WO2022158703A1 - 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2022158703A1
WO2022158703A1 PCT/KR2021/018322 KR2021018322W WO2022158703A1 WO 2022158703 A1 WO2022158703 A1 WO 2022158703A1 KR 2021018322 W KR2021018322 W KR 2021018322W WO 2022158703 A1 WO2022158703 A1 WO 2022158703A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound
lithium secondary
secondary battery
Prior art date
Application number
PCT/KR2021/018322
Other languages
English (en)
French (fr)
Inventor
김민서
김다현
우명희
이태진
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US18/012,617 priority Critical patent/US20230253621A1/en
Priority to EP21921462.4A priority patent/EP4216332A1/en
Priority to CN202180091583.1A priority patent/CN116745960A/zh
Priority to JP2023539180A priority patent/JP2024501001A/ja
Publication of WO2022158703A1 publication Critical patent/WO2022158703A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same.
  • Lithium secondary batteries can be recharged, and compared to conventional lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, etc., the energy density per unit weight is three times higher and fast charging is possible. , are being commercialized for electric bicycles, and research and development for further energy density improvement is being actively conducted.
  • Such a lithium secondary battery includes a positive electrode including a positive active material capable of intercalating and deintercalating lithium, and a negative electrode including a negative electrode active material capable of intercalating and deintercalating lithium. It is used by injecting an electrolyte into a battery cell containing
  • the electrolyte uses an organic solvent in which a lithium salt is dissolved, and this electrolyte is important for determining the stability and performance of a lithium secondary battery.
  • a fluorine-based compound, a phosphorus-based compound, a sulfur-based compound, etc. are mainly used as a compound having few environmental pollution issues and flame retardancy, but the use of these flame retardants also causes deterioration of battery performance.
  • One embodiment is to provide a lithium secondary battery with improved room temperature lifespan characteristics, high temperature lifespan characteristics, and storage characteristics while ensuring battery safety such as thermal stability and penetration stability.
  • One embodiment of the present invention comprises a non-aqueous organic solvent, a lithium salt, and an additive, wherein the additive is a composition comprising a first compound represented by the following formula (1), and a second compound represented by the following formula (2), The first compound and the second compound provide an electrolyte for a lithium secondary battery included in a weight ratio of 1:0.4 to 1:4.
  • R 1 and R 2 are each independently a fluoro group, or a C1 to C4 fluoroalkyl group substituted with at least one fluoro group,
  • X 1 and X 2 are each independently a halogen group, or -OL 1 -R 3 ,
  • At least one of X 1 and X 2 is -OL 1 -R 3 ,
  • L 1 is a single bond or a substituted or unsubstituted C1 to C10 alkylene group
  • R 3 is each independently a cyano group (-CN), a difluorophosphite group (-OPF 2 ), a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C2 to C10 alkenyl group, a substituted or unsubstituted a C3 to C10 cycloalkyl group, a substituted or unsubstituted C3 to C10 cycloalkenyl group, a substituted or unsubstituted C2 to C10 alkynyl group, a substituted or unsubstituted C3 to C10 cycloalkynyl group, or a substituted or unsubstituted C6 to It is a C20 aryl group,
  • R 3 is each independently present, or
  • Two R 3 are linked to form a substituted or unsubstituted monocyclic or polycyclic aliphatic heterocycle, or a substituted or unsubstituted monocyclic or polycyclic aromatic heterocycle.
  • the first compound and the second compound may be included in a weight ratio of 1:0.5 to 1:3.
  • the first compound and the second compound may be included in a weight ratio of 1:0.5 to 1:2.
  • the first compound and the second compound may be included in a weight ratio of 1:1 to 1:1.5.
  • Formula 1 may be represented by Formula 1-1 or Formula 1-2 below.
  • any one of X 1 and X 2 is a fluoro group, and the other is -OL 2 -R 4 ,
  • L 2 is a single bond or a substituted or unsubstituted C1 to C10 alkylene group
  • R 4 may be a cyano group (-CN) or a difluorophosphite group (-OPF 2 ).
  • the second compound may be represented by Formula 2, and Formula 2 may be represented by Formula 2-1 below.
  • n is an integer from 1 to 5;
  • R 4 is a cyano group (-CN) or a difluorophosphite group (-OPF 2 ).
  • the second compound is represented by Formula 2,
  • X 1 is -OL 3 -R 5
  • X 2 is -OL 4 -R 6
  • L 3 and L 4 are each independently a single bond or a substituted or unsubstituted C1 to C10 alkylene group
  • R 5 and R 6 are each independently a substituted or unsubstituted C1 to C10 alkyl group, and R 5 and R 6 may be connected to form a substituted or unsubstituted monocyclic or polycyclic aliphatic heterocycle.
  • the second compound may be represented by the following Chemical Formula 2-2.
  • L 5 is a substituted or unsubstituted C2 to C5 alkylene group.
  • the second compound may be represented by the following Chemical Formula 2-2a or Chemical Formula 2-2b.
  • R 7 to R 16 are each independently hydrogen, a halogen group, or a substituted or unsubstituted C1 to C5 alkyl group.
  • the second compound may be any one selected from the compounds listed in Group 1 below.
  • the first compound may be included in an amount of 0.05 wt% to 2.0 wt% based on the total weight of the electrolyte for a lithium secondary battery.
  • the second compound may be included in an amount of 0.05 wt% to 5.0 wt% based on the total weight of the electrolyte for a lithium secondary battery.
  • the first compound is included in an amount of 0.5 wt% to 2.0 wt% based on the total weight of the electrolyte for a lithium secondary battery,
  • the second compound may be included in an amount of 0.5 wt% to 5.0 wt% based on the total weight of the electrolyte for a lithium secondary battery.
  • the composition may be included in an amount of 1.0 wt% to 5.0 wt% based on the total weight of the electrolyte for a lithium secondary battery.
  • Another embodiment of the present invention provides a lithium secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and the above-described electrolyte for a lithium secondary battery.
  • a lithium secondary battery having improved safety, room temperature characteristics, and high temperature characteristics of the battery can be implemented.
  • FIG. 1 is a schematic diagram illustrating a lithium secondary battery according to an embodiment of the present invention.
  • At least one hydrogen in a substituent or compound is deuterium, a halogen group, a hydroxyl group, an amino group, a substituted or unsubstituted C1 to C30 amine group, a nitro group, a substituted or Unsubstituted C1 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C6 to C30 arylsilyl group, C3 to C30 cycloalkyl group, C3 to C30 heterocycloalkyl group, C6 to C30 aryl group, C2 to C30 It means substituted with a heteroaryl group, a C1 to C20 alkoxy group, a C1 to C10 fluoroalkyl group, a cyano group, or a combination thereof.
  • substitution means that at least one hydrogen in a substituent or compound is deuterium, a halogen group, a C1 to C30 alkyl group, a C1 to C10 alkylsilyl group, a C6 to C30 arylsilyl group, a C3 to C30 cycloalkyl group, It means substituted with a C3 to C30 heterocycloalkyl group, a C6 to C30 aryl group, a C2 to C30 heteroaryl group, a C1 to C10 fluoroalkyl group or a cyano group.
  • substitution means that at least one hydrogen in a substituent or compound is substituted with deuterium, a halogen group, a C1 to C20 alkyl group, a C6 to C30 aryl group, a C1 to C10 fluoroalkyl group or a cyano group. means it has been.
  • substitution means that at least one hydrogen in a substituent or compound is substituted with deuterium, a halogen group, a C1 to C5 alkyl group, a C6 to C18 aryl group, a C1 to C5 fluoroalkyl group or a cyano group.
  • substitution means that at least one hydrogen in a substituent or compound is deuterium, a cyano group, a halogen group, a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, a biphenyl group, a terphenyl group, a tri It means substituted with a fluoromethyl group or a naphthyl group.
  • Lithium secondary batteries can be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries depending on the type of separator and electrolyte used, and can be classified into cylindrical, prismatic, coin-type, pouch-type, etc. according to the shape. , can be divided into bulk type and thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, a detailed description thereof will be omitted.
  • a cylindrical lithium secondary battery will be exemplarily described as an example of the lithium secondary battery.
  • 1 schematically shows the structure of a lithium secondary battery according to an embodiment.
  • a lithium secondary battery 100 according to an embodiment is disposed between a positive electrode 114 , a negative electrode 112 positioned to face the positive electrode 114 , and a positive electrode 114 and a negative electrode 112 ,
  • a battery cell including a separator 113 and a positive electrode 114, a negative electrode 112, and an electrolyte (not shown) impregnated with the separator 113, a battery container 120 containing the battery cell, and the battery and a sealing member 140 sealing the container 120 .
  • a lithium secondary battery according to an embodiment of the present invention includes an electrolyte, a positive electrode, and a negative electrode.
  • the electrolyte includes a non-aqueous organic solvent, a lithium salt, and an additive, wherein the additive is a composition comprising a first compound represented by the following Chemical Formula 1 and a second compound represented by the following Chemical Formula 2, the first compound and The second compound is included in a weight ratio of 1:0.4 to 1:4.
  • the additive is a composition comprising a first compound represented by the following Chemical Formula 1 and a second compound represented by the following Chemical Formula 2, the first compound and The second compound is included in a weight ratio of 1:0.4 to 1:4.
  • R 1 and R 2 are each independently a fluoro group, or a C1 to C4 fluoroalkyl group substituted with at least one fluoro group,
  • X 1 and X 2 are each independently a halogen group, or -OL 1 -R 3 ,
  • At least one of X 1 and X 2 is -OL 1 -R 3 ,
  • L 1 is a single bond or a substituted or unsubstituted C1 to C10 alkylene group
  • R 3 is each independently a cyano group (-CN), a difluorophosphite group (-OPF 2 ), a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C2 to C10 alkenyl group, a substituted or unsubstituted a C3 to C10 cycloalkyl group, a substituted or unsubstituted C3 to C10 cycloalkenyl group, a substituted or unsubstituted C2 to C10 alkynyl group, a substituted or unsubstituted C3 to C10 cycloalkynyl group, or a substituted or unsubstituted C6 to It is a C20 aryl group,
  • R 3 is each independently present, or
  • Two R 3 are linked to form a substituted or unsubstituted monocyclic or polycyclic aliphatic heterocycle, or a substituted or unsubstituted monocyclic or polycyclic aromatic heterocycle.
  • the first compound is a compound comprising a cesium sulfonylimide salt.
  • the first compound is decomposed in the electrolyte to form a film on the surfaces of the positive electrode and the negative electrode to effectively control the elution of lithium ions generated from the positive electrode, thereby preventing the anode decomposition phenomenon.
  • the first compound is reduced before decomposition of the carbonate-based solvent contained in the non-aqueous organic solvent to form an SEI film (Solid Electrolyte interface) on the anode, thereby preventing the decomposition of the electrolyte and the decomposition of the electrode thereby generating gas
  • SEI film Solid Electrolyte interface
  • the SEI film formed on the negative electrode is partially decomposed through a reduction reaction during charging and discharging and moves to the surface of the anode to form a film on the surface of the anode through oxidation reaction. It can contribute to the improvement of life characteristics.
  • the effect of suppressing the generation of gas inside the battery at high temperature is further improved by suppressing the high-temperature decomposition effect of the electrolyte through stabilization of the lithium salt in the electrolyte as well as the flame-retardant properties. Battery safety and lifespan characteristics can be improved at the same time.
