WO2022162728A1 - 遠隔監視システムおよび遠隔監視方法 - Google Patents

遠隔監視システムおよび遠隔監視方法 Download PDF

Info

Publication number
WO2022162728A1
WO2022162728A1 PCT/JP2021/002617 JP2021002617W WO2022162728A1 WO 2022162728 A1 WO2022162728 A1 WO 2022162728A1 JP 2021002617 W JP2021002617 W JP 2021002617W WO 2022162728 A1 WO2022162728 A1 WO 2022162728A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote monitoring
server
storage device
air conditioner
operating state
Prior art date
Application number
PCT/JP2021/002617
Other languages
English (en)
French (fr)
Inventor
祐人 竹谷
弘晃 坂口
靖 佐藤
悠平 坂東
献一郎 大倉
一石 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/002617 priority Critical patent/WO2022162728A1/ja
Priority to EP21922752.7A priority patent/EP4286760A4/en
Priority to US18/257,688 priority patent/US20230375205A1/en
Priority to JP2022577827A priority patent/JP7395027B2/ja
Publication of WO2022162728A1 publication Critical patent/WO2022162728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24048Remote test, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25154Detect error, repeat transmission on error, retransmit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2638Airconditioning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31124Interface between communication network and process control, store, exchange data

Definitions

  • the present disclosure relates to a remote monitoring system and a remote monitoring method.
  • Patent Document 1 discloses an air conditioning system in which a processor of a cloud server controls air conditioners and peripheral devices.
  • a processor of a cloud server having sufficiently higher processing performance than a microcomputer is used for control, so that more complicated control than a microcomputer having relatively low processing performance can be performed.
  • the present disclosure has been made to solve the above problems, and aims to provide a remote monitoring system that can prevent the lack of recording of data indicating the operating state of air conditioners. .
  • Another object of the present disclosure is to provide a remote monitoring system and a remote monitoring method capable of presenting collected operating data to the user in an easy-to-understand form by making use of the performance of the server connected to the air conditioner.
  • the present disclosure relates to a remote monitoring system that monitors the operating state of air conditioners.
  • the remote monitoring system is mounted on an air conditioner or a remote monitoring device for monitoring the air conditioner, and includes a storage device configured to record the operating state of the air conditioner for a first period, and a storage device mounted on the air conditioner or the remote monitoring device. and a server configured to communicate with the communication control unit via a network and acquire the operating state from the storage device. a) If there is no missing portion in the operating state acquired by the server from the storage device up to the present time, the communication control unit transmits the operating state newly recorded in the storage device to the server since the operating state was transmitted last time. b) If there is a missing portion in the operating conditions acquired by the server from the storage device to the present, the operating conditions newly recorded since the previous transmission of the operating conditions and the operating conditions remaining in the storage device and the missing portion to the server.
  • a remote monitoring system is mounted on an air conditioner or a remote monitoring device that monitors the air conditioner, and communicates with a storage device that stores the operating state of the air conditioner via a network, stores the a server configured to obtain operating conditions from the device.
  • the server receives a command requesting the refrigerant circuit diagram of the air conditioner from the user, the server collects information for creating the refrigerant circuit diagram from the remote monitoring device, and based on the collected information, displays the image or the refrigerant circuit diagram. It is configured to generate animation and save the image or animation to a location accessible to the user.
  • the operating state of air conditioners can be recorded without omission. Further, according to the remote monitoring system of the present disclosure, it is possible to present the collected driving data to the user in an easy-to-understand form.
  • FIG. 1 is a block diagram showing one configuration example of a remote monitoring system according to an embodiment
  • FIG. FIG. 3 is a diagram for explaining the configuration of a network server and the capacity of a storage area for operating data
  • FIG. 4 is a diagram for explaining a procedure for starting collection of operation data when a remote monitoring device is installed
  • FIG. 4 is a diagram for explaining temporary suspension and resumption of collection of driving data
  • FIG. 4 is a diagram for explaining image generation and presentation of a refrigerant circuit diagram
  • FIG. 4 is a diagram showing a first example of a generated image of a refrigerant circuit diagram
  • FIG. 10 is a diagram showing a second example of a generated image of a refrigerant circuit diagram; It is a perspective view which shows the external appearance of a remote monitoring apparatus.
  • FIG. 9 is a cross-sectional view along the IX-IX cross section in FIG. 8;
  • FIG. 9 is a perspective view showing an appearance with a resin cover removed in FIG. 8 ;
  • FIG. 2 is a diagram for explaining communication paths in the remote monitoring system;
  • FIG. 1 is a block diagram showing a configuration example of a remote monitoring system according to this embodiment.
  • a remote monitoring system 100 includes a remote monitoring device 2 and a network server 3 .
  • the remote monitoring device 2 is connected to the air conditioner 1 by a dedicated communication line 5, collects operation data of the air conditioner 1, controls the air conditioner 1, and the like.
  • the network server 3 is connected to the remote monitoring device 2 and user terminals 4 via the Internet 6A and 6B.
  • the network server 3 accumulates the operation data of the air conditioner 1 collected by the remote monitoring device 2 .
  • the operation data includes, for example, remote control operation data such as the time when the air conditioner 1 starts and ends operation, temperature setting change, and cooling/heating operation switching, and data measured by sensors installed in refrigerant pipes and the like. and data indicating the state of the air conditioner 1, such as temperature and pressure.
  • the network server 3 also transmits the operation information of the air conditioner 1 received from the user terminal 4 to the remote monitoring device 2 .
  • the remote monitoring device 2 controls the air conditioner 1 based on this operation information.
  • the network server 3 may be connected to an application server operated by a maintenance company instead of the user terminal 4 .
  • the remote monitoring device 2 includes a central processing unit (CPU: Central Processing Unit) 20, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), hard disk, etc.) 21, an air conditioner connection section 22, and communication 23.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • hard disk etc.
  • communication 23 an air conditioner connection section 22.
  • the CPU 20 expands the program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures for operating the remote monitoring device 2 are described.
  • the CPU 20 executes processing as the FW update unit 25, the air conditioning control unit 26, the data collection unit 27, and the data reception unit 28 according to these programs.
  • the FW update unit 25, the air conditioning control unit 26, the data collection unit 27, and the data reception unit 28 may be one control unit controlled by the same CPU as shown in FIG. It may be a separate control unit that is connected.
  • the FW update unit 25 downloads new firmware from the network server 3.
  • the FW update unit 25 applies the downloaded firmware to the remote monitoring device 2 itself when the firmware is for the remote monitoring device.
  • the FW update unit 25 transfers the downloaded firmware to the air conditioner 1 when the firmware is for an air conditioner.
  • the air conditioning control unit 26 converts the control command into a dedicated communication protocol for the air conditioner 1, and transmits the converted command to the air conditioner. Send to 1.
  • the storage device 21 can accumulate operation data of the air conditioner 1 for a maximum of five days.
  • the data collection unit 27 periodically retrieves the operating data of the air conditioner 1 from the storage device 21, which is the database of the remote monitoring device, and transmits it to the network server 3.
  • the network server 3 includes a central processing unit (CPU: Central Processing Unit) 30, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), hard disk, etc.) 31, a remote monitoring device communication unit 32, an application A communication unit 33 is included.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • hard disk etc.
  • application A communication unit 33 is included.
  • the CPU 30 expands the program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures for operating the network server 3 are described.
  • the CPU 30 executes processing as an air conditioning controller 34, air conditioning maintenance section 35, FW update section 36, trend data collection section 37, device registration section 38, and device management section 39 according to these programs.
  • the air conditioning controller 34, air conditioning maintenance section 35, FW update section 36, trend data collection section 37, device registration section 38, and device management section 39 are one control section controlled by the same CPU as shown in FIG. However, they may be separate control units controlled by different CPUs.
  • the network server 3 may be realized by a plurality of servers distributed on the Internet.
  • the remote monitoring system 100 further includes a user terminal 4.
  • the application communication unit 33 communicates with the user terminal 4 via the Internet 6B.
  • the user terminal 4 for example, a personal computer, a tablet terminal, a smart phone, etc. can be used.
  • Application software is installed in the user terminal 4 .
  • the application software acquires various parameters of the air conditioner 1 from the network server 3 and displays them on the display section of the user terminal 4 .
  • This may be a web application, a client running on an OS (Operating System), or a combination of a second network server and a web browser.
  • the network server 3 may be connected to an application server operated by a maintenance company, and the maintenance company may monitor various parameters of the air conditioner 1 on the application server.
  • the device management unit 39 has a function to prevent users from operating remote monitoring devices used by other users.
  • the storage device 31 accumulates information (equipment data) unique to the remote monitoring device 2 .
  • the air conditioning controller 34 manages the set temperature and operation mode of the air conditioner 1 .
  • the air-conditioning controller 34 is capable of operation management corresponding to a remote controller attached to the air conditioner 1 .
  • the air conditioning maintenance unit 35 has a function used by a person in charge of installation when installing the air conditioner 1, a function of failure diagnosis used by a service person, a function of generating a refrigerant circuit diagram, and the like.
  • the FW update unit 36 has a function of transmitting and managing the firmware of the remote monitoring device 2 and the firmware of the air conditioner 1.
  • the trend data collection unit 37 collects the power consumption and operation data (set temperature and transition information such as operation mode) of the air conditioner 1 from the remote monitoring device 2 at regular intervals.
  • the device registration unit 38 has a function of registering the remote monitoring device 2 with the network server 3 .
  • the remote monitoring device communication unit 32 communicates with the remote monitoring device 2 via the Internet 6A. Note that the remote monitoring device communication unit 32 is distinguished from the application communication unit 33 and cannot directly connect the user terminal 4 to the remote monitoring device 2 .
  • FIG. 2 is a diagram for explaining the configuration of the network server and the capacity of the operating data storage area.
  • the remote monitoring device 2 includes a storage device 21 having a storage area for operating data for a maximum of five days.
  • the remote monitoring device 2 stores the communication log including the operation data of the air conditioner 1 in the constant storage device 21, and when a maximum of 5 days is stored, the logs exceeding 5 days are overwritten. Operation data is erased in order.
  • the network server 3 may consist of a single server, but for example, it consists of a computing server 3A and a file server 3B.
  • the remote monitoring device 2 periodically communicates with the computing server 3A.
  • the remote monitoring device 2 uploads to the computing server 3A the difference between the stored operating data for five days and the operating data stored at the time of previous successful communication.
  • the upload time is, for example, about 1 minute.
  • the computing server 3A has, for example, a storage unit with a maximum storage area of two months.
