WO2022162871A1 - Dual-side cooled power module - Google Patents

Dual-side cooled power module Download PDF

Info

Publication number
WO2022162871A1
WO2022162871A1 PCT/JP2021/003254 JP2021003254W WO2022162871A1 WO 2022162871 A1 WO2022162871 A1 WO 2022162871A1 JP 2021003254 W JP2021003254 W JP 2021003254W WO 2022162871 A1 WO2022162871 A1 WO 2022162871A1
Authority
WO
WIPO (PCT)
Prior art keywords
cte
metal
substrate
power module
metal layer
Prior art date
Application number
PCT/JP2021/003254
Other languages
French (fr)
Japanese (ja)
Inventor
パク・チャンヨン
パク・ヒョンサン
Original Assignee
サンケン電気株式会社
サンケンエレクトリックコリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社, サンケンエレクトリックコリア株式会社 filed Critical サンケン電気株式会社
Priority to PCT/JP2021/003254 priority Critical patent/WO2022162871A1/en
Publication of WO2022162871A1 publication Critical patent/WO2022162871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to a dual side cooling (DSC) power module of a power semiconductor package.
  • DSC dual side cooling
  • the present invention relates to a module structure with simplified internal members.
  • Patent Document 1 discloses a double-sided cooling power module composed of a lower end terminal, a power semiconductor chip, a horizontal spacer, an upper end terminal, a vertical spacer, and a DBC substrate (Directly Bonded Copper substrate), in which these members are laminated inside. It is
  • the general manufacturing method consists of printing a bonding material on a DBC substrate, chip mounting, spacer mounting, lead frame mounting, wire bonding, and resin sealing. Due to such a complicated manufacturing process, there is a concern that the frequency of occurrence of failure modes related to protruding chips, cracks, voids, dents, foreign stains, misplaced chips, adherence of scraps, joining, etc. will increase.
  • the conventionally structured DBC substrate is a ceramic-metal joint, and the metal layer in direct contact with the chip is made of pure copper material.
  • Pure copper has a high CTE (Coefficient of Thermal expansion) of about 18 ppm/°C, which is very different from the CTE of a chip.
  • Power module products that bond copper and chips with a bonding material may experience severe tensile/compressive stress during temperature cycle tests and product use (energization), which may damage the bonding material and chips.
  • the double-sided cooling power module of the present invention has a structure in which a first substrate and a second substrate face each other, a semiconductor chip is bonded inside, and resin sealing is performed. It comprises a first metal layer, an insulating layer and a second metal layer, characterized in that a CTE-tunable metal is provided at the semiconductor chip junction of the second metal layer.
  • the CTE value is adjusted with a CTE-adjustable metal.
  • the first substrate and the second substrate respectively comprise a first metal layer, an insulating layer and a second metal layer, and the semiconductor chip bonding of the second metal layer
  • a stepped structure with a thick metal layer on the substrate can be used instead of the traditional free-standing spacer material to simplify product construction. Therefore, the number of parts is reduced by omitting the spacer and the bonding material for the spacer, so that the package material cost and the manufacturing process can be reduced. Furthermore, since the occurrence of failure modes can be prevented, manufacturing costs can be reduced.
  • the CTE value of the tuned CTE-tunable metal bonded to the chip is low (between 5 and 18 ppm/°C) because it is bonded to the chip. , the tensile and compressive stresses during the temperature cycle test of the chip are lowered (relaxed), and the chip can withstand damage. Furthermore, the integrated stepped structure can obtain higher thermal and electrical conductivity compared to the conventional laminated structure combining spacers.
  • Example 1 is a schematic cross-section of a double-sided cooling power module according to Example 1 of the present invention; It is a figure (1) (2) explaining the manufacturing method of the double-sided cooling power module which concerns on Example 1 of this invention.
  • 3A and 3B are diagrams (3) and (4) for explaining the method of manufacturing the double-sided cooling power module according to the first embodiment of the present invention;
  • FIGS. 2(1) to 2(2) and FIGS. 3(3) to 3(4) are schematic cross-sectional views showing a method of manufacturing a double-sided cooling power module.
  • a chip 4 is mounted on a first substrate 2 via a bonding material 5 such as solder (not shown), and the second substrate 3 is faced and bonded together using general epoxy. It is a double-sided cooling power module 1 resin-sealed with a mold resin 10 . Here, the mold resin 10 is omitted for clarity (see FIG. 3(4)).
  • the first substrate 2 has an insulating layer 6 in the center of the cross section, a first metal layer 7 exposed from the mold resin 10 on one side, and a first metal layer 7 on the other side (chip mounting side). ) provided with a second metal layer 8 and further provided with a CTE-tunable metal 9 on the first metal layer 8 . It is a feature of the present invention to provide this CTE-tunable metal 9 integrally with the substrate.
  • the second substrate 3 is a DBC substrate and has the same configuration as the first substrate 2 .
  • the materials of the DBC substrates 2, 3 are conventional, the insulating layer 6 is ceramic, and the respective metal layers 7, 8 are copper. These are located on both sides of the chip, and the first metal layer 7 is exposed from the mold resin to form a double-sided cooling power module.
  • the method of manufacturing a DBC substrate is a method of directly bonding ceramic and metal, which is a conventionally used bonding method.
  • the chip 4 is a general high-power chip that generates a large amount of heat.
  • the first substrate 2 has an insulating layer 6 in the center of the cross section, a first metal layer 7 on one side (lower side in the drawing), and a metal layer 7 on the other side.
  • a second metal layer 8 is provided on the surface and a CTE-tunable metal 9 is provided on the first metal layer 8 . That is, it is a substrate preparation step. Since the second substrate 3 also has the same configuration, the description thereof is omitted.
  • the first substrate 2 can be a general DBC substrate.
  • the insulating layer 6 is ceramic
  • the first metal layer 7 is copper
  • the second metal layer 8 is copper.
  • the shape of the DBC substrate 2 is a general one
  • the insulating layer 6 is plate-shaped
  • the first metal layer 7 is formed over the same plate-like size as the insulating layer 6.
  • the second metal layer 8 is formed with a pattern that becomes a die pad for mounting electronic parts and the like and a circuit wiring. Typically the pattern can be produced by metal etching.
  • a CTE adjustable metal 9 is provided to thicken the die pad portion of the chip mounting portion that generates heat.
  • the printing method TPC: Thick Print Copper
  • the printing is repeated to adjust the CTE to an arbitrary multiple of the thickness.
  • Lithium metal 9 can be formed.
  • the stepped shape of the CTE adjustable metal 9, which is a thick copper pattern corresponding to the thickness of the spacer, can be formed.
  • the CTE-tunable metal 9 can be three prints of 300 ⁇ m.
  • the thickness of the stepped shape of the CTE-adjustable metal 9 could be manufactured up to 2.0 mm.
  • the TPC board manufacturing method is a manufacturing method in which a copper paste is printed on the insulating layer 6 .
  • a thick copper layer is formed on the insulating layer 6 by sintering.
  • the first metal layer 7, the second metal layer 8, and the CTE-tunable metal 9 may be produced by any suitable method.
  • this is a die bonding step in which a bonding material 5 is applied (printed) to the first substrate 2 and a chip 4 is mounted.
  • solder paste or sintered metal can be used as the bonding material 5 .
  • a power chip that generates a particularly large amount of heat is used as the chip 4 .
  • the second substrate 3 also has a similar structure, and only the bonding material 5 needs to be applied (printed). Also, the number of chips 4 may be one or plural.
  • the first substrate 2 on which the chip 4 is mounted via the bonding material 5 and the second substrate 3 on which the bonding material 5 is formed are faced to each other and bonded together. It is a process. For example, it is placed in a heating furnace to melt the bonding material and fixed after cooling.
  • FIG. 3(4) it is a resin sealing step of resin-sealing with a mold resin 10 the substrate-bonded components.
  • a mold resin 10 the substrate-bonded components.
  • the product package shape is formed, and the double-sided cooling power module 1 is completed.
  • a general epoxy resin can be used as the molding resin 10 .
  • the external terminals projecting from the mold resin 10 have a general structure, they are omitted from the drawing.
  • the CTE-tunable metal 9 can be selected from any of the following materials: copper alloys, aluminum, multi-layer metals of copper and molybdenum, alloys of copper and molybdenum, and alloys of aluminum and silicon.
  • the CTE value for copper-based materials is about 18 ppm/°C and the CTE for chip-based materials is about 5 ppm/°C. Therefore, the CTE value of the CTE tunable metal 9 should be in the range of 5 to 18 ppm/°C. For example, the CTE value of the CTE-tunable metal 9 is 10 ppm/°C. Also, it is desirable that the value be close to the CTE value of the chip.
  • the CTE-adjustable metal 9 can be selected from any material containing glass-based materials such as bismuth oxide, calcium oxide, and zirconium oxide in copper or aluminum.
  • the CTE-adjustable metal 9 can be selected from any material containing copper or aluminum containing any of aluminum oxide, boron nitride, and aluminum nitride, which are ceramic materials.
  • the direct contact CTE-modifying metal can be applied in a variety of material configurations, such as multilayers, composites, and composites.
  • a simple manufacturing process can be realized, and the cost of the entire product of the double-sided cooling power module can be reduced by reducing the materials for the spacers and the bonding materials for the spacers.
  • the chip may be mounted on either the first substrate or the second substrate.
  • the order and direction are arbitrary.
  • the plating may be gold, silver, or the like to cover the surfaces of the first metal layer, the second metal layer, and the CTE-tunable metal. This can prevent oxidation of the metal surface.
  • the insulating layer can be a material such as aluminum oxide, zirconium potted aluminum oxide, aluminum nitride, silicon nitride, and the like.
  • the CTE-tunable metal may be formed on both sides of the chip or on one side of the chip. Also, the structure is not limited to one, and a multi-layer (laminated) structure may be used.
  • CTE-tunable metals may be used as materials for the first and second metal layers on the DBC substrate surface. It may also be a combination thereof (all CTE-tunable metal and some CTE-tunable metal on the substrate surface).
  • the double-sided cooling power module is used, it may be applied to an IPM (Intelligent Power Module).
  • Double-sided cooling power module 2 first substrate (DBC substrate) 3.
  • Second substrate (DBC substrate) chip 5
  • bonding material 6 insulating layer 7
  • first metal layer 8 second metal layer 9
  • CTE adjustable metal 10 mold resin

