WO2022161305A1 - 耳机状态检测方法及装置 - Google Patents

耳机状态检测方法及装置 Download PDF

Info

Publication number
WO2022161305A1
WO2022161305A1 PCT/CN2022/073442 CN2022073442W WO2022161305A1 WO 2022161305 A1 WO2022161305 A1 WO 2022161305A1 CN 2022073442 W CN2022073442 W CN 2022073442W WO 2022161305 A1 WO2022161305 A1 WO 2022161305A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance value
earphone
capacitance
capacitive sensor
value
Prior art date
Application number
PCT/CN2022/073442
Other languages
English (en)
French (fr)
Inventor
尚岸奇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022161305A1 publication Critical patent/WO2022161305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present application belongs to the technical field of earphones, and in particular relates to a method and device for detecting a state of an earphone.
  • a sensor is provided on the earphone to detect whether the earphone is worn, and the sensitivity of the sensor is limited due to the limitation of the volume.
  • liquids such as water droplets and sweat will appear, and the liquid adhering to the earphone will cause a large error in the sensor detection.
  • the change of the external temperature will also affect the accuracy of the sensor detection, resulting in a wrong judgment on whether the headset is worn.
  • the present application aims to provide an earphone state detection method, at least to solve the problem of inability to accurately detect whether the earphone is worn.
  • an embodiment of the present application proposes a method for detecting a state of an earphone, and the method is applied to an earphone, wherein the earphone includes a housing and a main board, a first capacitive sensor and a second capacitive sensor located in the housing;
  • the mainboard is electrically connected to the first capacitive sensor and the second capacitive sensor, respectively, and a grounding area is provided on the mainboard;
  • the first capacitive sensor is located between the housing and the second capacitive sensor ;
  • the second capacitive sensor is located between the first capacitive sensor and the motherboard;
  • the method includes:
  • an embodiment of the present application provides an earphone state detection device, the device is applied to an earphone, and the earphone includes a casing and a main board, a first capacitive sensor and a second capacitive sensor located in the casing;
  • the mainboard is electrically connected to the first capacitive sensor and the second capacitive sensor, respectively, and a grounding area is provided on the mainboard;
  • the first capacitive sensor is located between the housing and the second capacitive sensor ;
  • the second capacitive sensor is located between the first capacitive sensor and the motherboard;
  • the device includes:
  • an acquisition module configured to acquire a first capacitance value output by the first capacitance sensor and a second capacitance value output by the second capacitance sensor;
  • a determination module configured to determine that the earphone is in a wearing state when the first capacitance value and the second capacitance value satisfy a preset condition.
  • an embodiment of the present application provides an earphone, the earphone includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being The processor implements the steps of the earphone state detection method according to the first aspect when executed.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the earphone state detection according to the first aspect is implemented steps of the method.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction, and implement the first aspect the method described.
  • FIG. 1 is a schematic structural diagram of a part of an earphone according to an embodiment of the present application.
  • FIG. 2 is one of the detection flowcharts for detecting whether an earphone is worn according to an embodiment of the present application
  • FIG. 3 is the second flow chart of detecting whether an earphone is worn according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of an apparatus for detecting an earphone state according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hardware structure of an earphone according to an embodiment of the present application.
  • the earphone state detection method, detection device, earphone, and readable storage medium provided by the embodiments of the present application will be described in detail below with reference to FIGS. 1 to 5 , through specific embodiments and application scenarios.
  • an earphone state detection method is provided, and the earphone state detection method is applied to an earphone.
  • the earphone includes a casing 14 , a main board 13 , a first capacitive sensor 11 and a second capacitive sensor 12 located in the casing 14 .
  • the mainboard 13 is electrically connected to the first capacitive sensor 11 and the second capacitive sensor 12 respectively, and the mainboard 13 is provided with a grounding area 2; the first capacitive sensor 11 is located between the housing 14 and the between the second capacitive sensor 12 ; the second capacitive sensor 12 is located between the first capacitive sensor 11 and the motherboard 13 .
  • the method includes:
  • the first capacitive sensor 11 is located between the second capacitive sensor 12 and the casing 14 , the first capacitive sensor 11 senses the capacitance value on one side of the casing 14 , and the second capacitive sensor 12 senses the side of the main board 13 . capacitance value.
  • the capacitance value of the first capacitive sensor 11 is not affected by the side of the main board 13
  • the capacitance value of the second capacitive sensor 12 is not affected by the side of the casing 14 .
  • the conditions in which the earphone is in the wearing state can affect the capacitance values of the first capacitance sensor 11 and the second capacitance sensor 12 .
  • the first capacitance value and the second capacitance value correspondingly reflect the influence of the external conditions on the first capacitance sensor 11 and the second capacitance sensor 12 .
  • the external condition that affects the earphone is the condition that the earphone is in a wearing state.
  • the present application can more accurately detect whether the earphone is in a wearing state.
  • an earphone state detection method includes:
  • S2100 Acquire a first capacitance value output by the first capacitance sensor 11 and a second capacitance value output by the second capacitance sensor 12;
  • S2200 in the case that the first capacitance value and the second capacitance value satisfy a preset condition, determining that the earphone is in a wearing state, including:
  • the casing 14 when the earphone is in the wearing state, the casing 14 is in contact with the user, and the user provides the first capacitance sensor 11 with a low ground potential, thereby affecting the first capacitance sensor 11 to generate a first capacitance value.
  • the first capacitive sensor 11 when the first capacitive sensor 11 is in contact with the user, influences other than those used for contact are also affected.
  • the mainboard 13 provides grounding to the second capacitive sensor 12 , the second capacitive sensor 12 is affected on the side of the mainboard 13 to generate a first capacitance value, and the influence of the second capacitive sensor 12 is not affected by user contact.
  • the influence other than the contact is eliminated, so that the difference only reflects the influence caused by the contact.
  • the difference value is greater than the third threshold value, it is determined that only the capacitance value of the first capacitance sensor 11 due to the contact satisfies the contact condition for the earphone and the wearing state. Further combining with the judgment that the second capacitance value satisfies the second threshold, it is possible to more accurately judge whether the earphone is in a wearing state.
  • the first change value of the first capacitance value within the first time period it is possible to avoid the influence of the capacitance value generated by the contact on the first capacitance sensor 11 on the first capacitance value , so that the acquired first change value can accurately reflect the change of the first capacitance sensor 11 under the influence of external conditions.
  • the second change value of the second capacitance value within the second time period can accurately reflect the change of the second capacitance sensor 12 under the influence of external conditions.
  • the influence of external conditions other than the influence caused by contact on the detection can be more accurately eliminated, so as to further improve the accuracy of the earphone wearing state detection.
  • a more accurate first capacitance value of the first capacitance sensor 11 can be acquired, so as to avoid erroneous judgment caused by accidental touch caused by instantaneous contact.
  • Obtaining the second change value within the second time period can more accurately obtain the influence of temperature on the capacitance value. For example, under the effect of temperature, the temperature of the earphone will change to the same or similar to the external temperature within a certain period of time. Acquiring the second change value caused by the temperature effect within the second time period improves the accuracy of acquiring the capacitance value change caused by the temperature effect.
