WO2022158774A1 - System for evaluating residual value of battery module after use, and method therefor - Google Patents

System for evaluating residual value of battery module after use, and method therefor Download PDF

Info

Publication number
WO2022158774A1
WO2022158774A1 PCT/KR2022/000382 KR2022000382W WO2022158774A1 WO 2022158774 A1 WO2022158774 A1 WO 2022158774A1 KR 2022000382 W KR2022000382 W KR 2022000382W WO 2022158774 A1 WO2022158774 A1 WO 2022158774A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
battery
residual value
rate
charging
Prior art date
Application number
PCT/KR2022/000382
Other languages
French (fr)
Korean (ko)
Inventor
구회진
김유탁
권오준
유어현
정수안
차동민
이상아
유재승
Original Assignee
한국전지연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전지연구조합 filed Critical 한국전지연구조합
Publication of WO2022158774A1 publication Critical patent/WO2022158774A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/16Arrangements of batteries for propulsion on motorcycles or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a technology for recycling and remanufacturing a battery used as an electric vehicle or an energy storage device, and more particularly, it is used as a product with high performance value and economical efficiency in the recycling of a battery used as an electric vehicle or an energy storage device. It relates to a system and method for evaluating the residual value of each item subject to conversion to which the used battery can be applied so that the used battery can be reused and remanufactured.
  • a secondary battery refers to a battery that can be repeatedly charged and discharged, and is converted between chemical energy and electrical energy through an electrochemical reaction in which an internal active material is oxidized and reduced by charging and discharging. use the phenomenon.
  • An electric vehicle or a hybrid electric vehicle uses electric energy of such a secondary battery as a power source in an electric driving mode.
  • These replacement batteries have 80% capacity, so they can be reused as an electric vehicle battery again depending on the remaining lifespan or battery health status, or for purposes other than electric vehicle batteries through repurposing.
  • an object of the present invention is to estimate the state of health (SOH) of a battery module after disassembly in module units and charge for each item subject to change of use to which the battery can be applied after use based on the estimated remaining life. After estimating the life expectancy according to the discharge performance, by evaluating the residual value by applying the economic value to each applicable item, it provides a judgment criterion so that the battery can be reused and remanufactured as an item with high performance value and economic efficiency after use. An object of the present invention is to provide a system and method for evaluating the residual value of a battery module after use.
  • the after-use battery module residual value evaluation system of the present invention includes: a battery module after use, which is disassembled into a module unit; BMS; a residual value evaluation device connected to the battery module after use through the BMS to evaluate the residual value of the battery module after use; and a system; and the residual value evaluation device performs charging and discharging of the battery module after use according to a charge/discharge rate set in advance for each item to be used for conversion to which the used battery module can be reused and remanufactured.
  • a charge/discharge rate set in advance for each item to be used for conversion to which the used battery module can be reused and remanufactured.
  • the charge/discharge rate preset for each item subject to the change of use is 2 C-Rate when the battery module is applicable to at least one of frequency control ESS, wind power ESS, and uninterruptible power supply (UPS) after use, and electric cart battery, electricity 1 C-Rate if at least one of two-wheeled vehicle battery, ESS for emergency generator, and ESS for peak reduction is applicable, 1/3 C-Rat if applicable to solar ESS or electric vehicle battery, ESS for home use or electric wheelchair It is characterized in that it is 0.2 C-Rate when applicable as a power bank, e-bike battery, solar street lamp, and 0.1 C-Rate when applicable to at least one of electronic products.
  • UPS uninterruptible power supply
  • the residual value evaluation device repeatedly performs the operation of fully charging and completely discharging the battery module after use to estimate the remaining life for each preset number of cycles up to a preset battery capacity reduction rate point, and change the estimated residual life Based on the degree, the change in the remaining life for the total capacity of the battery is predicted, and the life expectancy of the battery module after use is estimated.
  • the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the battery replacement time for products applied for reuse/remanufacturing, is expected. calculated by lifespan.
  • the system and method for evaluating the residual value of a battery module after use according to the present invention the residual value reflecting the performance value and economic value for each item subject to change of use to which batteries used in electric vehicles or energy storage devices can be reused and remanufactured according to the present invention By evaluating it, it can be used as a re-use/remanufacturing judgment index to recycle the battery after use in a field with high performance value and economic benefit.
  • FIG. 1 is an internal configuration diagram of a battery module residual value evaluation system after use according to an embodiment of the present invention.
  • FIG. 2 is a graph for explaining the prediction of the battery module life expectancy after use according to an embodiment of the present invention.
  • 3 is a graph for explaining life expectancy prediction for each battery module item after use according to an embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining a method for evaluating the residual value of a battery module after use according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • FIG. 1 is an internal configuration diagram of a battery module residual value evaluation system after use according to an embodiment of the present invention.
  • the battery module residual value evaluation system after use is configured including the battery module 100, BMS 200, residual value evaluation device 300 and system 400 after use do.
  • a battery means a secondary battery capable of being charged and discharged by a chemical action using an electrolyte, a positive plate and a negative plate, and the battery module means a module including at least one such battery unit cell (battery cell).
  • the battery module may be configured by connecting a plurality of battery cells in series or parallel to each other, or may be configured with only a single battery cell. It is obvious that the number of battery cells included in the battery module may be variously changed according to voltage and capacity required for the battery module.
  • the type of the battery is not particularly limited, and may include a rechargeable lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydride battery, and a secondary battery such as a nickel zinc battery.
  • the battery management system (BMS) 200 is electrically connected to the after-use battery module 100 and the residual value evaluation device 300 to control charging and discharging operations of the battery module 100 after use.
  • the BMS 200 may be interconnected with the battery module 100 and the residual value evaluation device 300 after use through a controller area network (CAN).
  • the BMS 200 may perform an overcharge protection function, an overdischarge protection function, an overcurrent protection function, an overvoltage protection function, an overheat protection function, a cell balancing function, etc. as necessary to protect the battery.
  • the residual value evaluation device 300 estimates the remaining life (SOH) for the battery module 100 after use connected through the BMS 200, and based on the estimated residual life, the use conversion target to which the battery can be applied After predicting the life expectancy according to the charging and discharging performance for each item, the residual value by applying economic values to the life expectancy of each applicable item is evaluated.
  • the residual value evaluation apparatus 300 is configured to include a charging/discharging unit 310 , a memory 320 , a user interface unit (HMI) 330 , and a control unit 340 .
  • the charging/discharging unit 310 performs charging/discharging of the battery module after use according to the voltage and current required by the control unit 340 . After receiving power from the system, the charging/discharging unit 310 converts it to the voltage and current required by the control unit 340, and charges or discharges the battery according to the control command of the control unit 340, thereby charging the battery to a fully charged state, It can be made into a fully discharged state or a partially charged state. To this end, the charging/discharging unit 310 includes a charging unit (not shown) that performs a charging operation on the battery module after use, a discharging unit (not shown) that performs a discharging operation on the battery module after use, and use through charging and discharging. Then, it may be configured to include a sensor unit (not shown) for measuring voltage, current, temperature, and the like of the battery module.
  • the sensor unit measures the voltage and current of the battery module 100 after use, converts them into digital signals, and transmits them to the control unit 340 .
  • the sensor unit may be configured to additionally measure the temperature of the battery according to its implementation.
  • the sensor unit may include a current sensor for measuring the charging and discharging current supplied to the battery module, a voltage sensor for measuring the charging and discharging voltage of the battery module, and a temperature sensor for measuring the temperature of the battery module.
  • the charge voltage and the discharge voltage of the battery module after use may be an open circuit voltage of the battery module after use.
  • the user interface unit 330 receives the unique identification information for the battery module 100 after use connected to the residual value evaluation device and transmits it to the control unit 340 , so that the control unit 340 receives the unique identification information from the memory 320 .
  • the information on the battery module after use corresponding to the identification information is read, or the remaining life of the battery module after use calculated from the control unit, information on the items subject to conversion to which the battery can be applied after use, and the life expectancy and residual value results for each item are used After matching with the unique identification information of the battery module, it supports to be stored in the memory.
  • the user interface unit 330 may additionally include a reader for recognizing barcodes, RF-ID codes, QR codes, etc. that are separately attached to the battery module after use.
  • the memory 320 is a storage medium capable of writing and erasing data electrically, magnetically, optically, or quantum-mechanically, and may be a RAM, ROM, or register as a non-limiting example.
  • the memory 320 stores and/or updates and/or data generated when a program including various control logic executed by the control unit 340 and predefined parameters and/or control logic is executed. can be erased
  • the memory 320 can be logically divided into two or more, and is not limited to being included in the controller 340 .
  • unique information about the battery module 100 after use is matched with the unique identification information of the battery module after use and stored.
  • Unique identification information is a unique code created and registered for each battery module after use in the process of disassembling the battery pack for electric vehicles or energy storage devices into module units.
  • Product specifications, manufacturing information, electrical property information, electrochemical property information, usage conditions, environmental information, etc. may be included.
  • the memory 320 stores information on items subject to change of use applicable to each model of the battery module after use, and a C-Rate for each item so that the life expectancy and residual value can be calculated for each item subject to application.
  • the set value and the battery price for economic value judgment are stored.
  • the battery price for determining the economic value may be the battery unit price according to the number of cycles.
  • the applicable use conversion target item for each model of the battery module after use is a device that uses a secondary battery as a power source and refers to a device to which the battery module can be applied after use, for example, an uninterruptible power supply (UPS). ), a battery that supplies electricity to electronic products (stationary battery), a home or industrial energy storage device, or an energy storage device for renewable energy.
  • UPS uninterruptible power supply
  • model A of the battery module for electric vehicles may have a problem that the size or shape is not suitable for use as an uninterruptible power supply device. Inappropriate problems may arise.
  • information on items applicable for conversion of use for each model of battery module after use is stored in memory in advance, so that life expectancy estimation and residual value evaluation can be performed only for items to which the battery module is applicable after use.
  • SOH remaining life
  • a method of estimating the remaining life using the internal resistance and temperature of the battery a method of estimating the remaining life through a full charge/discharge test, and the like.
  • the battery module is completely discharged from a fully charged state to a fully discharged state, or the remaining capacity is calculated while fully charged from the fully discharged state, and the calculated remaining capacity is compared with the standard charging capacity of the battery module after use.
  • the remaining life of the battery module was estimated.
  • the method for estimating the remaining life of the battery after use is not limited thereto, and may be estimated through various methods.
  • the state of charge (SOC) of the battery module after use is a ratio of the charge capacity to the total capacity of the battery, and may be calculated based on the charge current input to the battery after use and the discharge current output from the battery. .
  • SOC state of charge
  • a method for estimating the remaining capacity of a battery has been described using a current integration method for integrating the charging current and the discharging current.
  • the method for estimating the remaining capacity of the battery is not limited thereto, either can be
  • the C-Rate which is the charge/discharge rate for each item subject to change of use for reuse/remanufacturing of the battery module after use
  • the control unit performs charging and discharging of the battery module after use according to the charge/discharge rate corresponding to the item to which the battery module can be applied after use, so that the battery module can be applied after use by each item. to estimate the remaining life.
  • the control unit is 2 C- Estimate the remaining life by performing charge/discharge by setting the charge/discharge rate as the rate.
  • charging/discharging is performed by setting the charge/discharge rate to 1 C-Rate, and the solar ESS and 1/3 C-Rate if applicable to batteries for electric vehicles, 0.2 C-Rate if applicable to home ESS and electric wheelchairs, 0.1 if applicable to at least one of power bank, e-bike battery, solar street light, and electronic products Charge/discharge with C-Rate.
  • C-Rate Applications 2C ESS for frequency control, ESS for wind power, uninterruptible power supply 1C Battery for electric cart, battery for electric two-wheeled vehicle, ESS for emergency generator, ESS for peak reduction 1/3C ESS for solar power, battery for electric vehicle 0.2C Home ESS, battery for electric wheelchair 0.1C Power bank, battery for electricity and electricity, solar street light battery, electronic product battery
  • the charge/discharge rate (C-Rate) is a word for predicting or indicating the setting of the current value under various usage conditions and the possible use time of the secondary battery during charging and discharging of the secondary battery, which is expressed in the following [Equation 1] ] can be expressed as
  • the full charge capacity (rated capacity) of the battery module is 1000 mAh (Apere-hour)
  • the charging current is 100 mA
  • the charge/discharge rate is 0.1C. If the charging current is 1000 mA, the charge/discharge rate is 1C, and the charging current is If it is 2000mA, the charge/discharge rate is 2C.
  • the control unit 340 repeats the operation of fully charging and fully discharging the battery module after use through the charging/discharging unit 310, and the remaining life (SOH) for each preset cycle (Cycle, number) unit up to the preset battery capacity reduction rate point. ) is estimated.
  • the controller estimates the life expectancy of the battery module after use by predicting the change in the remaining life with respect to the total capacity of the battery based on the estimated degree of change in the remaining life.
  • the cycle means one cycle of fully charging and completely discharging the module of the battery after use (or the operation of fully discharging and fully charging the battery module), and the life expectancy is how much longer the battery module will last.
  • an indicator indicating whether it can be used it indicates how many times the battery module can be fully charged and fully discharged according to the capacity of the battery module after use.
  • 80% of the battery capacity reduction rate which is the point at which the electric vehicle or energy storage device is replaced, is set as the reference point, and the remaining life of the battery module after use becomes the reference point (80% of the capacity reduction rate).
  • the operation of charging and completely discharging is repeatedly performed, but the remaining life is estimated in units of 100 cycles, and the remaining life of the entire battery after 80% of the capacity reduction rate based on the change (slope of the curve) estimated according to the number of cycles. Estimate the lifespan Through this, it is possible to infer the total lifespan without measuring the cycle life by charging and discharging the entire capacity of the battery after use.
  • control unit calculates the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the time of battery replacement for products applied for reuse/remanufacturing, the life expectancy. is calculated as
  • FIG. 2 is a graph for explaining the prediction of life expectancy of a battery module after use according to an embodiment of the present invention.
  • the battery module is 70% of the capacity reduction rate at the end of the battery life applied by reuse and remanufacturing. Since the number of cycles is 7000 Cycles, it can be estimated that the life expectancy of the battery module will be 3200 Cycles in the future when the battery module is reused and remanufactured after use.
  • control unit predicts the life expectancy for each item by performing charging and discharging by setting different charging/discharging rates for each item subject to change of use for reuse/remanufacturing of the battery module after use.
  • FIG. 3 is a graph for explaining the prediction of the life expectancy of each item subject to change of use of the battery module after use according to an embodiment of the present invention. Charging and discharging were repeatedly performed by setting each differently to C.
  • charging/discharging is performed by setting different charging/discharging rates for each item subject to change of use for reuse/remanufacturing of the battery module after use, and charging and discharging are performed respectively, and the battery, which is the point at which the electric vehicle or energy storage device is replaced
  • the remaining life of the entire battery after the capacity reduction rate of 80% is estimated based on the change in the estimated remaining life.
  • the estimated remaining life of the entire battery can be predicted by applying a linear equation to the slope of the curve connecting the estimated remaining life values up to a capacity reduction rate of 100 to 80%.
  • the battery module is reused as an uninterruptible power supply (2C-Rate). Since the number of cycles at 70% is 5000 Cycles, it can be estimated that the life expectancy of the battery module is 1000 Cycles in the future when it is reused as an uninterruptible power supply device of the battery module.
  • the controller may calculate the residual value of each item by applying the battery price pre-stored in the memory 320 to the calculated life expectancy for each item (by charge/discharge rate). For example, assuming that the expected lifespan of the battery module after use of A is 2000 cycles for UPS, 3000 cycles for home ESS, and 8000 cycles for IT equipment, the unit price of the battery for each cycle of UPS is 10 won, and household ESS If the battery unit price per cycle is 100 won and the battery unit price per cycle for IT devices is 0.5 won, the residual value of the battery module after using A is 20,000 won for UPS, 300,000 won for home ESS, and 4,000 won for IT devices. do.
  • the control unit 340 outputs the calculated residual life of the battery module after use, information on items subject to change of use to which the battery can be applied after use, expected lifespan for each item, and residual value results through the user interface unit 330 through the user interface unit 330, After use, the battery module can be provided as a standard for judging that the battery module can be reused and remanufactured as an item with high performance value and economic feasibility.
  • the control unit when the user inputs the residual value evaluation command through the user interface after connecting the battery module after use to the residual value evaluation device, the control unit After use, the unique information about the battery module is read from the memory, and information on items subject to change of use applicable to each model of the battery module after use is derived, and the C-Rate, the charge/discharge rate, is set differently for each derived item.
  • the life expectancy of each applicable item for reuse and remanufacturing is predicted, and the residual value of each applicable item is calculated based on this.
  • the user can use the life expectancy and residual value calculation results as economic feasibility determination indicators to recycle the battery module after use in a field with high performance value and economic benefit.
  • FIG. 4 is a flowchart illustrating a method for evaluating the residual value of a battery module after use according to an embodiment of the present invention.
  • the residual value evaluation device is connected to the battery disassembled in module unit through the BMS, and first, the battery module connected to the battery module connected to remove defects through the initial test has a charge/discharge rate of 3 C-Rate. to perform charging and/or discharging. At this time, the residual value evaluation device classifies the battery module after use as recycling when the numerical change of the voltage measured from the battery module after use is subtle or the change in charging or discharging capacity is not included within a preset range.
  • the battery applied to the present invention means a discarded battery or a battery with degraded performance, and is a large-capacity battery used in an electric vehicle or an energy storage device.
  • a unique code is generated and registered for each battery module after use, and after use, the unique information about the battery module is matched with the unique code that is the unique identification information of the battery module after use.
  • the unique information about the battery module after use may include a model name, product specification, manufacturing information, electrical characteristic information, electrochemical characteristic information, usage conditions, environmental information, etc. of the battery module after use.
  • the residual value evaluation device calculates the remaining life (SOH) of the battery module after use by performing charge and discharge at 1/3 C-Rate, which is the standard charge/discharge rate for reuse/remanufacturing at room temperature, and through the calculated residual life Predict the life expectancy (S220).
  • SOH remaining life
  • CO-Rate the standard charge/discharge rate for reuse/remanufacturing at room temperature
  • the battery module is completely discharged from the fully charged state to the fully discharged state, or the remaining capacity is calculated while fully charged from the fully discharged state, and the calculated residual capacity is compared with the standard charging capacity of the battery module after use. Estimate the remaining life of the module.
  • the operation of fully charging and completely discharging the battery module after use is repeatedly performed to estimate the remaining life in a preset unit of a predetermined number of times, and based on the degree of change in the estimated remaining life, the total capacity of the battery module after use Estimate the remaining life for
  • 80% of the battery capacity reduction rate which is the point at which the electric vehicle or energy storage device is replaced, is set as the reference point, and the remaining life of the battery module after use becomes the reference point (80% of the capacity reduction rate).
  • the operation of charging and completely discharging is repeated, but the remaining life is estimated in units of 100 cycles, and the remaining life of the entire battery after 80% of the capacity reduction rate based on the change (slope of the curve) estimated according to the number of cycles.
  • Estimate the lifespan The remaining life estimate for the entire battery can be predicted by applying a linear equation, etc. through the slope of a curve connecting the estimated remaining life values up to 100 to 80% of the capacity reduction rate. Through this, it is possible to infer the total lifespan without measuring the cycle life by charging and discharging the entire capacity of the battery after use.
  • the residual value evaluation device is the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the time of battery replacement for products applied for reuse/remanufacturing. is calculated as the life expectancy.
  • the battery module is 70% of the capacity reduction rate, which is the end point of the battery life applied by reuse and reprocessing. Since the number of cycles at the time is 7000 Cycles, it can be estimated that the life expectancy of the battery module is 3200 Cycles in the future when the battery module is reused after the corresponding use.
  • the residual value evaluation device reads information on items subject to change of use applicable to the battery module after use from the memory, sets different charge/discharge rates for each item subject to change of use, performs charge/discharge (S230), and uses each item. Then, the expected lifespan of each battery module is estimated (S240).
  • the residual value evaluation device performs charging and discharging by setting the charging/discharging rate of the battery module differently after use according to the preset charging/discharging rate (C-Rate) for each item subject to change of use, and the electric vehicle or energy storage device is replaced.
  • C-Rate charging/discharging rate
  • the control unit sets the charge/discharge rate at 2 C-Rate to charge Estimate the remaining life by performing discharge.
  • At least one battery module is applicable as an electric cart battery, an electric two-wheeled vehicle battery, an ESS for an emergency generator, or an ESS for peak reduction
  • charging/discharging is performed by setting the charge/discharge rate to 1 C-Rate, and the solar ESS and 1/3 C-Rate if applicable to batteries for electric vehicles, 0.2 C-Rate if applicable to home ESS and electric wheelchairs, 0.1 if applicable to at least one of power bank, e-bike battery, solar street light, and electronic products Charge/discharge with C-Rate.
  • the battery module is reused as an uninterruptible power supply (2C-Rate), the end point of the battery life. Since the number of cycles at the time of 70% of the phosphorus capacity reduction rate is 5000 Cycles, it can be estimated that the life expectancy in the case of reuse as an uninterruptible power supply of the battery module after use is 1000 Cycles in the future.
  • the residual value evaluation apparatus calculates the residual value of each item by applying the battery price pre-stored in the memory to the estimated life expectancy of each item ( S250 ). For example, assuming that the expected lifespan of the battery module after use of A is 2000 cycles for UPS, 3000 cycles for home ESS, and 8000 cycles for IT equipment, the unit price of the battery for each cycle of UPS is 10 won, and household ESS If the battery unit price per cycle is 100 won and the battery unit price per cycle for IT devices is 0.5 won, the residual value of the battery module after using A is 20,000 won for UPS, 300,000 won for home ESS, and 4,000 won for IT devices. do.
  • the user can utilize the battery module after use as a criterion for reusing and remanufactured as an item with high performance value and economic feasibility.
  • the present invention can be widely used in a system for evaluating the residual value of a battery module after use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to a technology for reuse and repurposing of a battery used for an electric vehicle or an energy storage device. More specifically, the present invention relates to a system and a method for evaluating residual value of each repurposable item to which a battery after use can be applied such that the battery after use can be reused and repurposed as a product having high performance value and economic feasibility in the recycling of a battery used for an electric vehicle or an energy storage device. To this end, the present invention provides criteria for determination such that the battery after use can be reused and repurposed as a product having high performance value and economic feasibility by: estimating the state of health (SOH) of a battery module after use that is disassembled into module units; on the basis of the estimated SOH, predicting life expectancy according to the charging and discharging performance for each repurposable item to which the battery after use can be applied; and then evaluating the residual value by applying economic value to each applicable item.

