WO2022160978A1 - 一种获取姿态信息的方法及电子设备 - Google Patents

一种获取姿态信息的方法及电子设备 Download PDF

Info

Publication number
WO2022160978A1
WO2022160978A1 PCT/CN2021/137535 CN2021137535W WO2022160978A1 WO 2022160978 A1 WO2022160978 A1 WO 2022160978A1 CN 2021137535 W CN2021137535 W CN 2021137535W WO 2022160978 A1 WO2022160978 A1 WO 2022160978A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
antenna
uwb
coordinate system
antennas
Prior art date
Application number
PCT/CN2021/137535
Other languages
English (en)
French (fr)
Inventor
董伟
徐昊玮
薛清风
王二力
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022160978A1 publication Critical patent/WO2022160978A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of smart homes, and in particular, to a method and an electronic device for acquiring attitude information.
  • the smart home can use the residence as a platform and use a wireless local area network, such as a wireless fidelity (Wireless Fidelity, WiFi) network, to integrate and control household devices related to home life (such as smart TVs, smart air conditioners, etc.), which can improve the home furnishing.
  • a wireless local area network such as a wireless fidelity (Wireless Fidelity, WiFi) network
  • WiFi Wireless Fidelity, WiFi
  • a user may install a smart home application (Application, APP) in an electronic device (such as a mobile phone or a tablet computer, etc.) to realize control of multiple home devices.
  • the mobile phone can display the control interface of the home device in response to the user's operation on the identification of any home device (such as a smart TV, smart air conditioner or smart socket) in the smart home APP; then, in response to the user's control of the display on the mobile phone The operation of the interface, the mobile phone can realize the control of the home equipment.
  • a smart home application Application, APP
  • the mobile phone can display the control interface of the home device in response to the user's operation on the identification of any home device (such as a smart TV, smart air conditioner or smart socket) in the smart home APP; then, in response to the user's control of the display on the mobile phone The operation of the interface, the mobile phone can realize the control of the home equipment.
  • any home device such as a smart TV, smart air conditioner or smart socket
  • the ultra wide band (UWB) chip and inertial measurement unit (IMU) on the mobile phone can be used to display the control of the home equipment when the mobile phone is pointed at the home equipment. function of the interface.
  • UWB ultra wide band
  • IMU inertial measurement unit
  • the present application provides a method for acquiring attitude information, which can be applied to an electronic device.
  • the electronic device includes a UWB chip and n antennas, the UWB chip is electrically connected with the n antennas, n ⁇ 3, and n is an integer.
  • the n antennas are used to construct a carrier antenna coordinate system, and the coordinate origin of the carrier antenna coordinate system coincides with the position of antenna 0 in the n antennas.
  • the antenna i in the n antennas is located on the coordinate axis of the carrier antenna coordinate system, and the distance between the antenna i and the above-mentioned antenna 0 is less than or equal to ⁇ , i is taken in order from ⁇ 1, 2, ..., n-1 ⁇ value.
  • an electronic device includes a multi-antenna module (ie, n antennas).
  • the electronic device can measure the UWB signals from each UWB base station by using the multi-antenna module; and then obtain the spatial attitude information of the mobile phone 100 according to each UWB signal.
  • each UWB signal is obtained by the real-time measurement of the electronic device using the multi-antenna module; therefore, the accuracy of each UWB signal can be guaranteed. Therefore, the error between the attitude information measured by the electronic equipment and the actual attitude information can be reduced, the attitude measurement accuracy of the electronic equipment can be improved, and the effect of directivity control of the electronic equipment on the home equipment can be improved.
  • this solution uses the UWB signal received in real time by the multi-antenna module to measure the spatial attitude information.
  • a multi-antenna module of an electronic device may receive UWB signals at every moment. Therefore, when using this scheme to measure the spatial attitude information, it does not depend on the spatial attitude information measured at the last moment; and even if there is an error in the measured spatial attitude information, the error will not accumulate over time.
  • this solution does not rely on devices such as magnetometers or gyroscopes in the electronic device when measuring the spatial attitude information of the electronic device. Therefore, there is no need to calibrate devices such as magnetometers or gyroscopes in the electronic device, and the spatial attitude information of the electronic device 0 can be measured without the user operating the electronic device in a specific manner. In this way, user operations in the process of measuring attitude information can be reduced.
  • the electronic device may execute the method of the present application in the following scenarios to obtain spatial attitude information of the electronic device, and realize directivity control of the household device.
  • the electronic device after the electronic device is powered on, it can receive UWB signals from m UEB base stations through n antennas to obtain spatial attitude information of the electronic device and realize directivity control of the home device.
  • the electronic device can receive UWB signals from m UEB base stations through n antennas to obtain the spatial attitude information of the electronic device and realize the directional control of the home device.
  • the electronic device may receive UWB signals from the m UEB base stations through the n antennas, so as to obtain the spatial attitude information of the electronic device, so as to realize the information on the home device.
  • Directive control may be performed by the electronic device.
  • At least one of the notification bar of the electronic device, the setting interface of the electronic device, or the setting interface of the smart home APP includes: switch options for preset functions. This switch option is used to enable or disable the preset function.
  • This design method provides a specific scenario example for the electronic device to execute the method of the present application.
  • the scenarios in which the method of the present application is executed by the electronic device include but are not limited to the above scenarios.
  • the electronic device may also determine the spatial location information of the electronic device according to the UWB signals received from the m UWB base stations by the n antennas.
  • the spatial location information includes coordinate information of the electronic device in the UWB coordinate system.
  • the electronic device may determine the directivity control information of the electronic device according to the spatial position information and the spatial attitude information.
  • the directivity control information is used to indicate the direction in which the electronic device points.
  • the electronic device can control the home device pointed by the electronic device according to the directivity control information and the coordinate information of each home device in the UWB coordinate system.
  • the distance between the antenna i and the antenna 0 is less than or equal to ⁇ /2. It should be noted that setting the distance between the antenna i and the antenna 0 is less than or equal to ⁇ /2 ⁇ /2 to obtain the incident angle of the antenna more accurately, which is beneficial to improve the attitude measurement accuracy of the electronic device.
  • the above-mentioned n antennas may include Antenna 0, Antenna 1 and Antenna 2.
  • the x-axis of the antenna coordinate system of the carrier of the electronic device is parallel to the line connecting the antenna 1 and the antenna 0, and points in the direction from the antenna 1 to the antenna 0.
  • the y-axis of the carrier antenna coordinate system is parallel to the line connecting antenna 2 and antenna 0, and points in the direction from antenna 2 to antenna 0.
  • the z-axis of the carrier antenna coordinate system is perpendicular to the x-axis and the y-axis, and forms a right-hand rectangular coordinate system with the x-axis and the y-axis.
  • the design method provides an example of the position setting of n antennas in the electronic device and an example of the carrier antenna coordinate system in this application.
  • the position setting of the n antennas in the electronic device described in this application includes but is not limited to the above-mentioned position setting methods;
  • the carrier antenna coordinate system described in this application includes but is not limited to the carrier antenna described in the above examples Coordinate System.
  • the electronic device may adopt the following manner to receive UWB signals from m UWB base stations according to n antennas. Specifically, the electronic device may determine the return angle ⁇ (i,j) of the UWB signal from the UWB base station j of the m UWB base stations compared to the antenna i. Among them, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence, and the return angle ⁇ (i, j) is: in the UWB coordinate system, the vector from antenna i to UWB base station j and the antenna The angle of the vector from i to antenna 0.
  • the electronic device can determine the spatial attitude information of the electronic device according to the multiple return angles, in combination with the UWB signals received from the m UWB base stations by the n antennas and the coordinates of the n antennas in the carrier antenna coordinate system.
  • the multiple return angles include: i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence, to obtain ⁇ (i,j) of .
  • the electronic device can use the multi-antenna module to measure the direction of the UWB signal from each UWB base station; and then obtain the spatial attitude information of the mobile phone 100 according to the direction of each UWB signal.
  • the origin of each UWB signal is obtained through real-time measurement by the electronic device using the multi-antenna module; therefore, the accuracy of the origin of each UWB signal can be guaranteed. Therefore, the error between the attitude information measured by the electronic equipment and the actual attitude information can be reduced, the attitude measurement accuracy of the electronic equipment can be improved, and the effect of directivity control of the electronic equipment on the home equipment can be improved.
  • the electronic device determines the return angle ⁇ (i,j) of the UWB signal from the UWB base station j of the m UWB base stations compared to the antenna i, which may include: electronic The device obtains the phase difference between the antenna i and the antenna 0 receiving the UWB signal from the UWB base station j; the phase difference is used to characterize the distance between the antenna i and the UWB base station j and the distance between the antenna 0 and the UWB base station j. The distance difference; According to the distance difference represented by the phase difference, and the distance between the antenna i and the antenna 0, the electronic device uses the cosine law to calculate the direction angle ⁇ (i,j) .
  • This design method provides a specific method for the electronic device to calculate the arrival angle ⁇ (i,j) in this application.
  • the above electronic device may adopt the following manner, according to multiple return angles, combining n antennas to receive UWB signals from m UWB base stations, and n antennas on the carrier antenna.
  • the coordinates in the coordinate system determine the spatial attitude information of the electronic device.
  • the electronic device may obtain the baseline vector r (i,j) according to the UWB signal received from the UWB base station j by the antenna i.
  • the electronic device can obtain the first unit baseline vector rq i according to the coordinates of the antenna i in the carrier antenna coordinate system.
  • the electronic device may determine the spatial attitude information of the electronic device according to the plurality of coming angles, the plurality of baseline vectors, and the plurality of first unit baseline vectors.
  • the multiple baseline vectors include: i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence, and the obtained The first baseline vector r (i,j) ; the multiple first unit baseline vectors include: i takes values in ⁇ 1, 2,..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2,... ..., m-1 ⁇ to obtain the first unit baseline vector rq i .
  • the baseline vector r (i,j) is the direction vector from the antenna i to the UWB base station j in the UWB coordinate system.
  • the above-mentioned return angle ⁇ (i, j) is the included angle between the vector from antenna i to UWB base station j and the vector from antenna i to antenna 0 in the UWB coordinate system.
  • the first unit baseline vector rq i is a unit direction vector from antenna i to antenna 0 in the carrier antenna coordinate system. Therefore, the electronic device can determine the spatial attitude information of the electronic device according to the principle of coordinate conversion and according to the above-mentioned multiple coming angles, multiple baseline vectors, and multiple first unit baseline vectors.
  • the electronic device determines the spatial attitude information of the electronic device according to multiple arrival angles, multiple baseline vectors and multiple first unit baseline vectors, including: the electronic device Multiple second unit baseline vectors are determined according to multiple coming angles and multiple baseline vectors; the electronic device determines spatial attitude information of the electronic device according to multiple first unit baseline vectors and multiple second unit baseline vectors.
  • the multiple second unit baseline vectors include: i takes values in ⁇ 1, 2,..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2,..., m-1 ⁇ in order value, the obtained second unit baseline vector ra (i) , the second unit baseline vector ra (i) is the unit direction vector from antenna i to antenna 0 in the UWB coordinate system.
  • the second unit baseline vector ra (i) is a unit direction vector from antenna i to antenna 0 in the UWB coordinate system.
  • the first unit baseline vector rq i is a unit direction vector from antenna i to antenna 0 in the carrier antenna coordinate system. Therefore, the electronic device can determine the spatial attitude information of the electronic device according to the principle of coordinate conversion and according to the above-mentioned multiple first unit baseline vectors and multiple second unit baseline vectors.
  • the electronic device determines the spatial attitude information of the electronic device according to a plurality of first unit baseline vectors and a plurality of second unit baseline vectors, including: the electronic device adopts a preset The rotation matrix determines the spatial attitude information of the electronic device according to the plurality of first unit baseline vectors and the plurality of second unit baseline vectors.
  • the preset rotation matrix is: the electronic device is determined by the pitch angle The rotation matrix when the spatial attitude corresponding to the azimuth angle ⁇ and the roll angle ⁇ is transformed to the preset initial attitude.
  • the preset initial posture is the posture of the electronic device when the three axes of the carrier antenna coordinate system are respectively parallel to the three axes of the UWB coordinate system.
  • the preset rotation matrix is used to convert the coordinate parameters in the carrier antenna coordinate system into the coordinate parameters in the UWB coordinate system, and the coordinate parameters include vectors.
  • the electronic device can use the preset rotation matrix to determine the spatial attitude information of the electronic device based on the principle of coordinate conversion and according to the above-mentioned unit baseline vector rq i and unit baseline vector ra (i) .
  • the present application provides an electronic device, the electronic device includes a UWB chip and n antennas, the UWB chip is electrically connected to the n antennas, n ⁇ 3, and n is an integer.
  • the n antennas are used to construct a carrier antenna coordinate system, the coordinate origin of the carrier antenna coordinate system coincides with the position of the antenna 0 in the n antennas, and the antenna i in the n antennas is located on the coordinate axis of the carrier antenna coordinate system.
  • the distance between antenna i and antenna 0 is less than or equal to ⁇ , and i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence.
  • the electronic device further includes: memory and one or more processors.
  • the UWB chip, n antennas, memory and processor are coupled.
  • the memory is used to store computer program code comprising computer instructions.
  • the electronic device When the computer instruction is executed by the electronic device, the electronic device is made to perform the following steps: receive the UWB signal from the UWB base station j in the m UEB base stations through n antennas, j is in sequence ⁇ 0, 1, 2, . . . , m-1 ⁇ , m UEB base stations are used to construct the UWB coordinate system, m ⁇ 3, m is an integer; according to the UWB signals received from m UWB base stations by n antennas, determine the spatial attitude information of the electronic equipment, the space of the electronic equipment Attitude information includes: the pitch angle of the carrier antenna coordinate system compared to the UWB coordinate system Azimuth ⁇ and roll angle ⁇ .
  • the electronic device when the computer instruction is executed by the electronic device, the electronic device is caused to further perform the following steps: after the electronic device is turned on, or after the electronic device starts the smart home application APP, or the electronic device starts the pre- After the function is set, the UWB signals from m UEB base stations are received through n antennas.
  • At least one of the notification bar of the electronic device, the setting interface of the electronic device, or the setting interface of the smart home APP includes: a switch option of a preset function, and the switch option is used to enable or disable the preset function.
  • the electronic device when the computer instruction is executed by the electronic device, the electronic device is caused to further perform the following steps: determine the electronic device's Spatial position information, spatial position information includes the coordinate information of the electronic device in the UWB coordinate system; according to the spatial position information and spatial attitude information, the directivity control information of the electronic device is determined, and the directivity control information is used to indicate the direction of the electronic device; according to The directivity control information and the coordinate information of each household device in the UWB coordinate system control the household device pointed by the electronic device.
  • the distance between the above-mentioned antenna i and the antenna 0 is equal to ⁇ /2.
  • the x-axis of the carrier antenna coordinate system is parallel to the connection line between antenna 1 and antenna 0, pointing in the direction from antenna 1 to antenna 0;
  • the y-axis of the carrier antenna coordinate system is parallel to the connection line between antenna 2 and antenna 0, pointing to the direction from antenna 2 to antenna 0
  • the z-axis of the carrier antenna coordinate system is perpendicular to the x-axis and the y-axis, and forms a right-hand rectangular coordinate system with the x-axis and the y-axis.
  • the electronic device when the computer instruction is executed by the electronic device, the electronic device is caused to further perform the following step: determining the UWB signal from the UWB base station j among the m UWB base stations compared to the antenna i
  • the coming angle ⁇ (i, j) of wherein, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in turn, and the coming angle ⁇ (i, j) is: in the UWB coordinate system , the angle between the vector from antenna i to UWB base station j and the vector from antenna i to antenna 0; according to multiple return angles, combine the UWB signals received from m UWB base stations by n antennas, and the coordinates of n antennas at the carrier antenna The coordinates in the system determine the spatial attitude information of the electronic device.
  • the multiple return angles include: i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2,
  • the electronic device when the computer instruction is executed by the electronic device, the electronic device is caused to further perform the following steps: acquiring the phase difference between the antenna i and the antenna 0 receiving the UWB signal from the UWB base station j; Among them, the phase difference is used to characterize the distance between the antenna i and the UWB base station j and the distance difference between the antenna 0 and the UWB base station j; The distance between them is calculated using the law of cosines to the angle ⁇ (i,j) .
  • the electronic device when the computer instruction is executed by the electronic device, the electronic device is caused to further perform the following steps: according to the UWB signal received from the UWB base station j by the antenna i, obtain the baseline vector r (i , j) ; Wherein, the first baseline vector r (i, j) is under the UWB coordinate system, the direction vector of antenna i to UWB base station j; According to the coordinates of antenna i in the carrier antenna coordinate system, obtain the first unit baseline vector rq i ; wherein, the first unit baseline vector rq i is the unit direction vector from the antenna i to the antenna 0 under the carrier antenna coordinate system; according to multiple return angles, multiple baseline vectors and multiple first unit baseline vectors, determine Spatial attitude information of electronic equipment.
  • the multiple baseline vectors include: i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence, and the obtained The first baseline vector r (i,j) ; the multiple first unit baseline vectors include: i takes values in ⁇ 1, 2,..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2,... ..., m-1 ⁇ to obtain the first unit baseline vector rq i .
  • the electronic device when the computer instruction is executed by the electronic device, the electronic device is caused to further perform the following steps: determining a plurality of second units according to a plurality of arrival angles and a plurality of baseline vectors Baseline vector; wherein, the plurality of second unit baseline vectors include: i takes values in ⁇ 1, 2,..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2,..., m-1 ⁇ in sequence
  • the obtained second unit baseline vector ra (i) , the second unit baseline vector ra (i) is the unit direction vector from antenna i to antenna 0 in the UWB coordinate system; according to the multiple first unit baseline vectors and A plurality of second unit baseline vectors to determine the spatial attitude information of the electronic device.
  • the preset rotation matrix is: the electronic device is determined by the pitch angle The rotation matrix when the spatial attitude corresponding to the azimuth angle ⁇ and the roll angle ⁇ is transformed to the preset initial attitude; the preset initial attitude is the attitude of the electronic device when the three axes of the carrier antenna coordinate system are parallel to the three axes of the UWB coordinate system respectively. ; The preset rotation matrix is used to convert the coordinate parameters in the carrier antenna coordinate system into the coordinate parameters in the UWB coordinate system, and the coordinate parameters include vectors.
  • the present application provides a chip system, which is applied to an electronic device including a display screen, a memory and a communication module; the chip system integrates the functions of a UWB chip, and the chip system includes one or more interfaces a circuit and one or more processors; the interface circuit and the processor are interconnected by wires; the interface circuit is used to receive signals from the memory of the electronic device and send the signals to the processor, the The signal includes computer instructions stored in the memory; when the processor executes the computer instructions, the electronic device executes the method described in the first aspect and any possible design manners thereof.
  • the present application provides a computer storage medium, the computer storage medium comprising computer instructions, when the computer instructions are executed on an electronic device, the electronic device is made to perform the first aspect and any possible design methods thereof the method described.
  • the present application provides a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method described in the first aspect and any possible design manners thereof.
  • the electronic device described in the second aspect, the chip system described in the third aspect, the computer storage medium described in the fourth aspect, and the computer program product described in the fifth aspect can achieve beneficial effects.
  • the beneficial effects in the first aspect and any possible design manners thereof may be referred to, which will not be repeated here.
  • FIG. 1 is a schematic diagram of an application scenario of a method for acquiring attitude information provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a carrier coordinate system of an electronic device (such as a smart remote control) provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a carrier coordinate system of another electronic device (such as a mobile phone) provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a UWB coordinate system constructed by a UWB base station according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a pitch angle and an azimuth angle of a carrier coordinate system of an electronic device relative to a UWB coordinate system according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a roll angle of a carrier coordinate system of an electronic device relative to a UWB coordinate system provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of a system architecture for measuring position and attitude of an electronic device provided by conventional techniques and embodiments of the present application;
  • FIG. 11 is a schematic diagram of a carrier antenna coordinate system of an intelligent remote control provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of a carrier antenna coordinate system of a mobile phone according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of a display interface of an electronic device provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of a display interface of another electronic device provided by an embodiment of the present application.
  • 15A is a flowchart of a method for acquiring attitude information provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of the return angle of a UWB signal relative to a mobile phone provided by an embodiment of the application;
  • FIG. 17 is a flowchart of another method for acquiring attitude information provided by an embodiment of the present application.
  • 19 is a schematic diagram of a calculation principle of spatial location information of an electronic device provided by an embodiment of the application.
  • FIG. 21 is a schematic structural diagram of a chip system according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • An embodiment of the present application provides a method for acquiring attitude information, and the method is used for directional control of home equipment by an electronic device (such as a mobile phone or a smart remote control).
  • an electronic device such as a mobile phone or a smart remote control
  • the directivity control of the home equipment by the user through the mobile phone specifically refers to: when the user operates the mobile phone to point to the location of a home equipment (the smart speaker shown in FIG. 1 ), the mobile phone can automatically display the control interface 201 of the smart speaker shown in FIG. 2 . , for the user to operate and control the smart speaker.
  • the placement of household equipment is fixed. Therefore, according to the placement positions (also referred to as spatial positions) of the plurality of household devices and the spatial attitudes of the electronic devices, the household device to which the electronic device points among the plurality of household devices can be determined.
  • the spatial posture of the electronic device 100 may reflect the orientation of the electronic device.
  • the electronic device 100 is a mobile phone as an example. Based on the habit of most users using mobile phones, the orientation of the mobile phone (or the direction of the mobile phone) can be defined as a direction parallel to the long side of the mobile phone and pointing to the top along the tail of the mobile phone. Therefore, the orientation of the phone can be referred to as the top orientation of the phone.
  • the top of a mobile phone is the part of the body where hardware such as a front-facing camera, infrared transmitter, earpiece, light sensor, or distance sensor is installed.
  • the rear of the phone is the part of the fuselage where the microphone and speaker are installed.
  • the spatial posture of the electronic device 100 can be represented by the spatial posture information of the electronic device 100 .
  • the spatial attitude information of the electronic device 100 may include: a pitch angle (pitch) of the carrier coordinate system of the electronic device 100 relative to the UWB coordinate system (also referred to as a fixed coordinate system) constructed by an ultra wide band (UWB) base station Azimuth (yaw) ⁇ and roll angle (roll) ⁇ .
  • the azimuth angle can also be called the yaw angle.
  • the electronic device 100 is a smart remote control.
  • FIG. 3 shows a schematic diagram of an example of a carrier coordinate system of an intelligent remote control.
  • the carrier coordinate system of the smart remote control can be pre-configured in the smart remote control.
  • the x A axis, y A axis and z A axis with O A as the coordinate origin constitute a right-handed rectangular coordinate system.
  • OA shown in FIG. 3 may be the center of gravity of the smart remote control.
  • OA shown in FIG. 3 may be the IMU center of the smart remote control.
  • the IMU of the smart remote control can be set at the center of gravity of the smart remote control.
  • the smart remote control can include four sides: a long side 01, a short side 02, another long side that is parallel to the long side 01 and has the same length, and another short side that is parallel to the short side 02 and has the same length.
  • the x A axis is parallel to the short side 02 of the smart remote control, and the y A axis is parallel to the long side 01 of the smart remote control going upward.
  • the z A axis is perpendicular to the y A axis and perpendicular to the x B axis.
  • the coordinate system shown in FIG. 3 is the carrier coordinate system of the intelligent remote control.
  • the electronic device 100 is a mobile phone.
  • FIG. 4 shows a schematic diagram of an example of a carrier coordinate system of a mobile phone.
  • the carrier coordinate system of the mobile phone may be preconfigured in the mobile phone.
  • the x B axis, the y B axis and the z B axis with O B as the coordinate origin constitute a right-handed rectangular coordinate system.
  • OB shown in FIG. 4 may be the center of gravity of the mobile phone.
  • OB shown in FIG. 4 may be the IMU center of the mobile phone.
  • the IMU of a mobile phone can be set at the center of gravity of the mobile phone.
  • the mobile phone may include four sides: a long side 03, a short side 04, another long side that is parallel to the long side 03 and has the same length, and another short side that is parallel to the short side 04 and has the same length.
  • the x B axis is parallel to the short side 04 of the phone.
  • the y B axis goes up parallel to the long side 01 of the phone.
  • the z B axis is perpendicular to the y A axis and perpendicular to the x B axis.
  • the coordinate system shown in FIG. 4 is the carrier coordinate system of the mobile phone.
  • the above-mentioned UWB base station may be a device installed with a UWB chip, or a household device installed with a UWB chip.
  • UWB base stations some household devices in the communication system shown in FIG. 1 can be used as UWB base stations.
  • the UWB base station is used to assist the electronic device 100 to determine the home device to which the electronic device 100 points.
  • UWB chips can be installed in some household devices.
  • the smart TV shown in FIG. 1 may include 3 UWB chips.
  • the three UWB chips can be respectively located on the smart TV, as shown in Figure 5 where Base(0), Base(1) and Base(2) are located.
  • the smart air conditioner shown in FIG. 1 may include one UWB chip.
  • the home equipment that can be used as a UWB base station can provide at least one UWB base station.
  • the smart TV shown in Figure 1 includes 3 UWB chips.
  • the smart TV can provide three UWB base stations, such as the three base stations shown in Figure 5, which are respectively marked as Base(0), Base(1) and Base(2).
  • the smart air conditioner shown in FIG. 1 includes one UWB chip, the smart air conditioner can provide a UWB base station.
