. Examples include the above-mentioned molding method, vibration molding method, extrusion molding method, and the like. From the viewpoint of reducing the density of the graphitized material, a molding method or a vibration molding method is preferable.
  • the graphitizable binder is a water-based binder containing a water-soluble or water-absorbing polymer compound. May contain.
  • the preferred form of the aqueous binder described above is the same as that of the first embodiment described above.
  • the density of the molded product obtained is 1.25 g/cm 3 or more, may be 1.30 g/cm 3 or more, or may exceed 1.30 g/cm 3 .
  • the density of the resulting molded product may be 1.70 g/cm 3 or less, 1.60 g/cm 3 or less, or 1.55 g/cm 3 or less.
  • the density of the graphitized material obtained is 1.20 g/cm 3 or less, may be 1.12 g/cm 3 or less, or may be 1.10 g/cm 3 or less.
  • the density of the graphitized product obtained may be 0.80 g/cm 3 or more, 0.85 g/cm 3 or more, or 0.90 g/cm 3 or more.
  • the method for manufacturing a negative electrode material according to the third embodiment of the present disclosure includes: (a) obtaining a mixture comprising a graphitizable aggregate and a graphitizable binder; (b) molding the mixture by extrusion molding to obtain a molded product; (c) graphitizing the molded product to obtain a graphitized product having a density of 1.50 g/cm 3 or less; (d) A step of pulverizing the graphitized material to obtain a pulverized product.
  • the necessary configurations and preferred configurations in each embodiment may be combined as appropriate.
  • Preferable conditions for step (b) and step (c) other than the method for forming the molded article and the density of the graphitized material are the same as the preferable conditions for step (b) and step (c) in the first embodiment described above.
  • the strength of the molded product is improved by obtaining the molded product by extrusion molding in step (b). Therefore, handling properties in subsequent graphitization treatment and the like are also improved.
  • the density of the graphitized product obtained in step (c) is 1.50 g/cm 3 or less, it becomes possible to crush the graphitized product relatively easily.
  • the graphitizable binder is a water-based binder containing a water-soluble or water-absorbing polymer compound. May contain.
  • the preferred form of the aqueous binder described above is the same as that of the first embodiment described above.
  • the density of the molded product obtained may be 1.25 g/cm 3 or more, 1.30 g/cm 3 or more, or more than 1.30 g/cm 3 Good too.
  • the density of the resulting molded product may be 1.70 g/cm 3 or less, 1.60 g/cm 3 or less, or 1.55 g/cm 3 or less.
  • the density of the graphitized product obtained is 1.50 g/cm 3 or less, may be 1.30 g/cm 3 or less, may be 1.20 g/cm 3 or less, and 1. It may be less than .15 g/cm 3 , may be less than 1.12 g/cm 3 , and may be less than 1.10 g/cm 3 .
  • the density of the graphitized product obtained may be 0.80 g/cm 3 or more, 0.85 g/cm 3 or more, or 0.90 g/cm 3 or more.
  • unheated raw coke may be used to form the molded product because it has excellent strength. Furthermore, by using raw coke that has not been heat-treated, the density of the graphitized product obtained in step (c) can be suitably reduced, and the graphitized product can be more easily crushed.
  • a method for manufacturing a lithium ion secondary battery according to the present disclosure includes a step of manufacturing a negative electrode material by the method for manufacturing a negative electrode material described above, and a step of manufacturing a negative electrode using the negative electrode material.
  • a negative electrode material layer is formed on a current collector using a composition containing a negative electrode material, a binder, and a solvent, and heat treatment, press treatment, etc. are performed as necessary.
  • the binder contained in the composition is not particularly limited.
  • styrene-butadiene rubber polymer compounds containing ethylenically unsaturated carboxylic acid esters (methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, etc.) as a polymerization component
  • Polymer compounds containing ethylenically unsaturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.) as a polymerization component
  • polyvinylidene fluoride polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile , polyimide, polyamideimide, and other polymeric compounds.
  • (meth)acrylate means either or both of methacrylate and acrylate.
  • the solvent contained in the composition is not particularly limited. Specifically, organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and ⁇ -butyrolactone, water, and the like are used.
  • the composition may contain a thickener to adjust the viscosity, if necessary.
  • thickeners include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and its salts, oxidized starch, phosphorylated starch, casein, and the like.
  • the composition may be mixed with a conductive additive, if necessary.
  • a conductive additive examples include carbon black, graphite, acetylene black, oxides exhibiting conductivity, and nitrides exhibiting conductivity.
  • the material and shape of the current collector used for producing the negative electrode are not particularly limited.
  • materials such as strip foil, strip perforated foil, strip mesh, etc. made of metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel can be used.
  • Porous materials such as porous metal (foamed metal) and carbon paper can also be used.
  • the method of forming the negative electrode material layer on the current collector using the composition is not particularly limited, and includes metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, and gravure method. This can be carried out by a known method such as a coating method or a screen printing method. When the negative electrode material layer and the current collector are integrated, it can be carried out by a known method such as rolling, pressing, or a combination thereof.
  • heat treatment drying
  • the solvent contained in the negative electrode material layer is removed, the binder is hardened and strengthened, and the adhesion between particles and between the particles and the current collector can be improved.
  • the heat treatment may be performed in an inert atmosphere such as helium, argon, nitrogen, etc. or in a vacuum atmosphere in order to prevent oxidation of the current collector during treatment.
  • pressing treatment may be performed.
  • the electrode density of the negative electrode can be adjusted.
  • the electrode density of the negative electrode is not particularly limited, but may be 1.5 g/cm 3 to 1.9 g/cm 3 or 1.6 g/cm 3 to 1.8 g/cm 3 .
  • the press treatment is performed before the heat treatment.
  • the lithium ion secondary battery produced by the above method may include a negative electrode produced by the above method, a positive electrode, and an electrolyte.
  • a lithium ion secondary battery can have a configuration in which a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolytic solution containing an electrolyte is injected into the negative electrode and the positive electrode.
  • the positive electrode may be produced by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode.
  • a material such as a band-shaped foil, a band-shaped perforated foil, a band-shaped mesh, etc. made of a metal or alloy such as aluminum, titanium, or stainless steel can be used.
  • the separator examples include nonwoven fabrics, cloths, microporous films, and combinations thereof whose main component is polyolefin such as polyethylene and polypropylene. Note that if the lithium ion secondary battery has a structure in which the positive electrode and the negative electrode do not contact each other, there is no need to use a separator.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 and the like, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, etc.
  • organic electrolytes can be used.
  • an electrolytic solution containing fluoroethylene carbonate is suitable because it tends to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material and significantly improves cycle characteristics.
  • the form of the lithium ion secondary battery is not particularly limited, and examples thereof include a paper type battery, a button type battery, a coin type battery, a stacked type battery, a cylindrical type battery, a square type battery, and the like.
  • the negative electrode material for lithium ion secondary batteries can be applied not only to lithium ion secondary batteries but also to general electrochemical devices such as hybrid capacitors whose charging/discharging mechanism is insertion and extraction of lithium ions. .
  • Example 1 (Formation of molded product)
  • Raw needle coke which had not been heat treated and had an average particle diameter of 11 ⁇ m and a standard deviation of particle size distribution of 0.25, was used as the aggregate, and the following materials were used as raw materials.
  • the average particle size of the aggregate and negative electrode material, and the standard deviation of the particle size distribution of the aggregate were measured using a particle size distribution measuring device (Shimadzu Corporation, SALD-3000) using laser diffraction/scattering method. .
  • the standard deviation of the aggregate particle size distribution is the standard deviation defined on a logarithmic scale.
  • a mixture was prepared by mixing the raw materials shown below in the proportions and conditions shown in Table 1 without heating.
  • the obtained molded product was heat-treated at 800° C. to 850° C. for 8 hours in a nitrogen atmosphere to obtain a fired product. Thereafter, the obtained fired product was graphitized at 2600° C. to 3100° C. for 30 hours to obtain a graphitized product. The obtained graphitized product was pulverized to obtain the graphite powder of Example 1 (negative electrode material for lithium ion secondary battery).
  • Table 1 shows the density of the molded product (g/cm 3 ), the density of the fired product (g/cm 3 ), and the density of the graphitized product (g/cm 3 ) obtained in the above steps.
