WO2022161339A1 - 光源系统及发光设备 - Google Patents

光源系统及发光设备 Download PDF

Info

Publication number
WO2022161339A1
WO2022161339A1 PCT/CN2022/073685 CN2022073685W WO2022161339A1 WO 2022161339 A1 WO2022161339 A1 WO 2022161339A1 CN 2022073685 W CN2022073685 W CN 2022073685W WO 2022161339 A1 WO2022161339 A1 WO 2022161339A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting diode
source system
light source
diode chip
Prior art date
Application number
PCT/CN2022/073685
Other languages
English (en)
French (fr)
Inventor
张权
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2022161339A1 publication Critical patent/WO2022161339A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V1/00Shades for light sources, i.e. lampshades for table, floor, wall or ceiling lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to the technical field of lighting, and in particular, to a light source system and a light-emitting device.
  • LED Light Emitting Diode
  • the light utilization rate of square light emitting diodes is low. How to further improve the energy utilization rate of the light source of the system has become more and more important. Important issues.
  • the present invention provides a light source system, which is characterized by comprising:
  • the light-emitting diode array includes a plurality of light-emitting diode chips
  • the collimating lens group is located on the light path of the light emitted by the light-emitting diode array, and the collimating lens group is used for collimating and outputting the light beam emitted by the light-emitting diode chip;
  • the shape of the light-emitting surface of the light-emitting diode chip is non-rectangular.
  • the light-emitting surface of the light-emitting diode chip is one of a pentagon, a hexagon, an octagon, a decagon, a circle, and an ellipse.
  • the collimating lens group includes at least one collecting lens, and each collecting lens corresponds to at least one light-emitting diode chip, and is used for collimating the light beam emitted from the light-emitting diode chip.
  • it further includes a fly-eye lens, the fly-eye lens is disposed on the light path of the outgoing light of the collimating lens group, and the fly-eye lens includes a plurality of closely-arranged microlens units;
  • the outgoing beam of the light emitting diode chip is imaged in the surface of the one microlens unit, or the outgoing beam of the light emitting diode chip is imaged on the surface of the one microlens unit to cut the microlens unit.
  • the microlens unit is composed of a regular hexagon, and the images formed by the light beam emitted from the light emitting diode chip on the surface of the one regular hexagonal microlens unit are all within one of the microlens units.
  • the image formed by the light beam emitted by the light-emitting diode chip on the surface of the one regular hexagonal microlens unit is all within the one regular hexagonal microlens unit, and the number of the light-emitting diode chips in the one regular hexagonal microlens unit is all the The proportion of the light-emitting diode chips is greater than or equal to 30%.
  • a diffusing sheet is further included, the diffusing sheet is disposed on the light path of the outgoing light of the collimating lens group, and the diffusing sheet is used to homogenize the light beam emitted by the collimating lens.
  • the collimating lens group includes a set of collecting lenses, and the collecting lenses are aspherical, so that the center and edge light beams of the light emitting diode chip completely or partially overlap the far-field light spots after passing through the collecting lenses. .
  • it also includes a converging lens and a diaphragm, the converging lens is arranged on the light exit light path of the collimating lens group, and the converging lens is used for collecting and converging the light beams emitted by the converging lens and guiding them to the light beam. the diaphragm.
  • an embodiment of the present invention provides a light-emitting device, where the light-emitting device includes the light source system of any of the foregoing embodiments.
  • the present invention includes the following beneficial effects:
  • the light source system and the light-emitting device provided by the embodiments of the present invention, by controlling the shape of the light-emitting surface of the light-emitting diode chip, most of the image formed by the light beam emitted from the light-emitting diode chip on the surface of the micro-lens unit is located in the micro-lens unit, Therefore, the proportion of side lobes generated in the angular distribution of the light beam emitted by the light-emitting diode chip after passing through the microlens unit is reduced, and the loss of intercepted light when passing through the diaphragm after being converged by the converging lens is reduced, thereby effectively improving the light source system. light utilization.
  • FIG. 1 is a schematic structural diagram of a light source system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a fly-eye lens of the light source system of FIG. 1 .
  • FIG. 3 is a schematic structural diagram of a single light emitting diode chip of the light source system of FIG. 1 emitting a light beam.
  • FIG. 4 is a schematic diagram of the light-emitting diode chip of the present invention having a pentagon, hexagon, octagon, decagon, circle or ellipse light-emitting surface.
  • FIG. 5 is the image distribution of the fly-eye lens when the light-emitting diode chip of the prior art has a rectangular light-emitting surface.
  • FIG. 6 is a diagram of the light beam energy distribution after passing through a fly-eye lens when the light-emitting diode chip of the prior art has a rectangular light-emitting surface.
  • FIG. 10 is a schematic structural diagram of a light source system provided by another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a light source system provided by another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a light-emitting device provided by an embodiment of the present invention.
  • a light source system characterized in that it includes:
  • the light-emitting diode array includes a plurality of light-emitting diode chips
  • the collimating lens group is located on the light path of the light emitted by the light-emitting diode array, and the collimating lens group is used for collimating and outputting the light beam emitted by the light-emitting diode chip;
  • the shape of the light-emitting surface of the light-emitting diode chip is non-rectangular.
  • an embodiment of the present invention provides a light source system 100.
  • the light source system 100 includes a light emitting diode (Light Emitting Diode, LED) array 20, the light emitting diode 20 includes a plurality of light emitting diode chips 21; 20 a collimating lens group 30 on the optical path of the outgoing light, the collimating lens group includes at least two collecting lenses, each collecting lens corresponds to at least one light-emitting diode chip 21, and is used for collimating the light beam emitted by the light-emitting diode chip;
  • a compound eye lens 10 the fly eye lens 10 is disposed on the outgoing light path of the collimating lens group, the fly eye lens 10 includes a plurality of micro lens units 11, wherein at least one of the light emitting diode chips 20 is located in the All images formed on the surface of the microlens unit 11 are located within the surface of the microlens unit.
  • the light-emitting diode 20 includes a plurality of light-emitting diode chips 21. As shown in FIG. 4, the light-emitting surfaces 213 of the plurality of light-emitting diode chips 21 are pentagon, hexagon, octagon, decagon, circle or ellipse. Each light emitting diode chip 21 is used to emit a light beam 210 with a certain angular distribution, and the light beam 210 is imaged on the surface of the microlens unit 11 .
