WO2022160385A1 - 降低lcd屏下摄像头成像杂散光串扰的方法及装置 - Google Patents

降低lcd屏下摄像头成像杂散光串扰的方法及装置 Download PDF

Info

Publication number
WO2022160385A1
WO2022160385A1 PCT/CN2021/076425 CN2021076425W WO2022160385A1 WO 2022160385 A1 WO2022160385 A1 WO 2022160385A1 CN 2021076425 W CN2021076425 W CN 2021076425W WO 2022160385 A1 WO2022160385 A1 WO 2022160385A1
Authority
WO
WIPO (PCT)
Prior art keywords
miniled
lcd screen
imaging
camera
crosstalk
Prior art date
Application number
PCT/CN2021/076425
Other languages
English (en)
French (fr)
Inventor
罗光跃
罗杰
刘俊
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Publication of WO2022160385A1 publication Critical patent/WO2022160385A1/zh
Priority to US18/358,923 priority Critical patent/US20230421883A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means

Definitions

  • the present disclosure relates to the field of novel display technologies, and in particular, to a method and device for reducing crosstalk of stray light in imaging of a camera under an LCD screen.
  • the hole-digging screen is to place the camera hole under the screen.
  • Such a design will greatly improve the appearance of the mobile phone, but the camera function will be greatly affected.
  • there are different ways to dig a hole screen Huawei's approach is to put the camera under two layers of the screen, while Samsung's is just under the glass. Therefore, the hole-digging screen cannot avoid a problem. The further down the camera is, the worse the effect will be, but the aesthetics will be better improved.
  • the camera solution under the LCD screen causes problems such as whitening and blurring of the image due to the leakage of backlight light into the light guide components.
  • the main purpose of the present disclosure is to propose a method for reducing the crosstalk of stray light in the imaging of the camera under the LCD screen, aiming to solve the technical problem that the camera structure under the LCD screen causes the image to be whitish and blurred due to the leakage of the backlight into the light guide member.
  • the present invention discloses a method for reducing the crosstalk of stray light in the imaging of the camera under the LCD screen, including:
  • a miniLED lamp ring is arranged between the backlight modules, and the miniLED lamp ring includes a miniLED lamp ring substrate, LEDs, and phosphors that are stacked in sequence;
  • a diffusion film is provided above the miniLED light ring.
  • the miniLED light ring substrate includes a PCB substrate and an LED chip.
  • the wavelength range of the phosphor powder is 430 nanometers to 680 nanometers.
  • the width of the miniLED light ring is greater than 15 mm.
  • the inner diameter of the miniLED light ring is 2 mm to 20 mm.
  • the width of the miniLED light ring is greater than 18 mm.
  • the inner diameter of the miniLED light ring is 20 mm.
  • the miniLED light ring includes a plurality of LEDs, and some of the LEDs in the plurality of LEDs are connected in series and then connected in parallel with the remaining LEDs to control the state of the miniLED light ring.
  • the miniLED light ring includes a plurality of LEDs, and some of the LEDs in the plurality of LEDs are connected in parallel and then connected in series with the remaining LEDs to control the state of the miniLED light ring.
  • the present disclosure proposes a method for reducing stray light crosstalk in imaging of a camera under an LCD screen, including:
  • a method for reducing stray light crosstalk in imaging of a camera under an LCD screen comprising:
  • the state of the miniLED light ring is controlled.
  • the miniLED light ring includes miniLED light ring substrates, LEDs, and phosphors that are stacked in sequence.
  • the controlling the state of the miniLED light ring according to the state of the camera includes:
  • a diffusion film is provided above the miniLED light ring.
  • the miniLED light ring substrate includes a PCB substrate and an LED chip.
  • the wavelength range of the phosphor powder is 430 nanometers to 680 nanometers.
  • the width of the miniLED light ring is greater than 15 mm.
  • the controlling the state of the miniLED light ring according to the state of the camera includes:
  • the miniLED light ring includes a plurality of LEDs, and the miniLED light ring is controlled by connecting some LEDs in the plurality of LEDs in series and then in parallel with the remaining LEDs, or by connecting some LEDs in the plurality of LEDs in parallel and then in series with the remaining LEDs. status
  • the inner diameter of the miniLED light ring is 2 mm to 20 mm.
  • the present disclosure also provides a device for reducing stray light crosstalk in imaging of a camera under an LCD screen, comprising at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores Instructions executed by the at least one processor, the instructions being programmed to execute the above-mentioned method for reducing stray light crosstalk in camera imaging under an LCD screen.
  • the method and device for reducing the stray light crosstalk of the camera under the LCD screen of the present disclosure is to detect the state of the camera by arranging the miniLED light ring between the backlight modules; according to the state of the camera, the miniLED light ring is controlled to be turned on or off , On the basis of the existing design, the backlight structure of the camera hole area under the LCD screen is adjusted, the cost is low, the stray light is filtered, the photographing and imaging effects are better, and the user satisfaction is improved.