  • the bending test force (N) of the molded product was measured as follows. Specifically, a mixture having the composition shown in Table 1 was molded at room temperature to obtain a molded product of 10 mm x 10 mm x 50 mm. Table 1 shows the density (g/cm 3 ) of the obtained molded product. Using the produced molded product and an autograph manufactured by Shimadzu Corporation, a three-point bending test was performed at a test speed of 10 mm/min and a distance between fulcrums of 7 mm to measure the bending test force (N) required for fracture. did. The results are shown in Table 1.
  • the resulting mixture was molded at room temperature to obtain a large molded product measuring 150 mm x 300 mm x 100 mm.
  • a large molded product measuring 150 mm x 300 mm x 100 mm.
  • large-sized moldability is possible when the molded product can be lifted with both hands without causing large cracks, large chips, etc., and when attempting to lift the molded product with both hands.
  • large cracks, large chips, etc. occurred, or if the molded product could not be lifted with both hands, large-scale moldability was evaluated as poor.
  • Example 2 to 8 (Formation of molded product) Calcined needle coke prepared by heat-treating the raw needle coke used in Example 1 at 800° C. to 850° C. for 8 hours in a nitrogen atmosphere was used in Examples 2 to 8. Furthermore, the materials shown below were used as raw materials. A mixture was prepared by mixing the raw materials shown below in the proportions and conditions shown in Table 1 without heating. Next, using the obtained mixture, graphite powders (negative electrode materials for lithium ion secondary batteries) of Examples 2 to 8 were obtained in the same manner as in Example 1. Table 1 shows the density of the obtained molded product (g/cm 3 ), the density of the fired product (g/cm 3 ), and the density of the graphitized product (g/cm 3 ). ⁇ Aggregate: Needle coke with an average particle diameter of 10 ⁇ m and a standard deviation of particle size distribution of 0.24 ⁇ Binder: Starch (amount shown in Table 1) ⁇ Water (amount shown in Table 1)
  • Example 9 Graphite powder (negative electrode material for lithium ion secondary battery) of Example 9 was obtained in the same manner as in Example 1 except that the amount of water in Example 1 was changed to the amount shown in Table 1.
  • Table 1 shows the density of the obtained molded product (g/cm 3 ), the density of the fired product (g/cm 3 ), and the density of the graphitized product (g/cm 3 ).
  • Example 1 was carried out in the same manner as in Example 1, except that the amount of water in Example 1 was changed to the amount shown in Table 1, the kneading time was changed to the time shown in Table 1, and the molding method was changed to extrusion molding.
  • Graphite powders Nos. 10 and 11 negative electrode materials for lithium ion secondary batteries
  • Table 1 shows the density of the obtained molded product (g/cm 3 ), the density of the fired product (g/cm 3 ), and the density of the graphitized product (g/cm 3 ).
  • ⁇ Aggregate raw needle coke with an average particle diameter of 11 ⁇ m and a standard deviation of particle size distribution of 0.25 ⁇ Binder: tar pitch (10 parts by mass per 100 parts by mass of coke) ⁇ Aromatic compound...methylnaphthalene-containing additive (total aromatic compound content 77% by mass or more, 3 parts by mass per 100 parts by mass of coke)
  • Comparative Examples 2 and 3 (Formation of molded product) Calcined needle coke was used as the aggregate in Comparative Examples 2 and 3, as in Examples 2 to 8. Furthermore, a mixture was prepared by mixing the raw materials shown below in the proportions and conditions shown in Table 2 while heating at 140°C. Next, using the obtained mixture, graphite powders (negative electrode materials for lithium ion secondary batteries) of Comparative Examples 2 and 3 were obtained by the same operation as in Comparative Example 1. Table 2 shows the density of the obtained molded product (g/cm 3 ), the density of the fired product (g/cm 3 ), and the density of the graphitized product (g/cm 3 ).
  • ⁇ Aggregate needle coke with an average particle diameter of 10 ⁇ m and a standard deviation of particle size distribution of 0.24
  • ⁇ Binder tar pitch (10 parts by mass per 100 parts by mass of coke)
  • tar pitch 10 parts by mass per 100 parts by mass of coke
  • tar pitch 10 parts by mass per 100 parts by mass of coke
  • ⁇ Aromatic compound...methylnaphthalene-containing additive total aromatic compound content 77% by mass or more, 3 parts by mass or 7 parts by mass per 100 parts by mass of coke
  • Comparative example 4 The graphite of Comparative Example 4 was prepared in the same manner as Comparative Example 2, except that in Comparative Example 2, no aromatic compound was used, the amount of tar pitch was changed to the amount shown in Table 2, and the molding method was changed to extrusion molding. A powder (negative electrode material for lithium ion secondary batteries) was obtained. Table 2 shows the density of the obtained molded product (g/cm 3 ), the density of the fired product (g/cm 3 ), and the density of the graphitized product (g/cm 3 ).