  • At least three UWB base stations can construct the UWB coordinate system described in the embodiments of the present application.
  • three UWB base stations are used to construct a UWB coordinate system as an example.
  • the three UWB base stations have the following characteristics: The three UWB base stations are located on the same plane (called the UWB plane). Two coordinate axes of the UWB coordinate system constructed by these three UWB base stations are on the UWB plane, and the other coordinate axis is perpendicular to the UWB plane.
  • the three UWB base stations may be provided by one large screen device.
  • the large-screen device includes a display screen (including a display panel, such as a liquid crystal panel, etc.) and multiple (3 or more) UWB chips.
  • the large-screen device can be the smart TV shown in FIG. 1
  • the smart TV includes a display screen and three UWB chips
  • the display screen of the smart TV can be used as a UWB plane.
  • the smart TV can provide three UWB base stations, such as Base(0), Base(1) and Base(2) as shown in FIG. 5 .
  • FIG. 5 shows an example schematic diagram of a UWB coordinate system provided by an embodiment of the present application.
  • the X-axis, Y-axis and Z-axis with O as the coordinate origin constitute a right-handed rectangular coordinate system.
  • the coordinate origin O shown in FIG. 5 may be the antenna center of a UWB base station-Base(0) provided by the smart TV, that is, the antenna center of the UWB chip corresponding to Base(0).
  • the X-axis is parallel to the bottom edge of the smart TV and points to the outside of the screen.
  • the Z axis is perpendicular to the plane where the X axis is located and points to the antenna center of another UWB base station-Base(1) provided by the smart TV, that is, the antenna center of the UWB chip corresponding to Base(1).
  • the Y axis is perpendicular to the X axis and perpendicular to the Z axis.
  • the Y-axis is parallel to the orientation of the display screen of the smart TV.
  • the coordinate system shown in FIG. 5 is the UWB coordinate system.
  • the location of home equipment is fixed; therefore, the UWB coordinate system of the UWB base station can also be called a fixed coordinate system.
  • the above-mentioned three UWB base stations may be three household devices installed with UWB chips.
  • the smart TV, smart speaker, and smart air conditioner shown in Figure 1 can all be installed with UWB chips, and the router, smart TV, and smart air conditioner can form a UWB plane.
  • the method for constructing a UWB coordinate system for routers, smart TVs, and smart air conditioners reference may be made to the method for constructing a UWB coordinate system with Base(0), Base(1), and Base(2) of smart TVs in the above-mentioned embodiments. I won't go into details here.
  • the above-mentioned UWB base station may be provided by a device including a preset plane.
  • the device also includes at least three UWB chips.
  • the at least three UWB chips are mounted on the above-mentioned predetermined plane.
  • the preset plane may be a plane with an area greater than a preset threshold.
  • the three UWB base stations used to construct the UWB coordinate system have the following characteristics: the three UWB base stations are located on the same plane (called the UWB plane). Two coordinate axes of the UWB coordinate system constructed by these three UWB base stations are on the UWB plane, and the other coordinate axis is perpendicular to the UWB plane.
  • the preset plane described in this embodiment is the above-mentioned UWB plane.
  • the above at least three UWB chips are installed on a preset plane, which can facilitate the construction of a UWB coordinate system.
  • the above-mentioned device including the preset plane may be a refrigerator including at least three UWB chips.
  • the preset plane may be the front or the side of the refrigerator, and the at least three UWB chips are arranged on the preset plane of the refrigerator.
  • UWB base station a smart TV (ie, a reference device) as an example.
  • Spatial attitude information of the electronic device 100 including the pitch angle of the carrier coordinate system relative to the UWB coordinate system Azimuth ⁇ and roll angle ⁇ .
  • the pitch angle The azimuth angle ⁇ and the roll angle ⁇ may be collectively referred to as Euler angles.
  • the pitch angle of the carrier coordinate system of the electronic device 100 relative to the UWB coordinate system is: the included angle between the y B axis of the carrier coordinate system of the electronic device 100 and the plane where XOY of the UWB coordinate system is located (ie, equivalent to the horizontal plane).
  • the electronic device 100 is the mobile phone shown in FIG. 4 .
  • the pitch angle of the carrier coordinate system of the mobile phone relative to the UWB coordinate system is the angle between the y B axis and the plane where XOY is located (ie, equivalent to the horizontal plane).
  • Oy B ' ie, O B x B '
  • Oy B ' is the vertical projection of the y B axis on the plane where XOY is located.
  • the pitch angle of the carrier coordinate system of the above mobile phone relative to the UWB coordinate system That is, the angle between Oy B ' (ie O B y B ') and the y B axis.
  • the pitch angle is positive.
  • the azimuth angle ⁇ of the carrier coordinate system of the electronic device 100 relative to the UWB coordinate system is: the vertical projection Oy B ′ of the carrier coordinate system of the electronic device 100 on the plane Oy B ' of the carrier coordinate system of the electronic device 100. horn.
  • the electronic device 100 is the mobile phone shown in FIG. 4 .
  • the azimuth angle ⁇ of the carrier coordinate system of the mobile phone relative to the UWB coordinate system is the vertical projection Oy B ' of the carrier coordinate system of the mobile phone on the plane Oy B' of the plane where XOY is located and the Y axis of the UWB coordinate system. angle.
  • Oy B ' ie O B y B '
  • the azimuth angle ⁇ is positive.
  • the roll angle ⁇ of the carrier coordinate system of the electronic device 100 relative to the UWB coordinate system is the angle between the z B axis of the carrier coordinate system of the electronic device 100 and the plane (equivalent to the vertical plane) where y B OZ is located.
  • the electronic device 100 is the mobile phone shown in FIG. 4 .
  • the roll angle ⁇ of the carrier coordinate system of the mobile phone relative to the UWB coordinate system is the difference between the z B axis of the mobile phone carrier coordinate system and the plane (equivalent to the vertical plane) of y B OZ passing through the y B axis.
  • Oz B ' ie O B z B '
  • Oz B ' is the vertical projection of the z B axis on the plane of y B OZ passing through the y B axis.
  • the roll angle ⁇ of the carrier coordinate system of the above mobile phone relative to the UWB coordinate system is also the angle between Oz B ' (ie O B z B ') and the z B axis.
  • Oz B ' ie O B z B '
  • the roll angle ⁇ is positive.
  • FIG. 3 only introduces the carrier coordinate system of the smart remote control as an example
  • FIG. 4 only introduces the carrier coordinate system of the mobile phone as an example.
  • the carrier coordinate system of the electronic device 100 may also be defined according to other rules.
  • the origin of the coordinates may also be any other point on the electronic device 100 or outside the electronic device 100 .
  • the three-axis directions of the carrier coordinate system are also not limited to the directions shown by the x A -axis, y A -axis and z A -axis shown in FIG. 3 , or the x B- axis, y B- axis and z B- axis shown in FIG. 4 .
  • Figure 5 presents the UWB coordinate system as an example only.
  • UWB coordinate systems can also be defined according to other rules.
  • the three-axis directions of the UWB coordinate system are also not limited to the directions shown by the X-axis, the Y-axis and the Z-axis shown in FIG. 5 .
  • This embodiment of the present application does not limit the setting of the coordinate origin position and coordinate axis direction of the carrier coordinate system and the UWB coordinate system. The methods of the embodiments of the present application are described below with reference to specific embodiments.
  • an inertial measurement unit (IMU) chip is configured in an electronic device (such as a mobile phone or a smart remote control).
  • the electronic device can use the magnetometer and accelerometer in the IMU chip to input the spatial attitude information a of the electronic device in the geodetic coordinate system; then according to the attitude transfer parameters of the geodetic coordinate system and the UWB coordinate system, the geodetic coordinate system measured by the IMU chip
  • the spatial attitude information a is transferred to the UWB coordinate system. In this way, the attitude information b of the electronic device in the UWB coordinate system can be obtained.
  • the user needs to operate the electronic device to perform figure-8 shaking or 10-plane calibration to perform the initial calibration of the magnetometer, which is complicated for the user to operate.
  • the magnetometer if the magnetic field around the electronic device changes, if a metal object is close to the electronic device, the magnetometer will be affected, and the accuracy of the spatial attitude information a output by the IMU chip will also be greatly affected. In this case, the magnetometer needs to be recalibrated.
  • the attitude transfer parameters of the geodetic coordinate system and the UWB coordinate system need to be known to obtain the attitude information b of the electronic device in the UWB coordinate system.
  • an electronic device (such as a mobile phone or a smart remote control) is configured with an IMU module (such as an IMU chip) and a UWB module (such as a UWB chip).
  • the IMU module can include an accelerometer and a gyroscope, and the IMU module can be used to obtain the spatial attitude information of the electronic device.
  • the electronic device can instruct the user to operate the electronic device to point in a specific direction with a specific posture, so as to obtain the initial posture information I of the electronic device.
  • the electronic device can measure the attitude change information (including three-axis acceleration, attitude and position information) of the electronic device through the IMU module.
  • the electronic device can obtain the real-time posture information II of the electronic device according to the above-mentioned initial posture information I and posture change information.
  • the UWB module shown in (a) of FIG. 8 can provide a positioning system of the electronic device for obtaining the spatial position information of the electronic device. Considering that the error of the attitude change information collected by the IMU module will accumulate over time; however, the error of the spatial position information collected by the UWB module will not accumulate over time. Therefore, the spatial position information collected by the UWB module shown in (a) of FIG. 8 can also be used to correct the attitude change information collected by the IMU module.
  • the filtering module (such as Kalman filter) shown in (a) in Fig. 8 can integrate the observation quantity (ie spatial position information) from the UWB module and the predicted quantity (ie attitude change information) from the IMU module to obtain a calibration quantity .
  • the calibration amount can be used as attitude change information to obtain the above-mentioned real-time attitude information II in combination with the initial attitude information I.
  • the electronic device can obtain accurate initial posture information I only when the user operates the electronic device to point in a specific direction with a specific posture. This solution depends on the reliability of user operations, and human operations will undoubtedly bring errors in the initial attitude information I, which in turn will affect the accuracy of the real-time attitude information II.
  • the solution acquires the attitude change information of the electronic device based on the change of the angular velocity of the gyroscope.
  • the attitude of the electronic device changes, but the position of the electronic device does not change; the error of the attitude change information measured by the gyroscope is relatively large. In this way, accurate real-time attitude information II cannot be obtained.
  • the existing solutions cannot accurately measure the spatial attitude information of electronic devices. That is, the attitude measurement accuracy of electronic equipment is low. In this way, the effect of the directional control of the electronic equipment on the home equipment will be affected.
  • an embodiment of the present application provides a method for acquiring attitude information.
  • the method can be applied to the communication system shown in FIG. 1 .
  • the communication system includes an electronic device (such as a mobile phone or a smart remote control) 100 and a plurality of household devices (such as a smart TV, a smart air conditioner, a smart desk lamp, a smart speaker, a router, etc.).
  • the UWB module of the electronic device 100 can not only provide a positioning system, but also an attitude measurement system.
  • the attitude measurement system is used to measure the spatial attitude information of the electronic device 100 . That is, the electronic device 100 can use the UWB module to measure the spatial attitude information of the electronic device.
  • the measurement data of the IMU module may also be calibrated by using the spatial attitude information measured by the attitude measurement system of the UWB module. In this way, not only can the error of the attitude change information collected by the IMU module be reduced; the IMU module and the UWB module jointly provide the electronic device with the attitude measurement function, and can also ensure the continuity of the electronic device's measurement of the attitude information.
  • the filtering module shown in (b) in FIG. 8 reference may be made to the introduction of the filtering module shown in (a) in FIG. 8 in the foregoing embodiment, which is not repeated in this embodiment of the present application.
  • the electronic device 100 is installed with a UWB module, and the electronic device 100 further includes a multi-antenna module (for example, the multi-antenna module includes antenna 0, antenna 1 and antenna 2 shown in FIG. 10).
  • the UWB module may be a UWB chip.
  • the electronic device 100 can use the multi-antenna module to receive UWB signals from each UWB base station; and then obtain the spatial attitude information of the electronic device 100 according to the received UWB signals.
  • the electronic device 100 can use the multi-antenna module to receive UWB signals from each UWB base station, and measure the direction of the UWB signal; and then obtain the spatial attitude information of the electronic device 100 according to the direction of each UWB signal received.
  • the origin of each UWB signal is obtained through real-time measurement by the electronic device 100 using the multi-antenna module; therefore, the accuracy of the origin of each UWB signal can be guaranteed. It can be seen that, by adopting this solution, the error between the attitude information measured by the electronic device 100 and the actual attitude information can be reduced, the attitude measurement accuracy of the electronic device can be improved, and the effect of directivity control of the electronic device can be improved.
  • the magnetometer in the electronic device 100 does not need to be calibrated, and the spatial attitude information of the electronic device 100 can be measured without the user operating the electronic device 100 in a specific manner. In this way, user operations in the process of measuring attitude information can be reduced.
  • the above-mentioned electronic device 100 may be a mobile phone, a tablet computer, a smart remote control, a wearable device (such as a smart bracelet, a smart watch or smart glasses, etc.), a handheld computer, an augmented reality (AR)/virtual reality (virtual reality, VR) equipment.
  • the electronic device 100 may also be a portable multimedia player (Portable Multimedia Player, PMP), a media player and other types of electronic devices.
  • PMP Portable Multimedia Player
  • the electronic device 100 is introduced by taking the electronic device 100 as a mobile phone as an example.
  • the electronic device 100 may include: a processor 810, an external memory interface 820, an internal memory 821, a universal serial bus (USB) interface 830, a charging management module 840, a power management module 841, a battery 842, antenna a, antenna b, mobile communication module 850, wireless communication module 860, audio module 870, speaker 870A, receiver 870B, microphone 870C, headphone jack 870D, sensor module 880, key 890, motor 891, indicator 892, camera 893, a display screen 894, and a subscriber identification module (subscriber identification module, SIM) card interface 895 and the like.
  • SIM subscriber identification module
  • the above sensor module 880 may include a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, a magnetometer, and a bone conduction sensor wait for the sensor.
  • the aforementioned sensor module 880 may include three acceleration sensors and three gyroscope sensors. These 3 acceleration sensors and 3 gyro sensors can form a 6-axis IMU.
  • the aforementioned sensor module 880 may include 3 acceleration sensors, 3 gyroscope sensors, and 3 magnetometers. These 3 accelerometer sensors, 3 gyroscope sensors, and 3 magnetometers can form a 9-axis IMU.
  • the IMU can be used to measure the spatial attitude information of the electronic device 100, including pitch angle, azimuth angle and roll angle. In this embodiment of the present application, the spatial attitude information measured by the IMU is not used.
  • the structure illustrated in this embodiment does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown, or some components may be combined, or some components may be split, or a different arrangement of components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 810 for storing instructions and data.
  • the memory in processor 810 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 810 . If the processor 810 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided, and the waiting time of the processor 810 is reduced, thereby increasing the efficiency of the system.
  • processor 810 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the interface connection relationship between the modules illustrated in this embodiment is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 840 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger. While the charging management module 840 charges the battery 842, the power management module 841 can also supply power to the electronic device.
  • the power management module 841 is used to connect the battery 842 , the charging management module 840 and the processor 810 .
  • the power management module 841 receives input from the battery 842 and/or the charge management module 840, and supplies power to the processor 810, the internal memory 821, the external memory, the display screen 894, the camera 893, and the wireless communication module 860.
  • the power management module 841 and the charging management module 840 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 may be implemented by the antenna a, the antenna b, the mobile communication module 850, the wireless communication module 860, the modulation and demodulation processor, the baseband processor, and the like.
  • the antenna a of the electronic device 100 is coupled with the mobile communication module 850
  • the antenna b is coupled with the wireless communication module 860, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the electronic device 100 may send a control instruction to other household devices through a wireless communication technology.
  • Antenna a and antenna b are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna a can be multiplexed into the diversity antenna of the wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 850 may provide a wireless communication solution including 2G/3G/4G/5G, etc. applied on the electronic device 100.
  • the mobile communication module 850 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and the like.
  • the mobile communication module 850 can receive the electromagnetic wave by the antenna a, filter, amplify, etc. the received electromagnetic wave, and transmit it to the modulation and demodulation processor for demodulation.
  • the mobile communication module 850 can also amplify the signal modulated by the modulation and demodulation processor, and then convert it into electromagnetic waves and radiate it out through the antenna a.
  • at least part of the functional modules of the mobile communication module 850 may be provided in the processor 810 .
  • at least part of the functional modules of the mobile communication module 850 may be provided in the same device as at least part of the modules of the processor 810 .
  • the wireless communication module 860 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (eg (wireless fidelity, Wi-Fi) network), Bluetooth (bluetooth, BT), global navigation satellite system (global Navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR), UWB technology and other wireless communication solutions.
  • WLAN wireless local area networks
  • Bluetooth blue, BT
  • global navigation satellite system global Navigation satellite system
  • GNSS global Navigation satellite system
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication
  • NFC near field communication
  • infrared technology infrared, IR
  • UWB technology UWB technology
  • the wireless communication module 860 can provide a solution of wireless communication in UWB technology. That is, the wireless communication module 860 may include a UWB chip.
  • UWB technology is a wireless carrier communication technology. It does not use sinusoidal carrier to transmit data, but uses nanosecond non-sinusoidal narrow pulses to transmit data. Therefore, the frequency spectrum occupied by UWB technology is very wide.
  • UWB technology has the advantages of low system complexity, low power spectral density of transmitted signals, insensitivity to channel fading, low interception capability, and high positioning accuracy, and is especially suitable for high-speed wireless access in dense multipath places such as indoors.
  • the electronic device 100 may measure the distance between the electronic device 100 and a device supporting the UWB technology (eg, a home device installed with a UWB chip) through the UWB technology.
  • the wireless communication module 860 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 860 receives electromagnetic waves via the antenna b, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 810 .
  • the wireless communication module 860 can also receive the signal to be sent from the processor 810, perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna b.
  • the antenna b may include the above-mentioned multi-antenna module.
  • the multi-antenna module may include n antennas, where n ⁇ 3, where n is a positive integer.
  • the n antennas in the multi-antenna module are all connected to the UWB chip of the electronic device 100 .
  • the multi-antenna module may include Ant(0) (ie antenna 0), Ant(1) (ie antenna 1) and Ant(2) (ie antenna 2) shown in FIG. 10 , Antenna 0, Antenna 1 and Antenna 2 are all connected to the UWB chip for receiving UWB signals from other devices.
  • the n antennas in the multi-antenna module can construct the carrier antenna coordinate system of the electronic device 100 .
  • the three axes of the carrier antenna coordinate system are respectively parallel to the three axes of the carrier coordinate system of the electronic device 100 .
  • Ant(0) is used as the coordinate origin of the carrier antenna coordinate system
  • Ant(i) is located on the coordinate axis or the extension line of the coordinate axis of the carrier coordinate system.
  • the distance between Ant(i) and Ant(0) is U, U ⁇ .
  • U ⁇ /2.
  • is the wavelength of the UWB signal
  • i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence.
  • the UWB module of the electronic device 100 may include the above-mentioned multi-antenna module and UWB chip.
  • the antennas (eg, Ant(0), Ant(1) and Ant(2)) in the multi-antenna module may be external antennas of the UWB chip.
  • the multi-antenna module is electrically connected to the UWB chip.
  • the multi-antenna module may be disposed on the backplane of the electronic device 100 (eg, a mobile phone).
  • a board for arranging antennas of various communication modules (such as WiFi, UWB and Bluetooth) is provided under the back of the electronic device 100 (such as a mobile phone). The multi-antenna module is placed on this board.
  • Ant(0) is set on the upper right corner of the electronic device 100; Ant(1) is set on the upper side frame of the electronic device 100, and Ant(1) and Ant(0 ) is separated by U; Ant(2) is arranged on the right frame of the electronic device 100, and Ant(2) is separated from Ant(0) by U, U ⁇ .
  • the distance between Ant(1) and Ant(0) is ⁇ /2, and the distance between Ant(1) and Ant(0) is ⁇ /2.
  • FIG. 11 shows a schematic diagram of an example of a carrier antenna coordinate system of a smart remote control.
  • the carrier antenna coordinate system of the smart remote control can be pre-configured in the smart remote control.
  • the x a -axis, the y a -axis and the z a -axis with O a as the coordinate origin constitute a right-handed rectangular coordinate system.
  • O a shown in FIG. 11 is where Ant(0) is located.
  • the x a axis is parallel to the line connecting Ant(0) and Ant(1), and the line connecting Ant(0) and Ant(1) is parallel to the short side 02 of the smart remote.
  • the y a axis is parallel to the long side 01 of the smart remote control and goes up, and the line connecting Ant(2) and Ant(0) is parallel to the long side 01 of the mobile phone.
  • the z a -axis is perpendicular to the y a -axis and perpendicular to the x a -axis.
  • the coordinate system shown in FIG. 11 is the carrier antenna coordinate system of the smart remote control. Comparing the carrier antenna coordinate system shown in FIG. 11 with the carrier coordinate system shown in FIG. 3 , it can be known that the x a axis is parallel to the x A axis, the y a axis is parallel to the y A axis, and the z a axis is parallel to the z A axis. As shown in Figure 11, the coordinates of Ant(0) in the carrier antenna coordinate system are (0, 0, 0), the coordinates of Ant(1) are (- ⁇ /2, 0, 0), and Ant(2) The coordinates are (0, - ⁇ /2, 0). Among them, ⁇ is the wavelength of the UWB signal.
  • FIG. 12 shows a schematic diagram of an example of a carrier antenna coordinate system of a mobile phone.
  • the carrier antenna coordinate system of the mobile phone may be preconfigured in the mobile phone.
  • the x b axis, the y b axis and the z b axis with O b as the coordinate origin constitute a right-handed rectangular coordinate system.
  • Ob shown in Fig . 12 is where Ant(0) is located.
  • the x b axis is parallel to the line connecting Ant(0) and Ant(1), and the line connecting Ant(0) and Ant(1) is parallel to the short side 04 of the phone.
  • the y and b axes are parallel to the long side 03 of the mobile phone, and the line connecting Ant(2) and Ant(0) is parallel to the long side 03 of the mobile phone.
  • the z b axis is perpendicular to the y b axis and perpendicular to the x b axis.
  • the coordinate system shown in FIG. 12 is the carrier antenna coordinate system of the mobile phone. Comparing the carrier antenna coordinate system shown in FIG. 12 with the carrier coordinate system shown in FIG. 4 , it can be known that the x b axis is parallel to the x B axis, the y b axis is parallel to the y B axis, and the z b axis is parallel to the z B axis. As shown in Figure 12, the coordinates of Ant(0) in the carrier antenna coordinate system are (0, 0, 0), the coordinates of Ant(1) are (- ⁇ /2, 0, 0), and Ant(2) The coordinates are (0, - ⁇ /2, 0). Among them, ⁇ is the wavelength of the UWB signal.
  • the Euler angle of the carrier coordinate system of the electronic device 100 relative to the UWB coordinate system is equal to The Euler angle of its carrier antenna coordinate system relative to the UWB coordinate system.
  • the pitch angle of the carrier coordinate system of the electronic device 100 relative to the UWB coordinate system Equal to the pitch angle of its carrier antenna coordinate system relative to the UWB coordinate system
  • the azimuth angle ⁇ of the carrier coordinate system of the electronic device 100 relative to the UWB coordinate system is equal to the azimuth angle ⁇ of its carrier antenna coordinate system relative to the UWB coordinate system
  • the roll angle ⁇ of the carrier coordinate system of the electronic device 100 relative to the UWB coordinate system is equal to The roll angle ⁇ of its carrier antenna coordinate system relative to the UWB coordinate system.
  • the spatial attitude information of the electronic device 100 may include: the pitch angle of the carrier antenna coordinate system of the electronic device 100 relative to the UWB coordinate system Azimuth ⁇ and roll angle ⁇ .
  • the electronic device 100 implements a display function through a GPU, a display screen 894, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 894 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 810 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 894 is used to display images, videos, and the like.
  • the display screen 894 includes a display panel.
  • the display screen 894 may be used to display a control interface for controlling the above-mentioned first device.
  • the electronic device 100 may implement a shooting function through an ISP, a camera 893, a video codec, a GPU, a display screen 894, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 893.
  • the camera 893 is used to capture still images or video.
  • the electronic device 100 may include 1 or N cameras 893 , where N is a positive integer greater than 1.
  • the external memory interface 820 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100 .
  • the external memory card communicates with the processor 810 through the external memory interface 820 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 821 may be used to store computer executable program code, which includes instructions.
  • the processor 810 executes various functional applications and data processing of the electronic device 100 by executing the instructions stored in the internal memory 821 .
  • the processor 810 may execute instructions stored in the internal memory 821, and the internal memory 821 may include a program storage area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 100 and the like.
  • the internal memory 821 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the electronic device 100 may implement audio functions through an audio module 870, a speaker 870A, a receiver 870B, a microphone 870C, an earphone interface 870D, and an application processor. Such as music playback, recording, etc.
  • the keys 890 include a power-on key, a volume key, and the like. Keys 890 may be mechanical keys. It can also be a touch key. Motor 891 can generate vibration alerts. The motor 891 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback. The indicator 892 may be an indicator light, which may be used to indicate the charging status, the change of power, and may also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 895 is used to connect a SIM card. The SIM card can be connected to and separated from the electronic device 100 by inserting into the SIM card interface 895 or pulling out from the SIM card interface 895 . The electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1. The SIM card interface 895 can support Nano SIM card, Micro SIM card, SIM card and so on.
  • This embodiment of the present application provides a method for acquiring attitude information, and the method can be applied to the electronic device 100 described above.
  • the electronic device 100 shown in FIG. 1 is a mobile phone 100 and the UWB base station is a smart TV shown in FIG. 1 as an example, to introduce the methods of the embodiments of the present application.
  • the smart TV can provide three UWB base stations, such as Base(0), Base(1) and Base(2) as shown in FIG. 5 .
  • the three UWB base stations can construct the UWB coordinate system as shown in Figure 5.
  • the mobile phone 100 includes a UWB module, and the UWB module includes a UWB chip and a multi-antenna module.
  • the multi-antenna module may include n antennas, such as 3 antennas.
  • the n antennas may be Ant antennas, such as Ant(0), Ant(1) and Ant(2) as shown in FIG. 12 .
  • the mobile phone 100 may also include an IMU module (eg, an IMU chip).
  • the mobile phone 100 is configured with the carrier coordinate system shown in FIG. 4 and the carrier antenna coordinate system shown in FIG. 12 .
  • the mobile phone 100 is also installed with a smart home application (Application, APP) for controlling home devices.
  • the mobile phone 100 can realize the directional control of the home equipment through the smart home APP.
  • the method of the embodiments of the present application can be executed to obtain the spatial attitude information of the mobile phone 100, so as to realize the directivity control of the home equipment.
  • the mobile phone 100 may execute the method of the embodiments of the present application to obtain the spatial attitude information of the mobile phone 100, so as to realize the directional control of the home equipment.
  • the smart home APP can run in the foreground or in the background.