  • FIG. 1 is a schematic diagram of the installation structure of a camera under an LCD screen in the prior art
  • FIG. 2 is a schematic diagram of the division structure of the backlight area formed in FIG. 1;
  • FIG. 3 is a flowchart of a method disclosed in the disclosure for reducing crosstalk of stray light in imaging of a camera under an LCD screen;
  • FIG. 4 is a schematic diagram of the installation structure of the camera under the LCD screen used in FIG. 3;
  • FIG. 5 is a schematic diagram of the division structure of the backlight area formed in FIG. 4;
  • FIG. 6 is a schematic structural diagram of the miniLED light ring in FIG. 3;
  • FIG. 7 is a schematic structural diagram of the display module used in FIG. 3 .
  • FIG. 8 is a schematic structural diagram of a device for reducing crosstalk of stray light in imaging of a camera under an LCD screen according to the present disclosure.
  • the present disclosure proposes a method and device for reducing crosstalk of stray light in imaging of a camera under an LCD screen, which can be used in electronic equipment such as photography and videography.
  • FIG. 1 is a schematic diagram of an installation structure of a camera under an LCD screen in the prior art
  • FIG. 2 is a schematic diagram of a division structure of the backlight area formed in FIG. 1 .
  • the principle of fog penetration is: when visible light passes through the smoke or mist in the air, it will be blocked and reflected and cannot pass through, so the human eye that can only receive visible light cannot see the objects behind the smoke and mist. Due to the long wavelength of near-infrared light, it can bypass smoke and fog and penetrate through it, and the photosensitive elements of electronic devices with shooting functions such as cameras or mobile phones can sense this part of the near-infrared light, so this part of the light can be used. To achieve monitoring through dust and fog.
  • infrared light of a certain frequency can penetrate the fog, but because its wavelength is different from that of visible light, it needs to be processed on electronic devices and lenses with shooting functions such as cameras or mobile phones to achieve its focus. At the same time, it also needs to be redesigned on electronic devices with shooting functions such as cameras or mobile phones to image the invisible light of this frequency. Since this invisible light has no corresponding visible light colormap, the image presented on the monitor is black and white. Shooting objects through clouds, mist, and water vapor is equivalent to passing through double lenses (water droplets and actual lenses). Except for the R light rays that can be correctly focused on the CCD imaging surface, the GB in the RGB light rays cannot be projected on the CCD imaging surface normally.
  • FIG. 3 is a flow chart of a method disclosed in the disclosure for reducing stray light crosstalk of a camera under the LCD screen
  • FIG. 4 is a schematic diagram of the installation structure of the camera under the LCD screen used in FIG. 3
  • FIG. 5 is a schematic diagram of the division structure of the backlight area formed in FIG. 4
  • Figure 6 is a schematic structural diagram of the miniLED light ring in Figure 3.
  • FIG. 7 is a schematic structural diagram of the display module used in FIG. 3 .
  • a method for reducing stray light crosstalk in imaging of a camera under an LCD screen at least includes the steps:
  • a miniLED light ring 7 is arranged between the backlight modules 4;
  • the miniLED light ring 7 includes a miniLED light ring substrate 7-1, LEDs 7-2, and phosphors 7-3 that are stacked in sequence.
  • the miniLED light ring substrate 7-1 includes a PCB substrate and LED chips.
  • the wavelength range of phosphor 7-3 is 430 nm to 680 nm, and the phosphor powder of conventional white LED is used.
  • the inner diameter of the miniLED light ring 7 is determined by the lens field of view (FOV).
  • FOV lens field of view
  • the inner diameter of the miniLED light ring 7 is generally 2 mm to 20 mm; the width of the miniLED light ring 7 is more than 15 mm.
  • the inner diameter of the miniLED light ring 7 is set to 6 mm, and the outer diameter of the miniLED light ring 7 is set to 26 mm.
  • the width of the miniLED light ring 7 is 20 mm.
  • the lens of the optical instrument is the vertex, and the angle formed by the two edges of the maximum range of the object image of the object to be measured can pass through the lens, which is called the field of view (FOV).
  • the size of the field of view determines the field of view of the optical instrument.
  • the field of view is divided into the object side field angle and the image side field angle.
  • users of optical equipment are concerned with the object-side field of view.
  • the measurement of the field of view is calculated by using the diameter of the imaged object as the field of view, such as telescopes, microscopes, etc.
  • the angle of view is often calculated by the diameter of the imaged object on the diagonal of the rectangular photosensitive surface.
  • the angle of view (FOV) of the lens varies in size, so the inner diameter of the miniLED light ring 7 determined thereby also varies in size.
  • the size of the inner diameter of the miniLED light ring 7 can be selected according to actual needs, and the inner diameter of the miniLED light ring 7 can be set according to the actual display angle.
  • FIG. 7 is a schematic diagram of the structure of the display module used in FIG. 3 .
  • a hole area backlight area 1-1, a traditional backlight area 1-2, and a miniLED are generated.