  • the first compound and the second compound may be included in a weight ratio of 1:0.5 to 1:3.
  • the first compound and the second compound may be included in a weight ratio of 1: 0.5 to 1: 2, for example, in a weight ratio of 1:1 to 1: 1.5.
  • R 1 and R 2 in Formula 1 may each independently be a fluoro group or a C1 to C4 fluoroalkyl group substituted with at least two fluoro groups.
  • R 1 and R 2 in Formula 1 may each independently be a fluoro group or a C1 to C4 fluoroalkyl group substituted with at least three fluoro groups.
  • R 1 and R 2 in Formula 1 may each independently be a fluoro group or a C1 to C3 fluoroalkyl group substituted with at least three fluoro groups.
  • R 1 and R 2 in Formula 1 may each independently be a fluoro group or a C1 to C2 fluoroalkyl group substituted with at least three fluoro groups.
  • the compound represented by Formula 1 may be represented by Formula 1-1 or Formula 1-2.
  • any one of X 1 and X 2 is a fluoro group, and the other is -OL 2 -R 4 ,
  • L 2 is a single bond or a substituted or unsubstituted C1 to C10 alkylene group
  • the R 4 may be a cyano group (-CN) or a difluorophosphite group (-OPF 2 ).
  • the second compound is represented by Formula 2,
  • Formula 2 may be represented by Formula 2-1 below.
  • n is an integer from 1 to 5;
  • R 4 is a cyano group (-CN) or a difluorophosphite group (-OPF 2 ).
  • the second compound is represented by Formula 2,
  • X 1 is -OL 3 -R 5
  • X 2 is -OL 4 -R 6
  • L 3 and L 4 are each independently a single bond or a substituted or unsubstituted C1 to C10 alkylene group
  • R 5 and R 6 are each independently a substituted or unsubstituted C1 to C10 alkyl group, and R 5 and R 6 may be connected to form a substituted or unsubstituted monocyclic or polycyclic aliphatic heterocycle.
  • the second compound may be represented by the following Chemical Formula 2-2.
  • L 5 is a substituted or unsubstituted C2 to C5 alkylene group.
  • the second compound may be represented by the following Chemical Formula 2-2a or Chemical Formula 2-2b.
  • R 7 to R 16 are each independently hydrogen, a halogen group, or a substituted or unsubstituted C1 to C5 alkyl group.
  • the second compound may be any one selected from the compounds listed in Group 1 below.
  • the additive included in the electrolyte solution for a lithium secondary battery according to the present invention is cesium bis(fluorosulfonyl)imide as the first compound and at least one of the compounds listed in Group 1 as the second compound. It may be a composition comprising.
  • the composition may include cesium bis(trifluoromethanesulfonyl)imide as the first compound and at least one of the compounds listed in Group 1 as the second compound.
  • the first compound may be included in an amount of about 0.05 wt% to about 2.0 wt% based on the total weight of the electrolyte for a lithium secondary battery.
  • the second compound may be included in an amount of about 0.05 wt% to about 5.0 wt% based on the total weight of the electrolyte for a lithium secondary battery.
  • the first compound is included in an amount of about 0.5% to about 2.0% by weight based on the total weight of the electrolyte for a lithium secondary battery
  • the second compound is about 0.5% by weight to about 5.0% by weight based on the total weight of the electrolyte for a lithium secondary battery It may be included in weight %.
  • the first compound is included in an amount of about 0.5 wt% to about 2.0 wt% based on the total weight of the electrolyte for a lithium secondary battery
  • the second compound is 0.5 wt% to about 4.0 wt% with respect to the total weight of the electrolyte for a lithium secondary battery % may be included.
  • the first compound is included in an amount of about 0.5 wt% to about 2.0 wt% based on the total weight of the electrolyte for a lithium secondary battery
  • the second compound is 0.5 wt% to about 3.0 wt% with respect to the total weight of the electrolyte for a lithium secondary battery It may be included in weight %.
  • the first compound is included in an amount of about 0.5% to about 2.0% by weight based on the total weight of the electrolyte for a lithium secondary battery
  • the second compound is 0.5% to about 1.0% by weight based on the total weight of the electrolyte for a lithium secondary battery. may be included.
  • composition including the first compound and the second compound may be included in an amount of about 1.0 wt% to about 5.0 wt% based on the total weight of the electrolyte for a lithium secondary battery.
  • the content of the composition and the content of each component, that is, the first compound and the second compound in the composition are within the above ranges, battery safety such as thermal stability and penetration safety is improved, and gas generation inside the battery is suppressed It is possible to implement a lithium secondary battery with improved battery characteristics at room temperature and high temperature.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • non-aqueous organic solvent a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • Examples of the carbonate-based solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), and the like may be used.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, t-butyl acetate, methylpropionate, ethylpropionate, propylpropionate, decanolide, and mevalonolactone. ), caprolactone, etc.
  • ether-based solvent dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc.
  • cyclohexanone and the like may be used as the ketone-based solvent.
  • alcohol-based solvent ethyl alcohol, isopropyl alcohol, etc.
  • the aprotic solvent is R 15 -CN (R 15 is a linear, branched, or cyclic hydrocarbon having 2 to 20 carbon atoms) nitriles such as nitriles (which may contain double bond aromatic rings or ether bonds), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, etc. can
  • the non-aqueous organic solvent may be used alone or in a mixture of one or more, and when one or more are mixed and used, the mixing ratio can be appropriately adjusted according to the desired battery performance, which is widely understood by those in the art. can be
  • the carbonate-based solvent it is preferable to use a mixture of a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of 1:9 to 9:1, the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent may include the cyclic carbonate and the chain carbonate in a volume ratio of 2:8 to 5:5, and as a specific example, the cyclic carbonate and the chain carbonate The carbonate may be included in a volume ratio of 2:8 to 4:6.
  • the cyclic carbonate and the chain carbonate may be included in a volume ratio of 2:8 to 3:7.
  • the non-aqueous organic solvent may further include an aromatic hydrocarbon-based organic solvent in the carbonate-based solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based solvent may be mixed in a volume ratio of 1:1 to 30:1.
  • aromatic hydrocarbon-based solvent an aromatic hydrocarbon-based compound represented by the following Chemical Formula 4 may be used.
  • R 17 to R 22 are the same as or different from each other and are selected from the group consisting of hydrogen, halogen, an alkyl group having 1 to 10 carbon atoms, a haloalkyl group, and combinations thereof.
  • aromatic hydrocarbon-based solvent examples include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluoro Robenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1, 2,4-trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, 1,4-diiodobenzene, 1,2,3-triiodobenzene, 1,2 ,4-triiodobenzene, toluene, fluorotoluene, 2,3-difluorotoluene, 2,4-difluoro
  • the lithium salt is dissolved in a non-aqueous organic solvent, serves as a source of lithium ions in the battery, enables basic lithium secondary battery operation, and promotes the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts include LiPF 6 , LiBF 4 , lithium difluoro(oxalate)borate (LiDFOB), LiPO 2 F 2 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F) 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiN(SO 3 C 2 F 5 ) 2 , Li(FSO 2 ) 2 N(lithium bis(fluorosulfonyl)imide): LiFSI), LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ), where x and y are natural numbers,
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer disposed on the positive electrode current collector, and the positive electrode active material layer includes a positive electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium (a lithiated intercalation compound) may be used.
  • At least one of a complex oxide of lithium and a metal selected from cobalt, manganese, nickel, and combinations thereof may be used.
  • the coating layer may contain at least one coating element compound selected from the group consisting of an oxide of a coating element, a hydroxide of a coating element, an oxyhydroxide of a coating element, an oxycarbonate of a coating element, and a hydroxycarbonate of a coating element.
  • the compound constituting these coating layers may be amorphous or crystalline.
  • the coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof may be used.
  • any coating method may be used as long as it can be coated by a method that does not adversely affect the physical properties of the positive electrode active material by using these elements in the compound (eg, spray coating, dipping method, etc.). Since the content can be well understood by those in the field, a detailed description thereof will be omitted.
  • the positive active material may be, for example, at least one of lithium composite oxides represented by the following Chemical Formula 3.
  • M 1 , M 2 and M 3 are each independently Ni, Co, Mn, Al, Sr, Mg or It may be any one selected from metals such as La and combinations thereof.
  • M 1 and M 2 may each independently be Ni or Co, and M 3 may be a metal such as Co, Mn, Al, Sr, Mg, or La.
  • M 1 and M 2 may each independently be Ni or Co, and M 3 may be Mn or Al, but is not limited thereto.
  • the cathode active material may be a lithium composite oxide represented by the following Chemical Formula 3-1 or Chemical Formula 3-2.
  • 1 ⁇ x2 ⁇ 1.2, 0.3 ⁇ y2 ⁇ 1, and 0.3 ⁇ z2 ⁇ 1 may be.
  • the content of the cathode active material may be 90 wt% to 98 wt% based on the total weight of the cathode active material layer.
  • the positive active material layer may optionally include a conductive material and a binder.
  • the content of the binder may be 1 wt% to 5 wt% based on the total weight of the positive electrode active material layer.
  • the content of the conductive material and the binder may be 1 wt% to 5 wt%, respectively, based on the total weight of the positive active material layer.
  • the conductive material is used to impart conductivity to the positive electrode, and in the battery configured, any electronic conductive material may be used as long as it does not cause chemical change, for example, natural graphite, artificial graphite, carbon black, acetylene black, ketjen carbon-based materials such as black and carbon fiber; metal powders, such as copper, nickel, aluminum, and silver, or metal-based substances, such as metal fibers; conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material including a mixture thereof may be used.
  • the binder well adheres the positive active material particles to each other and also serves to adhere the positive active material to the current collector.
  • Representative examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl. Chloride, carboxylated polyvinylchloride, polyvinylfluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene- Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. may be used, but the present invention is not limited thereto.
  • Al may be used as the positive electrode current collector, but is not limited thereto.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material formed on the negative electrode current collector.
  • the negative active material includes a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, or a transition metal oxide.
  • the material capable of reversibly intercalating/deintercalating lithium ions is a carbon material, and any carbon-based negative active material generally used in lithium secondary batteries may be used, and representative examples thereof include crystalline carbon, Amorphous carbon or these may be used together.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon ( hard carbon), mesophase pitch carbide, and calcined coke.
  • the lithium metal alloy includes lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn from the group consisting of Alloys of selected metals may be used.
  • Examples of the material capable of doping and dedoping lithium include Si, Si-C composite, SiOx (0 ⁇ x ⁇ 2), Si-Q alloy (wherein Q is an alkali metal, alkaline earth metal, group 13 element, group 14 element, 15 It is an element selected from the group consisting of a group element, a group 16 element, a transition metal, a rare earth element, and a combination thereof, and is not Si), Sn, SnO 2 , Sn-R 22 (wherein R 22 is an alkali metal, an alkaline earth metal, an element selected from the group consisting of a group 13 element, a group 14 element, a group 15 element, a group 16 element, a transition metal, a rare earth element, and a combination thereof (not Sn); You may mix and use SiO2 .
  • the elements Q and R 22 include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh , Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi , S, Se, Te, Po, and those selected from the group consisting of combinations thereof may be used.