Description

사용 후 배터리 모듈 잔존 가치 평가 시스템 및 그 방법Battery module residual value evaluation system after use and method therefor
본 발명은 전기차 또는 에너지저장장치로 사용된 배터리의 재사용·재제조 기술에 관한 것으로, 더욱 상세하게는 전기차 또는 에너지지저장장치로 사용된 배터리의 재자원화에 있어서 성능가치 및 경제성이 높은 제품으로 사용 후 배터리가 재사용·재제조될 수 있도록, 사용 후 배터리가 적용될 수 있는 용도 전환 대상 품목별로 잔존 가치를 평가하는 시스템 및 방법에 관한 것이다. The present invention relates to a technology for recycling and remanufacturing a battery used as an electric vehicle or an energy storage device, and more particularly, it is used as a product with high performance value and economical efficiency in the recycling of a battery used as an electric vehicle or an energy storage device. It relates to a system and method for evaluating the residual value of each item subject to conversion to which the used battery can be applied so that the used battery can be reused and remanufactured.
일반적으로 2차전지(secondary battery)는 충전 및 방전을 반복하여 사용할 수 있는 전지를 말하며, 충전 및 방전에 의하여 내부 활성 물질이 산화, 환원되는 전기 화학적 반응을 통해 화학 에너지와 전기 에너지 간의 변환이 이루어지는 현상을 이용한다. 전기자동차 또는 하이브리드 전기 자동차는 전기 구동 모드에서 이와 같은 2차전지의 전기 에너지를 동력원으로 사용한다.In general, a secondary battery refers to a battery that can be repeatedly charged and discharged, and is converted between chemical energy and electrical energy through an electrochemical reaction in which an internal active material is oxidized and reduced by charging and discharging. use the phenomenon. An electric vehicle or a hybrid electric vehicle uses electric energy of such a secondary battery as a power source in an electric driving mode.
2차전지는 과방전 또는 과충전 등 비정상적인 사용에 의해 2차전지로서의 기능을 상실하기도 하지만, 정상적으로 사용되는 경우에도 전기 에너지를 저장하는 능력은 충전 및 방전횟수에 따라 점진적으로 감소한다. 전기자동차의 경우, 배터리가 초기 용량대비 80% 이하로 감소하면 주행거리 감소, 충전 속도 저하 및 안전성 위험 증가 등 운행상의 문제로 교체된다.A secondary battery may lose its function as a secondary battery due to abnormal use such as overdischarge or overcharge, but the ability to store electrical energy even when used normally decreases gradually according to the number of charging and discharging. In the case of electric vehicles, when the battery is reduced to less than 80% of its initial capacity, it is replaced with operational problems such as reduced mileage, reduced charging speed, and increased safety risk.
이러한 교체 대상 배터리는 80% 수준의 용량을 보유하고 있어, 잔존수명이나 배터리 건강상태 등에 따라 다시 전기차용 배터리로 재사용(Reuse) 될 수 있으며, 또는 재제조(Repurposing)를 통해 전기차용 배터리 이외의 목적으로 활용될 수 있다. 한국등록특허 제2043714호에 기재된 바와 같이, 전기자동차에서 교체된(탈거한) 배터리를 분해하여 다시 조합하는 재제조를 통해 골프카, 카트용 배터리로 사용하거나, 가정용, 산업용 ESS(에너지 저장장치) 및 신재생에너지 연계형 ESS로 사용이 가능하다.These replacement batteries have 80% capacity, so they can be reused as an electric vehicle battery again depending on the remaining lifespan or battery health status, or for purposes other than electric vehicle batteries through repurposing. can be used as As described in Korean Patent No. 2043714, it can be used as a battery for golf cars or carts through remanufacturing by disassembling and recombining the batteries replaced (removed) from electric vehicles, or ESS (energy storage system) for home and industrial use. and renewable energy-linked ESS.
그러나, 사용 후 배터리의 성능을 정확하게 파악하지 못하고 재사용·재제조되는 경우, 재사용·재제조 배터리가 갑작스럽게 수명을 종료하는 서든데스(sudden death)현상이 발생하는 문제점이 있다. 이에 따라, 재사용·재제조 시점에서의 사용 후 배터리의 건강상태 및 잔존용량을 정확히 분석해야할 뿐만 아니라, 전기차 또는 에너지저장장치용 배터리 이외의 목적으로 활용되는 경우, 사용 후 배터리의 가치 및 경제성을 충분히 확보할 수 있도록 용도 전환의 목적에 맞춰 사용 후 배터리의 잔존가치를 정확하게 평가할 필요가 있다.However, there is a problem in that when the battery is reused or remanufactured without accurately grasping the performance of the battery after use, a sudden death phenomenon occurs in which the reusable/remanufactured battery abruptly ends its lifespan. Accordingly, it is necessary not only to accurately analyze the health status and remaining capacity of the battery after use at the point of reuse and remanufacturing, but also to fully evaluate the value and economic feasibility of the battery after use when used for purposes other than batteries for electric vehicles or energy storage devices. It is necessary to accurately evaluate the residual value of the battery after use in accordance with the purpose of the change of use so that it can be secured.
하지만, 현재까지 사용 후 배터리의 잔존가치를 평가하는 방법은 존재하고 있지 않으며, 사용 후 배터리가 탈거되었을 때 일시적인 진단시험을 통해 재사용·재제조 가능 유·무만을 알려줄 뿐, 사용 후 배터리가 적용될 수 있는 용도 전환 대상 품목별로 기대수명 및 경제가치를 예측해주지는 못하고 있어, 이와 관련된 기술 개발이 시급한 실정이다.However, there is no method to evaluate the residual value of a battery after use, and when the battery is removed after use, it only informs whether the battery can be reused or remanufactured through a temporary diagnostic test. It is not possible to predict the life expectancy and economic value of each item subject to conversion, so it is urgent to develop related technologies.
본 발명은 상기한 종래 기술에 따른 문제점을 해결하기 위한 것이다. 즉, 본 발명의 목적은 모듈 단위로 분해된 사용 후 배터리 모듈의 잔존수명(State of Health: SOH)을 추정하고, 추정된 잔존수명을 기반으로 사용 후 배터리가 적용될 수 있는 용도 전환 대상 품목별로 충·방전 성능에 따른 기대수명을 예측한 후, 적용 대상 품목별로 경제성 가치를 적용한 잔존가치를 평가함으로써, 사용 후 배터리가 성능가치 및 경제성이 높은 품목으로 재사용·재제조될 수 있도록 판단기준을 제공하는 사용 후 배터리 모듈 잔존 가치 평가 시스템 및 그 방법을 제공함에 있다.The present invention is to solve the problems according to the prior art described above. That is, an object of the present invention is to estimate the state of health (SOH) of a battery module after disassembly in module units and charge for each item subject to change of use to which the battery can be applied after use based on the estimated remaining life. After estimating the life expectancy according to the discharge performance, by evaluating the residual value by applying the economic value to each applicable item, it provides a judgment criterion so that the battery can be reused and remanufactured as an item with high performance value and economic efficiency after use. An object of the present invention is to provide a system and method for evaluating the residual value of a battery module after use.
상기의 목적을 달성하기 위한 기술적 사상으로서 본 발명의 사용 후 배터리 모듈 잔존 가치 평가 시스템은, 모듈 단위로 분해된 사용 후 배터리 모듈; BMS; 상기 사용 후 배터리 모듈과 상기 BMS를 통해 연결되어 상기 사용 후 배터리 모듈의 잔존 가치를 평가하는 잔존 가치 평가 장치; 및 계통;을 포함하여 구성되며, 상기 잔존 가치 평가 장치는, 상기 사용 후 배터리 모듈이 재사용·재재조로 적용될 수 있는 용도 전환 대상 품목별로 미리 설정된 충방전율에 따라 사용 후 배터리 모듈의 충방전을 각각 수행하여, 품목별 기대수명을 각각 산출하는 것을 특징으로 한다.As a technical idea for achieving the above object, the after-use battery module residual value evaluation system of the present invention includes: a battery module after use, which is disassembled into a module unit; BMS; a residual value evaluation device connected to the battery module after use through the BMS to evaluate the residual value of the battery module after use; and a system; and the residual value evaluation device performs charging and discharging of the battery module after use according to a charge/discharge rate set in advance for each item to be used for conversion to which the used battery module can be reused and remanufactured. Thus, it is characterized in that the life expectancy of each item is calculated respectively.
상기 용도 전환 대상 품목별로 미리 설정된 충방전율은, 상기 사용 후 배터리 모듈이 주파수조절용 ESS, 풍력용 ESS, 무정전 전원 장치(UPS) 중 적어도 하나 이상 적용 가능한 경우 2 C-Rate이고, 전동카트 배터리, 전기이륜차 배터리, 비상발전기용 ESS, 피크저감용 ESS로 중 적어도 하나 이상 적용 가능한 경우 1 C-Rate이고, 태양광용 ESS 또는 전기차용 배터리로 적용 가능한 경우 1/3 C-Rat이고, 가정용 ESS 또는 전동휠체어로 적용 가능한 경우 0.2 C-Rate이고, 파워뱅크, 전기자전거 배터리, 태양 가로등, 전자제품 중 적어도 하나 이상 적용 가능한 경우 0.1 C-Rate인 것을 특징으로 한다.The charge/discharge rate preset for each item subject to the change of use is 2 C-Rate when the battery module is applicable to at least one of frequency control ESS, wind power ESS, and uninterruptible power supply (UPS) after use, and electric cart battery, electricity 1 C-Rate if at least one of two-wheeled vehicle battery, ESS for emergency generator, and ESS for peak reduction is applicable, 1/3 C-Rat if applicable to solar ESS or electric vehicle battery, ESS for home use or electric wheelchair It is characterized in that it is 0.2 C-Rate when applicable as a power bank, e-bike battery, solar street lamp, and 0.1 C-Rate when applicable to at least one of electronic products.
상기 잔존 가치 평가 장치는, 상기 사용 후 배터리 모듈을 완전 충전 및 완전 방전 시키는 동작을 반복 수행하여, 미리 설정된 배터리 용량감소율 지점까지 미리 설정된 사이클 횟수 단위별로 잔존수명을 추정하고, 추정된 잔존수명의 변화 정도에 기초하여 배터리 전체 용량에 대한 잔존수명 변화를 예측하여, 사용 후 배터리 모듈의 기대수명을 추정한다.The residual value evaluation device repeatedly performs the operation of fully charging and completely discharging the battery module after use to estimate the remaining life for each preset number of cycles up to a preset battery capacity reduction rate point, and change the estimated residual life Based on the degree, the change in the remaining life for the total capacity of the battery is predicted, and the life expectancy of the battery module after use is estimated.
본 발명에서는 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%를 기준점으로 설정하여, 사용 후 배터리 모듈의 잔존수명이 기준점(용량감소율의 80%)이 될 때까지 완전 충전 및 완전 방전시키는 동작을 반복수행하되, 100cycle 단위로 잔존수명을 추정하고, 사이클 횟수에 따라 추정된 잔존수명 값들을 연결한 곡선의 기울기에 기초하여 용량감소율의 80% 이후에 대한 잔존수명을 추정한다.In the present invention, 80% of the battery capacity reduction rate, which is the point at which the electric vehicle or energy storage device is replaced, is set as the reference point, and after use, the battery module is fully charged and fully charged until the remaining life of the battery module becomes the reference point (80% of the capacity reduction rate). Repeat the discharging operation, but estimate the remaining life in units of 100 cycles, and estimate the remaining life after 80% of the capacity reduction rate based on the slope of the curve connecting the residual life values estimated according to the number of cycles.
또한, 본 발명에서는 전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%인 시점부터, 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 기대수명으로 산출한다.In addition, in the present invention, the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the battery replacement time for products applied for reuse/remanufacturing, is expected. calculated by lifespan.
더불어, 상기 잔존 가치 평가 장치는, 상기 각각 산출된 기대수명에 미리 설정된 품목별 경제 가치 기준을 적용하여 사용 후 배터리 모듈의 품목별 잔존 가치를 산출한다.In addition, the residual value evaluation apparatus calculates the residual value of each item of the battery module after use by applying a preset economic value standard for each item to the calculated life expectancy.
본 발명에 따른 사용 후 배터리 모듈 잔존 가치 평가 시스템 및 방법은, 전기차 또는 에너지저장장치에 사용된 배터리가 재사용·재제조로 적용될 수 있는 용도 전환 대상 품목별로, 성능가치 및 경제가치가 반영된 잔존가치를 평가함으로써, 이를 재사용·재제조 판단지표로 활용하여 성능가치 및 경제적 이득이 높은 분야에서 사용 후 배터리를 재자원화 시킬 수 있다.The system and method for evaluating the residual value of a battery module after use according to the present invention, the residual value reflecting the performance value and economic value for each item subject to change of use to which batteries used in electric vehicles or energy storage devices can be reused and remanufactured according to the present invention By evaluating it, it can be used as a re-use/remanufacturing judgment index to recycle the battery after use in a field with high performance value and economic benefit.
도 1은 본 발명의 일실시예에 따른 사용 후 배터리 모듈 잔존 가치 평가 시스템의 내부 구성도.1 is an internal configuration diagram of a battery module residual value evaluation system after use according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 사용 후 배터리 모듈 기대수명 예측을 설명하기 위한 그래프.2 is a graph for explaining the prediction of the battery module life expectancy after use according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 사용 후 배터리 모듈 품목별 기대수명 예측을 설명하기 위한 그래프.3 is a graph for explaining life expectancy prediction for each battery module item after use according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 사용 후 배터리 모듈 잔존 가치 평가 방법을 설명하기 위한 순서도.4 is a flowchart for explaining a method for evaluating the residual value of a battery module after use according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다.Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text.