  • the earphone state detection method includes:
  • the earphone When any one of the embodiments is satisfied, the earphone is in an unworn state, and the capacitance values generated by the first capacitance sensor 11 and the second capacitance sensor 12 are caused by external contact conditions other than wearing.
  • step S3200 further includes:
  • step S3200 further includes:
  • the first capacitance sensor 11 When the first capacitance value is greater than the first threshold value, the first capacitance sensor 11 reflects that the casing 14 is affected by the contact through the first capacitance value, and the contact condition is satisfied.
  • the second capacitance value By comparing the first capacitance value with the second threshold value, when the second capacitance value is less than or equal to the second threshold value, it is determined that the second capacitance sensor 12 is not sufficiently affected by the temperature. The contact effect at this time is not for ear contact.
  • the second capacitance value should also be greater than the second threshold value.
  • the second capacitance value is not greater than the second threshold value, it is determined that the second capacitance sensor 12 is not affected by sufficient temperature, so it is determined that the earphone is not in a wearing state.
  • step S3200 further includes:
  • the temperature generated by the user will gradually increase the temperature of the headset, while the temperature interference caused by external foreign objects will gradually decrease.
  • the earphone When the first capacitance value is greater than the first threshold and the second capacitance value is greater than the second threshold, the earphone satisfies the contact and temperature conditions.
  • the difference between the first capacitance value and the second capacitance value with the third threshold the influence of temperature on the first capacitance value generated by the first capacitance sensor 11 is eliminated, and the difference is the capacitance value only affected by the contact .
  • the difference between the first capacitance value and the second capacitance value is less than or equal to the third threshold, the capacitance value generated by the first capacitance sensor 11 is only affected by the contact, so that the capacitance value generated by the first capacitance sensor 11 does not meet the contact condition. Then it is judged that the earphone is disturbed by the temperature.
  • the capacitance value generated only by the contact between the earphone and the user will also satisfy the condition, and the difference between the first capacitance value and the second capacitance value should be greater than the third threshold value .
  • the difference is smaller than the third threshold, it means that the state of the earphone does not satisfy the condition of the capacitance value generated only by contact when wearing.
  • the first capacitance value is larger than the first threshold value
  • the second capacitance value is larger than the second threshold value.
  • the difference between the first capacitance value and the second capacitance value eliminates the influence of temperature, so when the difference is less than or equal to the third threshold, it reflects that the capacitance value after eliminating the influence of temperature does not meet the condition of the capacitance value generated only by contact.
  • the earphone state detection method further includes:
  • the voltage signal outside the sensing area of the first capacitive sensor 11 and the voltage signal outside the sensing area of the second capacitive sensor 12 are shielded.
  • Voltage signals outside the sensing area are shielded, which allows the first capacitive sensor 11 and the second capacitive sensor 12 to only react to influences within the sensing area.
  • the area used for contact is the sensing area.
  • the first capacitive sensor 11 is not affected. In this way, the accuracy of detecting the wearing state of the earphone can be further improved.
  • the execution subject may be an earphone state detection device, or, or a control module in the headphone state detection device for executing the method for loading the headphone state detection.
  • the method for detecting the state of a loaded earphone is taken as an example to describe the method for detecting the state of the earphone provided by the embodiment of the present application.
  • An embodiment of the present application provides an earphone state detection apparatus 4000, which is applied to an earphone.
  • the earphone includes a casing 14, a main board 13, a first capacitive sensor 11 and a second capacitive sensor 12 located in the casing 14.
  • the mainboard 13 is electrically connected to the first capacitive sensor 11 and the second capacitive sensor 12 respectively, and the mainboard 13 is provided with a grounding area 2; the first capacitive sensor 11 is located between the housing 14 and the between the second capacitive sensor 12 ; the second capacitive sensor 12 is located between the first capacitive sensor 11 and the motherboard 13 .
  • the device includes:
  • an acquisition module 4001 configured to acquire a first capacitance value output by the first capacitance sensor 11 and a second capacitance value output by the second capacitance sensor 12;
  • a determination module 4002 is configured to determine that the earphone is in a wearing state when the first capacitance value and the second capacitance value satisfy a preset condition.
  • the determining module 4002 is configured to determine that the earphone is in a wearing state when the first capacitance value and the second capacitance value satisfy a preset condition, including: in the first capacitance When the value is greater than a first threshold, the second capacitance value is greater than a second threshold, and the difference between the first capacitance value and the second capacitance value is greater than a third threshold, it is determined that the earphone is in a wearing state.
  • the determining module 4002 is configured to determine that the earphone is in a wearing state when the first capacitance value and the second capacitance value satisfy a preset condition, including: when the first capacitance value The first change value of the value within the first time interval is greater than the fourth threshold value, the second change value of the second capacitance value within the second time interval is greater than the fifth threshold value, and the first change value and the When the difference between the two change values is greater than the sixth threshold, it is determined that the earphone is in a wearing state.
  • the determining module 4002 is further configured to: when the first capacitance value is less than or equal to the first threshold, the second capacitance value is less than or equal to the second threshold, or the first capacitance value is equal to or less than the first threshold When the difference between the second capacitance values is less than or equal to any one of the third thresholds, it is determined that the earphone is in an unworn state.
  • the determining module 4002 is further configured to: when the first capacitance value is greater than a first threshold and the second capacitance value is less than or equal to a second threshold, determine that the earphone is disturbed by contact with foreign objects.
  • the determining module 4002 is further configured to: when the first capacitance value is greater than a first threshold value, the second capacitance value is greater than a second threshold value, and the first capacitance value and the second When the difference between the capacitance values is less than or equal to the third threshold, it is determined that the earphone is disturbed by temperature.
  • the apparatus further includes: a shielding module 4003 for shielding voltage signals outside the sensing area of the first capacitive sensor 11 and the sensing area of the second capacitive sensor 12 .
  • the earphone state detection device 4000 of the present application can more accurately detect whether the earphone is in the wearing state by acquiring the first capacitance value output by the first capacitance sensor 11 and the second capacitance value obtained by the second capacitance sensor 12 .
  • the device for detecting the state of the earphone in the embodiment of the present application may be a device, and may also be a component, an integrated circuit, or a chip in the earphone.
  • the device for detecting an earphone state in this embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the earphone state detection device provided in the embodiment of the present application can implement each process implemented by the earphone state detection device in the embodiment of the earphone state detection method. In order to avoid repetition, details are not repeated here.
  • the earphone state detection device of the present application can more accurately detect whether the earphone is in the wearing state by acquiring the first capacitance value output by the first capacitance sensor 11 and the second capacitance value obtained by the second capacitance sensor 12 .
  • an embodiment of the present application further provides an earphone, including a processor 1010, a memory 1009, a program or instruction stored in the memory 1009 and executable on the processor 1010, the program or instruction being executed by the processor 1010