  • the fly-eye lens 10 is formed by arranging a plurality of micro-lens units 11 in an array, and the adjacent micro-lens units 11 are closely spliced with each other, so that the light beam 210 can be prevented from passing between every two micro-lens units 11
  • the gap is emitted to cause energy loss, thereby helping to improve the energy utilization rate of the light source system 100 .
  • the micro-lens unit 11 is composed of regular hexagonal and other closely arranged shapes, that is, the fly-eye lens is formed by closely splicing a plurality of regular hexagonal micro-lens units 11.
  • the micro-lens unit 11 described later refers to a single micro-lens unit.
  • the microlens unit surface expressed herein refers to a single microlens unit design surface.
  • the light-emitting diode chip 21 has a light-emitting surface 213, wherein the light-emitting surface 213 of the light-emitting diode chip 21 has the same shape as the microlens unit.
  • the light-emitting surface 213 of the light-emitting diode chip 21 is also The shape of the micro-lens unit 11 may be different; since the light-emitting surface 213 of the light-emitting diode chip 21 has a certain area, the light-emitting diode chip 21 is not an ideal particle light source, so the light beam emitted by the light-emitting diode chip 21 is a surface light source with a certain size.
  • the light beam emitted by the light-emitting diode chip 21 is imaged on the surface of the microlens unit 11 of the fly-eye lens, the light beam with a certain angular distribution is converted into a surface-distributed light beam, and the surface-distributed light beam presents the same appearance as the light-emitting diode chip 21. shape.
  • the shape of the light emitting surface of the light emitting diode chip 21 is the same as that of the micro lens unit 11 , which is beneficial for the light beam emitted from the light emitting diode chip 21 to be imaged on the surface of the fly-eye lens, thereby facilitating the light utilization rate of the light source system.
  • the light-emitting surface of the light-emitting diode chip has the same shape as the micro-lens unit of the fly-eye lens, it is more favorable for all the light emitted by the light-emitting diode chip to be imaged on the surface of the micro-lens unit 11 .
  • the light beam on the surface of the microlens can completely pass through the subsequent diaphragm through the focusing of the converging lens, thus improving the light utilization rate of the light source system.
  • the imaging of the light emitted by the light-emitting diode chip 21 on the surface of the micro-lens unit 11 will cut the surface of the micro-lens unit 11, that is, the light emitted from the light-emitting diode chip 21 will The imaged image will not completely fall on the surface of the microlens unit 11, and a part of the image will be imaged on the adjacent microlens unit 11, and this part of the light beam will pass through the subsequent converging lens and cannot be lost through the diaphragm.
  • the shape of the microlens unit 11 may be no
  • the regular hexagon is spliced by seam, the light loss at this time is relatively small;
  • the light-emitting surface of the light-emitting diode chip 21 is pentagon, hexagon, octagon, decagon, circle or ellipse, the light loss at this time is small.
  • the shape of the lens unit may be circular, in which case the light loss is also small.
  • the fly-eye lens 10 includes two micro-lens units 11 , and the micro-lens units 11 are arranged at intervals along the optical path direction of the light beam 210 emitted by the light-emitting diode chip 21 , wherein the rear micro-lens unit 11 is arranged on the front micro-lens unit 11 . plane of focus.
  • the front micro-lens unit 11 is located between the collimating lens and the rear micro-lens unit 11
  • the rear micro-lens unit 11 is located between the front micro-lens unit 11 and the converging lens, and the light beams 210 emitted by the LED chip 21 pass through two
  • Each micro-lens unit 11 is uniformed, so that a good uniformity effect can be achieved.
  • the light-emitting diode chip 20 forms an image on the surface of the rear micro-lens unit 11 , and the formed image is located on the surface of the rear micro-lens unit 11 . surface.
  • a plurality of LED chips 21 form a LED array 20 , which facilitates the light source system 100 to form a bright spot, so that the light source system 100 can be applied to stage lighting such as spotlights and back lights.
  • the number of light-emitting diode chips 21 is less than or equal to the number of microlens units 11 , and a plurality of light-emitting diode chips 21 are arranged in an array.
  • the light source system 100 can collect, condense, and collimate the light beam 210 by setting the collimating lens group 30 to guide the light beam 210 to the corresponding micro-lens unit 11 .
  • the loss caused to the outside of the microlens unit 11, and the shape of the light beam 210 after being transmitted through the collimating lens group 30 is basically the same as the shape of the light emitting surface of the light emitting diode chip 21, so that the shape of the light emitting diode chip 21 can be controlled by controlling the shape of the light emitting diode chip 21. to form the desired beam 210 shape.
  • the light-emitting surface of the LED chip 21 is pentagon, hexagon, octagon, decagon, circle or ellipse
  • the collimating lens group 30 is disposed on the LED chip 21 and the fly-eye lens 10
  • the collimating lens group 30 may be composed of one or more than one lens, the collimating lens group 30 shown in FIG. , converged, collimated and then guided to the corresponding microlens unit 11 .
  • the image formed by the light beam 210 on the surface of the microlens unit 11 may only be on the surface of one microlens unit 11, or may be on the surface of two or more than two microlens units 11. .
  • the images formed by the light beams 210 on the surface of the microlens unit 11 are all located on the surface of one microlens sub-unit 110. At this time, the light beams imaged on the surface of the microlens can completely pass through the subsequent diaphragm through the focusing of the converging lens.
  • the light source system high light utilization.
  • a fly-eye lens spliced with regular hexagonal micro-lens units 11 is used as an example to illustrate the imaging of light-emitting diode chips 21 of different shapes on the micro-lens unit 11 of the fly-eye lens, as shown in the figure.
  • the image of the LED chip 21 with a rectangular light-emitting surface in the microlens unit 11 of the fly-eye lens is not completely distributed in a regular hexagonal microlens unit.
  • the image formed on the surface of the lens sub-unit 11 will cut a micro-lens unit 11, so that the light beam represented by the image located in one micro-lens unit 11 will be used, and the light beam represented by the image located outside the micro-lens unit 11 will be After passing through the fly-eye lens, the side lobes shown in Figure 6 will be generated, and after most of the beam energy included in the side lobes is collected by the lens, due to the excessively large aperture angle, it will be blocked by the diaphragm, thereby reducing the light utilization rate of the light source system. .
  • the image distribution of the light-emitting surface of the light-emitting diode chip 21 on the regular hexagonal microlens unit 11 of the fly-eye lens is also cut.
  • a single micro-lens unit 11 makes a part of the light beam image located on the adjacent micro-lens unit 11, but compared with the light-emitting diode chip 21 with a rectangular light-emitting surface, the pentagonal light-emitting surface has more light beam images distributed on a single micro-lens unit Within 11, the light utilization rate of the light source system is higher, and the subsequent analysis will be combined with specific experimental data.
  • the light-emitting surface of the light-emitting diode chip 21 in the embodiment of the present application is hexagonal
  • the image of the light emitted by the chip 21 almost completely falls within the single microlens unit 11.