그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification is present, but one or more other features or It should be understood that the existence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded in advance.
이하, 본 발명의 바람직한 실시예를 첨부 도면에 의거하여 상세하게 설명하기로 한다.Hereinafter, a preferred embodiment of the present invention will be described in detail based on the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 사용 후 배터리 모듈 잔존 가치 평가 시스템의 내부구성도이다.1 is an internal configuration diagram of a battery module residual value evaluation system after use according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 사용 후 배터리 모듈 잔존 가치 평가 시스템은 사용 후 배터리 모듈(100), BMS(200), 잔존 가치 평가 장치(300) 및 계통(400)을 포함하여 구성된다.As shown in Figure 1, the battery module residual value evaluation system after use according to the present invention is configured including the battery module 100, BMS 200, residual value evaluation device 300 and system 400 after use do.
배터리는 전해액, 양극판과 음극판을 사용하여 화학 작용에 의해 충방전이 가능한 이차전지를 의미하며, 배터리 모듈은 이러한 배터리 단위전지(배터리 셀)가 적어도 하나 이상으로 이루어진 모듈을 의미한다. A battery means a secondary battery capable of being charged and discharged by a chemical action using an electrolyte, a positive plate and a negative plate, and the battery module means a module including at least one such battery unit cell (battery cell).
배터리 모듈은 다수의 배터리 셀들이 상호 간에 직렬 또는 병렬로 연결되어 구성될 수 있으며, 단일 배터리 셀만으로 구성될 수도 있다. 배터리 모듈에 포함되는 배터리 셀 개수는 배터리 모듈에 요구되는 전압 및 용량에 따라 다양하게 변경될 수 있음은 자명하다. 배터리의 종류는 특별히 한정되지 않으며, 재충전이 가능한 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등의 이차 전지로 구성될 수 있다. The battery module may be configured by connecting a plurality of battery cells in series or parallel to each other, or may be configured with only a single battery cell. It is obvious that the number of battery cells included in the battery module may be variously changed according to voltage and capacity required for the battery module. The type of the battery is not particularly limited, and may include a rechargeable lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydride battery, and a secondary battery such as a nickel zinc battery.
본 발명의 실시예에 따른 배터리는 폐기 처리된 폐배터리이거나 성능 저하된 배터리로, 전기차 또는 에너지저장장치에서 사용된 대용량 배터리일 수 있으며, 사용 후 배터리 모듈은 패터리 팩에서 모듈 단위로 분해된 배터리를 의미한다.The battery according to an embodiment of the present invention may be a discarded waste battery or a battery with degraded performance, and may be a large-capacity battery used in an electric vehicle or an energy storage device, and the battery module after use is a battery decomposed into module units in a battery pack means
BMS(배터리 관리 시스템, 200)는 사용 후 배터리 모듈(100)과 잔존 가치 평가 장치(300)에 전기적으로 연결되어, 사용 후 배터리 모듈(100)의 충전 및 방전 동작을 제어한다. 예를 들어, BMS(200)는 사용 후 배터리 모듈(100) 및 잔존 가치 평가 장치(300)와 CAN(Controller Area Network)을 통해 상호 접속될 수 있다. BMS(200)는 배터리를 보호하기 위하여 필요에 따라 과충전 보호 기능, 과방전 보호 기능, 과전류 보호 기능, 과전압 보호 기능, 과열 보호 기능, 셀 밸런싱(cell balancing) 기능 등을 수행할 수 있다.The battery management system (BMS) 200 is electrically connected to the after-use battery module 100 and the residual value evaluation device 300 to control charging and discharging operations of the battery module 100 after use. For example, the BMS 200 may be interconnected with the battery module 100 and the residual value evaluation device 300 after use through a controller area network (CAN). The BMS 200 may perform an overcharge protection function, an overdischarge protection function, an overcurrent protection function, an overvoltage protection function, an overheat protection function, a cell balancing function, etc. as necessary to protect the battery.
잔존 가치 평가 장치(300)는 BMS(200)를 통해 연결된 사용 후 배터리 모듈(100)에 대한 잔존수명(SOH)을 추정하고, 추정된 잔존수명을 기반으로 사용 후 배터리가 적용될 수 있는 용도 전환 대상 품목별로 충·방전 성능에 따른 기대수명을 예측한 후, 적용 대상 품목별 기대수명에 경제적 가치를 적용한 잔존 가치를 평가한다. 이를 위해, 잔존 가치 평가 장치(300)는 충방전부(310), 메모리(320), 사용자 인터페이스부(HMI, 330) 및 제어부(340)를 포함하여 구성된다.The residual value evaluation device 300 estimates the remaining life (SOH) for the battery module 100 after use connected through the BMS 200, and based on the estimated residual life, the use conversion target to which the battery can be applied After predicting the life expectancy according to the charging and discharging performance for each item, the residual value by applying economic values to the life expectancy of each applicable item is evaluated. To this end, the residual value evaluation apparatus 300 is configured to include a charging/discharging unit 310 , a memory 320 , a user interface unit (HMI) 330 , and a control unit 340 .
충방전부(310)는 제어부(340)에서 요구하는 전압 및 전류에 맞춰 사용 후 배터리 모듈의 충방전을 수행한다. 충방전부(310)는 계통으로부터 전원을 인가 받은 후 이를 제어부(340)에서 요구하는 전압 및 전류로 변환하여, 제어부(340)의 제어 명령에 따라 배터리를 충전 또는 방전시킴으로써, 배터리를 완전 충전 상태, 완전 방전 상태 또는 부분 충전 상태로 만들 수 있다. 이를 위해, 충방전부(310)는 사용 후 배터리 모듈에 대한 충전 동작을 수행하는 충전부(미도시)와, 사용 후 배터리 모듈에 대한 방전 동작을 수행하는 방전부(미도시) 및 충방전을 통한 사용 후 배터리 모듈의 전압, 전류 및 온도 등을 측정하는 센서부(미도시)를 포함하여 구성될 수 있다.The charging/discharging unit 310 performs charging/discharging of the battery module after use according to the voltage and current required by the control unit 340 . After receiving power from the system, the charging/discharging unit 310 converts it to the voltage and current required by the control unit 340, and charges or discharges the battery according to the control command of the control unit 340, thereby charging the battery to a fully charged state, It can be made into a fully discharged state or a partially charged state. To this end, the charging/discharging unit 310 includes a charging unit (not shown) that performs a charging operation on the battery module after use, a discharging unit (not shown) that performs a discharging operation on the battery module after use, and use through charging and discharging. Then, it may be configured to include a sensor unit (not shown) for measuring voltage, current, temperature, and the like of the battery module.
즉, 충전부는 제어부(340)로부터 사용 후 배터리 모듈의 충전 명령이 입력되면, 계통(400)으로부터 공급되는 전력을 제어부(340)에서 요구하는 형태로 변환한 후 사용 후 배터리 모듈에 공급하여 사용 후 배터리 모듈을 충전시킨다. 이와 반대로 방전부는 사용 후 배터리 모듈로부터 공급되는 전력을 제어부(340)에서 요구하는 형태로 변환한 후 계통(400)으로 출력한다. That is, when a charge command of the battery module after use is input from the control unit 340 , the charging unit converts the power supplied from the system 400 into a form required by the control unit 340 , and then supplies it to the battery module after use. Charge the battery module. Conversely, the discharge unit converts the power supplied from the battery module after use into a form required by the control unit 340 and outputs it to the system 400 .
센서부는 사용 후 배터리 모듈(100)의 전압 및 전류를 측정하고, 이를 디지털 신호로 변환하여 제어부(340)로 전송한다. 센서부는 그 구현에 따라 배터리의 온도를 추가적으로 측정하도록 구성될 수 있다. 이를 위해, 센서부는 배터리 모듈에 공급되는 충전 전류 및 방전 전류를 측정하는 전류 센서, 배터리 모듈의 충전 전압 및 방전 전압을 측정하는 전압 센서, 배터리 모듈의 온도를 측정하는 온도 센서를 포함할 수 있다. 여기서, 사용 후 배터리 모듈의 충전 전압과 방전 전압은 사용 후 배터리 모듈의 개방전압(open circuit voltage)일 수 있다.The sensor unit measures the voltage and current of the battery module 100 after use, converts them into digital signals, and transmits them to the control unit 340 . The sensor unit may be configured to additionally measure the temperature of the battery according to its implementation. To this end, the sensor unit may include a current sensor for measuring the charging and discharging current supplied to the battery module, a voltage sensor for measuring the charging and discharging voltage of the battery module, and a temperature sensor for measuring the temperature of the battery module. Here, the charge voltage and the discharge voltage of the battery module after use may be an open circuit voltage of the battery module after use.
사용자 인터페이스부(330)는 사용자와 상호작용하기 위한 입/출력 수단으로서, 사용자로부터 사용 후 배터리 모듈에 대한 잔존 가치 평가를 수행하기 위한 명령을 입력받으며, 제어부(340)로부터 산출된 사용 후 배터리 모듈에 대한 잔존수명, 해당 사용 후 배터리가 적용 가능한 용도 전환 대상 품목 정보, 품목별 기대수명 및 잔존가치 결과를 출력한다.The user interface unit 330 is an input/output means for interacting with the user, and receives a command for performing residual value evaluation of the battery module after use from the user, and the battery module after use calculated from the control unit 340 . Outputs the remaining life of the battery, information on the items subject to conversion to which the battery can be applied after use, and the expected life expectancy and residual value results for each item.
또한, 사용자 인터페이스부(330)는 잔존 가치 평가 장치에 연결된 사용 후 배터리 모듈(100)에 대한 고유식별정보를 입력받아 제어부(340)로 전송함으로써, 제어부(340)가 메모리(320)로부터 해당 고유식별정보에 해당하는 사용 후 배터리 모듈에 대한 정보를 독출하거나, 제어부로부터 산출된 사용 후 배터리 모듈에 대한 잔존수명, 사용 후 배터리가 적용 가능한 용도 전환 대상 품목 정보, 품목별 기대수명 및 잔존가치 결과를 사용 후 배터리 모듈의 고유식별정보에 매칭시켜 메모리에 저장시킬 수 있도록 지원한다. 이를 위해, 사용자 인터페이스부(330)는 사용 후 배터리 모듈에 별도로 부착되어 있는 바코드, RF-ID코드, QR코드 등을 인식하기 위한 리더기를 추가로 구비할 수 있다.In addition, the user interface unit 330 receives the unique identification information for the battery module 100 after use connected to the residual value evaluation device and transmits it to the control unit 340 , so that the control unit 340 receives the unique identification information from the memory 320 . The information on the battery module after use corresponding to the identification information is read, or the remaining life of the battery module after use calculated from the control unit, information on the items subject to conversion to which the battery can be applied after use, and the life expectancy and residual value results for each item are used After matching with the unique identification information of the battery module, it supports to be stored in the memory. To this end, the user interface unit 330 may additionally include a reader for recognizing barcodes, RF-ID codes, QR codes, etc. that are separately attached to the battery module after use.
메모리(320)는 전기적, 자기적, 광학적 또는 양자역학적으로 데이터를 기록하고 소거할 수 있는 저장매체이고, 비제한적인 예시로서 RAM, ROM 또는 레지스터일 수 있다. 바람직하게, 메모리(320)는 제어부(340)에 의해 실행되는 각종 제어 로직을 포함하는 프로그램과 미리 정의된 파라미터들, 및/또는 제어 로직이 실행될 때 발생되는 데이터를 저장 및/또는 갱신 및/또는 소거할 수 있다. 상기 메모리(320)는 논리적으로 2개 이상 분할 가능하고, 상기 제어부(340) 내에 포함되는 것을 제한하지 않는다. The memory 320 is a storage medium capable of writing and erasing data electrically, magnetically, optically, or quantum-mechanically, and may be a RAM, ROM, or register as a non-limiting example. Preferably, the memory 320 stores and/or updates and/or data generated when a program including various control logic executed by the control unit 340 and predefined parameters and/or control logic is executed. can be erased The memory 320 can be logically divided into two or more, and is not limited to being included in the controller 340 .
메모리(320)에는 사용 후 배터리 모듈(100)에 대한 고유정보가 사용 후 배터리 모듈의 고유식별정보에 매칭되어 저장되어 있다. 고유식별정보는 전기차용 또는 에너지저장장치용 배터리팩을 모듈 단위로 분해하는 과정에서 사용 후 배터리 모듈별로 생성되어 등록되는 고유코드이며, 사용 후 배터리 모듈에 대한 고유정보에는 사용 후 배터리 모듈의 모델명, 제품규격, 제조정보, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건, 환경 정보 등이 포함될 수 있다.In the memory 320, unique information about the battery module 100 after use is matched with the unique identification information of the battery module after use and stored. Unique identification information is a unique code created and registered for each battery module after use in the process of disassembling the battery pack for electric vehicles or energy storage devices into module units. Product specifications, manufacturing information, electrical property information, electrochemical property information, usage conditions, environmental information, etc. may be included.