  • an earphone including a processor 1010, a memory 1009, a program or instruction stored in the memory 1009 and executable on the processor 1010, the program or instruction being executed by the processor 1010
  • each process of the above-mentioned embodiment of the earphone state detection method is implemented, and the same technical effect can be achieved. In order to avoid repetition, details are not described here.
  • the electronic devices in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 5 is a schematic diagram of a hardware structure of an earphone implementing an embodiment of the present application.
  • the headset 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010 and other components .
  • the electronic device 1000 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1010 through a power management system, so that the power management system can manage charging, discharging, and power functions. consumption management and other functions.
  • a power source such as a battery
  • the structure of the electronic device shown in FIG. 5 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than the one shown, or combine some components, or arrange different components, which will not be repeated here. .
  • the processor 1010 is configured to acquire the first capacitance value output by the first capacitance sensor 11 and the second capacitance value output by the second capacitance sensor 12 .
  • the processor 1010 is further configured to determine that the earphone is in a wearing state when the first capacitance value and the second capacitance value satisfy a preset condition.
  • the processor 1010 is further configured to, when the first capacitance value is greater than a first threshold, the second capacitance value is greater than a second threshold, and the difference between the first capacitance value and the second capacitance value When the value is greater than the third threshold, it is determined that the earphone is in a wearing state.
  • the processor 1010 is further configured to, when a first change value of the first capacitance value within a first time period is greater than a fourth threshold, and a second change value of the second capacitance value within a second time interval is greater than a fifth threshold , and when the difference between the first change value and the second change value is greater than a sixth threshold, it is determined that the earphone is in a wearing state.
  • the processor 1010 is further configured to, when the first capacitance value is less than or equal to a first threshold value, the second capacitance value is less than or equal to a second threshold value, or between the first capacitance value and the second capacitance value When the difference is less than or equal to the third threshold, it is determined that the earphone is in an unworn state.
  • the processor 1010 is further configured to, when the first capacitance value is greater than the first threshold and the second capacitance value is less than or equal to the second threshold, determine that the earphone is disturbed by contact with foreign objects.
  • the processor 1010 is further configured to, when the first capacitance value is greater than a first threshold, the second capacitance value is greater than a second threshold, and the difference between the first capacitance value and the second capacitance value is less than or equal to When the third threshold is reached, it is determined that the earphone is disturbed by temperature.
  • the processor 1010 is further configured to shield the voltage signal outside the sensing area of the first capacitive sensor 11 and the voltage signal outside the sensing area of the second capacitive sensor 12 .
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above embodiment of the earphone state detection method is implemented, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above-mentioned embodiments of the earphone state detection method.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above-mentioned embodiments of the earphone state detection method.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the housing 14 has a contact area, the contact area is used for contact with the wearing object, and the first capacitive sensor 11 is opposite to the contact area.
  • the contact area When the earphone is worn, the contact area is in contact with the user's skin, thereby changing the capacitance value of the first capacitance sensor 11 .
  • the first capacitive sensor 11 and the second capacitive sensor 12 are both parallel-plate capacitive sensors.
  • the parallel-plate capacitive sensor is arranged in the casing 14, and the external object in contact with the casing 14 can form a grounded conductive plane, and the conductive plane is parallel to the first capacitive sensor 11, thereby forming a parallel-plate capacitance.
  • the capacitance value of the formed parallel plate capacitor is the first capacitance value.
  • Parallel plate capacitive sensors can improve detection sensitivity.
  • the main board 13 is provided with a sensor chip 4, the sensor chip 4 is electrically connected to the main board 13, and the sensor chip 4 is used to detect the capacitance value of the first capacitance sensor 11 and the first capacitance value.
  • the capacitance value of the two capacitance sensors 12 is provided with a sensor chip 4, the sensor chip 4 is electrically connected to the main board 13, and the sensor chip 4 is used to detect the capacitance value of the first capacitance sensor 11 and the first capacitance value.
  • the capacitance value of the two capacitance sensors 12 is provided with a sensor chip 4, the sensor chip 4 is electrically connected to the main board 13, and the sensor chip 4 is used to detect the capacitance value of the first capacitance sensor 11 and the first capacitance value.
  • the capacitance value of the two capacitance sensors 12 is provided with a sensor chip 4, the sensor chip 4 is electrically connected to the main board 13, and the sensor chip 4 is used to detect the capacitance value of the first capacitance sensor 11 and the first capacitance value.
  • the sensor chip 4 can be electrically connected with the first capacitance sensor 11 and the second capacitance sensor 12 through the circuit of the main board 13 , so as to detect the capacitance values of the first capacitance sensor 11 and the second capacitance sensor 12 .
  • By calculating and comparing the first capacitance value and the second capacitance value it is determined whether the earphone is worn by the user or whether liquid falls on the earphone and causes interference.
  • the main board 13 is electrically connected to the first capacitive sensor 11 and the second capacitive sensor 12 through the flexible circuit board 5 .
  • the second capacitive sensor 12 is opposite to the grounding area 2 .
  • the grounding area 2 provides a ground terminal for the second capacitive sensor 12 , and the distance between the grounding area 2 and the second capacitive sensor 12 does not change, so that the second capacitive sensor 12 and the grounding area 2 form a stable electric field.
  • the stability of the capacitance formed by the grounding region 2 and the second capacitance sensor 12 is guaranteed.
  • the main board 13 is provided with a plurality of the grounding areas 2 .
  • the multiple grounding regions 2 increase the area of the grounding region, so that the second capacitive sensor 12 can form a stable capacitance.
  • the accommodating cavity is further provided with a first shielding capacitor plate 6 , the first shielding capacitor plate 6 is disposed around the first capacitive sensor 11 , and the first shielding capacitor plate 6 is electrically connected to the main board 13 .
  • the first shielding capacitor plate 6 is a capacitor.
  • the first shielding capacitive plate 6 forms a driving signal of the same phase around the first capacitive sensor 11 , so that the housing 14 around the first capacitive sensor 11 maintains an equal potential voltage, thereby avoiding the opposite to the first capacitive sensor 11
  • the contact with the contact object in the area other than the contact area of the contact area has an influence on the capacitance value of the first capacitance sensor 11 .
  • the accommodating cavity is further provided with a second shielding capacitive plate 7, the second shielding capacitive plate 7 is arranged around the second capacitive sensor 12, and the second shielding capacitive plate 7 is electrically connected to the main board 13.
  • the second shielding capacitive plate 7 has the same working principle as the first shielding capacitive plate 6 , so as to prevent objects outside the range of the second capacitive sensor 12 from affecting the capacitance value of the second capacitive sensor 12 .
  • the first capacitance value output by the first capacitance sensor 11 and the second capacitance value obtained by the second capacitance sensor 12 are obtained, and the above method is used for calculation and comparison.
  • the influence of external influence factors on the detection accuracy is avoided, and whether the headset is in a wearing state can be detected more accurately.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Electronic Switches (AREA)
  • Telephone Function (AREA)

