WO2022160336A1 - 信号识别方法、装置、设备和存储介质 - Google Patents

信号识别方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022160336A1
WO2022160336A1 PCT/CN2021/074653 CN2021074653W WO2022160336A1 WO 2022160336 A1 WO2022160336 A1 WO 2022160336A1 CN 2021074653 W CN2021074653 W CN 2021074653W WO 2022160336 A1 WO2022160336 A1 WO 2022160336A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
order delay
detected
conjugate
sample points
Prior art date
Application number
PCT/CN2021/074653
Other languages
English (en)
French (fr)
Inventor
王宇
赵巍
盛渊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/074653 priority Critical patent/WO2022160336A1/zh
Publication of WO2022160336A1 publication Critical patent/WO2022160336A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a signal identification method, apparatus, device and storage medium.
  • the commonly used frequency bands are the 2.4GHz and 5.8GHz frequency bands.
  • the 2.4GHz and 5.8GHz bands have become particularly crowded due to their use in many scenarios.
  • the pulse detection technology is usually used as the core to detect the DFS signal, and the pulse detection technology can be used to determine whether the to-be-detected signal is a DFS signal by analyzing the periodicity of the to-be-detected signal.
  • wireless fidelity (Wireless Fidelity, Wi-Fi) signals with data transmission intervals similar to DFS signals also have periodicity, these also periodic signals will be misjudged as DFS signals. If the signal to be detected is not a DFS signal, but is mistakenly identified as a DFS signal and the frequency band where the signal to be detected is determined to be occupied, the frequency band mistakenly regarded as occupied will not be used for a period of time, resulting in a decrease in communication efficiency.
  • Wi-Fi Wireless Fidelity
  • Embodiments of the present invention provide a signal identification method, apparatus, device, and storage medium, which are used to accurately determine whether a signal to be detected is a DFS signal, so as to improve communication efficiency.
  • an embodiment of the present invention provides a signal identification method, the method includes:
  • a signal category to which the to-be-detected signal belongs is determined.
  • the signal characteristic parameters include the peak-to-average power ratio of the first-order delay conjugate correlation and the phase distribution of the second-order delay conjugate correlation.
  • determining the signal category to which the signal to be detected belongs based on the signal characteristic parameter includes:
  • the signal to be detected is determined It is a dynamic frequency selection signal.
  • the signal characteristic parameter is the peak-to-average power ratio of the first-order delay conjugate correlation
  • the extracting the signal characteristic parameter of the to-be-detected signal includes:
  • a peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected is determined based on the first-order delayed conjugate sliding average of the plurality of samples.
  • the determining the first-order delay conjugate sliding average value of the plurality of samples included in the to-be-detected signal includes:
  • a first-order delay conjugate moving average of a plurality of samples included in the to-be-detected signal is determined.
  • determining the peak-to-average power ratio of the first-order delay conjugate correlation of the to-be-detected signal based on the first-order delay conjugate sliding average value of the plurality of samples includes:
  • a peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected is determined.
  • the determining the modulus of the first-order delay conjugate sliding average of the plurality of sample points includes:
  • the modulus of the real number part is greater than the modulus of the imaginary number part, the modulus of the imaginary number part is shifted to the right by two bits, and the modulus of the imaginary number part shifted to the right is added to the modulus of the real number part to obtain the modulus of the first-order delayed conjugate moving average at any point;
  • the modulus of the real number part is smaller than the modulus of the imaginary number part, the modulus of the real number part is shifted to the right by two bits, and the modulus of the real number part after the right shift is added to the modulus of the imaginary number part to obtain the The modulus of the first-order delayed conjugate moving average at any point.
  • the determining the peak-to-average power ratio of the first-order delay conjugate correlation of the to-be-detected signal based on the first value, the sum value, and the number of samples includes:
  • the first value is divided by the average value of the modulo to obtain the peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected.
  • the determining of the largest first numerical value in the modes corresponding to the plurality of sample points includes:
  • the comparator determines the largest first value in the modes corresponding to the plurality of sample points
  • the determining the sum of the modes corresponding to the plurality of sample points includes:
  • the accumulator determines the sum of the moduli corresponding to the plurality of sample points
  • the acquiring the number of sample points of the plurality of sample points includes:
  • the number of sample points of the plurality of sample points is acquired through a counter.
  • the signal characteristic parameter is the phase distribution of the second-order delay conjugate correlation
  • the extracting the signal characteristic parameter of the to-be-detected signal includes:
  • a phase distribution of the second-order delay-conjugate correlation of the signal to be detected is determined based on the second-order delay-conjugate sliding average of the plurality of samples.
  • the determining the second-order delay conjugate sliding average value of multiple samples included in the to-be-detected signal includes:
  • a second-order delay conjugate moving average of a plurality of samples included in the to-be-detected signal is determined.
  • the determining the phase distribution of the second-order delay conjugate correlation of the to-be-detected signal based on the second-order delay conjugate moving average value of the plurality of samples includes:
  • the judging whether the phase distribution of the second-order delay conjugate correlation satisfies the phase distribution concentration condition includes:
  • the proportion is greater than a second preset threshold, it is determined that the phase distribution of the second-order delay conjugate correlation of the signal to be detected satisfies the phase distribution concentration condition.
  • the determining the number of target sample points where the angle corresponding to the second-order delay conjugate sliding average value in the plurality of sample points is less than a preset angle includes:
  • an embodiment of the present invention provides a signal identification apparatus, the apparatus includes a processor, and the processor is configured to perform the following method steps:
  • a signal category to which the to-be-detected signal belongs is determined.
  • the signal characteristic parameters include the peak-to-average power ratio of the first-order delay conjugate correlation and the phase distribution of the second-order delay conjugate correlation.
  • the processor is configured to execute:
  • the signal to be detected is determined It is a dynamic frequency selection signal.
  • the signal characteristic parameter is the peak-to-average power ratio of the first-order delay conjugate correlation
  • the processor is configured to perform:
  • a peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected is determined based on the first-order delayed conjugate sliding average of the plurality of samples.
  • the processor is configured to execute:
  • a first-order delay conjugate moving average of a plurality of samples included in the to-be-detected signal is determined.
  • the processor is configured to execute:
  • a peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected is determined.
  • the processor is configured to execute:
  • the modulus of the real number part is greater than the modulus of the imaginary number part, the modulus of the imaginary number part is shifted to the right by two bits, and the modulus of the imaginary number part shifted to the right is added to the modulus of the real number part to obtain the modulus of the first-order delayed conjugate moving average at any point;
  • the modulus of the real number part is smaller than the modulus of the imaginary number part, the modulus of the real number part is shifted to the right by two bits, and the modulus of the real number part after the right shift is added to the modulus of the imaginary number part to obtain the The modulus of the first-order delayed conjugate moving average at any point.
  • the processor is configured to execute:
  • the first value is divided by the average value of the modulo to obtain the peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected.
  • the processor is configured to execute:
  • the comparator When the rising edge of the to-be-detected signal is detected, the comparator is controlled to determine the largest first value in the modes corresponding to the plurality of sample points;
  • the accumulator is controlled to determine the sum of the moduli corresponding to the plurality of sample points;
  • the counter is controlled to obtain the number of samples of the plurality of samples.
  • the signal characteristic parameter is the phase distribution of the second-order delay conjugate correlation
  • the processor is configured to perform:
  • a phase distribution of the second-order delay-conjugate correlation of the signal to be detected is determined based on the second-order delay-conjugate sliding average of the plurality of samples.
  • the processor is configured to execute:
  • a second-order delay conjugate moving average of a plurality of samples included in the to-be-detected signal is determined.
  • the processor is configured to execute:
  • the judging whether the phase distribution of the second-order delay conjugate correlation satisfies the phase distribution concentration condition includes:
  • the proportion is greater than a second preset threshold, it is determined that the phase distribution of the second-order delay conjugate correlation of the signal to be detected satisfies the phase distribution concentration condition.
  • the processor is configured to execute:
  • an embodiment of the present invention provides an electronic device, including the signal identification device in the second aspect.
  • an embodiment of the present invention provides a computer-readable storage medium, where the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used to implement the first The signal identification method described in the aspect.
  • the present invention when a signal to be detected is received, it can be determined whether the signal to be detected is a DFS signal by extracting the signal characteristic parameters of the signal to be detected.
  • the judgment method provided by the present invention is relatively accurate, and can accurately distinguish Wi-Fi signals and other pulse signals similar to DFS signals, so that the to-be-detected signal that is not originally a DFS signal will not be misjudged as a DFS signal, and furthermore Because of misjudgment, the frequency band where the signal to be detected is mistakenly considered to be occupied and avoidance behavior will not be generated. Therefore, by adopting the present invention, the communication efficiency can be effectively improved.
  • FIG. 1 is a schematic flowchart of a signal identification method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for calculating a PAPR of a first-order delay conjugate correlation provided by an embodiment of the present invention
  • FIG. 3 is a structural diagram of a hardware circuit for performing conjugate correlation and moving average processing provided by an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for calculating a phase distribution of a second-order delay conjugate correlation provided by an embodiment of the present invention
  • FIG. 5 is a structural diagram of a hardware circuit for performing conjugate correlation, moving average processing, and judging thresholds provided by an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a signal identification device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.
  • FIG. 1 is a flowchart of a signal identification method provided by an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • the signal to be detected may be any pulse signal captured in a predetermined frequency band.
  • the pulse signal may be a DFS signal, a Wi-Fi signal, or an orthogonal frequency division multiplexing technology (Orthogonal Frequency Division Multiplexing). Frequency Division Multiplexing, OFDM) signals, and possibly other pulsed signals similar to DFS signals and Wi-Fi signals.
  • OFDM Frequency Division Multiplexing
  • the signal characteristic parameters of the signal to be detected can be extracted.
  • the signal characteristic parameters reflect the characteristics of the signal to be detected, and then the signal category to which the signal to be detected belongs can be determined based on the extracted signal characteristic parameters. .
  • the above-mentioned signal characteristic parameters may include two parameters, a peak-to-average power ratio (Peak Average Power Ratio, PAPR) of the first-order delay conjugate correlation and a phase distribution of the second-order delay conjugate correlation.
  • PAPR Peak Average Power Ratio
  • the PAPR of their first-order delay conjugate correlation is relatively high, while the first-order delay conjugate correlation of the DFS signal is related.
  • the PAPR of the signal to be detected is relatively low, so it can be determined whether the signal to be detected is a DFS signal by extracting the PAPR of the first-order delay conjugate correlation of the signal to be detected.