  • the computing server 3A is a buffer server for temporarily storing operation data, and buffers the operation data transmitted from the remote monitoring device 2 at regular intervals. Since the data is transmitted to the server at regular intervals, the communication cost can be reduced compared to transmitting each time a difference occurs.
  • the file server 3B can secure a substantially unlimited storage area as needed, and for example, usage fees are charged according to the usage capacity. For example, at 0:00 every day, the computing server 3A uploads to the file server 3B the difference between the data accumulated for five days and the data transmitted the previous day.
  • Operational data is sent from the remote monitoring device 2 to the network server 3 at any time, but due to network failures managed by providers, etc., communication may not be possible for several days about once a year.
  • the air conditioner 1 In order to judge whether the air conditioner 1 meets the energy saving standard, it is necessary to raise the data collection rate to a certain level or higher. Depending on the missing rate of driving data, the collection rate may become low and the accuracy of judgment may deteriorate.
  • the operation data of air conditioners is stored locally for a certain period of time, and the remote monitoring device 2 periodically transmits a backup to the network server 3 on the cloud.
  • the remote monitoring device 2 saves the operation data of the air conditioner 1 periodically (every 10 minutes) sent from the air conditioner 1 to the remote monitoring device 2 as one operation data file in the storage device. If there is no response from the network server 3 due to network interruption or the like at the above transmission timing, the remote monitoring device 2 associates the failure of the transmission with the file information such as the name of the file that failed in transmission, It is stored in the storage device 21 as transmission failure history information.
  • the remote monitoring device 2 refers to the transmission failure history information to identify the operational data file that could not be transmitted, and combines the operational data file and the newly generated operational data file. Send to At that time, if the network failure becomes long, the transmission failure history information is accumulated in the storage device, so there may be multiple operation data files that could not be transmitted at the next transmission timing.
  • the network server 3 may detect a loss due to a failure or the like at the time of network shutdown by checking the time included in the operation data. In that case, the network server 3 may request the remote monitoring device 2 to resend only the missing portion of the operational data after waiting for the network to recover.
  • the data at the time of failure can be sent to the server without any omissions. If the collection rate of operation data improves, the performance of the air conditioner 1 can be evaluated with high accuracy. In addition, when the collection rate of operation data is improved, the accuracy of failure cause analysis is also improved by comparing normal operation data at the time of installation and data at the time of failure.
  • the storage capacity of the storage device of the monitoring device is limited, and in the past it was only possible to store operation data for several months.
  • the writing frequency is high, there is a possibility that the storage area of the storage device may physically fail. For example, if a maintenance worker backs up the operation data once a month, all the operation data for the month in which the storage device failed will be lost.
  • past data can be deleted from the remote monitoring device 2 by periodically transmitting operation data to the network server 3 . Therefore, even if monitoring is continued, the capacity of the storage device 21 of the remote monitoring device 2 will not be compressed. In addition, since the storage capacity that can be used in the network server 3 can be secured as needed by using the file server 3B, it is possible to store, for example, 10 or 15 years' worth of driving data.
  • the remote monitoring device 2 Since the remote monitoring device 2 is connected to the network server 3 via the Internet 6A and the difference is transferred periodically (for example, every 10 minutes), even if the storage device 21 of the remote monitoring device 2 fails, Since data up to the point immediately before the failure is stored in the network server 3, only a small amount of operation data is lost. By promptly replacing the storage device 21 of the remote monitoring device 2 after the occurrence of the failure, it is highly likely that the data collection rate required for accurately evaluating the air conditioner can be satisfied.
  • the remote monitoring device 2 can store collected data for up to five days. are being preserved. Therefore, if the data in the remote monitoring device 2 can be transferred to the network server 3 before it is erased, data loss can be prevented. Therefore, in the present embodiment, the remote monitoring device 2 transmits the operating state to the network server 3 at time intervals (eg, 10 minutes) shorter than the first period (eg, 5 days), and after the transmission, the network server sends Check if there is a response or not.
  • time intervals eg, 10 minutes
  • the first period eg, 5 days
  • the remote monitoring device 2 determines that the transmission of the operation data has failed, and at the next transmission timing, adds the operation data that has failed to be transmitted to the new operation data and transmits it. configured as Specifically, the difference between the operating data stored at the time of the last successful communication and the operating data stored at the present time may be transmitted.
  • the operating data can be collected without loss in the network server 3 located at a remote location.
  • normal network shutdown countermeasures it takes one or two days to recover from the shutdown, so the capacity of the storage device 21 of the remote monitoring device 2 is sufficient for five days.
  • the storage device 21 for storing the operation data of the air conditioner 1 is arranged in the remote monitoring device 2, it may be provided in the outdoor unit of the air conditioner 1, the indoor unit, the remote controller, or the like.
  • the communication speed of the communication line 5 between the outdoor unit, the indoor unit, and the remote control is slow, it takes time for the operation data to reach the network server 3 even if the retransmission of the operation data is requested.
  • FIG. 3 is a diagram for explaining the procedure for starting the collection of operation data when the remote monitoring device is installed.
  • the device management unit 39 of the network server 3 shown in FIG. 1 has a function of preventing a user from operating remote monitoring devices used by other users. Therefore, when starting to use the remote monitoring device 2, it is necessary to notify the network server 3 that it is owned by the user. For this reason, the user or the person in charge of the installation works transmits the unique information of the remote monitoring device 2 from the user terminal 4 to the network server 3 when the remote monitoring device 2 is installed.
  • the information unique to the remote monitoring device 2 may be any value that can uniquely identify the remote monitoring device.
  • the unique information may be a serial number, or a combination of serial number and random number.
  • the unique information of the remote monitoring device 2 is read from the user terminal 4.
  • a two-dimensional barcode printed on a sticker attached to the remote monitoring device 2 is read into the user terminal 4 by the camera 41 .
  • the user who purchased the remote monitoring device may manually input information from a Web screen or the like using the input device of the user terminal 4 or the like.
  • the user terminal 4 transmits the reading result to the network server 3.
  • step S3 Transmission of unique information from the remote monitoring device 2 to the network server 3 may be performed when the device is manufactured, or may be performed when the remote monitoring device 2 is connected to the Internet for the first time.
  • step S4 the network server 3 collates and verifies whether the unique information values transmitted from the two locations are the same.
  • step S5 the network server 3 returns the collation result to the user terminal 4.
  • the network server 3 starts the process of acquiring the operating state from the remote monitoring device 2 when the matching result of the information unique to the remote monitoring device 2 and the information transmitted from the user terminal 4 indicates a match.
  • FIG. 4 is a diagram for explaining temporary suspension and resumption of operation data collection. As shown in FIG. 3, the operation data collection service is started in response to the transmission of the unique information of the remote monitoring device 2 from the user terminal 4 to the network server 3 .
  • the remote monitoring device 2 periodically communicates and transmits the operating data collected from the air conditioner 1 to the computing server 3A.
  • the user terminal 4 sends a suspension command to the computing server 3A, as shown in state ST2. Then, the computing server 3A shuts down and stops communicating with the remote monitoring device 2. FIG. By doing so, while the communication is interrupted, the operation data collection of the air conditioner 1 is interrupted, and the air conditioner 1 can be operated and monitored from the user terminal 4 via the computing server 3A. Service is also interrupted.
  • the reading cost is greater than the holding cost, so interrupting the service is effective in reducing the communication cost.
  • the user terminal 4 transmits a resume command to the computing server 3A, as shown in state ST3. Then, the computing server 3A starts up and sends a command to start regular communication to the remote monitoring device 2. FIG. As a result, the operation data of the air conditioner 1 is periodically collected as shown in the state ST1.
  • the network server 3 generates a refrigerant circuit diagram so that the user or serviceman can easily understand the operation data of the air conditioner 1 .
  • FIG. 5 is a diagram for explaining image generation and presentation of a refrigerant circuit diagram.
  • a user or a service person sends an instruction to generate a refrigerant circuit diagram from the user terminal 4 to the computing server 3A. For example, by clicking or tapping a button on the WEB browser, the user requests generation of a refrigerant circuit diagram.
  • the computing server 3A communicates with the remote monitoring device 2 and remotely monitors information such as temperature and pressure detected by sensors in each part of the air conditioner 1 for generating a refrigerant circuit diagram. Acquired via the device 2. Then, the computing server 3A generates image data of the refrigerant circuit diagram based on this information.
  • the image data is preferably an image of a refrigerant circuit diagram (such as a set of 6 GIF images) or a moving image that allows visual observation of the refrigerant in motion.
  • the computing server 3A stores the generated image data in the file server 3B.
  • the computing server 3A transmits information (for example, URL) indicating the storage destination of the generated image to the user terminal 4 possessed by the user or serviceman.
  • information for example, URL
  • the user or serviceman can view the refrigerant circuit diagram 200 by accessing the image storage destination from the user terminal 4 and reproducing the image data stored in the file server 3B, as shown in state ST4.
  • FIG. 5 shows an example in which the user accesses the URL from the browser and views the refrigerant circuit diagram 200
  • the refrigerant circuit diagram 200 may be viewed by playing back a moving image by streaming distribution.
  • a specific example of the refrigerant circuit diagram 200 is shown below.
  • FIG. 6 is a diagram showing a first example of a generated refrigerant circuit diagram image.
  • a refrigerant circuit diagram 200A shown in FIG. 6 shows each component of the air conditioner 1 .
  • the air conditioner 1 includes a compressor 201, an oil separator 202, a four-way valve 203, an outdoor heat exchanger 204, an internal heat exchanger 205, expansion valves 206, 207A, 207B, an indoor heat exchanger 208A, 208B, an accumulator 209, a solenoid valve 210, and a capillary tube 211 are included as components.
  • the refrigerant circuit diagram 200A further shows refrigerant piping that connects each component. Furthermore, based on the detection results of sensors such as a pressure sensor and a flow rate sensor (not shown), arrows indicating the flow of the refrigerant in the refrigerant piping are shown, and the refrigerant piping is displayed so that the high pressure section and the low pressure section can be distinguished. There is for example, the image may be color-coded such that the high voltage portion is red and the low voltage portion is blue. In the case of moving images, instead of arrows, bright spots moving in the flow direction of the refrigerant may be displayed in the piping.
  • FIG. 7 is a diagram showing a second example of the generated image of the refrigerant circuit diagram.
  • a refrigerant circuit diagram 200B shown in FIG. 7 also shows each component of the air conditioner 1 in the same manner as the refrigerant circuit diagram 200A shown in FIG.