Abstract

本申请公开了一种耳机状态检测方法及装置,该耳机状态检测方法应用于耳机,所述耳机包括壳体以及位于所述壳体内的主板、第一电容传感器和第二电容传感器;所述主板分别与所述第一电容传感器和所述第二电容传感器电连接,所述主板上设置有接地区;所述第一电容传感器位于所述壳体与所述第二电容传感器之间;所述第二电容传感器位于所述第一电容传感器与所述主板之间;所述方法包括:获取所述第一电容传感器输出的第一电容值和所述第二电容传感器输出的第二电容值;在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。

Description

耳机状态检测方法及装置
交叉引用
本发明要求在2021年01月27日提交中国专利局、申请号为202110116105.3、发明名称为“耳机状态检测方法及装置”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于耳机技术领域,具体涉及一种耳机状态检测方法及装置。
背景技术
相关技术中,在耳机上设置传感器用于检测耳机是否被佩戴,由于体积的限制导致传感器灵敏度有限。在使用耳机环境中,会出现水珠和汗液等液体,液体附着在耳机上会导致传感器检测出现较大的误差。并且由于外界温度的变化也会影响传感器检测的精准度,导致对耳机是否佩戴出现错误的判断。
在实现本申请过程中,申请人发现现有技术中至少存在如下问题:不能准确地检测耳机是否被佩戴。
发明内容
本申请旨在提供一种耳机状态检测方法,至少解决不能准确地检测耳机是否被佩戴的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提出了一种耳机状态检测方法,该方法应用于 耳机,所述耳机包括壳体以及位于所述壳体内的主板、第一电容传感器和第二电容传感器;
所述主板分别与所述第一电容传感器和所述第二电容传感器电连接,所述主板上设置有接地区;所述第一电容传感器位于所述壳体与所述第二电容传感器之间;所述第二电容传感器位于所述第一电容传感器与所述主板之间;
所述方法包括:
获取所述第一电容传感器输出的第一电容值和所述第二电容传感器输出的第二电容值;
在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。
第二方面,本申请实施例提出了一种耳机状态检测装置,该装置应用于耳机,所述耳机包括壳体以及位于所述壳体内的主板、第一电容传感器和第二电容传感器;
所述主板分别与所述第一电容传感器和所述第二电容传感器电连接,所述主板上设置有接地区;所述第一电容传感器位于所述壳体与所述第二电容传感器之间;所述第二电容传感器位于所述第一电容传感器与所述主板之间;
所述装置包括:
获取模块,用于获取所述第一电容传感器输出的第一电容值和所述第二电容传感器输出的第二电容值;
确定模块,用于在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。
第三方面,本申请实施例提出了一种耳机,该耳机包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或 指令被所述处理器执行时实现如第一方面所述的耳机状态检测方法的步骤。
第四方面,本申请实施例提出了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的耳机状态检测方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请的实施例中,通过获取第一电容传感器输出的第一电容值和第二电容传感器获取的第二电容值,能够更加精确地检测到耳机是否处于佩戴的状态。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的耳机局部的结构示意图;
图2是根据本申请实施例的检测耳机是否被佩戴的检测流程图之一;
图3是根据本申请实施例的检测耳机是否被佩戴的检测流程图之二;
图4是根据本申请实施例的耳机状态检测装置的示意图;
图5是根据本申请实施例的耳机的硬件结构示意图。
具体实施方式
下面将详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图1-图5,通过具体的实施例及其应用场景对本申请实施例提供的耳机状态检测方法、检测装置、耳机以及可读储存介质进行详细地说明。
在本申请的一些实施例中,提供了一种耳机状态检测方法,该耳机状态检测方法应用于耳机。如图1所示,所述耳机包括壳体14以及位于所述壳体14内的主板13、第一电容传感器11和第二电容传感器12。
所述主板13分别与所述第一电容传感器11和所述第二电容传感器12电连接,所述主板13上设置有接地区2;所述第一电容传感器11位于所述壳体14与所述第二电容传感器12之间;所述第二电容传感器12位于所述第一电容传感器11与所述主板13之间。
如图2所示,所述方法包括:
S2100:获取所述第一电容传感器11输出的第一电容值和所述第二电容 传感器12输出的第二电容值。
在本申请中,第一电容传感器11位于第二电容传感器12与壳体14之间,第一电容传感器11感测壳体14一侧的电容值,第二电容传感器12感测主板13一侧的电容值。其中,第一电容传感器11的电容值不会受到主板13一侧的影响,第二电容传感器12的电容值不会受到壳体14一侧的影响。
该耳机处于佩戴状态下的条件能够对第一电容传感器11和第二电容传感器12的电容值产生影响。通过获取第一电容传感器11的第一电容值和第二电容传感器12的第二电容值,能够判断耳机是否被佩戴。
S2200:在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。
第一电容值和第二电容值对应地反映了第一电容传感器11和第二电容传感器12受到的外部条件的影响。当第一电容值和第二电容值满足预设条件时,对耳机产生影响的外部条件即为耳机处于佩戴状态下的条件。
本申请通过获取第一电容传感器11输出的第一电容值和第二电容传感器12输出的第二电容值,能够更加精确地检测到耳机是否处于佩戴的状态。
在本申请的一些实施例中,提供了一种耳机状态检测方法,所述方法包括:
S2100:获取所述第一电容传感器11输出的第一电容值和所述第二电容传感器12输出的第二电容值;
S2200:在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。
其中,S2200:在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态,包括:
S2210:在所述第一电容值大于第一阈值,所述第二电容值大于第二阈值,以及所述第一电容值与所述第二电容值的差值大于第三阈值的情况下,确定所述耳机处于佩戴状态。
其中,耳机处于佩戴状态时,壳体14与用户接触,用户向第一电容传感器11提供了一个接地的低电势,从而影响第一电容传感器11产生第一电容值。并且,第一电容传感器11在与用户接触时还受到用于接触以外的影响。主板13向第二电容传感器12提供接地,第二电容传感器12在主板13一侧受到影响产生第一电容值,第二电容传感器12受到的影响为用户接触以外的影响。根据第一电容值与第二电容值的差值,消除接触以外的影响,使差值仅反应接触造成的影响。当差值大于第三阈值时,确定第一电容传感器11仅因接触产生的电容值满足耳机与用于佩戴状态产生的接触条件。进一步结合第二电容值满足第二阈值的判断,这样能够更加精确地判断耳机是否处于佩戴的状态。
S2200:当所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态,还包括:
S2220:当所述第一电容值在第一时长内的第一变化值大于第四阈值,所述第二电容值在第二时长内的第二变化值大于第五阈值,以及所述第一变化值与所述第二变化值的差值大于第六阈值时,确定所述耳机处于佩戴状态。
获取第一电容值在第一时长内的第一变化值,并通过第一变化值与第一阈值作比较,能够避免接触在第一电容传感器11上产生的电容值对第一电容值的影响,使获取的第一变化值准确地反应了第一电容传感器11受到外部条件影响而产生的变化。同样地,第二电容值在第二时长内的第二变化值能够准确地反应第二电容传感器12受到外部条件影响而产生的变化。
通过第一变化值与第二变化值的差值与第六阈值比较,能够更加准确地消除接触造成的影响以外的外部条件对检测的影响,以进一步提高耳机佩戴状态检测的准确度。
该实施例中,在第一时长内获取第一变化值,能够获取第一电容传感11的更加准确的第一电容值,避免瞬间接触造成误触产生错误的判断。在第二时长内获取第二变化值,能够更准确地获取温度对电容值的影响。例如,在温度作用的情况下,耳机的温度会在一定时间内改变至与外部温度相同或相近。在第二时长内获取温度影响产生的第二变化值,提高了获取温度影响产生的电容值变化的精确度。
在本申请一个实施例中,如图3所示,耳机状态检测方法包括:
S3100:获取所述第一电容传感器11输出的第一电容值和所述第二电容传感器12输出的第二电容值。
S3200:当所述第一电容值小于或等于第一阈值,所述第二电容值小于或等于第二阈值,或者所述第一电容值与所述第二电容值之间的差值小于或等于第三阈值时,确定所述耳机处于未佩戴状态。
当满足该实施例中的任意一项时,耳机处于未佩戴状态,第一电容传感器11和第二电容传感器12所产生的电容值由佩戴以外的外部接触条件造成。
在上述耳机状态检测方法的实施例的基础上,S3200步骤还包括:
S3210:当第一电容值小于或等于第一阈值时,第一电容传感器11没有收到足够的影响,判断第一电容传感器11没有达到佩戴状态产生的接触状态。这种情况下,判断耳机处于未佩戴状态。
在上述耳机状态检测方法的实施例的基础上,S3200步骤还包括:
S3220:当所述第一电容值大于第一阈值,所述第二电容值小于或等于第 二阈值时,判断耳机为受到异物接触干扰。该异物干扰为其他物体接触耳机造成的,例如,汗液或水滴等液体。
当第一电容值大于第一阈值时,第一电容传感器11通过第一电容值反应了壳体14受到了接触的影响,满足了接触条件。通过第一电容值与第二阈值的比较,当第二电容值小于或等于第二阈值时,则判断第二电容传感器12没有受到足够的温度影响。这时的接触影响并不是用于耳部的接触。
当耳机处于佩戴状态时,耳机的温度会因为接触用户而升高,所以第二电容值也应当大于第二阈值。当第二电容值不大于第二阈值时,则判断第二电容传感器12没有受到足够的温度影响,所以判断耳机不是处于佩戴的状态。
在上述耳机状态检测方法的实施例的基础上,S3200步骤还包括:
S3230:当所述第一电容值大于第一阈值,所述第二电容值大于第二阈值,以及所述第一电容值与所述第二电容值的差值小于或等于第三阈值时,则判断耳机为受到温度干扰。
处于佩戴状态时,用户产生的温度会使耳机的温度逐渐升高,而外部异物产生的温度干扰会逐渐降低。
当所述第一电容值大于第一阈值,所述第二电容值大于第二阈值时,耳机满足了接触和温度的条件。通过第一电容值与第二电容值的差值与第三阈值比较,消除了温度对第一电容传感器11产生的第一电容值的影响,差值为仅受接触的影响所产生的电容值。当第一电容值与第二电容值的差值小于或等于第三阈值时,则仅受接触影响使第一电容传感器11产生的电容值不满足接触的条件。则判断耳机为受到温度干扰。
当耳机处于佩戴状态时,在耳机因用户佩戴升温的同时,仅由耳机与用户接触的条件产生的电容值也会满足条件,第一电容值与第二电容值的差值 应当大于第三阈值。当差值小于第三阈值时,说明耳机的状态不满足佩戴时仅由接触产生的电容值的条件。
例如,由于外界温度的干扰,使第一电容值大于第一阈值,且第二电容值大于第二阈值。第一电容值与第二电容值的差值消除了温度影响,因此差值小于或等于第三阈值时,反映了消除温度影响后的电容值不满足仅由接触产生的电容值的条件。
本申请的实施例通过获取第一电容传感器11输出的第一电容值和第二电容传感器12获取的第二电容值,能够更加精确地检测到耳机是否处于佩戴的状态。
在上述实施例的基础上,耳机状态检测方法还包括:
屏蔽所述第一电容传感器11的感应区域以外的电压信号和所述第二电容传感器12的感应区域以外的电压信号。
屏蔽感应区域以外的电压信号,这使得第一电容传感器11和第二电容传感器12只对感应区域内的影响产生反应。例如,当耳机处于佩戴状态下,用于接触的区域为感应区域。在感应区域以外的部位受到影响时,第一电容传感器11不受影响。这样能够进一步提高检测耳机佩戴状态的精确度。
需要说明的是,本申请实施例提供的耳机状态检测方法,执行主体可以为耳机状态检测装置,或者,或者该耳机状态检测装置中的用于执行加载耳机状态检测方法的控制模块。本申请实施例中以耳机状态检测装置执行加载耳机状态检测方法为例,说明本申请实施例提供的耳机状态检测方法。
本申请实施例提供一种耳机状态检测装置4000,应用于耳机,所述耳机包括壳体14以及位于所述壳体14内的主板13、第一电容传感器11和第二电容传感器12。
所述主板13分别与所述第一电容传感器11和所述第二电容传感器12电连接,所述主板13上设置有接地区2;所述第一电容传感器11位于所述壳体14与所述第二电容传感器12之间;所述第二电容传感器12位于所述第一电容传感器11与所述主板13之间。
如图4所示,所述装置包括:
获取模块4001,用于获取所述第一电容传感器11输出的第一电容值和所述第二电容传感器12输出的第二电容值;