  • more images of the hexagonal light-emitting surface are distributed in the single microlens unit 110. , the light utilization rate of the light source system is higher, and the subsequent analysis will be combined with specific experimental data.
  • the light-emitting surface of the light-emitting diode chip 21 in the embodiment of the present application is circular
  • the image of the light emitted from the chip 21 almost completely falls within the single micro-lens unit 110.
  • more images of the circular light-emitting surface are distributed in the micro-lens sub-unit 110.
  • the light utilization rate of the light source system is higher, and subsequent analysis will be combined with specific experimental data.
  • the imaging of the light beam emitted from the light emitting diode chip 21 completely falls within the single microlens unit 11. At this time, all the light beams emitted from the light emitting diode chip are emitted by the light source system, and the light utilization rate is the highest. Due to the non-one-to-one correspondence between the array of light-emitting diode chips and the array of microlenses, there must be some images of the light beams emitted from the light-emitting diode chips 21 that cut the monocular surface of the microlens.
  • the proportion of the number of light-emitting diode chips 21 in all the light-emitting diode chips 21 When it is greater than or equal to 30%, the light source system has a high light utilization rate.
  • the light beam 210 emitted by the light emitting diode chip 21 has many side lobes in the angular distribution after passing through the micro lens unit 11, and the side lobes account for a relatively high energy of the total energy of the light beam 210, resulting in the light utilization rate of the light source system 100.
  • the proportion of the number of the light-emitting diode chips 21 in all the light-emitting diode chips 21 is greater than or equal to At 30%, the proportion of side lobes generated in the angular distribution of the light beam 210 emitted by the light-emitting diode chip 21 after passing through the microlens unit 11 is reduced, that is, the proportion of the lost light intercepted by the diaphragm is reduced, thereby effectively improving the light source system. 100 light utilization.
  • the image formed by the light beams emitted by the light emitting diode chips 21 on the surface of the micro lens unit 11 is completely within one micro lens unit 11. %, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95%, 98%, etc.
  • Table 1 is the experimental data of the light utilization rate of different light-emitting surfaces.
  • the light source system of each experiment is the same. The difference is that the light-emitting area of the light-emitting diode chip is different. It should be noted that no matter what light-emitting area and light-emitting shape of the light-emitting diode is used, the light-emitting intensity per unit area is unchanged, then according to conventional theory, increase the light-emitting area of the light-emitting diode.
  • the terminal luminous intensity of the light source system will be greater, but through experimental simulation, the luminous intensity of the light source system does not increase linearly with the light-emitting area of the light-emitting diode, that is, the light intensity of the light source system terminal is not related to the light-emitting area of the light-emitting diode. Positive correlation, the increased light intensity of the LED is not utilized by the light source system, and the efficiency ratio (light utilization rate) of the light source system at this time is very low.
  • the efficiency ratio of the light source system in this experiment is, we assume that the luminous intensity of the 1.595mm*1.25mm rectangular light-emitting surface is A, of which 60% of the energy in A is consumed by the light source.
  • the system uses, that is to say, the light energy output by the light source system terminal is 0.6A.
  • the light source system efficiency ratios of other chips with different light-emitting surfaces are calculated.
  • Experiment 1 uses a 1.595mm*1.25mm rectangular light-emitting surface chip, the light-emitting area of the light-emitting diode chip is 1.99 square millimeters, and the normalized light source system efficiency ratio is 100.00%.
  • Experiment 2 uses a 1.658mm*1.3mm rectangular light-emitting surface chip, the light-emitting area of the light-emitting diode chip is 2.15 square millimeters, and the normalized light source system efficiency ratio is still 100.00%. It can be seen that simply increasing the light-emitting area of the light-emitting diode chip does not It will improve the efficiency ratio of the light source system, and the light utilization rate of the light source system is low. The main reason for the analysis is that the increased light-emitting area is not imaged on the surface of a single microlens unit, so that it is intercepted in the subsequent light processing.
  • experiment 3 a circular light-emitting surface chip with a diameter of 1.7 mm was used.
  • the light-emitting area of the light-emitting diode chip was 2.27 square millimeters.
  • the normalized light source system efficiency ratio was 110.78%. It can be seen that the light source system efficiency ratio of the circular light-emitting surface is higher.
  • the light utilization rate of the light source system is higher, that is to say, the circular light-emitting surface of the light-emitting diode chip has a similar light-emitting area, and more light beams are imaged on the surface of the micro-lens unit to be utilized.
  • Experiment 4 uses a regular hexagonal light-emitting surface chip with an inscribed circle diameter of 1.55 mm, the light-emitting area of the light-emitting diode chip is 2.08 square millimeters, and the normalized light source system efficiency ratio is 109.80%. It can be seen that the light source system with a regular hexagonal light-emitting surface The efficiency ratio is higher, and the light utilization rate of the light source system is higher, that is to say, the regular hexagonal light-emitting surface of the light-emitting diode chip has a similar light-emitting area, and more light beams are imaged on the surface of the micro-lens unit to be utilized.
  • Experiment 5 uses a regular hexagonal light-emitting surface chip with an inscribed circle diameter of 1.5 mm.
  • the light-emitting area of the light-emitting diode chip is 1.95 square millimeters.
  • the normalized light source system efficiency ratio is 107.66%, and the light source system with a regular hexagonal light-emitting surface can be seen. The efficiency ratio is higher, and thus the light utilization rate of the light source system is higher.
  • the reduction of the light-emitting area does not cause a significant decrease in the efficiency ratio of the light source system.
  • Experiment 6 uses a regular hexagonal light-emitting surface chip with an inscribed circle diameter of 1.6 mm.
  • the light-emitting area of the light-emitting diode chip is 2.22 square millimeters.
  • the normalized light source system efficiency ratio is 110.45%, and the light source system with a regular hexagonal light-emitting surface can be seen. The efficiency ratio is higher, and thus the light utilization rate of the light source system is higher.
  • the increase of the light-emitting area does not cause a significant improvement in the efficiency ratio of the light source system.
  • Experiment 7 uses a regular hexagonal light-emitting surface chip with an inscribed circle diameter of 1.7 mm, the light-emitting area of the light-emitting diode chip is 2.5 mm2, and the normalized light source system efficiency ratio is 110.91%. It can be seen that the light source system with a regular hexagonal light-emitting surface The efficiency ratio is higher, and thus the light utilization rate of the light source system is higher. And compared with the regular hexagonal light-emitting surface of experiment 6, the increase of the light-emitting area does not cause a significant improvement in the efficiency ratio of the light source system.