  • Example 1 to 9 the bending test force (N) of the molded products tended to be superior compared to Comparative Examples 1 to 3, and the density of the graphitized products also tended to be lower. Furthermore, in Examples 1 to 9, chipping of the molded products was suppressed, and large-sized molding was also possible. Furthermore, in Examples 10 and 11 in which extrusion molding was employed, the density of the graphitized material tended to be lower than that in Comparative Example 4. Furthermore, in Examples 10 and 11, large-sized molding was possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、(b)前記混合物を成形して成形物を得る工程と、(c)前記成形物を黒鉛化して黒鉛化物を得る工程と、(d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含み、前記バインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含むリチウムイオン二次電池用負極材の製造方法。

Description

リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
 本開示は、リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法に関する。
 リチウムイオン二次電池は、ニッケル・カドミウム電池、ニッケル・水素電池、鉛蓄電池等の他の二次電池に比べてエネルギー密度が高いため、ノートパソコン、携帯電話等の携帯電化製品用の電源として広く用いられている。比較的小型の電化製品とともに、電気自動車、蓄電用電源等へのリチウムイオン二次電池の利用も期待されている。
 リチウムイオン二次電池の負極の材料(負極材)としては、黒鉛が広く使用されている。黒鉛を用いた負極材の製造方法としては、例えば、特許文献1には炭素材料とバインダー等を混合して得た混合物を粉砕し、得られた粉砕物を金型を用いて成形した状態で黒鉛化処理を行い、得られた黒鉛化物をさらに粉砕する方法が記載されている。
国際公開第2015/147012号
 電化製品、電気自動車、蓄電用電源等へのリチウムイオン二次電池の需要が高まっており、それに伴ってリチウムイオン二次電池用負極材の製造効率を高めることが求められている。
 本発明者らは、リチウムイオン二次電池用負極材の製造効率の観点から、黒鉛化可能な骨材と黒鉛化可能なバインダーとを含む混合物を成形し、成形物を黒鉛化して黒鉛化物とし、さらに黒鉛化物を粉砕して粉砕物を得ることでリチウムイオン二次電池用負極材を製造する方法を検討している。
 前述のリチウムイオン二次電池用負極材を製造する方法では、成形物のハンドリング性(例えば、黒鉛化処理等でのハンドリング性)向上などの観点から、成形物の強度を向上させることが望ましい。さらに、リチウムイオン二次電池用負極材の製造のしやすさ等の観点から、黒鉛化物とした際、容易に黒鉛化物を粉砕できることが望ましい。
 本開示は上記事情に鑑み、強度に優れる成形物を製造可能であり、かつ、容易に黒鉛化物を粉砕可能である、リチウムイオン二次電池用負極材の製造方法及びこの負極材の製造方法を含むリチウムイオン二次電池の製造方法を提供することを課題とする。
 前記課題を解決するための具体的手段には以下の実施態様が含まれる。
<1> (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
 (b)前記混合物を成形して成形物を得る工程と、
 (c)前記成形物を黒鉛化して黒鉛化物を得る工程と、
 (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含み、
 前記バインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含むリチウムイオン二次電池用負極材の製造方法。
<2> 前記成形物を得る工程では、前記混合物を成形して密度が1.25g/cm以上である成形物を得る<1>に記載のリチウムイオン二次電池用負極材の製造方法。
<3> (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
 (b)前記混合物を成形し、密度が1.25g/cm以上である成形物を得る工程と、
 (c)前記成形物を黒鉛化し、密度が1.20g/cm以下である黒鉛化物を得る工程と、
 (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含むリチウムイオン二次電池用負極材の製造方法。
<4> (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
 (b)前記混合物を押出成形により成形して成形物を得る工程と、
 (c)前記成形物を黒鉛化し、密度が1.50g/cm以下である黒鉛化物を得る工程と、
 (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含むリチウムイオン二次電池用負極材の製造方法。
<5> 前記バインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含む<3>又は<4>に記載のリチウムイオン二次電池用負極材の製造方法。
<6> 前記水溶性又は吸水性を有する高分子化合物は、スターチ、アミロース、アミロペクチン、ポリアクリル酸、カルボキシメチルセルロース、ポリビニルアルコール及び水溶性たんぱく質からなる群より選択される少なくとも1種を含む<1>、<2>及び<5>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法。
<7> 前記混合物中の水分の含有率は、前記混合物全量に対して10質量%~50質量%である<1>、<2>、<5>及び<6>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法。
<8> 前記混合物中の前記バインダーの含有率は、前記混合物全量に対して3質量%~30質量%である<1>~<7>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法。
<9> 前記骨材は、か焼したコークスを含む<1>~<8>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法。
<10> 前記骨材は、熱処理していない生コークスを含む<1>~<9>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法。
<11> <1>~<10>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法によりリチウムイオン二次電池用負極材を製造する工程と、前記リチウムイオン二次電池用負極材を用いて負極を作製する工程と、を備える、リチウムイオン二次電池の製造方法。
 本開示によれば、強度に優れる成形物を製造可能であり、かつ、容易に黒鉛化物を粉砕可能である、リチウムイオン二次電池用負極材の製造方法及びこの負極材の製造方法を含むリチウムイオン二次電池の製造方法を提供することができる。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<リチウムイオン二次電池用負極材の製造方法>
[第1実施形態]
 本開示の第1実施形態に係るリチウムイオン二次電池用負極材(以下、単に負極材とも称する)の製造方法は、
 (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
 (b)前記混合物を成形して成形物を得る工程と、
 (c)前記成形物を黒鉛化して黒鉛化物を得る工程と、
 (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含み、
 前記バインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含む。
 なお、上記方法の各工程は連続して行っても、連続せずに行ってもよい。上記方法の各工程は同じ場所で行っても、異なる場所で行ってもよい。
 本実施形態の製造方法では、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを用いる。これにより、成形物の強度が向上するため、その後の黒鉛化処理等でのハンドリング性も向上する。成形物の強度が向上した場合、一般的に成形物を黒鉛化処理した後の黒鉛化物が粉砕しにくくなる傾向にある。しかしながら、本実施形態の製造方法では、前述の水系バインダーを用いることで成形物の強度を向上させつつ、容易に黒鉛化物を粉砕可能である。
 本実施形態の製造方法において、成形物の強度を向上させつつ、容易に黒鉛化物を粉砕可能となる理由は、以下のように推測される。なお、本開示は以下の推測に限定されない。
 本実施形態の製造方法では、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを使用することにより水分で膨潤したバインダーに骨材が取り込まれる。これにより、混合物の成形時に黒鉛化可能な骨材の表面が滑りやすくなって混合物の配列が進み、空隙が少なくなる。その結果、成形物の密度及び強度が向上する傾向にある。さらに、バインダーに取り込まれていない水分が骨材同士の隙間を埋めることで液架橋が発現するため、成形物の強度が向上する。
 本実施形態の製造方法では、成形物を必要に応じて加熱により熱処理した後に、成形物を黒鉛化して黒鉛化物を得る。水系バインダーを使用することで、熱処理、黒鉛化等を行う際に、水分が揮発する。そのため、熱処理、黒鉛化等を行う前の成形物は高密度であるが、黒鉛化を行った後の黒鉛化物は密度が低下している。したがって、容易に黒鉛化物を粉砕可能となる。