确定模块4002,用于在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。
在一个实施例中,所述确定模块4002用于在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态包括:在所述第一电容值大于第一阈值,所述第二电容值大于第二阈值,以及所述第一电容值与所述第二电容值的差值大于第三阈值的情况下,确定所述耳机处于佩戴状态。
在一个实施例中,所述确定模块4002用于在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态包括:当所述第一电容值在第一时间间隔内的第一变化值大于第四阈值,所述第二电容值在第二时间间隔内的第二变化值大于第五阈值,以及所述第一变化值与所述第二变化值的差值大于第六阈值时,确定所述耳机处于佩戴状态。
在一个实施例中,所述确定模块4002还用于:当满足所述第一电容值小于或等于第一阈值、所述第二电容值小于或等于第二阈值或所述第一电容值与所述第二电容值之间的差值小于或等于第三阈值中的任意一项时,确定所述耳机处于未佩戴状态。
在一个实施例中,所述确定模块4002还用于:当所述第一电容值大于第一阈值,所述第二电容值小于或等于第二阈值时,判断耳机为受到异物接触干扰。
在一个实施例中,所述确定模块4002还用于:当所述第一电容值大于第一阈值,所述第二电容值大于第二阈值,以及所述第一电容值与所述第二电容值的差值小于或等于第三阈值时,则判断耳机为受到温度干扰。
在一个实施例中,所述装置还包括:屏蔽模块4003,用于屏蔽所述第一电容传感器11的感应区域和所述第二电容传感器12的感应区域以外的电压信号。
本申请的耳机状态检测装置4000通过获取第一电容传感器11输出的第一电容值和第二电容传感器12获取的第二电容值,能够更加精确地检测到耳机是否处于佩戴的状态。
本申请实施例中的耳机状态检测装置可以是装置,也可以是耳机中的部件、集成电路、或芯片。
本申请实施例中的耳机状态检测装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的耳机状态检测装置能够实现耳机状态检测方法实施例中耳机状态检测装置实现的各个过程,为避免重复,这里不再赘述。
本申请的耳机状态检测装置,通过获取第一电容传感器11输出的第一电容值和第二电容传感器12获取的第二电容值,能够更加精确地检测到耳机是否处于佩戴的状态。
可选的,本申请实施例还提供一种耳机,包括处理器1010,存储器1009, 存储在存储器1009上并可在所述处理器1010上运行的程序或指令,该程序或指令被处理器1010执行时实现上述耳机状态检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要注意的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图5为实现本申请实施例的一种耳机的硬件结构示意图。
该耳机1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等部件。
本领域技术人员可以理解,电子设备1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
处理器1010,用于获取所述第一电容传感器11输出的第一电容值和所述第二电容传感器12输出的第二电容值。
处理器1010,还用于在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。
在本申请的实施例中,通过获取第一电容传感器11输出的第一电容值和第二电容传感器12获取的第二电容值,能够更加精确地检测到耳机是否处于佩戴的状态。
可选地,处理器1010,还用于在所述第一电容值大于第一阈值,所述第二电容值大于第二阈值,以及所述第一电容值与所述第二电容值的差值大于 第三阈值的情况下,确定所述耳机处于佩戴状态。
处理器1010,还用于当所述第一电容值在第一时长内的第一变化值大于第四阈值,所述第二电容值在第二时间间隔内的第二变化值大于第五阈值,以及所述第一变化值与所述第二变化值的差值大于第六阈值时,确定所述耳机处于佩戴状态。
处理器1010,还用于当所述第一电容值小于或等于第一阈值,所述第二电容值小于或等于第二阈值,或者所述第一电容值与所述第二电容值之间的差值小于或等于第三阈值中时,确定所述耳机处于未佩戴状态。
处理器1010,还用于当所述第一电容值大于第一阈值,所述第二电容值小于或等于第二阈值时,判断耳机为受到异物接触干扰。
处理器1010,还用于当所述第一电容值大于第一阈值,所述第二电容值大于第二阈值,以及所述第一电容值与所述第二电容值的差值小于或等于第三阈值时,则判断耳机为受到温度干扰。
处理器1010,还用于屏蔽所述第一电容传感器11的感应区域以外的电压信号和所述第二电容传感器12的感应区域以外的电压信号。
在本申请的实施例中,通过获取第一电容传感器11输出的第一电容值和第二电容传感器12获取的第二电容值,能够更加精确地检测到耳机是否处于佩戴的状态。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述耳机状态检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only  Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述耳机状态检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
在本申请的耳机结构中,所述壳体14上具有接触区,所述接触区用于与佩戴对象接触,所述第一电容传感器11与所述接触区相对。
在耳机被佩戴时,接触区与用户皮肤接触,从而改变第一电容传感器11的电容值。用户接触的位置与第一电容传感器11重合的区域面积越小则对电容值的影响越小,第一电容传感器11与接触区相对,能够使接触的位置与第一电容传感器11重合。这样用户接触到接触区的部分能够有效地对第一电容传感器11的电容值产生影响,从而保障了第一电容传感器11的灵敏度。
例如,所述第一电容传感器11和所述第二电容传感器12均为平行板电容传感器。
平行板电容传感器设置在壳体14内,外界与壳体14接触的对象能够形成接地导电平面,该导电平面平行于第一电容传感器11,从而形成平行板电容。形成的平行板电容器的电容值即为第一电容值。平行板电容传感器能够提高检测灵敏度。
可选地,所述主板13上设置有传感器芯片4,所述传感器芯片4与所述主板13电连接,所述传感器芯片4用于检测所述第一电容传感器11的电容 值和所述第二电容传感器12的电容值。