  • transition metal oxide examples include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
  • the negative active material may be a Si-C composite including a Si-based active material and a carbon-based active material.
  • the average particle diameter of the Si-based active material may be 50 nm to 200 nm.
  • the average particle diameter of the Si-based active material is within the above range, volume expansion occurring during charging and discharging may be suppressed, and interruption of a conductive path due to particle crushing during charging and discharging may be prevented.
  • the Si-based active material may be included in an amount of 1 to 60% by weight based on the total weight of the Si-C composite, for example 3 to 60% by weight.
  • the negative active material may further include crystalline carbon together with the aforementioned Si-C composite.
  • the Si-C composite and the crystalline carbon may be included in the form of a mixture, in which case the Si-C composite and the crystalline carbon are 1:99 to 50 : It may be included in a weight ratio of 50. More specifically, the Si-C composite and the crystalline carbon may be included in a weight ratio of 5: 95 to 20: 80.
  • the crystalline carbon may include, for example, graphite, and more specifically, natural graphite, artificial graphite, or a mixture thereof.
  • the average particle diameter of the crystalline carbon may be 5 ⁇ m to 30 ⁇ m.
  • the average particle size may be the particle size (D50) at 50% by volume in a cumulative size-distribution curve.
  • the Si-C composite may further include a shell surrounding the surface of the Si-C composite, and the shell may include amorphous carbon.
  • the amorphous carbon may include soft carbon, hard carbon, mesophase pitch carbide, calcined coke, or a mixture thereof.
  • the amorphous carbon may be included in an amount of 1 to 50 parts by weight, for example, 5 to 50 parts by weight, or 10 to 50 parts by weight based on 100 parts by weight of the carbon-based active material.
  • the content of the anode active material in the anode active material layer may be 95 wt% to 99 wt% based on the total weight of the anode active material layer.
  • the negative active material layer includes a binder, and may optionally further include a conductive material.
  • the content of the binder in the anode active material layer may be 1 wt% to 5 wt% based on the total weight of the anode active material layer.
  • 90 wt% to 98 wt% of the negative active material, 1 wt% to 5 wt% of the binder, and 1 wt% to 5 wt% of the conductive material may be used.
  • the binder serves to well adhere the negative active material particles to each other and also to adhere the negative active material well to the current collector.
  • a water-insoluble binder, a water-soluble binder, or a combination thereof may be used as the binder.
  • water-insoluble binder examples include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyimide, or Combinations of these can be mentioned.
  • the water-soluble binder may include a rubber-based binder or a polymer resin binder.
  • the rubber binder may be selected from styrene-butadiene rubber, acrylated styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, acrylic rubber, butyl rubber, fluororubber, and combinations thereof.
  • the polymer resin binder is polytetrafluoroethylene, ethylene propylene copolymer, polyethylene oxide, polyvinyl pyrrolidone, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polystyrene, ethylene propylene diene copolymer , polyvinylpyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, and combinations thereof.
  • a cellulose-based compound capable of imparting viscosity may be further included as a thickener.
  • the cellulose-based compound one or more of carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, or alkali metal salts thereof may be mixed and used.
  • the alkali metal Na, K or Li may be used.
  • the amount of the thickener used may be 0.1 parts by weight to 3 parts by weight based on 100 parts by weight of the negative active material.
  • the conductive material is used to impart conductivity to the electrode, and in the battery configured, any electronic conductive material can be used as long as it does not cause a chemical change, for example, natural graphite, artificial graphite, carbon black, acetylene black, ketjen carbon-based materials such as black and carbon fiber; metal-based substances such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material including a mixture thereof may be used.
  • the negative electrode current collector one selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with conductive metal, and combinations thereof may be used. .
  • a separator may exist between the positive electrode and the negative electrode depending on the type of the lithium secondary battery.
  • a separator is a porous substrate; or a composite porous substrate.
  • the porous substrate is a substrate including pores, through which lithium ions can move.
  • the porous substrate may be, for example, polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film of two or more layers thereof, a polyethylene/polypropylene two-layer separator, a polyethylene/polypropylene/polyethylene three-layer separator, polypropylene/polyethylene/ It goes without saying that a mixed multilayer film such as a polypropylene three-layer separator or the like may be used.
  • the composite porous substrate may have a form including a porous substrate and a functional layer positioned on the porous substrate.
  • the functional layer may be, for example, at least one of a heat-resistant layer and an adhesive layer from the viewpoint of enabling additional functional addition, for example, the heat-resistant layer may include a heat-resistant resin and optionally a filler.
  • the adhesive layer may include an adhesive resin and optionally a filler.
  • the filler may be an organic filler or an inorganic filler.
  • LiNi 0.91 Co 0.07 Al 0.02 O 2 as a cathode active material, polyvinylidene fluoride as a binder, and Ketjen black as a conductive material were mixed in a weight ratio of 97:2:1, respectively, and dispersed in N -methylpyrrolidone to slurry the cathode active material was prepared.
  • the cathode active material slurry was coated on Al foil having a thickness of 14 ⁇ m, dried at 110° C., and then pressed to prepare a cathode.
  • the negative electrode active material a mixture of artificial graphite and Si-C composite was used in a weight ratio of 93:7, and styrene-butadiene rubber binder as the negative electrode active material and binder and carboxymethylcellulose as the thickener were used in a weight ratio of 97:1:2, respectively.
  • styrene-butadiene rubber binder as the negative electrode active material and binder and carboxymethylcellulose as the thickener were used in a weight ratio of 97:1:2, respectively.
  • a core including artificial graphite and silicon particles and a coal-based pitch coated on the surface of the core were used.
  • the negative electrode active material slurry was coated on a 10 ⁇ m thick Cu foil, dried at 100° C., and then pressed to prepare a negative electrode.
  • An electrode assembly was prepared by assembling the prepared positive electrode and negative electrode and a separator made of a polyethylene material having a thickness of 25 ⁇ m, and an electrolyte solution was injected to prepare a lithium secondary battery.
  • the electrolyte composition is as follows.
  • a composition comprising 0.5 wt% of a cesium bis(trifluoromethanesulfonyl)imide represented by the following formula 1-2, and 0.5 wt% of a compound represented by the following formula z-1
  • wt% is based on the total amount of the electrolyte (lithium salt + non-aqueous organic solvent + additive).
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that an additive composition was prepared using a compound represented by the following formula z-2 instead of the compound represented by the formula z-1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the additive composition was prepared by using the compound represented by the following formula z-3 instead of the compound represented by the formula z-1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the additive composition was prepared by using 0.75 wt% of the compound represented by the following formula z-4 instead of the compound represented by the formula z-1.
  • Example 1 except that cesium bis(fluorosulfonyl)imide represented by the following formula 1-1 was used instead of the cesium bis(trifluoromethanesulfonyl)imide represented by the formula 1-2.
  • Lithium secondary batteries were manufactured in the same manner as in Examples 4 to 4.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that an additive composition was prepared using 1.0 wt% of the compound represented by Formula z-1.
  • a lithium secondary battery was manufactured in the same manner as in Example 2, except that an additive composition was prepared by using 1.0 wt% of the compound represented by Formula z-2.
  • a lithium secondary battery was manufactured in the same manner as in Example 3, except that an additive composition was prepared using 1.0 wt % of the compound represented by Formula z-3.
  • a lithium secondary battery was manufactured in the same manner as in Example 4, except that an additive composition was prepared using 1.0 wt % of the compound represented by Formula z-4.
  • Example 9 except that cesium bis(fluorosulfonyl)imide represented by Formula 1-1 was used instead of cesium bis(trifluoromethanesulfonyl)imide represented by Formula 1-2.
  • a lithium secondary battery was manufactured in the same manner as in Examples 12 to 12, respectively.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that an electrolyte solution containing no additives was used.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the electrolyte was prepared using an additive that did not use the compound represented by Formula z-1 in the composition.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 0.5 wt% of the compound represented by Formula 1-1 was used alone to prepare an electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the electrolyte was prepared using an additive that did not use the compound represented by Formula 1-2 in the composition.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the electrolyte was prepared with an additive using 0.5 wt% of Li(CF 3 SO 2 ) 2 N instead of the compound represented by Formula 1-2 in the composition. .
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 4, except that the electrolyte was prepared using an additive using the compound represented by Formula z-2 instead of the compound represented by Formula z-1 in the composition.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 5, except that the electrolyte was prepared using an additive composition using a compound represented by Formula z-2 instead of a compound represented by Formula z-1 among the composition.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 4, except that the electrolyte was prepared using an additive using the compound represented by Formula z-3 instead of the compound represented by Formula z-1 in the composition.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 5, except that the electrolyte was prepared using an additive composition using a compound represented by Formula z-3 instead of a compound represented by Formula z-1 among the compositions.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 4, except that the electrolyte was prepared with an additive using 0.75 wt% of the compound represented by Formula z-4 instead of the compound represented by Formula z-1 in the composition.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 5, except that the electrolyte was prepared using an additive composition using 0.75 wt% of a compound represented by Formula z-4 instead of a compound represented by Formula z-1 in the composition. .
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the electrolyte was prepared using an additive composition using 0.5 wt% of LiDFOB instead of the compound represented by Formula z-1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the additive composition was prepared by changing the content of the compound represented by Formula z-1 to 5.0 wt%.
  • a lithium secondary battery was manufactured in the same manner as in Example 2, except that the additive composition was prepared by changing the content of the compound represented by Formula z-2 to 5.0 wt%.
  • a lithium secondary battery was carried out in the same manner as in Example 3, except that the additive composition was prepared by changing the content of cesium bis(trifluoromethanesulfonyl)imide represented by Chemical Formula 1-2 to 2.0 wt%. was produced.
  • a lithium secondary battery was manufactured in the same manner as in Example 3, except that the additive composition was prepared by changing the content of the compound represented by Formula z-3 to 5.0 wt%.
  • a lithium secondary battery was manufactured in the same manner as in Example 4, except that the additive composition was prepared by changing the content of the compound represented by Formula z-4 to 5.0 wt%.
  • Lithium secondary batteries prepared according to Examples 1 to 16 and Comparative Examples 1 to 20 were charged at room temperature (25° C.) at a constant current-constant voltage at 1.0C and 4.2V and 0.33C cut-off conditions, and a constant current of 1.0C and 3.0V was discharged. After performing the charging and discharging conditions 200 times, the discharge capacity was measured to calculate the capacity ratio (capacity retention rate) in 200 cycles to the discharge capacity once, and the results are shown in Table 2.
  • the CID Current Interrupt Device
  • the CID is a device that detects a pressure change in a sealed device, that is, a pressure rise, and blocks the current by itself when the pressure exceeds a certain level. do it with
  • the lithium secondary batteries according to Examples 1 to 16 and Comparative Examples 1 to 20 were charged at a charge rate of 0.5 C in a 3.0 V discharge state under 4.2 V/3 hr cut-off conditions, and then thermal exposure evaluation was performed.
  • Penetration limit evaluation evaluates the safety of the battery by penetrating the cell at a speed of 150mm/s using a 3.0 nail after charging up to SOC (state of charge) 50 (capacity equivalent to half of the total capacity of 100) did.