  • the refrigerant circuit diagram 200B does not display arrows indicating the flow of the refrigerant, the temperature detected by the sensor is indicated numerically. Specifically, the refrigerant circuit diagram 200B shows numerical values that the temperature on the inlet side of the expansion valves 207A and 207B is 54°C and the temperature on the outlet side of the indoor heat exchangers 208A and 208B is 30°C. Alternatively, numerical values such as the pressure detected by the sensor and the number of revolutions of the fan may be displayed directly on the refrigerant circuit diagram.
  • a serviceman can remotely obtain the refrigerant circuit diagrams shown in FIGS. 6 and 7 through the network server 3.
  • service personnel had to remove the exterior of the outdoor unit or indoor unit and use a personal computer, tablet, or the like installed with an application for generating a refrigerant circuit diagram to view the refrigerant circuit diagram.
  • a service person needs to visit the site, and depending on the installation location of the air conditioner, the work is very troublesome.
  • the remote monitoring system of the present embodiment it is possible to obtain a refrigerant circuit diagram that clearly shows operating data from a remote location. This eliminates the need to visit the site for regular diagnostics, and can be expected to enable the remote identification of faulty parts from the refrigerant circuit diagram and the ability to bring replacement parts from the first visit.
  • the low pressure and high pressure in the refrigerant circuit can be visually recognized by color or the like, but the method of representing the pressure difference does not matter. Further, in the present embodiment, in the refrigerant circuit diagram, the direction in which the refrigerant flows is made visible by the arrows, but the way of expressing the flow does not matter.
  • FIG. 8 is a perspective view showing the appearance of the remote monitoring device.
  • 9 is a cross-sectional view taken along line IX-IX in FIG. 8.
  • FIG. 10 is a perspective view showing the appearance of FIG. 8 with the resin cover removed.
  • a remote monitoring device 300 which is a specific example of the remote monitoring device 2, will be described with reference to FIGS. 8 to 10.
  • FIG. The remote monitoring device 300 includes a metal housing 301 , a resin cover 302 , a power circuit 311 , and a wireless communication module 312 .
  • the power system circuit 311 is arranged inside the metal housing 301 in consideration of heat resistance performance.
  • the wireless communication module 312 is arranged outside the metal housing 301 and covered with a resin cover 302 .
  • the wireless communication module 312 is capable of wireless communication with the base station 400 of the mobile phone. Since the resin cover 302 transmits radio waves, the wireless communication module 312 can perform wireless communication even when covered with the cover 302 .
  • the remote monitoring device 300 is a device that incorporates a wireless communication module 312 and monitors air conditioners.
  • the wireless communication module 312 When the wireless communication module 312 is accommodated inside the housing 301, the radio waves are difficult to reach because the housing 301 is made of ferrous metal. For this reason, the wireless communication module 312 is located separately from the power supply unit.
  • FIG. 11 is a diagram for explaining communication paths in the remote monitoring system.
  • the remote monitoring device 300 is connected to a plurality of outdoor units 401A, 401B, a plurality of indoor units 402A, 403A, 402B, 403B, and remote control panels 404A, 404B via communication lines 5 for wired communication.
  • the connected remote monitoring system is configured to support both wired and wireless communication.
  • a LAN cable can be connected to the connector 303 to connect to the Internet 6 via a router.
  • wireless communication is preferred because it takes time to wire and set up for wired communication.
  • the wireless communication module 312 can be used to connect to the Internet 6 via the base station 400 .
  • An antenna cable can also be connected to the wireless communication module 312 in an environment with poor communication.
  • the resin cover is provided with a knockout portion 304 through which the antenna cable passes.
  • the knockout portion 304 is removed and a separate grommet component (not shown) is attached.
  • the wireless communication module 312 is accommodated using the resin cover 302 , radio waves can easily reach the wireless communication module 312 . Also, since it is possible to attach a grommet and connect an antenna cable, it is possible to cope with wireless communication to some extent even in an environment with poor communication. In addition, it is possible to respond flexibly to the installation situation of the remote monitoring device. In this way, data of the plurality of outdoor units 401A, 401B and the plurality of indoor units 402A, 403A, 402B, 403B can be collected and wirelessly transmitted to the network server via the Internet 6.
  • the present disclosure relates to a remote monitoring system 100 that monitors the operating state of air conditioners 1 .
  • the remote monitoring system 100 is mounted on a remote monitoring device 2 that monitors the air conditioner 1, and includes a storage device 21 configured to record the operating state of the air conditioner 1 for a first period (for example, five days);
  • a communication control unit (CPU 20) installed in the remote monitoring device 2 and transmitting the operating state stored in the storage device 21, communicates with the communication control unit (CPU 20) via a network, and acquires the operating state from the storage device 21.
  • the communication control unit (CPU 20) determines that if there is no missing part in the operating conditions acquired by the network server 3 from the storage device 21 up to the present time, the operating conditions that have been newly recorded in the storage device 21 since the previous transmission of the operating condition are determined. It is arranged to transmit the operating state to the network server 3 . In addition, if there is a missing portion in the operating state acquired by the network server 3 from the storage device 21 to the present, the communication control unit (CPU 20) stores the newly recorded operating state after the previous transmission of the operating state. , and the missing part remaining in the storage device 31 to the network server 3 .
  • the storage device 21 and the communication control unit (CPU 20) are arranged in the remote monitoring device 2, but the storage device 21 and the communication control unit (CPU 20) are the outdoor unit of the air conditioner 1, , a remote control panel, or the like.
  • the communication control unit (CPU 20) is configured to transmit to the network server 3 the difference data updated from the time of the previous transmission, when transmitting the operating state newly recorded to the network server 3.
  • the communication control unit (CPU 20) is configured to transmit the operating state from the storage device 21 to the network server 3 at time intervals shorter than the first period (eg, 5 days).
  • the communication control unit (CPU 20) periodically operates from the storage device 21 of the remote monitoring device 2 every second period (for example, 10 minutes) shorter than the first period (for example, 5 days). It is arranged to send the status to the network server 3 . If the network server 3 fails to receive the data, the communication control unit (CPU 20) transmits the missing portion together with the operating state for each second period.
  • the network server 3 stops the process of periodically acquiring the operating state from the storage device 21 of the remote monitoring device 2 when receiving an operation suspension command from the user.
  • the network server 3 restarts the process of periodically acquiring the operating state from the storage device 21 of the remote monitoring device 2 when receiving an operation restart command from the user.
  • the communication control unit (CPU 20) shown in FIG. 2 stores the operating state of the air conditioner 1 periodically sent from the air conditioner 1 in the storage device 21 as an operating data file. If there is no response from the network server 3 at the transmission timing of transmitting the operation data file to the network server 3, the communication control unit (CPU 20) notifies that the transmission has failed and the operation data file that has failed to be transmitted. It is associated and stored in the storage device 21 as transmission failure history information. At the next transmission timing, the communication control unit (CPU 20) refers to the recorded transmission failure history information to identify the operation data file that could not be transmitted, and combines the identified operation data file with the newly generated operation data file. data file to the network server 3 together.
  • the network server 3 is configured so that the remote monitoring device 2 and the user terminal 4 can be registered.
  • the network server 3 starts the process of acquiring the operating state from the remote monitoring device 2 when the matching result of the information unique to the remote monitoring device 2 and the information transmitted from the user terminal 4 indicates a match.
  • An application server operated by a maintenance company may be similarly registered in the network server 3 instead of or in addition to the user terminal 4 .
  • the remote monitoring device 2 includes a one-dimensional or two-dimensional barcode in which information specific to each remote monitoring device 2 is recorded.
  • the user terminal 4 includes a camera 41 that captures barcodes and an operation unit 42 that operates the remote monitoring device 2 .
  • the network server 3 retrieves the operating state from the storage device 21 of the remote monitoring device 2 when the matching result of the unique information of the remote monitoring device 2 and the information indicated by the bar code transmitted from the user terminal 4 is matched. Start the acquisition process. Even if the camera 41 is not used, a user or a maintenance company may directly input unique information from a keyboard or touch panel instead of the barcode.
  • the remote monitoring device 2 changes the operating state of the air conditioner 1 based on the operation on the operation unit of the user terminal 4 .
  • the remote monitoring device 300 includes a metal housing 301, a power circuit 311 housed in the housing 301, and a resin cover 302 attached to the housing 301. , and a wireless communication module 312 to which power supply voltage is supplied from the power system circuit 311 and which transmits data requested by the network server 3 .
  • wireless communication module 312 is arranged outside housing 301 and inside cover 302 .
  • the resin cover 302 is provided with a knockout portion 304 for passing an antenna cable connectable to the wireless communication module 312 .
  • the network server 3 when the network server 3 receives a command requesting the refrigerant circuit diagram of the air conditioner 1 from the user, the network server 3 retrieves information for creating the refrigerant circuit diagram from the storage device 21 of the remote monitoring device 2. Collect, generate an image or animation of the refrigerant circuit diagram based on the collected information, and store the image or animation in a location accessible to the user. This user-accessible location is the file server 3B that constitutes the network server 3.
  • a remote monitoring system for monitoring the operating state of an air conditioner is installed in a remote monitoring device 2 for monitoring the air conditioner, and includes a storage device 21 for storing the operating state, and a storage device 21.
  • a network server 3 configured to communicate over a network and to obtain operating conditions from a storage device 21;
  • the network server 3 receives a command requesting a refrigerant circuit diagram of the air conditioner 1 from the user, the network server 3 collects information for creating a refrigerant circuit diagram from the storage device 21 of the remote monitoring device 2, and uses the collected information as based on the refrigerant circuit diagram image or animation, and is configured to store the image or animation in a location accessible to the user.
  • the storage device 21 may be mounted in the outdoor unit of the air conditioner 1, the indoor unit, the remote control panel, or the like.
  • Air conditioner 1,300 Remote monitoring device, 3 Network server, 3A Computing server, 3B File server, 4 User terminal, 5 Communication line, 6, 6A, 6B Internet, 21, 31 Storage device, 22 Air conditioner connection , 23 communication unit, 25, 36 update unit, 26 air conditioning control unit, 27 data collection unit, 28 data reception unit, 32 remote monitoring device communication unit, 33 application communication unit, 34 air conditioning controller, 35 air conditioning maintenance unit, 37 trend data Collection unit, 38 Equipment registration unit, 39 Equipment management unit, 41 Camera, 42 Operation unit, 100 Remote monitoring system, 200, 200A, 200B Refrigerant circuit diagram, 201 Compressor, 202 Oil separator, 203 Four-way valve, 204, 205 , 208A, 208B heat exchanger, 206, 207A, 207B expansion valve, 209 accumulator, 210 solenoid valve, 211 capillary tube, 301 housing, 302 cover, 303 connector, 304 knockout section, 311 power supply circuit, 312 wireless communication module , 400 base station, 401A, 401B