또한, 메모리(320)에는 사용 후 배터리 모듈의 모델별로 적용 가능한 용도 전환 대상 품목에 대한 정보가 저장되어 있으며, 적용 대상 품목별로 기대수명 및 잔존가치를 산출할 수 있도록 품목별 씨레이트(C-Rate) 설정값과 경제성 가치 판단을 위한 배터리 가격 등이 저장되어 있다. 이때, 경제성 가치 판단을 위한 배터리 가격은 Cycle 횟수에 따른 배터리 단가 일 수 있다.In addition, the memory 320 stores information on items subject to change of use applicable to each model of the battery module after use, and a C-Rate for each item so that the life expectancy and residual value can be calculated for each item subject to application. The set value and the battery price for economic value judgment are stored. In this case, the battery price for determining the economic value may be the battery unit price according to the number of cycles.
본 발명에 따른 사용 후 배터리 모듈의 모델별로 적용 가능한 용도 전환 대상 품목은 2차전지를 동력원으로 사용하는 장치로 사용 후 배터리 모듈이 적용될 수 있는 장치를 뜻하며, 구체적인 예로 무정전 전원 장치(UPS: uninterruptible power supply), 전자제품에 전기를 공급하는 배터리(stationary battery), 가정용 또는 산업용 에너지저장장치, 또는 신재생 에너지용 에너지저장장치 등이 될 수 있다.According to the present invention, the applicable use conversion target item for each model of the battery module after use is a device that uses a secondary battery as a power source and refers to a device to which the battery module can be applied after use, for example, an uninterruptible power supply (UPS). ), a battery that supplies electricity to electronic products (stationary battery), a home or industrial energy storage device, or an energy storage device for renewable energy.
그러나, 전기차용 또는 에너지저장장치용 사용 후 배터리 모듈은 제조사별 및 모델별로 각각 다른 크기와 모양을 가지고 있으며, 사용 후 배터리 모듈이 재사용·재제조로 적용되기에 불가능한 용도 전환 대상 품목이 존재할 수 있다. 예를 들어, 전기차용 배터리 모듈의 A모델은 크기나 모양이 무정전 전원 장치용으로 사용되기에 적절하지 않는 문제가 발생할 수 있으며, 에너지저장장치용 B모델은 활물질의 구성이 소형 IT기기로 사용되기에 적절하지 않는 문제가 발생할 수 있다.However, used battery modules for electric vehicles or energy storage devices have different sizes and shapes for each manufacturer and model, and there may be items subject to conversion that are impossible because the battery module is reused or remanufactured after use. . For example, model A of the battery module for electric vehicles may have a problem that the size or shape is not suitable for use as an uninterruptible power supply device. Inappropriate problems may arise.
이에 따라, 본 발명에서는 사용 후 배터리 모듈의 모델별로 적용 가능한 용도 전환 대상 품목에 대한 정보가 미리 메모리에 저장되어 있어, 사용 후 배터리 모듈이 적용 가능한 품목에 대해서만 기대수명 추정 및 잔존가치 평가를 수행할 수 있다.Accordingly, in the present invention, information on items applicable for conversion of use for each model of battery module after use is stored in memory in advance, so that life expectancy estimation and residual value evaluation can be performed only for items to which the battery module is applicable after use. can
제어부(340)는 충방전부(310)를 통해 사용 후 배터리 모듈을 충방전시키면서잔존수명(SOH)을 추정한다. 잔존수명(SOH)은 배터리가 사용됨에 따라 발생하는 용량의 변화를 정량적으로 나타내주는 파라미터로, 실제 용량에 대한 만충전 용량의 백분율로 표현될 수 있다. 만충전 용량은 배터리가 실제로 수용할 수 있는 최대의 전하량을 나타내는 것으로서, 배터리의 충방전 횟수가 증가함에 따라 점차적으로 낮아진다는 점에서, 고정된 값의 설계 용량과는 구별되는 것이다.The control unit 340 estimates the remaining life (SOH) while charging and discharging the battery module after use through the charging/discharging unit 310 . Residual life (SOH) is a parameter that quantitatively represents a change in capacity that occurs as a battery is used, and may be expressed as a percentage of a full charge capacity to an actual capacity. The full charge capacity represents the maximum amount of charge that the battery can actually accommodate, and is distinguished from the design capacity of a fixed value in that it gradually decreases as the number of times of charging and discharging of the battery increases.
이러한 잔존수명(SOH)을 추정하는 방법은 매우 다양하다. 예를 들어, 배터리의 내부저항과 온도를 이용하여 잔존수명을 추정하는 방법, 완전 충방전 테스트를 통해 잔존수명을 추청하는 방법 등이 존재한다. 본 발명에서는 사용 후 배터리 모듈을 완전 충전 상태에서 완전 방전 상태로 완전 방전시키거나, 완전 방전 상태에서 완전 충전 시키면서 잔존용량을 산출하고, 산출된 잔존용량을 배터리 모듈의 기준 충전 용량과 비교하여 사용 후 배터리 모듈의 잔존수명을 추정하였다. 그러나 사용 후 배터리의 잔존수명을 추정하는 방법은 이에 한정되지 않으며, 다양한 방법을 통해 추정될 수 있다.There are many different methods for estimating the remaining life (SOH). For example, there are a method of estimating the remaining life using the internal resistance and temperature of the battery, a method of estimating the remaining life through a full charge/discharge test, and the like. In the present invention, after use, the battery module is completely discharged from a fully charged state to a fully discharged state, or the remaining capacity is calculated while fully charged from the fully discharged state, and the calculated remaining capacity is compared with the standard charging capacity of the battery module after use. The remaining life of the battery module was estimated. However, the method for estimating the remaining life of the battery after use is not limited thereto, and may be estimated through various methods.
여기서, 사용 후 배터리 모듈의 잔존용량(State of Charge, SOC)은 배터리의 전체 용량 대비 충전 용량의 비율로서, 사용후 배터리에 입력되는 충전전류와 배터리로부터 출력되는 방전전류에 기초하여 산출될 수 있다. 본 발명의 실시예에서는 충전 전류와 방전 전류를 적산하는 전류적산법을 이용하여 배터리의 잔존용량을 추정하는 방법을 설명하였으나, 배터리의 잔존용량을 추정 하는 방법 역시 이에 한정되지 않으며, 다양한 방법을 통해 추정될 수 있다.Here, the state of charge (SOC) of the battery module after use is a ratio of the charge capacity to the total capacity of the battery, and may be calculated based on the charge current input to the battery after use and the discharge current output from the battery. . In the embodiment of the present invention, a method for estimating the remaining capacity of a battery has been described using a current integration method for integrating the charging current and the discharging current. However, the method for estimating the remaining capacity of the battery is not limited thereto, either can be
사용 후 배터리가 재사용·재제조로 적용되는 제품은 제품별로 각기 다른 전력공급능력을 가지며, 이에 따라 제품별로 각각 다른 충방전율(C-Rate)을 가진다. 따라서, 동일한 배터리일지라도 배터리의 잔존수명은 재사용·재제조로 적용되기 위한 제품의 충방전율(C-Rate)에 따라 각각 다르게 나타나며, 잔존수명이 다르게 나타나는 만큼 이를 기반으로 예측되는 기대수명 또한 달라진다.Products to which batteries are reused or remanufactured after use have different power supply capabilities for each product, and accordingly each product has a different charge/discharge rate (C-Rate). Therefore, even for the same battery, the remaining life of a battery varies depending on the charge/discharge rate (C-Rate) of the product to be reused and remanufactured.
본 발명에서는 사용 후 배터리가 적용되는 제품의 품목별로 배터리의 기대수명 및 잔존가치를 산출하기 위해, 사용 후 배터리 모듈의 재사용·재제조를 위한 용도 전환 대상 품목별로 충방전율인 씨레이트(C-Rate)가 각각 설정되어 메모리에 저장되어 있으며, 제어부는 사용 후 배터리 모듈이 적용될 수 있는 품목에 해당하는 충방전율에 맞춰 사용 후 배터리 모듈의 충방전을 각각 수행함으로써, 사용 후 배터리 모듈이 적용될 수 있는 품목별로 잔존수명을 추정한다.In the present invention, in order to calculate the expected lifespan and residual value of the battery for each item of the product to which the battery is applied after use, the C-Rate (C-Rate), which is the charge/discharge rate for each item subject to change of use for reuse/remanufacturing of the battery module after use ) is set and stored in the memory, and the control unit performs charging and discharging of the battery module after use according to the charge/discharge rate corresponding to the item to which the battery module can be applied after use, so that the battery module can be applied after use by each item. to estimate the remaining life.
예를 들어, 하기의 [표 1]과 같이 사용 후 배터리 모듈이 재사용·재제조를 통해 주파수조절용 ESS, 풍력용 ESS, 무정전 전원 장치(UPS) 중 적어도 하나 이상 적용 가능한 경우, 제어부는 2 C-Rate로 충방전율을 설정하여 충방전을 수행함으로써 잔존수명을 추정한다. 또한, 사용 후 배터리 모듈이 전동카트 배터리, 전기이륜차 배터리, 비상발전기용 ESS, 피크저감용 ESS로 적어도 하나 이상 적용 가능한 경우 1 C-Rate로 충방전율을 설정하여 충방전을 수행하며, 태양광용 ESS와 전기차용 배터리로 적용 가능한 경우 1/3 C-Rate, 가정용 ESS, 전동휠체어로 적용 가능한 경우 0.2 C-Rate, 파워뱅크, 전기자전거 배터리, 태양광 가로등, 전자제품 중 적어도 하나 이상 적용 가능한 경우 0.1 C-Rate로 충방전을 수행한다.For example, if at least one of ESS for frequency control, ESS for wind power, and uninterruptible power supply (UPS) is applicable to the battery module after use as shown in [Table 1] below, the control unit is 2 C- Estimate the remaining life by performing charge/discharge by setting the charge/discharge rate as the rate. In addition, if at least one battery module is applicable after use as an electric cart battery, electric two-wheeled vehicle battery, emergency generator ESS, or peak reduction ESS, charging/discharging is performed by setting the charge/discharge rate to 1 C-Rate, and the solar ESS and 1/3 C-Rate if applicable to batteries for electric vehicles, 0.2 C-Rate if applicable to home ESS and electric wheelchairs, 0.1 if applicable to at least one of power bank, e-bike battery, solar street light, and electronic products Charge/discharge with C-Rate.
C-RateC-Rate 적용분야Applications
2C2C 주파수 조절용 ESS, 풍력용 ESS, 무정전 전원 장치ESS for frequency control, ESS for wind power, uninterruptible power supply
1C1C 전동카트용 배터리, 전기이륜차용 배터리, 비상발전기용 ESS, 피크저감용 ESSBattery for electric cart, battery for electric two-wheeled vehicle, ESS for emergency generator, ESS for peak reduction
1/3C1/3C 태양광용 ESS, 전기차용 배터리ESS for solar power, battery for electric vehicle
0.2C0.2C 가정용 ESS, 전동휠체어용 배터리Home ESS, battery for electric wheelchair
0.1C0.1C 파워뱅크, 전기자전기용 배터리, 태양광 가로등 배터리, 전자제품 배터리Power bank, battery for electricity and electricity, solar street light battery, electronic product battery
본 발명에 있어서 충방전율(C-Rate)은 2차전지의 충방전시 다양한 사용 조건 하에서의 전류값 설정 및 2차 전지의 가능 사용시간을 예측하거나 표기하기 위한 단어로서, 이는 하기의 [수학식 1]로 나타낼 수 있다.In the present invention, the charge/discharge rate (C-Rate) is a word for predicting or indicating the setting of the current value under various usage conditions and the possible use time of the secondary battery during charging and discharging of the secondary battery, which is expressed in the following [Equation 1] ] can be expressed as
[수학식 1][Equation 1]
C-Rate(A)=충방전 전류(A)/2차전지의 정격용량C-Rate(A)=Charging/discharging current(A)/2Rated capacity of secondary battery
예를 들어, 배터리 모듈의 만충전 용량(정격용량)이 1000mAh(Apere-hour)인 경우, 충전 전류가 100mA이면 충방전율은 0.1C 이고, 충전전류가 1000mA이면 충방전율은 1C이며, 충전 전류가 2000mA이면 충방전율은 2C이다.For example, if the full charge capacity (rated capacity) of the battery module is 1000 mAh (Apere-hour), if the charging current is 100 mA, the charge/discharge rate is 0.1C. If the charging current is 1000 mA, the charge/discharge rate is 1C, and the charging current is If it is 2000mA, the charge/discharge rate is 2C.
제어부(340)는 충방전부(310)를 통해 사용 후 배터리 모듈을 완전 충전 및 완전 방전시키는 동작을 반복수행하여, 미리 설정된 배터리 용량감소율 지점까지 미리 설정된 사이클(Cycle, 횟수) 단위별로 잔존수명(SOH)을 추정한다. 또한, 제어부는 추정된 잔존수명의 변화 정도에 기초하여, 배터리 전체 용량에 대한 잔존수명 변화를 예측함으로써 사용 후 배터리 모듈의 기대수명을 추정한다.The control unit 340 repeats the operation of fully charging and fully discharging the battery module after use through the charging/discharging unit 310, and the remaining life (SOH) for each preset cycle (Cycle, number) unit up to the preset battery capacity reduction rate point. ) is estimated. In addition, the controller estimates the life expectancy of the battery module after use by predicting the change in the remaining life with respect to the total capacity of the battery based on the estimated degree of change in the remaining life.
이때, 사이클(Cycle)은 사용 후 배터리의 모듈을 완전 충전하여 완전 방전시키는 동작(또는 완전 방전하여 완전 충전시키는 동작)이 1사이클(1 Cycle)을 의미하며, 기대수명은 배터리 모듈을 앞으로 더 얼마나 사용할 수 있는 지를 알려주는 지표로서, 사용 후 배터리 모듈의 용량에 따라 배터리 모듈이 완전 충전과 완전 방전을 몇 번 수행할 수 있는지를 나타낸다.At this time, the cycle means one cycle of fully charging and completely discharging the module of the battery after use (or the operation of fully discharging and fully charging the battery module), and the life expectancy is how much longer the battery module will last. As an indicator indicating whether it can be used, it indicates how many times the battery module can be fully charged and fully discharged according to the capacity of the battery module after use.