  • Ring backlight zone 1-3 Since there are gaps between different light-emitting areas, it is necessary to add a diffusion film 8 above the miniLED light ring 7 and the traditional backlight to atomize the light as much as possible, so as to cover the gap between the miniLED light ring 7 and the traditional backlight, so that the front The display is imperceptible.
  • the camera 1 is provided with a lens 2 for taking pictures or videos, an electrochromic glass 3 is provided in front of the lens 2, and a backlight module 4 is also provided on the camera 1. Through the circuit setting of the component area 9, the backlight can also be displayed to the curved surface. Fold area 10.
  • the backlight module is one of the key components of the LCD screen. The function is to supply sufficient brightness and evenly distributed light source, so that the LCD screen can display images normally.
  • the LCD screen itself does not emit light, it displays graphics or characters as a result of its modulation of light.
  • the LCD screen is a non-luminous display device, which requires the use of a backlight to achieve the display function.
  • the performance of the backlight source will not only directly affect the quality of the LCD display, but the cost of the backlight source accounts for 30-50% of the LCD module, and the power consumption accounts for 75% of the module, which can be said to be a very important part of the LCD module.
  • the backlight is the light source that provides the LCD screen. It is mainly composed of light source, light guide plate, optical film, plastic frame, etc.
  • the backlight has the characteristics of high brightness, long life and uniform light emission.
  • the light source, the light guide plate, the reflective sheet and the optical film constitute the backlight source of the liquid crystal display.
  • the light When the light emitted by it irradiates the liquid crystal panel, the light will first pass through the lower polarizer and penetrate upwards, and different liquid crystal panels will change the polarization direction of the light according to their own mechanism at this time. The light then hits the color filter to produce color, and finally hits the upper polarizer. After the polarization direction is changed by the liquid crystal, part of the light can be emitted, and part of it will be absorbed.
  • Each pixel on the entire LCD panel can separately determine the intensity of the outgoing light. resulting in an image.
  • the user needs to call the camera first to take a picture, and the camera status can be obtained to determine whether the current camera can be used.
  • the camera status can be obtained to determine whether the current camera can be used.
  • the following code can be used:
  • the splicing method of multiple LEDs is to connect some of the LEDs in series, and then connect them in series with the remaining LEDs, or connect some of the LEDs in parallel, and then connect the remaining LEDs in series. Since the size of the miniLED light ring 7 can be set according to the actual situation, the number of selected LEDs is also changeable. The connection of multiple LEDs can be flexibly set according to actual needs.
  • the state of the miniLED light ring 7 is controlled by using multiple LEDs in series and then in parallel or in parallel and then in series, which can help improve efficiency.
  • the miniLED ring backlight is introduced.
  • the miniLED light ring is turned on to form a ring backlight.
  • the display effect is consistent with the traditional solution.
  • the purpose of blocking stray light can be achieved through the shielding of the annular backlight.
  • FIG. 8 is a schematic structural diagram of a device for reducing the crosstalk of stray light in the imaging of the camera under the LCD screen of the present disclosure.
  • the apparatus for reducing the crosstalk of stray light in the imaging of the camera under the LCD screen in this embodiment includes one or more processors 31 and a memory 32 .
  • a processor 31 is taken as an example in FIG. 8 .
  • the processor 31 and the memory 32 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 8 .
  • the memory 32 is used as a non-volatile computer-readable storage medium for reducing crosstalk of stray light in the imaging of the camera under the LCD screen, and can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, as in the first embodiment.
  • the processor 31 executes various functional applications and data processing of the method for reducing the stray light crosstalk of the camera under the LCD screen by running the non-volatile software programs, instructions and modules stored in the memory 32, that is, the first embodiment is realized.
  • the function of the method for reducing the crosstalk of stray light in the imaging of the camera under the LCD screen is realized.
  • the memory 32 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 32 may optionally include memory located remotely from processor 31, and these remote memories may be connected to processor 31 via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the present disclosure detects the state of the camera by arranging a miniLED light ring between the backlight modules; according to the state of the camera, controlling the opening or closing of the miniLED light ring, on the basis of the existing design
  • the backlight structure of the camera hole area under the LCD screen is adjusted, the cost is low, and the stray light is filtered, so that the photographing and imaging effect is better, and the user's satisfaction is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