  • a second parameter that is, the phase distribution of the second-order delay conjugate correlation. If the phase distribution of the second-order delay conjugate correlation of the signal to be detected is relatively concentrated, and the PAPR of the first-order delay conjugate correlation is relatively low, it can be determined that the signal to be detected is a DFS signal by combining these two conditions.
  • the process of determining the signal category to which the signal to be detected belongs may be implemented as: judging whether the peak-to-average power ratio of the conjugate correlation of the first-order delay is smaller than the first preset threshold, and the second-order delay Whether the phase distribution of the conjugate correlation satisfies the phase concentration distribution condition; if the peak-to-average power ratio of the first-order delay conjugate correlation is less than the first preset threshold, and the phase distribution of the second-order delay conjugate correlation meets the phase concentration distribution condition, then determine The signal to be detected is a DFS signal.
  • the embodiment of the present invention provides a method for calculating the PAPR of the first-order delay conjugate correlation and the phase distribution of the second-order delay conjugate correlation of the signal to be detected. Method for the phase distribution of the second-order delay conjugate correlation.
  • FIG. 2 it is a flowchart of a method for calculating PAPR with a first-order delay conjugate correlation provided by an embodiment of the present invention, and the method includes the following steps:
  • the signal to be detected may include multiple sample points. It is assumed that each time a pulse signal is captured, the captured pulse signal can be used as the signal to be detected, and the method provided by the embodiment of the present invention is used to determine whether the signal to be detected is a DFS signal. If the currently captured pulse signal is the m-th pulse signal that has been captured, and the m-th pulse signal includes end samples, then the m-th pulse signal includes from the 1st to the end samples, It can be denoted as 1:end, and the first-order delay conjugate sliding average value of the end samples included in the mth pulse signal can be denoted as COR(m, 1:end).
  • the above process of determining the first-order delay conjugate moving average of multiple samples included in the signal to be detected may be implemented as follows: obtaining a pre-configured first-order delay length and a pre-configured first-order moving average length; The first-order delay length and the first-order moving average length determine the first-order delay conjugate moving average of multiple samples included in the signal to be detected.
  • the k-th sample point from the 1st to the end-th sample point included in the m-th pulse signal is denoted as k, then the first-order delay conjugate sliding of the k sample point in the m-th pulse signal
  • the average value can be expressed as COR(m,k).
  • the method for calculating COR(m, k) will be described below, and the calculation can be performed in the same way for any sample point from the first to the end-th sample point included in the m-th pulse signal.
  • Sig rx (m, k) represents the signal to be detected, and the signal to be detected can also be represented by a complex number, denoted as I+jQ.
  • len1 represents the first-order moving average length, (0:len1-1) represents the length from 0 to the first-order moving average minus 1, and (0:len1) represents the length from 0 to the first-order moving average.
  • d1 represents the first-order delay length.
  • mean() represents the operation of finding the mean value.
  • conj() represents the conjugation operation.
  • Sig rx (m, k+(0: len1-1)) ⁇ conj(Sig rx (m, k-d1+(0 :len1)))
  • the 5th sample point is delayed by 5 sample points, and then the 1st sample point takes the normal value, the delayed 5th sample point calculates the conjugate, and then the normal value and the normal value are calculated.
  • the calculated conjugate values are multiplied.
  • the mean() operation in the above expression can be understood as performing sliding correlation (correlation can also be understood as multiplication), that is, the sample points are accumulated and averaged. Furthermore, len1 can be understood as the number of samples to be accumulated.
  • len1 and d1 can be configured.
  • the value of d1 can be performed in the interval [1, 8].
  • len1 can be configured as an integer power of 2, such as 1, 2, 4, 8, and so on. If you need to configure len1 or d1, you can configure their corresponding registers to achieve this. The registers used to configure len1 or d1 will be introduced later.
  • the above-mentioned mean() operation involves the accumulation process, and the accumulation is the sample points inside the sliding window.
  • the accumulation is the sample points inside the sliding window.
  • the sample points slid out of the sliding window can be subtracted from the previous accumulated result, and then the new sample points entering the sliding window can be added.
  • the accumulated result obtained in this way is consistent with the accumulated result obtained from the accumulation of the first sample point in the sliding window to the last sample point, and the calculation process is much simpler.
  • the size of the sliding window can be adjusted.
  • the first-order signal to be detected can be filtered through the set sliding window.
  • COR(m, 1: end) can be calculated by the method described above, and then the peak-to-average power ratio of the first-order delay conjugate correlation of the signal to be detected can be calculated by COR(m, 1: end), and the signal to be detected can be converted into The peak-to-average power ratio of the first-order delay conjugate correlation is denoted as PAPRcor(m).
  • the above-mentioned process of determining the peak-to-average power ratio of the first-order delay conjugate correlation of the signal to be detected based on the first-order delay conjugate sliding average of multiple samples can be implemented as follows: determining the first-order delay of multiple samples. The modulus of the delayed conjugate sliding average value; the largest first value is determined among the modes corresponding to multiple sample points; the sum value of the modes corresponding to multiple sample points is determined; the number of samples of multiple sample points is obtained; The value, sum value, and number of samples determine the peak-to-average power ratio of the first-order delay conjugate correlation of the signal to be detected.
  • the process of determining the peak-to-average power ratio of the first-order delay conjugate correlation of the signal to be detected may be implemented as: determining the first-order delay of multiple samples.
  • the modulus of the conjugate sliding average determine the largest first value among the modes corresponding to multiple sample points; determine the sum value of the modes corresponding to multiple sample points; obtain the number of samples of multiple sample points; based on the first value , the sum value, and the number of samples to determine the peak-to-average power ratio of the first-order delay conjugate correlation of the signal to be detected.
  • PAPRcor(m) can be calculated by the following expression:
  • PAPRcor(m) max(abs(COR(m,1:end))) ⁇ mean(abs(COR(m,1:end)));
  • abs() represents the modulo operation.
  • max(abs(COR(m, 1: end))), sum(abs(COR(m, 1: end))) and length(abs(COR() can be obtained through a hardware circuit. m, 1: end))) value.
  • the hardware circuit can output max(abs(COR(m,1:end))), sum(abs(COR(m,1:end))) and length(abs(COR(m,1:end))) to A software program by which PAPRcor(m) is calculated based on these values.
  • the process of determining the peak-to-average power ratio of the first-order delay conjugate correlation of the signal to be detected can be implemented as: dividing the sum value by the number of sample points to obtain the modulo Average value; divide the first value by the average value of the modulo to obtain the peak-to-average power ratio of the first-order delay conjugate correlation of the signal to be detected.
  • sum(abs(COR(m, 1: end))) can be divided by length(abs(COR(m, 1: end))) to get mean(abs(COR(m, 1: end) )), and then divide max(abs(COR(m, 1: end))) by mean(abs(COR(m, 1: end))) according to Expression 2 to obtain PAPRcor(m).
  • the process of determining the modulus of the sliding average value of the first-order delay conjugate of multiple samples can be implemented as: for any sample in the multiple samples, determine the first-order delay conjugate of any sample The modulus of the real part and the modulus of the imaginary part of the moving average; if the modulus of the real part is greater than the modulus of the imaginary part, the modulus of the imaginary part is shifted to the right by two places, and the modulus of the imaginary part and the modulus of the real part after the right shift Add up to get the modulus of the first-order delay conjugate sliding average of any same point; if the modulus of the real part is smaller than the modulus of the imaginary part, then the modulus of the real part is shifted to the right by two places, and the modulus of the real part after the right shift Add to the modulo of the imaginary part to get the modulo of the conjugate sliding average of the first-order delay at any point.
  • COR(m, 1: end) actually includes the first-order delay conjugate moving average value corresponding to multiple samples.
  • the first-order delay conjugate moving average value COR(m, k), COR( m, k) can be expressed as complex(I, Q).
  • complex(I, Q) represents the meaning of complex numbers, which is expanded to I+jQ, that is, COR(m, k) can be represented in the form of I+jQ.
  • I represents the real part of the first-order delay conjugate moving average of sample k
  • Q represents the imaginary part of the first-order delay conjugate moving average of sample k.
  • abs(I) represents the modulus of the real part of the first-order delayed conjugate moving average of sample k
  • abs(Q) represents the modulus of the imaginary part of the first-order delayed conjugate moving average of sample k.
  • abs(I)>abs(Q) Indicates whether the modulus of the real part of the first-order delay conjugate moving average of sample k is greater than the modulus of the imaginary part of the first-order delay conjugate moving average of sample k, if abs(I)>abs(Q), Then take the value in front of the symbol ':' (that is (abs(I)+abs(Q)>>2)), if abs(I) ⁇ abs(Q), then take the value after the symbol ':' (also That is (abs(Q)+abs(I)>>2)).
  • abs()>>2 means to shift the modulo right by two.
  • max(abs(COR(m, 1:end))) can be determined in the modes corresponding to multiple samples through the comparator, and sum(abs(COR(m, 1:end))), and length(abs(COR(m, 1:end))) can be obtained through the counter.
  • length(abs(COR(m, 1:end))) can be limited to 8191.
  • FIG. 3 it is a structural diagram of a hardware circuit for performing conjugate correlation and moving average processing provided by an embodiment of the present invention.
  • S(12,0) represents a signal to be detected.
  • the square icon identified by the letter “D” represents the delay device.
  • S(12,0) is input to the delay device, and d1 can be configured through the corresponding register such as the RADAR_CR1_D1_LEN register.
  • a ladder icon identified by the letters "MUX” indicates a multiplexer.
  • the circular icon identified by the letter "X” represents conjugate multiplication, the result of which is represented as S(24,0).
  • SAT (R >> 7) represents bit width processing, the data is shifted, and the output signal is denoted as C1 S (16, 0).
  • the part before SAT (R>>7) is the conjugate correlation process, and the part after it is the moving average process.
  • C1 S(16,0) is input to the delay, and len1 can be configured by configuring the corresponding register such as the RADAR_CR1_AVG_LEN register. By configuring len1, the number of samples in the sliding window can be set.
  • the circular icon marked with the letter "+” represents an adder and a subtractor, which can be used to subtract the samples slid out of the sliding window, and at the same time add the new samples entering the sliding window.
  • the result is recorded as S(19,0 ).
  • the bit width processing of SAT(R>>log2(Len2) the output signal A1 S(16,0).
  • the PAPRcor(m) of the signal to be detected can be calculated. After the PAPRcor(m) is calculated, it can be determined whether the PAPRcor(m) is smaller than the first preset threshold. For the DFS signal, its PAPRcor(m) is relatively small. If the PAPRcor(m) of the signal to be detected is less than the first preset threshold, it means that the signal to be detected is likely to be a DFS signal, otherwise the signal to be detected may be Other types of signals such as Wi-Fi signals, OFDM signals, etc.
