WO2022160836A1 - Matériau composite fer-manganèse poreux pour fixer et éliminer de manière efficace la pollution de l'antimoine, son procédé de préparation et son utilisation - Google Patents

Matériau composite fer-manganèse poreux pour fixer et éliminer de manière efficace la pollution de l'antimoine, son procédé de préparation et son utilisation Download PDF

Info

Publication number
WO2022160836A1
WO2022160836A1 PCT/CN2021/127801 CN2021127801W WO2022160836A1 WO 2022160836 A1 WO2022160836 A1 WO 2022160836A1 CN 2021127801 W CN2021127801 W CN 2021127801W WO 2022160836 A1 WO2022160836 A1 WO 2022160836A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
composite material
iron
solution
manganese composite
Prior art date
Application number
PCT/CN2021/127801
Other languages
English (en)
Chinese (zh)
Inventor
吴平霄
陈梅青
党志
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022160836A1 publication Critical patent/WO2022160836A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the invention belongs to the technical field of adsorption materials, and in particular relates to a porous iron-manganese composite material for efficiently fixing and removing antimony pollution, and a preparation method and application thereof.
  • Natural antimony mainly exists in the form of ore, and the main valence states are Sb(III) and Sb(V).
  • the global antimony reserves are 4-5 million tons, and China's antimony reserves ranks first in the world.
  • China's output accounts for about 79.6% of the world's total.
  • the unreasonable mining of antimony ore and the irregular use of antimony-containing products have led to a sharp rise in the content of antimony in China's soil, water and atmosphere.
  • the antimony content in the antimony-rich regions such as Hunan, Guizhou and Guangxi far exceeds the background value.
  • the concentration of Sb in mine drainage and flotation industrial wastewater in China is as high as 30 mg ⁇ L -1 .
  • Antimony has received increasing attention due to its toxicity and biological effects. Since antimony can inhibit the growth of microorganisms and affect the activity of soil enzymes, excessive antimony content in soil has a great impact on the growth and quality of crops, and also has potential harm to human health. Exposure to antimony-containing dust in the air can cause respiratory illness in workers. Antimony poisoning can cause headache, dizziness, abdominal pain, constipation, and loss of appetite. Antimony has been listed as a priority pollutant by the US EPA and the European Union. The World Health Organization stipulates that the hygienic standard for antimony in drinking water is 20ug/L. The limit of antimony concentration in China's "Environmental Quality Standard for Surface Water" (GB3838-2002) is 0.005mg/L.
  • the purpose of the present invention is to provide a porous iron-manganese composite material for efficiently fixing and removing antimony pollution, and a preparation method and application thereof.
  • the primary purpose of the present invention is to provide a method for preparing an antimony-contaminated porous iron-manganese composite material.
  • the prepared porous iron-manganese composite material can be used to deal with trivalent antimony and pentavalent antimony pollution, not only the removal rate is fast but also the adsorption capacity is high.
  • One of the objects of the present invention is to provide a porous iron-manganese composite material prepared by the above preparation method.
  • the porous iron-manganese composite material has the characteristics of rich pore structure, high specific surface area and stability.
  • Another object of the present invention is to provide the application of the above-mentioned porous iron-manganese composite material.
  • the porous iron-manganese composite material is used to deal with the problem of antimony pollution (trivalent antimony and pentavalent antimony) in the environment.
  • the object of the present invention is achieved by at least one of the following technical solutions.
  • the porous iron-manganese composite material for efficiently fixing and removing antimony pollution provided by the invention is a porous iron-manganese composite material.
  • the preparation method of the porous iron-manganese composite material for efficiently fixing and removing antimony pollution provided by the present invention comprises the following steps:
  • step (3) slowly adding the iron salt solution to the suspension described in step (2), and stirring to obtain a mixed solution
  • step (3) Adjusting the pH value of the mixed solution in step (3) to 6.5-8.5, and then performing aging treatment, centrifuging to obtain the precipitate, washing, drying, grinding, and sieving, to obtain the described solution for high-efficiency immobilization and removal of antimony pollution.
  • Porous ferromanganese composites Porous ferromanganese composites.
  • the permanganate in step (1) is one or more of potassium permanganate and sodium permanganate;
  • the manganese salt is one or more of manganese chloride, manganese nitrate and manganese sulfate; Described ferric salt is more than one in ferric nitrate, ferric sulfate and ferric chloride; the molar ratio of described permanganate, manganese salt and ferric salt is (1.5-9): (1-6): (2.5-15 ).
  • the permanganate in step (1) is potassium permanganate; the manganese salt is manganese chloride; and the soluble iron salt is ferric chloride.
  • the molar ratio of the permanganate, manganese and iron salt is (3-6):(2-4):(5-10).
  • the concentration of the permanganate solution in step (1) is 0.015 mol/L-0.090 mol/L; the concentration of the manganese salt solution is 0.010 mol/L-0.060 mol/L; the concentration of the iron salt solution is 0.025 mol/L-0.150 mol/L.
  • the solvents of the permanganate solution, the manganese salt solution and the iron salt solution in step (1) are all deionized water.
  • the rate of dropping the permanganate solution into the manganese salt solution in step (2) is 0.1-5 mL/min; the stirring treatment time is 1-3 h.
  • the rate at which the iron salt solution is added to the suspension in step (3) is 5-10ml/min, and the time for the stirring treatment is 1-3h.
  • step (4) the time of the aging treatment in step (4) is 6-18h.
  • the centrifugal speed is 2000-6000 rpm, and the centrifugal time is 10-20 min; the drying temperature is 40-80°C, and the drying time is 18-36 h; The hole size is 100-500 mesh.
  • step (4) ammonia water is used to adjust the mixed solution to 6.5-8.5.
  • step (4) ammonia water is used to adjust the mixed solution to be 7.0-8.0.
  • the washing in step (4) is to wash the precipitate with deionized water, and the number of washings is 3-5 times.
  • the present invention provides a porous iron-manganese composite material prepared by the above-mentioned preparation method for efficiently fixing and removing antimony pollution.
  • porous iron-manganese composite material for efficiently fixing and removing antimony pollution provided by the present invention can be applied to the treatment of heavy metal-containing antimony pollution.
  • the porous iron-manganese composite material for efficiently fixing and removing antimony pollution of the present invention is a kind of antimony based on the strong oxidizing property of manganese oxide, the strong affinity of iron oxide for antimony and the high adsorption property of high surface area material for pollutants.
  • the porous iron-manganese composite material prepared with high fixing performance can be used to deal with the problem of antimony pollution in the environment.
  • the present invention has the following advantages and beneficial effects:
  • the preparation process of the present invention is simple, the reaction conditions are mild, the energy consumption is low, the yield is high, and the application prospect is broad;
  • the elements in the iron-manganese oxide used are natural constituents, which are characterized by low price, wide sources, and no environmental pollution; the selected reagents are inexpensive and non-toxic.
  • the porous iron-manganese composite material provided by the present invention for efficient fixation and removal of antimony pollution has developed pores and a large specific surface area, which is conducive to the removal of pollutants;
  • the porous iron-manganese composite material provided by the present invention for efficient fixation and removal of antimony contamination is effective against Sb(III) Or the removal of Sb(V) has excellent adsorption, with the characteristics of fast adsorption rate and large adsorption capacity.
  • Figure 1a and Figure 1b are the SEM image and the EDS image of the porous iron-manganese composite material prepared in Example 1 for efficient fixation and removal of antimony pollution, respectively;
  • Fig. 2 is the BET diagram of the porous iron-manganese composite material prepared in Example 1;
  • Example 3 is a SEM image of the porous iron-manganese composite material prepared in Example 2 for efficient fixation and removal of antimony pollution;
  • Example 4 is a SEM image of the porous iron-manganese composite material prepared in Example 3 for efficient fixation and removal of antimony pollution;
  • Fig. 5a and Fig. 5b are graphs showing the result of immobilizing antimony on the porous iron-manganese composite material used for high-efficiency immobilization and removal of antimony pollution in Example 4;
  • 6a and 6b are graphs showing the result of fixing antimony on the porous iron-manganese composite material for high-efficiency fixing and removing antimony pollution in Example 5 with initial concentration.
  • a preparation method of a porous iron-manganese composite material for efficiently fixing and removing antimony pollution comprising the following steps:
  • step (3) Add the ferric chloride solution to the suspension obtained in step (2) at a dropping rate of 7.5 mL/min, and stir for 2 h to obtain a mixed solution;
  • step (3) Adjust the pH of the mixture in step (3) to 7.5 with ammonia water, age for 12 h, centrifuge at 4000 rpm for 15 min, remove the supernatant, rinse with deionized water several times, and dry at 60 °C After 24 hours, grinding through a 200-mesh sieve to obtain the porous iron-manganese composite material for high-efficiency fixation and removal of antimony pollution.
  • FIG. 1a is the SEM image
  • Fig. 1b is the EDS image
  • Fig. 2 is the BET image. It can be seen from Figure 1a, Figure 1b and Figure 2 that the obtained iron-manganese composite material has a rich pore structure, and the nano-sized particles are uniformly distributed on the stacked flakes, and its specific surface area is large, which is conducive to the pollution of pollutants. remove.
  • a preparation method of a porous iron-manganese composite material for efficiently fixing and removing antimony pollution comprising the following steps:
  • step (3) Add the ferric chloride solution to the suspension obtained in step (2) at a dropping rate of 5.0 mL/min, and stir for 1 h to obtain a mixed solution;
  • step (3) Adjust the pH of the mixed solution in step (3) to 7.0 with ammonia water, age for 6 h, centrifuge at 2000 rpm for 10 min, remove the supernatant, rinse with deionized water several times, and dry at 40 °C 18h, grinding through a 100-mesh sieve to obtain the porous iron-manganese composite material for high-efficiency fixation and removal of antimony pollution.
  • the morphology of the prepared porous iron-manganese composites is shown in Figure 3. It can be seen from Figure 3 that the obtained iron-manganese composite material also has a rich pore structure, and the nano-sized particles are uniformly distributed on the stacked flakes.
  • a preparation method of a porous iron-manganese composite material for efficiently fixing and removing antimony pollution comprising the following steps:
  • step (3) adding the ferric chloride solution to the suspension obtained in step (2) at a dropping rate of 10 mL/min, and stirring for 3 h to obtain a mixed solution;
  • step (3) Adjust the pH of the mixture in step (3) to 8.0 with ammonia water, age for 18 h, centrifuge at 6000 rpm for 20 min, remove the supernatant, rinse with deionized water several times, and dry at 80 °C 36h, grinding through a 500-mesh sieve to obtain the porous iron-manganese composite material for high-efficiency fixation and removal of antimony pollution.
  • the morphology of the as-prepared porous iron-manganese composites is shown in Figure 4. It can be seen from Figure 4 that the obtained iron-manganese composite material also has a rich pore structure, and the nano-sized particles are uniformly distributed on the stacked flakes.
  • This test includes:
  • Fig. 5a shows the adsorption kinetics curve of Sb(III) by the porous iron-manganese composite material for high-efficiency immobilization and removal of antimony pollution
  • Fig. 5b is the adsorption kinetics curve of the porous iron-manganese composite material for high-efficiency immobilization and removal of antimony pollution.
  • Sb(V) adsorption kinetics curve.
  • This test includes:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La présente invention relève du domaine technique des matériaux d'adsorption, et concerne un matériau composite fer-manganèse poreux destiné à fixer et à éliminer de manière efficace la pollution de l'antimoine, son procédé de préparation et son utilisation. Le procédé comprend les étapes consistant à : préparer un permanganate, un sel de manganèse et un sel ferrique dans une solution de permanganate, une solution de sel de manganèse et une solution de sel ferrique, respectivement ; ajouter goutte à goutte la solution de permanganate dans la solution de sel de manganèse, et agiter celle-ci pour obtenir une suspension ; ajouter la solution de sel ferrique dans la suspension, et agiter celle-ci pour obtenir une solution mixte ; et ajuster la valeur de pH de la solution mixte à 6,5-8,5, soumettre celle-ci à un traitement de vieillissement, réaliser une centrifugation de celui-ci, prendre le précipité, et le laver, le faire sécher, le broyer et le tamiser pour obtenir le matériau composite fer-manganèse poreux destiné à fixer et à éliminer de manière efficace la pollution de l'antimoine. Le matériau a les caractéristiques d'être poreux, et ayant une surface spécifique élevée et une adsorption stable ; et le matériau peut être utilisé pour traiter l'antimoine trivalent et la pollution de l'antimoine pentavalent, et a un taux d'élimination élevé et une capacité d'adsorption élevée. Le procédé selon la présente invention est simple, et a des conditions de réaction modérées et une faible consommation d'énergie.
PCT/CN2021/127801 2021-01-29 2021-10-31 Matériau composite fer-manganèse poreux pour fixer et éliminer de manière efficace la pollution de l'antimoine, son procédé de préparation et son utilisation WO2022160836A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110130523.8 2021-01-29
CN202110130523.8A CN112934165B (zh) 2021-01-29 2021-01-29 一种用于高效固定去除锑污染的多孔铁锰复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022160836A1 true WO2022160836A1 (fr) 2022-08-04

Family

ID=76240263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127801 WO2022160836A1 (fr) 2021-01-29 2021-10-31 Matériau composite fer-manganèse poreux pour fixer et éliminer de manière efficace la pollution de l'antimoine, son procédé de préparation et son utilisation

Country Status (2)

Country Link
CN (1) CN112934165B (fr)
WO (1) WO2022160836A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877522A (zh) * 2021-10-30 2022-01-04 中冶华天工程技术有限公司 一种铁锰氧化物负载的硅藻土基吸附剂的制备方法及应用
CN113976074A (zh) * 2021-11-23 2022-01-28 沈阳建筑大学 一种铁锰泥复合凝胶球吸附除锑材料及其制备方法
CN114272905A (zh) * 2021-12-14 2022-04-05 南昌航空大学 一种壳聚糖-生物铁锰氧化物材料及其制备方法与应用
CN114702961B (zh) * 2022-03-17 2022-12-09 中南大学 一种无定型铁锰胶体材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383981B1 (en) * 1999-07-20 2002-05-07 Süd-Chemie Inc. Adsorbent for the removal of trace quantities from a hydrocarbon stream and process for its use
CN101422720A (zh) * 2008-11-24 2009-05-06 中国科学院生态环境研究中心 一种基于原位生成复合金属氧化物的吸附过滤除砷方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553520A (zh) * 2010-12-08 2012-07-11 中国科学院生态环境研究中心 一种铁锰铝复合氧化物/沸石除锑吸附剂的制备、使用及再生方法
CN109772271B (zh) * 2019-03-14 2021-04-02 中国科学院生态环境研究中心 一种铁锰改性藻类吸附剂及其制备方法
CN110642351A (zh) * 2019-10-11 2020-01-03 上海城市水资源开发利用国家工程中心有限公司 一种铁锰复合氧化物的制备及其原位除锑的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383981B1 (en) * 1999-07-20 2002-05-07 Süd-Chemie Inc. Adsorbent for the removal of trace quantities from a hydrocarbon stream and process for its use
CN101422720A (zh) * 2008-11-24 2009-05-06 中国科学院生态环境研究中心 一种基于原位生成复合金属氧化物的吸附过滤除砷方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QI JIANYING, ZHANG GAOSHENG, LI HAINING: "Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead", BIORESOURCE TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 193, 1 October 2015 (2015-10-01), AMSTERDAM, NL , pages 243 - 249, XP055954358, ISSN: 0960-8524, DOI: 10.1016/j.biortech.2015.06.102 *
XU FANGNAN, CHEN HUXING, DAI YUXIA, WU SHUANGLEI, TANG XIANJIN: "Arsenic adsorption and removal by a new starch stabilized ferromanganese binary oxide in water", JOURNAL OF ENVIRONMENTAL MANAGEMENT, ELSEVIER, AMSTERDAM, NL, vol. 245, 1 September 2019 (2019-09-01), AMSTERDAM, NL , pages 160 - 167, XP055954356, ISSN: 0301-4797, DOI: 10.1016/j.jenvman.2019.05.071 *
XU FANGNAN: "Research on the Adsorption Performance and Mechanism of Arsenic and Cadmium in Water by Novel Iron and Manganese Oxides", CHINESE MASTER’S THESES FULL-TEXT DATABASE, 31 July 2020 (2020-07-31), XP055954338 *
ZHANG, G. ; LIU, H. ; LIU, R. ; QU, J.: "Removal of phosphate from water by a Fe-Mn binary oxide adsorbent", JOURNAL OF COLLOID AND INTERFACE SCIENCE, ACADEMIC PRESS,INC., US, vol. 335, no. 2, 15 July 2009 (2009-07-15), US , pages 168 - 174, XP026133583, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2009.03.019 *

Also Published As

Publication number Publication date
CN112934165A (zh) 2021-06-11
CN112934165B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2022160836A1 (fr) Matériau composite fer-manganèse poreux pour fixer et éliminer de manière efficace la pollution de l'antimoine, son procédé de préparation et son utilisation
CN107983300B (zh) 二氧化锰修饰的生物炭复合材料及其制备方法和应用
CN105797693A (zh) 一种用于去除水体中铅镉的磁性谷壳生物炭及其制备和应用方法
CN111778035B (zh) 一种土壤修复剂及其制备方法
CN110052248A (zh) 一种铁锰腐殖酸改性生物炭及其制备方法与应用
CN107555521B (zh) 一种重金属污水处理用多孔生物质微球及其制备方法
CN112547021A (zh) 一种生物质基羟基磷灰石复合材料及其制备方法和应用
CN108905976A (zh) 锰离子掺杂金属有机骨架材料及其制备方法和应用
Donat et al. Adsorption and thermodynamic behavior of uranium (VI) on Ulva sp.-Na bentonite composite adsorbent
CN108905995A (zh) 一种磁响应胺化纤维素基重金属吸附材料的制备方法及其使用方法
CN102464357A (zh) 四氧化三铁纳米纤维及其制备方法和用途
CN106434621A (zh) 一种聚丙烯酰胺包覆磁性纳米颗粒固定化漆酶的方法和应用
CN106311135A (zh) 一种去除水中氟离子的复合材料及其制备方法
CN114832778A (zh) 用于吸附砷的柚子皮生物炭及其制备方法和应用
WO2020087610A1 (fr) Matériau poreux d'élimination de phosphore approprié pour être utilisé dans un traitement d'eaux usées décentralisé, et son procédé de préparation et son utilisation
CN105080483A (zh) 一种用于废水中磷资源回收的载铝粉煤灰的制备方法
CN110124618A (zh) 一种水滑石-植物纤维素复合小球及其制备方法与应用
CN113441538A (zh) 一种富铁型锑污染土壤的硫诱导稳定化处理方法
CN111036171A (zh) 一种磁性粘土矿物材料及其制备方法和应用
CN107344062A (zh) 一种脱硫剂、其制备方法及应用
WO2022199351A1 (fr) Procédé de production d'un complexe de charbon de biomasse à médiation par des métaux lourds durci à l'aide de silicate
CN108249542A (zh) 一种可漂浮纳米零价铁材料及其制备方法
CN107096501A (zh) 一种用于吸附黄药的负载铁离子活性炭及其制备方法和吸附方法
CN107497394B (zh) 一种Fe-Mg-La三元复合氟离子吸附剂及其制备方法
Raghupathi et al. Copper adsorption behaviour of some soils of North Karnataka

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922427

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21922427

Country of ref document: EP

Kind code of ref document: A1