Abstract

[Problem] To provide a dual-side cooled power module, wherein a stepped structure provided with a thick metal layer on a substrate is used, whereby spacers and a bonding material between spacers can be omitted to reduce the number of components, packaging material costs and manufacturing steps can be reduced, the occurrence of defects can be prevented, and manufacturing costs can be reduced. [Solution] Provided is a structure wherein a first substrate and a second substrate are made to face each other, a semiconductor chip is bonded therebetween, and sealed with resin, each of the first and the second substrates being provided with a first metal layer, an insulating layer, and a second metal layer, a bonding part with the semiconductor chip of the second metal layer being provided with a CTE-modifiable metal.

Description

両面冷却パワーモジュールDouble-sided cooling power module
 本発明は、パワー半導体パッケージの両面冷却(デュアルサイドクーリング:Dual Side Cooling:DSC)パワーモジュールに関する。特に、内部部材を簡素化したモジュール構造に関する。
The present invention relates to a dual side cooling (DSC) power module of a power semiconductor package. In particular, it relates to a module structure with simplified internal members.
 現在のパワー半導体市場において、高電圧および高電流を使用するハイエンドパワーモジュールは、より効率的な放熱を必要とされている。特に、パワー半導体パッケージの両面冷却モジュールは、高い電力密度と高速による半導体チップの高い動作温度に応じて、より高い熱性能を必要とされる。
In the current power semiconductor market, high-end power modules using high voltage and high current are required for more efficient heat dissipation. In particular, double-sided cooling modules of power semiconductor packages are required to have higher thermal performance in response to high operating temperatures of semiconductor chips due to high power density and high speed.
 例えば、特許文献1には、下端ターミナル、パワー半導体チップ、水平スペーサ、上端端子、垂直スペーサ、DBC基板(Directly Bonded Copper substrate)で構成され、内部にこれら部材が積層された両面冷却パワーモジュールが開示されている。
For example, Patent Document 1 discloses a double-sided cooling power module composed of a lower end terminal, a power semiconductor chip, a horizontal spacer, an upper end terminal, a vertical spacer, and a DBC substrate (Directly Bonded Copper substrate), in which these members are laminated inside. It is
米国特許第9390996B2号U.S. Patent No. 9390996B2
 従来構造の場合は、部品点数が多く、概略製造方法では、DBC基板へ接合材印刷、チップマウント、スペーサマウント、リードフレームマウント、ワイヤボンディング、樹脂封止となる。このような複雑な製造工程により、切りくずのはみ出し、ひび、ボイド、へこみ、シミ異物、置き忘れ、くずの付着、接合等に関連する不良モードの発生頻度が増加する懸念がある。
In the case of the conventional structure, the number of parts is large, and the general manufacturing method consists of printing a bonding material on a DBC substrate, chip mounting, spacer mounting, lead frame mounting, wire bonding, and resin sealing. Due to such a complicated manufacturing process, there is a concern that the frequency of occurrence of failure modes related to protruding chips, cracks, voids, dents, foreign stains, misplaced chips, adherence of scraps, joining, etc. will increase.
 また、モジュールが大型化する傾向がある中で、製品の簡素化(小型化)、低コストを要求されている。
In addition, as modules tend to increase in size, simplification (miniaturization) and low cost of products are required.
 さらに、従来構造のDBC基板は、セラミックと金属の接合であり、チップに直接接触する金属層は純粋な銅材料で作られている。

 
In addition, the conventionally structured DBC substrate is a ceramic-metal joint, and the metal layer in direct contact with the chip is made of pure copper material.

 
 純粋な銅はCTE(熱膨張率:Coefficient of Thermal expansion)が約18ppm/°Cと高く、チップのCTEとの差が大きい。銅とチップを接合材で接合したパワーモジュール製品の温度サイクルテスト中や製品使用(通電)中に激しい引張・圧縮応力が発生し、接合材やチップが損傷する可能性がある。

 

Pure copper has a high CTE (Coefficient of Thermal expansion) of about 18 ppm/°C, which is very different from the CTE of a chip. Power module products that bond copper and chips with a bonding material may experience severe tensile/compressive stress during temperature cycle tests and product use (energization), which may damage the bonding material and chips.