  • the change of the light-emitting surface of the light-emitting diode chip can improve the efficiency ratio of the light source system.
  • the proportion of the imaging beam is larger, that is, most of the beam imaging is located in a single micro-lens unit, and after being focused by the converging lens, it can pass through the diaphragm, and the light utilization rate of the light source system is high.
  • the light source system 100 further includes a converging lens 40 and a diaphragm 50 .
  • the converging lens 40 is disposed between the fly-eye lens 10 and the diaphragm 50 , and the converging lens 40 is used for collecting and converging the light beams emitted from the fly-eye lens 10 . Guided to the aperture 51 of the diaphragm 50 and projected out of the light source system 100 .
  • the light source system 200 includes a light emitting diode (Light Emitting Diode, LED) array 20, the light emitting diode 20 includes a plurality of light emitting diode chips 21;
  • the collimating lens group 30 on the light path of the light emitted from the diode array 20 includes at least two collecting lenses, and each collecting lens corresponds to at least one light-emitting diode chip 21 , and is used for collimating the light beams emitted by the light-emitting diode chips.
  • the light source system 100 further includes a converging lens 40 and a diaphragm 50.
  • the converging lens 40 is disposed between the diffusing sheet 60 and the diaphragm 50.
  • the converging lens 40 is used for collecting and converging the light beams emitted from the diffusing sheet 60 and guiding them to the diaphragm 50. at the aperture 51 and projected to the outside of the light source system 100 .
  • the scattering sheet 60 is a Gaussian scattering sheet.
  • the diffusing sheet may also be a single fly-eye lens group, and the single fly-eye lens group may include a plurality of lens units with a constant curvature radius to emit light spot distribution with better uniformity, or It includes a plurality of lens units with varying radius of curvature to emit light spot distribution with varying uniformity.
  • the light-emitting diode 20 includes a plurality of light-emitting diode chips 21. As shown in FIG. 4, the light-emitting surfaces 213 of the plurality of light-emitting diode chips 21 are pentagon, hexagon, octagon, decagon, circle or ellipse. Each light emitting diode chip 21 is used for emitting a light beam 210 with a certain angular distribution, and the light beam 210 passes through the diffusing sheet 60 and then exits to the converging lens 40 .
  • the cost is lower when the output light efficiency of the light source system remains unchanged.
  • the rectangular light-emitting surface chip of the prior art needs to be matched with a fly-eye lens with a strong uniform light effect to realize the conversion of the circular spot of the outgoing light for use in terminal products, but the price of the fly-eye lens is high and does not have the advantage of cost.
  • the light-emitting diode chip of this embodiment adopts a pentagonal, hexagonal, octagonal, decagonal, circular or elliptical light-emitting surface.
  • the light source system can already emit high-quality light spots. That is to say, due to the improvement of the light-emitting surface of the light-emitting diode chip, the requirements for uniform light devices are further reduced, so that the light effect quality of the light source system can be guaranteed. At the same time, the cost fell.
  • the light source system 300 includes a light emitting diode (Light Emitting Diode, LED) array 20, the light emitting diode 20 includes a plurality of light emitting diode chips 21;
  • the light source system 100 also includes a converging lens 40 and a light Stop 50, the converging lens 40 is arranged on the light path of the exit light of the collimating lens group, and the converging lens 40 is used to collect the light beams emitted from the collimating lens group 30, and guide them to the aperture 51 of the stop 50 and project them to the light source. outside of system 100.
  • the light emitting diode 20 includes a plurality of light emitting diode chips 21, and the light emitting surface 213 of the plurality of light emitting diode chips 21 is pentagon, hexagon, octagon, decagon, circle or ellipse.
  • Each light emitting diode chip 21 It is used to emit a light beam 210 with a certain angular distribution.
  • the light beam 210 is collimated by the collimating lens 30 and then exits to the converging lens 40 .
  • the light-emitting diode chip of this embodiment adopts a pentagon, hexagon, octagon, decagon, circle or ellipse light-emitting surface, and the light spot of the light emitted by the light-emitting diode chip itself is relatively small.
  • the rectangular light-emitting surface has been improved, so that the light source system can already emit high-quality light spots without any need for uniform light devices. requirements, so that the cost is reduced while ensuring the light effect quality of the light source system.
  • the collimating lens group includes a group of collecting lenses, the collecting lenses are specially designed aspherical surfaces, and the design effect is Kola illumination, that is, the light beams in the center and edge field of view of the light-emitting diode chip pass through the collecting lenses.
  • the field light spots are completely or partially coincident.
  • the light beams collected by the collecting lens 40 have better light spot uniformity at the diaphragm 50.
  • the Kola illumination optical system is composed of two lenses, and is configured so that when the front lens gathers light to illuminate the focal plane, the front lens does not image the light source image on the object surface, but images the light source image.
  • the rear lens forms an image of the four sides of the outer shape of the front lens on the target surface (the surface to be illuminated), and uniformly illuminates the target surface.
  • this embodiment can not only solve the problem of low light utilization, but also solve the problem of uneven color between the center and the edge of the light source system.
  • an embodiment of the present invention provides a light-emitting device 500 , and the light-emitting device 200 includes the light source system of any of the foregoing embodiments.
  • the light emitting device 500 may be a spotlight, a back light, a cinema projector, an engineering projector, a pico projector, an educational projector, a wall projector, a laser TV, and the like.
  • the light emitting device 500 further includes a housing 201, and the light source system is disposed in the housing 201.
  • the housing 201 can protect the light source system and prevent the light source system from being directly collided by the external environment.
  • the light-emitting device 500 provided by the embodiment of the present invention controls the shape of the light-emitting surface of the light-emitting diode chip, so that the outgoing light beam imaged on the surface of the micro-lens unit is located in the micro-lens unit as much as possible, thereby reducing the light beam emitted by the light-emitting diode chip 21 through the micro-lens unit.
  • the ratio of the angular distribution generated by the lens unit 11 reduces the loss of light processed by the converging lens, thereby effectively improving the light utilization rate of the light source system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源系统(100),包括:发光二极管阵列(20),所述发光二极管阵列(20)包括多个发光二极管芯片(21);准直透镜组(30),所述准直透镜组(30)位于发光二极管阵列(20)出射光光路上,所述准直透镜组(30)用于对所述发光二极管芯片(21)出射的光束进行准直出射;其中,所述发光二极管芯片(21)的发光面形状为非矩形。该光源系统(100)通过控制所述发光二极管芯片(21)的发光面形状,使得发光二极管芯片(21)出射光束在微透镜单元(11)表面所成的像大部分位于所述微透镜单元(11)内,从而减小了发光二极管芯片(21)发出的光束经微透镜单元(11)后在角分布上产生旁瓣的比例,降低了经汇聚透镜(40)汇聚后经光阑(50)时被拦截光的损失,从而有效地提高了光源系统(100)的光利用率。