一种降低LCD屏下摄像头成像杂散光串扰的方法及装置,对LCD屏下摄像头孔区背光结构进行调整,实现对杂散光的过滤,使得拍照成像效果更佳。降低LCD屏下摄像头成像杂散光串扰的方法包括:在背光模组(4)之间设置miniLED灯环(7),miniLED灯环(7)包括依次叠置设置的miniLED灯环基板(7-1)、LED(7-2)、荧光粉(7-3);检测摄像头的状态;判断摄像头的状态,如果处于打开状态,则关闭miniLED灯环(7);如果处于关闭状态,则打开miniLED灯环(7)。

Description

降低LCD屏下摄像头成像杂散光串扰的方法及装置
优先权
所述PCT专利申请要求申请日为2021年1月26日,申请号为202110102479X的中国专利优先权,本专利申请结合了上述专利的技术方案。
技术领域
本公开涉及新型显示技术领域,特别涉及一种降低LCD屏下摄像头成像杂散光串扰的方法及装置。
背景技术
随着技术的演进以及人类审美标准的提升,对于手机正面屏占比的需求也是越来越高,这也推动各个厂家想出各种办法来提高屏占比,比如伸缩摄像头、屏内挖孔、后摄翻转等等技术。挖孔屏是将摄像头挖孔放置于屏幕之下,这样的设计手机在颜值方面会得到很大的提高,但是摄像的功能却会受到很大影响。同时,挖孔屏也有不同的方法。华为的方法是将摄像头放在两层屏幕之下,三星则是只是放置于玻璃下面。所以,挖孔屏避免不了一个问题,摄像头越往下放,效果越差,但美观程度会得到更好提升。但是,将摄像头放于屏幕之下,无论多透光,始终隔着玻璃,效果肯定没有原先的那么好。其次,即便摄像头采用挖孔方式,那也无法很好隐藏摄像头。摄像头还会加上黑边,总体在屏幕上会十分突兀,并不能达到想象中的理想效果。可翻转式的摄像头,是非常的不建议用户去经常的翻转的,因为在翻转的同时很可能会拉扯到容部的连接线,而造成线路的断开。升降摄像头,它们在升起的时候,牺牲了屏占比。
LCD屏下摄像头方案由于背光漏光进入导光部件,引起成像发白模糊等问题。
发明内容
本公开的主要目的是提出一种降低LCD屏下摄像头成像杂散光串扰的方法,旨在解决现有LCD屏下摄像头结构由于背光漏光进入导光部件,引起成像发白模糊的技术问题。
为实现上述目的,一方面,本发明公开了一种降低LCD屏下摄像头成像杂散光串扰的方法,包括:
在背光模组之间设置miniLED灯环,所述miniLED灯环包括依次叠置设置的miniLED 灯环基板、LED、荧光粉;
检测摄像头的状态;
判断所述摄像头的状态,如果处于打开状态,则关闭所述miniLED灯环;如果处于关闭状态,则打开所述miniLED灯环。
优选地,所述miniLED灯环上方设有扩散膜。
优选地,所述miniLED灯环基板包括PCB基板和LED芯片。
优选地,所述荧光粉波长范围为430纳米~680纳米。
优选地,所述miniLED灯环的宽度大于15毫米。
优选地,所述miniLED灯环内径直径为2毫米~20毫米。
优选地,所述miniLED灯环的宽度大于18毫米。
优选地,所述miniLED灯环内径直径为20毫米。
优选地,所述miniLED灯环包括多颗LED,将多颗LED中部分LED串联再与剩下的LED并联的方式来控制miniLED灯环的状态。
优选地,所述miniLED灯环包括多颗LED,将多颗LED中部分LED并联再与剩下的LED串联的方式来控制miniLED灯环的状态。
为实现上述目的,另一方面,本公开提出一种降低LCD屏下摄像头成像杂散光串扰的方法,包括:
一种降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,包括:
在背光模组之间设置miniLED灯环;
检测摄像头的状态;
根据所述摄像头的状态,控制所述miniLED灯环的状态。
优选地,所述miniLED灯环包括依次叠置设置的miniLED灯环基板、LED、荧光粉。
优选地,所述根据所述摄像头的状态,控制所述miniLED灯环的状态包括:
判断所述摄像头的状态,如果处于打开状态,则关闭所述miniLED灯环;如果处于关闭状态,则打开所述miniLED灯环。
优选地,所述miniLED灯环上方设有扩散膜。
优选地,所述miniLED灯环基板包括PCB基板和LED芯片。
优选地,所述荧光粉波长范围为430纳米~680纳米。
优选地,所述miniLED灯环的宽度大于15毫米。
优选地,所述根据所述摄像头的状态,控制所述miniLED灯环的状态包括:
所述miniLED灯环包括多颗LED,将多颗LED中部分LED串联再与剩下的LED并联的方式或者将多颗LED中部分LED并联再与剩下的LED串联的方式来控制miniLED灯环的状态
优选地,所述miniLED灯环内径直径为2毫米~20毫米。
另一方面,本公开还提供了一种降低LCD屏下摄像头成像杂散光串扰的装置,包括至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有被所述至少一个处理器执行的指令,所述指令被程序设置为执行上述降低LCD屏下摄像头成像杂散光串扰的方法。
本公开降低LCD屏下摄像头成像杂散光串扰的方法及装置,通过在背光模组之间设置miniLED灯环,检测摄像头的状态;根据所述摄像头的状态,控制所述miniLED灯环的开启或关闭,在现有设计的基础上对LCD屏下摄像头孔区背光结构进行调整,成本低,实现对杂散光进行过滤,使得拍照成像效果更佳,提升用户的使用满意度。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为现有技术中LCD屏下摄像头安装结构示意图;