  • the mobile phone 100 can execute the method of the embodiment of the present application to obtain the spatial attitude information of the mobile phone 100 in real time.
  • the mobile phone 100 can execute the method of the embodiments of the present application to obtain the spatial attitude information of the mobile phone 100 in real time.
  • the mobile phone 100 may execute the method of the embodiments of the present application after starting the preset function to obtain the spatial attitude information of the mobile phone 100, so as to realize the directivity control of the home equipment.
  • the preset function is a function of directional control of home equipment.
  • the notification bar of the mobile phone 100 may include a switch option for the preset function.
  • the notification bar 1401 shown in FIG. 14 includes a "smart home pointing control" option 1402 .
  • the "smart home pointing control" option 1402 is a switch option of a preset function, which is used to turn on and off the preset function.
  • the setting interface of the smart home APP may include a switch option of the preset function (not shown in the drawings), which is used to enable and disable the preset function.
  • the spatial location information of the mobile phone 100 is the coordinates of the mobile phone 100 in the UWB coordinate system (the UWB coordinate system shown in FIG. 5 ) provided by the UWB base stations (eg, Base(0), Base(1), and Base(2)).
  • the spatial attitude information of the mobile phone 100 may include the pitch angle of the carrier antenna coordinate system (or carrier coordinate system) of the mobile phone 100 relative to the UWB coordinate system Azimuth ⁇ and roll angle ⁇ .
  • the method of this embodiment of the present application may include S1501-S1506.
  • m UWB base stations may execute S1501 to broadcast UWB signals.
  • the mobile phone 100 may execute S1502 to receive UWB signals from Base(0), Base(1) and Base(2) through Ant(0), Ant(1) and Ant(2).
  • the mobile phone 100 may execute S1503 to determine the spatial location information of the mobile phone 100 according to the received UWB signal.
  • the spatial position information of the mobile phone 100 may be the coordinates of Ant(0) in the UWB coordinate system in the multi-antenna module of the mobile phone 100 .
  • the mobile phone 100 can respectively measure the distance between the mobile phone 100 and each UWB base station according to the UWB signal received in S1502; then, according to the distance between the mobile phone 100 and each UWB base station, calculate the spatial position of the mobile phone 100 information.
  • the mobile phone 100 to perform S1503 to calculate the spatial position information of the mobile phone 100 reference may be made to the relevant descriptions in the following embodiments, which will not be repeated here.
  • the mobile phone 100 may perform S1504 shown in FIG. 15A to determine the spatial attitude information of the mobile phone 100 according to the received UWB signal.
  • the spatial attitude information of the mobile phone 100 may include the pitch angle of the carrier antenna coordinate system of the mobile phone 100 compared to the UWB coordinate system Azimuth ⁇ and roll angle ⁇ .
  • the mobile phone 100 may execute S1503 first, and then execute S1504; or execute S1504 first, and then execute S1503; or execute S1503 and S1504 at the same time.
  • This embodiment of the present application does not limit the sequence in which the mobile phone 100 executes S1503 and S1504.
  • the mobile phone 100 can execute S1505-S1506.
  • S1505 Determine the directivity control information of the mobile phone 100 according to the spatial position information and the spatial attitude information of the mobile phone 100, where the directivity control information is used to indicate the direction in which the mobile phone 100 points.
  • S1506 The mobile phone 100 controls the home device pointed by the mobile phone 100 according to the directivity control information and the coordinate information of each home device in the UWB coordinate system.
  • the specific method for the mobile phone 100 to execute S1505-S1506 to realize the directivity control of the home equipment by the mobile phone 100 can be referred to the detailed description in the conventional technology, which is not repeated here in this embodiment of the present application.
  • S1504 may include S1504A-S1504B.
  • the mobile phone 100 may perform S1504A shown in FIG. 15B to calculate the return angle ⁇ (i,j) of the UWB signal from the UWB base station j among the m UWB base stations compared to the antenna i.
  • j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence
  • the return angle ⁇ (i, j) is: in the UWB coordinate system, the vector from antenna i to UWB base station j and the antenna The angle between i and the vector of the antenna 0.
  • the mobile phone 100 can perform S1504B shown in FIG.
  • the above-mentioned multiple coming angles include: i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence, and the obtained Coming angle ⁇ (i,j) .
  • the mobile phone 100 executes S1504A, and a specific method for calculating the coming angle ⁇ (i, j) .
  • the above S1504A may include S1504A-1 and S1504A-2.
  • the mobile phone 100 obtains the phase difference between Ant(0) and Ant(i) receiving the UWB signal of Base(j) in the multi-antenna module of the mobile phone 100.
  • i takes values in ⁇ 1, 2..., n-1 ⁇ in sequence
  • j takes values in ⁇ 0, 1, 2,..., m-1 ⁇ in order
  • m is the number of UWB base stations, m ⁇ 3, and m is a positive integer
  • Ant(0) is the antenna located at the coordinate origin of the carrier antenna coordinate system in the multi-antenna module.
  • n is the number of antennas in the multi-antenna module, n ⁇ 3, and n is a positive integer.
  • U is the distance between Ant(i) and Ant(0) in the multi-antenna module
  • is the wavelength of the UWB signal sent by the UWB base station.
  • the point K i shown in FIG. 16 is where Ant(i) is located.
  • the distance difference between the distance between Base(j) and Ant(i) and the distance between Base(j) and Ant(0) is K i K i ′ shown in FIG. 16 .
  • the UWB signal needs to propagate a distance of K i K i ′ before it can be received by Ant(i). .
  • the mobile phone 100 can obtain the phase difference between Ant(i) and Ant(0) receiving the same UWB signal broadcast by Base(j) through the phase comparator. This phase difference can be converted to Ant(0) and the distance difference between Ant(i) and Base(j).
  • the mobile phone 100 executes S1504A-1, and the phase difference shown in Table 1 can be obtained.
  • the phase difference between the UWB signal from Base(0) received by Ant(0) and the UWB signal from Base(0) received by Ant(1) is the phase difference I ;
  • the phase difference between the UWB signal from Base(0) received by Ant(0) and the UWB signal from Base(0) received by Ant(2) is the phase difference II.
  • the phase difference between the UWB signal from Base(1) received by Ant(0) and the UWB signal from Base(1) received by Ant(1) is the phase difference i ;
  • the phase difference between the UWB signal from Base(1) received by Ant(0) and the UWB signal from Base(1) received by Ant(2) is the phase difference ii.
  • the phase difference between the UWB signal from Base(2) received by Ant(0) and the UWB signal from Base(2) received by Ant(1) is the phase difference1 ;
  • the phase difference between the UWB signal from Base(2) received by Ant(0) and the UWB signal from Base(2) received by Ant(2) is the phase difference 2.
  • the mobile phone 100 uses the cosine theorem to calculate the UWB base station Base according to the distance difference represented by the phase difference between Ant(0) and Ant(i) receiving UWB signals, and the distance between Ant(i) and Ant(0).
  • the UWB signal of (j) is compared with the coming angle of the mobile phone 100 .
  • the coming angle ⁇ (i, j) of the UWB signal of Base(j) compared to Ant(i) is: the angle between the vector O a K i and the vector A j K i .
  • the vector A j K i is the vector from Base(j) to Ant(i) in the UWB coordinate system
  • the vector O a K i is the vector from Ant(0) to Ant(i) in the UWB coordinate system.
  • K i O a ⁇ /2. It can be known from the above embodiment that the phase difference between Ant(0) and Ant(i) receiving the UWB signal of Base(j) can be converted into Ant(0) and the distance difference between Ant(i) and Base(j). That is to say, the mobile phone 100 can obtain the length of K i K i ′ shown in FIG. 16 according to the phase difference.
  • the UWB signal of the UWB base station Base(j) can be divided into: a horizontal return angle and a vertical return angle. From the main view of the mobile phone 100, Ant(0) and Ant(1) are basically located on the same horizontal line, and Ant(0) and Ant(2) are basically located on the same vertical line. Therefore, the UWB signal of Base(j) is compared to the horizontal direction angle of the mobile phone 100 and the UWB signal of Base(j) is compared to the direction angle ⁇ (1,j) of Ant(1). Base(j) The vertical return angle of the UWB signal compared to the mobile phone 100 is the return angle ⁇ (2,j) of the UWB signal compared to Ant(2) .
  • S1504B determines the specific method of the spatial attitude information of the mobile phone 100 according to multiple return angles, combined with the received UWB signals, and the coordinates of the n antennas in the carrier coordinate system.
  • S1504B may include S1504B-1 and S1504B-2.
  • the mobile phone 100 obtains the baseline vector r (i,j) of the antennas Ant(i) to Base(j) in the UWB coordinate system.
  • r (i,j) (x j , y j , z j ).
  • the baseline vector r (i, j) is the direction vector in the direction from Ant(i) to Base(j) in the UWB coordinate system.
  • the mobile phone 100 may first obtain the coordinates of the antenna Ant(i) in the UWB coordinate system, such as Ant i (a i , b i , c i ).
  • the coordinates of the antenna Ant(0) in the UWB coordinate system may be used as the coordinates of the mobile phone 100 in the UWB coordinate system.
  • the mobile phone 100 stores the UWB coordinate system constructed by the UWB base station and the coordinates of Base(j) in the UWB coordinate system.
  • the mobile phone 100 can obtain the coordinates of Base(j) in the UWB coordinate system, such as Base(j)(A j , B j , C j ).
  • the mobile phone 100 can measure the distance between Ant(i) and Base(j) through the interaction between Ant(i) and various UWB base stations (such as Base(0), Base(1) and Base(2)); then , according to the distance between Ant(i) and Base(j), calculate the coordinates of Ant(i) in the UWB coordinate system.
  • the method for obtaining the coordinates of Ant(i) in the UWB coordinate system by the interaction of Ant(i) with each UWB base station by the mobile phone 100 may refer to the detailed description in the following embodiments, which will not be repeated here.
  • the mobile phone 100 can calculate the vector (A j -a i , B j -b i , C j -c i ) of the antenna Ant(i) to Base(j) in the UWB coordinate system, and can obtain Ant(i) to Base(j) Baseline vector r (i,j ) in UWB coordinate system.
  • the mobile phone 100 can use the following formula (1) to calculate the modulus of the vector r (i, j)
  • the mobile phone 100 may execute S1504B-2 to calculate the spatial attitude information of the mobile phone 100.
  • the mobile phone 100 determines the spatial attitude information of the mobile phone 100 according to the plurality of coming angles, the plurality of baseline vectors and the plurality of first unit baseline vectors.
  • the above-mentioned multiple first unit baseline vectors include: i takes values in ⁇ 1, 2,..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2,..., m-1 ⁇ in order value, the resulting first baseline vector r (i,j) .
  • the multiple first unit baseline vectors include: i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence, to obtain The first unit baseline vector rq i of .
  • the first unit baseline vector rq i is a unit direction vector from antenna i to antenna 0 in the carrier antenna coordinate system. where the first unit baseline vector rq i is modulo 1.
  • S1504B-2 can include: S-1 and S-2.
  • S-1 The mobile phone 100 determines a plurality of second unit baseline vectors according to the plurality of heading angles and the plurality of baseline vectors.
  • the multiple second unit baseline vectors include: i takes values in ⁇ 1, 2, ..., n-1 ⁇ in sequence, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence , resulting in the second unit baseline vector ra (i) .
  • the second unit baseline vector ra (i) is the unit direction vector from antenna i to antenna 0 in the UWB coordinate system.
  • the second unit baseline vector ra (i) (x (i) , y (i) , z (i) ) of Ant(i) to Ant(0) in the UWB coordinate system.
  • ra (i) is a unit vector in the direction from point K i to point O a shown in FIG. 16 .
  • the modulus of the second unit baseline vector ra (i) is equal to 1, i.e. K i shown in FIG. 16 is the location of the antenna Ant(i), and the point O a is the coordinate origin of the carrier antenna coordinate system of the mobile phone 100, and is also the location of the antenna Ant(0).
  • the second unit baseline vector ra (i) (x (i) , y (i) , z (i) ) of Ant(i) to Ant(0) in the UWB coordinate system is an unknown quantity.
  • the angle between the second unit baseline vector ra (i) and the baseline vector r (i,j) is ⁇ (i,j) .
  • ra (i) (x (i) , y (i) , z (i) )
  • r (i, j) (x j , y j , z j ).
  • Antenna Ant(j) can receive UWB signals of m UWB base stations.
  • the following equation group (1) can be obtained in combination with equation (5). That is to say, j takes values in ⁇ 0, 1, 2, ..., m-1 ⁇ in sequence, and the following equation system (1) can be obtained:
  • x j , y j and z j are known quantities, and cos ⁇ (i, j) is a known quantity.
  • i takes values in sequence in ⁇ 0, 1, 2, ..., n-1 ⁇
  • n is the number of antennas in the multi-antenna module, n ⁇ 3, n is a positive integer
  • j is in sequence in ⁇ 0, 1 , 2, ..., m-1 ⁇
  • m is the number of UWB base stations, m ⁇ 3, m is a positive integer.
  • x (i) , y (i) and z (i) are unknowns.
  • G T is the transpose matrix of G
  • GT G represents the product of GT and G.
  • G T G is the inverse of G T G.
  • X is the inverse of G T G times G T , times B.
  • the mobile phone 100 determines the spatial attitude information of the mobile phone 100 according to the plurality of first unit baseline vectors and the plurality of second unit baseline vectors.
  • the second unit baseline vector ra (i) is the unit direction vector from Ant(i) to Ant(0) in the UWB coordinate system.
  • the first unit baseline vector rq i is the unit direction vector from Ant(i) to Ant(0) in the carrier antenna coordinate system b.
  • the spatial attitude information of the mobile phone 100 includes the pitch angle Azimuth angle ⁇ 1 and roll angle ⁇ 1 .
  • the unit baseline vector ra (i) (x (i) , y (i) , z (i) ) are known quantities, namely (x (1) , y (1) , z (1) ) and (x (2) ,y (2) ,z (2) ) are known quantities.
  • Pitch angle The azimuth angle ⁇ 1 and the roll angle ⁇ 1 are unknown quantities.
  • the user operates the mobile phone 100 according to the above pitch angle
  • the azimuth angle ⁇ 1 and the roll angle ⁇ 1 rotate around the pitch axis (that is, the x b axis), the roll axis (y b axis) and the azimuth axis (that is, the z b axis) of the carrier antenna coordinate system b in a fixed order.
  • the three axes of the carrier antenna coordinate system b can be made parallel to the three axes of the UWB coordinate system e, respectively.
  • the spatial attitude of the mobile phone 100 is called a preset initial attitude.
  • the mobile phone 100 when the mobile phone 100 is at a pitch angle In the case of the space attitude (referred to as the actual space attitude) corresponding to the azimuth angle ⁇ 1 and the roll angle ⁇ 1 , the mobile phone 100 rotates around the pitch axis (ie the x b axis) of the carrier antenna coordinate system in a fixed order. Rotating ⁇ 1 around the roll axis (y b axis) and ⁇ 1 around the azimuth axis (ie, z b axis) can transform the mobile phone 100 from the above-mentioned actual space posture to a preset initial posture.
  • the pitch axis ie the x b axis
  • ⁇ 1 around the azimuth axis ie, z b axis
  • the above fixed sequence can be: first rotate around the x and b axes Then rotate ⁇ 1 around the y b axis, and finally rotate ⁇ 1 around the z b axis; or, first rotate around the y b axis ⁇ 1 , and then rotate around the x b axis Finally, rotate ⁇ 1 around the z b axis; or, first rotate ⁇ 1 around the z b axis; then rotate ⁇ 1 around the y b axis, and finally rotate around the x b axis Wait.
  • This embodiment of the present application does not limit the above-mentioned fixed sequence.
  • ⁇ 1 is first rotated around the z b axis, and then ⁇ 1 is rotated around the x b axis. Finally, rotate ⁇ 1 around the y b axis as an example.
  • the following preset rotation matrices It is the rotation matrix when the mobile phone 100 rotates around the three axes of the carrier antenna coordinate system b in this order, and is transformed from the above-mentioned actual space attitude to the preset initial attitude.
  • the preset rotation matrix The subscript b in the above denotes the carrier antenna coordinate system of the mobile phone 100, and the superscript e denotes the UWB coordinate system constructed by the UWB base station. Default rotation matrix As shown in formula (6).
  • the coordinate transformation matrix of the carrier antenna coordinate system b and the UWB coordinate system e can also be referred to as the coordinate transformation matrix of the carrier antenna coordinate system b and the UWB coordinate system e.
  • the coordinate parameters (such as vectors) in the carrier antenna coordinate system b can be converted into coordinate parameters (such as vectors) in the UWB coordinate system e.
  • the spatial attitude information of the mobile phone 100 including the pitch angle The azimuth angle ⁇ 1 and the roll angle ⁇ 1 ) are unknowns.
  • the mobile phone 100 can obtain the following formula (7) according to the coordinate system transfer principle:
  • the coordinates of the antenna Ant(1) in the carrier antenna coordinate system b are (- ⁇ /2, 0, 0). Therefore, it can be obtained: the first unit baseline vector (-1, 0, 0) of Ant(1) to Ant(0) in the carrier antenna coordinate system b.
  • the coordinates of the antenna Ant(2) in the carrier antenna coordinate system b are (0, - ⁇ /2, 0). Therefore, it can be obtained: the first unit baseline vector (0, -1, 0) of Ant(2) to Ant(0) in the carrier antenna coordinate system b.
  • the mobile phone 100 can calculate the spatial attitude information of the mobile phone 100, and the spatial attitude information includes the above-mentioned pitch angle Azimuth angle ⁇ 1 and roll angle ⁇ 1 .
  • the mobile phone 100 may execute S1506 to realize the directivity control of the home equipment by the mobile phone 100 according to the spatial position information and spatial attitude information of the mobile phone 100 .
  • the mobile phone 100 can display the control interface 201 of the smart speaker shown in FIG. 2 for the user to control The smart speaker.
  • the mobile phone 100 can use the multi-antenna module to measure the direction of the UWB signal from each UWB base station; and then obtain the spatial attitude information of the mobile phone 100 according to the direction of each UWB signal.
  • the origin of each UWB signal is obtained through real-time measurement by the mobile phone 100 using the multi-antenna module; therefore, the accuracy of the origin of each UWB signal can be guaranteed. Therefore, the error between the attitude information measured by the mobile phone 100 and the actual attitude information can be reduced, the attitude measurement accuracy of the mobile phone 100 can be improved, and the effect of the mobile phone 100 in directional control of home equipment can be improved.
  • this solution uses the UWB signal received by the multi-antenna module in real time to measure the spatial attitude information.
  • the multi-antenna module of the mobile phone 100 may receive UWB signals at every moment. Therefore, when using this scheme to measure the spatial attitude information, it does not depend on the spatial attitude information measured at the last moment; and even if there is an error in the measured spatial attitude information, the error will not accumulate over time.
  • this solution does not rely on devices such as a magnetometer or a gyroscope in the mobile phone 100 when measuring the spatial attitude information of the mobile phone 100 . Therefore, there is no need to calibrate devices such as a magnetometer or a gyroscope in the mobile phone 100, and the spatial attitude information of the mobile phone 100 can be measured without the user operating the mobile phone 100 in a specific manner. In this way, user operations in the process of measuring attitude information can be reduced.
  • the following embodiments illustrate a method for the mobile phone 100 to obtain the spatial position information k of the antenna Ant(k).
  • k takes value in ⁇ 0, 1, 2, n-1 ⁇ , n ⁇ 2, n is the number of antennas in the multi-antenna module.
  • the spatial position information k of the antenna Ant(k) is the coordinate of Ant(k) in the UWB coordinate system.
  • the antenna Ant(k) of the mobile phone 100 may interact with Base(0), Base(1) and Base(2) to perform S-a, S-b and S-c to obtain the spatial position information of the antenna Ant(k). k.
  • S-a and UWB base stations (eg, Base(0), Base(1), and Base(2)) broadcast the first message respectively.
  • the first message is a UWB message.
  • the UWB base station may broadcast the first message through the UWB chip.
  • the first message may be used to instruct the mobile phone 100 to measure the spatial position information k of the UWB coordinate system constructed by the antenna Ant(k) in the three UWB base stations.
  • Base(0), Base(1) and Base(2) shown in FIG. 10 can all broadcast the first message, where the first message is used to instruct the mobile phone 100 to measure the spatial position information k of the antenna Ant(k).
  • the first message can be used to instruct the mobile phone 100 to measure the distance between the UWB base station that broadcasts the first message (such as the UWB chip of the UWB base station) and the antenna Ant(k) that receives the first message; then, Calculate the spatial position information k of the antenna Ant(k) in the UWB coordinate system according to the measured distance.
  • the UWB base station that broadcasts the first message (such as the UWB chip of the UWB base station) and the antenna Ant(k) that receives the first message; then, Calculate the spatial position information k of the antenna Ant(k) in the UWB coordinate system according to the measured distance.
  • the first message includes: the identifier of the UWB chip of the UWB base station that broadcasts the first message, and the first timestamp.
  • the identifier of the UWB chip corresponds to the UWB chip, and the first timestamp is used to indicate the time when the UWB base station broadcasts the first message.
  • the identifiers of different UWB chips are different; therefore, the first messages broadcast by the UWB chips of different UWB base stations are different.
  • the UWB base station Base(0) is the UWB chip A 0
  • the UWB base station Base(1) is the UWB chip A 1
  • the UWB base station Base(2) is the UWB chip A 2 .
  • the identifier of UWB chip A 0 carried in the first message broadcast by UWB chip A 0 may be AH100000A
  • the identifier of UWB chip A 0 carried in the first message broadcast by UWB chip A 1 may be AH100000B
  • the identifier of the UWB chip A 2 carried in the first message broadcast by the UWB chip A 2 may be AH100000C.
  • AH100000A, AH100000B and AH100000C are different.
  • the antenna Ant(k) of the mobile phone 100 receives the first message from each UWB base station (such as Base(0), Base(1) and Base(2)), and obtains the antenna Ant(k) of the mobile phone 100 and each UWB base station the distance between.
  • each UWB base station such as Base(0), Base(1) and Base(2)
  • the distance between the antenna Ant(0) of the mobile phone 100 and the UWB base station Base(j) is the distance between the mobile phone 100 and Base(j).
  • a UWB chip is installed in the mobile phone 100 .
  • the mobile phone 100 can receive the first message from Base(j) through the antenna Ant(k) through the UWB chip. Afterwards, the mobile phone 100 may receive the first message from Base(j) according to the antenna Ant(k) based on the UWB ranging principle, and calculate the distance between the antennas Ant(k) and Base(j).
  • the first message carries the first timestamp.
  • the first timestamp is used to record the time when Base(j) broadcasts the first message.
  • the mobile phone can generate a second timestamp when Ant(k) receives the first message broadcast by Base(j).
  • the second timestamp is used to record the time when Ant(k) received the first message.
  • the mobile phone 100 can calculate the time taken for the first message to be transmitted from Base(j) to the mobile phone 100 according to the time recorded by the first time stamp and the second time stamp.
  • the mobile phone 100 can obtain the difference between Ant(k) and Base(j) of the mobile phone 100 according to the propagation speed of the first message (such as the speed of light) and the time it takes for the first message to be transmitted from Base(j) to the mobile phone 100 distance.
  • the propagation speed of the first message such as the speed of light
  • Table 2 shows the Ant(k) of the mobile phone 100 (such as Ant(0)) calculated by the mobile phone 100 and each UWB base station (such as Base(0), Base(0) in the application scenario shown in FIG. 10 . 1) and the distance from Base(2)).
  • the O point shown in FIG. 19 is the origin of the UWB coordinate system, and is also the position of the UWB base station Base(0) in the UWB coordinate system.
  • Point P is the position of the UWB base station Base(2) in the UWB coordinate system.
  • the Q point shown in FIG. 19 is the position of the UWB base station Base(1) in the UWB coordinate system.
  • the K k point shown in FIG. 19 is the position of Ant(k) in the UWB coordinate system.
  • the mobile phone 100 calculates the spatial position information k of the antenna Ant(k) in the UWB coordinate system according to the distance between the antenna Ant(k) and Base(j).
  • the above-mentioned first message may further include the coordinates of the UWB base station in the UWB coordinate system.
  • the first message broadcast by Base(0) also includes coordinates O(0, 0, 0);
  • the first message broadcast by Base(1) also includes coordinates P(0, 0, p);
  • Base(2) broadcasts
  • the coordinate Q(-q, 0, p) is also included in the first message of .
  • the point K k ′ shown in FIG. 19 is the vertical projection of the point K k on the OPQ plane (ie, the XOZ plane), K k ′ (x k , 0, z k ). Therefore, K k K k ' is perpendicular to the OPQ plane (ie, the XOZ plane), K k K k ' is perpendicular to PK k ', K k K k ' is perpendicular to QK k ', and K k K k ' is perpendicular to OK k ' .
  • the following formula (11)-formula (13) can be obtained from the Pythagorean theorem.
  • PK k b, From the formula (12), the following formula (15) can be obtained.
  • OK k a, From the formula (13), the following formula (16) can be obtained.
  • the mobile phone 100 can obtain the spatial position information k of Ant(k) according to the above formula (14), formula (15) and formula (16), that is, the coordinates K k (x k , y k , z k ).
  • the specific methods and calculation results for the mobile phone 100 to calculate x k , y k and z k according to formula (14), formula (15) and formula (16) will not be repeated in this embodiment of the present application.
  • the mobile phone 100 sends a ranging request to the UWB base station (eg, Base(0), Base(1), and Base(2)) through Ant(k).
  • the UWB base station eg, Base(0), Base(1), and Base(2)
  • Ant(k) the UWB base station
  • the ranging request is used to request to measure the distance between Ant(k) of the mobile phone 100 and the UWB base station.
  • the ranging request may further include the identifier of the UWB chip of the mobile phone 100, and may also include the identifier of Ant(k).
  • the mobile phone 100 may broadcast the above ranging request. In this way, each UWB base station (eg, Base(0), Base(1), and Base(2)) can receive the ranging request.
  • the S-B and UWB base stations (eg, Base(0), Base(1), and Base(2)) send ranging responses to the mobile phone 100 .
  • the UWB base station may broadcast a ranging response.
  • the ranging response includes the identifier of the UWB chip of the UWB base station sending the ranging response, and may also include the identifier of Ant(k).
  • the ranging response may further include a first timestamp, where the first timestamp is used to indicate the time when the UWB base station (eg, Base(0)) sends the ranging response.
  • the mobile phone 100 receives ranging responses from each UWB base station (eg, Base(0), Base(1), and Base(2)) through Ant(k), and obtains the distance between Ant(k) and each UWB base station.
  • each UWB base station eg, Base(0), Base(1), and Base(2)
  • Ant(k) the mobile phone 100 obtains the distance between Ant(k) and each UWB base station.
  • the mobile phone 100 calculates the spatial position information k of Ant(k) according to the distance between Ant(k) and each UWB base station.
  • the specific method for the mobile phone 100 to obtain the spatial position information of the Ant(k) includes but is not limited to the methods described in the foregoing embodiments. Any method that can obtain the spatial position information of Ant(k) in the UWB coordinate system can be applied to the method of this embodiment of the present application.
  • the gyroscope's three-axis fixed bias is 0.5 degrees per second (deg/s), and the gyroscope noise is 0.006deg/sqrt(s). where deg/sqrt(s) is degrees/second squared, or deg/sqrt(s) is degrees/second squared.
  • the carrier (such as the mobile phone 100 ) performs various motion states such as straight line, left and right rotation, etc. in the simulation space.
  • FIG. 20 shows a schematic diagram of the errors of the pitch angle, roll angle and azimuth angle measured by the implementation of this solution during the simulation process of the carrier (such as the mobile phone 100 ).
  • this solution is used to measure the space attitude information (including the pitch angle) of the carrier (such as the mobile phone 100).
  • the azimuth angle ⁇ and the roll angle ⁇ ) the attitude measurement error is smaller than that of the conventional scheme.
  • the attitude measurement error of the conventional scheme will increase with the passage of time, while the attitude measurement error of the present scheme will not increase with the passage of time. That is, the attitude measurement error of this scheme will not accumulate over time.
  • the electronic device may include: the above-mentioned touch screen, a memory, and one or more processors.
  • the touch screen, memory and processor are coupled.
  • the memory is used to store computer program code comprising computer instructions.
  • the processor executes the computer instructions, the electronic device can execute various functions or steps executed by the mobile phone in the foregoing method embodiments.
  • the structure of the electronic device reference may be made to the structure of the electronic device 100 shown in FIG. 9 .
  • inventions of the present application provide a display device, which is characterized in that the device can be applied to an electronic device including the above-mentioned touch screen.
  • the apparatus is configured to perform each function or step performed by the mobile phone in the above method embodiments.
  • the chip system includes at least one processor 2101 and at least one interface circuit 2102 .
  • the processor 2101 and the interface circuit 2102 may be interconnected by wires.
  • the interface circuit 2102 may be used to receive signals from other devices, such as the memory of an electronic device.
  • the interface circuit 2102 may be used to send signals to other devices (eg, the processor 2101).
  • the interface circuit 2102 can read the instructions stored in the memory and send the instructions to the processor 2101 .
  • the electronic device can be caused to perform the steps in the above embodiments.
  • the chip system may also include other discrete devices, which are not specifically limited in this embodiment of the present application.
  • Embodiments of the present application further provide a computer storage medium, where the computer storage medium includes computer instructions, when the computer instructions are executed on the above-mentioned electronic device, the electronic device is made to perform various functions or steps performed by the mobile phone in the above-mentioned method embodiments .
  • Embodiments of the present application further provide a computer program product, which, when the computer program product runs on a computer, enables the computer to perform various functions or steps performed by the mobile phone in the above method embodiments.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another device, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, which are stored in a storage medium , including several instructions to make a device (may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种获取姿态信息的方法及电子设备(100),涉及智能家居领域,可减少测算的姿态信息与实际姿态信息的误差,提升测姿精度。电子设备(100)包括UWB芯片和用于构建载体天线坐标系的n个天线,n≥3;载体天线坐标系的坐标原点位于n个天线中的天线0所在位置;天线i位于载体天线坐标系的坐标轴上,与天线0之间的距离小于或等于λ,λ是UWB信号的波长,i依次在{1,2,……,n-1}中取值。电子设备(100)通过n个天线接收来自m个UWB基站的UWB信号,m≥3,m为整数;根据接收的UWB信号,确定电子设备(100)的空间姿态信息。电子设备(100)的空间姿态信息包括:载体天线坐标系相比于UWB坐标系的俯仰角、方位角和横滚角。