본 발명의 실시예에서는 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%를 기준점으로 설정하여, 사용 후 배터리 모듈의 잔존수명이 기준점(용량감소율의 80%)이 될 때까지 완전 충전 및 완전 방전시키는 동작을 반복수행하되, 100cycle 단위로 잔존수명을 추정하고, Cycle 횟수에 따라 추정된 잔존수명의 변화(곡선의 기울기)에 기초하여 용량감소율의 80% 이후의 배터리 전체에 대한 잔존수명을 추정한다. 이를 통해, 사용 후 배터리의 전체 용량에 대한 충방전을 수행하여 사이클 수명을 측정하지 않고도, 전체 수명을 유추할 수 있게 된다.In an embodiment of the present invention, 80% of the battery capacity reduction rate, which is the point at which the electric vehicle or energy storage device is replaced, is set as the reference point, and the remaining life of the battery module after use becomes the reference point (80% of the capacity reduction rate). The operation of charging and completely discharging is repeatedly performed, but the remaining life is estimated in units of 100 cycles, and the remaining life of the entire battery after 80% of the capacity reduction rate based on the change (slope of the curve) estimated according to the number of cycles. Estimate the lifespan Through this, it is possible to infer the total lifespan without measuring the cycle life by charging and discharging the entire capacity of the battery after use.
또한, 제어부는 전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%인 시점부터, 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 기대수명으로 산출한다.In addition, the control unit calculates the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the time of battery replacement for products applied for reuse/remanufacturing, the life expectancy. is calculated as
도 2는 본 발명의 일실시예에 따른 사용 후 배터리 모듈의 기대수명 예측을 설명하기 위한 그래프이다. 2 is a graph for explaining the prediction of life expectancy of a battery module after use according to an embodiment of the present invention.
본 발명의 실시예에서는 재사용·재제조 기준 충방전율인 1/3 C-Rate로 사용 후 배터리 모듈을 완전 충전 및 완전 방전시키는 동작을 반복수행하여, 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%가 되는 지점까지 100cycle 단위로 잔존수명을 추정하였다.In the embodiment of the present invention, the operation of fully charging and fully discharging the battery module after use at 1/3 C-Rate, which is the standard charge/discharge rate for reuse and remanufacturing, is repeatedly performed, and the battery is the point at which the electric vehicle or energy storage device is replaced. The remaining life was estimated in units of 100 cycles up to the point where the capacity reduction rate was 80%.
이어서, 배터리 용량감소율의 80%가 되는 지점까지 추정된 잔존수명 값들을 연결한 곡선의 기울기에 기초하여, 용량감소율의 80% 이후에 대한 잔존수명을 추정한다. 이러한 배터리 전체에 대한 잔존수명 추정은, 용량감소울 100~80%까지 추정된 잔존수명 값들을 연결한 곡선의 기울기에 선형방정식 등을 적용하여 예측가능하다.Next, based on the slope of the curve connecting the estimated remaining life values up to the point at which the battery capacity reduction rate becomes 80%, the remaining life after 80% of the capacity reduction rate is estimated. The estimated remaining life of the entire battery can be predicted by applying a linear equation, etc. to the slope of the curve connecting the estimated remaining life values up to 100 to 80% of the capacity reduction.
이후, 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%인 지점부터 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 기대수명으로 산출한다.After that, the life expectancy is calculated as the number of cycles from the point at which 80% of the battery capacity reduction rate, which is the point at which electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, the point at which the battery is replaced for products applied for reuse and remanufacturing. .
즉, 도 2를 참고하면 사용 후 배터리 모듈이 전기차 배터리 수명 종료 시점인 용량감소율 80%에서 3800Cycle을 사용하였다고 가정하였을 경우, 재사용·재제조로 적용된 배터리 수명 종료 시점인 용량 감소율의 70%인 지점에서의 Cycle 수는 7000Cycle임에 따라, 해당 사용 후 배터리 모듈이 재사용·재제조 되는 경우의 기대수명은 앞으로 3200Cycle이라고 추정할 수 있다.That is, referring to FIG. 2, if it is assumed that 3800 cycles are used at 80% of the capacity reduction rate at the end of the battery life of the electric vehicle after use, the battery module is 70% of the capacity reduction rate at the end of the battery life applied by reuse and remanufacturing. Since the number of cycles is 7000 Cycles, it can be estimated that the life expectancy of the battery module will be 3200 Cycles in the future when the battery module is reused and remanufactured after use.
또한, 제어부는 사용 후 배터리 모듈의 재사용·재제조를 위한 용도 전환 대상 품목별로 충방전율을 각각 다르게 설정하여 충방전을 수행함으로써, 품목별로 기대수명을 각각 예측한다. In addition, the control unit predicts the life expectancy for each item by performing charging and discharging by setting different charging/discharging rates for each item subject to change of use for reuse/remanufacturing of the battery module after use.
도 3은 본 발명의 일실시예에 따른 사용 후 배터리 모듈의 용도 전환 대상 품목별 기대수명 예측을 설명하기 위한 그래프로서, 사용 후 배터리 모듈의 충방전율을 2C, 1C, 1/3C, 0.2C, 0.1C로 각각 다르게 설정하여 충방전을 반복 수행하였다.3 is a graph for explaining the prediction of the life expectancy of each item subject to change of use of the battery module after use according to an embodiment of the present invention. Charging and discharging were repeatedly performed by setting each differently to C.
그래프에 나타난 바와 같이, 동일한 배터리일지라도 충방전율인 C-Rate에 따라 배터리의 잔존수명은 각각 다르게 나타나며, 이에 따라 기대수명도 각각 다르게 산출된다. As shown in the graph, even for the same battery, the remaining lifespan of the battery is different depending on the C-Rate, which is the charge/discharge rate, and accordingly, the life expectancy is also calculated differently.
이러한 점을 이용하여, 본 발명에서는 사용 후 배터리 모듈의 재사용·재제조를 위한 용도 전환 대상 품목별로 충방전율을 다르게 설정하여 충방전을 각각 수행하고, 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%가 되는 지점까지 100cycle 단위로 잔존수명을 추정한 후, 추정된 잔존수명의 변화에 기초하여 용량감소율 80% 이후의 배터리 전체에 대한 잔존수명을 추정한다. 이러한 배터리 전체에 대한 잔존수명 추정은, 용량감소율 100~80%까지 추정된 잔존수명 값들을 연결한 곡선의 기울기에 선형방정식 등을 적용하여 예측가능하다.Using this point, in the present invention, charging/discharging is performed by setting different charging/discharging rates for each item subject to change of use for reuse/remanufacturing of the battery module after use, and charging and discharging are performed respectively, and the battery, which is the point at which the electric vehicle or energy storage device is replaced After estimating the remaining life in units of 100 cycles up to the point where the capacity reduction rate becomes 80%, the remaining life of the entire battery after the capacity reduction rate of 80% is estimated based on the change in the estimated remaining life. The estimated remaining life of the entire battery can be predicted by applying a linear equation to the slope of the curve connecting the estimated remaining life values up to a capacity reduction rate of 100 to 80%.
이후, 전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%인 시점부터 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 충방전율별 기대수명으로 각각 산출한다.Thereafter, the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the time of battery replacement for products applied for reuse/remanufacturing, was calculated as the life expectancy by charge/discharge rate. are calculated respectively.
즉, 도 3을 참고하면 사용 후 배터리 모듈이 전기차 배터리 수명 종료 시점인 80%에서 4000Cycle을 사용하였다고 가정하였을 경우, 무정전 전원 장치(2C-Rate)로 재사용될 경우 재사용 배터리 수명 종료 시점인 용량 감소율의 70%인 시점의 Cycle 수는 5000Cycle임에 따라, 해당 사용 후 배터리 모듈의 무정전 전원 장치로 재사용 되는 경우의 기대수명은 앞으로 1000Cycle이라고 추정할 수 있다.That is, referring to FIG. 3, if it is assumed that 4000 cycles are used at 80% of the battery life of the electric vehicle after use, the battery module is reused as an uninterruptible power supply (2C-Rate). Since the number of cycles at 70% is 5000 Cycles, it can be estimated that the life expectancy of the battery module is 1000 Cycles in the future when it is reused as an uninterruptible power supply device of the battery module.
더불어, 제어부는 산출된 품목별(충방전율별) 기대수명에 메모리(320)에 기 저장된 배터리 가격을 적용하여, 품목별 잔존가치를 산출할 수 있다. 예를 들어, A사용 후 배터리 모듈의 기대수명이 UPS로 2000싸이클, 가정용 ESS로 3000싸이클, IT기기용으로 8000싸이클이 산출되었다고 가정하였을 때, UPS의 싸이클별 배터리 단가가 10원이고, 가정용 ESS의 싸이클별 배터리 단가가 100원이고, IT기기용 싸이클별 배터리 단가가 0.5원일 경우, A 사용 후 배터리 모듈의 잔존가치는 UPS로는 20,000원, 가정용 ESS로는 300,000원, IT기기용으로는 4,000원이 된다.In addition, the controller may calculate the residual value of each item by applying the battery price pre-stored in the memory 320 to the calculated life expectancy for each item (by charge/discharge rate). For example, assuming that the expected lifespan of the battery module after use of A is 2000 cycles for UPS, 3000 cycles for home ESS, and 8000 cycles for IT equipment, the unit price of the battery for each cycle of UPS is 10 won, and household ESS If the battery unit price per cycle is 100 won and the battery unit price per cycle for IT devices is 0.5 won, the residual value of the battery module after using A is 20,000 won for UPS, 300,000 won for home ESS, and 4,000 won for IT devices. do.
제어부(340)는 이와 같이 산출된 사용 후 배터리 모듈에 대한 잔존수명, 해당 사용 후 배터리가 적용 가능한 용도 전환 대상 품목 정보, 품목별 기대수명 및 잔존가치 결과를 사용자 인터페이스부(330)를 통해 출력함으로써, 사용자가 사용 후 배터리 모듈을 성능가치 및 경제성이 높은 품목으로 재사용·재제조할 수 있도록 판단할 수 있는 기준으로 제공할 수 있게 된다.The control unit 340 outputs the calculated residual life of the battery module after use, information on items subject to change of use to which the battery can be applied after use, expected lifespan for each item, and residual value results through the user interface unit 330 through the user interface unit 330, After use, the battery module can be provided as a standard for judging that the battery module can be reused and remanufactured as an item with high performance value and economic feasibility.
상술한 바와 같이, 본 발명에 따른 사용 후 배터리 모듈 잔존가치 평가 시스템은, 사용자가 잔존 가치 평가 장치에 사용 후 배터리 모듈을 연결한 후, 사용자 인터페이스를 통해 잔존 가치 평가 명력을 입력하는 경우, 제어부가 사용 후 배터리 모듈에 대한 고유정보를 메모리로부터 독출하여, 해당 사용 후 배터리 모듈의 모델별로 적용 가능한 용도 전환 대상 품목 정보를 도출하고, 도출된 품목별로 충방전율인 씨레이트(C-Rate)를 각각 다르게 설정하여 충방전을 수행함으로써, 재사용·재제조로 적용 가능한 품목별로 기대수명을 각각 예측하고, 이를 기반으로 적용 가능 대상 품목별 잔존가치를 산출한다.As described above, in the after-use battery module residual value evaluation system according to the present invention, when the user inputs the residual value evaluation command through the user interface after connecting the battery module after use to the residual value evaluation device, the control unit After use, the unique information about the battery module is read from the memory, and information on items subject to change of use applicable to each model of the battery module after use is derived, and the C-Rate, the charge/discharge rate, is set differently for each derived item. By setting and charging/discharging, the life expectancy of each applicable item for reuse and remanufacturing is predicted, and the residual value of each applicable item is calculated based on this.
이에 따라, 사용자는 기대수명 및 잔존가치 산출결과를 경제성 판단지표로 활용하여 해당 사용 후 배터리 모듈을 성능가치 및 경제적 이득이 높은 분야에서 재자원화 시킬 수 있게 된다.Accordingly, the user can use the life expectancy and residual value calculation results as economic feasibility determination indicators to recycle the battery module after use in a field with high performance value and economic benefit.
도 4는 본 발명의 일실시예에 따른 사용 후 배터리 모듈 잔존가치 평가방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a method for evaluating the residual value of a battery module after use according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명에 따른 잔존 가치 평가 장치는 모듈 단위로 분해된 배터리와 BMS를 통해 연결되며, 먼저 초기 테스트를 통한 불량 제거를 위해 연결된 배터리 모듈을 3 C-Rate의 충방전율로 충전 및/또는 방전을 수행한다. 이때, 잔존 가치 평가 장치는 사용 후 배터리 모듈로부터 측정된 전압의 수치변화가 미세하거나, 충전 또는 방전용량의 변화가 기 설정된 범위 내에 포함되지 않을 경우, 해당 사용 후 배터리 모듈을 재활용으로 분류시킨다.As shown in FIG. 4 , the residual value evaluation device according to the present invention is connected to the battery disassembled in module unit through the BMS, and first, the battery module connected to the battery module connected to remove defects through the initial test has a charge/discharge rate of 3 C-Rate. to perform charging and/or discharging. At this time, the residual value evaluation device classifies the battery module after use as recycling when the numerical change of the voltage measured from the battery module after use is subtle or the change in charging or discharging capacity is not included within a preset range.