图2为图1中形成的背光区划分结构示意图;
图3为本公开一种降低LCD屏下摄像头成像杂散光串扰的方法流程图;
图4为图3中使用的LCD屏下摄像头安装结构示意图;
图5为图4中形成的背光区划分结构示意图;
图6为图3中miniLED灯环的结构示意图;
图7为图3中使用的显示模组结构示意图。
图8为本公开降低LCD屏下摄像头成像杂散光串扰的装置结构示意图。
附图标号说明:
标号 名称 标号 名称
1-1 孔区背光区 1-2 传统背光区
1-3 miniLED环形背光区 1 相机
2 镜头 3 电致变色玻璃
4 背光模组 5 背光开孔区
6 LCD 7 miniLED灯环
7-1 miniLED灯环基板 7-2 LED
7-3 荧光粉 8 扩散膜
9 元器件区 10 弯折区
本公开目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明,若本公开实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本公开实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本公开要求的保护范围之内。
本公开提出一种降低LCD屏下摄像头成像杂散光串扰的方法及装置,可以用于拍照、摄像等电子设备中。
图1为现有技术中LCD屏下摄像头安装结构示意图;图2为图1中形成的背光区划分结构示意图。透雾原理是:可见光通过空气中的烟尘或雾气时,会被阻挡反射而无法通过,所以只能接收可见光的人眼是看不到烟尘雾气后面的物体的。而近红外光线由于波长较长,可以绕过烟尘和雾气并穿透过去,并且摄像机或者手机等具备拍摄功能的电子设备的感光元件可以感应到这部分近红外光,所以就可以利用这部分光线来实现穿尘透雾的监控。在 不可见光的范围内,有一定频率的红外光可以穿透雾气,但是由于其波长和可见光不同,所以需要在摄像机或者手机等具备拍摄功能的电子设备和镜头上进行处理,以达到对其聚焦的目的,同时还需要在摄像机或者手机等具备拍摄功能的电子设备上进行重新设计,用来将这一频率的不可见光进行成像。由于这个不可见光没有对应的可见光色彩图,所以在监视器上呈现的图像为黑白颜色。透过云雾、水气拍摄物体,相当于透过了两重透镜(水珠与实际透镜),除了R光线可以正确聚焦在CCD成像面上,RGB光线中的GB均无法正常的投射在CCD成像面上,这样就造成了普通模式镜头无法正常、清晰的得到云雾、水气中的图像。透雾从实际应用来讲,也可以透灰尘,透水汽,透细小的障碍物(比如透明罩的轻微脏污和雨水)等。普通摄像机在这些恶劣的环境下图像质量会大幅下降甚至无法采集监控目标的影像,透雾摄像机或者手机等具备拍摄功能的电子设备在这些场合往往能胜任。如图1、图2所示,虽然可以实现透雾态的切换完成显示、拍照功能的兼容,但由于需要实现显示区域无黑边,所以背光开孔区的背光截面无法用遮光材料进行遮挡,所以背光截面有很强的漏光串如镜头,导致成像效果很差。
实施例一
图3为本公开一种降低LCD屏下摄像头成像杂散光串扰的方法流程图;图4为图3中使用的LCD屏下摄像头安装结构示意图;图5为图4中形成的背光区划分结构示意图;图6为图3中miniLED灯环的结构示意图。图7为图3中使用的显示模组结构示意图。如图3至图6所示,一种降低LCD屏下摄像头成像杂散光串扰的方法,至少包括步骤:
S1、在背光模组4之间设置miniLED灯环7;
miniLED灯环7包括依次叠置设置的miniLED灯环基板7-1、LED 7-2、荧光粉7-3。
miniLED灯环基板7-1包括PCB基板和LED芯片。
荧光粉7-3波长范围为430纳米~680纳米,采用常规的白光LED的荧光粉。
miniLED灯环7的内径由镜头视场角(FOV)决定,目前miniLED灯环7的内径直径一般是2毫米~20毫米;miniLED灯环7的宽度大于15毫米效果更佳,本实施例中,miniLED灯环7的内径直径设为6毫米,miniLED灯环7的外径直径设为26毫米。这里miniLED灯环7的宽度为20毫米。在光学仪器中,以光学仪器的镜头为顶点,以被测目标的物像可通过镜头的最大范围的两条边缘构成的夹角,称为视场角(FOV)。视场角的大小决定了光学仪器的视野范围,视场角越大,视野就越大,光学倍率就越小。通俗地说,目标物体超过这个角就不会被收在镜头里。视场角分物方视场角和像方视场角。一般光学设备的使用者关心的是物方视场角。对于大多数光学仪器,视场角的度量都是以成像物的 直径作为视场角计算的,如:望远镜、显微镜等,而对于照相机、摄像机类的光学设备,由于其感光面是矩形的,因此常以矩形感光面对角线的成像物直径计算视场角。镜头视场角(FOV)是大小不一的,所以由此确定的miniLED灯环7的内径直径也是大小不一的。可以根据实际需要来选择miniLED灯环7的内径直径的大小,可以根据实际显示角度的需要来设置miniLED灯环7的内径直径,在此不对miniLED灯环7的内径直径构成限制。
图7为图3中使用的显示模组结构示意图,如图7所示,在背光模组之间设置miniLED灯环7后,生成孔区背光区1-1、传统背光区1-2、miniLED环形背光区1-3。由于不同发光区之间有间隙,故需要在miniLED灯环7和传统背光上方增加一层扩散膜8,将光线尽可能雾化,从而遮蔽miniLED灯环7和传统背光之间的缝隙,使正面显示无法察觉。