Description

一种获取姿态信息的方法及电子设备
本申请要求于2021年01月30日提交国家知识产权局、申请号为202110131647.8、申请名称为“一种获取姿态信息的方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及智能家居领域,尤其涉及一种获取姿态信息的方法及电子设备。
背景技术
随着科技的发展,智能家居逐渐进入人们的日常生活。其中,智能家居可以以住宅为平台,利用无线局域网,如无线保真(Wireless Fidelity,WiFi)网络,将家居生活有关的家居设备(例如智能电视、智能空调等)集成起来进行控制,可以提升家居安全性、便利性和舒适性。
具体的,用户可以通过电子设备(如手机或者平板电脑等)中安装智能家居应用(Application,APP),实现对多个家居设备的控制。例如,手机可以响应于用户对智能家居APP中任一家居设备(如智能电视、智能空调或智能插座)的标识的操作,显示该家居设备的控制界面;之后,响应于用户对手机显示的控制界面的操作,手机可以实现对家居设备的控制。
然而,由于家居设备越来越多,智能家居APP可以控制的家居设备的数量也会随之增加。为了更加方便的控制家居设备,目前可以通过手机上的超宽带(ultra wide band,UWB)芯片和惯性测量仪(inertial measurement unit,IMU),实现手机指向一个家居设备时便显示该家居设备的控制界面的功能。
其中,在实现上述功能,需要实时检测手机的空间姿态。然而,采用现有方案测算得到的手机的空间姿态与该手机的实际空间姿态的误差较大,即手机的测姿精度较低。这样,会影响手机指向性控制家居设备的效果。
发明内容
本申请提供一种获取姿态信息的方法及电子设备,可以减少电子设备测算得到的姿态信息与实际姿态信息的误差,提升电子设备的测姿精度,进而可以提升电子设备指向性控制家居设备的效果。
第一方面,本申请提供一种获取姿态信息的方法,该方法可以应用于电子设备。该电子设备包括UWB芯片和n个天线,该UWB芯片与n个天线电连接,n≥3,n为整数。该n个天线用于构建载体天线坐标系,该载体天线坐标系的坐标原点与n个天线中的天线0所在位置重合。n个天线中的天线i位于载体天线坐标系的坐标轴上,该天线i与上述天线0之间的距离小于或等于λ,i依次在{1,2,……,n-1}中取值。
该方法中,电子设备可以通过n个天线接收来自m个UEB基站的UWB信号,该m个UEB基站用于构建UWB坐标系,m≥3,m为整数。之后,电子设备可以根据n个天线接收自m个UWB基站的UWB信号,确定电子设备的空间姿态信息。该电子设备的空间姿态信息包括:载体天线坐标系相比于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000001
方位角φ 和横滚角θ。
本申请中,电子设备中包括多天线模块(即n个天线)。电子设备可利用多天线模块测量来自各个UWB基站的UWB信号;然后根据各个UWB信号,得到该手机100的空间姿态信息。其中,各个UWB信号是电子设备利用多天线模块测量实时测量得到的;因此,各个UWB信号的准确性可以保证。因此,可以减少电子设备测算得到的姿态信息与实际姿态信息的误差,提升电子设备的测姿精度,进而可以提升电子设备指向性控制家居设备的效果。
并且,本方案是利用多天线模块实时接收的UWB信号测算空间姿态信息。电子设备的多天线模块在每一时刻都可能会接收到UWB信号。因此,采用本方案测算空间姿态信息时,并不会依赖于上一时刻测算的空间姿态信息;并且,测算得到的空间姿态信息即使存在误差,该误差也不会随时间而累积。
进一步的,本方案在测算电子设备的空间姿态信息时,并不依赖于电子设备中磁力计或陀螺仪等器件。因此,不需要对电子设备中的磁力计或陀螺仪等器件进行校准,不需要用户以特定方式操作电子设备,便可以测得电子设备0的空间姿态信息。这样,可以减少测量姿态信息过程中的用户操作。
结合第一方面,在一种可能的设计方式中,电子设备可以在以下场景中,执行本申请的方法,获取电子设备的空间姿态信息,实现对家居设备的指向性控制。
一种场景中,电子设备可以在开机后,通过n个天线接收来自m个UEB基站的UWB信号,以获取电子设备的空间姿态信息,实现对家居设备的指向性控制。
另一种场景中,电子设备可以在启动智能家居应用APP后,通过n个天线接收来自m个UEB基站的UWB信号,以获取电子设备的空间姿态信息,实现对家居设备的指向性控制。
另一种场景中,电子设备可以在启动预设功能后,通过所述n个天线接收来自所述m个UEB基站的UWB信号,以获取所述电子设备的空间姿态信息,实现对家居设备的指向性控制。
其中,电子设备的通知栏、电子设备的设置界面或者智能家居APP的设置界面中的至少一项,包括:预设功能的开关选项。该开关选项用于开启或关闭预设功能。
该设计方式给出电子设备执行本申请的方法的具体场景示例。当然,电子设备执行本申请的方法的场景,包括但不限于上述场景。
结合第一方面,在另一种可能的设计方式中,电子设备还可以根据n个天线接收自m个UWB基站的UWB信号,确定电子设备的空间位置信息。该空间位置信息包括电子设备在UWB坐标系的坐标信息。之后,电子设备可以根据空间位置信息和空间姿态信息,确定该电子设备的指向性控制信息。该指向性控制信息用于指示电子设备指向的方向。最后,电子设备可以根据指向性控制信息和各个家居设备在UWB坐标系的坐标信息,控制电子设备所指向的家居设备。
结合第一方面,在另一种可能的设计方式中,天线i与天线0之间的距离小于或等于λ/2。应注意,将天线i与天线0之间的距离设置小于或等于λ/2λ/2,更准确的获得天线的入射角度,有利于提升电子设备的测姿精度。
结合第一方面,在另一种可能的设计方式中,以n=3为例。上述n个天线可以包 括天线0、天线1和天线2。
电子设备的载体天线坐标系的x轴平行于天线1与天线0的连线,指向由天线1到天线0的方向。载体天线坐标系的y轴平行于天线2与天线0的连线,指向天线2到天线0的方向。载体天线坐标系的z轴垂直于x轴和所述y轴,与x轴和y轴构成右手直角坐标系。
其中,该设计方式给出本申请中,n个天线在电子设备中的位置设置示例,以及载体天线坐标系的一种示例。当然,本申请中所述的n个天线在电子设备中的位置设置,包括但不限于上述位置设置方式;本申请中所述的载体天线坐标系,包括但不限于上述示例所述的载体天线坐标系。
结合第一方面,在另一种可能的设计方式中,上述电子设备可以采用以下方式,根据n个天线接收自m个UWB基站的UWB信号。具体的,电子设备可以确定来自m个UWB基站中UWB基站j的UWB信号相比于天线i的来向角α (i,j)。其中,j依次在{0,1,2,……,m-1}中取值,来向角α (i,j)为:在UWB坐标系下,天线i到UWB基站j的向量与天线i到天线0的向量的夹角。之后,电子设备可以根据多个来向角,结合n个天线接收自m个UWB基站的UWB信号,以及n个天线在载体天线坐标系中的坐标,确定电子设备的空间姿态信息。其中,多个来向角包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的α (i,j)
本申请中,电子设备可利用多天线模块测量来自各个UWB基站的UWB信号的来向;然后根据各个UWB信号的来向,得到该手机100的空间姿态信息。其中,各个UWB信号的来向是电子设备利用多天线模块测量实时测量得到的;因此,各个UWB信号来向的准确性可以保证。因此,可以减少电子设备测算得到的姿态信息与实际姿态信息的误差,提升电子设备的测姿精度,进而可以提升电子设备指向性控制家居设备的效果。
结合第一方面,在另一种可能的设计方式中,电子设备确定来自m个UWB基站中UWB基站j的UWB信号相比于天线i的来向角α (i,j),可以包括:电子设备获取天线i与天线0接收来自UWB基站j的UWB信号的相位差;该相位差用于表征天线i与UWB基站j之间的距离和天线0与UWB基站j之间的距离的距离差;电子设备根据相位差所表征的距离差,以及天线i与天线0之间的距离,采用余弦定理计算来向角α (i,j)。该设计方式给出本申请中,电子设备计算来向角α (i,j)的一种具体方式。
结合第一方面,在另一种可能的设计方式中,上述电子设备可以采用以下方式,根据多个来向角,结合n个天线接收自m个UWB基站的UWB信号,以及n天线在载体天线坐标系中的坐标,确定电子设备的空间姿态信息。具体的,电子设备可以根据天线i接收自UWB基站j的UWB信号,获取基线矢量r (i,j)。之后,电子设备可以根据天线i在载体天线坐标系中的坐标,获取第一单位基线矢量rq i。最后,电子设备可以根据多个来向角、多个基线矢量和多个第一单位基线矢量,确定电子设备的空间姿态信息。
其中,多个基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一基线矢量r (i,j);多个第一单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一单位基线矢量rq i
应理解,基线矢量r (i,j)是UWB坐标系下,天线i到UWB基站j的方向向量。上述来向角α (i,j)为UWB坐标系下,天线i到UWB基站j的向量与天线i到天线0的向量的夹角。第一单位基线矢量rq i是载体天线坐标系下,天线i到天线0的单位方向向量。因此,电子设备可以根据坐标转换原理,根据上述多个来向角、多个基线矢量和多个第一单位基线矢量,确定电子设备的空间姿态信息。
结合第一方面,在另一种可能的设计方式中,上述电子设备根据多个来向角、多个基线矢量和多个第一单位基线矢量,确定电子设备的空间姿态信息,包括:电子设备根据多个来向角和多个基线矢量,确定多个第二单位基线矢量;电子设备根据多个第一单位基线矢量和多个第二单位基线矢量,确定电子设备的空间姿态信息。;其中,多个第二单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第二单位基线矢量ra (i),第二单位基线矢量ra (i)为UWB坐标系下,天线i到天线0的单位方向向量。
应理解,第二单位基线矢量ra (i)为UWB坐标系下,天线i到天线0的单位方向向量。第一单位基线矢量rq i是载体天线坐标系下,天线i到天线0的单位方向向量。因此,电子设备可以根据坐标转换原理,根据上述多个第一单位基线矢量和多个第二单位基线矢量,确定电子设备的空间姿态信息。
结合第一方面,在另一种可能的设计方式中,上述电子设备根据多个第一单位基线矢量和多个第二单位基线矢量,确定电子设备的空间姿态信息,包括:电子设备采用预设旋转矩阵,根据多个第一单位基线矢量和多个第二单位基线矢量,确定电子设备的空间姿态信息。
其中,预设旋转矩阵为:电子设备由俯仰角
Figure PCTCN2021137535-appb-000002
方位角φ和横滚角θ对应的空间姿态变换至预设初始姿态时的旋转矩阵。预设初始姿态为载体天线坐标系的三轴分别与UWB坐标系的三轴平行时,电子设备的姿态。预设旋转矩阵用于将载体天线坐标系中的坐标参数转换为UWB坐标系中的坐标参数,坐标参数包括向量。
由上述预设旋转矩阵的定义可知,电子设备可以采用预设旋转矩阵,基于坐标转换原理,根据上述单位基线矢量rq i和单位基线矢量ra (i),确定电子设备的空间姿态信息。
第二方面,本申请提供一种电子设备,该电子设备包括UWB芯片和n个天线,该UWB芯片与n个天线电连接,n≥3,n为整数。该n个天线用于构建载体天线坐标系,该载体天线坐标系的坐标原点与n个天线中的天线0所在位置重合,n个天线中的天线i位于载体天线坐标系的坐标轴上。天线i与天线0之间的距离小于或等于λ,i依次在{1,2,……,n-1}中取值。
其中,电子设备还包括:存储器和一个或多个处理器。该UWB芯片、n个天线、存储器和处理器耦合。该存储器用于存储计算机程序代码,计算机程序代码包括计算机指令。
当计算机指令被电子设备执行时,使得电子设备执行如下步骤:通过n个天线接收来自m个UEB基站中UWB基站j的UWB信号,j依次在{0,1,2,……,m-1}中取值,m个UEB基站用于构建UWB坐标系,m≥3,m为整数;根据n个天线接收自m个UWB基站的UWB信号,确定电子设备的空间姿态信息,电子设备的空间姿 态信息包括:载体天线坐标系相比于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000003
方位角φ和横滚角θ。
结合第二方面,在一种可能的设计方式中,当计算机指令被电子设备执行时,使得电子设备还执行如下步骤:在开机后,或者电子设备启动智能家居应用APP后,或者电子设备启动预设功能后,通过n个天线接收来自m个UEB基站的UWB信号。
其中,电子设备的通知栏、电子设备的设置界面或者智能家居APP的设置界面中的至少一项,包括:预设功能的开关选项,开关选项用于开启或关闭预设功能。
结合第二方面,在另一种可能的设计方式中,当计算机指令被电子设备执行时,使得电子设备还执行如下步骤:根据n个天线接收自m个UWB基站的UWB信号,确定电子设备的空间位置信息,空间位置信息包括电子设备在UWB坐标系的坐标信息;根据空间位置信息和空间姿态信息,确定电子设备的指向性控制信息,指向性控制信息用于指示电子设备指向的方向;根据指向性控制信息和各个家居设备在UWB坐标系的坐标信息,控制电子设备所指向的家居设备。
结合第二方面,在另一种可能的设计方式中,上述天线i与天线0之间的距离等于λ/2。
结合第二方面,在另一种可能的设计方式中,上述n个天线包括天线0、天线1和天线2,n=3。载体天线坐标系的x轴平行于天线1与天线0的连线,指向由天线1到天线0的方向;载体天线坐标系的y轴平行于天线2与天线0的连线,指向天线2到天线0的方向;载体天线坐标系的z轴垂直于x轴和y轴,与x轴和y轴构成右手直角坐标系。
结合第二方面,在另一种可能的设计方式中,当计算机指令被电子设备执行时,使得电子设备还执行如下步骤:确定来自m个UWB基站中UWB基站j的UWB信号相比于天线i的来向角α (i,j);其中,j依次在{0,1,2,……,m-1}中取值,来向角α (i,j)为:在UWB坐标系下,天线i到UWB基站j的向量与天线i到天线0的向量的夹角;根据多个来向角,结合n个天线接收自m个UWB基站的UWB信号,以及n个天线在载体天线坐标系中的坐标,确定电子设备的空间姿态信息。其中,多个来向角包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的α (i,j)
结合第二方面,在另一种可能的设计方式中,当计算机指令被电子设备执行时,使得电子设备还执行如下步骤:获取天线i与天线0接收来自UWB基站j的UWB信号的相位差;其中,相位差用于表征天线i与UWB基站j之间的距离和天线0与UWB基站j之间的距离的距离差;电子设备根据相位差所表征的距离差,以及天线i与天线0之间的距离,采用余弦定理计算来向角α (i,j)
结合第二方面,在另一种可能的设计方式中,当计算机指令被电子设备执行时,使得电子设备还执行如下步骤:根据天线i接收自UWB基站j的UWB信号,获取基线矢量r (i,j);其中,第一基线矢量r (i,j)是UWB坐标系下,天线i到UWB基站j的方向向量;根据天线i在载体天线坐标系中的坐标,获取第一单位基线矢量rq i;其中,第一单位基线矢量rq i是载体天线坐标系下,天线i到天线0的单位方向向量;根据多个来向角、多个基线矢量和多个第一单位基线矢量,确定电子设备的空间姿态信息。
其中,多个基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一基线矢量r (i,j);多个第一单位基线矢量包括:i依次在{1,2,……, n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一单位基线矢量rq i
结合第二方面,在另一种可能的设计方式中,当计算机指令被电子设备执行时,使得电子设备还执行如下步骤:根据多个来向角和多个基线矢量,确定多个第二单位基线矢量;其中,多个第二单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第二单位基线矢量ra (i),第二单位基线矢量ra (i)为UWB坐标系下,天线i到天线0的单位方向向量;根据多个第一单位基线矢量和多个第二单位基线矢量,确定电子设备的空间姿态信息。
结合第二方面,在另一种可能的设计方式中,当计算机指令被电子设备执行时,使得电子设备还执行如下步骤:采用预设旋转矩阵,根据多个第一单位基线矢量和多个第二单位基线矢量,确定电子设备的空间姿态信息。
其中,预设旋转矩阵为:电子设备由俯仰角
Figure PCTCN2021137535-appb-000004
方位角φ和横滚角θ对应的空间姿态变换至预设初始姿态时的旋转矩阵;预设初始姿态为载体天线坐标系的三轴分别与UWB坐标系的三轴平行时,电子设备的姿态;预设旋转矩阵用于将载体天线坐标系中的坐标参数转换为UWB坐标系中的坐标参数,坐标参数包括向量。
第三方面,本申请提供一种芯片系统,该芯片系统应用于包括显示屏、存储器和通信模块的电子设备;所述芯片系统集成了UWB芯片的功能,所述芯片系统包括一个或多个接口电路和一个或多个处理器;所述接口电路和所述处理器通过线路互联;所述接口电路用于从所述电子设备的存储器接收信号,并向所述处理器发送所述信号,所述信号包括所述存储器中存储的计算机指令;当所述处理器执行所述计算机指令时,所述电子设备执行如第一方面及其任一种可能的设计方式所述的方法。
第四方面,本申请提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在电子设备上运行时,使得电子设备执行如第一方面及其任一种可能的设计方式所述的方法。
第五方面,本申请提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面及其任一种可能的设计方式所述的方法。
可以理解地,上述提供的第二方面所述的电子设备,第三方面所述的芯片系统,第四方面所述的计算机存储介质,第五方面所述的计算机程序产品所能达到的有益效果,可参考第一方面及其任一种可能的设计方式中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种获取姿态信息的方法的应用场景示意图;
图2为本申请实施例提供的一种智能家居的控制界面示意图;
图3为本申请实施例提供的一种电子设备(如智能遥控器)的载体坐标系的示意图;
图4为本申请实施例提供的另一种电子设备(如手机)的载体坐标系的示意图;
图5为本申请实施例提供的一种UWB基站构建的UWB坐标系的示意图;
图6为本申请实施例提供的一种电子设备的载体坐标系相对于UWB坐标系的俯仰角和方位角的示意图;
图7为本申请实施例提供的一种电子设备的载体坐标系相对于UWB坐标系的横滚角的示意图;
图8为常规技术和本申请实施例提供的电子设备测量位置和姿态的系统架构示意图;
图9为本申请实施例提供的一种电子设备的硬件结构示意图;
图10为本申请实施例提供的一种UWB基站和电子设备的示意图;
图11为本申请实施例提供的一种智能遥控器的载体天线坐标系的示意图;
图12为本申请实施例提供的一种手机的载体天线坐标系的示意图;
图13为本申请实施例提供的一种电子设备的显示界面示意图;
图14为本申请实施例提供的另一种电子设备的显示界面示意图;
图15A为本申请实施例提供的一种获取姿态信息的方法流程图;
图15B为本申请实施例提供的一种获取姿态信息的方法流程图;
图16为本申请实施例提供的一种UWB信号相对于手机的来向角的示意图;
图17为本申请实施例提供的另一种获取姿态信息的方法流程图;
图18为本申请实施例提供的另一种获取姿态信息的方法流程图;
图19为本申请实施例提供的一种电子设备的空间位置信息的计算原理示意图;
图20为本申请实施例提供的一种仿真结果示意图;
图21为本申请实施例提供的一种芯片系统的结构示意图。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例提供一种获取姿态信息的方法,该方法用于电子设备(如手机或智能遥控器)指向性控制家居设备。例如,以图1所示的电子设备100(如手机)为例。用户通过手机指向性控制家居设备具体是指:当用户操作手机指向一个家居设备(如图1所示的智能音箱)所在位置时,手机则可以自动显示图2所示的智能音箱的控制界面201,供用户操作控制该智能音箱。
一般而言,家居设备的摆放位置是固定的。因此,根据多个家居设备的摆放位置(也称为空间位置)和电子设备的空间姿态,便可以确定出该多个家居设备中,电子设备所指向的家居设备。
其中,电子设备100的空间姿态可以体现出该电子设备的朝向。应理解,以电子设备100是手机为例。基于大部分用户使用手机的习惯,可定义手机朝向(或者手机指向)为:平行于手机的长边,且沿手机的尾部指向顶部的方向。因此,可以将手机的朝向称为手机的顶部朝向。通常情况下,手机的顶部为安装有前置摄像头、红外发射器、听筒、光传感器、或者距离传感器等硬件的机身部分。手机的尾部为安装有麦克风和扬声器的机身部分。
电子设备100的空间姿态可以用该电子设备100的空间姿态信息来表示。电子设备100的空间姿态信息可以包括:该电子设备100的载体坐标系相对于超宽带(ultra wide band,UWB)基站构建的UWB坐标系(也称为固定坐标系)的俯仰角(pitch)
Figure PCTCN2021137535-appb-000005
方位角(yaw)φ和横滚角(roll)θ。其中,方位角也可以称为偏航角。
为了便于理解,以下结合附图说明电子设备100的载体坐标系、UWB基站、UWB坐标系、载体坐标系相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000006
方位角φ和横滚角θ。
(1)电子设备100的载体坐标系。
例如,以电子设备100是智能遥控器为例。请参考图3,其示出智能遥控器的一种载体坐标系实例示意图。该智能遥控器的载体坐标系可以预先配置在该智能遥控器中。
如图3所示,以O A为坐标原点的x A轴,y A轴和z A轴构成右手直角坐标系。图3所示的O A可以是智能遥控器的重心。或者,图3所示的O A可以是智能遥控器的IMU中心。一般而言,智能遥控器的IMU可以设置在该智能遥控器的重心处。智能遥控器可以包括四条边:长边01,短边02,与长边01平行且等长度的另一条长边,以及与短边02平行且等长度的另一条短边。x A轴平行于智能遥控器的短边02,y A轴平行于智能遥控器的长边01向上。z A轴垂直于y A轴,且垂直于x B轴。其中,图3所示的坐标系是智能遥控器的载体坐标系。
又例如,以电子设备100是手机为例。请参考图4,其示出手机的一种载体坐标系实例示意图。该手机的载体坐标系可以预先配置在该手机中。
如图4所示,以O B为坐标原点的x B轴,y B轴和z B轴构成右手直角坐标系。图4所示的O B可以是手机的重心。或者,图4所示的O B可以是手机的IMU中心。一般而言,手机的IMU可以设置在该手机的重心处。手机可以包括四条边:长边03,短边04,与长边03平行且等长度的另一条长边,以及与短边04平行且等长度的另一条短边。x B轴平行于手机的短边04。y B轴平行于手机的长边01向上。z B轴垂直于y A轴,且垂直于x B轴。其中,图4所示的坐标系是手机的载体坐标系。
(2)UWB基站。
其中,上述UWB基站可以是安装有UWB芯片的装置,或者安装UWB芯片的家居设备。例如,图1所示的通信系统中的部分家居设备可以作为UWB基站。该UWB基站用于辅助电子设备100确定该电子设备100所指向的家居设备。
一些家居设备中可以安装有一个或多个UWB芯片。例如,图1所示的智能电视中可以包括3个UWB芯片。这三个UWB芯片可以分别位于智能电视上,如图5所示的Base(0)、Base(1)和Base(2)所在位置。又例如,图1所示的智能空调可以包括1个UWB芯片。当然,也有一些家居设备中未安装UWB芯片,本申请实施例对此不作限制。
其中,可以作为UWB基站的家居设备可提供至少一个UWB基站。例如,假设图1所示的智能电视包括3个UWB芯片。该智能电视可提供三个UWB基站,如图5所示的三个基站,分别记为Base(0)、Base(1)和Base(2)。假设图1所示的智能空调包括1个UWB芯片,该智能空调可提供一个UWB基站。
(3)UWB基站构建的UWB坐标系。
其中,至少三个UWB基站可构建本申请实施例中所述的UWB坐标系。本申请实施例中,以三个UWB基站构建UWB坐标系为例。这三个UWB基站具备以下特点:这三个UWB基站位于同一个平面(称为UWB平面)上。由这三个UWB基站构建的UWB坐标系的两个坐标轴在该UWB平面上,另一个坐标轴垂直于该UWB平面。
在一些实施例中,这三个UWB基站可以由一个大屏设备提供。该大屏设备包括一个显示屏(包括显示面板,如液晶面板等)和多个(3个或者3个以上)UWB芯片。例如,该大屏设备可以为图1所示的智能电视,该智能电视包括显示屏和3个UWB芯片,该智能电视的显示屏可作为一个UWB平面。该智能电视可提供三个UWB基站,如图5所示的Base(0)、Base(1)和Base(2)。
请参考图5,其示出本申请实施例提供的一种UWB坐标系的实例示意图。如图5所示,以O为坐标原点的X轴,Y轴和Z轴构成右手直角坐标系。图5所示的坐标原点O可以为智能电视提供的一个UWB基站-Base(0)的天线中心,即Base(0)对应的UWB芯片的天线中心。X轴平行于智能电视的底边,指向屏幕外侧。Z轴垂直于X轴所在的平面并指向智能电视提供的另一个UWB基站-Base(1)的天线中心,即Base(1)对应的UWB芯片的天线中心。Y轴垂直于X轴,且垂直于Z轴。Y轴与智能电视的显示屏的朝向平行。其中,图5所示的坐标系是UWB坐标系。一般而言,家居设备的位置是固定的;因此,UWB基站的UWB坐标系也可以称为固定坐标系。
在另一些实施例中,上述三个UWB基站可以是安装有UWB芯片的三个家居设备。例如,图1所示的智能电视、智能音箱和智能空调都可以安装有UWB芯片,路由器、智能电视和智能空调可形成一个UWB平面。其中,路由器、智能电视和智能空调构建UWB坐标系的方法,可以参考上述实施例中智能电视的Base(0)、Base(1)和Base(2)构建UWB坐标系的方法,本申请实施例这里不予赘述。