  • FIG. 4 it is a flowchart of a method for calculating a phase distribution of a second-order delay conjugate correlation provided by an embodiment of the present invention.
  • the method includes the following steps:
  • the above process of determining the second-order delay conjugate moving average of multiple samples included in the signal to be detected may be implemented as follows: obtaining a preconfigured second-order delay length and a pre-configured second-order moving average length; The second-order delay length and the second-order moving average length determine the second-order delay conjugate moving average of the plurality of samples included in the signal to be detected.
  • the second-order delay conjugate sliding average of multiple samples included in the signal to be detected can be calculated by the following expression:
  • COR2(m, k) represents the moving average of the second-order delay conjugate of the sample point k in the signal to be detected.
  • the second-order delay conjugate can be calculated by the above expression.
  • moving average. len2 represents the second-order moving average length.
  • d2 represents the second-order delay length.
  • both len2 and d2 are configurable parameters.
  • the value of len2 can be configured by configuring a register corresponding to len2, and len2 can be configured to be an integer power of 2, for example, 1, 2, 4, 8, and the like.
  • the value of d2 can be configured by configuring the register corresponding to d2.
  • d2 can be configured as a value in the interval [1,8].
  • the size of the sliding window can be set by setting len2, and then the second-order signal to be detected is filtered through the set sliding window.
  • the above-mentioned process of determining the phase distribution of the second-order delay conjugate correlation of the signal to be detected based on the second-order delay conjugate sliding average value of multiple samples can be implemented as follows: determining the second-order delay conjugate of each sample point. The angle corresponding to the sliding average; determine the number of target samples whose angle corresponding to the second-order delay conjugate sliding average is smaller than the preset angle in multiple samples; obtain the total number of samples of multiple samples; based on the target sample The number and the total number of samples determine the phase distribution of the second-order delay conjugate correlation of the signal to be detected.
  • the process of judging whether the phase distribution of the second-order delay conjugate correlation satisfies the phase distribution concentration condition can be implemented as follows: determining the proportion of the number of target samples in the total number of samples; if the proportion is greater than the second preset threshold, Then it is determined that the phase distribution of the second-order delay conjugate correlation of the signal to be detected satisfies the phase distribution concentration condition.
  • phase distribution concentration condition satisfies the phase distribution concentration condition
  • Prob(m) represents the proportion of the number of target samples in the total number of samples.
  • COR(m, 1: end) represents the signal to be detected from the 1st sample point to the end th sample point.
  • its second-order delay conjugate can be calculated by using Expression 4 Moving average, for any sample from the first sample to the end sample included in the signal to be detected, the second-order delay conjugate sliding average can be calculated in the same way, so that the detected signal can be obtained. Second-order delayed conjugate moving average of each sample included in the signal.
  • COR(m, 1: end) can be represented by a complex number, and an angle can be calculated for a complex number, and abs(Angle(COR(m, 1: end))/ ⁇ ) means an angle for COR (m, 1: end).
  • length(abs(Angle(COR(m, 1:end))/ ⁇ ) ⁇ ang th ) represents the number of angles corresponding to calculating the second-order delay conjugate sliding average that is less than ang th .
  • length(COR(m, 1:end)) represents the total number of samples included in the signal to be detected.
  • Expression 4 the proportion of the number of target samples whose angle corresponding to the second-order delay conjugate sliding average value is less than ang th in the total number of samples can be calculated. If the proportion is greater than the second preset threshold, it can be determined that The phase distribution of the second-order delay conjugate correlation of the signal to be detected satisfies the phase distribution concentration condition.
  • the embodiment of the present invention provides a simple method for judging abs( Calculation method of Angle(COR(m, 1:end))/ ⁇ ) ⁇ ang th .
  • the process of determining the number of target sample points where the angle corresponding to the second-order delay conjugate sliding average value in the plurality of sample points is smaller than the preset angle can be implemented as: for any sample point in the plurality of sample points, determine any sample point.
  • the modulus of the real part and the modulus of the imaginary part of the second-order delay conjugate moving average of the point determine the tangent of the preset angle; if the product of the modulus of the real part multiplied by the tangent is greater than the modulus of the imaginary part, then determine either The angle corresponding to the second-order delay conjugate sliding average value of the point is smaller than the preset angle; the number of target samples whose angle corresponding to the second-order delay conjugate sliding average value is less than the preset angle in the multiple sample points is counted.
  • COR(m, 1: end) can be represented by a complex number
  • the process of judging abs(Angle(COR(m, 1: end))/ ⁇ ) ⁇ ang th can be converted into judging tan(ang th ) ⁇
  • the process of abs(I)>abs(Q) and compared to judging abs(Angle(COR(m,1:end))/ ⁇ ) ⁇ ang th , judging tan(ang th ) ⁇ abs(I)>abs (Q) avoids the angle calculation process, so the process of judging tan(ang th ) ⁇ abs(I)>abs(Q) is much simpler.
  • tan(ang th ) is a configurable parameter, which can be configured through the corresponding register, for example, through the RADAR_CR2_ANG_TH register.
  • tan(ang th ) can be scaled as u(8,7). Among them, u indicates unsigned, 8 indicates that the total bit width of tan (ang th ) is 8 bits, and 7 indicates that the fractional bits of tan (ang th ) are 7 bits.
  • Length(abs(Angle(COR(m, 1:end))/ ⁇ ) ⁇ ang th ), length(abs(Angle(COR(m, 1:end))/ ⁇ ) ⁇ ang th can be obtained through a hardware circuit ) may be stored, for example, in RADAR_CR2_ANG_LEN.
  • FIG. 5 it is a structural diagram of a hardware circuit for performing conjugate correlation, moving average processing, and judging thresholds provided by an embodiment of the present invention.
  • the signal to be detected S(16,0) is input into the delay device, and d2 can be configured by configuring a corresponding register such as the RADAR_CR2_D2_LEN register.
  • the signal is input to the multiplexer represented by the trapezoidal icon marked by the letter "MUX”, and then the original signal to be detected S(16,0) is multiplied by the conjugate represented by the circular icon marked by the letter "X” , the output signal is denoted as C2 S(32,0).
  • the above operation can be used as a conjugate correlation operation, and then enter the moving average operation.
  • C2 S(32,0) is input to the delay, and len2 can be configured by configuring the corresponding register such as RADAR_CR2_AVG_LEN.
  • the delay signal is input to the multiplexer represented by the trapezoidal icon marked by the letter "MUX”, and then passed through the adder and subtractor represented by the circular icon marked by the letter "+” to add and subtract.
  • the result is denoted as S (35,0).
  • A2 S(32,0) is output.
  • A2 S(32,0) enters “abs(Q)>TH0 ⁇ abs(I)” to determine whether the modulus of the imaginary part of A2 S(32,0) is greater than the product of a threshold value TH0 and the modulus of the real number part,
  • the judgment result is input to the multiplexer, and then through the adder, U(13,0) is input to the "conditional satisfaction comparison module", two threshold values can be set including Threshold_h and Threshold_l, and then passed through the "correlated phase threshold probability judgment module" ".
  • the signal output through the delay is Length_angle.
  • the method provided by the embodiment of the present invention when a signal to be detected is received, it can be determined whether the signal to be detected is a DFS signal by extracting signal characteristic parameters of the signal to be detected.
  • the judgment method provided by the embodiment of the present invention is relatively accurate, and can accurately distinguish Wi-Fi signals and other pulse signals similar to DFS signals, so that the to-be-detected signal that is not originally a DFS signal will not be misjudged as a DFS signal. Therefore, avoidance behavior will not occur due to misjudgment that the frequency band where the signal to be detected is located is mistakenly considered to be occupied. Therefore, the method provided by the embodiment of the present invention can effectively improve the communication efficiency.
  • Yet another exemplary embodiment of the present invention provides a signal identification device, as shown in FIG. 6 , the device includes a processor 61, and the processor 61 is configured to perform the following method steps:
  • a signal category to which the to-be-detected signal belongs is determined.
  • the signal characteristic parameters include the peak-to-average power ratio of the first-order delay conjugate correlation and the phase distribution of the second-order delay conjugate correlation.
  • the processor 61 is configured to execute:
  • the signal to be detected is determined It is a dynamic frequency selection signal.
  • the signal characteristic parameter is the peak-to-average power ratio of the first-order delay conjugate correlation
  • the processor 61 is configured to execute:
  • a peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected is determined based on the first-order delayed conjugate sliding average of the plurality of samples.
  • the processor 61 is configured to execute:
  • a first-order delay conjugate moving average of a plurality of samples included in the to-be-detected signal is determined.
  • the processor 61 is configured to execute:
  • a peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected is determined.
  • the processor 61 is configured to execute:
  • the modulus of the real number part is greater than the modulus of the imaginary number part, the modulus of the imaginary number part is shifted to the right by two bits, and the modulus of the imaginary number part shifted to the right is added to the modulus of the real number part to obtain the modulus of the first-order delayed conjugate moving average at any point;
  • the modulus of the real number part is smaller than the modulus of the imaginary number part, the modulus of the real number part is shifted to the right by two bits, and the modulus of the real number part after the right shift is added to the modulus of the imaginary number part to obtain the The modulus of the first-order delayed conjugate moving average at any point.
  • the processor 61 is configured to execute:
  • the first value is divided by the average value of the modulo to obtain the peak-to-average power ratio of the first-order delayed conjugate correlation of the signal to be detected.
  • the processor 61 is configured to execute:
  • the comparator When the rising edge of the to-be-detected signal is detected, the comparator is controlled to determine the largest first value in the modes corresponding to the plurality of sample points;
  • the accumulator is controlled to determine the sum of the moduli corresponding to the plurality of sample points;
  • the counter is controlled to obtain the number of samples of the plurality of samples.
  • the signal characteristic parameter is the phase distribution of the second-order delay conjugate correlation
  • the processor 61 is configured to execute:
  • a phase distribution of the second-order delay-conjugate correlation of the signal to be detected is determined based on the second-order delay-conjugate sliding average of the plurality of samples.
  • the processor 61 is configured to execute:
  • a second-order delay conjugate moving average of a plurality of samples included in the to-be-detected signal is determined.
  • the processor 61 is configured to execute:
  • the judging whether the phase distribution of the second-order delay conjugate correlation satisfies the phase distribution concentration condition includes:
  • the proportion is greater than a second preset threshold, it is determined that the phase distribution of the second-order delay conjugate correlation of the signal to be detected satisfies the phase distribution concentration condition.