相机1上设有用于拍照或者录像的镜头2,镜头2前方设有电致变色玻璃3,相机1上还设有背光模组4,通过元器件区9的电路设置,背光也能显示到弯折区10。背光模组为LCD屏的关键零组件之一。功能在于供应充足的亮度与分布均匀的光源,使LCD屏能正常显示影像。LCD屏本身并不发光,它显示图形或字符是它对光线调制的结果。LCD屏为非发光性的显示装置,须要藉助背光源才能达到显示的功能。背光源性能的好坏除了会直接影响LCD显像质量外,背光源的成本占LCD模块的30-50%,所消耗的电力更占模块的75%,可说是LCD模块中相当重要的零组件。背光源是提供LCD屏的光源。主要由光源、导光板、光学用膜片、塑胶框等组成。背光源具有亮度高,寿命长、发光均匀等特点。目前主要有EL、CCFL及LED三种背光源类型,依光源分布位置不同则分为侧光式和直下式(底背光式)。随着LCD模组不断向更亮、更轻、更薄方向发展,侧光式CCFL式背光源成为背光源发展的主流。光源、导光板、反射片、光学膜片构成了液晶显示器的背光源。其发出的光线照射到液晶面板上时,光线会先通过下偏振片向上透出,不同的液晶面板这个时候会按照自己的机理将光线转变偏振方向。接下来光线接触到彩色滤光片产生颜色,最后入射到上偏振片。在被液晶转变偏振方向后,有部分光线可以出射,有部分会被吸收。整个液晶面板上每一个像素都可以分别决定出射光线的强度。从而产生图像。
S2、检测摄像头的状态;
用户拍照需要先调用摄像头,可以获取摄像头状态,判断当前摄像头能否被使用。例如,android系统中获取摄像头当前状态可以用以下代码:
Figure PCTCN2021076425-appb-000001
Figure PCTCN2021076425-appb-000002
S3、根据摄像头的状态,控制miniLED灯环7的状态。
判断摄像头的状态,如果处于打开状态,则关闭miniLED灯环7;如果处于关闭状态,则打开miniLED灯环7。多颗LED拼接在一起构成miniLED灯环7。多颗LED拼接方式为将其中部分LED进行串联,再与剩下的其他颗LED进行串联连接或者将其中部分LED进行并联,再与剩下的其他颗LED进行串联连接。由于miniLED灯环7的大小是可以根据实际情况来设置的,所以选择的LED颗数也是多变的。可以根据实际需要,对多颗LED的连接进行灵活设置。采取多颗LED串联再并联或者并联再串联的方式来控制miniLED灯环7的状态,这样可以有利于提升效率。
通过对传统背光结构的改造,引入miniLED环形背光,正常显示的时候将miniLED灯环打开,形成环形背光,显示效果和传统方案一致,在拍照/摄像的时候将miniLED灯环关闭,关闭环形背光,可以通过环形背光的遮挡,实现阻挡杂散光的目的。通过控制miniLED灯环在拍照时熄灭,从而将传统背光的横向杂散光阻挡在摄像头的可视范围以外。
实施例二
请参阅图8,图8为本公开降低LCD屏下摄像头成像杂散光串扰的装置结构示意图。本实施例降低LCD屏下摄像头成像杂散光串扰的装置包括一个或多个处理器31以及存储器32。其中,图8中以一个处理器31为例。
处理器31和存储器32可以通过总线或者其它方式连接,图8中以通过总线连接为例。
存储器32作为一种降低LCD屏下摄像头成像杂散光串扰的非易失性计算机可读存储 介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如实施例一中的降低LCD屏下摄像头成像杂散光串扰的方法以及对应的程序指令。处理器31通过运行存储在存储器32中的非易失性软件程序、指令以及模块,从而执行降低LCD屏下摄像头成像杂散光串扰的方法的各种功能应用以及数据处理,即实现实施例一的降低LCD屏下摄像头成像杂散光串扰的方法的功能。
其中,存储器32可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其它非易失性固态存储器件。在--些实施例中,存储器32可选包括柑对于处理器31远程设置的存储器,这些远程存储器可以通过网络连接至处理器31。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。关于降低LCD屏下摄像头成像杂散光串扰的方法请参照图1至图7及相关的文字描述在此,此处不再赘述。
值得说明的是,上述装置和系统内的模块、单元之间的信息交互、执行过程等内容,由于与本公开的处理方法实施例基于同一构思,具体内容可参见本公开方法实施例中的叙述,此处不再赘述。
区别于现有技术,本公开通过在背光模组之间设置miniLED灯环,检测摄像头的状态;根据所述摄像头的状态,控制所述miniLED灯环的开启或关闭,在现有设计的基础上对LCD屏下摄像头孔区背光结构进行调整,成本低,实现对杂散光进行过滤,使得拍照成像效果更佳,提升用户的使用满意度。
本领域普通技术人员可以理解实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(Read 0nly Memory,简写为ROM)、随机存取存储器(Random Access Memory,简写为RAM)、磁盘或光盘等。
以上所述仅为本公开的优选实施例,并非因此限制本公开的专利范围,凡是在本公开的发明构思下,利用本公开说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本公开的专利保护范围内。