Description

光源系统及发光设备 技术领域
本发明涉及照明技术领域,特别是涉及一种光源系统及发光设备。
背景技术
在照明领域中,一般采用发光二极管(Light Emitting Diode,LED)作为系统的光源,现有技术中方形发光二极管的光利用率较低,如何进一步提高系统的光源的能量利用率已成为越来越重要的问题。
发明内容
针对上述现有技术的光源系统光利用低的缺陷,本发明提供一种光源系统,其特征在于,包括:
发光二极管阵列,所述发光二极管阵列包括多个发光二极管芯片;
准直透镜组,所述准直透镜组位于发光二极管阵列出射光光路上,所述准直透镜组用于对所述发光二极管芯片出射的光束进行准直出射;
其中,所述发光二极管芯片的发光面形状为非矩形。
在一实施方式中,所述发光二极管的芯片发光面为五边形、六边形、八边形、十边形、圆形和椭圆形中的一种。
在一实施方式中,所述准直透镜组包括至少一个收集透镜,每个收集透镜至少对应一个发光二极管芯片,用于对发光二极管芯片出射的光束进行准直。
在一实施方式中,还包括复眼透镜,所述复眼透镜设置于所述准直透镜组的出射光光路上,所述复眼透镜包括多个可紧密排列的微透镜单元;
所述发光二极管芯片出射光束在所述一个微透镜单元表面内成像,或所述发光二极管芯片出射光束在所述一个微透镜单元表面成像切割所述微透镜单元。
在一实施方式中,所述微透镜单元为正六边形组成,所述发光二极管芯片出射光束在所述一个正六边形微透镜单元表面所成的像全部在一个所述微透镜单元内。
在一实施方式中,所述发光二极管芯片发出的光束在所述一个正六边形微透镜单元表面所成的像全部在所述一个正六边形微透镜单元内的所述发光二极管芯片数量在全部所述发光二极管芯片中的占比大于或等于30%。
在一实施方式中,还包括散射片,所述散射片设置于所述准直透镜组的出射光光路上,所述散射片用于对所述准直透镜出射的光束进行匀光。
在一实施方式中,所述准直透镜组包括一组收集透镜,所述收集透镜为非球面,使得所述发光二极管芯片中心和边缘光束经过所述收集透镜后远场光斑完全重合或部分重合。
在一实施方式中,还包括汇聚透镜和光阑,所述汇聚透镜设置于所述准直透镜组的出光光路上,所述汇聚透镜用于对经其所出射的光束进行收集、汇聚后引导至所述光阑。
第二方面,本发明实施例提供一种发光设备,发光设备包括上述任一实施例的光源系统。
与现有技术相比,本发明包括如下有益效果:
本发明实施例提供的光源系统与发光设备,通过控制所述发光二极管芯片发光面的形状,使的发光二极管芯片出射光束在微透镜单元表面所成的像大部分位于所述微透镜单元内,从而减小了发光二极管 芯片发出的光束经微透镜单元后在角分布上产生旁瓣的比例,降低了经汇聚透镜汇聚后经光阑时被拦截光的损失,从而有效地提高了光源系统的光利用率。
附图说明
图1是本发明实施例提供的光源系统的结构示意图。
图2是图1的光源系统的复眼透镜的结构示意图。
图3是图1的光源系统的单个发光二极管芯片发出光束的结构示意图。
图4是本发明的发光二极管芯片为五边形、六边形、八边形、十边形、圆形或椭圆形发光面的示意图。
图5是现有技术的发光二极管芯片为矩形发光面时在复眼透镜的像分布。
图6是现有技术的发光二极管芯片为矩形发光面时经复眼透镜后的光束能量分布图。
图7是本发明的发光二极管芯片为五边形发光面时在复眼透镜的像分布。
图8是本发明的发光二极管芯片为六边形发光面时在复眼透镜的像分布。
图9是本发明的发光二极管芯片为圆形发光面时在复眼透镜的像分布。
图10是本发明另一实施例提供的光源系统的结构示意图。
图11是本发明另一实施例提供的光源系统的结构示意图。
图12是本发明实施例提供的发光设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种光源系统,其特征在于,包括:
发光二极管阵列,所述发光二极管阵列包括多个发光二极管芯片;
准直透镜组,所述准直透镜组位于发光二极管阵列出射光光路上,所述准直透镜组用于对所述发光二极管芯片出射的光束进行准直出射;
其中,所述发光二极管芯片的发光面形状为非矩形。
下面结合具体实施例进行说明;
请参阅图1,本发明实施例提供一种光源系统100,光源系统100包括发光二极管(Light Emitting Diode,LED)阵列20,所述发光二极管20包括多个发光二极管芯片21;以及位于发光二极管阵列20出射光光路上的准直透镜组30,所述准直透镜组包括至少两个收集透镜,每个收集透镜至少对应一个发光二极管芯片21,用于对发光二极管芯片出射的光束进行准直;复眼(Compound Eye)透镜10,所述复眼透镜10设置于准直透镜组的出射光光路上,所述复眼透镜10包括多个微透镜单元11,其中至少一所述发光二极管芯片20在所述微透镜单元11表面所成的像全部位于所述微透镜单元的表面内。
发光二极管20包括多个发光二极管芯片21,如图4所示,多个发光二极管芯片21的发光面213为五边形、六边形、八边形、十边形、圆形或椭圆形,每个发光二极管芯片21用于发出一个具有一定角分布的光束210,光束210在微透镜单元11表面成像。
如图2所示,复眼透镜10由多个微透镜单元11阵列排布形成,相邻的微透镜单元11之间相互紧密拼接,如此,能够避免光束210从每两个微透镜单元11之间的空隙出射而造成能量损耗,从而有助 于提高光源系统100的能量利用率。
微透镜单元11为正六边等可紧密排列的形状组成,即复眼透镜是由多个正六边形微透镜单元11紧密拼接而成,后文表述的微透镜单元11指单一的微透镜单元,后文表述的微透镜单元表面指的是单一的微透镜单元设计面。发光二极管芯片21具有一发光面213,其中所述发光二极管芯片21的发光面213与微透镜单元的形状相同,可以理解的,在一实施方式中,所述发光二极管芯片21的发光面213也可以与微透镜单元11的形状不相同;由于发光二极管芯片21的发光面213具有一定的面积,发光二极管芯片21并非理想的质点光源,因而发光二极管芯片21发出的光束为面光源发出的具有一定角分布的光束;当发光二极管芯片21发出的光束在复眼透镜的微透镜单元11表面成像时,此时具有一定角分布的光束转换为面分布光束,面分布光束呈现出与发光二极管芯片21相同的形状。如此,发光二极管芯片21发光面的形状与微透镜单元11的形状相同,有利于发光二极管芯片21出射光束在所述复眼透镜的表面内成像,进而有利于光源系统的光利用率。也就是说,当发光二极管芯片的发光面与复眼透镜的微透镜单元形状相同时,更有利于发光二极管芯片发出的光全部成像在所述微透镜单元11的表面内,此时成像于所述微透镜表面内的光束通过汇聚透镜的聚焦可完全通过后续的光阑,因此提高光源系统的光利用率。
进一步,对于发光二极管芯片21发光面形状与微透镜单元11的形状不同时,发光二极管芯片21出射光在微透镜单元11表面的成像会切割微透镜单元11表面,即,发光二极管芯片21出射光的成像不会完全落在微透镜单元11的表面内,会有一部分成像在相邻的微透镜单元11上,此部分光束通过后续的汇聚透镜,无法通过光阑损失 掉。
进一步,本实施例中,当发光二极管芯片21的发光面为五边形、六边形、八边形、十边形、圆形或椭圆形时,此时微透镜单元11的形状可以为无缝拼接的正六边形,此时的光损失较小;当发光二极管芯片21的发光面为五边形、六边形、八边形、十边形、圆形或椭圆形时,此时微透镜单元的形状可以为圆形,此时的光损失同样较小。
请结合图2,复眼透镜10包括两个微透镜单元11,微透镜单元11沿发光二极管芯片21发出光束210的光路方向间隔设置,其中该后微透镜单元11设置于该前微透镜单元11的焦点平面。具体来说,前微透镜单元11位于准直透镜与后微透镜单元11之间,后微透镜单元11位于前微透镜单元11和汇聚透镜之间,发光二极管芯片21发出的光束210分别经过两个微透镜单元11匀光,从而能够实现良好的均光效果,此时所述发光二极管芯片20在所述后微透镜单元11表面成像,其中所成的像位于所述后微透镜单元11的表面。
请参阅图1,多个发光二极管芯片21形成发光二极管阵列20,从而有利于光源系统100形成亮度较高的光斑,从而使得光源系统100可以应用于聚光灯、回光灯等舞台灯具。发光二极管芯片21的数量小于或等于微透镜单元11的数量,多个发光二极管芯片21阵列设置。