본 발명에 적용되는 배터리는 폐기 처리된 배터리이거나 성능 저하된 배터리를 의미하며, 전기차 또는 에너지저장장치에서 사용된 대용량 배터리이다. 또한, 배터리팩에서 모듈 단위로 분해하는 과정에서 사용 후 배터리 모듈별로 고유코드가 생성되어 등록되며, 사용 후 배터리 모듈에 대한 고유정보가 사용후 배터리 모듈의 고유식별정보인 고유코드에 매치되어 저장된다. 이러한 사용 후 배터리 모듈에 대한 고유정보에는, 사용 후 배터리 모듈의 모델명, 제품규격, 제조정보, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건, 환경 정보 등이 포함될 수 있다.The battery applied to the present invention means a discarded battery or a battery with degraded performance, and is a large-capacity battery used in an electric vehicle or an energy storage device. In addition, in the process of disassembling the battery pack into module units, a unique code is generated and registered for each battery module after use, and after use, the unique information about the battery module is matched with the unique code that is the unique identification information of the battery module after use. . The unique information about the battery module after use may include a model name, product specification, manufacturing information, electrical characteristic information, electrochemical characteristic information, usage conditions, environmental information, etc. of the battery module after use.
이어서, 잔존 가치 평가 장치는 실온에서 재사용·재제조 기준 충방전율인 1/3 C-Rate로 충방전을 수행하여 사용 후 배터리 모듈에 대한 잔존수명(SOH)을 산출하고, 산출된 잔존수명을 통해 기대수명을 예측한다(S220). 이러한 잔존수명을 추정하는 방법은 매우 다양하며, 본 발명의 실시예에서는 완전 충방전 테스트를 통해 잔존수명을 추정하였다. Then, the residual value evaluation device calculates the remaining life (SOH) of the battery module after use by performing charge and discharge at 1/3 C-Rate, which is the standard charge/discharge rate for reuse/remanufacturing at room temperature, and through the calculated residual life Predict the life expectancy (S220). Methods for estimating the remaining life are very diverse, and in the embodiment of the present invention, the remaining life was estimated through a complete charge/discharge test.
즉, 사용 후 배터리 모듈을 완전 충전 상태에서 완전 방전 상태로 완전 방전시키거나, 완전 방전 상태에서 완전 충전 시키면서 잔존용량을 산출하고, 산출된 잔존 용량을 배터리 모듈의 기준 충전 용량과 비교하여 사용 후 배터리 모듈의 잔존수명을 추정한다.That is, after use, the battery module is completely discharged from the fully charged state to the fully discharged state, or the remaining capacity is calculated while fully charged from the fully discharged state, and the calculated residual capacity is compared with the standard charging capacity of the battery module after use. Estimate the remaining life of the module.
본 발명에서는 사용 후 배터리 모듈을 완전 충전 및 완전 방전시키는 동작을 반복수행하여, 미리 설정된 일정횟수 단위로 잔존수명을 추정하고, 추정된 잔존수명의 변화 정도에 기초하여, 사용 후 배터리 모듈의 전체 용량에 대한 잔존수명을 추정한다.In the present invention, the operation of fully charging and completely discharging the battery module after use is repeatedly performed to estimate the remaining life in a preset unit of a predetermined number of times, and based on the degree of change in the estimated remaining life, the total capacity of the battery module after use Estimate the remaining life for
본 발명의 실시예에서는 전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%를 기준점으로 설정하여, 사용 후 배터리 모듈의 잔존수명이 기준점(용량감소율의 80%)이 될 때까지 완전 충전 및 완전 방전시키는 동작을 반복수행하되, 100Cycle 단위로 잔존수명을 추정하고, 사이클 횟수에 따라 추정된 잔존수명의 변화(곡선의 기울기)에 기초하여 용량감소율의 80% 이후의 배터리 전체에 대한 잔존수명을 추정한다. 이러한 배터리 전체에 대한 잔존수명 추정은, 용량감소율의 100~80%까지 추정된 잔존수명 값들을 연결한 곡선의 기울기를 통해, 선형방정식 등을 적용하여 예측가능하다. 이를 통해, 사용 후 배터리의 전체 용량에 대한 충방전을 수행하여 사이클 수명을 측정하지 않고도, 전체 수명을 유추할 수 있게 된다.In an embodiment of the present invention, 80% of the battery capacity reduction rate, which is the point at which the electric vehicle or energy storage device is replaced, is set as the reference point, and the remaining life of the battery module after use becomes the reference point (80% of the capacity reduction rate). The operation of charging and completely discharging is repeated, but the remaining life is estimated in units of 100 cycles, and the remaining life of the entire battery after 80% of the capacity reduction rate based on the change (slope of the curve) estimated according to the number of cycles. Estimate the lifespan The remaining life estimate for the entire battery can be predicted by applying a linear equation, etc. through the slope of a curve connecting the estimated remaining life values up to 100 to 80% of the capacity reduction rate. Through this, it is possible to infer the total lifespan without measuring the cycle life by charging and discharging the entire capacity of the battery after use.
또한, 잔존 가치 평가 장치는 전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%인 시점부터, 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 기대수명으로 산출한다.In addition, the residual value evaluation device is the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the time of battery replacement for products applied for reuse/remanufacturing. is calculated as the life expectancy.
예를 들어, 앞서 도시된 도 2를 참고하면 사용 후 배터리 모듈이 전기차 배터리 수명 종료 시점인 80%에서 3800Cycle을 사용하였다고 가정하였을 경우, 재사용·재재제로 적용된 배터리 수명 종료 시점인 용량 감소율의 70%인 시점의 Cycle 수는 7000Cycle임에 따라, 해당 사용 후 배터리 모듈이 재사용 되는 경우의 기대수명은 앞으로 3200Cycle이라고 추정할 수 있다.For example, referring to FIG. 2 shown above, if it is assumed that 3800 cycles are used at 80% of the battery life of the electric vehicle after use, the battery module is 70% of the capacity reduction rate, which is the end point of the battery life applied by reuse and reprocessing. Since the number of cycles at the time is 7000 Cycles, it can be estimated that the life expectancy of the battery module is 3200 Cycles in the future when the battery module is reused after the corresponding use.
다음으로, 잔존 가치 평가 장치는 사용 후 배터리 모듈에 적용가능한 용도 전환 대상 품목 정보를 메모리로부터 독출하여, 용도 전환 대상 품목별로 충방전율을 각각 다르게 설정하여 충방전을 수행하고(S230), 품목별로 사용 후 배터리 모듈의 기대수명을 각각 추정한다(S240).Next, the residual value evaluation device reads information on items subject to change of use applicable to the battery module after use from the memory, sets different charge/discharge rates for each item subject to change of use, performs charge/discharge (S230), and uses each item. Then, the expected lifespan of each battery module is estimated (S240).
즉, 잔존 가치 평가 장치는 용도 전환 대상 품목별로 미리 설정된 충방전율(C-Rate)에 따라 해당 사용 후 배터리 모듈의 충방전율을 각각 다르게 설정하여 충방전을 수행하고, 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%가 되는 지점까지 100cycle 단위로 잔존수명을 추정한 후, 추정된 잔존수명의 변화에 기초하여 용량감소율 80% 이후의 배터리 전체에 대한 잔존수명을 추정한다.That is, the residual value evaluation device performs charging and discharging by setting the charging/discharging rate of the battery module differently after use according to the preset charging/discharging rate (C-Rate) for each item subject to change of use, and the electric vehicle or energy storage device is replaced. After estimating the remaining life in units of 100 cycles up to the point where it becomes 80% of the capacity reduction rate of the battery, the remaining life of the entire battery after the capacity reduction rate of 80% is estimated based on the change in the estimated remaining life.
예를 들어, 사용 후 배터리 모듈이 재사용·재제조를 통해 주파수조절용 ESS, 풍력용 ESS, 무정전 전원 장치(UPS) 중 적어도 하나 이상 적용 가능한 경우, 제어부는 2 C-Rate로 충방전율을 설정하여 충방전을 수행함으로써 잔존수명을 추정한다. 또한, 사용 후 배터리 모듈이 전동카트 배터리, 전기이륜차 배터리, 비상발전기용 ESS, 피크저감용 ESS로 적어도 하나 이상 적용 가능한 경우 1 C-Rate로 충방전율을 설정하여 충방전을 수행하며, 태양광용 ESS와 전기차용 배터리로 적용 가능한 경우 1/3 C-Rate, 가정용 ESS, 전동휠체어로 적용 가능한 경우 0.2 C-Rate, 파워뱅크, 전기자전거 배터리, 태양광 가로등, 전자제품 중 적어도 하나 이상 적용 가능한 경우 0.1 C-Rate로 충방전을 수행한다.For example, if the battery module after use is applicable to at least one of frequency control ESS, wind power ESS, and uninterruptible power supply (UPS) through reuse and remanufacturing, the control unit sets the charge/discharge rate at 2 C-Rate to charge Estimate the remaining life by performing discharge. In addition, after use, if at least one battery module is applicable as an electric cart battery, an electric two-wheeled vehicle battery, an ESS for an emergency generator, or an ESS for peak reduction, charging/discharging is performed by setting the charge/discharge rate to 1 C-Rate, and the solar ESS and 1/3 C-Rate if applicable to batteries for electric vehicles, 0.2 C-Rate if applicable to home ESS and electric wheelchairs, 0.1 if applicable to at least one of power bank, e-bike battery, solar street light, and electronic products Charge/discharge with C-Rate.
이후, 전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%인 시점부터 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 충방전율별 기대수명으로 각각 산출한다.Thereafter, the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the time of battery replacement for products applied for reuse/remanufacturing, was calculated as the life expectancy by charge/discharge rate. are calculated respectively.
즉, 앞서 도시된 도 3을 참고하면, 사용 후 배터리 모듈이 전기차 배터리 수명 종료 시점인 80%에서 4000Cycle을 사용하였다고 가정하였을 경우, 무정전 전원 장치(2C-Rate)로 재사용될 경우 재사용 배터리 수명 종료 시점인 용량 감소율의 70%인 시점의 Cycle 수는 5000Cycle임에 따라, 해당 사용 후 배터리 모듈의 무정전 전원 장치로 재사용 되는 경우의 기대수명은 앞으로 1000Cycle이라고 추정할 수 있다.That is, referring to FIG. 3 shown above, when it is assumed that 4000Cycles are used at 80% of the battery life of the electric vehicle after use, the battery module is reused as an uninterruptible power supply (2C-Rate), the end point of the battery life. Since the number of cycles at the time of 70% of the phosphorus capacity reduction rate is 5000 Cycles, it can be estimated that the life expectancy in the case of reuse as an uninterruptible power supply of the battery module after use is 1000 Cycles in the future.
이어서, 잔존 가치 평가 장치는 추정된 품목별 기대수명에 메모리에 기 저장된 배터리 가격을 적용하여, 품목별 잔존가치를 산출한다(S250). 예를 들어, A 사용 후 배터리 모듈의 기대수명이 UPS로 2000싸이클, 가정용 ESS로 3000싸이클, IT기기용으로 8000싸이클이 산출되었다고 가정하였을 때, UPS의 싸이클별 배터리 단가가 10원이고, 가정용 ESS의 싸이클별 배터리 단가가 100원이고, IT기기용 싸이클별 배터리 단가가 0.5원일 경우, A 사용 후 배터리 모듈의 잔존가치는 UPS로는 20,000원, 가정용 ESS로는 300,000원, IT기기용으로는 4,000원이 된다.Next, the residual value evaluation apparatus calculates the residual value of each item by applying the battery price pre-stored in the memory to the estimated life expectancy of each item ( S250 ). For example, assuming that the expected lifespan of the battery module after use of A is 2000 cycles for UPS, 3000 cycles for home ESS, and 8000 cycles for IT equipment, the unit price of the battery for each cycle of UPS is 10 won, and household ESS If the battery unit price per cycle is 100 won and the battery unit price per cycle for IT devices is 0.5 won, the residual value of the battery module after using A is 20,000 won for UPS, 300,000 won for home ESS, and 4,000 won for IT devices. do.
이와 같이, 본 발명은 사용 후 배터리 모듈의 품목별 잔존가치를 사용자 인터페이스부를 통해 출력함으로써, 사용자는 해당 사용 후 배터리 모듈이 성능가치 및 경제성이 높은 품목으로 재사용·재제조될 수 있는 판단기준으로 활용할 수 있게 된다.As described above, in the present invention, by outputting the residual value of each item of the battery module after use through the user interface unit, the user can utilize the battery module after use as a criterion for reusing and remanufactured as an item with high performance value and economic feasibility. there will be
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백하다 할 것이다.The present invention described above is not limited by the above-described embodiments and the accompanying drawings, and it is within the technical field to which the present invention pertains that various substitutions, modifications and changes are possible within the scope without departing from the technical spirit of the present invention. It will be obvious to those with ordinary knowledge.
본 발명은 사용 후 배터리 모듈의 잔존 가치 평가 시스템에 광범위하게 사용될 수 있다.The present invention can be widely used in a system for evaluating the residual value of a battery module after use.