  • the processor 61 is configured to execute:
  • the signal identification device shown in FIG. 6 can perform the method of the embodiment shown in FIG. 1-FIG. 5.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present invention, where the electronic device includes the signal identification device 71 of the embodiment shown in FIG. 6 .
  • an embodiment of the present invention further provides a computer-readable storage medium, where executable codes are stored in the computer-readable storage medium, and the executable codes are used to implement the signal identification methods provided by the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种信号识别方法、装置、设备和存储介质,该方法包括:获取待检测信号;提取待检测信号的信号特征参数;基于信号特征参数,确定待检测信号所属信号类别。该方法能够将Wi-Fi信号等相似于DFS信号的脉冲信号进行准确区分,避免将原本不是DFS信号的待检测信号误判为DFS信号,进而避免由于误判而产生避让行为,可以有效提高通信效率。

Description

信号识别方法、装置、设备和存储介质 技术领域
本发明涉及通信技术领域,尤其涉及一种信号识别方法、装置、设备和存储介质。
背景技术
在通信领域中,一般常用的频段为2.4GHz和5.8GHz频段。由于在很多情景中都使用了2.4GHz和5.8GHz频段,因此2.4GHz和5.8GHz频段已经变得尤为拥挤。
为了解决2.4GHz和5.8GHz频段拥挤的问题,可以选择避开2.4GHz和5.8GHz频段使用动态频率选择(Dynamic Frequency Selection,DFS)频段。如果需要使用DFS频段,就要具备足够的能力来检测DFS信号。在相关技术中,通常以脉冲检测技术为核心来检测DFS信号,采用脉冲检测技术可以通过分析待检测信号的周期性来判断待检测信号是否是DFS信号。
由于无线保真(Wireless Fidelity,Wi-Fi)等以相似于DFS信号的数据发送间隔的信号也具有周期性,因此会把这些同样具有周期性的信号误判断为DFS信号。如果待检测信号不是DFS信号,但是被误判为DFS信号而确定待检测信号所在的频段被占用,那么在一段时间内不会再使用该被误认为占用的频段,导致通信效率下降。
发明内容
本发明实施例提供一种信号识别方法、装置、设备和存储介质,用以准确判断待检测信号是否是DFS信号,以提高通信效率。
第一方面,本发明实施例提供一种信号识别方法,该方法包括:
获取待检测信号;
提取所述待检测信号的信号特征参数;
基于所述信号特征参数,确定所述待检测信号所属信号类别。
可选地,所述信号特征参数包括一阶延迟共轭相关的峰值均值功率比和二阶延迟共轭相关的相位分布。
可选地,所述基于所述信号特征参数,确定所述待检测信号所属信号类别,包括:
判断所述一阶延迟共轭相关的峰值均值功率比是否小于第一预设阈值,且所述二阶延迟共轭相关的相位分布是否满足相位集中分布条件;
若所述一阶延迟共轭相关的峰值均值功率比小于所述第一预设阈值,且所述二阶延迟共轭相关的相位分布满足所述相位集中分布条件,则确定所述待检测信号属于动态频率选择信号。
可选地,所述信号特征参数为所述一阶延迟共轭相关的峰值均值功率比,所述提取所述待检测信号的信号特征参数,包括:
确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值;
基于所述多个样点的一阶延迟共轭滑动平均值,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值,包括:
获取预先配置的一阶延迟长度和预先配置的一阶滑动平均长度;
基于所述一阶延迟长度和所述一阶滑动平均长度,确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值。
可选地,所述基于所述多个样点的一阶延迟共轭滑动平均值,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比,包括:
确定所述多个样点的一阶延迟共轭滑动平均值的模;
在所述多个样点对应的模中确定最大的第一数值;
确定所述多个样点对应的模的和值;
获取所述多个样点的样点数量;
基于所述第一数值、所述和值以及所述样点数量,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述确定所述多个样点的一阶延迟共轭滑动平均值的模,包括:
对于所述多个样点中的任一样点,确定所述任一样点的一阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
若所述实数部分的模大于所述虚数部分的模,则将所述虚数部分的模右移两位,将右移后的虚数部分的模与所述实数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模;
若所述实数部分的模小于所述虚数部分的模,则将所述实数部分的模右移两位,将右移后的实数部分的模与所述虚数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模。
可选地,所述基于所述第一数值、所述和值以及所述样点数量,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比,包括:
将所述和值除以所述样点数量,得到模的平均值;
将所述第一数值除以所述模的平均值,得到所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述在所述多个样点对应的模中确定最大的第一数值,包括:
当检测到所述待检测信号的上升沿时,通过比较器在所述多个样点对应的模中确定最大的第一数值;
所述确定所述多个样点对应的模的和值,包括:
当检测到所述待检测信号的上升沿时,通过累加器确定所述多个样点对应的模的和值;
所述获取所述多个样点的样点数量,包括:
当检测到所述待检测信号的上升沿时,通过计数器获取所述多个样点的样点数量。
可选地,所述信号特征参数为所述二阶延迟共轭相关的相位分布,所述提取所述待检测信号的信号特征参数,包括:
确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值;
基于所述多个样点的二阶延迟共轭滑动平均值,确定所述待检测信号的所述二阶延迟共轭相关的相位分布。
可选地,所述确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值,包括:
获取预先配置的二阶延迟长度和预先配置的二阶滑动平均长度;
基于所述二阶延迟长度和所述二阶滑动平均长度,确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值。
可选地,所述基于所述多个样点的二阶延迟共轭滑动平均值,确定所述待检测信号的所述二阶延迟共轭相关的相位分布,包括:
确定各样点的二阶延迟共轭滑动平均值分别对应的角度;
确定所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量;
获取所述多个样点的样点总数量;
基于所述目标样点数量以及所述样点总数量,确定所述待检测信号的所述二阶延迟共轭相关的相位分布;
所述判断所述二阶延迟共轭相关的相位分布是否满足相位分布集中条件,包括:
确定所述目标样点数量在所述样点总数量中的占比;
若所述占比大于第二预设阈值,则确定所述待检测信号的所述二阶延迟共轭相关的相位分布满足相位分布集中条件。
可选地,所述确定所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量,包括:
对于所述多个样点中的任一样点,确定所述任一样点的二阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
确定预设角度的正切值;
若所述实数部分的模乘以所述正切值的积大于所述虚数部分的模,则确定 所述任一样点的二阶延迟共轭滑动平均值对应的角度小于所述预设角度;
统计所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量。
第二方面,本发明实施例提供一种信号识别装置,所述装置包括处理器,所述处理器被配置为执行以下方法步骤:
获取待检测信号;
提取所述待检测信号的信号特征参数;
基于所述信号特征参数,确定所述待检测信号所属信号类别。
可选地,所述信号特征参数包括一阶延迟共轭相关的峰值均值功率比和二阶延迟共轭相关的相位分布。
可选地,所述处理器,被配置为执行:
判断所述一阶延迟共轭相关的峰值均值功率比是否小于第一预设阈值,且所述二阶延迟共轭相关的相位分布是否满足相位集中分布条件;
若所述一阶延迟共轭相关的峰值均值功率比小于所述第一预设阈值,且所述二阶延迟共轭相关的相位分布满足所述相位集中分布条件,则确定所述待检测信号属于动态频率选择信号。
可选地,所述信号特征参数为所述一阶延迟共轭相关的峰值均值功率比,所述处理器,被配置为执行:
确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值;
基于所述多个样点的一阶延迟共轭滑动平均值,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述处理器,被配置为执行:
获取预先配置的一阶延迟长度和预先配置的一阶滑动平均长度;
基于所述一阶延迟长度和所述一阶滑动平均长度,确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值。
可选地,所述处理器,被配置为执行:
确定所述多个样点的一阶延迟共轭滑动平均值的模;
在所述多个样点对应的模中确定最大的第一数值;
确定所述多个样点对应的模的和值;
获取所述多个样点的样点数量;
基于所述第一数值、所述和值以及所述样点数量,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述处理器,被配置为执行:
对于所述多个样点中的任一样点,确定所述任一样点的一阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
若所述实数部分的模大于所述虚数部分的模,则将所述虚数部分的模右移两位,将右移后的虚数部分的模与所述实数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模;
若所述实数部分的模小于所述虚数部分的模,则将所述实数部分的模右移两位,将右移后的实数部分的模与所述虚数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模。
可选地,所述处理器,被配置为执行:
将所述和值除以所述样点数量,得到模的平均值;
将所述第一数值除以所述模的平均值,得到所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述处理器,被配置为执行:
当检测到所述待检测信号的上升沿时,控制比较器在所述多个样点对应的模中确定最大的第一数值;
当检测到所述待检测信号的上升沿时,控制累加器确定所述多个样点对应的模的和值;
当检测到所述待检测信号的上升沿时,控制计数器获取所述多个样点的样点数量。
可选地,所述信号特征参数为所述二阶延迟共轭相关的相位分布,所述处理器,被配置为执行:
确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值;
基于所述多个样点的二阶延迟共轭滑动平均值,确定所述待检测信号的所述二阶延迟共轭相关的相位分布。
可选地,所述处理器,被配置为执行:
获取预先配置的二阶延迟长度和预先配置的二阶滑动平均长度;
基于所述二阶延迟长度和所述二阶滑动平均长度,确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值。
可选地,所述处理器,被配置为执行:
确定各样点的二阶延迟共轭滑动平均值分别对应的角度;
确定所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量;
获取所述多个样点的样点总数量;