  • SOC state of charge
  • 50 capacity equivalent to half of the total capacity of 100
  • L3 The weight of the electrolyte of the battery is reduced by less than 50%
  • L4 The weight of the electrolyte of the battery is reduced by 50% or more
  • Comparative Example 1 Comparative Example 4, Comparative Example 6, Comparative Example 8, and Comparative Example 10 in which the first compound was not included in the additive composition, and Comparative Example 5 including another additive instead of the first compound, It can be seen that the lithium secondary batteries according to Comparative Examples 7, 9 and 11 had lower capacity retention characteristics, high temperature storage characteristics, heat exposure characteristics, and penetration characteristics compared to the lithium secondary batteries according to Examples 1 to 16. have.
  • the lithium secondary batteries according to Comparative Examples 1 to 3 in which the second compound was not included in the additive composition, and the lithium secondary batteries according to Comparative Example 12 including other additives instead of the second compound were prepared in Examples 1 to 16. It can be seen that the capacity retention characteristics and high temperature storage characteristics are lowered as compared with the lithium secondary battery according to the present invention.
  • the lithium secondary battery according to the embodiment contains a specific combination of additives in a specific ratio, and thus capacity maintenance characteristics and high temperature storage characteristics and/or heat exposure characteristics and penetration compared to the lithium secondary battery according to the comparative example which does not satisfy these conditions. It can be seen that the properties are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

비수성 유기 용매, 리튬염, 및 첨가제를 포함하고, 상기 첨가제는 화학식 1로 표시되는 제1 화합물, 및 화학식 2로 표시되는 제2 화합물을 포함하는 조성물이며, 상기 제1 화합물 및 상기 제2 화합물은 1 : 0.4 내지 1 : 4의 중량비로 포함되는 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지를 제공한다. 상기 화학식 1 및 2에 대한 상세 내용은 명세서에 기재한 바와 같다.

Description

리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
본 기재는 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
리튬 이차 전지는 재충전이 가능하며, 종래 납 축전지, 니켈-카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하기 때문에 노트북이나 핸드폰, 전동공구, 전기자전거용으로 상품화되고 있으며, 추가적인 에너지 밀도 향상을 위한 연구 개발이 활발하게 진행되고 있다.
이러한 리튬 이차 전지는 리튬을 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)할 수 있는 양극 활물질을 포함하는 양극과 리튬을 인터칼레이션 및 디인터칼레이션할 수 있는 음극 활물질을 포함하는 음극을 포함하는 전지 셀에 전해액을 주입하여 사용된다.
특히, 전해액은 리튬염이 용해된 유기 용매를 사용하고 있으며, 이러한 전해액은 리튬 이차 전지의 안정성 및 성능을 결정하는데 중요하다.
최근 리튬 이차 전지의 고용량화에 따른 에너지 밀도 증대로 인하여 안전성 문제가 대두되고 있으며, 안전성 향상을 위한 방법 중 하나로 전해액 첨가제로서 난연제를 사용하는 방법이 알려져 있다.
상기 난연제로는 환경오염 이슈가 적고 난연성을 보유한 화합물로서 불소계 화합물, 인계 화합물, 황계 화합물 등이 주로 많이 사용되고 있으나, 이들 난연제의 사용으로 인해 전지 성능 저하를 야기하기도 한다.
이에, 안전성을 확보하면서도 전지 성능이 향상된 전해액이 요구되고 있다.
일 구현예는 열안전성, 관통안정성 등 전지 안전성을 확보하면서, 동시에 상온 수명 특성, 고온 수명 특성 및 저장 특성이 개선된 리튬 이차 전지를 제공하는 것이다.
본 발명의 일 구현예는 비수성 유기 용매, 리튬염, 및 첨가제를 포함하고, 상기 첨가제는 하기 화학식 1로 표시되는 제1 화합물, 및 하기 화학식 2로 표시되는 제2 화합물을 포함하는 조성물이며, 상기 제1 화합물 및 상기 제2 화합물은 1 : 0.4 내지 1 : 4의 중량비로 포함되는 리튬 이차 전지용 전해액을 제공한다.
[화학식 1] [화학식 2]
Figure PCTKR2021018322-appb-img-000001
Figure PCTKR2021018322-appb-img-000002
상기 화학식 1 및 화학식 2에서,
R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 하나의 플루오로기로 치환된 C1 내지 C4 플루오로알킬기이고,
X1 및 X2는 각각 독립적으로 할로겐기, 또는 -O-L1-R3이고,
X1 및 X2 중 적어도 하나는 -O-L1-R3이며,
L1은 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
R3은 각각 독립적으로 시아노기 (-CN), 디플루오로포스파이트기 (-OPF2), 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C2 내지 C10 알케닐기, 치환 또는 비치환된 C3 내지 C10 사이클로알킬기, 치환 또는 비치환된 C3 내지 C10 사이클로알케닐기, 치환 또는 비치환된 C2 내지 C10 알키닐기, 치환 또는 비치환된 C3 내지 C10 사이클로알키닐기, 또는 치환 또는 비치환된 C6 내지 C20 아릴기이고,
X1 및 X2가 동시에 -O-L1-R3인 경우,
R3은 각각 독립적으로 존재하거나, 또는
2개의 R3이 연결되어 치환 또는 비치환된 단환 또는 다환의 지방족 헤테로 고리, 또는 치환 또는 비치환된 단환 또는 다환의 방향족 헤테로 고리를 형성한다.
상기 제1 화합물 및 상기 제2 화합물은 1 : 0.5 내지 1 : 3의 중량비로 포함될 수 있다.
상기 제1 화합물 및 상기 제2 화합물은 1 : 0.5 내지 1 : 2의 중량비로 포함될 수 있다.
상기 제1 화합물 및 상기 제2 화합물은 1 : 1 내지 1 : 1.5의 중량비로 포함될 수 있다.
상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시될 수 있다.
[화학식 1-1] [화학식 1-2]
Figure PCTKR2021018322-appb-img-000003
Figure PCTKR2021018322-appb-img-000004
.
화학식 2에서 상기 X1 및 X2 중 어느 하나는 플루오로기이고, 다른 하나는 -O-L2-R4이고,
L2는 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
R4는 시아노기 (-CN) 또는 디플루오로포스파이트기 (-OPF2)일 수 있다.
상기 제2 화합물은 상기 화학식 2로 표시되고, 상기 화학식 2는 하기 화학식 2-1로 표시될 수 있다.
[화학식 2-1]
Figure PCTKR2021018322-appb-img-000005
상기 화학식 2-1에서,
m은 1 내지 5의 정수 중 하나이고,
R4는 시아노기 (-CN) 또는 디플루오로포스파이트기 (-OPF2)이다.
상기 제2 화합물은 상기 화학식 2로 표시되고,
상기 화학식 2에서,
X1은 -O-L3-R5이고, X2는 -O-L4-R6이고,
L3 및 L4는 각각 독립적으로 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
R5 및 R6은 각각 독립적으로 치환 또는 비치환된 C1 내지 C10 알킬기이며, R5 및 R6은 연결되어 치환 또는 비치환된 단환 또는 다환의 지방족 헤테로 고리를 형성할 수 있다.
상기 제2 화합물은 하기 화학식 2-2로 표시될 수 있다.
[화학식 2-2]
Figure PCTKR2021018322-appb-img-000006
상기 화학식 2-2에서,
L5는 치환 또는 비치환된 C2 내지 C5 알킬렌기이다.
상기 제2 화합물은 하기 화학식 2-2a 또는 화학식 2-2b로 표시될 수 있다.
[화학식 2-2a] [화학식 2-2b]
Figure PCTKR2021018322-appb-img-000007
Figure PCTKR2021018322-appb-img-000008
상기 화학식 2-2a 및 화학식 2-2b에서,
R7 내지 R16은 각각 독립적으로 수소, 할로겐기 또는 치환 또는 비치환된 C1 내지 C5 알킬기이다.
상기 제2 화합물은 하기 그룹 1에 나열된 화합물 중에서 선택되는 어느 하나일 수 있다.
[그룹 1]
Figure PCTKR2021018322-appb-img-000009
Figure PCTKR2021018322-appb-img-000010
Figure PCTKR2021018322-appb-img-000011
Figure PCTKR2021018322-appb-img-000012
상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.05 중량% 내지 2.0 중량%로 포함될 수 있다.
상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.05 중량% 내지 5.0 중량%로 포함될 수 있다.
상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.5 중량% 내지 2.0 중량%로 포함되고,
상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.5 중량% 내지 5.0 중량%로 포함될 수 있다.
상기 조성물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 1.0 중량% 내지 5.0 중량%로 포함될 수 있다.
본 발명의 다른 일 구현예는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 및 전술한 리튬 이차 전지용 전해액을 포함하는 리튬 이차 전지를 제공한다.
전지의 안전성, 상온 특성 및 고온 특성이 동시에 개선된 리튬 이차 전지를 구현할 수 있다.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지를 도시한 개략도이다.
<부호의 설명>
100: 리튬 이차 전지
112: 음극
113: 세퍼레이터
114: 양극
120: 전지 용기
140: 봉입 부재
이하, 본 발명의 일 구현 예에 따른 리튬 이차 전지에 대하여 첨부된 도면을 참조하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C1 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C6 내지 C30 아릴실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤테로시클로알킬기, C6 내지 C30 아릴기, C2 내지 C30 헤테로아릴기, C1 내지 C20 알콕시기, C1 내지 C10 플루오로알킬기, 시아노기, 또는 이들의 조합으로 치환된 것을 의미한다.
본 발명의 일 예에서, "치환"은 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C6 내지 C30 아릴실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤테로시클로알킬기, C6 내지 C30 아릴기, C2 내지 C30 헤테로아릴기, C1 내지 C10 플루오로알킬기 또는 시아노기로 치환된 것을 의미한다. 또한, 본 발명의 구체적인 일 예에서, "치환"은 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, C1 내지 C20 알킬기, C6 내지 C30 아릴기, C1 내지 C10 플루오로알킬기 또는 시아노기로 치환된 것을 의미한다. 또한, 본 발명의 구체적인 일 예에서, "치환"은 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, C1 내지 C5 알킬기, C6 내지 C18 아릴기, C1 내지 C5 플루오로알킬기 또는 시아노기로 치환된 것을 의미한다. 또한, 본 발명의 구체적인 일 예에서, "치환"은 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 시아노기, 할로겐기, 메틸기, 에틸기, 프로필기, 부틸기, 페닐기, 바이페닐기, 터페닐기, 트리플루오로메틸기 또는 나프틸기로 치환된 것을 의미한다.
리튬 이차 전지는 사용하는 분리막과 전해액의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지 등으로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
여기서는 리튬 이차 전지의 일 예로 원통형 리튬 이차 전지를 예시적으로 설명한다. 도 1은 일 구현예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 것이다. 도 1을 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 양극(114), 양극(114)과 대향하여 위치하는 음극(112), 양극(114)과 음극(112) 사이에 배치되어 있는 세퍼레이터(113) 및 양극(114), 음극(112) 및 세퍼레이터(113)를 함침하는 전해액(도시하지 않음)을 포함하는 전지 셀과, 상기 전지 셀을 담고 있는 전지 용기(120) 및 상기 전지 용기(120)를 밀봉하는 밀봉 부재(140)를 포함한다.
이하에서는 본 발명의 일 구현예에 따른 리튬 이차 전지(100)의 보다 상세한 구성에 대해 설명하고자 한다.
본 발명의 일 구현예에 따른 리튬 이차 전지는 전해액, 양극, 및 음극을 포함한다.