 さらに、本実施形態の製造方法では、容易に黒鉛化物を粉砕することができ、その結果、比表面積が小さい粉砕物を得られやすくなる。比表面積が小さい粉砕物を含む負極材をリチウムイオン二次電池の作製に用いることにより、負極材の電解液との接触面積を少なくすることができる。これにより、電解液の分解反応が抑制されて電池の寿命を長くでき、その結果、リチウムイオン二次電池のサイクル特性に優れる傾向にある。
 従来は生コークスを使用した場合、成形が難しく、成形物の強度も低いという問題があり、生コークスに熱処理を施す等により成形性、成形物の強度等を向上させる必要があった。一方、本実施形態の製造方法では生コークスを熱処理せずに使用した場合でも成形性に優れ、強度の高い成形物が得られる。従って、黒鉛化可能な骨材として、生コークスを熱処理したもの(か焼したコークス)を成形物の形成に使用してもよく、熱処理されていない生コークスを成形物の形成に使用してもよい。
 本実施形態の製造方法では、成形物の強度に優れるため、黒鉛化を行う際に黒鉛化用の坩堝等に混合物を詰め込む必要がない。つまり、黒鉛化用の坩堝等を使用する必要がなく、成形物のみを黒鉛化炉内に配置して黒鉛化が可能となる。そのため、黒鉛化用の坩堝等を使用する場合と比較して、リチウムイオン二次電池用負極材の製造効率に優れる傾向にある。
 通常、黒鉛化可能なバインダー量を増やすことで、成形物の強度を高めることができる。しかし、黒鉛化可能なバインダー量が過剰な場合、黒鉛化物の密度が高く、黒鉛化物が粉砕しにくくなる傾向にあり、負極材の初回充放電効率等の電池特性が低下しやすくなる。本実施形態では、黒鉛化可能なバインダー量を増やさずとも成形物の強度を高めることが可能であり、バインダーの過剰使用による電池特性の低下も防ぐことができる。さらに、バインダー量を削減することで、粉砕物表面にハードカーボン由来の被覆を行うことも容易となり、リチウムイオン二次電池の入力特性も高められる傾向にある。
 工程(a)では、黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る。前述の黒鉛化可能なバインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含む。混合物を得る方法は特に制限されず、ニーダー等を用いて行うことができる。混合は、常温で行ってもよく、加熱して行ってもよい。水系バインダーを使用する場合、黒鉛化可能なバインダーとしてピッチ、タール等を使用しない、あるいは、ピッチ、タール等の使用量を削減することができる。そのため、黒鉛化可能なバインダーが軟化する温度で混合を行う必要がなく、加熱等の処理を省略することができる。
 黒鉛化可能な骨材と、黒鉛化可能なバインダーとを混練等により混合する時間は、特に限定されず、例えば、10秒~30分であってもよく、30秒~20分であってもよく、1分~15分であってもよい。混合する時間が長くなることで、成形物の密度及び強度が向上する傾向にある。
 黒鉛化可能な骨材は、黒鉛化処理により黒鉛化するものであれば特に制限されない。具体的には、フルードコークス、ニードルコークス、モザイクコークス等のコークスが挙げられ、中でも、製造される黒鉛化物の密度の上昇が抑制されることで容易に黒鉛化物の粉砕が可能となる観点から、ニードルコークスを用いることが好ましい。黒鉛化可能な骨材は、粒子状であることが好ましい。
 混合物に含まれる黒鉛化可能な骨材は、1種のみでも2種以上であってもよい。
 黒鉛化可能な骨材としてコークスを使用する場合、成形物の強度を向上させる観点から、コークスは、か焼したコークスを含んでいてもよい。なお、実施形態の製造方法では、成形物の強度に優れるため、熱処理されていない生コークスを成形物の形成に使用してもよい。
 黒鉛化可能な骨材が粒子状である場合、黒鉛化可能な骨材の平均粒子径は、例えば、5μm~40μmであることが好ましく、8μm~30μmであることがより好ましく、8μm~25μmであることがさらに好ましい。平均粒子径は、例えば、後述のレーザー回折・散乱法により測定される体積平均粒子径(D50)である。体積平均粒子径(D50)は、粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積50%となるときの粒子径である。
 黒鉛化可能な骨材の粒度分布の標準偏差は、例えば、0.25以下であることが好ましく、0.20以下であることがより好ましく、0.18以下であることがさらに好ましく、0.16以下であることが特に好ましい。前述の骨材の粒度分布の標準偏差が0.20以下であることにより、骨材の粒度のばらつきを減らすことができ、得られる粉砕物の粒度のばらつきも抑制できる。粒子径のバラつきが小さい粉砕物を含む負極材をリチウムイオン二次電池の作製に用いることにより、負極内での抵抗分布を均一化することができる。その結果、リチウムイオン二次電池の急速充電性能が向上する傾向にある。さらに、骨材の粒度のばらつきを減らすことで、黒鉛化可能なバインダーの含有率又は含有量を少なくしてもバインダーとしての機能を好適に確保することができる。粒度分布の標準偏差は、例えば、後述のレーザー回折・散乱法により測定される値(体積基準)である。
 黒鉛化可能な骨材の粒度分布の標準偏差の下限は特に限定されず、例えば、0.05以上であってもよく、0.10以上であってもよい。
 黒鉛化可能な骨材の平均粒子径及び黒鉛化可能な骨材の粒度分布の標準偏差を前述の範囲に調整する方法としては、篩による分級、風力分級、湿式分級等が挙げられる。
 黒鉛化可能なバインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含み、黒鉛化処理により黒鉛化するものであれば特に制限されない。水系バインダーとしては、水溶性又は吸水性を有する高分子化合物と、水とを含む組成物が挙げられる。黒鉛化可能なバインダーは、1種の水溶性又は吸水性を有する高分子化合物を含んでいてもよく、2種以上の水溶性又は吸水性を有する高分子化合物を含んでいてもよい。
 水系バインダーの付着力は、成形体の割れ等を抑制する観点から、0.2N以上であることが好ましく、強度により優れる成形体を得る観点から、0.4N以上であることが好ましい。水系バインダーの付着力は、以下のようにして測定される。まず、バインダー25g及び水100gを混合し、ローラーミキサーで1時間混合しサンプルを作製する。サンプルを直径20mmの金型に20g~30g充填し、株式会社島津製作所製の小型卓上試験機EZ-Sを用いて、降下速度60mm/minで10mm押し込み、その後上昇速度600mm/minで引っ張り試験を行うことで付着力を求める。バインダーの濃度が増加すると水系バインダーの付着力が増加する傾向にあり、バインダーの濃度を一定以下として水分を確保することで、バインダーの機能を十分に発揮させることができ、結着力が維持される傾向にある。
 黒鉛化可能なバインダーは、水系バインダー以外の成分を含んでいてもよく、例えば、石炭系、石油系、人造等のピッチ及びタール、熱可塑性樹脂、熱硬化性樹脂などのバインダーを含んでいてもよい。
 水溶性又は吸水性を有する高分子化合物は、特に限定されず、例えば、スターチ、アミロース、アミロペクチン、ポリアクリル酸、カルボキシメチルセルロース、ポリビニルアルコール及び水溶性たんぱく質からなる群より選択される少なくとも1種を含むものであってもよい。
 黒鉛化可能なバインダー中における水系バインダーの含有率は、バインダー全量に対し、50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
 本開示において、水系バインダーとは、水分と、バインダーとして機能する、水溶性又は吸水性を有する高分子化合物と、必要に応じて含まれる水溶性又は吸水性のモノマー成分との組成物を意味する。
 混合物中の水分の含有率は、成形物の成形性及び強度の観点から、混合物全量に対し、10質量%~50質量%であることが好ましく、12質量%~40質量%であることがより好ましく、15質量%~35質量%であることがさらに好ましい。
 バインダー中における水溶性又は吸水性を有する高分子化合物の含有率は、成形物の成形性及び強度の観点から、バインダー全量に対し、10質量%~70質量%であることが好ましく、15質量%~60質量%であることがより好ましく、15質量%~50質量%であることがさらに好ましい。
 混合物中の水溶性又は吸水性を有する高分子化合物の含有率は、成形物の成形性及び強度の観点から、混合物全量に対し、3質量%~30質量%であることが好ましく、4質量%~25質量%であることがより好ましく、5質量%~20質量%であることがさらに好ましい。
 水系バインダー中における水分の含有率は、成形物の成形性及び強度の観点から、バインダー全量に対し、30質量%~90質量%であることが好ましく、40質量%~85質量%であることがより好ましく、50質量%~85質量%であることがさらに好ましい。
 混合物は、黒鉛化可能な骨材又は黒鉛化可能なバインダー以外の成分(以下、「その他の成分」とも称する。)を含んでいてもよく、含んでいなくてもよい。その他の成分としては、芳香族化合物、黒鉛、分散剤、黒鉛化触媒等が挙げられる。
 芳香族化合物は、芳香環を有する化合物であれば特に限定されない。芳香族化合物としては、芳香環を有し、分子量が500以下の化合物であってもよく、分子量が300以下の化合物であってもよい。
 芳香族化合物としては、ナフタレン、1-メチルナフタレン、2-メチルナフタレン等のメチルナフタレン、アセナフテン、ビフェニル、フルオレン、ベンゾピレン、ベンゾアントラセン、ジベンゾアントラセン、ジフェニレンオキシド、キノリン、イソキノリンなどが挙げられる。
 混合物に含まれる芳香族化合物は、1種のみでも2種以上であってもよい。
 中でも、芳香族化合物としては、成形物を形成する際の成形性の観点から、メチルナフタレン及びナフタレンが好ましい。
 混合物が芳香族化合物を含む場合、その量は特に制限されない。混合物中の芳香族化合物の含有率は、混合物全量に対し、1質量%以下が好ましく、0.5質量%以下がより好ましく、0質量%がさらに好ましい。
 混合物は、黒鉛を含んでいてもよい。黒鉛としては、天然黒鉛、人造黒鉛等が挙げられる。黒鉛は、粒子状であることが好ましい。混合物は、黒鉛を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 工程(b)において混合物中の成分を分散しやすくする観点からは、混合物は分散剤を含むことが好ましい。混合物が分散剤を含むことにより、黒鉛化物を粉砕して得られる粉砕物の粒度のばらつきを抑えることができ、粒度のそろった粉砕物が得られやすくなる。その結果、リチウムイオン二次電池の急速充電性能が向上する傾向にある。
 さらに、混合物が分散剤を含むことは黒鉛化可能なバインダーの量を抑えることにつながり、負極材の初回充放電効率等の電池特性の改善も期待できる。
 分散剤の種類は特に制限されない。具体的には、流動パラフィン、パラフィンワックス、ポリエチレンワックス等の炭化水素、ステアリン酸、オレイン酸、エルカ酸、12ヒドロキシステアリン酸等の脂肪酸、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム等の脂肪酸金属塩、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等の脂肪酸エステル、ステアリルアルコール等の高級アルコールなどが挙げられる。これらの中でも、負極材の性能に影響を与えにくく、常温で固体であるため取扱いやすく、黒鉛化処理までの過程で消失し、安価であることから、脂肪酸が好ましく、ステアリン酸がより好ましい。