基于所述目标样点数量以及所述样点总数量,确定所述待检测信号的所述二阶延迟共轭相关的相位分布;
所述判断所述二阶延迟共轭相关的相位分布是否满足相位分布集中条件,包括:
确定所述目标样点数量在所述样点总数量中的占比;
若所述占比大于第二预设阈值,则确定所述待检测信号的所述二阶延迟共轭相关的相位分布满足相位分布集中条件。
可选地,所述处理器,被配置为执行:
对于所述多个样点中的任一样点,确定所述任一样点的二阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
确定预设角度的正切值;
若所述实数部分的模乘以所述正切值的积大于所述虚数部分的模,则确定所述任一样点的二阶延迟共轭滑动平均值对应的角度小于所述预设角度;
统计所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量。
第三方面,本发明实施例提供一种电子设备,包括第二方面中的信号识别装置。
第四方面,本发明实施例提供了一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现第一方面所述的信号识别方法。
通过本发明,在接收到待检测信号时,可以通过提取待检测信号的信号特征参数来判断该待检测信号是否是DFS信号。本发明提供的判断方法较为准确,能够将Wi-Fi信号等相似于DFS信号的脉冲信号进行准确区分,这样也就不会将原本不是DFS信号的待检测信号误判为是DFS信号,进而也就不会由于误判而误认为待检测信号所在的频段被占用从而产生避让行为,故而采用本发明,可以有效提高通信效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种信号识别方法的流程图示意图;
图2为本发明实施例提供的一种计算一阶延迟共轭相关的PAPR的方法的流程图示意图;
图3为本发明实施例提供的一种用于进行共轭相关和滑动平均处理的硬件电路结构图;
图4为本发明实施例提供的一种计算二阶延迟共轭相关的相位分布的方法的流程图示意图;
图5为本发明实施例提供的一种用于进行共轭相关、滑动平均处理以及判断门限的硬件电路结构图;
图6为本发明实施例提供的一种信号识别装置的结构示意图;
图7为本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
另外,下述各方法实施例中的步骤时序仅为一种举例,而非严格限定。
图1为本发明实施例提供的一种信号识别方法的流程图,如图1所示,该方法包括如下步骤:
101、获取待检测信号。
102、提取待检测信号的信号特征参数。
103、基于信号特征参数,确定待检测信号所属信号类别。
在实际应用中,待检测信号可以是在预定频段上捕捉到的任意脉冲信号,该脉冲信号有可能是DFS信号,有可能是Wi-Fi信号,也有可能是正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)信号,还有可能是其他类似于DFS信号和Wi-Fi信号的脉冲信号。为了确定待检测信号到底 是什么类型的信号,可以提取待检测信号的信号特征参数,信号特征参数反应了待检测信号的特性,然后可以基于提取到的信号特征参数,确定待检测信号所属信号类别。
可选地,上述信号特征参数可以包括一阶延迟共轭相关的峰值均值功率比(Peak Average Power Ratio,PAPR)和二阶延迟共轭相关的相位分布两种参数。
对于一阶延迟共轭相关的PAPR来说,由于Wi-Fi信号、OFDM信号均是多载波信号,因此它们的一阶延迟共轭相关的PAPR比较高,而DFS信号的一阶延迟共轭相关的PAPR比较低,因此可以通过提取待检测信号的一阶延迟共轭相关的PAPR来判断待检测信号是否是DFS信号。
在此基础上,由于实际情况中噪声的存在以及门限趋势不理想等因素会导致一定的漏判现象,因此在本发明实施例中引入第二个参数即二阶延迟共轭相关的相位分布,如果待检测信号的二阶延迟共轭相关的相位分布比较集中,且一阶延迟共轭相关的PAPR比较低,结合这两个情况可以确定待检测信号是DFS信号。
基于上述内容,可选地,基于信号特征参数,确定待检测信号所属信号类别的过程可以实现为:判断一阶延迟共轭相关的峰值均值功率比是否小于第一预设阈值,且二阶延迟共轭相关的相位分布是否满足相位集中分布条件;若一阶延迟共轭相关的峰值均值功率比小于第一预设阈值,且二阶延迟共轭相关的相位分布满足相位集中分布条件,则确定待检测信号是DFS信号。
本发明实施例提供了计算待检测信号的一阶延迟共轭相关的PAPR以及二阶延迟共轭相关的相位分布的方法,下面将一一介绍计算一阶延迟共轭相关的PAPR的方法以及计算二阶延迟共轭相关的相位分布的方法。
(一)一阶延迟共轭相关的PAPR的计算方法
如图2所示,是本发明实施例提供的一种一阶延迟共轭相关的PAPR的计算方法的流程图,该方法包括如下步骤:
201、确定待检测信号中包括的多个样点的一阶延迟共轭滑动平均值。
实际应用中,待检测信号中可以包括多个样点。假设每捕捉到一个脉冲信号都可以将捕捉到的脉冲信号作为待检测信号,并采用本发明实施例提供的方法确定待检测信号是否是DFS信号。如果当前捕捉的脉冲信号为已捕捉到的第m个脉冲信号,在该第m个脉冲信号中包括end个样点,那么该第m个脉冲信号包括从第1个到第end个样点,可以记为1:end,该第m个脉冲信号中包括的end个样点的一阶延迟共轭滑动平均值可以表示为COR(m,1:end)。
可选地,上述确定待检测信号中包括的多个样点的一阶延迟共轭滑动平均值的过程可以实现为:获取预先配置的一阶延迟长度和预先配置的一阶滑动平均长度;基于一阶延迟长度和一阶滑动平均长度,确定待检测信号中包括的多个样点的一阶延迟共轭滑动平均值。
实际应用中,将第m个脉冲信号中包括的第1个到第end个样点中的第k个样点记为k,那么第m个脉冲信号中k样点的一阶延迟共轭滑动平均值可以表示为COR(m,k)。下面将介绍计算COR(m,k)的方法,对于第m个脉冲信号中包括的第1个到第end个样点中的任一样点都可以采用相同的方式进行计算。
可以通过下述表达式计算COR(m,k):
COR(m,k)=mean(Sig rx(m,k+(0:len1-1))×conj(Sig rx(m,k-d1+(0:len1))));表达式1
其中,Sig rx(m,k)表示待检测信号,待检测信号也可以通过复数形式表示,记为I+jQ。len1表示一阶滑动平均长度,(0:len1-1)表示从0到一阶滑动平均长度减1,(0:len1)表示从0到一阶滑动平均长度。d1表示一阶延迟长度。mean()表示求平均值的运算。conj()表示共轭运算。
举例来说,假设d1取值为4,待检测信号包括1到100个样点,那么Sig rx(m,k+(0:len1-1))×conj(Sig rx(m,k-d1+(0:len1)))例如可以表示把第5个样点向后延迟5个样点长度,然后第1个样点取正常值,延迟后的第5个样点计算共轭,再将正常值和计算得到的共轭值进行相乘。
可以将上述表达式中的mean()运算理解为进行滑动相关(相关也可以理解为相乘),也就是将样点做了累加并进行平均。进而len1可以理解为进行累 加的样点个数。
需要说明的是,上述len1和d1都是可以进行配置的。在一种可能的实现方式中,可以在区间[1,8]内进行d1的取值。在另一种可能的实现方式中,可以将len1配置为2的整数次幂,例如1、2、4、8等。如果需要配置len1或者d1,可以配置它们相对应的寄存器来实现,后续会介绍配置len1或者d1所使用的寄存器。
可选地,上述提及到mean()运算涉及累加的过程,累加的是滑动窗口内部的样点,一般来说当滑动窗口滑动一次时,需要从滑动窗口内的第一个样点累加到最后一个样点得出累加结果,但是这样的计算过程比较繁琐。为了简便计算过程,在本发明实施例中,每当滑动窗口滑动一次时,可以用上一次的累加结果减去从滑动窗口滑动出去的样点,然后再加上新进入到滑动窗口的样点,这样所得的累加结果与从滑动窗口内的第一个样点累加到最后一个样点得出累加结果是一致的,且计算过程简便了很多。
需要说明的是,通过设置len1,可以调整滑动窗口的大小。通过设置好的滑动窗口可以对一阶待检测信号进行滤波处理。
202、基于多个样点的一阶延迟共轭滑动平均值,确定待检测信号的一阶延迟共轭相关的峰值均值功率比。
通过前面介绍的方式可以计算出COR(m,1:end),然后可以通过COR(m,1:end)计算待检测信号的一阶延迟共轭相关的峰值均值功率比,可以将待检测信号的一阶延迟共轭相关的峰值均值功率比记为PAPRcor(m)。
可选地,上述基于多个样点的一阶延迟共轭滑动平均值,确定待检测信号的一阶延迟共轭相关的峰值均值功率比的过程可以实现为:确定多个样点的一阶延迟共轭滑动平均值的模;在多个样点对应的模中确定最大的第一数值;确定多个样点对应的模的和值;获取多个样点的样点数量;基于第一数值、和值以及样点数量,确定待检测信号的一阶延迟共轭相关的峰值均值功率比。
可选地,基于多个样点的一阶延迟共轭滑动平均值,确定待检测信号的一阶延迟共轭相关的峰值均值功率比的过程可以实现为:确定多个样点的一阶延 迟共轭滑动平均值的模;在多个样点对应的模中确定最大的第一数值;确定多个样点对应的模的和值;获取多个样点的样点数量;基于第一数值、和值以及样点数量,确定待检测信号的一阶延迟共轭相关的峰值均值功率比。
实际应用中,可以通过下述表达式计算PAPRcor(m):
PAPRcor(m)=max(abs(COR(m,1:end)))÷mean(abs(COR(m,1:end)));表达式2
其中,abs()表示求模运算。
在一种可能的实现方式中,可以通过硬件电路获取max(abs(COR(m,1:end)))、sum(abs(COR(m,1:end)))以及length(abs(COR(m,1:end)))的值。硬件电路可以将max(abs(COR(m,1:end)))、sum(abs(COR(m,1:end)))以及length(abs(COR(m,1:end)))输出给软件程序,由软件程序基于这些数值计算PAPRcor(m)。
可选地,基于第一数值、和值以及样点数量,确定待检测信号的一阶延迟共轭相关的峰值均值功率比的过程可以实现为:将和值除以样点数量,得到模的平均值;将第一数值除以模的平均值,得到待检测信号的一阶延迟共轭相关的峰值均值功率比。
具体来说,可以将sum(abs(COR(m,1:end)))除以length(abs(COR(m,1:end))),得到mean(abs(COR(m,1:end))),再根据表达式2将max(abs(COR(m,1:end)))除以mean(abs(COR(m,1:end))),得到PAPRcor(m)。
在上述过程中,实际上abs(COR(m,1:end))的计算过程较为复杂,涉及到两次乘法、两次加法,且需要计算的数据的位宽比较宽,同时最后还涉及开根号的计算,开根号的运算属于非线性运算,上述因素叠加到一起,导致abs(COR(m,1:end))的计算过程非常复杂,不利于硬件电路实现。在本发明实施例中,考虑到信号损失可以接受的情况下,可以采取简化的计算方法代替复杂的计算过程。
基于此,可选地,确定多个样点的一阶延迟共轭滑动平均值的模的过程可 以实现为:对于多个样点中的任一样点,确定任一样点的一阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;若实数部分的模大于虚数部分的模,则将虚数部分的模右移两位,将右移后的虚数部分的模与实数部分的模相加,得到任一样点的一阶延迟共轭滑动平均值的模;若实数部分的模小于虚数部分的模,则将实数部分的模右移两位,将右移后的实数部分的模与虚数部分的模相加,得到任一样点的一阶延迟共轭滑动平均值的模。
通过本发明实施例提供的简化的计算abs(COR(m,1:end))的方法可知,本发明实施例采用判断和移位的操作来代替两次乘法、两次加法以及开根号的计算过程,大大提高了计算效率。
COR(m,1:end)实际包括多个样点对应的一阶延迟共轭滑动平均值,对于其中的任一样点k的一阶延迟共轭滑动平均值COR(m,k),COR(m,k)都可以表示为complex(I,Q)。complex(I,Q)表示复数的意思,展开为I+jQ,也就是COR(m,k)可以用I+jQ的形式进行表示。其中,I表示样点k的一阶延迟共轭滑动平均值的实数部分,Q表示样点k的一阶延迟共轭滑动平均值的虚数部分。进而计算abs(COR(m,1:end))可以转化为计算abs(complex(I,Q))。
complex(I,Q)=abs(I)>abs(Q)?(abs(I)+abs(Q)>>2):(abs(Q)+abs(I)>>2);表达式3
其中,abs(I)表示样点k的一阶延迟共轭滑动平均值的实数部分的模,abs(Q)表示样点k的一阶延迟共轭滑动平均值的虚数部分的模。abs(I)>abs(Q)?表示判断样点k的一阶延迟共轭滑动平均值的实数部分的模是否大于样点k的一阶延迟共轭滑动平均值的虚数部分的模,如果abs(I)>abs(Q),则取符号‘:’前面的值(也就是(abs(I)+abs(Q)>>2)),如果abs(I)<abs(Q),则取符号‘:’后面的值(也就是(abs(Q)+abs(I)>>2))。abs()>>2表示将模右移两位。