상기 전해액은 비수성 유기 용매, 리튬염 및 첨가제를 포함하며, 상기 첨가제는 하기 화학식 1로 표시되는 제1 화합물, 및 하기 화학식 2로 표시되는 제2 화합물을 포함하는 조성물이며, 상기 제1 화합물 및 상기 제2 화합물은 1 : 0.4 내지 1 : 4의 중량비로 포함된다.
[화학식 1] [화학식 2]
Figure PCTKR2021018322-appb-img-000013
Figure PCTKR2021018322-appb-img-000014
상기 화학식 1 및 화학식 2에서,
R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 하나의 플루오로기로 치환된 C1 내지 C4 플루오로알킬기이고,
X1 및 X2는 각각 독립적으로 할로겐기, 또는 -O-L1-R3이고,
X1 및 X2 중 적어도 하나는 -O-L1-R3이며,
L1은 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
R3은 각각 독립적으로 시아노기 (-CN), 디플루오로포스파이트기 (-OPF2), 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C2 내지 C10 알케닐기, 치환 또는 비치환된 C3 내지 C10 사이클로알킬기, 치환 또는 비치환된 C3 내지 C10 사이클로알케닐기, 치환 또는 비치환된 C2 내지 C10 알키닐기, 치환 또는 비치환된 C3 내지 C10 사이클로알키닐기, 또는 치환 또는 비치환된 C6 내지 C20 아릴기이고,
X1 및 X2가 동시에 -O-L1-R3인 경우,
R3은 각각 독립적으로 존재하거나, 또는
2개의 R3이 연결되어 치환 또는 비치환된 단환 또는 다환의 지방족 헤테로 고리, 또는 치환 또는 비치환된 단환 또는 다환의 방향족 헤테로 고리를 형성한다.
상기 제1 화합물은 세슘 설포닐이미드 염을 포함하는 화합물이다. 상기 제1 화합물은 전해액에서 분해되어 양극 및 음극의 표면에 피막을 형성하여 양극으로부터 발생되는 리튬 이온의 용출을 효과적으로 제어함으로써, 양극 분해 현상을 방지할 수 있다. 구체적으로, 상기 제1 화합물은 비수성 유기 용매에 포함되는 카보네이트계 용매 보다 먼저 환원 분해되어 음극 상에 SEI 피막 (Solid Electrolyte interface)을 형성함으로써 전해액 분해 및 이로 인한 전극의 분해 반응을 방지함으로써 가스 발생에 의한 내부 저항 증가를 억제할 수 있다. 상기 음극 상에 형성된 SEI 피막은 충방전 시 환원 반응을 통하여 일부 분해되어 양극 표면으로 이동하여 산화 반응을 통하여 양극 표면에도 피막을 형성하며 양극 표면의 분해 및 전해액의 산화 반응을 방지함으로써, 고온 및 저온 수명 특성 향상에 기여할 수 있다.
즉, 상기 조성물은 상기 화학식 1로 표시되는 제1 화합물을 포함함으로써 전지의 수명 특성 및 안전성을 향상시킬 수 있다.
또한, 제2 화합물과 같은 플루오로 포스파이트계 화합물을 함께 포함함으로써, 난연 특성은 물론 전해액 내의 리튬 염의 안정화를 통해 전해액의 고온 분해 효과를 억제함으로써 고온에서의 전지 내부 가스 발생 억제 효과가 더욱 향상되어 전지 안전성 및 수명 특성이 동시에 개선될 수 있다.
상기 제1 화합물과 제 2 화합물을 조합하여 사용할 경우, 각 화합물을 단독으로 사용하는 경우에 비하여 음극 표면에 더욱 견고한 피막을 형성하게 되므로, 고온 저장 특성 향상 효과가 더욱 개선될 수 있다.
일 예로 상기 제1 화합물 및 상기 제2 화합물은 1 : 0.5 내지 1 : 3의 중량비로 포함될 수 있다.
구체적인 일 예에서 상기 제1 화합물 및 상기 제2 화합물은 1 : 0.5 내지 1 : 2의 중량비로 포함될 수 있고, 예컨대 1 : 1 내지 1 : 1.5의 중량비로 포함될 수 있다.
일 예로 상기 화학식 1의 R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 2개의 플루오로기로 치환된 C1 내지 C4 플루오로알킬기일 수 있다.
일 예로 상기 화학식 1의 R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 3개의 플루오로기로 치환된 C1 내지 C4 플루오로알킬기일 수 있다.
구체적인 일 예로 상기 화학식 1의 R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 3개의 플루오로기로 치환된 C1 내지 C3 플루오로알킬기일 수 있다.
더욱 구체적인 일 예로 상기 화학식 1의 R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 3개의 플루오로기로 치환된 C1 내지 C2 플루오로알킬기일 수 있다.
예컨대 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 또는 화학식 1-2로 표시될 수 있다.
[화학식 1-1] [화학식 1-2]
Figure PCTKR2021018322-appb-img-000015
Figure PCTKR2021018322-appb-img-000016
일 예로 상기 화학식 2의 X1 및 X2 중 어느 하나는 플루오로기이고, 다른 하나는 -O-L2-R4이고,
상기 L2는 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
상기 R4는 시아노기 (-CN) 또는 디플루오로포스파이트기 (-OPF2)일 수 있다.
구체적으로 상기 제2 화합물은 상기 화학식 2로 표시되고,
상기 화학식 2는 하기 화학식 2-1로 표시될 수 있다.
[화학식 2-1]
Figure PCTKR2021018322-appb-img-000017
상기 화학식 2-1에서,
m은 1 내지 5의 정수 중 하나이고,
R4는 시아노기 (-CN) 또는 디플루오로포스파이트기 (-OPF2)이다.
다른 일 예로 상기 제2 화합물은 상기 화학식 2로 표시되고,
상기 화학식 2에서,
X1은 -O-L3-R5이고, X2는 -O-L4-R6이고,
L3 및 L4는 각각 독립적으로 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
R5 및 R6은 각각 독립적으로 치환 또는 비치환된 C1 내지 C10 알킬기이며, R5 및 R6은 연결되어 치환 또는 비치환된 단환 또는 다환의 지방족 헤테로 고리를 형성하는 것일 수 있다.
구체적으로 상기 제2 화합물은 하기 화학식 2-2로 표시될 수 있다.
[화학식 2-2]
Figure PCTKR2021018322-appb-img-000018
상기 화학식 2-2에서,
L5는 치환 또는 비치환된 C2 내지 C5 알킬렌기이다.
더욱 구체적으로 상기 제2 화합물은 하기 화학식 2-2a 또는 화학식 2-2b로 표시될 수 있다.
[화학식 2-2a] [화학식 2-2b]
Figure PCTKR2021018322-appb-img-000019
Figure PCTKR2021018322-appb-img-000020
상기 화학식 2-2a 및 화학식 2-2b에서,
R7 내지 R16은 각각 독립적으로 수소, 할로겐기 또는 치환 또는 비치환된 C1 내지 C5 알킬기이다.
예컨대 상기 제2 화합물은 하기 그룹 1에 나열된 화합물 중에서 선택되는 어느 하나일 수 있다.
[그룹 1]
Figure PCTKR2021018322-appb-img-000021
Figure PCTKR2021018322-appb-img-000022
Figure PCTKR2021018322-appb-img-000023
Figure PCTKR2021018322-appb-img-000024
가장 구체적인 일 구현예에 따르면, 본 발명에 따른 리튬 이차 전지용 전해액에 포함되는 첨가제는, 제1 화합물로서 세슘 비스(플루오로설포닐)이미드 및 제2 화합물로서 상기 그룹 1에 나열된 화합물 중 적어도 하나를 포함하는 조성물일 수 있다.
가장 구체적인 다른 일 구현예에 따르면, 제1 화합물로서 세슘 비스(트리플루오로메탄설포닐)이미드 및 제2 화합물로서 상기 그룹 1에 나열된 화합물 중 적어도 하나를 포함하는 조성물일 수 있다.
한편, 상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 약 0.05 중량% 내지 약 2.0 중량%%로 포함될 수 있다.
일 예로 약 0.1 중량% 내지 약 2.0 중량%, 약 0.2 중량% 내지 약 2.0 중량%, 약 0.3 중량% 내지 약 2.0 중량%, 또는 약 0.4 중량% 내지 약 2.0 중량%, 예컨대 약 0.5 중량% 내지 약 2.0 중량%로 포함될 수 있다.
또한, 상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 약 0.05 중량% 내지 약 5.0 중량%로 포함될 수 있다.
일 예로, 약 0.1 중량% 내지 약 5.0 중량%, 약 0.2 중량% 내지 약 5.0 중량%, 약 0.3 중량% 내지 약 5.0 중량%, 또는 약 0.4 중량% 내지 약 5.0 중량%, 예컨대 약 0.5 중량% 내지 5.0 중량%로 포함될 수 있다.
예컨대, 상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 약 0.5 중량% 내지 약 2.0 중량%로 포함되고, 상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 약 0.5 중량% 내지 약 5.0 중량%로 포함될 수 있다.
구체적으로는 상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 약 0.5 중량% 내지 약 2.0 중량%로 포함되고, 상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.5 중량% 내지 4.0 중량%로 포함될 수 있다.
더욱 구체적으로는 상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 약 0.5 중량% 내지 약 2.0 중량%로 포함되고, 상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.5 중량% 내지 3.0 중량%로 포함될 수 있다.
예컨대 상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 약 0.5 중량% 내지 약 2.0 중량%로 포함되고, 상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.5 중량% 내지 1.0 중량%로 포함될 수 있다.
상기 제1 화합물 및 상기 제2 화합물을 포함하는 조성물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 약 1.0 중량% 내지 약 5.0 중량%로 포함될 수 있다.
조성물의 함량, 그리고 상기 조성물 내에서 각 성분, 즉 제1 화합물, 및 제2 화합물의 함량이 상기 범위인 경우, 열 안전성, 관통 안전성 등의 전지 안전성이 향상되고, 전지 내부의 가스 발생이 억제되어 상온 및 고온에서의 전지 특성이 향상된 리튬 이차 전지를 구현할 수 있다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기 용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, t-부틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 프로필프로피오네이트, 데카놀라이드(decanolide), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R15-CN(R15는 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:9 내지 9:1의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
특히, 본 발명의 일 구현예에서는 상기 비수성 유기 용매는 상기 환형 카보네이트와 상기 사슬형 카보네이트가 2:8 내지 5:5의 부피비로 포함된 것일 수 있으며, 구체적인 일 예로 상기 환형 카보네이트와 상기 사슬형 카보네이트는 2:8 내지 4:6의 부피비로 포함된 것일 수 있다.
더욱 구체적인 일 예로 상기 환형 카보네이트와 상기 사슬형 카보네이트는 2:8 내지 3:7의 부피비로 포함된 것일 수 있다.
상기 비수성 유기 용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.
상기 방향족 탄화수소계 용매로는 하기 화학식 4의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 4]
Figure PCTKR2021018322-appb-img-000025
상기 화학식 4에서, R17 내지 R22는 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 방향족 탄화수소계 용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 리튬염은 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, 리튬 디플루오로(옥살레이토)보레이트(lithium difluoro(oxalate)borate: LiDFOB), LiPO2F2, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, Li(FSO2)2N(리튬 비스플루오로설포닐이미드 (lithium bis(fluorosulfonyl)imide): LiFSI), LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate): LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 들 수 있다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 양극은 양극 집전체 및 상기 양극 집전체에 상에 위치하는 양극 활물질 층을 포함하며, 상기 양극 활물질 층은 양극 활물질을 포함한다.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다.