 よって、部品点数が少なく、製造が容易で、熱膨張にも対応できる両面冷却パワーモジュールを提供するものである。
Therefore, it is an object of the present invention to provide a double-sided cooling power module that has a small number of parts, is easy to manufacture, and can cope with thermal expansion.
 本発明の両面冷却パワーモジュールは、第一の基板と第二の基板を向かい合わせて、内部に半導体チップを接合し、樹脂封止する構造において、第一の基板と第二の基板はそれぞれ、第一の金属層と絶縁層と第二の金属層を備えており、第二の金属層の半導体チップ接合部にCTE調整可能金属を備えたことを特徴とする。
The double-sided cooling power module of the present invention has a structure in which a first substrate and a second substrate face each other, a semiconductor chip is bonded inside, and resin sealing is performed. It comprises a first metal layer, an insulating layer and a second metal layer, characterized in that a CTE-tunable metal is provided at the semiconductor chip junction of the second metal layer.
 また、CTE調整可能金属でCTEの値を調整することを特徴とする。
Also, the CTE value is adjusted with a CTE-adjustable metal.
 
 本発明の両面冷却パワーモジュール構造において、第一の基板と第二の基板はそれぞれ、第一の金属層と絶縁層と第二の金属層を備えており、第二の金属層の半導体チップ接合部にCTE調整可能金属を備えているので、従来の独立したスペーサ材料の代わりに、基板上に厚い金属層を備えた段差構造を使用して製品構成を簡素化することができる。したがって、スペーサとスペーサの接合材を省略して部品点数を削減するので、パッケージ材料コストや製造工程を削減できる。さらに、不良モードの発生を防止することができるで、製造コストを削減することができる。