可选地,前面提到可以通过硬件电路获取max(abs(COR(m,1:end)))、sum(abs(COR(m,1:end)))以及length(abs(COR(m,1:end)))的值, 且捕捉待检测信号也是由硬件电路完成的,那么在待检测信号未到来时,硬件电路不进行动作,在待检测信号到来时,硬件电路可以检测到上升沿,此时有有限状态机(Finite State Machine,FSM)==1。当FSM==1时,可以通过比较器在多个样点对应的模中确定max(abs(COR(m,1:end))),还可以通过累加器确定sum(abs(COR(m,1:end))),另外可以通过计数器获取length(abs(COR(m,1:end)))。
在一种可能的实现方式中,可以将length(abs(COR(m,1:end)))限制在8191之内。
在获取sum(abs(COR(m,1:end)))的过程中,当FSM==1时,可以将RADAR_CR1_PWR_SUM清零,RADAR_CR1_PWR_SUM中保存了上一个脉冲信号到来时的计算结果,因此需要对RADAR_CR1_PWR_SUM清零,然后在RADAR_CR1_PWR_SUM中累加待检测信号中包括的各个样点的一阶延迟一阶延迟共轭滑动平均值的模。当检测到下降沿到来或者满足其他脉冲信号结束判断条件时,也即FSM由1变为0,停止累加过程,RADAR_CR1_PWR_SUM保存的数据为待检测信号的sum(abs(COR(m,1:end)))。
在获取max(abs(COR(m,1:end)))的过程中,当FSM==1时,可以将RADAR_CR1_PWR_MAX清零,RADAR_CR1_PWR_MAX中保存了上一个脉冲信号的max(abs(COR(m,1:end))),因此需要对RADAR_CR1_PWR_MAX清零。然后通过比较每个待检测信号中包括的样点的一阶延迟一阶延迟共轭滑动平均值的模,将当前比较得到的最大值存储到RADAR_CR1_PWR_MAX。当检测到下降沿到来或者满足其他脉冲信号结束判断条件时,停止比较过程,RADAR_CR1_PWR_MAX存储的数据即为待检测信号的max(abs(COR(m,1:end)))。
如图3所示,是本发明实施例提供的用于进行共轭相关和滑动平均处理的硬件电路结构图。在图3中,S(12,0)表示待检测信号。字母“D”标识的方形图标表示延迟器,图3中S(12,0)输入到延迟器中,可以通过对应的寄存器例如RADAR_CR1_D1_LEN寄存器来配置d1。字母“MUX”标识的梯形图标表示多路选择器。字母“X”标识的圆形图标表示共轭相乘,其结果表示为S(24,0)。 SAT(R>>7)表示位宽处理,对数据进行移位操作,输出信号记为C1 S(16,0)。SAT(R>>7)具体是取round方式右移7bit,也即C1 S(16,0)=(Din(n-d1)×conj(Din(n))+2 6)>>7。SAT(R>>7)之前的部分为共轭相关处理,之后的部分则为滑动平均处理。
在滑动平均处理过程中,C1 S(16,0)输入到延迟器中,可以通过配置对应的寄存器例如RADAR_CR1_AVG_LEN寄存器来配置len1,通过配置len1可以设置滑动窗口内样点的个数。字母“+”标识的圆形图标表示加、减法器,可以用于减去从滑动窗口滑动出去的样点,同时加上新进入到滑动窗口的样点,所得结果记为S(19,0)。经过SAT(R>>log2(Len2))的位宽处理,输出信号A1 S(16,0)。
通过前面介绍的计算方法,可以计算出待检测信号的PAPRcor(m)。在计算出PAPRcor(m)之后,可以判断PAPRcor(m)是否小于第一预设阈值。对于DFS信号来说,它的PAPRcor(m)较小,如果待检测信号的PAPRcor(m)小于第一预设阈值,则表示待检测信号很有可能是DFS信号,否则待检测信号则有可能是Wi-Fi信号、OFDM信号等其他类型的信号。
(二)二阶延迟共轭相关的相位分布的计算方法
如图4所示,是本发明实施例提供的一种二阶延迟共轭相关的相位分布的计算方法的流程图,该方法包括如下步骤:
401、确定待检测信号中包括的多个样点的二阶延迟共轭滑动平均值。
可选地,上述确定待检测信号中包括的多个样点的二阶延迟共轭滑动平均值的过程可以实现为:获取预先配置的二阶延迟长度和预先配置的二阶滑动平均长度;基于二阶延迟长度和二阶滑动平均长度,确定待检测信号中包括的多个样点的二阶延迟共轭滑动平均值。
实际应用中,可以通过下述表达式计算待检测信号中包括的多个样点的二阶延迟共轭滑动平均值:
COR2(m,k)=mean(COR(m,k+(1:len2))×conj(COR(m,k-d2+(1:len2))));表达式4
其中,COR2(m,k)表示待检测信号中样点k的二阶延迟共轭滑动平均值,对于待检测信号中包括的任一样点,都可以采用上述表达式计算其二阶延迟共轭滑动平均值。len2表示二阶滑动平均长度。d2表示二阶延迟长度。
可选地,len2和d2都是可配参数。其中,可以通过配置与len2对应的寄存器可以配置len2的取值,可以配置len2为2的整数次幂,例如可以配置为1、2、4、8等。另外,通过配置与d2对应的寄存器可以配置d2的取值。在一种可能的实现方式中,可以将d2配置为区间[1,8]内的数值。
需要说明的是,通过设置len2可以设置滑动窗口的大小,然后通过设置好的滑动窗口对二阶待检测信号进行滤波处理。
402、基于多个样点的二阶延迟共轭滑动平均值,确定待检测信号的二阶延迟共轭相关的相位分布。
可选地,上述基于多个样点的二阶延迟共轭滑动平均值,确定待检测信号的二阶延迟共轭相关的相位分布的过程可以实现为:确定各样点的二阶延迟共轭滑动平均值分别对应的角度;确定多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量;获取多个样点的样点总数量;基于目标样点数量以及样点总数量,确定待检测信号的二阶延迟共轭相关的相位分布。相应地,判断二阶延迟共轭相关的相位分布是否满足相位分布集中条件的过程可以实现为:确定目标样点数量在样点总数量中的占比;若占比大于第二预设阈值,则确定待检测信号的二阶延迟共轭相关的相位分布满足相位分布集中条件。
实际应用中,可以通过下述表达式确定二阶延迟共轭相关的相位分布是否满足相位分布集中条件:
Figure PCTCN2021074653-appb-000001
其中,Prob(m)表示目标样点数量在样点总数量中的占比。COR(m,1:end)表示待检测信号中包括的从第1个样点到第end个样点,对于其中的样点k来说,可以采用表达式4计算它的二阶延迟共轭滑动平均值,对于待检测信号 中包括的从第1个样点到第end个样点中的任一样点,都可以采用相同的方式计算二阶延迟共轭滑动平均值,这样可以获得待检测信号中包括的每个样点的二阶延迟共轭滑动平均值。COR(m,1:end)可以通过复数表示,可以对复数求角度,abs(Angle(COR(m,1:end))/π)表示对COR(m,1:end)求角度。length(abs(Angle(COR(m,1:end))/π)<ang th)表示计算二阶延迟共轭滑动平均值对应的角度小于ang th的数量。length(COR(m,1:end))表示待检测信号中包括的多个样点的样点总数量。通过表达式4可以计算出二阶延迟共轭滑动平均值对应的角度小于ang th的目标样点数量在样点总数量中的占比,如果该占比大于第二预设阈值,则可以确定待检测信号的二阶延迟共轭相关的相位分布满足相位分布集中条件。
需要说明的是,判断abs(Angle(COR(m,1:end))/π)<ang th的计算过程较为复杂,为了提高计算效率,本发明实施例提供了一种用于简便判断abs(Angle(COR(m,1:end))/π)<ang th的计算方法。
可选地,确定多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量的过程可以实现为:对于多个样点中的任一样点,确定任一样点的二阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;确定预设角度的正切值;若实数部分的模乘以正切值的积大于虚数部分的模,则确定任一样点的二阶延迟共轭滑动平均值对应的角度小于预设角度;统计多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量。
前面提及过COR(m,1:end)可以通过复数表示,那么判断abs(Angle(COR(m,1:end))/π)<ang th的过程可以转换为判断tan(ang th)×abs(I)>abs(Q)的过程,而相比于判断abs(Angle(COR(m,1:end))/π)<ang th,判断tan(ang th)×abs(I)>abs(Q)避免了角度计算过程,因此判断tan(ang th)×abs(I)>abs(Q)的过程要简便得多。
需要说明的是,tan(ang th)是可以配置的参数,可以通过对应的寄存器进行配置,例如通过RADAR_CR2_ANG_TH寄存器进行配置。在一种可能的实现方式中,可以将tan(ang th)标定为u(8,7)。其中,u表示unsigned,8表示tan (ang th)的总位宽为8位,7表示tan(ang th)的分数位为7位。
可以通过硬件电路来获取length(abs(Angle(COR(m,1:end))/π)<ang th),length(abs(Angle(COR(m,1:end))/π)<ang th)的值例如可以存储在RADAR_CR2_ANG_LEN中。
在获取length(abs(Angle(COR(m,1:end))/π)<ang th)的过程中,当FSM==1时,可以将RADAR_CR2_ANG_LEN清零,RADAR_CR2_ANG_LEN中保存了上一个脉冲信号到来时的计算结果,因此需要对RADAR_CR2_ANG_LEN清零。然后每到达待检测信号的一个样点,判断abs(Angle(COR(m,1:end))/π)<ang th是否能够成立,如果判断成立,则RADAR_CR2_ANG_LEN累加1,否则RADAR_CR2_ANG_LEN保持不变。当检测到下降沿到来或者满足其他脉冲信号结束判断条件时,也即FSM由1变为0,停止累加过程,RADAR_CR2_ANG_LEN保存的数据为待检测信号的length(abs(Angle(COR(m,1:end))/π)<ang th)结果。
如图5所示,是本发明实施例提供的用于进行共轭相关、滑动平均处理以及判断门限的硬件电路结构图。在图5中,待检测信号S(16,0)输入到延迟器中,可以通过配置相应的寄存器例如RADAR_CR2_D2_LEN寄存器来配置d2。经过延迟器信号输入到字母“MUX”标识的梯形图标表示的多路选择器,然后与原始的待检测信号S(16,0)进行字母“X”标识的圆形图标表示的共轭相乘,输出的信号记为C2 S(32,0)。上述操作可以作为共轭相关操作,接着进入到滑动平均操作。
C2 S(32,0)输入到延迟器,可以通过配置相应的寄存器例如RADAR_CR2_AVG_LEN来配置len2。经过延迟器信号输入到字母“MUX”标识的梯形图标表示的多路选择器,然后经过字母“+”标识的圆形图标表示的加、减法器,以加、减法器,得到结果记为S(35,0)。经过SAT(R>>log2(Len2))的位宽处理输出A2 S(32,0)。
A2 S(32,0)进入到“abs(Q)>TH0×abs(I)”判断A2 S(32,0)虚数部分的模是否大于一个门限值TH0与其实数部分的模的乘积,判断结果输入到 多路选择器,然后经过加法器,U(13,0)输入到“条件满足比较模块”,可以设置两个门限值包括Threshold_h和Threshold_l,然后经过“相关相位门限概率判断模块”。通过延迟器输出的信号为Length_angle。
通过本发明实施例提供的方法,在接收到待检测信号时,可以通过提取待检测信号的信号特征参数来判断该待检测信号是否是DFS信号。本发明实施例提供的判断方法较为准确,能够将Wi-Fi信号等相似于DFS信号的脉冲信号进行准确区分,这样也就不会将原本不是DFS信号的待检测信号误判为是DFS信号,进而也就不会由于误判而误认为待检测信号所在的频段被占用从而产生避让行为,故而采用本发明实施例提供的方法,可以有效提高通信效率。
本发明又一示例性实施例提供了一种信号识别装置,如图6所示,该装置包括处理器61,所述处理器61被配置为执行以下方法步骤:
获取待检测信号;
提取所述待检测信号的信号特征参数;
基于所述信号特征参数,确定所述待检测信号所属信号类别。
可选地,所述信号特征参数包括一阶延迟共轭相关的峰值均值功率比和二阶延迟共轭相关的相位分布。
可选地,所述处理器61,被配置为执行:
判断所述一阶延迟共轭相关的峰值均值功率比是否小于第一预设阈值,且所述二阶延迟共轭相关的相位分布是否满足相位集中分布条件;
若所述一阶延迟共轭相关的峰值均值功率比小于所述第一预设阈值,且所述二阶延迟共轭相关的相位分布满足所述相位集中分布条件,则确定所述待检测信号属于动态频率选择信号。