Claims (18)

  1. 팩으로부터 모듈 단위로 분해된 사용 후 배터리 모듈;After-use battery modules disassembled into modules from the pack;
    BMS; 및,BMS; and,
    상기 사용 후 배터리 모듈과 상기 BMS를 통해 연결되어 상기 사용 후 배터리 모듈의 잔존 가치를 평가하는 잔존 가치 평가 장치;를 포함하여 구성되되,A residual value evaluation device connected to the battery module after use through the BMS to evaluate the residual value of the battery module after use;
    상기 잔존 가치 평가 장치는,The residual value evaluation device,
    상기 사용 후 배터리 모듈이 각각의 성능에 따라 재사용·재제조 될 수 있도록, 재사용·재재조로 적용 가능한 용도별로 미리 설정된 충방전율(C-Rate)에 따라 상기 사용 후 배터리 모듈의 충방전을 각각 수행하여, 상기 사용 후 배터리 모듈에 따라 적용 가능한 용도별로 기대수명을 각각 산출함으로써, 상기 사용 후 배터리 모듈의 성능에 따라 최적의 용도로 재사용·재제조 될 수 있는 판단 기준을 제공하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.Charging and discharging of the battery module after use is performed according to the charge/discharge rate (C-Rate) preset for each application applicable to reuse and remanufacturing so that the battery module after use can be reused and remanufactured according to each performance. After use, characterized in that by calculating the life expectancy for each applicable use according to the battery module after use, it provides a determination criterion that can be reused and remanufactured for an optimal use according to the performance of the battery module after use Battery module residual value evaluation system.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 재사용·재재조로 적용 가능한 용도별로 미리 설정된 충방전율은,The charge/discharge rate set in advance for each use applicable to the reuse and remanufacturing is,
    상기 사용 후 배터리 모듈이 주파수조절용 ESS, 풍력용 ESS, 무정전 전원 장치(UPS) 중 적어도 하나 이상 적용 가능한 경우 2 C-Rate이고,2 C-Rate if the battery module after use is applicable to at least one of ESS for frequency control, ESS for wind power, and uninterruptible power supply (UPS),
    전동카트 배터리, 전기이륜차 배터리, 비상발전기용 ESS, 피크저감용 ESS 중 적어도 하나 이상 적용 가능한 경우 1 C-Rate이고,1 C-Rate if at least one of electric cart battery, electric two-wheeled vehicle battery, ESS for emergency generator, and ESS for peak reduction is applicable,
    태양광용 ESS 또는 전기차용 배터리로 적용 가능한 경우 1/3 C-Rat이고,1/3 C-Rat if applicable as solar ESS or electric vehicle battery,
    가정용 ESS 또는 전동휠체어로 적용 가능한 경우 02 C-Rate이고,02 C-Rate if applicable to home ESS or electric wheelchair,
    파워뱅크, 전기자전거 배터리, 태양 가로등, 전자제품 중 적어도 하나 이상 적용 가능한 경우 01 C-Rate인 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.At least one of a power bank, an e-bike battery, a solar street light, and an electronic product, if applicable, the battery module residual value evaluation system after use, characterized in that it is 01 C-Rate.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 잔존 가치 평가 장치는,The residual value evaluation device,
    상기 사용 후 배터리 모듈을 완전 충전 및 완전 방전 시키는 동작을 반복 수행하여, 미리 설정된 배터리 용량감소율 지점까지 미리 설정된 사이클 횟수 단위별로 잔존수명을 추정하고, 추정된 잔존수명 값들을 연결한 곡선의 기울기에 기초하여 배터리 전체 용량에 대한 잔존수명을 예측하여, 사용 후 배터리 모듈의 기대수명을 산출하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.After use, the operation of fully charging and fully discharging the battery module is repeatedly performed to estimate the remaining life for each preset cycle number unit up to the preset battery capacity reduction rate point, and based on the slope of the curve connecting the estimated remaining life values. to predict the remaining life of the entire battery capacity, and to calculate the expected life of the battery module after use.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 잔존 가치 평가 장치는,The residual value evaluation device,
    전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%를 기준점으로 설정하여, 사용 후 배터리 모듈의 잔존수명이 기준점(용량감소율의 80%)이 될 때까지 완전 충전 및 완전 방전시키는 동작을 반복수행하되, 100cycle 단위로 잔존수명을 추정하고, 사이클 횟수에 따라 추정된 잔존수명 값들을 연결한 곡선의 기울기에 기초하여 용량감소율의 80% 이후에 대한 잔존수명을 예측하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.The operation of fully charging and completely discharging until the remaining life of the battery module reaches the reference point (80% of the capacity reduction rate) after use by setting 80% of the battery capacity reduction rate, which is the point at which the electric vehicle or energy storage device is replaced, as the reference point. Repeatedly, estimating the remaining life in units of 100 cycles, and predicting the remaining life after 80% of the capacity reduction rate based on the slope of the curve connecting the estimated residual life values according to the number of cycles. After the battery module residual value evaluation system.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 잔존 가치 평가 장치는,The residual value evaluation device,
    전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%인 지점부터, 재사용·재제조로 적용되는 제품의 배터리 교체 지점인 용량감소율의 70%까지의 사이클 횟수를 기대수명으로 산출하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.Calculating the number of cycles from 80% of the battery capacity reduction rate, which is the point at which electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the battery replacement point for products applied for reuse/remanufacturing, is calculated as the life expectancy. Characterized by the battery module residual value evaluation system after use.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 잔존 가치 평가 장치는,The residual value evaluation device,
    상기 각각 산출된 기대수명에 미리 설정된 품목별 경제 가치 기준을 적용하여 사용 후 배터리 모듈의 품목별 잔존 가치를 산출하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.The residual value evaluation system for a battery module after use, characterized in that the residual value of each item of the battery module after use is calculated by applying a preset economic value standard for each item to the calculated life expectancy.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 잔존 가치 평가 장치는,The residual value evaluation device,
    상기 사용 후 배터리 모듈의 충방전을 수행하는 충방전부;a charging/discharging unit for charging/discharging the battery module after use;
    상기 사용 후 배터리 모듈에 대한 정보 및 상기 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별 정보가 저장된 메모리;a memory in which information on the battery module after use and information for each item subject to conversion to which the battery module can be applied after use is stored;
    사용자로부터 상기 사용 후 배터리 모듈에 대한 잔존 가치 평가 명령을 입력받으며, 산출된 사용 후 배터리 모듈의 기대수명 및 잔존 가치 평가 결과를 사용자에게 제공하는 사용자 인터페이스부; 및,a user interface unit that receives a residual value evaluation command for the battery module after use from a user, and provides a calculated life expectancy and residual value evaluation result of the battery module to the user; and,
    상기 충방전부를 통해 상기 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별로 미리 설정된 충방전율(C-Rate)에 따라 사용 후 배터리 모듈의 충방전을 수행하여 기대수명을 산출하고, 품목별 경제 가치 기준을 적용하여 사용 후 배터리 모듈의 잔존가치를 평가하는 제어부;를 포함하여 구성되는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.Through the charging/discharging unit, the life expectancy is calculated by charging/discharging the battery module after use according to the preset charge/discharge rate (C-Rate) for each item subject to conversion to which the used battery module can be applied, and the economic value standard for each item The after-use battery module residual value evaluation system, characterized in that it comprises; a controller for evaluating the residual value of the battery module after use by applying.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 충방전부는,The charging and discharging unit,
    상기 사용 후 배터리 모듈에 대한 충전 동작을 수행하는 충전부,A charging unit that performs a charging operation on the battery module after use,
    상기 사용 후 배터리 모듈에 대한 방전 동작을 수행하는 방전부, 및A discharging unit for discharging the battery module after use, and
    충방전을 통한 사용 후 배터리 모듈의 전압, 전류, 또는 온도를 측정하는 센서부를 포함하여 구성되는 것으르 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.A battery module residual value evaluation system after use, characterized in that it comprises a sensor unit that measures the voltage, current, or temperature of the battery module after use through charging and discharging.
  9. 제 7 항에 있어서,8. The method of claim 7,
    상기 사용 후 배터리 모듈에 대한 정보에는,The information about the battery module after use includes:
    사용 후 배터리 모듈의 모델명, 제품규격, 제조정보, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건 또는 환경 정보 중 적어도 하나 이상이 포함되는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.A post-usage battery module residual value evaluation system, characterized in that at least one of a model name, product specification, manufacturing information, electrical property information, electrochemical property information, usage conditions, or environmental information of the battery module after use is included.
  10. 제 7 항에 있어서,8. The method of claim 7,
    상기 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별 정보에는,The information for each item subject to change of use to which the battery module can be applied after use includes:
    상기 사용 후 배터리 모듈의 모델명에 따라 적용될 수 있는 용도 전환 대상 품목별 정보, 품목별 제품 정보, 품목별 충방전율(C-Rate) 및 품목별 경제 가치 기준인 배터리 가격이 포함되는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 시스템.Residue of a battery module after use, characterized in that it includes information on each item subject to change of use that can be applied according to the model name of the battery module after use, product information by item, charge/discharge rate (C-Rate) for each item, and battery price that is the economic value standard for each item Valuation system.
  11. 사용 후 배터리 모듈과 BMS를 통해 연결된 잔존 가치 평가 장치로 구성된 잔존 가치 평가 시스템을 통해 사용 후 배터리 모듈의 잔존 가치를 평가하는 방법에 있어서,A method for evaluating the residual value of a battery module after use through a residual value assessment system consisting of a residual value assessment device connected through a battery module and BMS after use,
    모듈 단위로 분해된 사용 후 배터리 모듈의 초기 점검을 수행하는 단계;performing an initial inspection of the battery module after disassembly in module units;
    상기 초기 점검 결과, 상태가 정상적인 사용 후 배터리 모듈에 대해 기준 충방전율(C-Rate)에 따른 충방전을 수행하여 잔존수명(SOH)을 추정하고, 추정된 잔존수명을 통해 기대수명을 산출하는 단계; 및,As a result of the initial check, the battery module is charged and discharged according to the standard charge/discharge rate (C-Rate) after use in a normal state to estimate the remaining life (SOH), and calculating the life expectancy through the estimated remaining life. ; and,
    상기 사용 후 배터리 모듈이 각각의 성능에 따라 재사용·재제조 될 수 있도록, 재사용·재제조로 적용 가능한 용도별로 미리 설정된 충방전율(C-Rate)에 따른 충방전을 수행하여 잔존수명(SOH)을 추정하고, 추정된 잔존수명을 통해 기대수명을 산출하여, 상기 사용 후 배터리 모듈의 성능에 따라 최적의 용도로 재사용·재제조 될 수 있는 판단기준을 제공하는 단계;를 포함하여 구성되는 사용 후 배터리 모듈 잔존 가치 평가 방법.In order for the battery module to be reused and remanufactured according to each performance after use, the remaining life (SOH) is reduced by charging and discharging according to the charge/discharge rate (C-Rate) set in advance for each application applicable to reuse and remanufacturing. Estimating, calculating an expected lifespan through the estimated remaining lifespan, and providing a judgment criterion that can be reused and remanufactured for an optimal use according to the performance of the battery module after use; A method for evaluating the residual value of a module.
  12. 제 11 항에 있어서,12. The method of claim 11,
    상기 사용 후 배터리 모듈의 성능에 따라 최적의 용도로 재사용·재제조될 수 있는 판단기준을 제공하는 단계에서는,In the step of providing a determination criterion that can be reused and remanufactured for optimal use according to the performance of the battery module after use,
    상기 산출된 기대수명에 미리 저장된 재사용·재제조 용도별 경제 가치 기준을 적용하여, 해당 사용 후 배터리 모듈이 적용될 수 있는 재사용·재제조 용도별로 잔존 가치 평가를 산출하는 단계를 추가로 더 포함하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 방법.By applying the economic value standard for each reuse/remanufacturing purpose stored in advance to the calculated life expectancy, further comprising the step of calculating a residual value evaluation for each reuse/remanufacturing purpose to which the battery module can be applied after use A method of evaluating the residual value of a battery module after use.
  13. 제 11 항에 있어서,12. The method of claim 11,
    상기 모듈 단위로 분해된 사용 후 배터리 모듈의 초기 점검을 수행하는 단계에서는,In the step of performing the initial inspection of the battery module after disassembly in the module unit,
    상기 사용 후 배터리 모듈을 3C-Rate의 충방전율로 충전 또는 방전 또는 완전 충방전을 수행하여 전압을 측정하고, 측정된 전압의 수치 변화 또는 충전 및 방전용량의 변화가 미리 설정된 범위 내에 포함되지 않는 경우, 해당 사용 후 배터리 모듈을 재활용으로 분류하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 방법.After use, the battery module is charged or discharged or fully charged/discharged at a charge/discharge rate of 3C-Rate to measure the voltage, and the numerical change of the measured voltage or the change in charging and discharging capacity is not included within the preset range , A method of evaluating the residual value of a used battery module, characterized in that the used battery module is classified as recycling.
  14. 제 11 항에 있어서,12. The method of claim 11,
    상기 초기 점검 결과, 상태가 정상적인 사용 후 배터리 모듈에 대해 기준 충방전율에 따른 충방전을 수행하여 잔존수명(SOH)을 추정하고, 추정된 잔존수명을 통해 기대수명을 산출하는 단계에서는,As a result of the initial inspection, in the step of estimating the remaining life (SOH) by performing charging and discharging according to the standard charge/discharge rate for the battery module after normal use, and calculating the life expectancy through the estimated remaining life,
    상기 사용 후 배터리 모듈을 1/3 C-Rate의 충방전율로 충방전을 수행하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 방법.A method for evaluating the residual value of a battery module after use, characterized in that charging and discharging the battery module after use at a charge/discharge rate of 1/3 C-Rate.
  15. 제 11 항에 있어서,12. The method of claim 11,
    상기 잔존수명(SOH)을 추정하고, 추정된 잔존수명을 통해 기대수명을 산출함에 있어서는,In estimating the remaining life (SOH) and calculating the life expectancy through the estimated remaining life,
    상기 사용 후 배터리 모듈을 완전 충전 및 완전 방전 시키는 동작을 반복 수행하여, 미리 설정된 배터리 용량감소율 지점까지 미리 설정된 사이클 횟수 단위별로 잔존수명을 추정하고, 추정된 잔존수명 값들을 연결한 곡선의 기울기에 기초하여 배터리 전체 용량에 대한 잔존수명 변화를 예측하여, 사용 후 배터리 모듈의 기대수명을 산출하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 방법.After use, the operation of fully charging and fully discharging the battery module is repeatedly performed to estimate the remaining life for each preset cycle number unit up to the preset battery capacity reduction rate point, and based on the slope of the curve connecting the estimated remaining life values. A method for evaluating the residual value of a battery module after use, characterized in that by predicting the change in the residual life of the total capacity of the battery, and calculating the expected life of the battery module after use.
  16. 제 15 항에 있어서,16. The method of claim 15,
    상기 잔존수명(SOH)을 추정하고, 추정된 잔존수명을 통해 기대수명을 산출함에 있어서는,In estimating the remaining life (SOH) and calculating the life expectancy through the estimated remaining life,
    전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%를 기준점으로 설정하여, 사용 후 배터리 모듈의 잔존수명이 기준점(용량감소율의 80%)이 될 때까지 완전 충전 및 완전 방전시키는 동작을 반복수행하되, 100cycle 단위로 잔존수명을 추정하고, 사이클 횟수에 따라 추정된 잔존수명 값들을 연결한 곡선의 기울기에 기초하여 용량감소율의 80% 이후에 대한 잔존수명을 추정하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 방법.The operation of fully charging and completely discharging until the remaining life of the battery module reaches the reference point (80% of the capacity reduction rate) after use by setting 80% of the battery capacity reduction rate, which is the point at which the electric vehicle or energy storage device is replaced, as the reference point. Repeatedly, estimating the remaining life in units of 100 cycles, and estimating the remaining life after 80% of the capacity reduction rate based on the slope of the curve connecting the estimated residual life values according to the number of cycles How to evaluate the residual value of a battery module after.
  17. 제 16 항에 있어서,17. The method of claim 16,
    상기 잔존수명(SOH)을 추정하고, 추정된 잔존수명을 통해 기대수명을 산출함에 있어서는,In estimating the remaining life (SOH) and calculating the life expectancy through the estimated remaining life,
    전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%인 시점부터, 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 기대수명으로 산출하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 방법.Calculating the number of cycles from 80% of the battery capacity reduction rate, which is the time when electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, which is the time of battery replacement for products applied for reuse and remanufacturing, is calculated as the life expectancy. A method of evaluating the residual value of a battery module after use, which is characterized.
  18. 제 11 항에 있어서,12. The method of claim 11,
    상기 사용 후 배터리 모듈이 각각의 성능에 따라 재사용·재제조 될 수 있도록, 재사용·재제조로 적용 가능한 용도별로 미리 설정된 충방전율에 따른 충방전을 수행함에 있어서,In performing charging and discharging according to a preset charge/discharge rate for each use applicable to reuse and remanufacturing so that the battery module after use can be reused and remanufactured according to each performance,
    상기 사용 후 배터리 모듈이 주파수조절용 ESS, 풍력용 ESS, 무정전 전원 장치(UPS) 중 적어도 하나 이상 적용 가능한 경우 2 C-Rate로 충방전율을 설정하여 충방전을 수행하고,After use, if at least one of the ESS for frequency control, the ESS for wind power, and the uninterruptible power supply (UPS) is applicable, the battery module performs charging and discharging by setting the charge/discharge rate to 2 C-Rate,
    전동카트 배터리, 전기이륜차 배터리, 비상발전기용 ESS, 피크저감용 ESS 중 적어도 하나 이상 적용 가능한 경우 1 C-Rate로 충방전율을 설정하여 충방전을 수행하고,If at least one of an electric cart battery, an electric two-wheeled vehicle battery, an ESS for an emergency generator, and an ESS for peak reduction is applicable, the charge/discharge rate is set to 1 C-Rate to perform charging and discharging;
    태양광용 ESS 또는 전기차용 배터리로 적용 가능한 경우 1/3 C-Rate로 충방전율을 설정하여 충방전을 수행하고,If applicable to solar ESS or electric vehicle battery, charge/discharge is performed by setting the charge/discharge rate to 1/3 C-Rate,
    가정용 ESS 또는 전동휠체어로 적용 가능한 경우 02 C-Rate로 충방전율을 설정하여 충방전을 수행하고,If applicable to home ESS or electric wheelchair, charge/discharge is performed by setting the charge/discharge rate to 02 C-Rate,
    파워뱅크, 전기자전거 배터리, 태양 가로등, 전자제품 중 적어도 하나 이상 적용 가능한 경우 01 C-Rate로 충방전율을 설정하여 충방전을 수행하는 것을 특징으로 하는 사용 후 배터리 모듈 잔존 가치 평가 방법.A method for evaluating the residual value of a battery module after use, characterized in that charging/discharging is performed by setting the charge/discharge rate to 01 C-Rate if at least one of a power bank, an electric bicycle battery, a solar street lamp, and an electronic product is applicable.
PCT/KR2022/000382 2021-01-21 2022-01-10 System for evaluating residual value of battery module after use, and method therefor WO2022158774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210008692A KR102367195B1 (en) 2021-01-21 2021-01-21 System and method for residual value evaluation of used battery module
KR10-2021-0008692 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022158774A1 true WO2022158774A1 (en) 2022-07-28