In the double-sided cooling power module structure of the present invention, the first substrate and the second substrate respectively comprise a first metal layer, an insulating layer and a second metal layer, and the semiconductor chip bonding of the second metal layer With CTE-tunable metal on the part, a stepped structure with a thick metal layer on the substrate can be used instead of the traditional free-standing spacer material to simplify product construction. Therefore, the number of parts is reduced by omitting the spacer and the bonding material for the spacer, so that the package material cost and the manufacturing process can be reduced. Furthermore, since the occurrence of failure modes can be prevented, manufacturing costs can be reduced.
 また、CTE調整可能金属でCTEを調整することにより、チップと接合された調整されたCTE調整可能金属のCTEの値は低い(5から18ppm/°Cの間)状態でチップと接合されるため、チップの温度サイクルテスト中の引張応力と圧縮応力が低くなり(緩和され)、チップの損傷に耐えることができる。さらに、一体型の段差構造は、スペーサを組み合わせる従来の積層構造と比較して、より高い熱伝導率および電気伝導率を得ることができる。
Also, by tuning the CTE with the CTE-tunable metal, the CTE value of the tuned CTE-tunable metal bonded to the chip is low (between 5 and 18 ppm/°C) because it is bonded to the chip. , the tensile and compressive stresses during the temperature cycle test of the chip are lowered (relaxed), and the chip can withstand damage. Furthermore, the integrated stepped structure can obtain higher thermal and electrical conductivity compared to the conventional laminated structure combining spacers.
本発明の実施例1に係る両面冷却パワーモジュールの概略断面である。1 is a schematic cross-section of a double-sided cooling power module according to Example 1 of the present invention; 本発明の実施例1に係る両面冷却パワーモジュールの製造方法を説明する図(1)(2)である。It is a figure (1) (2) explaining the manufacturing method of the double-sided cooling power module which concerns on Example 1 of this invention. 本発明の実施例1に係る両面冷却パワーモジュールの製造方法を説明する図(3)(4)である。3A and 3B are diagrams (3) and (4) for explaining the method of manufacturing the double-sided cooling power module according to the first embodiment of the present invention;
 以下、本発明を実施するための形態について、図を参照して詳細に説明する。ただし、本発明は以下の記載に何ら限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. However, the present invention is by no means limited to the following description.
 本発明の実施例1に係る両面冷却パワーモジュールの構造を図1で説明する。図2(1)~(2)、図3(3)~(4)は、両面冷却パワーモジュールの製造方法を示した断面略図である。
The structure of a double-sided cooling power module according to Embodiment 1 of the present invention will be described with reference to FIG. FIGS. 2(1) to 2(2) and FIGS. 3(3) to 3(4) are schematic cross-sectional views showing a method of manufacturing a double-sided cooling power module.
 図1に示すように、第一の基板2上にチップ4をはんだ(図示省略)等の接合材5を介して搭載し、第二の基板3を向かい合わせて接合し、一般的なエポキシのモールド樹脂10で樹脂封止した両面冷却パワーモジュール1である。ここでは、見やすいようにモールド樹脂10を省略している(図3(4)を参照)。
As shown in FIG. 1, a chip 4 is mounted on a first substrate 2 via a bonding material 5 such as solder (not shown), and the second substrate 3 is faced and bonded together using general epoxy. It is a double-sided cooling power module 1 resin-sealed with a mold resin 10 . Here, the mold resin 10 is omitted for clarity (see FIG. 3(4)).
 ここで、第一の基板2は、断面中央部に絶縁層6を備え、一方の面にモールド樹脂10から露出するように第一の金属層7が備えられ、もう一方の面(チップ搭載側)に第二の金属層8が備えられ、さらに、第一の金属層8上にCTE調整可能金属9が備えられているDBC基板である。このCTE調整可能金属9を一体的に基板に備えることが本発明の特徴である。
Here, the first substrate 2 has an insulating layer 6 in the center of the cross section, a first metal layer 7 exposed from the mold resin 10 on one side, and a first metal layer 7 on the other side (chip mounting side). ) provided with a second metal layer 8 and further provided with a CTE-tunable metal 9 on the first metal layer 8 . It is a feature of the present invention to provide this CTE-tunable metal 9 integrally with the substrate.
 第二の基板3は、DBC基板であり、構成は第一の基板2と同様である。例えば、DBC基板2、3の材質は、一般的なものであり、絶縁層6はセラミックであり、それぞれの金属層7、8は銅である。これが、チップを挟み込んで両側に位置しており、第一の金属層7がモールド樹脂から露出していることにより、両面冷却パワーモジュールとなる。一般的にDBC基板の製造方法はセラミックと金属の直接接合法であり、従来から使用されてきた接合方法である。
The second substrate 3 is a DBC substrate and has the same configuration as the first substrate 2 . For example, the materials of the DBC substrates 2, 3 are conventional, the insulating layer 6 is ceramic, and the respective metal layers 7, 8 are copper. These are located on both sides of the chip, and the first metal layer 7 is exposed from the mold resin to form a double-sided cooling power module. Generally, the method of manufacturing a DBC substrate is a method of directly bonding ceramic and metal, which is a conventionally used bonding method.
 チップ4は、発熱量の大きい一般的な大電力用チップである。
The chip 4 is a general high-power chip that generates a large amount of heat.
 次に両面冷却パワーモジュールの製造方法を説明する。図2(1)に示すように、第一の基板2は、断面中央部に絶縁層6を備え、一方の面(図中下側)に第一の金属層7が備えられ、もう一方の面に第二の金属層8が備えられ、さらに、第一の金属層8上にCTE調整可能金属9が備えられている。すなわち、基板準備工程である。第二の基板3も、同様な構成なので、説明を省略する。