구체적으로는 코발트, 망간, 니켈 및 이들의 조합으로부터 선택되는 금속과 리튬과의 복합 산화물 중 적어도 1종을 사용할 수 있다.
물론 상기 복합 산화물의 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 복합 산화물과 코팅층을 갖는 복합 산화물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 코팅 원소의 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 및 코팅 원소의 하이드록시카보네이트로 이루어진 군에서 선택되는 적어도 하나의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
양극 활물질은 예컨대 하기 화학식 3으로 표현되는 리튬 복합 산화물 중 1종 이상일 수 있다.
[화학식 3]
LixM1 yM2 zM3 1-y-zO2
상기 화학식 3에서,
0.5≤x≤1.8, 0<y≤1, 0≤z≤1, 0≤y+z≤1, M1, M2 및 M3은 각각 독립적으로 Ni, Co, Mn, Al, Sr, Mg 또는 La 등의 금속 및 이들의 조합에서 선택되는 어느 하나일 수 있다.
일 실시예에서 상기 M1 및 M2는 각각 독립적으로 Ni 또는 Co 일 수 있고, 상기 M3은 Co, Mn, Al, Sr, Mg 또는 La 등의 금속일 수 있다.
구체적인 일 실시예에서 상기 M1 및 M2는 각각 독립적으로 Ni 또는 Co 일 수 있고, 상기 M3은 Mn 또는 Al일 수 있으나, 이에 한정되는 것은 아니다.
더욱 구체적인 일 실시예에서 상기 양극 활물질은 하기 화학식 3-1 또는 화학식 3-2로 표현되는 리튬 복합 산화물일 수 있다.
[화학식 3-1]
Lix1Niy1Coz1Al1-y1-z1O2
상기 화학식 3-1에서,
1≤x1≤1.2, 0<y1<1, 그리고 0<z1<1이고,
[화학식 3-2]
Lix2Niy2Coz2Mn1-y2-z2O2
상기 화학식 3-2에서,
1≤x2≤1.2, 0<y2<1, 그리고 0<z2<1이다.
일 예로, 상기 화학식 3-1에서, 1≤x1≤1.2, 0.5≤y1<1, 그리고 0<z1≤0.5일 수 있다.
구체적인 일 예로, 상기 화학식 3-1에서, 1≤x1≤1.2, 0.6≤y1<1, 그리고 0<z1≤0.5일 수 있다.
더옥 구체적인 일 예로, 상기 화학식 3-1에서, 1≤x1≤1.2, 0.7≤y1<1, 그리고 0<z1≤0.5일 수 있다.
예컨대, 상기 화학식 3-1에서, 1≤x1≤1.2, 0.8≤y1<1, 그리고 0<z1≤0.5일 수 있다.
일 예로, 상기 화학식 3-2에서, 1≤x2≤1.2, 0.3≤y2<1, 그리고 0.3≤z2<1일 수 있다.
구체적인 일 예로, 상기 화학식 3-2에서, 1≤x2≤1.2, 0.6≤y2<1, 그리고 0.3≤z2<1일 수 있다.
더욱 구체적인 일 예로, 상기 화학식 3-2에서, 1≤x2≤1.2, 0.7≤y2<1, 그리고 0.3≤z2<1일 수 있다.
예컨대, 구체적인 일 예로, 상기 화학식 3-2에서, 1≤x2≤1.2, 0.8≤y2<1, 그리고 0.3≤z2<1일 수 있다.
상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
본 발명의 일 구현예에 있어서, 상기 양극 활물질 층은 선택적으로 도전재 및 바인더를 포함할 수 있다. 이때, 상기 바인더의 함량은 양극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다.
상기 도전재 및 바인더의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다.
상기 도전재는 양극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 양극 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 음극은 음극 집전체 및 이 음극 집전체 위에 형성되는 음극 활물질을 포함하는 음극 활물질 층을 포함한다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si, Si-C 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-R22(상기 R22는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다.
상기 원소 Q 및 R22로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.
구체적인 일 실시예에서 상기 음극 활물질은 Si계 활물질 및 탄소계 활물질을 포함하는 Si-C 복합체일 수 있다.
상기 Si-C 복합체에서 Si계 활물질의 평균 입경은 50 nm 내지 200 nm일 수 있다.
상기 Si계 활물질의 평균 입경이 상기 범위에 포함되는 경우, 충방전시 발생하는 부피 팽창을 억제할 수 있고, 충방전시 입자 파쇄에 의한 전도성 경로(conductive path)의 단절을 막을 수 있다.
상기 Si계 활물질은 상기 Si-C 복합체의 전체 중량에 대하여 1 내지 60 중량%로 포함될 수 있으며, 예컨대 3 내지 60 중량%로 포함될 수 있다.
구체적인 다른 일 실시예에서 상기 음극 활물질은 전술한 Si-C 복합체와 함께 결정질 탄소를 더욱 포함할 수 있다.
상기 음극 활물질이 Si-C 복합체 및 결정질 탄소를 함께 포함하는 경우, 상기 Si-C 복합체 및 결정질 탄소는 혼합물의 형태로 포함될 수 있으며, 이 경우 상기 Si-C 복합체 및 결정질 탄소는 1 : 99 내지 50 : 50의 중량비로 포함될 수 있다. 더욱 구체적으로는 상기 Si-C 복합체 및 결정질 탄소는 5 : 95 내지 20 : 80의 중량비로 포함될 수 있다.
상기 결정질 탄소는 예컨대 흑연을 포함할 수 있으며, 더욱 구체적으로는 천연 흑연, 인조 흑연 또는 이들의 혼합물을 포함할 수 있다.
상기 결정질 탄소의 평균 입경은 5 ㎛ 내지 30 ㎛일 수 있다.
본 명세서에서, 평균 입경은 누적 분포 곡선(cumulative size-distribution curve)에서 부피비로 50%에서의 입자 크기 (D50)일 수 있다.
상기 Si-C 복합체는 Si-C 복합체의 표면을 둘러싸는 쉘을 더 포함할 수 있으며, 상기 쉘은 비정질 탄소를 포함할 수 있다.
상기 비정질 탄소는 소프트 카본, 하드 카본, 메조페이스 피치 탄화물, 소성된 코크스 또는 이들의 혼합물을 포함할 수 있다.
상기 비정질 탄소는 탄소계 활물질 100 중량부에 대하여 1 내지 50 중량부, 예를 들어 5 내지 50 중량부, 또는 10 내지 50 중량부로 포함될 수 있다.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
본 발명의 일 구현예에 있어서, 상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수용성 바인더로는 고무계 바인더 또는 고분자 수지 바인더를 들 수 있다. 상기 고무계 바인더는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버(SBR), 아크릴로나이트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무 및 이들의 조합에서 선택되는 것일 수 있다. 상기 고분자 수지 바인더는 폴리테트라플루오로에틸렌, 에틸렌프로필렌공중합체, 폴리에틸렌옥시드, 폴리비닐피롤리돈, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스틸렌, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜으로 및 이들의 조합에서 선택되는 것일 수 있다.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 증점제로서 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터는 다공성 기재이거나; 또는 복합 다공성 기재일 수 있다.
다공성 기재는 공극을 포함하는 기재로서 상기 공극을 통하여 리튬 이온이 이동할 수 있다. 상기 다공성 기재는 예컨대 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
상기 복합 다공성 기재는 다공성 기재 및 상기 다공성 기재 상에 위치하는 기능층을 포함하는 형태일 수 있다. 상기 기능층은 추가적인 기능 부가가 가능하게 되는 관점에서, 예를 들면 내열층, 및 접착층 중 적어도 하나일 수 있으며, 예컨대 상기 내열층은 내열성 수지 및 선택적으로 필러를 포함할 수 있다.
또한, 상기 접착층은 접착성 수지 및 선택적으로 필러를 포함할 수 있다.
상기 필러는 유기 필러이거나 무기 필러일 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
리튬 이차 전지의 제작
실시예 1
양극 활물질로서 LiNi0.91Co0.07Al0.02O2, 바인더로서 폴리비닐리덴 플루오라이드 및 도전재로서 케첸 블랙을 각각 97:2:1의 중량비로 혼합하여, N-메틸 피롤리돈에 분산시켜 양극 활물질 슬러리를 제조하였다.
상기 양극 활물질 슬러리를 14 ㎛ 두께의 Al 포일 위에 코팅하고, 110℃에서 건조한 후, 압연(press)하여 양극을 제조하였다.
음극 활물질로서 인조 흑연과 Si-C 복합체가 93:7의 중량비로 혼합된 혼합물을 사용하였으며, 음극 활물질과 바인더로서 스티렌-부타디엔 고무 바인더 및 증점제로서 카르복시메틸셀룰로오스를 각각 97:1:2의 중량비로 혼합하여, 증류수에 분산시켜 음극 활물질 슬러리를 제조하였다.
상기 Si-C 복합체는 인조 흑연 및 실리콘 입자를 포함하는 코어 및 상기 코어의 표면에 석탄계 핏치가 코팅된 것을 사용하였다.
상기 음극 활물질 슬러리를 10㎛ 두께의 Cu 포일 위에 코팅하고, 100℃에서 건조한 후, 압연(press)하여 음극을 제조하였다.
상기 제조된 양극 및 음극과 두께 25㎛의 폴리에틸렌 재질의 세퍼레이터를 조립하여 전극 조립체를 제조하고 전해액을 주입하여 리튬 이차 전지를 제작하였다.
전해액 조성은 하기와 같다.
(전해액 조성)
염: LiPF6 1.5 M
용매: 에틸렌 카보네이트: 에틸메틸 카보네이트: 디메틸 카보네이트 (EC: EMC:DMC=20:10:70의 부피비)
첨가제: 하기 화학식 1-2로 표시되는 세슘 비스(트리플루오로메탄설포닐)이미드 0.5 중량%, 및 하기 화학식 z-1로 표시되는 화합물 0.5 중량%를 포함하는 조성물
(단, 상기 전해액 조성에서 “중량%”는 전해액 전체(리튬염+비수성 유기 용매+첨가제) 함량을 기준으로 한 것이다.)
[화학식 1-2]
Figure PCTKR2021018322-appb-img-000026
[화학식 z-1]
Figure PCTKR2021018322-appb-img-000027
실시예 2
상기 화학식 z-1로 표시되는 화합물 대신 하기 화학식 z-2로 표시되는 화합물을 사용하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
[화학식 z-2]
Figure PCTKR2021018322-appb-img-000028
실시예 3
상기 화학식 z-1로 표시되는 화합물 대신 하기 화학식 z-3으로 표시되는 화합물을 사용하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
[화학식 z-3]
Figure PCTKR2021018322-appb-img-000029
실시예 4
상기 화학식 z-1로 표시되는 화합물 대신 하기 화학식 z-4로 표시되는 화합물 0.75 중량%를 사용하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
[화학식 z-4]
Figure PCTKR2021018322-appb-img-000030
실시예 5 내지 8
상기 화학식 1-2로 표시되는 세슘 비스(트리플루오로메탄설포닐)이미드 대신 하기 화학식 1-1로 표시되는 세슘 비스(플루오로설포닐)이미드를 사용한 것을 제외하고는, 상기 실시예 1 내지 실시예 4와 각각 동일한 방법으로 리튬 이차 전지를 제작하였다.