Claims (20)

  1. 一种降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,包括:
    在背光模组之间设置miniLED灯环,所述miniLED灯环包括依次叠置设置的miniLED灯环基板、LED、荧光粉;
    检测摄像头的状态;
    判断所述摄像头的状态,如果处于打开状态,则关闭所述miniLED灯环;如果处于关闭状态,则打开所述miniLED灯环。
  2. 如权利要求1所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述miniLED灯环上方设有扩散膜。
  3. 如权利要求1所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述miniLED灯环基板包括PCB基板和LED芯片。
  4. 如权利要求1所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述荧光粉波长范围为430纳米~680纳米。
  5. 如权利要求1所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述miniLED灯环的宽度大于15毫米。
  6. 如权利要求1所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述miniLED灯环内径直径为2毫米~20毫米。
  7. 如权利要求5所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述miniLED灯环的宽度大于18毫米。
  8. 如权利要求6所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述miniLED灯环内径直径为20毫米。
  9. 如权利要求1至8任意一项所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述miniLED灯环包括多颗LED,将多颗LED中部分LED串联再与剩下的LED并联的方式来控制miniLED灯环的状态。
  10. 如权利要求1至8任意一项所述的降低LCD屏下摄像头成像杂散光串扰的方法,所述miniLED灯环包括多颗LED,将多颗LED中部分LED并联再与剩下的LED串联的方式来控制miniLED灯环的状态。
  11. 一种降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,包括:
    在背光模组之间设置miniLED灯环;
    检测摄像头的状态;
    根据所述摄像头的状态,控制所述miniLED灯环的状态。
  12. 如权利要求11所述的降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,所述miniLED灯环包括依次叠置设置的miniLED灯环基板、LED、荧光粉。
  13. 如权利要求11所述的降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,所述根据所述摄像头的状态,控制所述miniLED灯环的状态包括:
    判断所述摄像头的状态,如果处于打开状态,则关闭所述miniLED灯环;如果处于关闭状态,则打开所述miniLED灯环。
  14. 如权利要求12所述的降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,所述miniLED灯环上方设有扩散膜。
  15. 如权利要求12所述的降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,所述miniLED灯环基板包括PCB基板和LED芯片。
  16. 如权利要求12所述的降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,所述荧光粉波长范围为430纳米~680纳米。
  17. 如权利要求11至16中任意一项所述的降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,所述miniLED灯环的宽度大于15毫米。
  18. 如权利要求11至16中任意一项所述的降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,所述根据所述摄像头的状态,控制所述miniLED灯环的状态包括:
    所述miniLED灯环包括多颗LED,将多颗LED中部分LED串联再与剩下的LED并联的方式或者将多颗LED中部分LED并联再与剩下的LED串联的方式来控制miniLED灯环的状态。
  19. 如权利要求17所述的降低LCD屏下摄像头成像杂散光串扰的方法,其特征在于,所述miniLED灯环内径直径为2毫米~20毫米。
  20. 一种降低LCD屏下摄像头成像杂散光串扰的装置,其特征在于,包括至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有被所述至少一个处理器执行的指令,所述指令被程序设置为执行如权利要求11至19任意一项所述的降低LCD屏下摄像头成像杂散光串扰的方法。
PCT/CN2021/076425 2021-01-26 2021-02-10 降低lcd屏下摄像头成像杂散光串扰的方法及装置 WO2022160385A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/358,923 US20230421883A1 (en) 2021-01-26 2023-07-25 Reducing imaging stray light crosstalk of camera under lcd screene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110102479.XA CN112859440A (zh) 2021-01-26 2021-01-26 降低lcd屏下摄像头成像杂散光串扰的方法及装置
CN202110102479.X 2021-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/358,923 Continuation US20230421883A1 (en) 2021-01-26 2023-07-25 Reducing imaging stray light crosstalk of camera under lcd screene

Publications (1)

Publication Number Publication Date
WO2022160385A1 true WO2022160385A1 (zh) 2022-08-04

Family

ID=76009158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076425 WO2022160385A1 (zh) 2021-01-26 2021-02-10 降低lcd屏下摄像头成像杂散光串扰的方法及装置

Country Status (3)