Next, a method for manufacturing a double-sided cooling power module will be described. As shown in FIG. 2(1), the first substrate 2 has an insulating layer 6 in the center of the cross section, a first metal layer 7 on one side (lower side in the drawing), and a metal layer 7 on the other side. A second metal layer 8 is provided on the surface and a CTE-tunable metal 9 is provided on the first metal layer 8 . That is, it is a substrate preparation step. Since the second substrate 3 also has the same configuration, the description thereof is omitted.
 ここで、第一の基板2は、一般的なDBC基板とすることができる。例えば、DBC基板2の材質は、絶縁層6はセラミックであり、第一の金属層7は銅であり、第二の金属層8は銅である。
Here, the first substrate 2 can be a general DBC substrate. For example, as for the material of the DBC substrate 2, the insulating layer 6 is ceramic, the first metal layer 7 is copper, and the second metal layer 8 is copper.
 さらに、DBC基板2の形状は、一般的なものであり、絶縁層6は板形状であり、第一の金属層7は絶縁層6と同様な板状の大きさで一面に形成されている。また、第二の金属層8は電子部品等を搭載するためのダイパッドや回路配線になるパターンが形成されている。一般的にパターンは金属エッチングで製造することができる。
Furthermore, the shape of the DBC substrate 2 is a general one, the insulating layer 6 is plate-shaped, and the first metal layer 7 is formed over the same plate-like size as the insulating layer 6. . Also, the second metal layer 8 is formed with a pattern that becomes a die pad for mounting electronic parts and the like and a circuit wiring. Typically the pattern can be produced by metal etching.
 発熱するチップ搭載部分のダイパッド部を厚くするようCTE調整可能金属9を備えている。例えば、金属厚さを厚く形成する場合は、放熱の必要なチップ搭載部分において、印刷方法(TPC:Thick Print Copper)を使用しようして、印刷を繰り返すことにより、任意倍数の厚さのCTE調整可能金属9を形成することができる。これにより、スペーサの厚さに相当する厚い銅パターンであるCTE調整可能金属9の段差形状を形成することができる。
A CTE adjustable metal 9 is provided to thicken the die pad portion of the chip mounting portion that generates heat. For example, if the metal thickness is to be thickened, the printing method (TPC: Thick Print Copper) is used in the chip mounting portion where heat dissipation is required, and the printing is repeated to adjust the CTE to an arbitrary multiple of the thickness. Lithium metal 9 can be formed. Thereby, the stepped shape of the CTE adjustable metal 9, which is a thick copper pattern corresponding to the thickness of the spacer, can be formed.
 例えば、1回の印刷厚さが100μmの場合、CTE調整可能金属9は3回の印刷で300μmとすることができる。発明者の制作では、CTE調整可能金属9の段差形状の厚さは2.0mmまで製造することができた。
For example, if the thickness of one print is 100 μm, the CTE-tunable metal 9 can be three prints of 300 μm. In the production of the inventor, the thickness of the stepped shape of the CTE-adjustable metal 9 could be manufactured up to 2.0 mm.
 TPC基板製法は、絶縁層6に銅ペーストを印刷する製造方法である。また、DBC基板製法は、絶縁層6上に厚い銅層を焼結して形成している方法である。第一の金属層7、第二の金属層8、CTE調整可能金属9は、適宜どちらの製造方法を使用しても構わない。
The TPC board manufacturing method is a manufacturing method in which a copper paste is printed on the insulating layer 6 . In the DBC substrate manufacturing method, a thick copper layer is formed on the insulating layer 6 by sintering. The first metal layer 7, the second metal layer 8, and the CTE-tunable metal 9 may be produced by any suitable method.
 図2(2)に示すように、第一の基板2に、接合材5を塗布(印刷)し、チップ4を搭載するダイボンディング工程である。ここでは、接合材5として、はんだペーストや焼結金属を使用することができる。チップ4は特に発熱量の大きいパワーチップが用いられる。
As shown in FIG. 2(2), this is a die bonding step in which a bonding material 5 is applied (printed) to the first substrate 2 and a chip 4 is mounted. Here, solder paste or sintered metal can be used as the bonding material 5 . A power chip that generates a particularly large amount of heat is used as the chip 4 .
 第二の基板3も、同様な構成で、接合材5を塗布(印刷)のみすればよい。また、チップ4は、ひとつでも複数でもよい。
The second substrate 3 also has a similar structure, and only the bonding material 5 needs to be applied (printed). Also, the number of chips 4 may be one or plural.
 図3(3)に示すように、接合材5を介してチップ4が搭載された第一の基板2と接合材5が形成された第二の基板3とを向かい合わせて、接合する基板接合工程である。例えば、加熱炉に入れて、接合材を溶融し、冷却後固定するものである。
As shown in FIG. 3(3), the first substrate 2 on which the chip 4 is mounted via the bonding material 5 and the second substrate 3 on which the bonding material 5 is formed are faced to each other and bonded together. It is a process. For example, it is placed in a heating furnace to melt the bonding material and fixed after cooling.
 図3(4)に示すように、基板接合されたものに、モールド樹脂10で樹脂封止する樹脂封止工程である。これにより、製品パッケージ形状を構成し、両面冷却パワーモジュール1が完成する。ここでは、モールド樹脂10は一般的なエポキシ樹脂が使用できる。また、モールド樹脂10から突出する外部端子は一般的な構造であるため、図示を省略している。
As shown in FIG. 3(4), it is a resin sealing step of resin-sealing with a mold resin 10 the substrate-bonded components. As a result, the product package shape is formed, and the double-sided cooling power module 1 is completed. Here, a general epoxy resin can be used as the molding resin 10 . Also, since the external terminals projecting from the mold resin 10 have a general structure, they are omitted from the drawing.