发光二极管芯片21发出的光束210中,光源系统100可以通过设置准直透镜组30将光束210进行收集、汇聚、准直后引导至相应的微透镜单元11,如此,不仅能够减少光束210因传播至微透镜单元11外而造成的损耗,而且还能够使得光束210经准直透镜组30透射后的形状与发光二极管芯片21的发光面的形状基本相同,从而能够通过控制发光二极管芯片21的形状来形成所需的光束210的形状。
例如参阅图3,发光二极管芯片21的发光面为五边形、六边形、八边形、十边形、圆形或椭圆形,准直透镜组30设置于发光二极管芯片21和复眼透镜10之间,准直透镜组30可以由一个或多于一个的透镜组成,图3所示的准直透镜组30由两个透镜组成,发光二极管芯片21发出的光束210经准直透镜组30收集、汇聚、准直后引导至相应的微透镜单元11。对图3中发光二极管芯片21发出的具有一定角分布光束在经过准直透镜组30后转换成的面分布光束进行仿真分析后,此时面分布光束的能量分布和二极管芯片21的发光面形状相同。
发光二极管芯片21发出的光束210中,光束210在微透镜单元11表面所成的像可以仅在一个微透镜单元11表面内,也可以在两个或多于两个的微透镜单元11表面内。光束210在微透镜单元11表面所成的像全部位于一个微透镜子单元110的表面,此时成像于所述微透镜表面内的光束通过汇聚透镜的聚焦可完全通过后续的光阑,光源系统的光利用率高。
下面选取不同发光面的发光二极管芯片21,采用正六边形的微透镜单元11拼接的复眼透镜为例,分别说明不同形状的发光二极管芯片21在复眼透镜的微透镜单元11上的成像,如图5所示,现有技术的发光面为矩形的发光二极管芯片21在复眼透镜的微透镜单元11的像不完全分布在一个正六边形微透镜单元内,也就是说,发光二极管芯片21在微透镜子单元11表面所成的像会切割一个微透镜单元11,使得位于一个微透镜单元11内的像所代表的光束会被利用,而位于微透镜单元11外的部分像所代表的光束在经过复眼透镜后,会产生图6所示意的旁瓣,而旁瓣所包括的大部分光束能量被汇聚透镜后,由于孔径角过大,会被光阑挡住,进而降低光源系统的光利用率。
如图7所示,本申请实施例的发光二极管芯片21的发光面为五边形时,发光二极管芯片21的发光面在复眼透镜正六边形微透镜单元11上的像分布,虽然也是会切割单一微透镜单元11,使得一部分光束像位于相邻微透镜单元11上,但相较于矩形发光面的发光二极管芯片21,五边形发光面有更多的光束成像分布在单一的微透镜单元11内,光源系统的光利用率更高,后续会结合具体的实验数据进行分析。
如图8所示,本申请实施例的发光二极管芯片21的发光面为六边形时,发光二极管芯片21的发光面在复眼透镜正六边形微透镜单元11上的像分布,此时发光二极管芯片21出射光的像几乎完全落在单一微透镜单元11内,相较于矩形和五边形发光面的发光二极管芯片,六边形发光面有更多的像分布在单一微透镜单元110内,光源系统的光利用率更高,后续会结合具体的实验数据进行分析。
如图9所示,本申请实施例的发光二极管芯片21的发光面为圆形时,发光二极管芯片21的发光面在复眼透镜正六边形微透镜子单元110上的像分布,此时发光二极管芯片21出射光的像几乎完全落在单一微透镜单元110内,相较于矩形和五边形发光面的发光二极管芯片,圆形发光面有更多的像分布在微透镜子单元110内,光源系统的光利用率更高,后续会结合具体的实验数据进行分析。
在一实施方式中,发光二极管芯片21出射光束的成像是完全落于所述单一的微透镜单元11内的,此时的发光二极管芯片出射光束全部被光源系统出射,光利用率最高,但由于发光二极管芯片阵列和微透镜阵列的非一一对应性,势必存在部分发光二极管芯片21出射光束的成像是切割微透镜单眼表面的。发明人通过不断的实验探索,发光二极管芯片21发出的光束在微透镜单元11表面所成的像完全在 一个微透镜单元11内的发光二极管芯片21的数量在全部发光二极管芯片21中的占比大于或等于30%时,光源系统具有较高的光利用率。
在发光二极管芯片21的数量较多时,很难保证每个发光二极管芯片21发出的光束210在微透镜单元11表面所成的像完成在一个微透镜单元11内。经发明人研究后发现,当发光二极管芯片21发出的光束在微透镜单元11表面所成的像完全在一个微透镜单元11内的发光二极管芯片211的数量在全部发光二极管芯片21中的占比小于30%时,发光二极管芯片21发出的光束210经微透镜单元11后在角分布上产生的旁瓣较多,旁瓣占光束210总能量的能量比较高,导致光源系统100的光利用率较低;而当发光二极管芯片21发出的光束在微透镜单元11表面所成的像完全在一个微透镜单元11内的发光二极管芯片21的数量在全部发光二极管芯片21中的占比大于或等于30%时,减小了发光二极管芯片21发出的光束210经微透镜单元11后在角分布上产生旁瓣的比例,即减少了被光阑拦截损失光的比例,从而有效地提高了光源系统100的光利用率。其中,发光二极管芯片21发出的光束在微透镜单元11表面所成的像完全在一个微透镜单元11内的发光二极管芯片21的数量在全部发光二极管芯片21中的占比可以为35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、90%、95%、98%等等。
表1是不同发光面的光利用率实验数据,各实验的光源系统均相同,采用图1所述的光源系统,包括准直透镜30、复眼透镜10、汇聚透镜40及光阑50,各实验的差异在于发光二极管芯片的发光面积不同,需要说明的是,无论采用何种发光面积和发光形状的发光二极管,单位面积的发光强度是不变的,那么按照常规理论,增加发光二极管的发光面积,光源系统的终端发光强度会更大,但经实验模拟, 光源系统的发光强度并没有伴随发光二极管的发光面积线性增大,也就是说,光源系统终端的光强度并非与发光二极管的发光面积正相关,增加的发光二极管光强度并没有被光源系统所利用,此时的光源系统效率比(光利用率)很低。
分析实验之前,首先说明下什么是光源系统效率比,本实验的的光源系统效率比为,我们假定1.595mm*1.25mm矩形发光面的发光强度为A,其中A中有60%的能量被光源系统所利用,也就是说,光源系统终端输出的光能量为0.6A,此时我们归一化设定光源系统的效率比为100.00%,即在后续的实验检测中,以此矩形发光面芯片作为参考,来计算其它不同发光面芯片的光源系统效率比。
实验1为采用1.595mm*1.25mm的矩形发光面芯片,发光二极管芯片的发光面积为1.99平方毫米,归一化后的光源系统效率比为100.00%,
实验2为采用1.658mm*1.3mm矩形发光面芯片,发光二极管芯片的发光面积为2.15平方毫米,归一化后的光源系统效率比仍然为100.00%,可见单一增加发光二极管芯片的发光面积并不会提高光源系统的效率比,光源系统的光利用率较低,分析原因主要还是增加的发光面积未成像在单一微透镜单元表面内,使得在后续的光处理中被拦截掉了。
实验3为采用直径1.7mm圆形发光面芯片,发光二极管芯片的发光面积为2.27平方毫米,归一化后的光源系统效率比为110.78%,可见圆形发光面的光源系统效率比更高,进而光源系统的光利用率更高,也就是说,发光二极管芯片发光面积相当的圆形发光面,有更多的光束成像在微透镜单元表面被利用。
实验4为采用内切圆直径1.55mm正六边形发光面芯片,发光二 极管芯片的发光面积为2.08平方毫米,归一化后的光源系统效率比为109.80%,可见正六边形发光面的光源系统效率比更高,进而光源系统的光利用率更高,也就是说,发光二极管芯片发光面积相当的正六边形发光面,有更多的光束成像在微透镜单元表面被利用。
实验5为采用内切圆直径1.5mm正六边形发光面芯片,发光二极管芯片的发光面积为1.95平方毫米,归一化后的光源系统效率比为107.66%,可见正六边形发光面的光源系统效率比更高,进而光源系统的光利用率更高。且相较于实验4的正六边形发光面,发光面积的减小并不会引起光源系统效率比的显著下降。
实验6为采用内切圆直径1.6mm正六边形发光面芯片,发光二极管芯片的发光面积为2.22平方毫米,归一化后的光源系统效率比为110.45%,可见正六边形发光面的光源系统效率比更高,进而光源系统的光利用率更高。且相较于实验4的正六边形发光面,发光面积的增大并不会引起光源系统效率比的显著提升。
实验7为采用内切圆直径1.7mm正六边形发光面芯片,发光二极管芯片的发光面积为2.5平方毫米,归一化后的光源系统效率比为110.91%,可见正六边形发光面的光源系统效率比更高,进而光源系统的光利用率更高。且相较于实验6的正六边形发光面,发光面积的增大并不会引起光源系统效率比的显著提升。