Country Link
US (1) US20230421883A1 (zh)
CN (1) CN112859440A (zh)
WO (1) WO2022160385A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113724589B (zh) * 2021-08-20 2023-05-30 惠州华星光电显示有限公司 显示屏及显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080041853A (ko) * 2006-11-08 2008-05-14 주식회사 케이티 초소형 렌즈 및 lcd 배열을 이용한 영상 획득/출력 장치
CN108810199A (zh) * 2018-06-01 2018-11-13 Oppo广东移动通信有限公司 显示屏组件、电子设备及显示控制方法
CN109597268A (zh) * 2017-09-30 2019-04-09 昆山国显光电有限公司 显示装置
CN109901327A (zh) * 2019-03-27 2019-06-18 武汉华星光电技术有限公司 背光模块及显示装置
CN110161749A (zh) * 2019-05-10 2019-08-23 武汉华星光电技术有限公司 应用于屏下摄像头的面板装置
CN110441958A (zh) * 2019-07-05 2019-11-12 武汉华星光电技术有限公司 一种显示面板模组
CN110557477A (zh) * 2018-06-01 2019-12-10 Oppo广东移动通信有限公司 显示屏组件、电子设备及显示控制方法
CN110850633A (zh) * 2019-10-31 2020-02-28 深圳市德仓科技有限公司 一种背光模组、显示屏及终端
CN111049973A (zh) * 2019-11-22 2020-04-21 维沃移动通信有限公司 一种屏幕显示的控制方法及电子设备
CN111624812A (zh) * 2020-05-29 2020-09-04 厦门天马微电子有限公司 显示模组及其制作方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020232628A1 (zh) * 2019-05-21 2020-11-26 深圳市柔宇科技有限公司 显示装置、终端及拍摄方法
CN110703496A (zh) * 2019-09-18 2020-01-17 武汉华星光电技术有限公司 背光模组
CN111308777A (zh) * 2019-10-31 2020-06-19 深圳市德仓科技有限公司 一种背光模组、显示屏及终端

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080041853A (ko) * 2006-11-08 2008-05-14 주식회사 케이티 초소형 렌즈 및 lcd 배열을 이용한 영상 획득/출력 장치
CN109597268A (zh) * 2017-09-30 2019-04-09 昆山国显光电有限公司 显示装置
CN108810199A (zh) * 2018-06-01 2018-11-13 Oppo广东移动通信有限公司 显示屏组件、电子设备及显示控制方法
CN110557477A (zh) * 2018-06-01 2019-12-10 Oppo广东移动通信有限公司 显示屏组件、电子设备及显示控制方法
CN109901327A (zh) * 2019-03-27 2019-06-18 武汉华星光电技术有限公司 背光模块及显示装置
CN110161749A (zh) * 2019-05-10 2019-08-23 武汉华星光电技术有限公司 应用于屏下摄像头的面板装置
CN110441958A (zh) * 2019-07-05 2019-11-12 武汉华星光电技术有限公司 一种显示面板模组
CN110850633A (zh) * 2019-10-31 2020-02-28 深圳市德仓科技有限公司 一种背光模组、显示屏及终端
CN111049973A (zh) * 2019-11-22 2020-04-21 维沃移动通信有限公司 一种屏幕显示的控制方法及电子设备
CN111624812A (zh) * 2020-05-29 2020-09-04 厦门天马微电子有限公司 显示模组及其制作方法、显示装置

Also Published As

Publication number Publication date
US20230421883A1 (en) 2023-12-28
CN112859440A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN110231735B (zh) 显示装置
CN105280111B (zh) 透明显示器
KR101505229B1 (ko) 캡쳐 능력을 갖는 디스플레이 장치
CN110491909A (zh) 显示面板
WO2020191877A1 (zh) 背光模块及显示装置
CN104584113B (zh) 显示装置
US20210233970A1 (en) Display panel and display device
US20130215093A1 (en) Power-Optimized Image Improvement In Transflective Displays
CN113744641B (zh) 一种显示装置
US12007648B2 (en) Backlight module, liquid crystal display screen, and using method thereof
US10151948B2 (en) Display apparatus
CN111025806B (zh) 显示面板、显示屏及显示装置
US8514167B2 (en) Method, system or apparatus for adjusting a brightness level associated with at least a portion of a backlight of a display device
WO2021103375A1 (zh) 背光模组及显示装置
US20230421883A1 (en) Reducing imaging stray light crosstalk of camera under lcd screene
CN107726142A (zh) 背光模块及显示装置
CN113031346B (zh) 背光模组及显示设备的显示方法
CN204758976U (zh) 一种液晶显示模组及液晶显示装置
CN110007501A (zh) 一种显示装置
CN210155484U (zh) 屏下隐藏摄像头的lcd显示模组以及电子设备
CN111367121B (zh) 一种调整采光量方法
US9129565B2 (en) Adjusting a brightness level of a side emitting backlight display device using light spreading profiles
WO2013073428A1 (ja) 表示装置
CN211627971U (zh) 一种用于提高采光量的lcd屏
CN114815375B (zh) 液晶显示面板及液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921984

Country of ref document: EP

Kind code of ref document: A1