可选地,所述信号特征参数为所述一阶延迟共轭相关的峰值均值功率比,所述处理器61,被配置为执行:
确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值;
基于所述多个样点的一阶延迟共轭滑动平均值,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述处理器61,被配置为执行:
获取预先配置的一阶延迟长度和预先配置的一阶滑动平均长度;
基于所述一阶延迟长度和所述一阶滑动平均长度,确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值。
可选地,所述处理器61,被配置为执行:
确定所述多个样点的一阶延迟共轭滑动平均值的模;
在所述多个样点对应的模中确定最大的第一数值;
确定所述多个样点对应的模的和值;
获取所述多个样点的样点数量;
基于所述第一数值、所述和值以及所述样点数量,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述处理器61,被配置为执行:
对于所述多个样点中的任一样点,确定所述任一样点的一阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
若所述实数部分的模大于所述虚数部分的模,则将所述虚数部分的模右移两位,将右移后的虚数部分的模与所述实数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模;
若所述实数部分的模小于所述虚数部分的模,则将所述实数部分的模右移两位,将右移后的实数部分的模与所述虚数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模。
可选地,所述处理器61,被配置为执行:
将所述和值除以所述样点数量,得到模的平均值;
将所述第一数值除以所述模的平均值,得到所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
可选地,所述处理器61,被配置为执行:
当检测到所述待检测信号的上升沿时,控制比较器在所述多个样点对应的模中确定最大的第一数值;
当检测到所述待检测信号的上升沿时,控制累加器确定所述多个样点对应的模的和值;
当检测到所述待检测信号的上升沿时,控制计数器获取所述多个样点的样点数量。
可选地,所述信号特征参数为所述二阶延迟共轭相关的相位分布,所述处理器61,被配置为执行:
确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值;
基于所述多个样点的二阶延迟共轭滑动平均值,确定所述待检测信号的所述二阶延迟共轭相关的相位分布。
可选地,所述处理器61,被配置为执行:
获取预先配置的二阶延迟长度和预先配置的二阶滑动平均长度;
基于所述二阶延迟长度和所述二阶滑动平均长度,确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值。
可选地,所述处理器61,被配置为执行:
确定各样点的二阶延迟共轭滑动平均值分别对应的角度;
确定所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量;
获取所述多个样点的样点总数量;
基于所述目标样点数量以及所述样点总数量,确定所述待检测信号的所述二阶延迟共轭相关的相位分布;
所述判断所述二阶延迟共轭相关的相位分布是否满足相位分布集中条件,包括:
确定所述目标样点数量在所述样点总数量中的占比;
若所述占比大于第二预设阈值,则确定所述待检测信号的所述二阶延迟共轭相关的相位分布满足相位分布集中条件。
可选地,所述处理器61,被配置为执行:
对于所述多个样点中的任一样点,确定所述任一样点的二阶延迟共轭滑动 平均值的实数部分的模和虚数部分的模;
确定预设角度的正切值;
若所述实数部分的模乘以所述正切值的积大于所述虚数部分的模,则确定所述任一样点的二阶延迟共轭滑动平均值对应的角度小于所述预设角度;
统计所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量。
图6所示的信号识别装置可以执行图1-图5所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图5所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图5所示实施例中的描述,在此不再赘述。
图7为本发明实施例提供的一种电子设备的结构示意图,该电子设备包括图6所示实施例的信号识别装置71。
另外,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现如前述各实施例提供的信号识别方法。
以上各个实施例中的技术方案、技术特征在不相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本发明保护范围内的等同实施例。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (28)

  1. 一种信号识别方法,其特征在于,包括:
    获取待检测信号;
    提取所述待检测信号的信号特征参数;
    基于所述信号特征参数,确定所述待检测信号所属信号类别。
  2. 根据权利要求1所述的方法,其特征在于,所述信号特征参数包括一阶延迟共轭相关的峰值均值功率比和二阶延迟共轭相关的相位分布。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述信号特征参数,确定所述待检测信号所属信号类别,包括:
    判断所述一阶延迟共轭相关的峰值均值功率比是否小于第一预设阈值,且所述二阶延迟共轭相关的相位分布是否满足相位集中分布条件;
    若所述一阶延迟共轭相关的峰值均值功率比小于所述第一预设阈值,且所述二阶延迟共轭相关的相位分布满足所述相位集中分布条件,则确定所述待检测信号属于动态频率选择信号。
  4. 根据权利要求3所述的方法,其特征在于,所述信号特征参数为所述一阶延迟共轭相关的峰值均值功率比,所述提取所述待检测信号的信号特征参数,包括:
    确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值;
    基于所述多个样点的一阶延迟共轭滑动平均值,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值,包括:
    获取预先配置的一阶延迟长度和预先配置的一阶滑动平均长度;
    基于所述一阶延迟长度和所述一阶滑动平均长度,确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值。
  6. 根据权利要求4所述的方法,其特征在于,所述基于所述多个样点的一 阶延迟共轭滑动平均值,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比,包括:
    确定所述多个样点的一阶延迟共轭滑动平均值的模;
    在所述多个样点对应的模中确定最大的第一数值;
    确定所述多个样点对应的模的和值;
    获取所述多个样点的样点数量;
    基于所述第一数值、所述和值以及所述样点数量,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述多个样点的一阶延迟共轭滑动平均值的模,包括:
    对于所述多个样点中的任一样点,确定所述任一样点的一阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
    若所述实数部分的模大于所述虚数部分的模,则将所述虚数部分的模右移两位,将右移后的虚数部分的模与所述实数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模;
    若所述实数部分的模小于所述虚数部分的模,则将所述实数部分的模右移两位,将右移后的实数部分的模与所述虚数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模。
  8. 根据权利要求6所述的方法,其特征在于,所述基于所述第一数值、所述和值以及所述样点数量,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比,包括:
    将所述和值除以所述样点数量,得到模的平均值;
    将所述第一数值除以所述模的平均值,得到所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
  9. 根据权利要求6所述的方法,其特征在于,所述在所述多个样点对应的模中确定最大的第一数值,包括:
    当检测到所述待检测信号的上升沿时,通过比较器在所述多个样点对应的 模中确定最大的第一数值;
    所述确定所述多个样点对应的模的和值,包括:
    当检测到所述待检测信号的上升沿时,通过累加器确定所述多个样点对应的模的和值;
    所述获取所述多个样点的样点数量,包括:
    当检测到所述待检测信号的上升沿时,通过计数器获取所述多个样点的样点数量。
  10. 根据权利要求3所述的方法,其特征在于,所述信号特征参数为所述二阶延迟共轭相关的相位分布,所述提取所述待检测信号的信号特征参数,包括:
    确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值;
    基于所述多个样点的二阶延迟共轭滑动平均值,确定所述待检测信号的所述二阶延迟共轭相关的相位分布。
  11. 根据权利要求10所述的方法,其特征在于,所述确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值,包括:
    获取预先配置的二阶延迟长度和预先配置的二阶滑动平均长度;
    基于所述二阶延迟长度和所述二阶滑动平均长度,确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值。
  12. 根据权利要求10所述的方法,其特征在于,所述基于所述多个样点的二阶延迟共轭滑动平均值,确定所述待检测信号的所述二阶延迟共轭相关的相位分布,包括:
    确定各样点的二阶延迟共轭滑动平均值分别对应的角度;
    确定所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量;
    获取所述多个样点的样点总数量;
    基于所述目标样点数量以及所述样点总数量,确定所述待检测信号的所述二阶延迟共轭相关的相位分布;
    所述判断所述二阶延迟共轭相关的相位分布是否满足相位分布集中条件,包括:
    确定所述目标样点数量在所述样点总数量中的占比;
    若所述占比大于第二预设阈值,则确定所述待检测信号的所述二阶延迟共轭相关的相位分布满足相位分布集中条件。
  13. 根据权利要求12所述的方法,其特征在于,所述确定所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量,包括:
    对于所述多个样点中的任一样点,确定所述任一样点的二阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
    确定预设角度的正切值;
    若所述实数部分的模乘以所述正切值的积大于所述虚数部分的模,则确定所述任一样点的二阶延迟共轭滑动平均值对应的角度小于所述预设角度;
    统计所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量。
  14. 一种信号识别装置,其特征在于,所述装置包括处理器,所述处理器被配置为执行以下方法步骤:
    获取待检测信号;
    提取所述待检测信号的信号特征参数;
    基于所述信号特征参数,确定所述待检测信号所属信号类别。
  15. 根据权利要求14所述的装置,其特征在于,所述信号特征参数包括一阶延迟共轭相关的峰值均值功率比和二阶延迟共轭相关的相位分布。
  16. 根据权利要求15所述的装置,其特征在于,所述处理器,被配置为执行:
    判断所述一阶延迟共轭相关的峰值均值功率比是否小于第一预设阈值,且所述二阶延迟共轭相关的相位分布是否满足相位集中分布条件;
    若所述一阶延迟共轭相关的峰值均值功率比小于所述第一预设阈值,且所述二阶延迟共轭相关的相位分布满足所述相位集中分布条件,则确定所述待检 测信号属于动态频率选择信号。
  17. 根据权利要求16所述的装置,其特征在于,所述信号特征参数为所述一阶延迟共轭相关的峰值均值功率比,所述处理器,被配置为执行:
    确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值;