Family

ID=80474565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000382 WO2022158774A1 (en) 2021-01-21 2022-01-10 System for evaluating residual value of battery module after use, and method therefor

Country Status (2)

Country Link
KR (1) KR102367195B1 (en)
WO (1) WO2022158774A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116739638A (en) * 2023-06-16 2023-09-12 厦门广开电子有限公司 Big data analysis system based on use habit of treasured consumer charges

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130073802A (en) * 2011-12-23 2013-07-03 삼성에스디아이 주식회사 Device for esitimating life time of secondary battery and method thereof
JP2013142630A (en) * 2012-01-11 2013-07-22 Toshiba Corp Cell life pre-detecting method, cell system, and cell controller
KR101680324B1 (en) * 2016-01-29 2016-11-28 (주)에코파워텍 Apparatus for assessing lifetime of battery
JP2020162309A (en) * 2019-03-27 2020-10-01 本田技研工業株式会社 Life prediction device, life prediction method and program
KR20200134580A (en) * 2019-05-22 2020-12-02 한국전력공사 Battery diagnostic device and battery diagnostic method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043714B1 (en) 2018-12-13 2019-11-12 제주국제대학교 산학협력단 Energy storage system for using waste-battery of electric car and method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130073802A (en) * 2011-12-23 2013-07-03 삼성에스디아이 주식회사 Device for esitimating life time of secondary battery and method thereof
JP2013142630A (en) * 2012-01-11 2013-07-22 Toshiba Corp Cell life pre-detecting method, cell system, and cell controller
KR101680324B1 (en) * 2016-01-29 2016-11-28 (주)에코파워텍 Apparatus for assessing lifetime of battery
JP2020162309A (en) * 2019-03-27 2020-10-01 本田技研工業株式会社 Life prediction device, life prediction method and program
KR20200134580A (en) * 2019-05-22 2020-12-02 한국전력공사 Battery diagnostic device and battery diagnostic method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116739638A (en) * 2023-06-16 2023-09-12 厦门广开电子有限公司 Big data analysis system based on use habit of treasured consumer charges
CN116739638B (en) * 2023-06-16 2024-03-22 厦门广开电子有限公司 Big data analysis system based on use habit of treasured consumer charges

Also Published As

Publication number Publication date
KR102367195B9 (en) 2022-12-05
KR102367195B1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
CN102231546B (en) Battery management system with balanced charge and discharge functions and control method thereof
WO2022173174A1 (en) Process of classifying grade of used battery, and system for providing same
CN202696179U (en) Battery management system
KR101555322B1 (en) Charge/discharge system and method for recycling battery
WO2013051828A2 (en) Battery management system and battery management method
WO2015102396A1 (en) Method and apparatus for distributing power in energy storage system
WO2010042517A1 (en) Li-ion battery array for vehicle and other large capacity applications
WO2019146928A1 (en) Device and method for analyzing soh
WO2019050279A1 (en) Method for diagnosing state of reuse of battery
CN202111502U (en) Battery management device with balanced charge-discharge function
WO2022158774A1 (en) System for evaluating residual value of battery module after use, and method therefor
WO2021157821A1 (en) Method for detecting lithium plating, and method and device for managing battery by using same
WO2019088504A1 (en) Device and method for diagnosing battery deterioration
Sutopo et al. A technical review of BMS performance standard for electric vehicle applications in Indonesia
WO2022149824A1 (en) Apparatus and method for managing battery
WO2022092621A1 (en) Apparatus and method for diagnosing battery
AU2020202736A1 (en) Battery Test System
JP3545367B2 (en) Battery pack voltage detector
WO2023013961A1 (en) Battery testing device and battery testing system
CN206461405U (en) A kind of charging circuit module to different battery pack number automatic chargings
Eseosa et al. Optimizing state of charge (SOC), temperature, and state of health (SOH) of lithium-ion batteries
WO2023075244A1 (en) Battery management device and operation method thereof
CN213782928U (en) Battery management system for energy storage of lithium battery
CN215813255U (en) Portable energy storage equipment detection device
WO2024122782A1 (en) Battery discharge diagnosis device and operation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742750

Country of ref document: EP

Kind code of ref document: A1