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Air Conditioning Control Device (AREA)
  • Selective Calling Equipment (AREA)

Abstract

遠隔監視システム(100)は、遠隔監視装置(2)と、ネットワークサーバ(3)とを備える。ネットワークサーバ(3)は、a)遠隔監視装置(2)から現在までに取得した運転状態に欠落部分が無い場合には、前回に運転状態を取得してから新たに記録された運転状態の送信を遠隔監視装置(2)に要求するように構成される。また、ネットワークサーバ(3)は、b)遠隔監視装置(2)から現在までに取得した運転状態に欠落部分がある場合には、前回に運転状態を取得してから新たに記録された運転状態と、記憶装置(31)に残っている欠落部分との送信を遠隔監視装置(2)に要求するように構成される。

Description

遠隔監視システムおよび遠隔監視方法
 本開示は、遠隔監視システムおよび遠隔監視方法に関する。
 特開2018-35957公報(特許文献1)には、クラウドサーバのプロセッサによって、空調機および周辺機器に対する制御を行なう空調システムが開示されている。この空調システムでは、マイコンよりも十分に高い処理性能を有するクラウドサーバのプロセッサを制御に用いるので、処理性能が比較的低いマイコンよりも複雑な制御を行なうことができる。
特開2018-35957公報
 昨今のIoT(Internet Of Things)機器の普及に伴い、空調機をクラウドサーバに接続し、遠隔地から空調の制御およびデータ収集を行なうことが可能となっている。特開2018-35957公報(特許文献1)に開示された技術では、空調機の制御部および記憶部は、クラウド上のリソースを使用している。クラウド上のリソースを使用することによって、末端装置の性能を下げることができるため、製品の価格を低減できる。また、従来のような制御部および記憶部を製品に組み込んだ機器と比較すると、非常に大きなリソースを使用できるというメリットがある。このようなクラウドサーバを用いて、空調機の運転状態を示すデータを収集することも検討されている。
 しかしながら、クラウドサーバと空調機とを接続するためには、ネットワークの利用が不可欠である。クラウドサーバまたはネットワークの障害により、空調機の運転データ等の収集ができない場合も考えられる。
 また、収集した運転データはそのまま数値を示しても、ユーザにとってわかりにくいが、ユーザが所有する端末は運転データを見やすい形で表示するには性能が低い場合が多い。
 本開示は、上記のような課題を解決するためになされたものであって、空調機の運転状態を示すデータの記録の欠落を防ぐことが可能な遠隔監視システムを提供することを目的とする。
 本開示の他の目的は、空調機に接続されるサーバの性能を生かして、収集した運転データをユーザに理解しやすい形で提示可能な遠隔監視システムおよび遠隔監視方法を提供することである。
 本開示は、空調機の運転状態を監視する遠隔監視システムに関する。遠隔監視システムは、空調機または空調機を監視する遠隔監視装置に搭載され、空調機の運転状態を第1期間分記録するように構成された記憶装置と、空調機または遠隔監視装置に搭載され、記憶装置に記憶された運転状態を送信する通信制御部と、通信制御部とネットワークを介して通信し、記憶装置から運転状態を取得するように構成されたサーバとを備える。通信制御部は、a)記憶装置から現在までにサーバが取得した運転状態に欠落部分が無い場合には、前回に運転状態を送信してから新たに記憶装置に記録された運転状態をサーバに送信し、b)記憶装置から現在までにサーバが取得した運転状態に欠落部分がある場合には、前回に運転状態を送信してから新たに記録された運転状態と、記憶装置に残っている欠落部分とをサーバに送信するように構成される。
 本開示の他の局面の遠隔監視システムは、空調機または空調機を監視する遠隔監視装置に搭載され、空調機の運転状態を記憶する記憶装置と、記憶装置とネットワークを介して通信し、記憶装置から運転状態を取得するように構成されたサーバとを備える。サーバは、ユーザから空調機の冷媒回路図を要求する指令を受信した場合に、遠隔監視装置から冷媒回路図を作成するための情報を収集し、収集した情報に基づいて冷媒回路図の画像または動画を生成し、ユーザがアクセス可能な場所に画像または動画を保存するように構成される。
 本開示の遠隔監視システムおよび遠隔監視方法によれば、空調機の運転状態を欠落無く記録することができる。また、本開示の遠隔監視システムによれば、収集した運転データを理解しやすい形でユーザに提示することができる。
本実施の形態に係る遠隔監視システムの一構成例を示すブロック図である。 ネットワークサーバの構成と運転データの保存領域の容量の説明をするための図である。 遠隔監視装置を設置した際に運転データの収集を開始させる手順を説明するための図である。 運転データの収集の一時中断と再開について説明するための図である。 冷媒回路図の画像生成と提示について説明するための図である。 生成された冷媒回路図の画像の第1例を示す図である。 生成された冷媒回路図の画像の第2例を示す図である。 遠隔監視装置の外観を示す斜視図である。 図8におけるIX-IX断面における断面図である。 図8において樹脂カバーを外した外観を示す斜視図である。 遠隔監視システムにおける通信経路を説明するための図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。なお、以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1は、本実施の形態に係る遠隔監視システムの一構成例を示すブロック図である。遠隔監視システム100は、遠隔監視装置2と、ネットワークサーバ3とを備える。
 遠隔監視装置2は、空調機1と専用の通信線5によって接続され、空調機1の運転データの収集、および、空調機1の制御などを行なう。
 ネットワークサーバ3は、遠隔監視装置2およびユーザ端末4とインターネット6A,6Bを介して接続される。ネットワークサーバ3は、遠隔監視装置2が収集した空調機1の運転データを蓄積する。運転データは、たとえば、空調機1が運転開始および終了した時刻、温度の設定の変更、冷房/暖房の運転切替、などのリモコン操作を示すデータと、冷媒配管などに設置されたセンサで計測された温度および圧力などの空調機1の状態を示すデータとを含む。
 また、ネットワークサーバ3は、ユーザ端末4から受けた空調機1の操作情報を遠隔監視装置2に送信する。遠隔監視装置2は、この操作情報に基づいて、空調機1を制御する。なお、ネットワークサーバ3は、ユーザ端末4に代えて、保守業者が運営するアプリケーションサーバに接続されていても良い。
 遠隔監視装置2は、中央処理装置(CPU:Central Processing Unit)20と、記憶装置(ROM(Read Only Memory)、RAM(Random Access Memory)およびハードディスクなど)21と、空調機接続部22と、通信部23とを含む。
 CPU20は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、遠隔監視装置2として動作する処理手順が記されたプログラムである。CPU20は、これらのプログラムに従って、FWアップデート部25、空調制御部26、データ収集部27、データ受信部28としての処理を実行する。なお、FWアップデート部25、空調制御部26、データ収集部27、およびデータ受信部28は、図1に示すように同じCPUが制御する1つの制御部であっても良いが、異なるCPUによって制御される別々の制御部であっても良い。
 FWアップデート部25は、ネットワークサーバ3から新規のファームウエアをダウンロードする。FWアップデート部25は、ダウンロードしたファームウエアが遠隔監視装置用のファームウエアであった場合、遠隔監視装置2自体に適用する。FWアップデート部25は、ダウンロードしたファームウエアが空調機用のファームウエアであった場合、空調機1に転送する。
 空調制御部26は、ネットワークサーバ3から空調機1の制御コマンド(温度設定、風量設定など)を受信した場合に、制御コマンドを空調機1の専用通信プロトコルに変換し、変換したコマンドを空調機1に送信する。
 データ受信部28は、空調機1から運転データを受信したら、記憶装置21に保存する。記憶装置21は、空調機1の運転データを最大5日分蓄積することができる。
 データ収集部27は、定期的に遠隔監視装置のデータベースである記憶装置21から空調機1の運転データを取り出し、ネットワークサーバ3に送信する。
 ネットワークサーバ3は、中央処理装置(CPU:Central Processing Unit)30と、記憶装置(ROM(Read Only Memory)、RAM(Random Access Memory)およびハードディスクなど)31と、遠隔監視装置通信部32と、アプリケーション通信部33とを含む。
 CPU30は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、ネットワークサーバ3として動作する処理手順が記されたプログラムである。CPU30は、これらのプログラムに従って、空調コントローラ34、空調メンテナンス部35、FWアップデート部36、トレンドデータ収集部37、機器登録部38、機器管理部39としての処理を実行する。なお、空調コントローラ34、空調メンテナンス部35、FWアップデート部36、トレンドデータ収集部37、機器登録部38、機器管理部39は、図1に示すように同じCPUが制御する1つの制御部であっても良いが、異なるCPUによって制御される別々の制御部であっても良い。またインターネット上に分散配置された複数のサーバによってネットワークサーバ3が実現されても良い。