综上实验分析,发光二极管芯片发光面的改变更能提升光源系统效率比,或者说当发光二极管芯片发光面的形状与复眼透镜的微透镜单元形状相匹配时,发光二极管在微透镜单元上的成像光束占比更大,即光束成像大部分位于单一微透镜单元内,经汇聚透镜聚焦后更能通过光阑,进而光源系统的光利用率高。
Figure PCTCN2022073685-appb-000001
请参阅图1,光源系统100还包括汇聚透镜40和光阑50,汇聚透镜40设置于复眼透镜10与光阑50之间,汇聚透镜40用于对从复眼透镜10出射的光束进行收集、汇聚后引导至光阑50的孔径51处并投射至光源系统100外。
请参考图10,本发明另一实施例提供一种光源系统200,光源系统200包括发光二极管(Light Emitting Diode,LED)阵列20,所述发光二极管20包括多个发光二极管芯片21;以及位于发光二极管阵列20出射光光路上的准直透镜组30,所述准直透镜组包括至少两个收集透镜,每个收集透镜至少对应一个发光二极管芯片21,用于对发光二极管芯片出射的光束进行准直;散射片60,所述散射片60设置于准直透镜组的出射光光路上,所述散射片60用于对经其出射的光进行匀光,使得其具有更好的光斑均匀性。光源系统100还包括汇聚透镜40和光阑50,汇聚透镜40设置于散射片60与光阑50之间,汇聚透镜40用于对从散射片60出射的光束进行收集、汇聚后引导至光阑50的孔径51处并投射至光源系统100外。在一实施例中,所述散射片60为高斯散射片。
需要说明的是,在一实施例中,散射片也可以是单复眼透镜组, 所述单复眼透镜组可以包括多个曲率半径不变的透镜单元,以出射均匀性较好的光斑分布,或包括多个曲率半径变化的透镜单元,以出射均匀性变化的光斑分布。
发光二极管20包括多个发光二极管芯片21,如图4所示,多个发光二极管芯片21的发光面213为五边形、六边形、八边形、十边形、圆形或椭圆形,每个发光二极管芯片21用于发出一个具有一定角分布的光束210,光束210经过散射片60匀光后出射至汇聚透镜40。
本实施例相较于采用复眼透镜匀光的方案,在光源系统输出光效不变的情况成本更低。现有技术的矩形发光面芯片需搭配匀光效果较强的复眼透镜,方可实现出射光圆光斑的转换以用于终端产品,但复眼透镜的价格较高,不具有成本化优势。本实施例的发光二极管芯片采用五边形、六边形、八边形、十边形、圆形或椭圆形发光面,发光二极管芯片自身出射光的光斑较矩形发光面有改善,使得在搭配常规的散射片的情况,光源系统已经可以出射高品质的光斑,也就是说,由于发光二极管芯片发光面的改善,进一步减小了对匀光器件的要求,使得在保障光源系统的光效品质的同时,成本下降。
请参考图11,本发明另一实施例提供一种光源系统300,光源系统300包括发光二极管(Light Emitting Diode,LED)阵列20,所述发光二极管20包括多个发光二极管芯片21;以及位于发光二极管阵列20出射光光路上的准直透镜组30,所述准直透镜组至少对应一个发光二极管芯片21,用于对发光二极管芯片出射的光束进行准直;光源系统100还包括汇聚透镜40和光阑50,汇聚透镜40设置于准直透镜组出射光光路上,汇聚透镜40用于对从准直透镜组30出射的光束进行收集、汇聚后引导至光阑50的孔径51处并投射至光源系统 100外。
发光二极管20包括多个发光二极管芯片21,多个发光二极管芯片21的发光面213为五边形、六边形、八边形、十边形、圆形或椭圆形,每个发光二极管芯片21用于发出一个具有一定角分布的光束210,光束210经过准直透镜30准直后出射至汇聚透镜40。
本实施例相较于传统方案,本实施例的发光二极管芯片采用五边形、六边形、八边形、十边形、圆形或椭圆形发光面,发光二极管芯片自身出射光的光斑较矩形发光面有改善,使得在不需要搭配任何匀光器件的情况,光源系统已经可以出射高品质的光斑,也就是说,由于发光二极管芯片发光面的改善,进一步减小了对匀光器件的要求,使得在保障光源系统的光效品质的同时,成本下降。
进一步,在一实施例中,准直透镜组包括一组收集透镜,收集透镜为特殊设计的非球面,设计效果为柯拉照明,即发光二极管芯片中心和边缘视场的光束经过收集透镜后远场光斑完全重合或部分重合,本实施例通过设计特殊的非球面收集透镜,使得经汇聚透镜40汇聚的光束在光阑50处的光斑均匀性更好,
一般而言,柯拉照明光学系统由两片透镜构成,通过配置为,当前段透镜将光聚集而将聚焦面照明时,前段透镜不是将光源像成像在对象面上,而是将光源像成像在后段透镜中央的面上,后段透镜将前段透镜的外形的四边形成像在对象面(想要照明的面)上,将对象面均匀地照明。相较于现有技术,本实施例不仅可以解决光利用低的问题,还可以解决光源系统中心与边缘颜色不均匀的问题。
请参阅图12,本发明实施例提供一种发光设备500,发光设备200包括上述任一实施例的光源系统。
具体地,发光设备500可以为聚光灯、回光灯、影院投影机、工 程投影机、微型投影机、教育投影机、拼墙投影机、激光电视等等。发光设备500还包括壳体201,光源系统设置于壳体201内,壳体201能够保护光源系统,避免光源系统直接受到外界环境的碰撞。
本发明实施例提供的发光设备500通过控制发光二极管芯片发光面的形状,使得出射光束在微透镜单元表面所成像尽可能位于微透镜单元内,从而减小了发光二极管芯片21发出的光束经微透镜单元11后在角分布上产生的比例,降低了经汇聚透镜处理后的光的损失,从而有效地提高了光源系统的光利用率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种光源系统,其特征在于,包括:
    发光二极管阵列,所述发光二极管阵列包括多个发光二极管芯片;
    准直透镜组,所述准直透镜组位于发光二极管阵列出射光光路上,所述准直透镜组用于对所述发光二极管芯片出射的光束进行准直出射;
    其中,所述发光二极管芯片的发光面形状为非矩形。
  2. 根据权利要求1所述的光源系统,其特征在于,所述发光二极管的芯片发光面为五边形、六边形、八边形、十边形、圆形和椭圆形中的一种。
  3. 根据权利要求2所述的光源系统,其特征在于,所述准直透镜组包括至少一个收集透镜,每个收集透镜至少对应一个发光二极管芯片,用于对发光二极管芯片出射的光束进行准直。
  4. 根据权利要求3所述的光源系统,其特征在于,还包括复眼透镜,所述复眼透镜设置于所述准直透镜组的出射光光路上,所述复眼透镜包括多个可紧密排列的微透镜单元;
    所述发光二极管芯片出射光束在所述一个微透镜单元表面内成像,或所述发光二极管芯片出射光束在所述一个微透镜单元表面成像切割所述微透镜单元。
  5. 根据权利要求4所述的光源系统,其特征在于,所述微透镜单元为正六边形组成,所述发光二极管芯片出射光束在所述一个正六边形 微透镜单元表面所成的像全部在一个所述微透镜单元内。
  6. 根据权利要求5所述的光源系统,其特征在于,所述发光二极管芯片发出的光束在所述一个正六边形微透镜单元表面所成的像全部在所述一个正六边形微透镜单元内的所述发光二极管芯片数量在全部所述发光二极管芯片中的占比大于或等于30%。
  7. 根据权利要求3所述的光源系统,其特征在于,还包括散射片,所述散射片设置于所述准直透镜组的出射光光路上,所述散射片用于对所述准直透镜出射的光束进行匀光。
  8. 根据权利要求2所述的光源系统,其特征在于,所述准直透镜组包括一组收集透镜,所述收集透镜为非球面,使得所述发光二极管芯片中心和边缘光束经过所述收集透镜后远场光斑完全重合或部分重合。
  9. 根据权利要求1所述的光源系统,其特征在于,还包括汇聚透镜和光阑,所述汇聚透镜设置于所述准直透镜组的出光光路上,所述汇聚透镜用于对经其所出射的光束进行收集、汇聚后引导至所述光阑。
  10. 一种发光设备,其特征在于,包括权利要求1至9任一项所述的光源系统。
PCT/CN2022/073685 2021-01-30 2022-01-25 光源系统及发光设备 WO2022161339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110131387.4 2021-01-30
CN202110131387.4A CN114838298A (zh) 2021-01-30 2021-01-30 光源系统及发光设备