 混合物が分散剤を含む場合、その量は特に制限されない。例えば、混合物全体に対する分散剤の含有率は0.1質量%~20質量%であってもよく、0.5質量%~10質量%であってもよく、0.5質量%~5質量%であってもよい。
 黒鉛化可能な骨材又はバインダーの黒鉛化を促進する観点からは、混合物は黒鉛化触媒を含むことが好ましい。黒鉛化触媒の種類は特に制限されない。具体的には、ケイ素、鉄、ニッケル、チタン、ホウ素等の黒鉛化触媒作用を有する物質、これらの物質の炭化物、これらの物質の酸化物、これらの物質の窒化物などが挙げられる。
 混合物が黒鉛化触媒を含む場合、その量は特に制限されない。例えば、混合物全体に対する黒鉛化触媒の含有率は0.1質量%~50質量%であってもよく、0.5質量%~40質量%であってもよく、0.5質量%~30質量%であってもよい。
 工程(b)では、工程(a)で得た混合物を成形して成形物を得る。好ましくは、一軸プレス等により所定形状に成形するとよい。このように成形することで、混合物を黒鉛化する際に黒鉛化炉への詰量を増やして生産性を向上させたり、黒鉛化触媒の効果を向上させたりすることができる。
 工程(b)において、混合物を成形する方法は特に制限されない。例えば、金型等の容器内に混合物を入れて一軸方向に加圧するモールド成形法、金型等の容器内に混合物を入れて、上面に重鎮を載せ、金枠に振動及び衝撃を与えて成形する振動成形法、混合物を横押しプレスでノズル等から押し出して成形する押出成形法等が挙げられる。
 工程(b)において、混合物を押出成形により成形して成形物を得ることが好ましい。押出成形により混合物を成形することで、成形物の製造効率に優れ、かつ、成形物の密度が向上してハンドリング性が向上する。通常押出成形を行う場合、成形物の密度が高くなるため、黒鉛化物の密度も高くなってしまい、黒鉛化物を容易に粉砕できないという問題が生じやすい。しかしながら、本実施形態では、熱処理、黒鉛化等を行う際に水分が揮発するため、押出成形を採用した場合であっても、黒鉛化物の密度が低下し、容易に黒鉛化物を粉砕することが可能となる。
 工程(b)において、得られる成形物の密度は特に限定されず、例えば、0.90g/cm以上であってもよく、0.95g/cm以上であってもよく、1.00g/cm以上であってもよく、1.25g/cm以上であってもよく、1.30g/cm以上であってもよく、1.30g/cmを超えていてもよい。得られる成形物の密度は、1.70g/cm以下であってもよく、1.60g/cm以下であってもよく、1.55g/cm以下であってもよい。
 本実施形態の製造方法では、水系バインダーを用いているため、成形物の密度が比較的小さい場合(例えば、1.25g/cm未満の場合)であっても成形物の強度が向上する傾向にある。水系バインダーを用いることで、熱処理、黒鉛化等を行う際に水分が揮発するため、成形物の密度が比較的高い場合(例えば、1.25g/cm以上の場合)であっても、黒鉛化物の密度が低下する傾向にある。その結果、黒鉛化物を容易に粉砕することができ、比表面積が小さい粉砕物を得ることができる傾向にある。比表面積が小さい粉砕物を含む負極材をリチウムイオン二次電池の作製に用いることにより、負極材の電解液との接触面積を少なくすることができる。以上により、電解液の分解反応が抑制されて電池の寿命を長くでき、サイクル特性に優れるリチウムイオン二次電池を製造できる傾向にある。
 工程(b)で得られる成形物は、工程(c)において成形物を黒鉛化する前に、熱処理を施されることが好ましい。熱処理を施すことにより、混合物に含まれる黒鉛化に寄与しない有機物成分が除去され、黒鉛化処理におけるガス発生等が抑制される傾向にある。
 上記熱処理の温度は特に制限されず、工程(c)における黒鉛化を行う際の熱処理の温度よりも低い温度であることが好ましい。例えば、500℃~1000℃の範囲内で行ってもよい。
 工程(c)では、工程(b)で得られた成形物を黒鉛化する。成形物を黒鉛化する方法は、混合物に含まれる黒鉛化可能な成分が黒鉛化しうる条件であれば特に制限されない。例えば、混合物が酸化し難い雰囲気で熱処理する方法が挙げられる。混合物が酸化し難い雰囲気は特に制限されず、窒素、アルゴン等の不活性雰囲気、真空などが挙げられる。
 黒鉛化のための熱処理の温度は、例えば、1500℃以上であってもよく、2000℃以上であってもよく、2500℃以上であってもよく、2800℃以上であってもよい。熱処理の温度の上限は特に制限されず、例えば、3200℃以下であってもよい。熱処理の温度が1500℃以上であると、結晶の変化が生じて黒鉛化が進みやすい傾向にある。熱処理の温度が2000℃以上であると、黒鉛の結晶の発達がより良好となる傾向にある。一方、黒鉛化のための熱処理の温度が3200℃以下であると、黒鉛の一部が昇華するのが抑制される傾向にある。
 工程(c)において、得られる黒鉛化物の密度は特に限定されず、黒鉛化物のハンドリング性の観点から、例えば、0.80g/cm以上であってもよく、0.85g/cm以上であってもよく、0.90g/cm以上であってもよい。得られる黒鉛化物の密度は、黒鉛化物の粉砕のしやすさの観点から、1.50g/cm以下であってもよく、1.30g/cm以下であってもよく、1.20g/cm以下であってもよく、1.15g/cm以下であってもよく、1.12g/cm以下であってもよく、1.10g/cm以下であってもよい。
 工程(d)では、工程(c)で得られた黒鉛化物を粉砕して粉砕物を得る。粉砕の方法は特に制限されず、ジェットミル、振動ミル、ピンミル、ハンマーミル等を用いて既知の方法により行うことができる。粉砕物は、所望の大きさとなるように粒子径を調整してもよい。粒子径の調整方法は特に制限されず、上述した粉砕用の装置を用いて行う方法、篩を用いる方法等が挙げられる。
 必要に応じ、工程(d)で得られた粉砕物に対し、(e)粉砕物の表面の少なくとも一部に低結晶性炭素を配置する工程、(f)粉砕物を他の負極活物質と混合する工程等を実施してもよい。
 工程(e)において粉砕物の表面の少なくとも一部に低結晶性炭素を配置する方法としては、例えば、熱処理により低結晶性炭素になりうる物質(樹脂等)と粉砕物とを混合して熱処理する方法が挙げられる。粉砕物の表面の少なくとも一部に低結晶性炭素が配置されていると、これを負極材とするリチウムイオン二次電池の急速充放電特性等の入出力特性が向上する場合がある。
 工程(f)において粉砕物を他の負極活物質と混合する方法は特に制限されない。粉砕物と他の負極活物質とを混合することで、粉砕物のみを負極活物質として用いる場合に比べてリチウムイオン二次電池の所望の特性を改善できる場合がある。他の負極活物質としては天然黒鉛、人造黒鉛等の黒鉛粒子、リチウムイオンを吸蔵及び放出可能な元素を含む粒子などが挙げられるが、これらに制限されない。リチウムイオンを吸蔵及び放出可能な元素としては、特に限定されず、例えば、Si、Sn、Ge、In等が挙げられる。
 工程(f)で得られる粉砕物は、複数の扁平状の黒鉛粒子が、集合又は結合した状態の粒子を含むものであってもよく、複数の扁平状の黒鉛粒子が、前記黒鉛粒子の主面が互いに非平行となるように集合又は結合した状態の粒子(以下、黒鉛二次粒子とも称する)を含むものであってもよい。
 粉砕物が黒鉛二次粒子の状態であると、負極の高密度化のためのプレスを行ったときに負極材の粒子が集電体の方向に沿って配向する現象が抑制され、負極材を出入りするリチウムイオンの経路が充分に確保される傾向にある。
 さらに、複数の扁平状の黒鉛粒子が集合又は結合した状態の粒子を含むことで、複数の扁平状の黒鉛粒子の間に存在する空隙によってプレス時に加える圧力が個々の黒鉛粒子に与える影響が軽減され、黒鉛粒子の破壊、亀裂の発生等が抑制される傾向にある。
 本開示において「扁平状の黒鉛粒子」とは、形状に異方性を有する非球状の黒鉛粒子をいう。扁平状の黒鉛粒子としては、鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。
 扁平状の黒鉛粒子は、長軸方向の長さをA、短軸方向の長さをBとしたときに、A/Bで表されるアスペクト比が、例えば、1.2~20であることが好ましく、1.3~10であることがより好ましい。アスペクト比が1.2以上であると、粒子間の接触面積が増加して、導電性がより向上する傾向にある。アスペクト比が20以下であると、リチウムイオン二次電池の急速充放電特性等の入出力特性がより向上する傾向にある。
 アスペクト比は、黒鉛粒子を顕微鏡で観察し、任意に100個の黒鉛粒子を選択してそれぞれのA/Bを測定し、それらの測定値の算術平均値をとったものである。アスペクト比の観察において、長軸方向の長さA及び短軸方向の長さBは、以下のようにして測定される。すなわち、顕微鏡を用いて観察される黒鉛粒子の投影像において、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a1及び接線a2を選択して、この接線a1及び接線a2の間の距離を長軸方向の長さAとする。黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最小となる接線b1及び接線b2を選択して、この接線b1及び接線b2の間の距離を短軸方向の長さBとする。
 本開示において黒鉛二次粒子の「主面が非平行である」とは、複数の扁平状の黒鉛粒子の最も断面積の大きい面(主面)が一定方向に揃っていないことをいう。複数の扁平状の黒鉛粒子の主面が互いに非平行であるか否かは、顕微鏡観察により確認することができる。複数の扁平状の黒鉛粒子が、主面が互いに非平行な状態で集合又は結合していることにより、扁平状の黒鉛粒子の負極内での主面の配向性の高まりが抑制され、充電に伴う負極の膨張が抑制され、リチウムイオン二次電池のサイクル特性がより向上する傾向にある。
 なお、黒鉛二次粒子は、複数の扁平状の黒鉛粒子が、それぞれの主面が平行となるように集合又は結合した状態の構造を部分的に含んでいてもよい。
 本開示において複数の扁平状の黒鉛粒子が「集合又は結合している状態」とは、2個以上の扁平状の黒鉛粒子が集合又は結合している状態をいう。「結合」とは、互いの粒子が直接又は炭素物質を介して、化学的に結合している状態をいう。「集合」とは、互いの粒子が化学的に結合してはいないが、その形状等に起因して、集合体としての形状を保っている状態をいう。扁平状の黒鉛粒子は、炭素物質を介して集合又は結合していてもよい。炭素物質としては、例えば、黒鉛化可能なバインダーの黒鉛化物が挙げられる。機械的な強度の観点からは、2個以上の扁平状の黒鉛粒子が炭素物質を介して結合している状態であることが好ましい。扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。