 遠隔監視システム100は、さらに、ユーザ端末4を備える。アプリケーション通信部33は、ユーザ端末4とインターネット6Bを介して通信する。ユーザ端末4としては、たとえば、パーソナルコンピュータ、タブレット端末、スマートフォンなどを使用することができる。ユーザ端末4には、アプリケーションソフトウエアがインストールされる。アプリケーションソフトウエアは、ネットワークサーバ3から空調機1の各種パラメータを取得して、ユーザ端末4の表示部に表示する。これはWebのアプリケーションであってもよいし、OS(Operating System)上で動作するクライアントであってもよいし、第2のネットワークサーバとWebブラウザの組み合わせであってもよい。なお、ユーザ端末4に代えて、保守業者が運営するアプリケーションサーバにネットワークサーバ3が接続され、アプリケーションサーバ上で保守業者が空調機1の各種パラメータを監視しても良い。
 機器管理部39は、ユーザに、他のユーザが使用する遠隔監視装置を操作させないための機能を備える。記憶装置31は、遠隔監視装置2に固有の情報(機器データ)を蓄積する。
 空調コントローラ34は、空調機1の設定温度および運転モードなどを管理する。空調コントローラ34は、空調機1の付随するリモコンに相当する操作管理が可能である。空調メンテナンス部35は、空調機1の設置時に工事担当者が使用する機能、およびサービスマンが使用する故障診断の機能、冷媒回路図を生成する機能などを有する。
 FWアップデート部36は、遠隔監視装置2のファームウエア、および、空調機1のファームウエアを送信および管理する機能を有する。
 トレンドデータ収集部37は、空調機1の電力消費量および運転データ(設定温度および運転モードなどの遷移情報)などを一定周期で遠隔監視装置2から収集する。
 機器登録部38は、遠隔監視装置2をネットワークサーバ3に登録する機能を有する。
 遠隔監視装置通信部32は、遠隔監視装置2とインターネット6Aを介して通信を行なう。なお、遠隔監視装置通信部32は、アプリケーション通信部33とは区別されており、ユーザ端末4を遠隔監視装置2に直接的に接続することはできない。
 図2は、ネットワークサーバの構成と運転データの保存領域の容量の説明をするための図である。遠隔監視装置2は、最大5日分の運転データの保存領域を有する記憶装置21を備える。
 遠隔監視装置2は、空調機1の運転データを含む通信ログを常時記憶装置21に保存しており、最大5日分が記憶された場合には、上書きされることによって5日を超えた分から順に運転データが消去される。
 ネットワークサーバ3は、1台のサーバで構成しても良いが、たとえば、コンピューティングサーバ3Aとファイルサーバ3Bとを含んで構成される。
 遠隔監視装置2は、定期的にコンピューティングサーバ3Aに対して通信を行なう。遠隔監視装置2は、5日分の保存された運転データと前回通信成功時に保存されていた運転データとの差分をコンピューティングサーバ3Aにアップロードする。その結果、通信遮断が発生した場合、通信失敗時に送るはずであった運転データは、次回の通信時に一緒に送信されることになる。アップロード時間は、たとえば約1分間である。
 コンピューティングサーバ3Aは、たとえば、最大2ヶ月分の保存領域を有する記憶部を備える。コンピューティングサーバ3Aは、運転データを一時記憶するバッファ用のサーバであり、一定周期ごとに遠隔監視装置2から送信されてくる運転データをバッファしている。一定周期ごとにサーバに送信するので、差分が発生した段階でその都度送信するよりも通信費を削減することができる。
 ファイルサーバ3Bは、必要に応じて実質的に無制限の保存領域を確保することができ、たとえば、使用容量に応じた従量制で使用料が課金される。コンピューティングサーバ3Aは、たとえば、毎日0時に、5日分の蓄積されたデータの前日送信分との差分をファイルサーバ3Bにアップロードする。
 運転データは、随時遠隔監視装置2からネットワークサーバ3に送信されているが、プロバイダーなどが管理するネットワークの障害で、年に1回程度は数日間通信できない事態が生じうる。
 このように、空調機1を監視する遠隔監視装置2とネットワークサーバ3とをつなぐインターネット6Aが障害などで遮断した場合、ネットワークサーバ3上で保持する空調機1の運転データの一部が欠損してしまう。
 空調機1が省エネルギー基準を満たすか否かを判断するのにデータの収集率を一定以上にする必要がある。運転データの欠損率によっては、収集率が低くなり、判断の精度が悪くなる可能性がある。
 そこで、本実施の形態では、空調機の運転データをローカルで一定期間分保存し、定期的に遠隔監視装置2がバックアップをクラウド上のネットワークサーバ3に送信する。たとえば、空調機1から遠隔監視装置2に定期的(10分毎)に送られてくる空調機1の運転データを、遠隔監視装置2は1つの運転データファイルとして記憶装置に保存する。遠隔監視装置2は、上記送信タイミングにおいて、ネットワーク遮断などによってネットワークサーバ3からの応答が無い場合には、送信に失敗したこと、およびその送信に失敗したファイル名等のファイル情報とを関連付けて、送信失敗履歴情報として記憶装置21に記憶しておく。そして、次回の送信タイミングにおいて、遠隔監視装置2は、送信失敗履歴情報を参照して、送信できなかった運転データファイルを特定し、その運転データファイルと新たに生成された運転データファイルとを一緒に送信する。その際、ネットワーク障害が長くなった場合には、記憶装置に送信失敗履歴情報が蓄積されるため、次回の送信タイミングで送信できなかった運転データファイルが複数になる場合もありうる。なお、運転データ中に含まれている時刻をチェックすることによって、ネットワーク遮断時に障害などで欠損した分を、ネットワークサーバ3が検出してもよい。その場合は、ネットワークの回復を待って、欠損部分だけの運転データの再送信をネットワークサーバ3が遠隔監視装置2に要求してもよい。
 このようにすることによって、故障発生時のデータを欠落なくサーバに送ることができる。運転データの収集率が向上すると、空調機1の性能を精度よく評価できる。また、運転データの収集率が向上すると、導入時の正常な運転データと故障時のデータとを比較することによる故障の原因の解析の精度も向上する。
 ネットワークにつながっていない空調機の場合、監視装置の記憶装置の保存容量は有限であり、従来は数ヶ月分しか運転データを保存できなかった。また、書込頻度が高いことから、記憶装置の保存領域が物理的に故障する可能性があった。たとえば、メンテナンスの作業者が月に1回の運転データのバックアップ保存を行なっていた場合、記憶装置が故障した月の運転データはすべて失われてしまう。
 本実施の形態では、定期的に運転データをネットワークサーバ3に送信することによって、過去のデータを遠隔監視装置2から削除することができる。このため、監視を継続しても、遠隔監視装置2の記憶装置21の容量を圧迫することが無くなる。また、ネットワークサーバ3おいて利用できる保存容量は、ファイルサーバ3Bを用いれば必要に応じて確保することができるため、たとえば、10年または15年分の運転データを保存することができる。
 インターネット6Aを介して遠隔監視装置2をネットワークサーバ3に接続し、定期的に(たとえば10分ごとに)差分を転送するようにしたので、遠隔監視装置2の記憶装置21が故障しても、故障の直前のデータまではネットワークサーバ3に保存されているため、失われる運転データは少しで済む。故障発生後、迅速に遠隔監視装置2の記憶装置21を交換することによって、精度良く空調機を評価するために必要なデータ収集率を満たすことができる可能性が高くなる。
 さらに、本実施の形態では、ネットワークエラーなどによって、一時的にネットワークサーバ3と遠隔監視装置2との間で通信ができなくなっていても、遠隔監視装置2において、収集したデータの最大5日分の保存が行なわれている。したがって、遠隔監視装置2のデータが消去される前に、ネットワークサーバ3に移すことができれば、データの欠損を防ぐことができる。そこで、本実施の形態では、遠隔監視装置2は、第1期間(たとえば5日)よりも短い時間間隔(たとえば10分)で、運転状態をネットワークサーバ3に送信し、送信後にネットワークサーバからの応答があるか無いかを確認する。遠隔監視装置2は、ネットワークサーバからの応答が無い場合には運転データの送信に失敗したと判断し、次回の送信タイミングにおいて、送信に失敗した運転データを新たな運転データに追加して送信するように構成される。具体的には、最後に通信に成功した時点に記憶されている運転データと現時点で記憶されている運転データとの差分を送信するようにすれば良い。
 通常のネットワーク遮断であれば、このようにすることによって、運転データを欠損なしに遠隔地に配置されたネットワークサーバ3に収集できる。通常のネットワーク遮断対策であれば1,2日で遮断から復旧するので、遠隔監視装置2の記憶装置21の容量は、5日分で十分である。
 なお、空調機1の運転データ等を記憶する記憶装置21は、遠隔監視装置2内に配置されているが、空調機1の室外機、室内機、リモコンなどに設けてもよい。ただし、室外機、室内機、リモコン間の通信線5は通信速度が遅いため、運転データの再送を要求されてもネットワークサーバ3に運転データが届くまでには時間を要する。このため、記憶装置21を、有線LAN、無線LAN等により高速にネットワークサーバ3に通信可能とした遠隔監視装置2の内部に設けるのが望ましい。
 図3は、遠隔監視装置を設置した際に運転データの収集を開始させる手順を説明するための図である。図1に示したネットワークサーバ3の機器管理部39は、ユーザに、他のユーザが使用する遠隔監視装置を操作させないための機能を備える。したがって、遠隔監視装置2の使用開始時に、ユーザ所有の装置であることをネットワークサーバ3に通知する必要がある。このため、ユーザまたは設置工事担当者は、遠隔監視装置2の設置時に遠隔監視装置2の固有の情報をユーザ端末4からネットワークサーバ3に送信する。