传感器芯片4能够通过主板13的电路与第一电容传感器11和第二电容传感器12形成电连接,从而检测第一电容传感器11和第二电容传感器12的电容值。通过计算和比较第一电容值和第二电容值,判断出耳机是否被用户佩戴或者有液体落在耳机上形成了干扰。
可选地,所述主板13通过柔性线路板5与所述第一电容传感器11和所述第二电容传感器12电连接。
通过柔性线路板5更容易在耳机内走线。这样走线使第一电容传感器11和第二电容传感器12更容易与主板13形成电连接。降低了走线难度。
可选地,所述第二电容传感器12与所述接地区2相对。
接地区2向第二电容传感器12提供了接地端,接地区2与第二电容传感器12之间的距离不会发生变化,使第二电容传感器12与接地区2形成稳定的电场。保障了接地区2与第二电容传感器12形成电容的稳定性。
例如,所述主板13上设置有多个所述接地区2。
多个接地区2增加了接地区域的面积,使第二电容传感器12能够形成稳定的电容。
可选地,所述容纳腔内还设置有第一屏蔽电容板6,所述第一屏蔽电容板6围绕所述第一电容传感器11设置,第一屏蔽电容板6与主板13电连接。
第一屏蔽电容板6为电容。通过第一屏蔽电容板6在第一电容传感器11的周围形成同向相位的驱动信号,使第一电容传感器11周围的壳体14上保持等势的电压,从而避免与第一电容传感器11相对的接触区以外的区域与接触对象接触对第一电容传感器11的电容值产生影响。
可选地,所述容纳腔内还设置有第二屏蔽电容板7,所述第二屏蔽电容 板7围绕所述第二电容传感器12设置,第二屏蔽电容板7与主板13电连接。
第二屏蔽电容板7与第一屏蔽电容板6的工作原理相同,避免第二电容传感器12范围外的物体对第二电容传感器12的电容值产生影响。
本申请通过获取第一电容传感器11输出的第一电容值和第二电容传感器12获取的第二电容值,并通过上述方法计算比较。避免了外部影响因素对检测准确性的影响,能够更加精确地检测到耳机是否处于佩戴的状态。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器, 空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种耳机状态检测方法,应用于耳机,所述耳机包括壳体以及位于所述壳体内的主板、第一电容传感器和第二电容传感器;
    所述主板分别与所述第一电容传感器和所述第二电容传感器电连接,所述主板上设置有接地区;所述第一电容传感器位于所述壳体与所述第二电容传感器之间;所述第二电容传感器位于所述第一电容传感器与所述主板之间;
    所述方法包括:
    获取所述第一电容传感器输出的第一电容值和所述第二电容传感器输出的第二电容值;
    在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。
  2. 根据权利要求1所述的耳机状态检测方法,其中,在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态包括:
    在所述第一电容值大于第一阈值,所述第二电容值大于第二阈值,以及所述第一电容值与所述第二电容值的差值大于第三阈值的情况下,确定所述耳机处于佩戴状态。
  3. 根据权利要求1所述的耳机状态检测方法,其中,在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态包括:
    当所述第一电容值在第一时长内的第一变化值大于第四阈值,所述第二电容值在第二时长内的第二变化值大于第五阈值,以及所述第一变化值与所述第二变化值的差值大于第六阈值时,确定所述耳机处于佩戴状态。
  4. 根据权利要求1所述的耳机状态检测方法,其中,所述方法包括:
    当所述第一电容值小于或等于第一阈值,所述第二电容值小于或等于第二阈值,或者所述第一电容值与所述第二电容值之间的差值小于或等于第三阈值中时,确定所述耳机处于未佩戴状态。
  5. 根据权利要求4所述的耳机状态检测方法,其中,所述方法包括:
    当所述第一电容值大于所述第一阈值,所述第二电容值小于或等于所述第二阈值时,判断所述耳机为受到异物接触干扰。
  6. 根据权利要求4所述的耳机状态检测方法,其中,所述方法包括:
    当所述第一电容值大于所述第一阈值,所述第二电容值大于所述第二阈值,以及所述第一电容值与所述第二电容值的差值小于或等于所述第三阈值时,则判断所述耳机为受到温度干扰。
  7. 根据权利要求1所述的耳机状态检测方法,其中,所述方法还包括:
    屏蔽所述第一电容传感器的感应区域以外的电压信号和所述第二电容传感器的感应区域以外的电压信号。
  8. 一种耳机状态检测装置,应用于耳机,所述耳机包括壳体以及位于所述壳体内的主板、第一电容传感器和第二电容传感器;
    所述主板分别与所述第一电容传感器和所述第二电容传感器电连接,所述主板上设置有接地区;所述第一电容传感器位于所述壳体与所述第二电容传感器之间;所述第二电容传感器位于所述第一电容传感器与所述主板之间;
    所述装置包括:
    获取模块,用于获取所述第一电容传感器输出的第一电容值和所述第二电容传感器输出的第二电容值;
    确定模块,用于在所述第一电容值和所述第二电容值满足预设条件的情况下,确定所述耳机处于佩戴状态。
  9. 一种耳机,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-7任一项所述的耳机状态检测方法的步骤。
  10. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-7任一项所述的耳机状态检测方法的步骤。
  11. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-7任一项所述的耳机状态检测方法。
  12. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行以实现如权利要求1-7任一项所述的耳机状态检测方法。
  13. 一种耳机状态检测装置,所述装置用于执行如权利要求1-7任一项所述的耳机状态检测方法。
PCT/CN2022/073442 2021-01-27 2022-01-24 耳机状态检测方法及装置 WO2022161305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110116105.3 2021-01-27
CN202110116105.3A CN112911484A (zh) 2021-01-27 2021-01-27 耳机状态检测方法及装置