 ここで、CTE調整可能金属9の材質について説明する。CTE調整可能金属9は、銅合金、アルミニウム、銅とモリブデンの多層金属、銅とモリブデンの合金、アルミニウムとシリコンの合金のいずれかの材料から選択できる。
Here, the material of the CTE-adjustable metal 9 will be described. The CTE-tunable metal 9 can be selected from any of the following materials: copper alloys, aluminum, multi-layer metals of copper and molybdenum, alloys of copper and molybdenum, and alloys of aluminum and silicon.
 銅系材料のCTEの値は、約18ppm/°Cであり、チップ系材料のCTEは、約5ppm/°Cである。よって、CTE調整可能金属9のCTEの値は、5から18ppm/°Cの範囲にする必要がある。例えば、CTE調整可能金属9のCTEの値は10ppm/°Cにしている。また、チップのCTEの値に近い方が望ましい。
The CTE value for copper-based materials is about 18 ppm/°C and the CTE for chip-based materials is about 5 ppm/°C. Therefore, the CTE value of the CTE tunable metal 9 should be in the range of 5 to 18 ppm/°C. For example, the CTE value of the CTE-tunable metal 9 is 10 ppm/°C. Also, it is desirable that the value be close to the CTE value of the chip.
 また、CTE調整可能金属9は、ガラス系材料である酸化ビスマス、酸化カルシウム、酸化ジルコニウムのいずれかを銅またはアルミニウムに含有したいずれかの材料から選択できる。
Also, the CTE-adjustable metal 9 can be selected from any material containing glass-based materials such as bismuth oxide, calcium oxide, and zirconium oxide in copper or aluminum.
 また、CTE調整可能金属9は、セラミック系材料である酸化アルミニウム、窒化ホウ素、窒化アルミニウムのいずれかを銅またはアルミニウムに含有したいずれかの材料から選択できる。
Also, the CTE-adjustable metal 9 can be selected from any material containing copper or aluminum containing any of aluminum oxide, boron nitride, and aluminum nitride, which are ceramic materials.
 以上のように、直接接触するCTE調整金属は、多層、複合材料、成分などのさまざまな材料構成が適用できる。
As can be seen, the direct contact CTE-modifying metal can be applied in a variety of material configurations, such as multilayers, composites, and composites.
 また、基板上に厚い銅層の段差構造を有する基板を使用することにより、DSC構造のスペーサ材料と置き換えることができる。
Also, by using a substrate having a step structure of a thick copper layer on the substrate, it is possible to replace the spacer material of the DSC structure.
 簡易な製造工程が実現でき、スペーサおよびスペーサとの接合材の材料を削減することにより、両面冷却パワーモジュールの製品全体のコストを削減することができる。
A simple manufacturing process can be realized, and the cost of the entire product of the double-sided cooling power module can be reduced by reducing the materials for the spacers and the bonding materials for the spacers.
 部品点数が少ないので、パワーモジュールの積層する部材の厚さのばらつきを抑えられる。寸法精度のよい(一定の高さに制御できる)製品とすることができる。これにより、パワーモジュールをユニットや機器に組み込む場合、ヒートシンク(ウォータージャケット)との間に隙間ができず、接触性が向上し、熱性能も向上することができる。
Since the number of parts is small, variations in the thickness of the stacked members of the power module can be suppressed. A product with good dimensional accuracy (that can be controlled to a constant height) can be obtained. As a result, when the power module is incorporated into a unit or equipment, there is no gap between the power module and the heat sink (water jacket), the contact is improved, and the thermal performance can also be improved.
 その他の実施例として、チップは、第一の基板と第二の基板のどちらに搭載してもよい。順番や方向は任意である。
As another example, the chip may be mounted on either the first substrate or the second substrate. The order and direction are arbitrary.
 また、めっき処理として、金、銀などで、第一の金属層、第二の金属層、CTE調整可能金属の表面を覆うことができる。これにより金属表面の酸化防止ができる。
Alternatively, the plating may be gold, silver, or the like to cover the surfaces of the first metal layer, the second metal layer, and the CTE-tunable metal. This can prevent oxidation of the metal surface.
 絶縁層は、酸化アルミニウム、ジルコニウムポッテイグした酸化アルミニウム、窒化アルミニウム、窒化ケイ素などの材料とすることができる。
The insulating layer can be a material such as aluminum oxide, zirconium potted aluminum oxide, aluminum nitride, silicon nitride, and the like.
 CTE調整可能金属の形成位置は、チップの両側、チップの片側であってもよい。また、ひとつに限らず、多層(積層)構造であってもよい。
The CTE-tunable metal may be formed on both sides of the chip or on one side of the chip. Also, the structure is not limited to one, and a multi-layer (laminated) structure may be used.
 CTE調整可能金属は、DBC基板面上の第一の金属層や第二の金属層の材質として使用してもよい。また、その組み合わせでもよい(すべてがCTE調整可能金属、基板面上に一部がCTE調整可能金属であってもよい)。
CTE-tunable metals may be used as materials for the first and second metal layers on the DBC substrate surface. It may also be a combination thereof (all CTE-tunable metal and some CTE-tunable metal on the substrate surface).
 両面冷却パワーモジュールとしたが、IPM(Intelligent Power Module:インテリジェントパワーモジュール)に適応してもよい。
Although the double-sided cooling power module is used, it may be applied to an IPM (Intelligent Power Module).
 1、両面冷却パワーモジュール
 2、第一の基板(DBC基板)
 3、第二の基板(DBC基板)
 4、チップ
 5、接合材
 6、絶縁層
 7、第一の金属層
 8、第二の金属層
 9、CTE調整可能金属
 10、モールド樹脂
1, double-sided cooling power module 2, first substrate (DBC substrate)
3. Second substrate (DBC substrate)
4, chip 5, bonding material 6, insulating layer 7, first metal layer 8, second metal layer 9, CTE adjustable metal 10, mold resin