在另一些实施例中,上述三个UWB基站可以是专门用于辅助电子设备100确定该电子设备100所指向的家居设备的一个或多个专用UWB芯片。该专用UWB芯片。该专用UWB芯片构建UWB坐标系的方法,可以参考上述实施例中智能电视的Base(0)、Base(1)和Base(2)构建UWB坐标系的方法,本申请实施例这里不予赘述。
在另一些实施例中,上述UWB基站可以由一个包括预设平面的设备提供。该设备还包括至少三个UWB芯片。该至少三个UWB芯片安装在上述预设平面上。该预设平面可以是面积大于预设阈值的平面。
由上述描述可知:用于构建UWB坐标系的三个UWB基站具备以下特点:这三个UWB基站位于同一个平面(称为UWB平面)上。由这三个UWB基站构建的UWB坐标系的两个坐标轴在该UWB平面上,另一个坐标轴垂直于该UWB平面。
本实施例中所述的预设平面是上述UWB平面。上述至少三个UWB芯片安装在预设平面上,可以方便构建UWB坐标系。例如,上述包括预设平面的设备可以是包括至少三个UWB芯片的冰箱。预设平面可以是冰箱的正面或侧面,该至少三个UWB芯片设置在冰箱的预设平面。
可以理解的是,由于用户的住宅中通常会安装有大屏设备(例如智能电视等)。因此,通常情况下,可以将大屏设备作为UWB基站。这样一来,用户无需再单独购买UWB基站,可以降低成本。以下实施例中,以UWB基站是智能电视(即基准设备)为例,介绍本申请实施例的方法。
(4)电子设备100的空间姿态信息,包括载体坐标系相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000007
方位角φ和横滚角θ。其中,俯仰角
Figure PCTCN2021137535-appb-000008
方位角φ和横滚角θ可以统称为欧拉角。
电子设备100的载体坐标系相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000009
为:电子设备100的 载体坐标系的y B轴与UWB坐标系的XOY所在平面(即相当于水平面)的夹角。
例如,以电子设备100是图4所示的手机为例。如图6所示,手机的载体坐标系相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000010
是y B轴与XOY所在平面(即相当于水平面)之间的夹角。如图6所示,Oy B'(即O Bx B')是y B轴在XOY所在平面的垂直投影。可以理解的是,上述手机的载体坐标系相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000011
也就是Oy B'(即O By B')与y B轴之间的夹角。当y B轴与Z轴之间的夹角大于90°时,俯仰角
Figure PCTCN2021137535-appb-000012
为正。
电子设备100的载体坐标系相对于UWB坐标系的方位角φ为:电子设备100的载体坐标系的y B轴在XOY所在平面的垂直投影Oy B'与UWB坐标系的Y轴之间的夹角。
例如,以电子设备100是图4所示的手机为例。如图6所示,手机的载体坐标系相对于UWB坐标系的方位角φ是手机的载体坐标系的y B轴在XOY所在平面的垂直投影Oy B'与UWB坐标系的Y轴之间的夹角。当Oy B'(即O By B')随着y B轴的变化在XOY所在平面上顺时针偏转时,方位角φ为正。
电子设备100的载体坐标系相对于UWB坐标系的横滚角θ为:电子设备100的载体坐标系的z B轴与y BOZ所在平面(相当于铅垂面)之间的夹角。
例如,以电子设备100是图4所示的手机为例。如图7所示,手机的载体坐标系相对于UWB坐标系的横滚角θ是手机的载体坐标系的z B轴与通过y B轴的y BOZ所在平面(相当于铅垂面)之间的夹角。如图7所示,Oz B'(即O Bz B')是z B轴在通过y B轴的y BOZ所在平面的垂直投影。可以理解的是,上述手机的载体坐标系相对于UWB坐标系的横滚角θ也就是Oz B'(即O Bz B')与z B轴之间的夹角,当z B轴顺时针旋转时,横滚角θ为正。
需要说明的是,图3仅作为示例介绍智能遥控器的载体坐标系,图4仅作为示例介绍手机的载体坐标系。电子设备100的载体坐标系还可以根据其他规则定义。例如,坐标原点还可以为电子设备100上或者电子设备100外的其他任一点。载体坐标系的三轴方向也不限于图3所示的x A轴,y A轴和z A轴,或者图4所示的x B轴,y B轴和z B轴所示的方向。图5仅作为示例介绍UWB坐标系。UWB坐标系还可以根据其他规则定义。UWB坐标系的三轴方向也不限于图5所示的X轴,Y轴和Z轴所示的方向。本申请实施例对载体坐标系和UWB坐标系的坐标原点位置和坐标轴方向设定不作限定。以下结合具体实施例,介绍本申请实施例的方法。
在一些方案中,电子设备(如手机或智能遥控器)中配置有惯性测量仪(inertial measurement unit,IMU)芯片。电子设备可以利用IMU芯片中的磁力计和加速度计输入电子设备在大地坐标系下的空间姿态信息a;再根据大地坐标系与UWB坐标系的姿态转移参数,将IMU芯片测得的大地坐标系下的空间姿态信息a转移到UWB坐标系下。如此,才可以得到电子设备在UWB坐标系下的姿态信息b。
但是,为了获得准确的大地坐标系下的空间姿态信息,需要用户操作电子设备做8字晃动或10面校准来进行磁力计的初始校准,用户操作复杂。并且,采用该方案,如果电子设备周围的磁场发生变化,如有金属物体靠近电子设备,磁力计则会受到影响,IMU芯片输出的空间姿态信息a的精度也会受到较大影响。此时,则需要重新对磁力计进行校准。而且,采用上述方案,需要已知大地坐标系与UWB坐标系的姿态 转移参数,才能得到电子设备在UWB坐标系下的姿态信息b。
在另一些方案中,电子设备(如手机或智能遥控器)中配置有IMU模块(如IMU芯片)和UWB模块(如UWB芯片)。如图8中的(a)所示IMU模块可以包括加速度计和陀螺仪,该IMU模块可用于获得电子设备的空间姿态信息。具体的,电子设备可以指导用户操作电子设备以特定的姿态指向特定的方向,以获取电子设备的初始姿态信息I。然后,电子设备可通过IMU模块测得电子设备的姿态变化信息(包括三轴的加速度、姿态和位置信息)。最后,电子设备可以根据上述初始姿态信息I和姿态变化信息,得到该电子设备的实时姿态信息II。
其中,图8中的(a)所示的UWB模块可提供电子设备的定位系统,用于获得电子设备的空间位置信息。考虑到IMU模块采集的姿态变化信息的误差会随着时间的推移变化而累积;但是,UWB模块采集的空间位置信息的误差则不会随着时间的推移变化而累积。因此,图8中的(a)所示的UWB模块采集的空间位置信息,还可以用于对IMU模块采集的姿态变化信息进行校正。图8中的(a)所示的滤波模块(如卡尔曼滤波)可以整合来自UWB模块的观测量(即空间位置信息)和来自IMU模块的预测量(即姿态变化信息),得到一个校准量。该校准量可以作为姿态变化信息,用于结合初始姿态信息I,得到上述实时姿态信息II。
但是,用户操作电子设备以特定的姿态指向特定的方向,电子设备才可以获得准确的初始姿态信息I。该方案依赖于用户操作的可靠性,人为操作无疑会带来初始姿态信息I的误差,进而会影响实时姿态信息II的准确性。
并且,该方案是基于陀螺仪角速度的变化来获取电子设备的姿态变化信息的。但是,如果电子设备的姿态发生变化,而该电子设备的位置不发生变化;陀螺仪测得的姿态变化信息的误差则较大。如此,则无法得到准确的实时姿态信息II。
综上所述,采用现有方案无法准确测得电子设备的空间姿态信息。即电子设备的测姿精度较低。这样,会影响电子设备指向性控制家居设备的效果。
为此,本申请实施例提供一种获取姿态信息的方法。该方法可以应用于图1所示的通信系统。该通信系统包括电子设备(如手机或智能遥控)100和多个家居设备(如智能电视、智能空调、智能台灯、智能音箱和路由器等)。
本申请实施例中,如图8中的(b)所示,电子设备100的UWB模块不仅可以提供定位系统,还可以提供测姿系统。该测姿系统用于测量电子设备100的空间姿态信息。也就是说,电子设备100可以利用UWB模块测量电子设备的空间姿态信息。
需要说明的是,虽然图8中的(a)或图8中的(b)所示的IMU模块采集的姿态变化信息的误差会随着时间的推移变化而累积;但是,IMU模块采集的姿态变化信息也具有连续性较高的优点。因此,如图8中的(b)所示,本申请实施例中,还可以采用UWB模块的测姿系统测量得到的空间姿态信息对IMU模块的测量数据进行校准。这样,不仅可以减少IMU模块采集的姿态变化信息的误差;由IMU模块和UWB模块共同为电子设备提供测姿功能,还可以保证电子设备测量姿态信息的连续性。其中,图8中的(b)所示的滤波模块的功能可以参考上述实施例对图8中的(a)所示的滤波模块的介绍,本申请实施例这里不予赘述。
具体的,如图10所示,电子设备100安装有UWB模块,该电子设备100还包括 多天线模块(例如,该多天线模块包括图10所示的天线0、天线1和天线2)。该UWB模块可以为UWB芯片。其中,电子设备100可利用多天线模块接收来自各个UWB基站的UWB信号;然后根据接收到各个UWB信号,得到该电子设备100的空间姿态信息。
具体的,电子设备100可利用多天线模块接收来自各个UWB基站的UWB信号,并测量UWB信号的来向;然后根据接收到各个UWB信号的来向,得到该电子设备100的空间姿态信息。
应理解,各个UWB信号的来向是电子设备100利用多天线模块测量实时测量得到的;因此,各个UWB信号的来向的准确性可以保证。由此可见,采用本方案,可以减少电子设备100测算得到的姿态信息与实际姿态信息的误差,提升电子设备的测姿精度,进而可以提升电子设备指向性控制家居设备的效果。
进一步的,采用本方案,不需要对电子设备100中的磁力计进行校准,不需要用户以特定方式操作电子设备100,便可以测得电子设备100的空间姿态信息。这样,可以减少测量姿态信息过程中的用户操作。
示例性的,上述电子设备100可以是手机、平板电脑、智能遥控器、可穿戴设备(如智能手环、智能手表或者智能眼镜等)、掌上电脑、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备。或者,该电子设备100还可以是便携式多媒体播放器(Portable Multimedia Player,PMP)、媒体播放器等其他类型的电子设备。本申请实施例对电子设备100的具体类型不作任何限制。
请参考图9,本申请中以电子设备100是手机为例,介绍本申请提供的电子设备100。如图9所示,电子设备100可以包括:处理器810,外部存储器接口820,内部存储器821,通用串行总线(universal serial bus,USB)接口830,充电管理模块840,电源管理模块841,电池842,天线a,天线b,移动通信模块850,无线通信模块860,音频模块870,扬声器870A,受话器870B,麦克风870C,耳机接口870D,传感器模块880,按键890,马达891,指示器892,摄像头893,显示屏894,以及用户标识模块(subscriber identification module,SIM)卡接口895等。
其中,上述传感器模块880可以包括压力传感器,陀螺仪传感器,气压传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器、磁力计和骨传导传感器等传感器。
在一些实施例中,上述传感器模块880可以包括3个加速度传感器和3个陀螺仪传感器。这3个加速度传感器和3个陀螺仪传感器可以组成6轴IMU。或者,上述传感器模块880可以包括3个加速度传感器、3个陀螺仪传感器、以及3个磁力计。这3个加速度传感器、3个陀螺仪传感器、以及3个磁力计可以组成9轴IMU。IMU可用于测量电子设备100的空间姿态信息,包括俯仰角、方位角和横滚角。本申请实施例中,并不使用IMU测量的空间姿态信息。
可以理解的是,本实施例示意的结构并不构成对电子设备100的具体限定。在另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器810可以包括一个或多个处理单元,例如:处理器810可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器810中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器810中的存储器为高速缓冲存储器。该存储器可以保存处理器810刚用过或循环使用的指令或数据。如果处理器810需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器810的等待时间,因而提高了系统的效率。
在一些实施例中,处理器810可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
可以理解的是,本实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块840用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。充电管理模块840为电池842充电的同时,还可以通过电源管理模块841为电子设备供电。
电源管理模块841用于连接电池842,充电管理模块840与处理器810。电源管理模块841接收电池842和/或充电管理模块840的输入,为处理器810,内部存储器821,外部存储器,显示屏894,摄像头893,和无线通信模块860等供电。在一些实施例中,电源管理模块841和充电管理模块840也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线a,天线b,移动通信模块850,无线通信模块860,调制解调处理器以及基带处理器等实现。在一些实施例中,电子设备100的天线a和移动通信模块850耦合,天线b和无线通信模块860耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。例如,本申请实施例中,电子设备100可以通过无线通信技术向其他家居设备发送控制指令。
天线a和天线b用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线a复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块850可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通 信的解决方案。移动通信模块850可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块850可以由天线a接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。
移动通信模块850还可以对经调制解调处理器调制后的信号放大,经天线a转为电磁波辐射出去。在一些实施例中,移动通信模块850的至少部分功能模块可以被设置于处理器810中。在一些实施例中,移动通信模块850的至少部分功能模块可以与处理器810的至少部分模块被设置在同一个器件中。
无线通信模块860可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR),UWB技术等无线通信的解决方案。例如,本申请实施例中,电子设备100可以通过无线通信模块860接入Wi-Fi网络。又例如,本申请实施例中,电子设备100可以通过无线通信模块860向家居设备发送消息。
其中,无线通信模块860可提供UWB技术的无线通信的解决方案。也就是说,该无线通信模块860可以包括UWB芯片。UWB技术是一种无线载波通信技术,它不采用正弦载波传输数据,而是利用纳秒级的非正弦波窄脉冲传输数据。因此,UWB技术所占的频谱范围很宽。UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,截获能力低,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入。并且,电子设备100可以通过UWB技术测量电子设备100与支持UWB技术的设备(例如安装UWB芯片的家居设备)之间的距离。
无线通信模块860可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块860经由天线b接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器810。无线通信模块860还可以从处理器810接收待发送的信号,对其进行调频,放大,经天线b转为电磁波辐射出去。
其中,天线b可以包括上述多天线模块。该多天线模块可以包括n个天线,n≥3,n为正整数。该多天线模块中的n个天线均连接电子设备100的UWB芯片。例如,以n=3为例,该多天线模块可以包括图10所示的Ant(0)(即天线0)、Ant(1)(即天线1)和Ant(2)(即天线2),天线0、天线1和天线2均连接UWB芯片,用于接收来自其他设备的UWB信号。
多天线模块中的n个天线可构建电子设备100的载体天线坐标系。该载体天线坐标系的三轴分别与电子设备100的载体坐标系的三轴平行。该n个天线中,Ant(0)作为载体天线坐标系的坐标原点,Ant(i)位于载体坐标系的坐标轴或坐标轴的延长线上。Ant(i)与Ant(0)相距U,U≤λ。例如,U=λ/2。其中,λ为UWB信号的波长,i依次在{1,2,……,n-1}中取值。
其中,电子设备100的UWB模块可以包括上述多天线模块和UWB芯片。该多天线模块中的天线(如Ant(0)、Ant(1)和Ant(2))可以是UWB芯片的外置天线。该多天线模块和UWB芯片电连接。该多天线模块可以设置在电子设备100(如手机)的背板上。电子设备100(如手机)的背面的下方设置有用于布放各种通信模块(如WiFi、 UWB和蓝牙)的天线的板。该多天线模块设置在这块板上。
例如,以n=3为例,如图10所示,Ant(0)设置在电子设备100的右上角;Ant(1)设置在电子设备100的上侧边框,Ant(1)与Ant(0)相距U;Ant(2)设置在电子设备100的右侧边框,Ant(2)与Ant(0)相距U,U≤λ。如图10所示,Ant(1)与Ant(0)之间的距离为λ/2,Ant(1)与Ant(0)之间的距离为λ/2。
以该电子设备100是图3所示的智能遥控器为例。请参考图11,其示出智能遥控器的一种载体天线坐标系实例示意图。该智能遥控器的载体天线坐标系可以预先配置在该智能遥控器中。如图11所示,以O a为坐标原点的x a轴,y a轴和z a轴构成右手直角坐标系。图11所示的O a是Ant(0)所在位置。x a轴平行于Ant(0)与Ant(1)的连线,Ant(0)与Ant(1)的连线平行于智能遥控器的短边02。y a轴平行于智能遥控器的长边01向上,Ant(2)与Ant(0)的连线平行于手机的长边01。z a轴垂直于y a轴,且垂直于x a轴。
其中,图11所示的坐标系是智能遥控器的载体天线坐标系。对比图11所示的载体天线坐标系和图3所示的载体坐标系可知:x a轴平行于x A轴,y a轴平行于y A轴,z a轴平行于z A轴。如图11所示,Ant(0)在该载体天线坐标系中的坐标为(0,0,0),Ant(1)的坐标为(-λ/2,0,0),Ant(2)的坐标为(0,-λ/2,0)。其中,λ为UWB信号的波长。
以该电子设备100是图4所示的手机为例。请参考图12,其示出手机的一种载体天线坐标系实例示意图。该手机的载体天线坐标系可以预先配置在该手机中。如图12所示,以O b为坐标原点的x b轴,y b轴和z b轴构成右手直角坐标系。图12所示的O b是Ant(0)所在位置。x b轴平行于Ant(0)与Ant(1)的连线,Ant(0)与Ant(1)的连线平行于手机的短边04。y b轴平行于手机的长边03向上,Ant(2)与Ant(0)的连线平行于手机的长边03。z b轴垂直于y b轴,且垂直于x b轴。
其中,图12所示的坐标系是手机的载体天线坐标系。对比图12所示的载体天线坐标系和图4所示的载体坐标系可知:x b轴平行于x B轴,y b轴平行于y B轴,z b轴平行于z B轴。如图12所示,Ant(0)在该载体天线坐标系中的坐标为(0,0,0),Ant(1)的坐标为(-λ/2,0,0),Ant(2)的坐标为(0,-λ/2,0)。其中,λ为UWB信号的波长。
需要说明的是,由于电子设备100的载体天线坐标系的三轴与电子设备100的载体坐标系的三轴平行;因此,电子设备100的载体坐标系相对于UWB坐标系的欧拉角,等于其载体天线坐标系相对于UWB坐标系的欧拉角。具体的,电子设备100的载体坐标系相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000013
等于其载体天线坐标系相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000014
电子设备100的载体坐标系相对于UWB坐标系的方位角φ等于其载体天线坐标系相对于UWB坐标系的方位角φ;电子设备100的载体坐标系相对于UWB坐标系的横滚角θ等于其载体天线坐标系相对于UWB坐标系的横滚角θ。
由此可以得出:电子设备100的空间姿态信息可以包括:电子设备100的载体天线坐标系相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000015
方位角φ和横滚角θ。
电子设备100通过GPU,显示屏894,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏894和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器810可包括一个或多个GPU,其执行程序指令以生成或改变显 示信息。
显示屏894用于显示图像,视频等。该显示屏894包括显示面板。例如,本申请实施例中,显示屏894可以用于显示用于控制上述第一设备的控制界面。
电子设备100可以通过ISP,摄像头893,视频编解码器,GPU,显示屏894以及应用处理器等实现拍摄功能。ISP用于处理摄像头893反馈的数据。摄像头893用于捕获静态图像或视频。在一些实施例中,电子设备100可以包括1个或N个摄像头893,N为大于1的正整数。
外部存储器接口820可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口820与处理器810通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器821可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器810通过运行存储在内部存储器821的指令,从而执行电子设备100的各种功能应用以及数据处理。例如,在本申请实施例中,处理器810可以通过执行存储在内部存储器821中的指令,内部存储器821可以包括存储程序区和存储数据区。
其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器821可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块870,扬声器870A,受话器870B,麦克风870C,耳机接口870D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
按键890包括开机键,音量键等。按键890可以是机械按键。也可以是触摸式按键。马达891可以产生振动提示。马达891可以用于来电振动提示,也可以用于触摸振动反馈。指示器892可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。SIM卡接口895用于连接SIM卡。SIM卡可以通过插入SIM卡接口895,或从SIM卡接口895拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口895可以支持Nano SIM卡,Micro SIM卡,SIM卡等。
以下实施例中的方法均可以在具有上述硬件结构的电子设备100中实现。
本申请实施例提供一种获取姿态信息的方法,该方法可以应用于上述电子设备100。以下实施例中,以图1所示的电子设备100是手机100,UWB基站是图1所示的智能电视为例,介绍本申请实施例的方法。
其中,智能电视可提供三个UWB基站,如图5所示的Base(0)、Base(1)和Base(2)。这三个UWB基站可构建如图5所示的UWB坐标系。该手机100中包括UWB模块,该UWB模块包括UWB芯片和多天线模块。例如,该多天线模块可以包括n个天线,如3个天线。该n个天线可以是Ant天线,如图12所示的Ant(0)、Ant(1)和Ant(2)。该手机100还可以包括IMU模块(如IMU芯片)。该手机100中配置有图4所示的载体坐标系和图12所示的载体天线坐标系。
该手机100中还安装有用于控制家居设备的智能家居应用(Application,APP)。 手机100可以通过该智能家居APP,实现对家居设备的指向性控制。手机100实现对家居设备的指向性控制,则需要实时获取手机100的空间姿态信息。
在一些实施例中,手机100可以开机后,可执行本申请实施例的方法,获取手机100的空间姿态信息,以实现对家居设备的指向性控制。
在另一些实施例中,手机100可以在启动智能家居APP后,执行本申请实施例的方法,获取手机100的空间姿态信息,以实现对家居设备的指向性控制。其中,手机100启动智能家居APP后,该智能家居APP可以在前台运行,也可以在后台运行。一种情况下,当手机100在前台运行智能家居APP时,手机100可执行本申请实施例的方法,实时获取手机100的空间姿态信息。另一种情况下,无论手机100在前台或后台运行智能家居APP,只有该手机100启动了该智能家居APP,手机100便可以执行本申请实施例的方法,实时获取手机100的空间姿态信息。
在另一些实施例中,手机100可以在启动预设功能后,执行本申请实施例的方法,获取手机100的空间姿态信息,以实现对家居设备的指向性控制。该预设功能为指向性控制家居设备的功能。