 扁平状の黒鉛粒子の平均粒子径は、集合又は結合のし易さの観点から、例えば、1μm~50μmであることが好ましく、1μm~25μmであることがより好ましく、1μm~15μmであることがさらに好ましい。扁平状の黒鉛粒子の平均粒子径の測定方法としては、走査型電子顕微鏡で測定する方法が挙げられ、扁平状の黒鉛粒子の平均粒子径は、例えば、100個の扁平状の黒鉛粒子の粒子径の算術平均値である。
 扁平状の黒鉛粒子及びその原料は特に制限されず、人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。中でも、人造黒鉛、天然黒鉛、又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるため、負極の高密度化がし易くなる傾向にある。
 負極材は、球状の黒鉛粒子を含むものであってもよい。負極材が球状の黒鉛粒子を含む場合、球状の黒鉛粒子はそれ自体が高密度であるため、所望の電極密度を得るために必要なプレス圧を軽減できる傾向にある。
 球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。負極の高密度化の観点からは、球状の黒鉛粒子は高密度な黒鉛粒子であることが好ましい。具体的には、粒子球形化処理を施して高タップ密度化できるようにされた球状天然黒鉛であることが好ましい。さらに、球状天然黒鉛を含む負極材層は剥離強度に優れ、強い力でプレスしても集電体から剥がれにくい傾向にある。
 負極材が球状の黒鉛粒子を含む場合、上述した扁平状の黒鉛粒子と、球状の黒鉛粒子とを含むものであってもよい。負極材が上述した扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む場合、両者の割合は特に制限されず、所望の電極密度、プレス時の圧力条件、所望の電池特性等に応じて設定できる。
 負極材が扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む場合としては、扁平状の黒鉛粒子と球状の黒鉛粒子とが混合された状態、扁平状の黒鉛粒子と球状の黒鉛粒子とが結合した状態(以下、複合粒子とも称する)等が挙げられる。複合粒子としては、例えば、扁平状の黒鉛粒子と球状の黒鉛粒子とが有機物の炭化物を介して結合した状態の粒子が挙げられる。
 上記複合粒子は、例えば、工程(a)における混合物として扁平状の黒鉛粒子又はその原料と、球状の黒鉛粒子とを含むものを用いることで製造することができる。
 上記方法で製造される負極材の平均粒子径は、特に制限されない。例えば、5μm~40μmであることが好ましく、10μm~30μmであることがより好ましく、10μm~25μmであることがさらに好ましい。平均粒子径は、例えば、上述した扁平状の黒鉛粒子の平均粒子径と同様に走査型電子顕微鏡で測定してもよく、レーザー回折・散乱法により測定される体積平均粒子径(D50)であってもよい。
 負極材を用いて電極(負極)を製造した場合の平均粒子径の測定方法としては、試料電極を作製し、その電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で観察する方法、イオンミリング装置(例えば、株式会社日立ハイテクノロジーズ製、「E-3500」)を用いて電極断面を作製して走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で測定する方法等が挙げられる。この場合の平均粒子径は、観察される粒子から任意に選択した100個の粒子径の中央値である。
 上記試料電極は、例えば、負極材98質量部、バインダーとしてのスチレンブタジエン樹脂1質量部、及び増粘剤としてのカルボキシメチルセルロース1質量部の混合物を固形分として、水を添加して分散液を作製し、前記分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、105℃で1時間乾燥させることによって作製することができる。
 負極材は、負極(負極の作製にプレス工程を伴う場合は、プレス後の負極)としたときの配向性が40以下であってもよく、20以下であってもよく、15以下であってもよい。前述の配向性は10以上であってもよい。
 負極材の配向性は、負極に含まれる負極材の粒子の配向の度合いを示す指標である。配向性が小さいことは、負極材の粒子がランダムな方向を向いていることを意味する。すなわち、プレス時の圧力によって黒鉛粒子が集電体の面に沿って配向するのが抑制されていることを意味する。
 本開示において、負極の配向性は、CuKα線をX線源とするX線回折装置により、試料電極の表面を測定することにより求める。具体的には、試料電極の表面のX線回折パターンを測定し、回折角2θ=53°~56°付近に検出される炭素(004)面回折ピークと、回折角2θ=70°~80°付近に検出される炭素(110)面回折ピークとの強度から下記式(1)により求める。
 (004)面回折ピーク強度/(110)面回折ピーク強度 ・・・・式(1)
 負極材の比表面積は、サイクル特性及び保存特性の観点から、3.0m/g以下であることが好ましく、2.8m/g以下であることがより好ましく、0.5m/g~2.5m/gであることがさらに好ましく、0.7m/g~2.0m/gであることが特に好ましい。
 負極材の比表面積は、比表面積/細孔分布測定装置(例えば、フローソーブ III 2310、株式会社島津製作所)を用いて、窒素とヘリウムの混合ガス(窒素:ヘリウム=3:7)を使用し、液体窒素温度(77K)での窒素吸着を相対圧0.3の一点法で測定してBET法により算出すればよい。
[第2実施形態]
 本開示の第2実施形態に係る負極材の製造方法は、
 (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
 (b)前記混合物を成形し、密度が1.25g/cm以上である成形物を得る工程と、
 (c)前記成形物を黒鉛化し、密度が1.20g/cm以下である黒鉛化物を得る工程と、
 (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含む。
 本開示において、各実施形態における必要な構成及び好ましい構成は適宜組み合わせてもよい。成形物の密度及び黒鉛化物の密度以外の工程(b)及び工程(c)の好ましい条件は、前述の第1実施形態における工程(b)及び工程(c)の好ましい条件と同様である。
 本実施形態の製造方法では、工程(b)にて得られる成形物の密度が1.25g/cm以上であることにより、成形物の強度が向上する。そのため、その後の黒鉛化処理等でのハンドリング性も向上する。工程(c)にて得られる黒鉛化物の密度が1.20g/cm以下であることにより、容易に黒鉛化物を粉砕可能となる。
 さらに、本実施形態の製造方法では、容易に黒鉛化物を粉砕することができ、その結果、比表面積が小さい粉砕物を得られやすくなる。比表面積が小さい粉砕物を含む負極材をリチウムイオン二次電池の作製に用いることにより、負極材の電解液との接触面積を少なくすることができる。これにより、電解液の分解反応が抑制されて電池の寿命を長くでき、その結果、リチウムイオン二次電池のサイクル特性に優れる傾向にある。
 本実施形態の製造方法では、工程(b)において、混合物を成形する方法は特に制限されない。例えば、前述のモールド成形法、振動成形法、押出成形法等が挙げられる。黒鉛化物の密度を低下させる観点では、モールド成形法又は振動成形法が好ましい。
 本実施形態の製造方法では、工程(c)にて得られる黒鉛化物の密度を好適に低下させる観点から、黒鉛化可能なバインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含んでいてもよい。前述の水系バインダーの好ましい形態は、前述の第1実施形態と同様である。
 工程(b)において、得られる成形物の密度は1.25g/cm以上であり、1.30g/cm以上であってもよく、1.30g/cmを超えていてもよい。得られる成形物の密度は、1.70g/cm以下であってもよく、1.60g/cm以下であってもよく、1.55g/cm以下であってもよい。
 工程(c)において、得られる黒鉛化物の密度は1.20g/cm以下であり、1.12g/cm以下であってもよく、1.10g/cm以下であってもよい。得られる黒鉛化物の密度は、0.80g/cm以上であってもよく、0.85g/cm以上であってもよく、0.90g/cm以上であってもよい。
[第3実施形態]
 本開示の第3実施形態に係る負極材の製造方法は、
 (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
 (b)前記混合物を押出成形により成形して成形物を得る工程と、
 (c)前記成形物を黒鉛化し、密度が1.50g/cm以下である黒鉛化物を得る工程と、
 (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含む。
 本開示において、各実施形態における必要な構成及び好ましい構成は適宜組み合わせてもよい。成形物の成形方法及び黒鉛化物の密度以外の工程(b)及び工程(c)の好ましい条件は、前述の第1実施形態における工程(b)及び工程(c)の好ましい条件と同様である。
 本実施形態の製造方法では、工程(b)にて押出成形により成形物を得ることにより、成形物の強度が向上する。そのため、その後の黒鉛化処理等でのハンドリング性も向上する。工程(c)にて得られる黒鉛化物の密度が1.50g/cm以下であることにより、比較的容易に黒鉛化物を粉砕可能となる。
 本実施形態の製造方法では、工程(c)にて得られる黒鉛化物の密度を好適に低下させる観点から、黒鉛化可能なバインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含んでいてもよい。前述の水系バインダーの好ましい形態は、前述の第1実施形態と同様である。
 工程(b)において、得られる成形物の密度は、1.25g/cm以上であってもよく、1.30g/cm以上であってもよく、1.30g/cmを超えていてもよい。得られる成形物の密度は、1.70g/cm以下であってもよく、1.60g/cm以下であってもよく、1.55g/cm以下であってもよい。
 工程(c)において、得られる黒鉛化物の密度は1.50g/cm以下であり、1.30g/cm以下であってもよく、1.20g/cm以下であってもよく、1.15g/cm以下であってもよく、1.12g/cm以下であってもよく、1.10g/cm以下であってもよい。得られる黒鉛化物の密度は、0.80g/cm以上であってもよく、0.85g/cm以上であってもよく、0.90g/cm以上であってもよい。
 本実施形態の製造方法では、成形物の強度に優れるため、熱処理されていない生コークスを成形物の形成に使用してもよい。さらに、熱処理されていない生コークスを使用することで、工程(c)にて得られる黒鉛化物の密度を好適に低下させることが可能となり、より容易に黒鉛化物を粉砕可能となる。
<リチウムイオン二次電池の製造方法>
 本開示のリチウムイオン二次電池の製造方法は、上述した負極材の製造方法により負極材を製造する工程と、前記負極材を用いて負極を作製する工程と、を備える。
 負極材を用いて負極を作製する方法は、特に制限されない。例えば、負極材と、バインダーと、溶剤とを含む組成物を用いて集電体上に負極材層を形成し、必要に応じて熱処理、プレス処理等を行う方法が挙げられる。