[화학식 1-1]
Figure PCTKR2021018322-appb-img-000031
실시예 9
상기 화학식 z-1로 표시되는 화합물을 1.0 중량% 사용하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
실시예 10
상기 화학식 z-2로 표시되는 화합물을 1.0 중량% 사용하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 2와 동일한 방법으로 리튬 이차 전지를 제작하였다.
실시예 11
상기 화학식 z-3으로 표시되는 화합물을 1.0 중량% 사용하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 3과 동일한 방법으로 리튬 이차 전지를 제작하였다.
실시예 12
상기 화학식 z-4로 표시되는 화합물을 1.0 중량% 사용하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 리튬 이차 전지를 제작하였다.
실시예 13 내지 16
상기 화학식 1-2로 표시되는 세슘 비스(트리플루오로메탄설포닐)이미드 대신 상기 화학식 1-1로 표시되는 세슘 비스(플루오로설포닐)이미드를 사용한 것을 제외하고는, 상기 실시예 9 내지 실시예 12와 각각 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 1
첨가제가 포함되지 않은 전해액을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 2
조성물 중 화학식 z-1로 표시되는 화합물을 사용하지 않은 첨가제로 전해액을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 3
화학식 1-1로 표시되는 화합물 0.5 중량%를 단독으로 사용하여 전해액을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 4
조성물 중 화학식 1-2로 표시되는 화합물을 사용하지 않은 첨가제로 전해액을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 5
조성물 중 화학식 1-2로 표시되는 화합물 대신 Li(CF3SO2)2N을 0.5 중량% 사용한 첨가제로 전해액을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 6
조성물 중 화학식 z-1로 표시되는 화합물 대신 화학식 z-2로 표시되는 화합물을 사용한 첨가제로 전해액을 제조한 것을 제외하고는 상기 비교예 4와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 7
조성물 중 화학식 z-1로 표시되는 화합물 대신 화학식 z-2로 표시되는 화합물을 사용한 첨가제 조성물로 전해액을 제조한 것을 제외하고는, 상기 비교예 5와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 8
조성물 중 화학식 z-1로 표시되는 화합물 대신 화학식 z-3으로 표시되는 화합물을 사용한 첨가제로 전해액을 제조한 것을 제외하고는 상기 비교예 4와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 9
조성물 중 화학식 z-1로 표시되는 화합물 대신 화학식 z-3으로 표시되는 화합물을 사용한 첨가제 조성물로 전해액을 제조한 것을 제외하고는, 상기 비교예 5와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 10
조성물 중 화학식 z-1로 표시되는 화합물 대신 화학식 z-4로 표시되는 화합물을0.75 중량% 사용한 첨가제로 전해액을 제조한 것을 제외하고는 상기 비교예 4와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 11
조성물 중 화학식 z-1로 표시되는 화합물 대신 화학식 z-4로 표시되는 화합물을 0.75 중량% 사용한 첨가제 조성물로 전해액을 제조한 것을 제외하고는, 상기 비교예 5와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 12
화학식 z-1로 표시되는 화합물 대신 LiDFOB 0.5 중량%를 사용한 첨가제 조성물로 전해액을 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 13
상기 화학식 1-2로 표시되는 세슘 비스(트리플루오로메탄설포닐)이미드의 함량을 2.0 중량%로 변경하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 14
상기 화학식 z-1로 표시되는 화합물의 함량을 5.0 중량%로 변경하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 15
상기 화학식 1-2로 표시되는 세슘 비스(트리플루오로메탄설포닐)이미드의 함량을 2.0 중량%로 변경하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 2와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 16
상기 화학식 z-2로 표시되는 화합물의 함량을 5.0 중량%로 변경하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 2와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 17
상기 화학식 1-2로 표시되는 세슘 비스(트리플루오로메탄설포닐)이미드의 함량을 2.0 중량%로 변경하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 3과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 18
상기 화학식 z-3으로 표시되는 화합물의 함량을 5.0 중량%로 변경하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 3과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 19
상기 화학식 1-2로 표시되는 세슘 비스(트리플루오로메탄설포닐)이미드의 함량을 2.0 중량%로 변경하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 20
상기 화학식 z-4로 표시되는 화합물의 함량을 5.0 중량%로 변경하여 첨가제 조성물을 제조한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 리튬 이차 전지를 제작하였다.
상기 실시예 1 내지 8 및 비교예 1 내지 20에 따른 리튬 이차 전지의 첨가제 조성은 하기 표 1에 기재한 바와 같다.
첨가제 조성물
제1 화합물
(중량 %)
제2 화합물
(중량 %)
제1 화합물 : 제2 화합물
(중량비)
실시예 1 화학식 1-2
(0.5)
화학식 z-1
(0.5)
1:1
실시예 2 화학식 1-2(0.5) 화학식 z-2
(0.5)
1:1
실시예 3 화학식 1-2(0.5) 화학식 z-3
(0.5)
1:1
실시예 4 화학식 1-2(0.5) 화학식 z-4
(0.75)
1:1.5
실시예 5 화학식 1-1(0.5) 화학식 z-1
(0.5)
1:1
실시예 6 화학식 1-1(0.5) 화학식 z-2
(0.5)
1:1
실시예 7 화학식 1-1(0.5) 화학식 z-3
(0.5)
1:1
실시예 8 화학식 1-1(0.5) 화학식 z-4
(0.75)
1:1.5
실시예 9 화학식 1-2(0.5) 화학식 z-1
(1)
1:2
실시예 10 화학식 1-2(0.5) 화학식 z-2
(1)
1:2
실시예 11 화학식 1-2(0.5) 화학식 z-3
(1)
1:2
실시예 12 화학식 1-2(0.5) 화학식 z-4
(1)
1:2
실시예 13 화학식 1-1(0.5) 화학식 z-1
(1)
1:2
실시예 14 화학식 1-1(0.5) 화학식 z-2
(1)
1:2
실시예 15 화학식 1-1(0.5) 화학식 z-3
(1)
1:2
실시예 16 화학식 1-1(0.5) 화학식 z-4
(1)
1:2
비교예 1 - - -
비교예 2 화학식 1-2
(0.5)
- -
비교예 3 화학식 1-1
(0.5)
- -
비교예 4 - 화학식 z-1(0.5) -
비교예 5 Li(CF3SO2)2N(0.5) 화학식 z-1
(0.5)
1:1
비교예 6 - 화학식 z-2(0.5) -
비교예 7 Li(CF3SO2)2N(0.5) 화학식 z-2
(0.5)
1:1
비교예 8 - 화학식 z-3(0.5) -
비교예 9 Li(CF3SO2)2N(0.5) 화학식 z-3
(0.5)
1:1
비교예 10 - 화학식 z-4(0.75) -
비교예 11 Li(CF3SO2)2N(0.5) 화학식 z-4
(0.75)
1:1.5
비교예 12 화학식 1-2(0.5) LiDFOB
(0.5)
1:1
비교예 13 화학식 1-2(2.0) 화학식 z-1
(0.5)
1:0.25
비교예 14 화학식 1-2(0.5) 화학식 z-1
(5.0)
1:10
비교예 15 화학식 1-2(2.0) 화학식 z-2
(0.5)
1:0.25
비교예 16 화학식 1-2(0.5) 화학식 z-2
(5.0)
1:10
비교예 17 화학식 1-2(2.0) 화학식 z-3
(0.5)
1:0.25
비교예 18 화학식 1-2(0.5) 화학식 z-3
(5.0)
1:10
비교예 19 화학식 1-2(2.0) 화학식 z-4
(0.75)
1:0.375
비교예 20 화학식 1-2(0.5) 화학식 z-4
(5.0)
1:10
평가 1: 초기 저항 특성 평가
실시예 1 내지 16 및 비교예 1 내지 20에 따라 제조된 셀을 상온(25℃)에서 4A 및 4.2V로 충전하고 100mA에서 컷-오프하여 30분간 휴지시켰다. 이후, 10A 및 10초, 1A 및 10초, 그리고 10A 및 4초로 각각 방전후, 18초 지점 및 23초 지점 각각에서의 전류 및 전압을 측정하여, ΔR=ΔV/ΔI 식에 의해 초기 저항(18초 지점에서의 저항과 23초 지점에서의 저항의 차이)을 계산하여 하기 표 2에 나타내었다.
평가 2: 상온 수명 특성 평가
실시예 1 내지 16 및 비교예 1 내지 20에 따라 제조된 리튬 이차 전지를 상온(25℃)에서 정전류-정전압으로 1.0C 및 4.2V 및 0.33C 컷-오프 조건 충전 및 정전류 1.0C 및 3.0V 방전 조건의 충방전을 200회 실시한 후, 방전 용량을 측정하여 1회 방전 용량에 대한 200 사이클에서의 용량비(용량 유지율)를 계산하여, 그 결과를 표 2에 나타내었다.
평가 3: 고온 방치 특성 평가
실시예 1 내지 16 및 비교예 1 내지 20의 리튬 이차 전지를 0.5C 충방전속도로 4.2V CC/CV 방식으로 3시간 충전한 후, 90℃ 챔버에서 20 시간 방치하여 CID(Current Interrupt Device) 작동시점을 측정하여 그 결과를 하기 표 2에 나타내었다.
상기 CID(Current Interrupt Device)는 밀폐된 소자 내 압력 변화, 즉 압력 상승을 감지하고 일정 압력 이상이 되는 경우 그 자체가 전류를 차단하는 소자로써, 이는 당업계에 자명한 것이므로 이에 대한 설명은 생략하기로 한다.
CID 작동시점을 측정하여 리튬 이차 전지의 고온 방치 특성을 평가할수 있다.
평가 4: 열노출 평가
실시예 1 내지 16, 및 비교예 1 내지 20에 따른 리튬 이차 전지에 대하여 3.0V 방전 상태에서 0.5 C 충전 속도로 4.2V/3hr 컷오프 조건으로 충전한 후 열노출 평가를 실시하였다.
실시예 1 내지 16, 및 비교예 1 내지 20에 따른 리튬 이차 전지를 챔버에 넣은 후 온도를 상온에서 140℃까지 분당 5℃의 상승속도로 온도를 증가시키고, 상기 온도에서 1시간 가량 유지시키면서 리튬 이차 전지들의 변화를 관찰하였고, 그 결과를 하기 표 2에 나타내었다.
평가 5: 관통 안전성 평가
실시예 1 내지 16, 및 비교예 1 내지 20에 따른 리튬 이차 전지에 대하여 다음과 같은 방법으로 관통 특성을 평가하였고, 2회 평가한 결과를 하기 표 2에 나타내었다.
관통 한계 평가는 SOC (state of charge) 50 (전체 용량 100의 절반에 해당하는 용량)까지 충전한 후 3.0파이 네일(nail)을 이용하여 150mm/s의 속도로 셀을 관통시켜 전지의 안전성을 평가하였다. 평가 기준은 다음과 같다.