Publications (1)

Publication Number Publication Date
WO2022161305A1 true WO2022161305A1 (zh) 2022-08-04

Family

ID=76119368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073442 WO2022161305A1 (zh) 2021-01-27 2022-01-24 耳机状态检测方法及装置

Country Status (2)

Country Link
CN (1) CN112911484A (zh)
WO (1) WO2022161305A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112911484A (zh) * 2021-01-27 2021-06-04 维沃移动通信有限公司 耳机状态检测方法及装置
CN113473292B (zh) * 2021-06-29 2024-02-06 芯海科技(深圳)股份有限公司 一种状态检测方法、耳机及计算机可读存储介质
CN113759439A (zh) * 2021-08-20 2021-12-07 深圳曦华科技有限公司 可穿戴设备、佩戴检测方法、装置及存储介质
CN114630242B (zh) * 2022-03-23 2024-04-09 歌尔股份有限公司 耳机佩戴检测方法、耳机及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065016A (zh) * 2017-03-01 2017-08-18 歌尔科技有限公司 一种用于头戴式耳机的佩戴检测方法、装置及头戴式耳机
CN109328293A (zh) * 2018-09-30 2019-02-12 深圳市汇顶科技股份有限公司 电容检测模组、方法及电子设备
US20200100010A1 (en) * 2018-09-25 2020-03-26 Shenzhen GOODIX Technology Co., Ltd. Earbud and method for implementing wearing detection and touch operation
US20210014603A1 (en) * 2018-12-26 2021-01-14 Shenzhen GOODIX Technology Co., Ltd. Wearing detection method and apparatus, wearable device and storage medium
CN112911484A (zh) * 2021-01-27 2021-06-04 维沃移动通信有限公司 耳机状态检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002373B (zh) * 2012-11-19 2015-05-27 青岛歌尔声学科技有限公司 一种耳机和一种检测耳机佩戴状态的方法
EP3920547A4 (en) * 2019-02-01 2022-02-16 Shenzhen Goodix Technology Co., Ltd. WEAR CONDITION DETECTOR AND PROCESS AND EARPHONES
CN111683318A (zh) * 2020-06-04 2020-09-18 歌尔科技有限公司 一种耳机佩戴检测方法、装置、耳机及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065016A (zh) * 2017-03-01 2017-08-18 歌尔科技有限公司 一种用于头戴式耳机的佩戴检测方法、装置及头戴式耳机
US20200100010A1 (en) * 2018-09-25 2020-03-26 Shenzhen GOODIX Technology Co., Ltd. Earbud and method for implementing wearing detection and touch operation
CN109328293A (zh) * 2018-09-30 2019-02-12 深圳市汇顶科技股份有限公司 电容检测模组、方法及电子设备
US20210014603A1 (en) * 2018-12-26 2021-01-14 Shenzhen GOODIX Technology Co., Ltd. Wearing detection method and apparatus, wearable device and storage medium
CN112911484A (zh) * 2021-01-27 2021-06-04 维沃移动通信有限公司 耳机状态检测方法及装置

Also Published As

Publication number Publication date
CN112911484A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022161305A1 (zh) 耳机状态检测方法及装置
CN101957681B (zh) 能够检测其接地状况的触摸敏感设备及其方法和系统
US8024491B1 (en) Detecting a connection to an unpowered host
JP6732105B2 (ja) 容量検出モジュール、方法及び電子機器
EP2413224A2 (en) Compensation for capacitance change in touch sensing device
US20200203783A1 (en) Battery swelling detection
US8654098B2 (en) Capacitive touch screen controller implementing a sensing method for improved noise immunity
JP2015521762A (ja) 端末画面制御方法、端末、プログラム及び記録媒体
US11566964B2 (en) Water ingress detection method and circuit, and electric device
US10203803B2 (en) Touch scan modes during device charging
US20140375601A1 (en) Capacitive touch device and detection system thereof
US20140111465A1 (en) Sensor-based esd detection
EP3065035B1 (en) Information processing method and electronic device
CN100538615C (zh) 一种防止电容式按键误触发的方法
TW201339935A (zh) 電容式觸控系統、觸控裝置及觸控方法
CN109088993A (zh) 基于接近传感器的接近状态判断方法、装置和电子设备
CN111324515A (zh) 息屏控制方法、装置、存储介质及移动终端
CN114079840A (zh) 一种耳机佩戴感应电路、头戴式耳机以及电子设备
CN112378331B (zh) 电子设备、电池形变检测方法及可读存储介质
CN113038320A (zh) 一种电容检测方法、装置及一种耳机
CN110851014A (zh) 触摸识别方法、装置、存储介质及终端设备
CN115243145A (zh) 耳机控制方法、装置、耳机及计算机可读存储介质
CN113376701A (zh) 天线模组、温度变化的检测方法及装置和相关应用
JP2017204059A (ja) 入力装置
CN216852275U (zh) 一种耳机佩戴感应电路、头戴式耳机以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745180

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.01.24)