 組成物に含まれるバインダーは特に制限されない。例えば、スチレン-ブタジエンゴム、エチレン性不飽和カルボン酸エステル(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等)を重合成分とする高分子化合物、エチレン性不飽和カルボン酸(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)を重合成分とする高分子化合物、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。本開示において(メタ)アクリレートは、メタアクリレートとアクリレートのいずれか又は両方を意味する。
 組成物に含まれる溶剤は特に制限されない。具体的には、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ-ブチロラクトン等の有機溶剤、水などが用いられる。
 組成物は、必要に応じて、粘度を調整するための増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
 組成物は、必要に応じて、導電助剤を混合してもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。
 負極の作製に用いる集電体の材質及び形状は、特に制限されない。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。
 組成物を用いて集電体上に負極材層を形成する方法は特に限定されず、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により行うことができる。上記負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。
 負極材層を集電体上に形成した後は、熱処理(乾燥)を行ってもよい。熱処理を行うことにより、負極材層に含まれる溶剤が除去され、バインダーの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性を向上できる。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行ってもよい。
 負極材層を集電体上に形成した後は、プレス処理を行ってもよい。プレス処理することにより、負極の電極密度を調整することができる。負極の電極密度は特に制限されないが、1.5g/cm~1.9g/cmであってもよく、1.6g/cm~1.8g/cmであってもよい。電極密度が高いほど負極の体積容量が向上し、集電体への負極材層の密着性が向上し、サイクル特性が向上する傾向にある。プレス処理は、熱処理を行う前に行うことが好ましい。
 上記方法により製造されるリチウムイオン二次電池は、上記方法により作製される負極と、正極と、電解質とを備えるものであってもよい。リチウムイオン二次電池は、例えば、負極と正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成とすることができる。
 正極は、負極と同様にして、集電体表面上に正極層を形成して作製されるものであってもよい。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。
 正極層に含まれる正極材料は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、及び導電性高分子材料が挙げられる。さらには、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などを単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)は、容量が高いために正極材料として好適である。
 セパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム及びそれらの組み合わせが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。
 電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体又は2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。なかでも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、サイクル特性が著しく向上するために好適である。
 リチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。前記リチウムイオン二次電池用負極材は、リチウムイオン二次電池以外にもリチウムイオンを挿入脱離することを充放電機構とする、ハイブリッドキャパシタ等の電気化学装置全般に適用することが可能である。
 以下、実施例に基づき上記実施形態をより具体的に説明するが、上記実施形態は下記の実施例に制限するものではない。
[実施例1]
(成形物の形成)
 骨材として熱処理されていない平均粒子径11μm、粒度分布の標準偏差が0.25である生ニードルコークスを用い、さらに以下に示す材料を原料として用いた。骨材及び負極材の平均粒子径、並びに骨材の粒度分布の標準偏差は、レーザー回折・散乱法を利用した粒子径分布測定装置(株式会社島津製作所、SALD-3000)を用いてそれぞれ測定した。骨材の粒度分布の標準偏差は、対数スケール上で定義された標準偏差である。以下に示す原料を表1に示す配合割合及び条件にて加熱せずに混合して混合物を調製した。次いで、得られた混合物を室温で一軸プレスにより成形して10mm×10mm×50mmの成形物を得た。
・骨材…平均粒子径11μm、粒度分布の標準偏差が0.25である生ニードルコークス
・バインダー…スターチ(コークス100質量部に対して10質量部)
・水(ニードルコークス100質量部に対して33.2質量部)
 次いで、得られた成形物を窒素雰囲気中で800℃~850℃で8時間熱処理して焼成物を得た。その後、得られた焼成物を2600℃~3100℃で30時間かけて黒鉛化して、黒鉛化物を得た。得られた黒鉛化物を粉砕して、実施例1の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
 上記工程で得られた成形物の密度(g/cm)、焼成物の密度(g/cm)及び黒鉛化物の密度(g/cm)をそれぞれ表1に示す。
(曲げ試験力の評価)
 以下のようにして成形物の曲げ試験力(N)を測定した。
 具体的には、表1に示す組成の混合物を用い、室温で成形して10mm×10mm×50mmの成形物を得た。得られた成形物の密度(g/cm)を表1に示す。作製された成形物及び株式会社島津製作所製のオートグラフを用い、試験速度10mm/分及び支点間距離7mmの条件にて3点曲げ試験を行い、破壊に必要な曲げ試験力(N)を測定した。
 結果を表1に示す。
(成形性の評価)
 実施例1と同様にして3つの成形物を作製した。作製した3つの成形物の内、持ち運びを行った際に1mm以上の欠けが生じていた成形物の個数を評価した。個数0の場合は、作製したいずれの成形物も上記のような欠けを有していないことを意味し、個数3の場合は、作製した全ての成形物が上記のような欠けを有していることを意味する。
 結果を表1に示す。
(大型成形性の評価)
 得られた混合物を室温で成形して150mm×300mm×100mmの大型成形物を得た。得られた大型成形物について、大きな亀裂、大きな欠け等が生じることなく成形体を両手で持ちあげることができた場合に大型成形性が可能と評価し、成形体を両手で持ち上げようとした際に、大きな亀裂、大きな欠け等が生じた場合、あるいは、成形体を両手で持ち上げることができない場合に大型成形性が不可と評価した。
(残炭率の算出)
 残炭率を以下の式に基づいて算出した。バインダーとしてスターチを用いた場合はバインダー由来の炭素質量を仕込み量の20質量%とし、バインダーとしてタールピッチを用いた場合はバインダー由来の炭素質量を仕込み量の50質量%とした。
 残炭率(%)=[バインダー由来炭素質量/(バインダー由来炭素質量+コークス由来炭素質量)]×100
[実施例2~8]
(成形物の形成)
 実施例1にて使用した生ニードルコークスを窒素雰囲気中で800℃~850℃で8時間熱処理して作製した焼成ニードルコークスを実施例2~8にて使用した。さらに以下に示す材料を原料として用いた。以下に示す原料を表1に示す配合割合及び条件にて加熱せずに混合して混合物を調製した。次いで、得られた混合物を用い、実施例1と同様の操作により、実施例2~8の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。得られた成形物の密度(g/cm)、焼成物の密度(g/cm)及び黒鉛化物の密度(g/cm)をそれぞれ表1に示す。
・骨材…平均粒子径10μm、粒度分布の標準偏差が0.24のニードルコークス
・バインダー…スターチ(表1に示す配合量)
・水(表1に示す配合量)
[実施例9]
 実施例1にて水の量を表1に示す量に変更した以外は実施例1と同様にして実施例9の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。得られた成形物の密度(g/cm)、焼成物の密度(g/cm)及び黒鉛化物の密度(g/cm)をそれぞれ表1に示す。
[実施例10及び11]
 実施例1にて水の量を表1に示す量に変更し、混練時間を表1に示す時間に変更し、かつ成形方法を押出成形に変更した以外は実施例1と同様にして実施例10及び11の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。得られた成形物の密度(g/cm)、焼成物の密度(g/cm)及び黒鉛化物の密度(g/cm)をそれぞれ表1に示す。
 実施例2~11にて得られた成形物について、実施例1と同様の評価を行った。結果を表1に示す。表中の「-」はデータ無しを意味する。
[比較例1]
(成形物の形成)
 骨材として熱処理されていない平均粒子径11μm、粒度分布の標準偏差が0.25である生ニードルコークスを用い、さらに以下に示す材料を原料として用いた。以下に示す原料を表2に示す配合割合及び条件にて140℃で加熱しながら混合して混合物を調製した。次いで、得られた混合物を用い、実施例1と同様の操作により、比較例1の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。得られた成形物の密度(g/cm)、焼成物の密度(g/cm)及び黒鉛化物の密度(g/cm)をそれぞれ表2に示す。
・骨材…平均粒子径11μm、粒度分布の標準偏差が0.25である生ニードルコークス
・バインダー…タールピッチ(コークス100質量部に対して10質量部)
・芳香族化合物…メチルナフタレン含有添加剤(芳香族化合物の合計含有率77質量%以上、コークス100質量部に対して3質量部)
 比較例1にて得られた成形物について、実施例1と同様の評価を行った。結果を表2に示す。
[比較例2及び3]
(成形物の形成)