 遠隔監視装置2に固有の情報とは、遠隔監視装置を一意に特定できる値であれば何でもよい。たとえば、固有の情報は、製造番号であっても良く、製造番号と乱数の組み合わせなどでも良い。
 図3のステップS1に示すように、ユーザ端末4から遠隔監視装置2の固有の情報を読み込む。たとえば、遠隔監視装置2に貼付されたシールに印刷された二次元バーコードをカメラ41によってユーザ端末4に読み込む。なお、遠隔監視装置を購入したユーザがユーザ端末4の入力装置などによって、Web画面等から情報を手入力しても良い。そしてステップS2においてユーザ端末4は、読み込み結果をネットワークサーバ3に送信する。
 一方、遠隔監視装置2に関してはステップS3において遠隔監視装置2に固有の情報がネットワークサーバ3に送信される。遠隔監視装置2からネットワークサーバ3への固有の情報の送信は、装置の製造時に行なわれても良いし、遠隔監視装置2が、初めてインターネットに接続された時点で行なわれても良い。
 そして、ステップS4において、ネットワークサーバ3が、2箇所から送信されてきた固有情報の値が同等かどうかを照合および検証する。
 そして、ステップS5において、ネットワークサーバ3が照合結果をユーザ端末4に返信する。ネットワークサーバ3は、遠隔監視装置2の固有の情報とユーザ端末4から送信された情報との照合結果が一致を示す場合には、遠隔監視装置2から運転状態を取得する処理を開始する。
 (中断機能)
 空調機は、季節によって必要性が異なるので、ユーザによっては、春、秋などは使わないことが考えられる。このような場合にも、遠隔監視装置2を含む遠隔監視システム100を稼働させ続けるのは費用がかかる。
 そこで、本実施の形態では、遠隔監視装置2による運転データの収集を容易に中断および再開できるようにしている。
 図4は、運転データの収集の一時中断と再開について説明するための図である。図3に示したように、遠隔監視装置2の固有情報をユーザ端末4からネットワークサーバ3に送信することに応じて、運転データの収集サービスが開始される。
 通常時には、図4の状態ST1に示すように、遠隔監視装置2は、定期的に通信を行なって、空調機1から収集した運転データをコンピューティングサーバ3Aに送信する。
 ユーザがデータ収集を一時中断したい場合には、状態ST2に示すように、ユーザ端末4からコンピューティングサーバ3Aに中断指令を送信する。するとコンピューティングサーバ3Aはシャットダウンし、遠隔監視装置2との通信を行なわなくなる。このようにすることによって、通信の中断中は、空調機1の運転データの収集は中断されるとともに、ユーザ端末4からコンピューティングサーバ3Aを経由して空調機1を操作したりモニタしたりするサービスも中断される。
 ファイルサーバ3Bとして、データの保持容量およびデータの読み出し量に従って課金が行なわれる従量課金制のサーバを採用すれば、サービス中断中は、データの読み出し量によって生じる新たな課金は発生しないようにできる。一般的には、読み出し費用>保持費用であるので、通信費の削減に、サービスの中断は有効である。
 このように、通信を削減することにより、遠隔監視の維持費用を抑えることができる。
 ユーザがデータ収集を再開したい場合には、状態ST3に示すように、ユーザ端末4からコンピューティングサーバ3Aに再開指令を送信する。するとコンピューティングサーバ3Aは起動し、遠隔監視装置2に対して定期通信を開始する指令を送信する。これによって、状態ST1に示したように、定期的に空調機1の運転データの収集が行なわれる。
 従来であれば、データ収集を中断するには、遠隔監視装置2とネットワークサーバ3の通信の契約を解除し、遠隔監視装置2をユーザから回収する必要があったが、本実施の形態では、通信中止指令を送るだけで、課金を抑制でき、再開も容易である。
 このように、通信を中断することによって、データベースおよびファイルの保持を継続しながら、通信量と消費するサーバリソースとを限りなくゼロにして費用を抑えることができる。
 (冷媒回路図の生成機能)
 本実施の形態に示す遠隔監視システムでは、ユーザまたはサービスマンが空調機1の運転データを容易に理解できるように、ネットワークサーバ3が冷媒回路図を生成する。
 図5は、冷媒回路図の画像生成と提示について説明するための図である。
 状態ST11に示すように、ユーザまたはサービスマンがユーザ端末4からコンピューティングサーバ3Aに対して、冷媒回路図を生成する指令を送信する。たとえば、WEBブラウザ上のボタンをクリックまたはタップすることによって、ユーザは、冷媒回路図の生成を要求する。
 状態ST12に示すように、コンピューティングサーバ3Aは、遠隔監視装置2と通信を行ない、冷媒回路図を生成するための空調機1の各部分のセンサで検出した温度、圧力等の情報を遠隔監視装置2経由で取得する。そして、コンピューティングサーバ3Aは、この情報に基づいて、冷媒回路図の画像データを生成する。たとえば、画像データは、冷媒回路図の画像(6枚セットのGIF画像など)または動画であり、冷媒が動いている状況を目視できるものであることが好ましい。そしてコンピューティングサーバ3Aは、ファイルサーバ3Bに生成した画像データを保存する。
 そして状態ST13に示すように、コンピューティングサーバ3Aは、ユーザまたはサービスマンが所持するユーザ端末4に、生成した画像の保存先を示す情報(たとえば、URL)を送信する。
 ユーザまたはサービスマンは、状態ST4に示すように、ユーザ端末4から画像の保存先にアクセスして、ファイルサーバ3Bに保存された画像データを再生することによって冷媒回路図200を見ることができる。
 なお、図5では、ユーザがブラウザからURLをアクセスして、冷媒回路図200を見る例を示したが、ストリーミング配信で動画を再生することによって、冷媒回路図200を見るようにしても良い。以下に、冷媒回路図200の具体例を示す。
 図6は、生成された冷媒回路図の画像の第1例を示す図である。図6に示す冷媒回路図200Aには、空調機1の各構成要素が示されている。空調機1は、圧縮機201と、油分離器202と、四方弁203と、室外熱交換器204と、内部熱交換器205と、膨張弁206,207A,207Bと、室内熱交換器208A,208Bと、アキュムレータ209と、電磁弁210と、キャピラリチューブ211とを、構成要素として含む。
 冷媒回路図200Aには、さらに、各構成要素を接続する冷媒配管が示されている。さらに、図示しない圧力センサおよび流量センサなどのセンサの検出結果に基づいて、冷媒配管の冷媒の流れを示す矢印が示され、冷媒配管は、高圧部と低圧部とが区別できるように表示されている。たとえば、高圧部は赤色、低圧部は青色のように色分けされた画像であっても良い。また動画であれば、矢印に変えて、冷媒の流れ方向に移動する輝点が配管中に表示されていても良い。
 このような冷媒回路図200Aを示すことによって、ユーザまたはサービスマンは、空調機1の冷媒の流れ、温度などを一見して容易に理解することができる。
 図7は、生成された冷媒回路図の画像の第2例を示す図である。図7に示す冷媒回路図200Bにも、図6に示した冷媒回路図200Aと同様に、空調機1の各構成要素が示されている。
 冷媒回路図200Bには、冷媒の流れを示す矢印の表示はないが、センサで検出された温度が数値で示されている。具体的には、膨張弁207A,207Bの入口側温度が54℃、室内熱交換器208A,208Bの出口側温度が30℃という数値が冷媒回路図200Bには表示されている。他にも、センサで検出した圧力、ファン回転数などの数値を直接冷媒回路図に表示するようにしても良い。
 図7に示すように、冷媒回路図にセンサの数値を直接表示するようにすれば、サービスマンなどが故障の診断を行なう際に、遠隔地から詳細な故障の原因を知ることが可能となる。
 サービスマンは、図6および図7に示した冷媒回路図を、ネットワークサーバ3を通して遠隔で取得できる。従来は、サービスマンは、室外機または室内機の外装を外し、冷媒回路図を生成するためのアプリケーションをインストールしたパーソナルコンピュータまたはタブレット等を使用して、冷媒回路図を閲覧する必要があった。この場合は、サービスマンが現地に訪問する必要があるし、空調機の設置場所によっては作業に非常に手間を要する。
 本実施の形態の遠隔監視システムによれば、遠隔地から運転データをわかりやすく示す冷媒回路図を取得できる。これによって、定期診断で現地に訪問する必要がなくなるとともに、冷媒回路図から遠隔で故障部品を特定し、初回訪問時から交換部品を持参することができる等が期待できる。
 ユーザ端末4において運転データから冷媒回路図を生成する必要がなく、冷媒回路図を画像で提供するので、表示崩れもなくデータがユーザ端末において扱いやすい。また、ユーザ端末4のアプリケーションソフトウエアの開発者に対して、冷媒回路図を生成するアルゴリズムを公開しなくてよいという利点もある。
 なお、本実施の形態では、冷媒回路内の低圧と高圧が色などで視認できるが、圧力の差の表し方は問わない。また、本実施の形態では、冷媒回路図において、矢印によって冷媒の流れている方向が視認できるようにしたが、流れの表し方は問わない。
 (運転データの送信機能)
 図8は、遠隔監視装置の外観を示す斜視図である。図9は、図8におけるIX-IX断面における断面図である。図10は、図8において樹脂カバーを外した外観を示す斜視図である。
 図8~図10を用いて、遠隔監視装置2の具体例である遠隔監視装置300を説明する。遠隔監視装置300は、金属製の筐体301と、樹脂製のカバー302と、電源系回路311と、無線通信モジュール312とを備える。
 電源系回路311は、耐熱性能を考慮して金属製の筐体301の内部に配置されている。無線通信モジュール312は、金属製の筐体301の外部に配置され、樹脂製のカバー302に覆われている。