Publications (1)

Publication Number Publication Date
WO2022161339A1 true WO2022161339A1 (zh) 2022-08-04

Family

ID=82561375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073685 WO2022161339A1 (zh) 2021-01-30 2022-01-25 光源系统及发光设备

Country Status (2)

Country Link
CN (1) CN114838298A (zh)
WO (1) WO2022161339A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840049A (zh) * 2012-11-23 2014-06-04 苏州科医世凯半导体技术有限责任公司 一种可定制发光面形状的半导体led光源
CN103968270A (zh) * 2013-01-31 2014-08-06 深圳市光峰光电技术有限公司 一种led光源系统
CN210956718U (zh) * 2019-11-07 2020-07-07 河源市众拓光电科技有限公司 一种垂直结构led芯片
CN112161208A (zh) * 2020-09-28 2021-01-01 广州光联电子科技有限公司 一种发光装置
CN214700316U (zh) * 2021-01-30 2021-11-12 深圳市绎立锐光科技开发有限公司 光源系统及发光设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840049A (zh) * 2012-11-23 2014-06-04 苏州科医世凯半导体技术有限责任公司 一种可定制发光面形状的半导体led光源
CN103968270A (zh) * 2013-01-31 2014-08-06 深圳市光峰光电技术有限公司 一种led光源系统
CN210956718U (zh) * 2019-11-07 2020-07-07 河源市众拓光电科技有限公司 一种垂直结构led芯片
CN112161208A (zh) * 2020-09-28 2021-01-01 广州光联电子科技有限公司 一种发光装置
CN214700316U (zh) * 2021-01-30 2021-11-12 深圳市绎立锐光科技开发有限公司 光源系统及发光设备

Also Published As

Publication number Publication date
CN114838298A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
US10627637B2 (en) Optical system and light fixture using the same
CN108533980B (zh) 激光光源、发光装置和灯具
JP2007165899A (ja) 発光ダイオード用偏向レンズ
WO2020052236A1 (zh) 一种led光源的光学系统
CN113867088A (zh) 光学照明系统及激光投影设备
WO2021098450A1 (zh) 光源系统和发光设备
CN114236957A (zh) 激光光源及激光投影设备
CN214700316U (zh) 光源系统及发光设备
CN105020674A (zh) 光源装置
CN113960868A (zh) 激光光源及激光投影设备
WO2022161339A1 (zh) 光源系统及发光设备
CN113641066A (zh) 照明系统和激光投影设备
JP6748424B2 (ja) 発光装置、面光源装置および表示装置
CN218974749U (zh) 一种摄影灯
CN112576944B (zh) 一种照明系统
WO2021078290A1 (zh) 光源系统
WO2021036719A1 (zh) 一种照明装置
WO2020082975A1 (zh) 显示设备与显示系统
CN210243885U (zh) 补光灯偏光透镜及使用该透镜的拍摄设备
CN113867051A (zh) 一种高亮度且可控发光展角的背光模组
WO2020125302A1 (zh) 光源改善装置
CN113376945A (zh) 照明系统和投影设备
CN215642214U (zh) 一种紧凑性匀光的用于投影仪的照明器
CN213656646U (zh) 一种光阑
CN217238507U (zh) 一种球面光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745214

Country of ref document: EP

Kind code of ref document: A1