 実施例2~8と同様に骨材としてか焼ニードルコークスを比較例2及び3にて使用した。さらに、以下に示す原料を表2に示す配合割合及び条件にて140℃で加熱しながら混合して混合物を調製した。次いで、得られた混合物を用い、比較例1と同様の操作により、比較例2及び3の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。得られた成形物の密度(g/cm)、焼成物の密度(g/cm)及び黒鉛化物の密度(g/cm)をそれぞれ表2に示す。
・骨材…平均粒子径10μm、粒度分布の標準偏差が0.24のニードルコークス
・バインダー…タールピッチ(コークス100質量部に対して10質量部)
・芳香族化合物…メチルナフタレン含有添加剤(芳香族化合物の合計含有率77質量%以上、コークス100質量部に対して3質量部又は7質量部)
[比較例4]
 比較例2にて芳香族化合物を使用せず、タールピッチの量を表2に示す量に変更し、かつ成形方法を押出成形に変更した以外は比較例2と同様にして比較例4の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。得られた成形物の密度(g/cm)、焼成物の密度(g/cm)及び黒鉛化物の密度(g/cm)をそれぞれ表2に示す。
 比較例2~4にて得られた成形物について、実施例1と同様の評価を行った。結果を表2に示す。表中の「-」はデータ無しを意味する。
 実施例1~9では、比較例1~3と比較して成形物の曲げ試験力(N)に優れる傾向にあり、黒鉛化物の密度も小さい傾向にあった。
 さらに、実施例1~9では、成形物の欠けが抑制され、かつ大型成形も可能であった。
 また、押出成形を採用した実施例10及び11では、比較例4よりも黒鉛化物の密度が小さい傾向にあった。さらに、実施例10及び11では、大型成形が可能であった。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
     (b)前記混合物を成形して成形物を得る工程と、
     (c)前記成形物を黒鉛化して黒鉛化物を得る工程と、
     (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含み、
     前記バインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含むリチウムイオン二次電池用負極材の製造方法。
  2.  前記成形物を得る工程では、前記混合物を成形して密度が1.25g/cm以上である成形物を得る請求項1に記載のリチウムイオン二次電池用負極材の製造方法。
  3.  (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
     (b)前記混合物を成形し、密度が1.25g/cm以上である成形物を得る工程と、
     (c)前記成形物を黒鉛化し、密度が1.20g/cm以下である黒鉛化物を得る工程と、
     (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含むリチウムイオン二次電池用負極材の製造方法。
  4.  (a)黒鉛化可能な骨材と、黒鉛化可能なバインダーとを含む混合物を得る工程と、
     (b)前記混合物を押出成形により成形して成形物を得る工程と、
     (c)前記成形物を黒鉛化し、密度が1.50g/cm以下である黒鉛化物を得る工程と、
     (d)前記黒鉛化物を粉砕して粉砕物を得る工程と、を含むリチウムイオン二次電池用負極材の製造方法。
  5.  前記バインダーは、水溶性又は吸水性を有する高分子化合物を含有する水系バインダーを含む請求項3又は請求項4に記載のリチウムイオン二次電池用負極材の製造方法。
  6.  前記水溶性又は吸水性を有する高分子化合物は、スターチ、アミロース、アミロペクチン、ポリアクリル酸、カルボキシメチルセルロース、ポリビニルアルコール及び水溶性たんぱく質からなる群より選択される少なくとも1種を含む請求項1、請求項2及び請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  7.  前記混合物中の水分の含有率は、前記混合物全量に対して10質量%~50質量%である請求項1、請求項2、請求項5及び請求項6のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  8.  前記混合物中の前記バインダーの含有率は、前記混合物全量に対して3質量%~30質量%である請求項1~請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  9.  前記骨材は、か焼したコークスを含む請求項1~請求項8のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  10.  前記骨材は、熱処理していない生コークスを含む請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  11.  請求項1~請求項10のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法によりリチウムイオン二次電池用負極材を製造する工程と、前記リチウムイオン二次電池用負極材を用いて負極を作製する工程と、を備える、リチウムイオン二次電池の製造方法。
PCT/JP2022/029713 2022-08-02 2022-08-02 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 WO2024028993A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029713 WO2024028993A1 (ja) 2022-08-02 2022-08-02 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029713 WO2024028993A1 (ja) 2022-08-02 2022-08-02 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2024028993A1 true WO2024028993A1 (ja) 2024-02-08

Family

ID=89848734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029713 WO2024028993A1 (ja) 2022-08-02 2022-08-02 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Country Status (1)

Country Link
WO (1) WO2024028993A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157160A1 (ja) * 2012-04-18 2013-10-24 テックワン株式会社 炭素繊維材、炭素繊維材製造方法、前記炭素繊維材を有する材
CN105789594A (zh) * 2016-04-25 2016-07-20 中国科学院化学研究所 一种硅/氧化硅/碳复合材料及其制备方法和应用
JP2016177975A (ja) * 2015-03-19 2016-10-06 株式会社クレハ 非水電解質二次電池用炭素質材料及びその製造方法、並びに前記炭素質材料を用いた負極および非水電解質二次電池
CN110562950A (zh) * 2019-08-13 2019-12-13 湖州凯金新能源科技有限公司 一种石墨化碳负极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157160A1 (ja) * 2012-04-18 2013-10-24 テックワン株式会社 炭素繊維材、炭素繊維材製造方法、前記炭素繊維材を有する材
JP2016177975A (ja) * 2015-03-19 2016-10-06 株式会社クレハ 非水電解質二次電池用炭素質材料及びその製造方法、並びに前記炭素質材料を用いた負極および非水電解質二次電池
CN105789594A (zh) * 2016-04-25 2016-07-20 中国科学院化学研究所 一种硅/氧化硅/碳复合材料及其制备方法和应用
CN110562950A (zh) * 2019-08-13 2019-12-13 湖州凯金新能源科技有限公司 一种石墨化碳负极材料及其制备方法

Similar Documents

Publication Publication Date Title
US10601044B2 (en) Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2022550820A (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP7238884B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7226559B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP7447907B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JPWO2019186828A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7004093B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2022163014A1 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
WO2024028993A1 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP7371689B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7226558B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
WO2022168692A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材組成物、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7238885B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP2012124113A (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
WO2024028994A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
US20210028441A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953982

Country of ref document: EP

Kind code of ref document: A1