    基于所述多个样点的一阶延迟共轭滑动平均值,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
  18. 根据权利要求17所述的装置,其特征在于,所述处理器,被配置为执行:
    获取预先配置的一阶延迟长度和预先配置的一阶滑动平均长度;
    基于所述一阶延迟长度和所述一阶滑动平均长度,确定所述待检测信号中包括的多个样点的一阶延迟共轭滑动平均值。
  19. 根据权利要求17所述的装置,其特征在于,所述处理器,被配置为执行:
    确定所述多个样点的一阶延迟共轭滑动平均值的模;
    在所述多个样点对应的模中确定最大的第一数值;
    确定所述多个样点对应的模的和值;
    获取所述多个样点的样点数量;
    基于所述第一数值、所述和值以及所述样点数量,确定所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器,被配置为执行:
    对于所述多个样点中的任一样点,确定所述任一样点的一阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
    若所述实数部分的模大于所述虚数部分的模,则将所述虚数部分的模右移两位,将右移后的虚数部分的模与所述实数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模;
    若所述实数部分的模小于所述虚数部分的模,则将所述实数部分的模右移 两位,将右移后的实数部分的模与所述虚数部分的模相加,得到所述任一样点的一阶延迟共轭滑动平均值的模。
  21. 根据权利要求19所述的装置,其特征在于,所述处理器,被配置为执行:
    将所述和值除以所述样点数量,得到模的平均值;
    将所述第一数值除以所述模的平均值,得到所述待检测信号的所述一阶延迟共轭相关的峰值均值功率比。
  22. 根据权利要求19所述的装置,其特征在于,所述处理器,被配置为执行:
    当检测到所述待检测信号的上升沿时,控制比较器在所述多个样点对应的模中确定最大的第一数值;
    当检测到所述待检测信号的上升沿时,控制累加器确定所述多个样点对应的模的和值;
    当检测到所述待检测信号的上升沿时,控制计数器获取所述多个样点的样点数量。
  23. 根据权利要求16所述的装置,其特征在于,所述信号特征参数为所述二阶延迟共轭相关的相位分布,所述处理器,被配置为执行:
    确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值;
    基于所述多个样点的二阶延迟共轭滑动平均值,确定所述待检测信号的所述二阶延迟共轭相关的相位分布。
  24. 根据权利要求23所述的装置,其特征在于,所述处理器,被配置为执行:
    获取预先配置的二阶延迟长度和预先配置的二阶滑动平均长度;
    基于所述二阶延迟长度和所述二阶滑动平均长度,确定所述待检测信号中包括的多个样点的二阶延迟共轭滑动平均值。
  25. 根据权利要求23所述的装置,其特征在于,所述处理器,被配置为执行:
    确定各样点的二阶延迟共轭滑动平均值分别对应的角度;
    确定所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量;
    获取所述多个样点的样点总数量;
    基于所述目标样点数量以及所述样点总数量,确定所述待检测信号的所述二阶延迟共轭相关的相位分布;
    所述判断所述二阶延迟共轭相关的相位分布是否满足相位分布集中条件,包括:
    确定所述目标样点数量在所述样点总数量中的占比;
    若所述占比大于第二预设阈值,则确定所述待检测信号的所述二阶延迟共轭相关的相位分布满足相位分布集中条件。
  26. 根据权利要求25所述的装置,其特征在于,所述处理器,被配置为执行:
    对于所述多个样点中的任一样点,确定所述任一样点的二阶延迟共轭滑动平均值的实数部分的模和虚数部分的模;
    确定预设角度的正切值;
    若所述实数部分的模乘以所述正切值的积大于所述虚数部分的模,则确定所述任一样点的二阶延迟共轭滑动平均值对应的角度小于所述预设角度;
    统计所述多个样点中二阶延迟共轭滑动平均值对应的角度小于预设角度的目标样点数量。
  27. 一种电子设备,其特征在于,包括权利要求14-26中任意一项所述的信号识别装置。
  28. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-13中任一项所述的信号识别方法。
PCT/CN2021/074653 2021-02-01 2021-02-01 信号识别方法、装置、设备和存储介质 WO2022160336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074653 WO2022160336A1 (zh) 2021-02-01 2021-02-01 信号识别方法、装置、设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074653 WO2022160336A1 (zh) 2021-02-01 2021-02-01 信号识别方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022160336A1 true WO2022160336A1 (zh) 2022-08-04

Family

ID=82652908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074653 WO2022160336A1 (zh) 2021-02-01 2021-02-01 信号识别方法、装置、设备和存储介质

Country Status (1)

Country Link
WO (1) WO2022160336A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100039308A1 (en) * 2006-12-11 2010-02-18 Xirrus, Inc. System and method for detecting radar signals in wireless communications access points
CN101834676A (zh) * 2009-03-10 2010-09-15 雷凌科技股份有限公司 用于无线通信装置处理雷达信号的方法
CN103141142A (zh) * 2010-09-30 2013-06-05 频谱桥公司 用于协作频谱分析的系统和方法
US20140328286A1 (en) * 2012-01-19 2014-11-06 Cambium Networks Limited Radar detection in a broadband radio communication system
WO2018185612A1 (en) * 2017-04-03 2018-10-11 Amimon Ltd. In-service monitoring of dfs signals during analog video transmission
CN109587089A (zh) * 2018-12-12 2019-04-05 北航(四川)西部国际创新港科技有限公司 一种提升无人机信号识别准确度的方法
CN109729546A (zh) * 2017-10-27 2019-05-07 慧与发展有限责任合伙企业 波形模型

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100039308A1 (en) * 2006-12-11 2010-02-18 Xirrus, Inc. System and method for detecting radar signals in wireless communications access points
CN101834676A (zh) * 2009-03-10 2010-09-15 雷凌科技股份有限公司 用于无线通信装置处理雷达信号的方法
CN103141142A (zh) * 2010-09-30 2013-06-05 频谱桥公司 用于协作频谱分析的系统和方法
US20140328286A1 (en) * 2012-01-19 2014-11-06 Cambium Networks Limited Radar detection in a broadband radio communication system
WO2018185612A1 (en) * 2017-04-03 2018-10-11 Amimon Ltd. In-service monitoring of dfs signals during analog video transmission
CN109729546A (zh) * 2017-10-27 2019-05-07 慧与发展有限责任合伙企业 波形模型
CN109587089A (zh) * 2018-12-12 2019-04-05 北航(四川)西部国际创新港科技有限公司 一种提升无人机信号识别准确度的方法

Similar Documents

Publication Publication Date Title
US7729414B2 (en) Guard interval analysis method and apparatus
TW200421732A (en) Method and apparatus for selective disregard of co-channel transmissions on a medium
US8159932B1 (en) Initial timing estimation in a wireless network receiver
EP3136696B1 (en) Method and device for detecting audio signal according to frequency domain energy
JP2013258717A (ja) 無線マイクロフォン信号を検出するための無線センサ及びその方法
JP2015154306A (ja) 自動利得制御装置、自動利得制御方法、および受信装置
US7570193B2 (en) Detecting and recognizing long duration waveforms
US20080298514A1 (en) Method And Apparatus For Real-Time Pulse Parameter Estimator
WO2022160336A1 (zh) 信号识别方法、装置、设备和存储介质
US9608905B1 (en) Packet preamble and symbol boundary detection
JP4755077B2 (ja) 伝送モード、ガード長検出回路とその方法
CN108900445A (zh) 一种信号符号率估计的方法及装置
CN115065986B (zh) Wi-Fi信号处理方法、装置、电子设备及存储介质
US8615058B2 (en) Signal acquisition system
TWI779247B (zh) 封包偵測方法及通訊裝置
JP2005295446A (ja) 妨害波検出装置および妨害波検出プログラム
TWI530132B (zh) 正交頻分多址信號的接收方法與接收器
US20080175338A1 (en) Apparatus and method for detecting null symbols
CN113014362A (zh) 一种前导序列的检测方法、装置、设备及存储介质
CN1929683B (zh) 一种rssi滤波方法,滤波器装置及其实现电路
KR102338762B1 (ko) 항재밍 무선신호 수신장치
CN112769724B (zh) 对讲机的信号类型的识别方法、装置、设备及存储介质
CN116996166B (zh) Uwb信号重新标记位置确定方法、装置、设备及介质
US11329863B1 (en) System, method, and computer program for dynamic prioritization of monitoring system related alerts
US9179202B1 (en) Multiple-frequency signal classification through use of a second-order statistic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921936

Country of ref document: EP

Kind code of ref document: A1