Claims (6)

  1.  第一の基板と第二の基板を向かい合わせて、内部に半導体チップを接合し、樹脂封止する構造において、前記第一の基板と前記第二の基板はそれぞれ、第一の金属層と絶縁層と第二の金属層を備えており、前記第二の金属層の前記半導体チップ接合部にCTE調整可能金属を備えたことを特徴とする両面冷却パワーモジュール。
    In a structure in which a first substrate and a second substrate face each other, a semiconductor chip is bonded to the inside, and the resin is sealed, the first substrate and the second substrate are each insulated from the first metal layer. and a second metal layer, wherein a CTE-tunable metal is provided at said semiconductor chip junction of said second metal layer.
  2.  前記CTE調整可能金属のCTEは、前記第二の金属層のCTEと前記半導体チップのCTEの間の値であることを特徴とする請求項1に記載の両面冷却パワーモジュール。
    2. The double-sided cooled power module of claim 1, wherein the CTE of the CTE-tunable metal is between the CTE of the second metal layer and the CTE of the semiconductor chip.
  3.  前記CTE調整可能金属のCTEは、5から18ppm/°Cであることを特徴とする請求項2に記載の両面冷却パワーモジュール。
    3. The double-sided cooled power module of claim 2, wherein the CTE of said CTE-tunable metal is between 5 and 18 ppm/[deg.]C.
  4.  前記CTE調整可能金属は、銅合金、アルミニウム、銅とモリブデンの多層金属、銅とモリブデンの合金、アルミニウムとシリコンの合金、のいずれかの材料からなることを特徴とする請求項3に記載の両面冷却パワーモジュール。
    4. The double-sided of claim 3, wherein the CTE-tunable metal is made of any of the following materials: copper alloy, aluminum, multi-layer metal of copper and molybdenum, alloy of copper and molybdenum, alloy of aluminum and silicon. cooling power module.
  5.  前記CTE調整可能金属は、ガラス系材料である酸化ビスマス、酸化カルシウム、酸化ジルコニウムのいずれかを銅またはアルミニウムに含有して、CTEを5から18ppm/°Cに調整することを特徴とする請求項3に記載の両面冷却パワーモジュール。
    The CTE-adjustable metal is a glass-based material containing any one of bismuth oxide, calcium oxide, and zirconium oxide in copper or aluminum to adjust the CTE to 5 to 18 ppm/°C. 4. The double-sided cooling power module according to 3.
  6.  前記CTE調整可能金属は、セラミック系材料である酸化アルミニウム、窒化ホウ素、窒化アルミニウムのいずれかを銅またはアルミニウムに含有して、CTEを5から18ppm/°Cに調整することを特徴とする請求項3に記載の両面冷却パワーモジュール。 4. The CTE-adjustable metal contains any one of ceramic-based materials such as aluminum oxide, boron nitride, and aluminum nitride in copper or aluminum to adjust the CTE from 5 to 18 ppm/°C. 4. The double-sided cooling power module according to 3.
PCT/JP2021/003254 2021-01-29 2021-01-29 Dual-side cooled power module WO2022162871A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003254 WO2022162871A1 (en) 2021-01-29 2021-01-29 Dual-side cooled power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003254 WO2022162871A1 (en) 2021-01-29 2021-01-29 Dual-side cooled power module