在一种实现方式中,手机100的设置界面可以包括该预设功能的开关选项。例如,图13所示的设置界面1301包括“智能家居指向控制”选项1302。该“智能家居指向控制”选项1302是预设功能的开关选项,用于开启和关闭预设功能。
在另一种实现方式中,手机100的通知栏可以包括该预设功能的开关选项。例如,图14所示的通知栏1401包括“智能家居指向控制”选项1402。该“智能家居指向控制”选项1402是预设功能的开关选项,用于开启和关闭预设功能。
在另一种实现方式中,智能家居APP的设置界面可以包括该预设功能的开关选项(附图未示出),用于开启和关闭预设功能。
应理解,手机100实现对家居设备的指向性控制,不仅需要获取到手机100的空间姿态信息,还需要获取到手机100的空间位置信息。手机100的空间位置信息是手机100在UWB基站(如Base(0)、Base(1)和Base(2))提供的UWB坐标系(如图5所示的UWB坐标系)中的坐标。手机100的空间姿态信息可以包括手机100的载体天线坐标系(或者载体坐标系)相对于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000016
方位角φ和横滚角θ。如图15A所示,本申请实施例的方法可以包括S1501-S1506。
其中,m个UWB基站(如Base(0)、Base(1)和Base(2))可执行S1501,广播UWB信号。手机100可执行S1502,通过Ant(0)、Ant(1)和Ant(2)接收来自Base(0)、Base(1)和Base(2)的UWB信号。然后,手机100可执行S1503,根据接收的UWB信号,确定手机100的空间位置信息。其中,手机100的空间位置信息可以是手机100的多天线模块中Ant(0)在UWB坐标系中的坐标。
其中,S1503中,手机100可以根据S1502中接收的UWB信号,分别测算手机100与各个UWB基站之间的距离;然后,根据手机100与各个UWB基站之间的距离,计算该手机100的空间位置信息。手机100执行S1503计算手机100的空间位置信息的具体方法,可以参考以下实施例中的相关描述,这里不予赘述。
在S1502之后,手机100可执行图15A所示的S1504,根据接收的UWB信号,确定手机100的空间姿态信息。其中,手机100的空间姿态信息可以包括手机100的 载体天线坐标系相比于UWB坐标系的俯仰角
Figure PCTCN2021137535-appb-000017
方位角φ和横滚角θ。
需要说明的是,本申请实施例中,S1502之后,手机100可以先执行S1503,再执行S1504;也可以先执行S1504,再执行S1503;还可以同时执行S1503和S1504。本申请实施例对手机100执行S1503和S1504的先后顺序不作限制。
在S1503和S1504之后,手机100可执行S1505-S1506。S1505:根据手机100的空间位置信息和空间姿态信息,确定手机100的指向性控制信息,该指向性控制信息用于指示手机100指向的方向。S1506:手机100根据指向性控制信息和各个家居设备在UWB坐标系的坐标信息,控制手机100所指向的家居设备。其中,手机100执行S1505-S1506,实现手机100对家居设备的指向性控制的具体方法,可参考常规技术中的详细说明,本申请实施例这里不予赘述。
本申请实施例这里介绍,手机100执行S1504,确定手机100的空间姿态信息的具体方法。如图15B所示,S1504可以包括S1504A-S1504B。
其中,手机100可执行图15B所示的S1504A,计算来自m个UWB基站中UWB基站j的UWB信号相比于天线i的来向角α (i,j)。其中,j依次在{0,1,2,……,m-1}中取值,来向角α (i,j)为:在UWB坐标系下,天线i到UWB基站j的向量与天线i到所述天线0的向量的夹角。然后,手机100可执行图15B所示的S1504B,根据计算得到的多个来向角,结合n个天线接收自m个UWB基站的UWB信号,以及n个天线在载体天线坐标系中的坐标,确定电子设备的空间姿态信息。上述多个来向角包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的来向角α (i,j)
示例性的,本申请实施例这里介绍,手机100执行S1504A,计算来向角α (i,j)的具体方法。其中,如图17所示,上述S1504A可以包括S1504A-1和S1504A-2。
S1504A-1、手机100获取手机100的多天线模块中Ant(0)与Ant(i)接收Base(j)的UWB信号的相位差。
其中,i依次在{1,2……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值。m是UWB基站的数量,m≥3,m为正整数。Ant(0)是多天线模块中位于载体天线坐标系的坐标原点的天线。n是多天线模块中的天线个数,n≥3,n为正整数。该多天线模块中Ant(i)与Ant(0)之间的距离为U,U≤λ。例如,U=λ/2。例如,如图16所示,Ant(0)与Ant(i)之间的距离K iO a=λ/2,该距离可以称为基线长度。λ是UWB基站发送的UWB信号的波长。图16所示的点K i为Ant(i)所在位置。
可以理解的是,由于UWB基站Base(j)与Ant(0)之间的距离,以及Base(j)与Ant(i)之间的距离,远大于基线长度λ/2;因此,可以近似认为这两个天线(即Ant(0)和Ant(i))分别与Base(j)的连线是相互平行的。
例如,图16所示的点A j表示Base(j)所在位置。由于Base(j)与Ant(0)之间的距离(如A jO a)和Base(j)与Ant(i)之间的距离(如A jK i),远大于基线长度λ/2;因此,可以近似认为A jO a平行于A jK i。其中,如图16所示,从O a向A jK i做垂线,在A jK i与A jK i相交于K i′,则A jO a=A jK i′。如此,可以认为Base(j)与Ant(i)之间的距离,和Base(j)与Ant(0)之间的距离的距离差为图16所示的K iK i′。针对Base(j)广播的同一个UWB信号,当Ant(0)在O a接收到该UWB信号时,该UWB信号需要再传播K iK i′的距离, 才可以被Ant(i)接收到。
因此,手机100可以通过相位比较器,得到Ant(i)和Ant(0)接收Base(j)广播的同一个UWB信号的相位差。该相位差可以转换为Ant(0)和Ant(i)与Base(j)之间的距离差。
例如,结合图10所示UWB基站和手机100的示意图,手机100执行S1504A-1,可以得到表1所示的相位差。
表1
Figure PCTCN2021137535-appb-000018
如表1所示,在j=0的情况下,Ant(0)接收的来自Base(0)的UWB信号与Ant(1)接收的来自Base(0)的UWB信号的相位差是相位差I;Ant(0)接收的来自Base(0)的UWB信号与Ant(2)接收的来自Base(0)的UWB信号的相位差是相位差II。
如表1所示,在j=1的情况下,Ant(0)接收的来自Base(1)的UWB信号与Ant(1)接收的来自Base(1)的UWB信号的相位差是相位差i;Ant(0)接收的来自Base(1)的UWB信号与Ant(2)接收的来自Base(1)的UWB信号的相位差是相位差ii。
如表1所示,在j=2的情况下,Ant(0)接收的来自Base(2)的UWB信号与Ant(1)接收的来自Base(2)的UWB信号的相位差是相位差①;Ant(0)接收的来自Base(2)的UWB信号与Ant(2)接收的来自Base(2)的UWB信号的相位差是相位差②。
需要说明的是,手机100计算Ant(0)和Ant(i)接收Base(j)的UWB信号的相位差的方法,可以参考常规技术中的相关描述,本申请实施例这里不予赘述。
S1504A-2、手机100根据Ant(0)与Ant(i)接收UWB信号的相位差所表征的距离差,以及Ant(i)与Ant(0)之间的距离,采用余弦定理计算UWB基站Base(j)的UWB信号相比于手机100的来向角。
其中,UWB基站Base(j)的UWB信号相比于手机100的来向角可以包括:Base(j)的UWB信号相比于Ant(i)的来向角α (i,j)。Base(j)的UWB信号相比于Ant(i)的来向角α (i,j)具体可以为:Base(j)到Ant(i)在UWB坐标系的向量与Ant(0)到Ant(i)在UWB坐标系的向量的夹角。例如,如图16所示,Base(j)的UWB信号相比于Ant(i)的来向角α (i,j)为:向量O aK i与向量A jK i的夹角。其中,向量A jK i是Base(j)到Ant(i)在UWB坐标系的向量,向量O aK i是Ant(0)到Ant(i)在UWB坐标系的向量。
如图16所示,K iO a=λ/2。由上述实施例可知:Ant(0)与Ant(i)接收Base(j)的UWB信号的相位差可以转换为Ant(0)和Ant(i)与Base(j)之间的距离差。也就是说,手机100可以根据该相位差计算得到图16所示的K iK i′的长度。
图16所示的三角形O aK iK i′是直角三角形;因此手机100可以根据K iO a的长度(即λ/2)和K iK i′的长度,采用余弦定理计算得到Base(j)的UWB信号相比于Ant(i)的来向角α (i,j)。假设K iK i′=h i,α (i,j)=arccos[h i/(λ/2)]=arccos(2h i/λ)。
需要说明的是,UWB基站Base(j)的UWB信号相比于手机100的来向角,可以分 为:水平来向角和垂直来向角。从手机100的主视图来看,Ant(0)与Ant(1)基本位于同一条水平线上,Ant(0)与Ant(2)基本位于同一条垂直线上。因此,Base(j)的UWB信号相比于手机100的水平来向角是Base(j)的UWB信号相比于Ant(1)的来向角α (1,j),Base(j)的UWB信号相比于手机100的垂直来向角是Base(j)的UWB信号相比于Ant(2)的来向角α (2,j)
本申请实施例这里介绍,手机100执行S1504B,根据多个来向角、结合接收到的UWB信号,以及n个天线在载体坐标系中的坐标,确定手机100的空间姿态信息的具体方法。其中,如图18所示,S1504B可以包括S1504B-1和S1504B-2。
S1504B-1、手机100获取天线Ant(i)到Base(j)在UWB坐标系下的基线矢量r (i,j)。其中,r (i,j)=(x j,y j,z j)。
其中,基线矢量r (i,j)是UWB坐标系中,Ant(i)到Base(j)方向的方向向量。
首先,手机100可以先获取天线Ant(i)在UWB坐标系下的坐标,如Ant i(a i,b i,c i)。其中,天线Ant(0)在UWB坐标系下的坐标可以作为手机100在UWB坐标系下的坐标。其中,手机100中保存有UWB基站构建的UWB坐标系和Base(j)在该UWB坐标系中的坐标。
然后,手机100可以获取Base(j)在UWB坐标系下的坐标,如Base(j)(A j,B j,C j)。其中,手机100可以通过Ant(i)与各个UWB基站(如Base(0)、Base(1)和Base(2))的交互,测算Ant(i)与Base(j)之间的距离;然后,根据Ant(i)与Base(j)之间的距离,计算该Ant(i)在UWB坐标系下的坐标。其中,手机100通过Ant(i)与各个UWB基站的交互,获取Ant(i)在UWB坐标系下的坐标的方法,可以参考以下实施例中的详细描述,这里不予赘述。
最后,手机100可计算天线Ant(i)到Base(j)在UWB坐标系的向量(A j-a i,B j-b i,C j-c i),便可以得到Ant(i)到Base(j)在UWB坐标系下的基线矢量r (i,j)
其中,r (i,j)=(x j,y j,z j)=(A j-a i,B j-b i,C j-c i)。x j=A j-a i,y j=B j-b i,z j=C j-c i。手机100可以采用以下公式(1)计算向量r (i,j)的模
Figure PCTCN2021137535-appb-000019
Figure PCTCN2021137535-appb-000020
如此,在S1504B-1之后,向量r (i,j)和向量r (i,j)的模
Figure PCTCN2021137535-appb-000021
均为已知量。在S1504B-1之后,手机100可以执行S1504B-2,计算手机100的空间姿态信息。
S1504B-2、手机100根据多个来向角、多个基线矢量和多个第一单位基线矢量,确定手机100的空间姿态信息。
其中,上述多个第一单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一基线矢量r (i,j)
多个第一单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一单位基线矢量rq i。第一单位基线矢量rq i是载体天线坐标系下,天线i到天线0的单位方向向量。其中,第一单位基线矢量rq i是的模等于1。
其中,S1504B-2可以包括:S-1和S-2。
S-1:手机100根据上述多个来向角和多个基线矢量,确定多个第二单位基线矢量。
其中,多个第二单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第二单位基线矢量ra (i)。第二单位基线矢量ra (i)为UWB坐标系下,天线i到天线0的单位方向向量。
示例性的,假设Ant(i)到Ant(0)在UWB坐标系下的第二单位基线矢量ra (i)=(x (i),y (i),z (i))。ra (i)为图16所示的点K i到点O a方向上的单位向量。第二单位基线矢量ra (i)的模等于1,即
Figure PCTCN2021137535-appb-000022
图16所示的K i是天线Ant(i)所在位置,点O a是手机100的载体天线坐标系的坐标原点,也是天线Ant(0)所在位置。图16所示的点O a在手机100的载体天线坐标系的坐标为(0,0,0),K i在手机100的载体天线坐标系的坐标为(0,-λ/2,0)。其中,Ant(i)到Ant(0)在UWB坐标系下的第二单位基线矢量ra (i)=(x (i),y (i),z (i))是未知量。
由图16可知,上述第二单位基线矢量ra (i)与基线矢量r (i,j)的夹角为α (i,j)。其中,ra (i)=(x (i),y (i),z (i)),r (i,j)=(x j,y j,z j)。
由此可以得出以下公式(2):
Figure PCTCN2021137535-appb-000023
由上述描述可知:在S1504Ba之后,向量r (i,j)=(x j,y j,z j)和向量r (i,j)的模
Figure PCTCN2021137535-appb-000024
均为已知量。第二单位基线矢量ra (i)=(x (i),y (i),z (i))是未知量。虽然第二单位基线矢量ra (i)是未知量,但是
Figure PCTCN2021137535-appb-000025
是已知量,
Figure PCTCN2021137535-appb-000026
结合公式(1)可以得出以下公式(3)-公式(5):
Figure PCTCN2021137535-appb-000027
Figure PCTCN2021137535-appb-000028
Figure PCTCN2021137535-appb-000029
天线Ant(j)可以接收m个UWB基站的UWB信号。针对这m个UWB基站,结合公式(5)可以得到以下方程组(1)。也就是说,j依次在{0,1,2,……,m-1}中取值,可以得到如下方程组(1):
Figure PCTCN2021137535-appb-000030
需要再次说明的是,方程组(1)中,x j、y j和z j是已知量,cosα (i,j)是已知量。其中,i依次在{0,1,2,……,n-1}中取值,n是多天线模块中的天线个数,n≥3,n为正整数;j依次在{0,1,2,……,m-1}中取值,m是UWB基站的数量,m≥3,m为正整数。x (i)、y (i)和z (i)是未知量。
根据上述方程组(1),可以得到如下矩阵方程(1):
GX=B       矩阵方程(1)。
其中,
Figure PCTCN2021137535-appb-000031
手机100可以采用公式X=(G TG) -1G TB解算上述矩阵方程(1)。其中,G T是G的转置矩阵,
Figure PCTCN2021137535-appb-000032
G TG表示G T与G的乘积。(G TG) -1是G TG的逆矩阵。X等于G TG的逆矩阵乘以G T,再乘以B。
手机100采用X=(G TG) -1G TB,可以计算得到矩阵X,即
Figure PCTCN2021137535-appb-000033
即手机100可以计算得到Ant(i)到Ant(0)在UWB坐标系下的单位基线矢量ra (i)=(x (i),y (i),z (i))。
S-2:手机100根据多个第一单位基线矢量和多个第二单位基线矢量,确定手机100的空间姿态信息。
其中,第二单位基线矢量ra (i)是UWB坐标系下,Ant(i)到Ant(0)的单位方向向量。第一单位基线矢量rq i是载体天线坐标系b下,Ant(i)到Ant(0)的单位方向向量。
示例性的,假设手机100的空间姿态信息包括俯仰角
Figure PCTCN2021137535-appb-000034
方位角φ 1和横滚角θ 1。应注意,在S-1之后,单位基线矢量ra (i)=(x (i),y (i),z (i))是已知量,即(x (1),y (1),z (1))和(x (2),y (2),z (2))是已知量。俯仰角
Figure PCTCN2021137535-appb-000035
方位角φ 1和横滚角θ 1是未知量。
其中,用户操作手机100按照上述俯仰角
Figure PCTCN2021137535-appb-000036
方位角φ 1和横滚角θ 1,按照固定顺序依次绕着载体天线坐标系b的俯仰轴(即x b轴)、横滚轴(y b轴)和方位轴(即z b轴)旋转,可使载体天线坐标系b的三轴分别与UWB坐标系e的三轴平行。
本申请实施例中,可以将载体天线坐标系b的三轴分别与UWB坐标系e的三轴平行时,手机100的空间姿态称为预设初始姿态。手机100处于预设初始姿态时,该手机100的空间姿态信息中,俯仰角
Figure PCTCN2021137535-appb-000037
方位角φ 0=0°,横滚角θ 0=0°。
具体的,在手机100处于俯仰角
Figure PCTCN2021137535-appb-000038
方位角φ 1和横滚角θ 1对应的空间姿态(称为实际空间姿态)的情况下,手机100按照固定顺序依次绕着载体天线坐标系的俯仰轴(即x b轴)旋转
Figure PCTCN2021137535-appb-000039
绕着横滚轴(y b轴)旋转θ 1,绕着方位轴(即z b轴)旋转φ 1,可使手机100由上述实际空间姿态变换至预设初始姿态。
需要说明的是,上述固定顺序可以为:先绕着x b轴旋转
Figure PCTCN2021137535-appb-000040
再绕着y b轴旋转θ 1,最后绕着z b轴旋转φ 1;或者,先绕着y b轴旋转θ 1,再绕着x b轴旋转
Figure PCTCN2021137535-appb-000041
最后绕着z b轴旋转φ 1;或者,先绕着z b轴旋转φ 1;,再绕着y b轴旋转θ 1,最后绕着x b轴旋转
Figure PCTCN2021137535-appb-000042
等。本申请实施例对上述固定顺序不做限制。
示例性的,本申请实施例中,以上述固定顺序为先绕着z b轴旋转φ 1,再绕着x b轴旋转
Figure PCTCN2021137535-appb-000043
最后绕着y b轴旋转θ 1为例。以下预设旋转矩阵
Figure PCTCN2021137535-appb-000044
是手机100按照该顺序绕载体天线坐标系b的三轴旋转,由上述实际空间姿态变换至预设初始姿态时的旋转矩阵。其中,预设旋转矩阵
Figure PCTCN2021137535-appb-000045
中的下标b表示手机100的载体天线坐标系,上标e表示UWB基站构建的UWB坐标系。预设旋转矩阵
Figure PCTCN2021137535-appb-000046
如公式(6)所示。
Figure PCTCN2021137535-appb-000047
其中,上述
Figure PCTCN2021137535-appb-000048
是由以下旋转矩阵(1)-旋转矩阵(3)这三个旋转矩阵得到的。
Figure PCTCN2021137535-appb-000049
Figure PCTCN2021137535-appb-000050
Figure PCTCN2021137535-appb-000051
上述
Figure PCTCN2021137535-appb-000052
是手机100绕着载体天线坐标系b的z b轴旋转φ i的旋转矩阵;C(x b,φ 1)是手机100绕着载体天线坐标系b的x b轴旋转
Figure PCTCN2021137535-appb-000053
的旋转矩阵;C(y b,θ 1)是手机100绕着载体天线坐标系b的y b轴旋转θ i的旋转矩阵。
其中,
Figure PCTCN2021137535-appb-000054
应理解,
Figure PCTCN2021137535-appb-000055
也可以称为上述载体天线坐标系b与UWB坐标系e的坐标转换矩阵。通过
Figure PCTCN2021137535-appb-000056
可以将载体天线坐标系b中的坐标参数(如向量)转换为UWB坐标系e中的坐标参数(如向量)。其中,手机100的空间姿态信息(包括俯仰角
Figure PCTCN2021137535-appb-000057
方位角φ 1和横滚角θ 1)是未知量。
因此,手机100根据坐标系转移原理可以得出以下公式(7):
Figure PCTCN2021137535-appb-000058
公式(7)中的
Figure PCTCN2021137535-appb-000059
对应Ant(1)到Ant(0)在UWB坐标系e下的第二单位基线矢量ra (1)(x (1),y (1),z (1))。
Figure PCTCN2021137535-appb-000060
对应Ant(1)到Ant(0)在载体天线坐标系b下的第一单位基线矢量rq 1(-1,0,0)。
如图12所示,天线Ant(1)在载体天线坐标系b中的坐标为(-λ/2,0,0)。因此,可以得出:Ant(1)到Ant(0)在载体天线坐标系b下的第一单位基线矢量(-1,0,0)。
由上述公式(7)可以得出以下公式(8):
Figure PCTCN2021137535-appb-000061
根据坐标系转移原理还可以得出以下公式(9):
Figure PCTCN2021137535-appb-000062
公式(9)中的
Figure PCTCN2021137535-appb-000063
对应Ant(2)到Ant(0)在UWB坐标系e下的第二单位基线矢量ra (2)(x (2),y (2),z (2))。
Figure PCTCN2021137535-appb-000064
对应Ant(2)到Ant(0)在载体天线坐标系b下的第一单位基线矢量rq 2(0,-1,0)。
如图12所示,天线Ant(2)在载体天线坐标系b中的坐标为(0,-λ/2,0)。因此,可以得出:Ant(2)到Ant(0)在载体天线坐标系b下的第一单位基线矢量(0,-1,0)。
由上述公式(9)可以得出公式(10):
Figure PCTCN2021137535-appb-000065
根据上述公式(8)和公式(10),可以计算得到如下俯仰角
Figure PCTCN2021137535-appb-000066
方位角φ 1和横滚角θ 1
俯仰角
Figure PCTCN2021137535-appb-000067
方位角
Figure PCTCN2021137535-appb-000068
横滚角
Figure PCTCN2021137535-appb-000069
如此,手机100便可以计算得到该手机100的空间姿态信息,该空间姿态信息包括上述俯仰角
Figure PCTCN2021137535-appb-000070
方位角φ 1和横滚角θ 1
之后,手机100便可以执行S1506,根据手机100的空间位置信息和空间姿态信息,实现手机100对家居设备的指向性控制。例如,如图1所示,当手机100根据手机100的空间位置信息和空间姿态信息确定手机100指向智能音箱时,手机100可以显示图2所示的智能音箱的控制界面201,以供用户控制该智能音箱。
本申请实施例中,手机100可以可利用多天线模块测量来自各个UWB基站的UWB信号的来向;然后根据各个UWB信号的来向,得到该手机100的空间姿态信息。其中,各个UWB信号的来向是手机100利用多天线模块测量实时测量得到的;因此, 各个UWB信号的来向的准确性可以保证。因此,可以减少手机100测算得到的姿态信息与实际姿态信息的误差,提升手机100的测姿精度,进而可以提升手机100指向性控制家居设备的效果。
并且,本方案是利用多天线模块实时接收的UWB信号的来向测算空间姿态信息。手机100的多天线模块在每一时刻都可能会接收到UWB信号。因此,采用本方案测算空间姿态信息时,并不会依赖于上一时刻测算的空间姿态信息;并且,测算得到的空间姿态信息即使存在误差,该误差也不会随时间而累积。
进一步的,本方案在测算手机100的空间姿态信息时,并不依赖于手机100中磁力计或陀螺仪等器件。因此,不需要对手机100中的磁力计或陀螺仪等器件进行校准,不需要用户以特定方式操作手机100,便可以测得手机100的空间姿态信息。这样,可以减少测量姿态信息过程中的用户操作。
示例性的,以下实施例中举例说明手机100获取天线Ant(k)的空间位置信息k的方法。其中,k在{0,1,2,n-1}中取值,n≥2,n是多天线模块中天线的数量。天线Ant(k)的空间位置信息k是Ant(k)在UWB坐标系的坐标。
在一些实施例中,手机100的天线Ant(k)可以与Base(0)、Base(1)和Base(2)交互,执行S-a、S-b和S-c,以获取天线Ant(k)的空间位置信息k。
S-a、UWB基站(如Base(0)、Base(1)和Base(2))分别广播第一消息。
其中,该第一消息是UWB消息。UWB基站可以通过UWB芯片广播第一消息。其中,第一消息可以用于指示手机100测量天线Ant(k)在这三个UWB基站构建的UWB坐标系的空间位置信息k。例如,图10所示Base(0)、Base(1)和Base(2)均可以广播第一消息,该第一消息用于指示手机100测量天线Ant(k)的空间位置信息k。
具体的,该第一消息可用于指示手机100测量广播该第一消息的UWB基站(如该UWB基站的UWB芯片)与接收到该第一消息的天线Ant(k)之间的距离;然后,根据测量得到的距离计算天线Ant(k)在UWB坐标系的空间位置信息k。
例如,该第一消息包括:广播该第一消息的UWB基站的UWB芯片的标识、第一时间戳。UWB芯片的标识与UWB芯片相对应,第一时间戳用于指示UWB基站广播该第一消息的时间。
其中,不同UWB芯片的标识不同;因此,不同UWB基站的UWB芯片所广播的第一消息不同。例如,假设上述UWB基站Base(0)为UWB芯片A 0,UWB基站Base(1)为UWB芯片A 1,UWB基站Base(2)为UWB芯片A 2。UWB芯片A 0(即Base(0))所广播的第一消息中携带的UWB芯片A 0的标识可以为AH100000A,UWB芯片A 1(即Base(1))所广播的第一消息中携带的UWB芯片A 1的标识可以为AH100000B,UWB芯片A 2(即Base(2))所广播的第一消息中携带的UWB芯片A 2的标识可以为AH100000C。其中,AH100000A、AH100000B和AH100000C不同。
S-b、手机100的天线Ant(k)接收来自各个UWB基站(如Base(0)、Base(1)和Base(2))的第一消息,得到手机100的天线Ant(k)与各个UWB基站之间的距离。
其中,手机100的天线Ant(0)与UWB基站Base(j)之间的距离,是该手机100与Base(j)之间的距离。
手机100中安装有UWB芯片。手机100可以通过UWB芯片,由天线Ant(k)接收 来自Base(j)的第一消息。之后,手机100可以基于UWB测距原理,根据天线Ant(k)接收来自Base(j)的第一消息,计算得到天线Ant(k)与Base(j)之间的距离。
具体的,第一消息中携带有第一时间戳。该第一时间戳用于记录Base(j)广播该第一消息的时间。手机在Ant(k)接收到Base(j)广播的第一消息时,可以生成一个第二时间戳。该第二时间戳用于记录Ant(k)接收到该第一消息的时间。然后,手机100可以根据第一时间戳和第二时间戳所记录的时间,计算得到第一消息由Base(j)传输至手机100所花费的时长。最后,手机100可以根据第一消息的传播速度(如光速)和第一消息由Base(j)传输至手机100所花费的时长,得到手机100的Ant(k)与Base(j)之间的距离。
例如,请参考表2,其示出手机100计算得到的手机100的Ant(k)(如Ant(0))与图10所示的应用场景中各个UWB基站(如Base(0)、Base(1)和Base(2))的距离。
表2
Figure PCTCN2021137535-appb-000071
其中,图19所示的O点为UWB坐标系的原点,也是UWB基站Base(0)在UWB坐标系的位置。P点为UWB基站Base(2)在UWB坐标系的位置。图19所示的Q点为UWB基站Base(1)在UWB坐标系的位置。图19所示的K k点为Ant(k)在UWB坐标系的位置。OK k=a,PK k=b,QK k=c。
S-c、手机100根据天线Ant(k)与Base(j)之间的距离,计算天线Ant(k)在UWB坐标系中的空间位置信息k。
示例性的,本申请实施例结合图19,介绍手机100计算Ant(k)在UWB坐标系中的空间位置信息k的具体方法。如图19所示,假设手机100的Ant(k)在UWB坐标系的坐标为K k(x k,y k,z k)。O点、P点和Q点在UWB坐标系的坐标分别为O(0,0,0),P(0,0,p),Q(-q,0,p)。其中,PQ=q,q为智能电视的显示屏的长度;OP=p,p为智能电视的显示屏的宽度(也称为高度)。在一些实施例中,上述第一消息中还可以包括UWB基站在UWB坐标系中的坐标。如Base(0)广播的第一消息中还包括坐标O(0,0,0);Base(1)广播的第一消息中还包括坐标P(0,0,p);Base(2)广播的第一消息中还包括坐标Q(-q,0,p)。
图19所示的点K k′为点K k在OPQ面(即XOZ平面)的垂直投影,K k′(x k,0,z k)。因此,K kK k′垂直于OPQ面(即XOZ平面),K kK k′垂直于PK k′,K kK k′垂直于QK k′,且K kK k′垂直于OK k′。如此,由勾股定理可以得出以下公式(11)-公式(13)。
K kK k2+QK k2=QK k 2      公式(11)
K kK k2+PK k2=PK k 2       公式(12)
K kK k2+OK k2=OK k 2       公式(13)
其中,K kK k′=y k,QK k=c,
Figure PCTCN2021137535-appb-000072
由公式(11)可得出以下公式(14)。PK k=b,
Figure PCTCN2021137535-appb-000073
由公式(12)可得出以下公式(15)。OK k=a,
Figure PCTCN2021137535-appb-000074
由公式(13)可得出以下公式(16)。
y k 2+c 2=(-q-x k) 2+(p-z k) 2       公式(14)
y k 2+b 2=x k 2+(p-z k) 2       公式(15)
y k 2+a 2=x k 2+z k 2       公式(16)
之后,手机100可以根据上述公式(14)、公式(15)和公式(16),计算得到Ant(k)在的空间位置信息k,即Ant(k)在UWB坐标系的坐标K k(x k,y k,z k)。其中,手机100根据公式(14)、公式(15)和公式(16)计算x k,y k和z k的具体方法及计算结果,本申请实施例这里不予赘述。
在另一些实施例中,手机100可以通过Ant(k)主动向UWB基站发送测距请求,以测量Ant(k)与UWB基站之间的距离。具体的,手机100可以通过Ant(k)与Base(0)、Base(1)和Base(2)交互,执行S-A、S-B、S-C和S-D,以获取Ant(k)的空间位置信息k。其中,k在{0,1,2……,n-1}中依次取值,n≥2,n是多天线模块中天线的数量。
S-A、手机100通过Ant(k)向UWB基站(如Base(0)、Base(1)和Base(2))发送测距请求。
其中,该测距请求用于请求测量手机100的Ant(k)与UWB基站之间的距离。该测距请求中还可以包括手机100的UWB芯片的标识,还可以包括Ant(k)的标识。示例性的,手机100可以广播上述测距请求。这样,各个UWB基站(如Base(0)、Base(1)和Base(2))均可以接收到该测距请求。
S-B、UWB基站(如Base(0)、Base(1)和Base(2))接收到测距请求后,向手机100发送测距响应。
在一些实施例中,UWB基站可以广播测距响应。该测距响应中包括发送该测距响应的UWB基站的UWB芯片的标识,还可以包括Ant(k)的标识。该测距响应还可以包括第一时间戳,该第一时间戳用于指示UWB基站(如Base(0))发送该测距响应的时间。
S-C、手机100通过Ant(k)接收来自各个UWB基站(如Base(0)、Base(1)和Base(2))的测距响应,得到Ant(k)与各个UWB基站之间的距离。
S-D、手机100根据Ant(k)与各个UWB基站之间的距离,计算Ant(k)的空间位置信息k。
其中,S-C和S-D的详细描述,可以参考上述实施例对S-a、S-b和S-c的介绍,本申请实施例这里不予赘述。
需要说明的是,手机100获取该Ant(k)的空间位置信息的具体方法,包括但不限于上述实施例中所述的方法。任何一种可获取Ant(k)在UWB坐标系中的空间位置信息的方法,均可适用于本申请实施例的方法。
以下实施例中,通过仿真说明本申请实施例的效果。具体的,可在仿真空间内布放三个UWB基站(如Base0、Base1和Base2)以构建UWB定位系统(即系统坐标系)。设定载体(如手机100)与UWB基站之间的测距误差为0.05米(m)。设定载 体(如手机100)测量UWB信号来向的误差为±3°。另外,设定姿态三轴初始误差分别为:俯仰角1°,横滚角-1°,方位角3°。陀螺仪三轴固定偏置为0.5度/秒(deg/s),陀螺仪噪声为0.006deg/sqrt(s)。其中,deg/sqrt(s)为度/二次方秒,或者deg/sqrt(s)为度/秒平方。
假设仿真的持续时间为30秒(s),载体(如手机100)在仿真空间内进行直线、左右转等多种运动状态。请参考图20,其示出载体(如手机100)在仿真过程中,执行本方案测算的俯仰角、横滚角和方位角的误差示意图。
由图20可知:采用本方案测量载体(如手机100)的空间姿态信息(包括俯仰角
Figure PCTCN2021137535-appb-000075
方位角φ和横滚角θ),其测姿误差小于常规方案的测姿误差。并且,常规方案的测姿误差会随着时间的推移而增大,而本方案的测姿误差不会随着时间的推移而增大。即本方案的测姿误差不会随着时间的推移而累积。
本申请另一些实施例提供了一种电子设备,该电子设备可以包括:上述触摸屏、存储器和一个或多个处理器。该触摸屏、存储器和处理器耦合。该存储器用于存储计算机程序代码,该计算机程序代码包括计算机指令。当处理器执行计算机指令时,电子设备可执行上述方法实施例中手机执行的各个功能或者步骤。该电子设备的结构可以参考图9所示的电子设备100的结构。
本申请另一些实施例提供一种显示装置,其特征在于,该装置可以应用于包括上述触摸屏的电子设备。该装置用于执行上述方法实施例中手机执行的各个功能或者步骤。
本申请实施例还提供一种芯片系统,如图21所示,该芯片系统包括至少一个处理器2101和至少一个接口电路2102。处理器2101和接口电路2102可通过线路互联。例如,接口电路2102可用于从其它装置(例如电子设备的存储器)接收信号。又例如,接口电路2102可用于向其它装置(例如处理器2101)发送信号。示例性的,接口电路2102可读取存储器中存储的指令,并将该指令发送给处理器2101。当所述指令被处理器2101执行时,可使得电子设备执行上述实施例中的各个步骤。当然,该芯片系统还可以包含其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在上述电子设备上运行时,使得该电子设备执行上述方法实施例中手机执行的各个功能或者步骤。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述方法实施例中手机执行的各个功能或者步骤。
通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执 行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种获取姿态信息的方法,其特征在于,应用于电子设备,所述电子设备包括超宽带UWB芯片和n个天线,所述UWB芯片与所述n个天线电连接,n≥3,n为整数;所述n个天线用于构建载体天线坐标系,所述载体天线坐标系的坐标原点与所述n个天线中的天线0所在位置重合,所述n个天线中的天线i位于所述载体天线坐标系的坐标轴上,所述天线i与所述天线0之间的距离小于或等于λ,所述λ是UWB信号的波长,i依次在{1,2,……,n-1}中取值;所述方法包括:
    所述电子设备通过所述n个天线接收来自m个UEB基站的UWB信号,所述m个UEB基站用于构建UWB坐标系,m≥3,m为整数;
    所述电子设备根据所述n个天线接收自所述m个UWB基站的UWB信号,确定所述电子设备的空间姿态信息,所述电子设备的空间姿态信息包括:所述载体天线坐标系相比于所述UWB坐标系的俯仰角
    Figure PCTCN2021137535-appb-100001
    方位角φ和横滚角θ。
  2. 根据权利要求1所述的方法,其特征在于,在所述电子设备通过所述n个天线接收来自m个UEB基站的UWB信号之前,包括:
    所述电子设备开机后,或者所述电子设备启动智能家居应用APP后,或者所述电子设备启动预设功能后,通过所述n个天线接收来自所述m个UEB基站的UWB信号;
    其中,所述电子设备的通知栏、所述电子设备的设置界面或者智能家居APP的设置界面中的至少一项,包括:所述预设功能的开关选项,所述开关选项用于开启或关闭所述预设功能。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述电子设备根据所述n个天线接收自所述m个UWB基站的UWB信号,确定所述电子设备的空间位置信息,所述空间位置信息包括所述电子设备在所述UWB坐标系的坐标信息;
    所述电子设备根据所述空间位置信息和所述空间姿态信息,确定所述电子设备的指向性控制信息,所述指向性控制信息用于指示所述电子设备指向的方向;
    所述电子设备根据所述指向性控制信息和各个家居设备在所述UWB坐标系的坐标信息,控制所述电子设备所指向的家居设备。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述天线i与所述天线0之间的距离等于λ/2。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述n个天线至少包括天线0、天线1和天线2;
    所述载体天线坐标系的x轴平行于所述天线1与所述天线0的连线,指向由所述天线1到所述天线0的方向;所述载体天线坐标系的y轴平行于所述天线2与所述天线0的连线,指向所述天线2到所述天线0的方向;所述载体天线坐标系的z轴垂直于所述x轴和所述y轴,与所述x轴和所述y轴构成右手直角坐标系。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述电子设备根据所述n个天线接收自所述m个UWB基站的UWB信号,包括:
    所述电子设备确定来自所述m个UWB基站中UWB基站j的UWB信号相比于所述天线i的来向角α (i,j);其中,j依次在{0,1,2,……,m-1}中取值,所述来向角α (i,j) 为:在所述UWB坐标系下,所述天线i到所述UWB基站j的向量与所述天线i到所述天线0的向量的夹角;
    所述电子设备根据多个来向角,结合所述n个天线接收自所述m个UWB基站的UWB信号,以及所述n个天线在所述载体天线坐标系中的坐标,确定所述电子设备的空间姿态信息;
    其中,所述多个来向角包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的来向角α (i,j)
  7. 根据权利要求6所述的方法,其特征在于,所述电子设备确定来自所述m个UWB基站中UWB基站j的UWB信号相比于所述天线i的来向角α (i,j),包括:
    所述电子设备获取所述天线i与所述天线0接收来自所述UWB基站j的UWB信号的相位差;其中,所述相位差用于表征所述天线i与所述UWB基站j之间的距离和所述天线0与所述UWB基站j之间的距离的距离差;
    所述电子设备根据所述相位差所表征的距离差,以及所述天线i与所述天线0之间的距离,采用余弦定理计算所述来向角α (i,j)
  8. 根据权利要求6或7所述的方法,其特征在于,所述电子设备根据多个来向角,结合所述n个天线接收自所述m个UWB基站的UWB信号,以及所述n天线在所述载体天线坐标系中的坐标,确定所述电子设备的空间姿态信息,包括:
    所述电子设备根据所述天线i接收自所述UWB基站j的UWB信号,获取基线矢量r (i,j);其中,所述基线矢量r (i,j)是所述UWB坐标系下,所述天线i到所述UWB基站j的方向向量;
    所述电子设备根据所述天线i在所述载体天线坐标系中的坐标,获取第一单位基线矢量rq i;其中,所述第一单位基线矢量rq i是所述载体天线坐标系下,所述天线i到所述天线0的单位方向向量;
    所述电子设备根据所述多个来向角、多个基线矢量和多个第一单位基线矢量,确定所述电子设备的空间姿态信息;
    其中,所述多个基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一基线矢量r (i,j)
    所述多个第一单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一单位基线矢量rq i
  9. 根据权利要求8所述的方法,其特征在于,所述电子设备根据所述多个来向角、多个基线矢量和多个第一单位基线矢量,确定所述电子设备的空间姿态信息,包括:
    所述电子设备根据所述多个来向角和所述多个基线矢量,确定多个第二单位基线矢量;其中,所述多个第二单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第二单位基线矢量ra (i),所述第二单位基线矢量ra (i)为所述UWB坐标系下,所述天线i到所述天线0的单位方向向量;
    所述电子设备根据所述多个第一单位基线矢量和所述多个第二单位基线矢量,确定所述电子设备的空间姿态信息。
  10. 根据权利要求9所述的方法,其特征在于,所述电子设备根据所述多个第一单位基线矢量和所述多个第二单位基线矢量,确定所述电子设备的空间姿态信息,包括:
    所述电子设备采用预设旋转矩阵,根据所述多个第一单位基线矢量和所述多个第二单位基线矢量,确定所述电子设备的空间姿态信息;
    其中,所述预设旋转矩阵为:所述电子设备由所述俯仰角
    Figure PCTCN2021137535-appb-100002
    所述方位角φ和所述横滚角θ对应的空间姿态变换至预设初始姿态时的旋转矩阵;所述预设初始姿态为所述载体天线坐标系的三轴分别与所述UWB坐标系的三轴平行时,所述电子设备的姿态;所述预设旋转矩阵用于将所述载体天线坐标系中的坐标参数转换为所述UWB坐标系中的坐标参数,所述坐标参数包括向量。
  11. 一种电子设备,其特征在于,所述电子设备包括超宽带UWB芯片和n个天线,所述UWB芯片与所述n个天线电连接,n≥3,n为整数;所述n个天线用于构建载体天线坐标系,所述载体天线坐标系的坐标原点与所述n个天线中的天线0所在位置重合,所述n个天线中的天线i位于所述载体天线坐标系的坐标轴上,所述天线i与所述天线0之间的距离小于或等于λ,所述λ是UWB信号的波长,i依次在{1,2,……,n-1}中取值;
    其中,所述电子设备还包括:存储器和一个或多个处理器;所述UWB芯片、所述n个天线、所述存储器和所述处理器耦合;所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述计算机指令被所述电子设备执行时,使得所述电子设备执行如下步骤:
    通过所述n个天线接收来自m个UEB基站中UWB基站j的UWB信号,j依次在{0,1,2,……,m-1}中取值,所述m个UEB基站用于构建UWB坐标系,m≥3,m为整数;
    根据所述n个天线接收自所述m个UWB基站的UWB信号,确定所述电子设备的空间姿态信息,所述电子设备的空间姿态信息包括:所述载体天线坐标系相比于所述UWB坐标系的俯仰角
    Figure PCTCN2021137535-appb-100003
    方位角φ和横滚角θ。
  12. 根据权利要求11所述的电子设备,其特征在于,当所述计算机指令被所述电子设备执行时,使得所述电子设备还执行如下步骤:
    在开机后,或者所述电子设备启动智能家居应用APP后,或者所述电子设备启动预设功能后,通过所述n个天线接收来自所述m个UEB基站的UWB信号;
    其中,所述电子设备的通知栏、所述电子设备的设置界面或者智能家居APP的设置界面中的至少一项,包括:所述预设功能的开关选项,所述开关选项用于开启或关闭所述预设功能。
  13. 根据权利要求11或12所述的电子设备,其特征在于,当所述计算机指令被所述电子设备执行时,使得所述电子设备还执行如下步骤:
    根据所述n个天线接收自所述m个UWB基站的UWB信号,确定所述电子设备的空间位置信息,所述空间位置信息包括所述电子设备在所述UWB坐标系的坐标信息;
    根据所述空间位置信息和所述空间姿态信息,确定所述电子设备的指向性控制信息,所述指向性控制信息用于指示所述电子设备指向的方向;
    根据所述指向性控制信息和各个家居设备在所述UWB坐标系的坐标信息,控制所述电子设备所指向的家居设备。
  14. 根据权利要求11-13中任一项所述的电子设备,其特征在于,所述天线i与所述天线0之间的距离等于λ/2。
  15. 根据权利要求11-14中任一项所述的电子设备,其特征在于,所述n个天线包括天线0、天线1和天线2;
    所述载体天线坐标系的x轴平行于所述天线1与所述天线0的连线,指向由所述天线1到所述天线0的方向;所述载体天线坐标系的y轴平行于所述天线2与所述天线0的连线,指向所述天线2到所述天线0的方向;所述载体天线坐标系的z轴垂直于所述x轴和所述y轴,与所述x轴和所述y轴构成右手直角坐标系。
  16. 根据权利要求15所述的电子设备,其特征在于,当所述计算机指令被所述电子设备执行时,使得所述电子设备还执行如下步骤:
    确定来自所述m个UWB基站中UWB基站j的UWB信号相比于所述天线i的来向角α (i,j);其中,j依次在{0,1,2,……,m-1}中取值,所述来向角α (i,j)为:在所述UWB坐标系下,所述天线i到所述UWB基站j的向量与所述天线i到所述天线0的向量的夹角;
    根据多个来向角,结合所述n个天线接收自所述m个UWB基站的UWB信号,以及所述n个天线在所述载体天线坐标系中的坐标,确定所述电子设备的空间姿态信息;
    其中,所述多个来向角包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的α (i,j)
  17. 根据权利要求15或16所述的电子设备,其特征在于,当所述计算机指令被所述电子设备执行时,使得所述电子设备还执行如下步骤:
    获取所述天线i与所述天线0接收来自所述UWB基站j的UWB信号的相位差;其中,所述相位差用于表征所述天线i与所述UWB基站j之间的距离和所述天线0与所述UWB基站j之间的距离的距离差;
    所述电子设备根据所述相位差所表征的距离差,以及所述天线i与所述天线0之间的距离,采用余弦定理计算所述来向角α (i,j)
  18. 根据权利要求17所述的电子设备,其特征在于,当所述计算机指令被所述电子设备执行时,使得所述电子设备还执行如下步骤:
    根据所述天线i接收自所述UWB基站j的UWB信号,获取基线矢量r (i,j);其中,所述第一基线矢量r (i,j)是所述UWB坐标系下,所述天线i到所述UWB基站j的方向向量;
    根据所述天线i在所述载体天线坐标系中的坐标,获取第一单位基线矢量rq i;其中,所述第一单位基线矢量rq i是所述载体天线坐标系下,所述天线i到所述天线0的单位方向向量;
    根据所述多个来向角、多个基线矢量和多个第一单位基线矢量,确定所述电子设备的空间姿态信息;
    其中,所述多个基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第一基线矢量r (i,j)
    所述多个第一单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0, 1,2,……,m-1}中取值,得到的第一单位基线矢量rq i
  19. 根据权利要求18所述的电子设备,其特征在于,当所述计算机指令被所述电子设备执行时,使得所述电子设备还执行如下步骤:
    根据所述多个来向角和所述多个基线矢量,确定多个第二单位基线矢量;其中,所述多个第二单位基线矢量包括:i依次在{1,2,……,n-1}中取值,j依次在{0,1,2,……,m-1}中取值,得到的第二单位基线矢量ra (i),所述第二单位基线矢量ra (i)为所述UWB坐标系下,所述天线i到所述天线0的单位方向向量;
    根据所述多个第一单位基线矢量和所述多个第二单位基线矢量,确定所述电子设备的空间姿态信息。
  20. 根据权利要求19所述的电子设备,其特征在于,当所述计算机指令被所述电子设备执行时,使得所述电子设备还执行如下步骤:
    采用预设旋转矩阵,根据所述多个第一单位基线矢量和所述多个第二单位基线矢量,确定所述电子设备的空间姿态信息;
    其中,所述预设旋转矩阵为:所述电子设备由所述俯仰角
    Figure PCTCN2021137535-appb-100004
    所述方位角φ和所述横滚角θ对应的空间姿态变换至预设初始姿态时的旋转矩阵;所述预设初始姿态为所述载体天线坐标系的三轴分别与所述UWB坐标系的三轴平行时,所述电子设备的姿态;所述预设旋转矩阵用于将所述载体天线坐标系中的坐标参数转换为所述UWB坐标系中的坐标参数,所述坐标参数包括向量。
  21. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1-10中任一项所述的方法。
PCT/CN2021/137535 2021-01-30 2021-12-13 一种获取姿态信息的方法及电子设备 WO2022160978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110131647.8 2021-01-30
CN202110131647.8A CN114838701B (zh) 2021-01-30 2021-01-30 一种获取姿态信息的方法及电子设备

Publications (1)

Publication Number Publication Date
WO2022160978A1 true WO2022160978A1 (zh) 2022-08-04

Family

ID=82561349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137535 WO2022160978A1 (zh) 2021-01-30 2021-12-13 一种获取姿态信息的方法及电子设备

Country Status (2)

Country Link
CN (1) CN114838701B (zh)
WO (1) WO2022160978A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135568A (zh) * 2023-08-31 2023-11-28 青岛柯锐思德电子科技有限公司 一种基于单基站的uwb无线耳机位姿感知测量方法
CN117423231A (zh) * 2023-10-13 2024-01-19 深圳市天丽汽车电子科技有限公司 一种基于多频段天线的车载数据处理方法、装置及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116052003B (zh) * 2023-02-07 2024-05-14 中科星图数字地球合肥有限公司 一种天线角度信息的测量方法、装置及相关设备
CN118068970A (zh) * 2024-04-17 2024-05-24 深圳华云时空技术有限公司 一种基于imu和uwb融合技术的空鼠定位系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180213492A1 (en) * 2017-01-20 2018-07-26 M2 Robots, Inc. Ultra-wide band positioning system
CN109870984A (zh) * 2018-12-26 2019-06-11 浙江大学 一种基于可穿戴设备的多家电控制方法
CN110568767A (zh) * 2019-07-31 2019-12-13 华为技术有限公司 一种智能家居设备选择方法及终端
CN110673091A (zh) * 2019-09-10 2020-01-10 清研讯科(北京)科技有限公司 基于超宽带的定位方法及装置、系统
CN111132013A (zh) * 2019-12-30 2020-05-08 广东博智林机器人有限公司 室内定位方法、装置、存储介质及计算机设备
CN111212182A (zh) * 2019-12-01 2020-05-29 深圳市纽瑞芯科技有限公司 用嵌uwb模块的手机直接遥控uwb设备的方法及装置
CN112261669A (zh) * 2020-10-20 2021-01-22 Oppo广东移动通信有限公司 网络波束定向控制方法及装置、可读介质和电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002874A1 (en) * 1999-07-02 2001-01-11 Kvh Industries, Inc. Antenna attitude determination by averaging gyros signals against phase signals
US20130214975A1 (en) * 2011-09-30 2013-08-22 Itrack, Llc Target location positioning method and device
CN102509902B (zh) * 2011-11-21 2014-05-07 华为技术有限公司 一种基站天线信息的获取方法、装置及基站天线
EP3004921B1 (en) * 2013-05-30 2019-08-07 Intel IP Corporation Device, system and method of determining whether a mobile device is located in an indoor location or an outdoor location
KR102155091B1 (ko) * 2014-01-22 2020-09-11 엘지전자 주식회사 이동단말기 및 그 제어방법
US9589287B2 (en) * 2015-06-29 2017-03-07 Miq Llc User community generated analytics and marketplace data for modular systems
KR102423493B1 (ko) * 2015-10-08 2022-07-21 엘지전자 주식회사 디지털 디바이스 및 상기 디지털 디바이스에서 데이터 처리 방법
JP2017073753A (ja) * 2015-10-09 2017-04-13 富士通株式会社 補正方法、プログラム及び電子機器
CN105892753B (zh) * 2016-04-29 2019-01-01 努比亚技术有限公司 一种面向触屏设备的方法及装置
CN106680763B (zh) * 2016-11-18 2020-07-03 纳恩博(北京)科技有限公司 一种定位方法和装置
CN108012325B (zh) * 2017-10-30 2021-01-19 上海神添实业有限公司 一种基于uwb和双目视觉的导航定位方法
CN108362262A (zh) * 2018-02-07 2018-08-03 大连航天北斗科技有限公司 利用空间坐标旋转矩阵反解出构建物倾斜角度的方法
KR102635323B1 (ko) * 2019-04-17 2024-02-08 애플 인크. 무선 위치식별가능 태그
CN110673101A (zh) * 2019-10-14 2020-01-10 成都航天科工微电子系统研究院有限公司 一种基于组合导航姿态的雷达系统动态补偿方法
CN111026314B (zh) * 2019-10-25 2022-03-25 华为终端有限公司 控制显示设备的方法及便携设备
CN112153721B (zh) * 2020-08-05 2021-08-20 华为技术有限公司 一种无线路由设备接入方法及无线路由设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180213492A1 (en) * 2017-01-20 2018-07-26 M2 Robots, Inc. Ultra-wide band positioning system
CN109870984A (zh) * 2018-12-26 2019-06-11 浙江大学 一种基于可穿戴设备的多家电控制方法
CN110568767A (zh) * 2019-07-31 2019-12-13 华为技术有限公司 一种智能家居设备选择方法及终端
CN110673091A (zh) * 2019-09-10 2020-01-10 清研讯科(北京)科技有限公司 基于超宽带的定位方法及装置、系统
CN111212182A (zh) * 2019-12-01 2020-05-29 深圳市纽瑞芯科技有限公司 用嵌uwb模块的手机直接遥控uwb设备的方法及装置
CN111132013A (zh) * 2019-12-30 2020-05-08 广东博智林机器人有限公司 室内定位方法、装置、存储介质及计算机设备
CN112261669A (zh) * 2020-10-20 2021-01-22 Oppo广东移动通信有限公司 网络波束定向控制方法及装置、可读介质和电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135568A (zh) * 2023-08-31 2023-11-28 青岛柯锐思德电子科技有限公司 一种基于单基站的uwb无线耳机位姿感知测量方法
CN117135568B (zh) * 2023-08-31 2024-02-09 青岛柯锐思德电子科技有限公司 一种基于单基站的uwb无线耳机位姿感知测量方法
CN117423231A (zh) * 2023-10-13 2024-01-19 深圳市天丽汽车电子科技有限公司 一种基于多频段天线的车载数据处理方法、装置及介质
CN117423231B (zh) * 2023-10-13 2024-04-26 深圳市天丽汽车电子科技有限公司 一种基于多频段天线的车载数据处理方法、装置及介质

Also Published As

Publication number Publication date
CN114838701A (zh) 2022-08-02
CN114838701B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2022160978A1 (zh) 一种获取姿态信息的方法及电子设备
WO2021077923A1 (zh) 控制显示设备的方法及便携设备
KR20210030180A (ko) Uwb 신호를 이용한 측위 방법 및 그 전자 장치
CN112689985A (zh) 包括天线模块的电子装置
CN111405508A (zh) 可穿戴设备的定位方法及可穿戴设备
CN110986930B (zh) 设备定位方法、装置、电子设备及存储介质
CN109101213B (zh) 控制声卡传输音频的方法、装置及存储介质
US11431401B2 (en) Terminal detection method and terminal
WO2022161054A1 (zh) 一种家居设备的位置标记方法及电子设备
CN109166150B (zh) 获取位姿的方法、装置存储介质
KR102060712B1 (ko) 이동 단말기, 및 그 동작방법
US11852736B2 (en) Electronic device including antenna for measuring angle of arrival
US20230156316A1 (en) Electronic device and image transmission method by electronic device
CN112740141A (zh) 包括支架构件的电子装置
CN111244601A (zh) 电子设备及其天线结构
CN112181915B (zh) 执行业务的方法、装置、终端和存储介质
WO2022233194A1 (zh) 一种虚拟现实设备和一种虚拟现实系统
US20230099993A1 (en) Electronic device comprising antenna module disposed in camera module
CN108837509B (zh) 配置虚拟场景的设置参数的方法、计算机设备及存储介质
CN115361636A (zh) 声音信号调整方法、装置、终端设备及存储介质
CN112734346B (zh) 航线覆盖范围的确定方法、装置、设备及可读存储介质
CN109218920B (zh) 一种信号处理方法、装置及终端
WO2019128430A1 (zh) 带宽确定方法、装置、设备及存储介质
CN113176789B (zh) 飞行器的控制方法、装置、设备及可读存储介质
CN110910893B (zh) 音频处理方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263625

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922568

Country of ref document: EP

Kind code of ref document: A1