 無線通信モジュール312は、携帯電話の基地局400と無線通信が可能である。樹脂製のカバー302は、電波を通すため、カバー302に覆われていても、無線通信モジュール312は無線通信が可能である。
 遠隔監視装置300は、無線通信モジュール312を内蔵し、空調機を監視する装置である。筐体301の内部に無線通信モジュール312を収容すると、筐体301が鉄系の金属製であるため、電波が届きにくい。このため、無線通信モジュール312の配置場所を電源部と分けている。
 図11は、遠隔監視システムにおける通信経路を説明するための図である。遠隔監視装置300は、複数の室外機401A,401Bおよび複数の室内機402A,403A,402B,403Bおよびリモコンパネル404A,404Bと有線通信の通信線5で接続されている。ただし、ネットワークサーバ3との通信については、連結遠隔監視システムは、有線と無線の通信に両方対応できる構成となっている。有線通信を使用する場合には、コネクタ303にLANケーブルを接続し、ルータを経由してインターネット6に接続することができる。
 ただし、有線通信をするためには、配線および設定に時間が掛かるなど無線通信が好まれる場合も多い。無線通信をするためには、無線通信モジュール312を用いて、基地局400を経由してインターネット6に接続することができる。
 なお、通信の悪い環境では、無線通信モジュール312にアンテナケーブルを接続することもできる。このような場合に備えて、アンテナケーブルを通過させるノックアウト部304が樹脂カバーに設けられている。アンテナケーブルを遠隔監視装置300から外へ引き出す場合は、ノックアウト部304を外し、別部品である図示しないグロメット部品を装着する。
 本実施の形態の遠隔監視システムによれば、樹脂製のカバー302を用いて無線通信モジュール312を収容しているので、無線通信モジュール312に電波が届きやすくなる。また、グロメットを取付けてアンテナケーブルを接続することも可能であるので、通信の悪い環境でもある程度無線通信に対応可能である。また、遠隔監視装置の設置状況に臨機応変に対応可能である。このようにして、複数の室外機401A,401Bおよび複数の室内機402A,403A,402B,403Bのデータを収集し、無線でインターネット6を介してネットワークサーバにデータ送信可能である。
 (まとめ)
 本開示は、空調機1の運転状態を監視する遠隔監視システム100に関する。遠隔監視システム100は、空調機1を監視する遠隔監視装置2に搭載され、空調機1の運転状態を第1期間(たとえば、5日)分記録するように構成された記憶装置21と、前記遠隔監視装置2に搭載され、記憶装置21に記憶された運転状態を送信する通信制御部(CPU20)と、通信制御部(CPU20)とネットワークを介して通信し、記憶装置21から運転状態を取得するように構成されたネットワークサーバ3とを備える。通信制御部(CPU20)は、記憶装置21から現在までにネットワークサーバ3が取得した運転状態に欠落部分が無い場合には、前回に運転状態を送信してから新たに記憶装置21に記録された運転状態をネットワークサーバ3に送信するように構成される。また、通信制御部(CPU20)は、記憶装置21から現在までにネットワークサーバ3が取得した運転状態に欠落部分がある場合には、前回に運転状態を送信してから新たに記録された運転状態と、記憶装置31に残っている欠落部分とをネットワークサーバ3に送信するように構成される。
 なお、図1では、記憶装置21および通信制御部(CPU20)は、遠隔監視装置2に配置されているが、記憶装置21および通信制御部(CPU20)は、空調機1の室外機、室内機、リモコンパネルなどに搭載されていても良い。
 通信制御部(CPU20)は、ネットワークサーバ3に新たに記録された運転状態を送信する場合には、前回送信時から更新された差分データをネットワークサーバ3に送信するように構成される。
 図2に示すように、通信制御部(CPU20)は、第1期間(たとえば5日)よりも短い時間間隔で、記憶装置21から運転状態をネットワークサーバ3に送信するように構成される。
 図2に示すように、通信制御部(CPU20)は、第1期間(たとえば5日)よりも短い第2期間(たとえば10分)ごとに、定期的に遠隔監視装置2の記憶装置21から運転状態をネットワークサーバ3に送信するように構成される。ネットワークサーバ3が受信に失敗した場合は、通信制御部(CPU20)は次の第2期間ごとの運転状態を送信する際に、欠落部分を合わせて送信する。
 図4に示すように、ネットワークサーバ3は、ユーザからの運転休止指令を受信した場合に、遠隔監視装置2の記憶装置21から定期的に運転状態を取得する処理を停止する。ネットワークサーバ3は、ユーザからの運転再開指令を受信した場合に、遠隔監視装置2の記憶装置21から定期的に運転状態を取得する処理を再開する。
 好ましくは、図2に示す通信制御部(CPU20)は、空調機1から定期的に送られてくる空調機1の運転状態を運転データファイルとして記憶装置21に保存する。通信制御部(CPU20)は、運転データファイルをネットワークサーバ3に送信する送信タイミングにおいて、ネットワークサーバ3からの応答が無い場合には、送信に失敗したこと、および送信に失敗した運転データファイルとを関連付けて、送信失敗履歴情報として記憶装置21に記憶する。通信制御部(CPU20)は、次回の送信タイミングにおいて、記録されている送信失敗履歴情報を参照して、送信できなかった運転データファイルを特定し、特定した運転データファイルと新たに生成された運転データファイルとを一緒にネットワークサーバ3に送信する。
 ネットワークサーバ3は、遠隔監視装置2とユーザ端末4とが登録可能に構成される。ネットワークサーバ3は、遠隔監視装置2の固有の情報とユーザ端末4から送信された情報との照合結果が一致を示す場合には、遠隔監視装置2から運転状態を取得する処理を開始する。ユーザ端末4に代えて、またはユーザ端末4に加えて、保守業者が運営するアプリケーションサーバがネットワークサーバ3に同様に登録されても良い。
 図3に示すように、遠隔監視装置2は、個々の遠隔監視装置2について固有の情報が記録された一次元または二次元のバーコードを含む。ユーザ端末4は、バーコードを撮影するカメラ41と、遠隔監視装置2を操作する操作部42とを含む。ネットワークサーバ3は、遠隔監視装置2の固有の情報とユーザ端末4から送信されたバーコードが示す情報との照合結果が一致を示す場合には、遠隔監視装置2の記憶装置21から運転状態を取得する処理を開始する。なお、カメラ41を使用しないでも、キーボードまたはタッチパネルからユーザまたは保守業者等が、バーコードの代わりに直接固有の情報を入力するようにしても良い。
 遠隔監視装置2は、照合結果が一致を示す場合には、ユーザ端末4の操作部における操作に基づいて、空調機1の運転状態を変更する。
 図8~図10に示すように、遠隔監視装置300は、金属製の筐体301と、筐体301に収容された電源系回路311と、筐体301に取付けられた樹脂製のカバー302と、電源系回路311から電源電圧が供給され、ネットワークサーバ3から要求されたデータを送信する無線通信モジュール312とを備える。図9に示すように、無線通信モジュール312は、筐体301の外部で、かつカバー302の内側に配置される。好ましくは、樹脂製のカバー302には、無線通信モジュール312へ接続可能なアンテナケーブルを通過するためのノックアウト部304が設けられる。
 図5に示すように、ネットワークサーバ3は、ユーザから空調機1の冷媒回路図を要求する指令を受信した場合に、遠隔監視装置2の記憶装置21から冷媒回路図を作成するための情報を収集し、収集した情報に基づいて冷媒回路図の画像または動画を生成し、ユーザがアクセス可能な場所に画像または動画を保存する。ユーザがアクセス可能なこの場所は、ネットワークサーバ3を構成するファイルサーバ3Bである。
 本実施の形態の他の局面に係る空調機の運転状態を監視する遠隔監視システムは、空調機を監視する遠隔監視装置2に搭載され、運転状態を記憶する記憶装置21と、記憶装置21とネットワークを介して通信し、記憶装置21から運転状態を取得するように構成されたネットワークサーバ3とを備える。ネットワークサーバ3は、ユーザから空調機1の冷媒回路図を要求する指令を受信した場合に、遠隔監視装置2の記憶装置21から冷媒回路図を作成するための情報を収集し、収集した情報に基づいて冷媒回路図の画像または動画を生成し、ユーザがアクセス可能な場所に画像または動画を保存するように構成される。なお、記憶装置21は、空調機1の室外機、室内機またはリモコンパネルなどに搭載されていても良い。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 空調機、2,300 遠隔監視装置、3 ネットワークサーバ、3A コンピューティングサーバ、3B ファイルサーバ、4 ユーザ端末、5 通信線、6,6A,6B インターネット、21,31 記憶装置、22 空調機接続部、23 通信部、25,36 アップデート部、26 空調制御部、27 データ収集部、28 データ受信部、32 遠隔監視装置通信部、33 アプリケーション通信部、34 空調コントローラ、35 空調メンテナンス部、37 トレンドデータ収集部、38 機器登録部、39 機器管理部、41 カメラ、42 操作部、100 遠隔監視システム、200,200A,200B 冷媒回路図、201 圧縮機、202 油分離器、203 四方弁、204,205,208A,208B 熱交換器、206,207A,207B 膨張弁、209 アキュムレータ、210 電磁弁、211 キャピラリチューブ、301 筐体、302 カバー、303 コネクタ、304 ノックアウト部、311 電源系回路、312 無線通信モジュール、400 基地局、401A,401B 室外機、402A,402B,403A,403B 室内機、404A,404B リモコンパネル。