Publications (1)

Publication Number Publication Date
WO2022162871A1 true WO2022162871A1 (en) 2022-08-04

Family

ID=82652989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003254 WO2022162871A1 (en) 2021-01-29 2021-01-29 Dual-side cooled power module

Country Status (1)

Country Link
WO (1) WO2022162871A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300455A (en) * 2007-05-29 2008-12-11 Sumitomo Electric Ind Ltd Power module
JP2013172044A (en) * 2012-02-22 2013-09-02 Rohm Co Ltd Power module semiconductor device
JP2013179229A (en) * 2012-02-29 2013-09-09 Rohm Co Ltd Power module semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300455A (en) * 2007-05-29 2008-12-11 Sumitomo Electric Ind Ltd Power module
JP2013172044A (en) * 2012-02-22 2013-09-02 Rohm Co Ltd Power module semiconductor device
JP2013179229A (en) * 2012-02-29 2013-09-09 Rohm Co Ltd Power module semiconductor device

Similar Documents

Publication Publication Date Title
US10510640B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP4438489B2 (en) Semiconductor device
US20020135061A1 (en) Composite material, and manufacturing method and uses of same
JP2002203942A (en) Power semiconductor module
KR100957078B1 (en) Electrically isolated power device package
JP2005109100A (en) Semiconductor device and manufacturing method thereof
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
KR20020066362A (en) Semiconductor device and method of manufacturing same
JP4385324B2 (en) Semiconductor module and manufacturing method thereof
JP2013016525A (en) Power semiconductor module and manufacturing method of the same
WO2013171946A1 (en) Method for manufacturing semiconductor device and semiconductor device
WO2019146640A1 (en) Substrate for power module with heat sink, and power module
JPH11204724A (en) Power module
KR102163662B1 (en) Dual side cooling power module and manufacturing method of the same
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
JP2001196495A (en) Circuit board for resin molding and electronic package
JP5268660B2 (en) Power module and power semiconductor device
JP5398269B2 (en) Power module and power semiconductor device
WO2022162871A1 (en) Dual-side cooled power module
WO2019116910A1 (en) Semiconductor device and method for producing semiconductor device
CN116053144A (en) Power module and packaging method thereof
JP2010199505A (en) Electronic circuit device
JP2014143342A (en) Semiconductor module and manufacturing method of the same
JP2012222324A (en) Semiconductor device
JP2000277953A (en) Ceramic circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP