WO2022160457A1 - Processus de renforcement de traitement thermique destiné à l'alliage coule d'aluminium et de de magnésium et application de celui-ci - Google Patents

Processus de renforcement de traitement thermique destiné à l'alliage coule d'aluminium et de de magnésium et application de celui-ci Download PDF

Info

Publication number
WO2022160457A1
WO2022160457A1 PCT/CN2021/084380 CN2021084380W WO2022160457A1 WO 2022160457 A1 WO2022160457 A1 WO 2022160457A1 CN 2021084380 W CN2021084380 W CN 2021084380W WO 2022160457 A1 WO2022160457 A1 WO 2022160457A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
aluminum
treatment
magnesium
temperature
Prior art date
Application number
PCT/CN2021/084380
Other languages
English (en)
Chinese (zh)
Inventor
刘洪涛
齐志峰
晁延吉
周吉学
李涛
刘运腾
杨化冰
吴建华
王娜娜
李航
马百常
王西涛
Original Assignee
山东省科学院新材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院新材料研究所 filed Critical 山东省科学院新材料研究所
Publication of WO2022160457A1 publication Critical patent/WO2022160457A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to the technical field of heat treatment of non-ferrous metals, in particular to a heat treatment strengthening process of aluminum and magnesium as-cast alloys and its application.
  • Aluminum alloys and magnesium alloys are the lightest metal structural materials at present. They have the advantages of low density, high specific strength, and easy forming. They are widely used in aerospace, automotive electronics and other fields. In the automotive field, aluminum alloys and magnesium alloys can be used not only as instrument panel bases, seat frames, steering wheel shafts, gearbox casings, etc., but also in key parts such as engines and car chassis, and have broad application prospects in the automotive field.
  • alloy casting is an indispensable key link, and the quality of casting has a significant impact on the engineering parts of aluminum alloy and magnesium alloy. Due to the physical and chemical properties of aluminum alloys and magnesium alloys, casting defects are easily generated, resulting in reduced mechanical properties of castings. For example: (1) During the melting and casting process of aluminum alloys and magnesium alloys, entrainment is very likely to occur, and the buoyancy of the involved nitrogen bubbles and hydrogen bubbles is small, which makes it difficult for a large amount of hydrogen and nitrogen to escape. The form remains in the casting, and the pores will become the source of crack propagation during the service of the casting; (2) The aluminum alloy and magnesium alloy will shrink in volume during the casting process. (3) During the casting process of aluminum alloy and magnesium alloy, due to the inconsistent solidification time of different parts, large residual thermal stress will be generated, and even hot cracking will occur. This problem is especially obvious for castings with complex structures;
  • the present invention proposes a heat treatment strengthening process for aluminum and magnesium as-cast alloys and its application.
  • This process is suitable for ageing-strengthened aluminum alloys or magnesium alloys.
  • One ultra-low temperature treatment, followed by warm isostatic pressing at the alloy solution temperature, followed by a second ultra-low temperature treatment, and finally aging strengthening treatment, can greatly improve the mechanical properties of aluminum and magnesium alloy castings.
  • a first aspect of the present invention provides a heat treatment strengthening process of aluminum and magnesium as-cast alloys, which specifically includes:
  • the alloy material is taken out from the aging furnace and air-cooled;
  • the second aspect of the present invention provides the application of the above-mentioned heat treatment strengthening process of aluminum and magnesium as-cast alloys in the preparation of as-cast alloys.
  • the present invention discloses a heat treatment strengthening process for aluminum and magnesium as-cast alloys.
  • the aluminum alloy and magnesium alloy are subjected to multiple processes such as primary ultra-low temperature treatment, warm isostatic pressing solution treatment, secondary ultra-low temperature treatment and aging treatment.
  • the combined treatment greatly reduces the casting defects such as pores and shrinkage porosity in the aluminum alloy structure, the residual stress, and the precipitation strengthening phase distribution is more dispersed, and the aging strengthening effect is more ideal.
  • the strength and elongation of aluminum and magnesium as-cast alloys are obvious. improve.
  • the first ultra-low temperature treatment is mainly based on the volume shrinkage effect, which reduces the atomic spacing, shrinks the lattice, reduces the size of hole defects, and even closes some tiny voids directly, laying the foundation for the next warm isostatic pressing treatment;
  • the warm isostatic pressing treatment causes plastic flow diffusion inside the casting, bonding and bridging of the microstructure holes, and the as-cast structure is more uniform and dense, and the space occupied by defects such as pores and shrinkage porosity is extremely limited on the macroscopic level, so it will not change.
  • the size or shape of the casting is more uniform and dense, and the space occupied by defects such as pores and shrinkage porosity is extremely limited on the macroscopic level, so it will not change.
  • the size or shape of the casting is sized or shape of the casting.
  • the second ultra-low temperature treatment There are two purposes of the second ultra-low temperature treatment. One is to generate a large internal stress inside the material, which induces a large number of dislocations and sub-crystals. The strength and toughness of the alloy are improved. Second, a large number of supersaturated point defects (vacancies) can be obtained at ultra-low temperature. The interaction between vacancies and solute atoms makes the next aging precipitate more dispersed and the volume fraction increases.
  • the aging strengthening is carried out on the basis of the second ultra-low temperature treatment. Since there are more dislocations and vacancies in the microstructure, it is more conducive to the diffusion of solute atoms, and the formed strengthening phase is more dispersed, and the aging strengthening effect is more effective. ideal.
  • Figure 1 is a comparison of the tensile properties of the ZL109 as-cast aluminum alloy in Example 1(a) after the treatment of the present invention and the conventional heat treatment in Comparative Example 1(b).
  • Figure 2 is a comparison of the tensile properties of the AZ91 as-cast magnesium alloy in Example 2(a) after the treatment of the present invention and the conventional heat treatment in Comparative Example 2(b).
  • the present invention proposes a heat treatment strengthening process for aluminum and magnesium as-cast alloys, which specifically includes:
  • the alloy material is taken out from the aging furnace and air-cooled.
  • the temperature of the cavity is controlled by pumping liquid nitrogen, the temperature control accuracy is ⁇ 1°C, and the cooling rate is controlled at 10-20°C/min, So that the cavity temperature can be adjusted in the range of room temperature to -190 °C;
  • the temperature range of the first ultra-low temperature treatment is -120 to -180°C, and the ultra-low temperature treatment time is determined according to the type of alloy. , the treatment time is 5-7h, and when aluminum alloy is used, the treatment time is 6-8h.
  • the inert protective gas is argon or nitrogen, and the vacuum degree must be evacuated to below 10 mPa before introducing the inert protective gas;
  • the static gas pressure in the step (2), in the process of filling the cavity with the inert protective gas, is first controlled at about 70 MPa, and the required solid solution temperature of the alloy is equal to After stabilization, adjust the static pressure to 100-200MPa;
  • the time of the warm isostatic pressing is determined according to the type of alloy.
  • the processing time is 9-10h, and when aluminum is used When alloying, the treatment time is 4-5h.
  • step (2) the water temperature does not exceed 65°C, and the transfer time does not exceed 20s;
  • the cooling rate is controlled at 50-60°C/min
  • the temperature of the second ultra-low temperature treatment is -130--190°C
  • the treatment time is based on the alloy.
  • the treatment time is 15-17h
  • the treatment time is 13-15h.
  • the aging treatment process of the alloy is reasonably determined according to the corresponding national standards of different grades or relevant literature.
  • the second aspect of the present invention provides the application of the above-mentioned heat treatment strengthening process of aluminum and magnesium as-cast alloys in the preparation of as-cast alloys.
  • the alloy material is taken out from the aging furnace and air-cooled;
  • the alloy material is taken out from the aging furnace and air-cooled;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

La présente invention concerne un processus de renforcement de traitement thermique destiné à un alliage coulé d'aluminium et de magnésium et une application de celui-ci. L'alliage d'aluminium et l'alliage de magnésium sont soumis à un traitement combiné multiprocessus tels qu'un traitement primaire ultra-basse température, un traitement de solution de pressage isostatique à chaud, un traitement ultra-basse température secondaire et un traitement de vieillissement ; les défauts de coulée tels que des orifices d'air et la porosité de retrait dans une structure d'alliage d'aluminium sont fortement réduits, la tension résiduelle et la distribution de phase de renforcement de précipitation sont plus dispersées et l'effet de renforcement de vieillissement est plus idéal, la résistance et l'allongement de l'alliage coulé d'aluminium et de magnésium sont nettement améliorés. Les étapes de processus sont simples, les paramètres de processus de pressage isostatique à chaud et de traitement ultra-basse température peuvent être ajustés selon différents types d'alliage coulé, les problèmes des orifices d'air, la porosité de retrait, la tension résiduelle et similaire dans le processus de coulée de l'alliage coulé sont efficacement résolus et la microstructure et les propriétés mécaniques de l'alliage coulé d'aluminium et de magnésium sont considérablement améliorées. De plus, les étapes de processus sont simples, les paramètres de processus de pressage isostatique à chaud et de traitement ultra-basse température peuvent être ajustés selon différents types d'alliage coulé, les problèmes des orifices d'air, la porosité de retrait, la tension résiduelle et similaire dans le processus de coulée de l'alliage coulé sont efficacement résolus et la microstructure et les propriétés mécaniques de l'alliage coulé d'aluminium et de magnésium sont considérablement améliorées. Le procédé de renforcement du traitement thermique présente une importance importante pour étendre l'application industrielle de l'alliage coulé d'aluminium et de magnésium.
PCT/CN2021/084380 2021-01-29 2021-03-31 Processus de renforcement de traitement thermique destiné à l'alliage coule d'aluminium et de de magnésium et application de celui-ci WO2022160457A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110126975.9 2021-01-29
CN202110126975.9A CN112962038B (zh) 2021-01-29 2021-01-29 一种铝、镁铸态合金的热处理强化工艺及其应用

Publications (1)

Publication Number Publication Date
WO2022160457A1 true WO2022160457A1 (fr) 2022-08-04

Family

ID=76272116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084380 WO2022160457A1 (fr) 2021-01-29 2021-03-31 Processus de renforcement de traitement thermique destiné à l'alliage coule d'aluminium et de de magnésium et application de celui-ci

Country Status (2)

Country Link
CN (1) CN112962038B (fr)
WO (1) WO2022160457A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115846403A (zh) * 2022-09-23 2023-03-28 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150130B (zh) * 2021-12-01 2023-09-08 宁波江丰热等静压技术有限公司 一种热等静压吊具用板材的热处理方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581466B1 (fr) * 2011-10-14 2015-04-01 voestalpine Metal Forming GmbH Procédé de fabrication d'un élément de formage
CN108796313A (zh) * 2018-05-24 2018-11-13 江苏大学 一种Al-Mg-Si系变形铝合金及其强韧化处理方法
CN109022974A (zh) * 2018-08-24 2018-12-18 重庆元和利泰镁合金制造有限公司 一种镁合金电机外壳制作方法及电机外壳
CN109252074A (zh) * 2018-11-20 2019-01-22 沈左红 一种汽车用高韧性高强度铝合金轮毂及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0519400A2 (pt) * 2004-12-23 2009-01-20 Commw Scient Ind Res Org tratamento tÉrmico de fundiÇÕes sob pressço em alta pressço de liga de alumÍnio
US8168015B2 (en) * 2008-10-23 2012-05-01 GM Global Technology Operations LLC Direct quench heat treatment for aluminum alloy castings
CN102605304A (zh) * 2012-04-17 2012-07-25 辽宁忠旺集团有限公司 铝合金挤压型材晶粒细化工艺方法
CN103668014A (zh) * 2013-12-10 2014-03-26 常熟柏科汽车零件再制造有限公司 起动机铝合金外壳的深冷处理工艺
CN107419148A (zh) * 2017-05-05 2017-12-01 安徽彩晶光电有限公司 用于液晶电视支架的复合铝合金
CN111057977A (zh) * 2019-12-31 2020-04-24 中南大学 提高6016铝合金冷轧板强度的深冷处理工艺及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581466B1 (fr) * 2011-10-14 2015-04-01 voestalpine Metal Forming GmbH Procédé de fabrication d'un élément de formage
CN108796313A (zh) * 2018-05-24 2018-11-13 江苏大学 一种Al-Mg-Si系变形铝合金及其强韧化处理方法
CN109022974A (zh) * 2018-08-24 2018-12-18 重庆元和利泰镁合金制造有限公司 一种镁合金电机外壳制作方法及电机外壳
CN109252074A (zh) * 2018-11-20 2019-01-22 沈左红 一种汽车用高韧性高强度铝合金轮毂及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115846403A (zh) * 2022-09-23 2023-03-28 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法
CN115846403B (zh) * 2022-09-23 2023-08-15 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法

Also Published As

Publication number Publication date
CN112962038A (zh) 2021-06-15
CN112962038B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2022160457A1 (fr) Processus de renforcement de traitement thermique destiné à l'alliage coule d'aluminium et de de magnésium et application de celui-ci
CN105220090B (zh) 一种真空高压压铸铝合金铸件热处理方法
CN101914713B (zh) 超大规格高强耐热镁合金锭坯半连续铸造工艺
CN111500952B (zh) 一种铸造成型zl101a铝合金热等静压处理工艺方法
WO2022142249A1 (fr) Procédé pour l'élimination de fissures dans un matériau métallique de fabrication additive
CN106521378B (zh) 一种铝硅镁合金压铸件节能高效热处理方法
CN112680616B (zh) 一种真空感应熔炼Cu8Cr4Nb合金的制备方法
CN108149040A (zh) 真空压铸铝硅镁锰合金的成分与热处理工艺优化方法
CN113373351A (zh) 一种可免热处理的铝合金铸造件压力铸造制备方法
Jiang et al. Effect of heat treatment on microstructure and dimensional stability of ZL114A aluminum alloy
CN106119621B (zh) 一种替代qt450汽车刹车泵壳体的铝合金材料及其熔模铸造成型方法
WO2024017085A1 (fr) Alliage d'aluminium coulé de la série al-cu à haute résistance et à haute ténacité, procédé de préparation de celui-ci et utilisation de celui-ci dans la fabrication de moyeux de roue
CN110565034B (zh) 一种压铸铝合金的热处理方法及车用部件
Zhang et al. Effect of casting methods on microstructure and mechanical properties of ZM5 space flight magnesium alloy
CN106591635A (zh) 一种稀土Y变质AlSi9Cu2铸造铝合金的方法
CN112894113A (zh) 一种铝-镁异质合金焊后处理工艺及其应用
CN100510150C (zh) 一种消除7000系铝合金铸锭结晶相的高压均匀化处理方法
Choi et al. Effect of ultrasonic vibration on infiltration of nickel porous preform with molten aluminum alloys
CN107217181B (zh) 一种高强Al-Si铸锻合金的制备方法
Wang et al. Mechanical properties and microstructure of A356-T6 aluminum alloy wheel hub based on casting-spinning process
CN108118207A (zh) 一种铸造铝硅合金及其制备方法
Wang et al. Solidification structure and mechanical properties of Al–Li–Cu–Zr cast alloys
CN115896514B (zh) 一种铝合金铸件的制备方法
CN115652159B (zh) 一种高强韧压铸镁合金及其制备方法
CN117620202A (zh) 一种抑制镁合金裂纹激光选区熔化成型方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922056

Country of ref document: EP

Kind code of ref document: A1