Claims (14)

  1.  空調機の運転状態を監視する遠隔監視システムであって、
     前記空調機または前記空調機を監視する遠隔監視装置に搭載され、前記空調機の前記運転状態を第1期間分記録するように構成された記憶装置と、
     前記空調機または前記遠隔監視装置に搭載され、前記記憶装置に記憶された前記運転状態を送信する通信制御部と、
     前記通信制御部とネットワークを介して通信し、前記記憶装置から前記運転状態を取得するように構成されたサーバとを備え、
     前記通信制御部は、
     a)前記記憶装置から現在までに前記サーバが取得した前記運転状態に欠落部分が無い場合には、前回に前記運転状態を送信してから新たに前記記憶装置に記録された前記運転状態を前記サーバに送信し、
     b)前記記憶装置から現在までに前記サーバが取得した前記運転状態に欠落部分がある場合には、前回に前記運転状態を送信してから新たに記録された前記運転状態と、前記記憶装置に残っている前記欠落部分とを前記サーバに送信するように構成される、遠隔監視システム。
  2.  前記通信制御部は、前記サーバに新たに記録された前記運転状態を送信する場合には、前回送信時から更新された差分データを前記サーバに送信するように構成される、請求項1に記載の遠隔監視システム。
  3.  前記通信制御部は、前記第1期間よりも短い時間間隔で、前記記憶装置から前記運転状態を前記サーバに送信するように構成される、請求項1に記載の遠隔監視システム。
  4.  前記通信制御部は、前記第1期間よりも短い第2期間ごとに、定期的に前記記憶装置から前記運転状態を前記サーバに送信するように構成され、前記サーバが受信に失敗した場合は、前記通信制御部は次の第2期間ごとの前記運転状態を送信する際に、前記欠落部分を合わせて送信する、請求項1に記載の遠隔監視システム。
  5.  前記サーバは、ユーザからの運転休止指令を受信した場合に、前記記憶装置から定期的に前記運転状態を取得する処理を停止し、前記ユーザからの運転再開指令を受信した場合に、前記記憶装置から定期的に前記運転状態を取得する処理を再開する、請求項4に記載の遠隔監視システム。
  6.  前記通信制御部は、前記空調機から定期的に送られてくる前記空調機の運転状態を運転データファイルとして前記記憶装置に保存し、
     前記通信制御部は、前記運転データファイルを前記サーバに送信する送信タイミングにおいて、前記サーバからの応答が無い場合には、送信に失敗したこと、および送信に失敗した前記運転データファイルとを関連付けて、送信失敗履歴情報として前記記憶装置に記憶し、
     前記通信制御部は、次回の送信タイミングにおいて、前記送信失敗履歴情報を参照して、送信できなかった運転データファイルを特定し、特定した運転データファイルと新たに生成された運転データファイルとを一緒に送信する、請求項1に記載の遠隔監視システム。
  7.  前記サーバは、前記遠隔監視装置とユーザ端末とが登録可能に構成され、
     前記サーバは、前記遠隔監視装置の固有の情報と前記ユーザ端末から送信された情報との照合結果が一致を示す場合には、前記遠隔監視装置から前記運転状態を取得する処理を開始する、請求項1に記載の遠隔監視システム。
  8.  前記遠隔監視装置は、
     個々の前記遠隔監視装置について前記固有の情報が記録された一次元または二次元のバーコードを含み、
     前記ユーザ端末は、前記バーコードを撮影するカメラと、前記遠隔監視装置を操作する操作部とを含み、
     前記サーバは、前記遠隔監視装置の前記固有の情報と前記ユーザ端末から送信された前記バーコードが示す情報との照合結果が一致を示す場合には、前記記憶装置から前記運転状態を取得する処理を開始する、請求項7に記載の遠隔監視システム。
  9.  前記遠隔監視装置は、前記照合結果が一致を示す場合には、前記ユーザ端末の前記操作部における操作に基づいて、前記空調機の運転状態を変更する、請求項8に記載の遠隔監視システム。
  10.  前記遠隔監視装置は、
     金属製の筐体と、
     前記筐体に収容された電源系回路と、
     前記筐体に取付けられた樹脂製のカバーと、
     前記電源系回路から電源電圧が供給され、前記サーバから要求されたデータを送信する無線通信モジュールとを備え、
     前記無線通信モジュールは、前記筐体の外部で、かつ前記カバーの内側に配置される、請求項1に記載の遠隔監視システム。
  11.  前記樹脂製のカバーに、前記無線通信モジュールへ接続可能なアンテナケーブルを通過するためのノックアウト部を設けた、請求項10に記載の遠隔監視システム。
  12.  前記サーバは、ユーザから前記空調機の冷媒回路図を要求する指令を受信した場合に、前記記憶装置から前記冷媒回路図を作成するための情報を収集し、収集した情報に基づいて前記冷媒回路図の画像または動画を生成し、前記ユーザがアクセス可能な場所に前記画像または前記動画を保存するように構成される、請求項1に記載の遠隔監視システム。
  13.  空調機の運転状態を監視する遠隔監視システムであって、
     前記空調機または前記空調機を監視する遠隔監視装置に搭載され、前記運転状態を記憶する記憶装置と、
     前記記憶装置とネットワークを介して通信し、前記記憶装置から前記運転状態を取得するように構成されたサーバとを備え、
     前記サーバは、ユーザから前記空調機の冷媒回路図を要求する指令を受信した場合に、前記記憶装置から前記冷媒回路図を作成するための情報を収集し、収集した情報に基づいて前記冷媒回路図の画像または動画を生成し、前記ユーザがアクセス可能な場所に前記画像または前記動画を保存するように構成される、遠隔監視システム。
  14.  空調機の運転状態を監視する遠隔監視方法であって、
     前記空調機または前記空調機を監視する遠隔監視装置に搭載された記憶装置に、前記空調機の前記運転状態を第1期間分記録するステップと、
     前記空調機または前記遠隔監視装置に搭載された通信制御部によって、前記記憶装置に記憶された前記運転状態を、ネットワークを介してサーバに送信するステップとを備え、
     前記サーバに送信するステップは、
     a)前記記憶装置から現在までに前記サーバが取得した前記運転状態に欠落部分が無い場合には、前回に前記運転状態を送信してから新たに前記記憶装置に記録された前記運転状態を前記サーバに送信し、
     b)前記遠隔監視装置から現在までに前記サーバが取得した前記運転状態に欠落部分がある場合には、前回に前記運転状態を取得してから新たに記録された前記運転状態と、前記記憶装置に残っている前記欠落部分とを前記サーバに送信する、遠隔監視方法。
PCT/JP2021/002617 2021-01-26 2021-01-26 遠隔監視システムおよび遠隔監視方法 WO2022162728A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/002617 WO2022162728A1 (ja) 2021-01-26 2021-01-26 遠隔監視システムおよび遠隔監視方法
EP21922752.7A EP4286760A4 (en) 2021-01-26 2021-01-26 REMOTE MONITORING SYSTEM AND REMOTE MONITORING METHOD
US18/257,688 US20230375205A1 (en) 2021-01-26 2021-01-26 Remote monitoring system and remote monitoring method
JP2022577827A JP7395027B2 (ja) 2021-01-26 2021-01-26 遠隔監視システムおよび遠隔監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002617 WO2022162728A1 (ja) 2021-01-26 2021-01-26 遠隔監視システムおよび遠隔監視方法

Publications (1)

Publication Number Publication Date
WO2022162728A1 true WO2022162728A1 (ja) 2022-08-04

Family

ID=82654296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002617 WO2022162728A1 (ja) 2021-01-26 2021-01-26 遠隔監視システムおよび遠隔監視方法

Country Status (4)

Country Link
US (1) US20230375205A1 (ja)
EP (1) EP4286760A4 (ja)
JP (1) JP7395027B2 (ja)
WO (1) WO2022162728A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151443A (ja) * 2006-12-19 2008-07-03 Sanyo Electric Co Ltd 空気調和システム及びその制御方法
JP6028174B1 (ja) * 2016-04-12 2016-11-16 Mtエネルギー&ソリューションズ株式会社 エアコン制御装置及びエアコン制御システム
WO2016208223A1 (ja) * 2015-06-25 2016-12-29 東芝キヤリア株式会社 室外機
WO2017104059A1 (ja) * 2015-12-17 2017-06-22 三菱電機株式会社 冷凍サイクルシステム
JP2018035957A (ja) 2016-08-29 2018-03-08 シャープ株式会社 空調システムおよび端末装置
JP2019211882A (ja) * 2018-06-01 2019-12-12 三菱電機株式会社 通信システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278391A (ja) * 2008-05-15 2009-11-26 Yokogawa Electric Corp 計装制御システム
WO2014064792A1 (ja) * 2012-10-25 2014-05-01 三菱電機株式会社 監視システム
JP2016133294A (ja) * 2015-01-22 2016-07-25 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空調機の保守・メンテナンスシステム及びその方法
JP7111944B2 (ja) * 2017-12-13 2022-08-03 ダイキン工業株式会社 空調システム、リモコン装置、及び、空調機の運転データ履歴保存方法
EP3795915B1 (en) * 2018-05-14 2022-05-11 Mitsubishi Electric Corporation Malfunction diagnosis system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151443A (ja) * 2006-12-19 2008-07-03 Sanyo Electric Co Ltd 空気調和システム及びその制御方法
WO2016208223A1 (ja) * 2015-06-25 2016-12-29 東芝キヤリア株式会社 室外機
WO2017104059A1 (ja) * 2015-12-17 2017-06-22 三菱電機株式会社 冷凍サイクルシステム
JP6028174B1 (ja) * 2016-04-12 2016-11-16 Mtエネルギー&ソリューションズ株式会社 エアコン制御装置及びエアコン制御システム
JP2018035957A (ja) 2016-08-29 2018-03-08 シャープ株式会社 空調システムおよび端末装置
JP2019211882A (ja) * 2018-06-01 2019-12-12 三菱電機株式会社 通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4286760A4

Also Published As

Publication number Publication date
US20230375205A1 (en) 2023-11-23
JP7395027B2 (ja) 2023-12-08
EP4286760A4 (en) 2024-03-20
EP4286760A1 (en) 2023-12-06
JPWO2022162728A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP4149178B2 (ja) リモートメンテナンスシステム
US6647317B2 (en) Air conditioner management system
KR100851009B1 (ko) 멀티에어컨의 통합관리 시스템 및 방법
JP5125330B2 (ja) 空気調和システム
US10422544B2 (en) Information notification method and relocation determination device
JP2000196769A (ja) 家電製品保守修理サ―ビスシステム
CN104412043A (zh) 空调管理系统
JP4518208B2 (ja) 空気調和装置の遠隔管理システムおよび遠隔管理方法
JP5822583B2 (ja) 空調機器管理システム
JP2003240318A (ja) 監視装置
JP3387000B2 (ja) 空気調和機の監視システム及び遠隔監視装置
WO2022162728A1 (ja) 遠隔監視システムおよび遠隔監視方法
CN110800315A (zh) 设备维护支持系统、设备维护支持装置以及设备维护支持程序
JP3732116B2 (ja) 監視システム
WO2018216115A1 (ja) 空気調和システム
EP1427246A1 (en) DIAGNOSIS SYSTEM, DIAGNOSIS METHOD, DIAGNOSIS TERMINAL, AND DIAGNOSIS TERMINAL USING METHOD
JP3858827B2 (ja) 情報管理システム
JP2005134083A (ja) 設備機器制御システム
JP2002298270A (ja) 熱供給設備等の保守管理方法
JP6700219B2 (ja) 設備管理システム
JP7269508B2 (ja) サーバ、システム、および方法
JP2007071406A (ja) 設備機器管理システム及び設備機器管理方法
WO2023282079A1 (ja) システムおよび方法
JP7356058B1 (ja) 管理方法、管理システム及びプログラム
WO2023228503A1 (ja) 管理方法、管理システム及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577827

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021922752

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021922752

Country of ref document: EP

Effective date: 20230828