(평가 기준)
L0: 반응 없음
L1: 전지의 성능에 가역적 손상이 발생함
L2: 전지의 성능에 비가역적 손상이 발생함
L3: 전지의 전해액의 무게가 50% 미만 감소함
L4: 전지의 전해액의 무게가 50% 이상 감소함
L5: 발화 또는 불꽃이 발생함(파열 혹은 폭발은 없음)
L6: 전지 파열(폭발 없음)
L7: 전지 폭발
초기
DC-IR (mOhm)
상온 용량 유지율
(%)
90℃ 방치 특성
(hr)
열노출 특성
(@140℃)
관통 특성
실시예 1 35.9 85.3 77.0 OK L3/L3
실시예 9 36.4 85.4 85.1 OK L3/L3
비교예 1 34.9 84.2 36.5 NG L4/L4
비교예 2 35.0 84.5 38.1 OK L3/L3
비교예 4 35.8 84.9 58.2 NG L4/L4
비교예 5 36.0 84.8 61.4 NG L4/L4
비교예 12 36.1 84.6 25.2 OK L3/L3
실시예 2 35.7 85.1 72.6 OK L3/L3
실시예 10 36.3 85.2 79.3 OK L3/L3
비교예 6 35.5 84.0 55.1 NG L4/L4
비교예 7 35.9 84.4 60.3 NG L4/L4
실시예 3 35.1 85.4 73.6 OK L3/L3
실시예 11 35.5 85.3 80.1 OK L3/L3
비교예 8 35.6 84.4 55.5 NG L4/L4
비교예 9 35.8 84.5 63.0 NG L4/L4
실시예 4 35.0 85.7 83.5 OK L3/L3
실시예 12 34.9 85.5 92.3 OK L3/L3
비교예 10 34.6 85.0 68.3 NG L4/L4
비교예 11 35.2 85.1 65.5 NG L4/L4
비교예 3 35.1 84.3 35.3 OK L3/L3
실시예 5 35.7 85.2 76.2 OK L3/L3
실시예 13 36.5 85.3 84.1 OK L3/L3
실시예 6 35.3 85.2 73.4 OK L3/L3
실시예 14 36.0 85.1 75.2 OK L3/L3
실시예 7 35.0 85.5 72.6 OK L3/L3
실시예 15 34.8 85.6 89.8 OK L3/L3
실시예 8 35.1 85.6 80.2 OK L3/L3
실시예 16 34.7 85.5 93.4 OK L3/L3
비교예 13 용해도 문제 발생 (측정불가)
비교예 14 39.2 80.7 30.6 OK L3/L3
비교예 15 용해도 문제 발생 (측정불가)
비교예 16 38.5 74.7 21.2 OK L3/L3
비교예 17 용해도 문제 발생 (측정불가)
비교예 18 37.3 81.0 23.4 OK L3/L3
비교예 19 용해도 문제 발생 (측정불가)
비교예 20 37.1 81.3 32.4 OK L3/L3
표 2를 참고하면, 첨가제 조성물 중 제1 화합물이 포함되지 않은 비교예 1, 비교예 4, 비교예 6, 비교예 8 및 비교예 10, 그리고 제1 화합물 대신 다른 첨가제를 포함하는 비교예 5, 비교예 7, 비교예 9 및 비교예 11에 따른 리튬 이차 전지는 실시예 1 내지 16에 따른 리튬 이차 전지와 비교하여 용량 유지 특성, 고온 방치 특성, 열노출 특성 및 관통 특성이 모두 저하됨을 알 수 있다.
또한, 첨가제 조성물 중 제2 화합물이 포함되지 않은 비교예 1 내지 비교예 3에 따른 리튬 이차 전지, 그리고 제2 화합물 대신 다른 첨가제를 포함하는 비교예 12에 따른 리튬 이차 전지는 실시예 1 내지 16에 따른 리튬 이차 전지와 비교하여 용량 유지 특성 및 고온 방치 특성이 저하됨을 알 수 있다.
뿐만 아니라, 제1 화합물 및 제2 화합물의 비율이 1:0.4 미만인 비교예 13, 비교예 15, 비교예 17 및 비교예 19에 따른 리튬 이차 전지는 용해도 문제가 발생하여 전지 특성 측정이 불가하였고,
제1 화합물 및 제2 화합물의 비율이 1:4를 초과하는 비교예 14, 비교예 16, 비교예 18 및 비교예 20에 따른 리튬 이차 전지는 실시예 1 내지 16에 따른 리튬 이차 전지와 비교하여 용량 유지 특성 및 고온 방치 특성이 저하됨을 알 수 있다.
이로써, 실시예에 따른 리튬 이차 전지는 특정 조합의 첨가제를 특정 비율로 포함함에 따라 이러한 조건을 충족하지 못하는 비교예에 따른 리튬 이차 전지 대비 용량 유지 특성과 고온 방치 특성 및/또는 열노출 특성 및 관통 특성이 개선됨을 알 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (16)

  1. 비수성 유기 용매,
    리튬염, 및
    첨가제를 포함하고,
    상기 첨가제는 하기 화학식 1로 표시되는 제1 화합물, 및 하기 화학식 2로 표시되는 제2 화합물을 포함하는 조성물이며,
    상기 제1 화합물 및 상기 제2 화합물은 1 : 0.4 내지 1 : 4의 중량비로 포함되는 것인,리튬 이차 전지용 전해액:
    [화학식 1] [화학식 2]
    Figure PCTKR2021018322-appb-img-000032
    Figure PCTKR2021018322-appb-img-000033
    상기 화학식 1 및 화학식 2에서,
    R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 하나의 플루오로기로 치환된 C1 내지 C4 플루오로알킬기이고,
    X1 및 X2는 각각 독립적으로 할로겐기, 또는 -O-L1-R3이고,
    X1 및 X2 중 적어도 하나는 -O-L1-R3이며,
    L1은 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
    R3은 각각 독립적으로 시아노기 (-CN), 디플루오로포스파이트기 (-OPF2), 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C2 내지 C10 알케닐기, 치환 또는 비치환된 C3 내지 C10 사이클로알킬기, 치환 또는 비치환된 C3 내지 C10 사이클로알케닐기, 치환 또는 비치환된 C2 내지 C10 알키닐기, 치환 또는 비치환된 C3 내지 C10 사이클로알키닐기, 또는 치환 또는 비치환된 C6 내지 C20 아릴기이고,
    X1 및 X2가 동시에 -O-L1-R3인 경우,
    R3은 각각 독립적으로 존재하거나, 또는
    2개의 R3이 연결되어 치환 또는 비치환된 단환 또는 다환의 지방족 헤테로 고리, 또는 치환 또는 비치환된 단환 또는 다환의 방향족 헤테로 고리를 형성한다.
  2. 제1항에서,
    상기 제1 화합물 및 상기 제2 화합물은 1 : 0.5 내지 1 : 3의 중량비로 포함되는 것인, 리튬 이차 전지용 전해액.
  3. 제1항에서,
    상기 제1 화합물 및 상기 제2 화합물은 1 : 1 내지 1 : 2의 중량비로 포함되는 것인, 리튬 이차 전지용 전해액.
  4. 제1항에서,
    상기 제1 화합물 및 상기 제2 화합물은 1 : 1 내지 1 : 1.5의 중량비로 포함되는 것인, 리튬 이차 전지용 전해액.
  5. 제1항에서,
    상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시되는 것인, 리튬 이차 전지용 전해액:
    [화학식 1-1] [화학식 1-2]
    Figure PCTKR2021018322-appb-img-000034
    Figure PCTKR2021018322-appb-img-000035
    .
  6. 제1항에서,
    상기 화학식 2의 X1 및 X2 중 어느 하나는 플루오로기이고, 다른 하나는 -O-L2-R4이고,
    L2는 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
    R4는 시아노기 (-CN) 또는 디플루오로포스파이트기 (-OPF2)인, 리튬 이차 전지용 전해액.
  7. 제3항에서,
    상기 제2 화합물은 상기 화학식 2로 표시되고,
    상기 화학식 2는 하기 화학식 2-1로 표시되는 것인, 리튬 이차 전지용 전해액:
    [화학식 2-1]
    Figure PCTKR2021018322-appb-img-000036
    상기 화학식 2-1에서,
    m은 1 내지 5의 정수 중 하나이고,
    R4는 시아노기 (-CN) 또는 디플루오로포스파이트기 (-OPF2)이다.
  8. 제1항에서,
    상기 제2 화합물은 상기 화학식 2로 표시되고,
    상기 화학식 2에서,
    X1은 -O-L3-R5이고, X2는 -O-L4-R6이고,
    L3 및 L4는 각각 독립적으로 단일 결합 또는 치환 또는 비치환된 C1 내지 C10 알킬렌기이며,
    R5 및 R6은 각각 독립적으로 치환 또는 비치환된 C1 내지 C10 알킬기이며, R5 및 R6은 연결되어 치환 또는 비치환된 단환 또는 다환의 지방족 헤테로 고리를 형성하는 것인, 리튬 이차 전지용 전해액.
  9. 제8항에서,
    상기 제2 화합물은 하기 화학식 2-2로 표시되는 것인, 리튬 이차 전지용 전해액:
    [화학식 2-2]
    Figure PCTKR2021018322-appb-img-000037
    상기 화학식 2-2에서,
    L5는 치환 또는 비치환된 C2 내지 C5 알킬렌기이다.
  10. 제9항에서,
    상기 제2 화합물은 하기 화학식 2-2a 또는 화학식 2-2b로 표시되는 것인, 리튬 이차 전지용 전해액:
    [화학식 2-2a] [화학식 2-2b]
    Figure PCTKR2021018322-appb-img-000038
    Figure PCTKR2021018322-appb-img-000039
    상기 화학식 2-2a 및 화학식 2-2b에서,
    R7 내지 R16은 각각 독립적으로 수소, 할로겐기 또는 치환 또는 비치환된 C1 내지 C5 알킬기이다.
  11. 제1항에서,
    상기 제2 화합물은 하기 그룹 1에 나열된 화합물 중에서 선택되는 어느 하나인, 리튬 이차 전지용 전해액:
    [그룹 1]
    Figure PCTKR2021018322-appb-img-000040
    Figure PCTKR2021018322-appb-img-000041
    Figure PCTKR2021018322-appb-img-000042
    Figure PCTKR2021018322-appb-img-000043
    .
  12. 제1항에서,
    상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.05 중량% 내지 2.0 중량%로 포함되는 것인, 리튬 이차 전지용 전해액.
  13. 제1항에서,
    상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.05 중량% 내지 5.0 중량%로 포함되는 것인, 리튬 이차 전지용 전해액.
  14. 제1항에서,
    상기 제1 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.5 중량% 내지 2.0 중량%로 포함되고,
    상기 제2 화합물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 0.5 중량% 내지 5.0 중량%로 포함되는 것인, 리튬 이차 전지용 전해액.
  15. 제1항에서,
    상기 조성물은 리튬 이차 전지용 전해액의 전체 중량에 대하여 1.0 중량% 내지 5.0 중량%로 포함되는 것인, 리튬 이차 전지용 전해액.
  16. 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    제1항 내지 제15항 중 어느 한 항에 따른 리튬 이차 전지용 전해액을 포함하는 리튬 이차 전지.
PCT/KR2021/018322 2021-01-22 2021-12-06 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 WO2022158703A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/012,617 US20230253621A1 (en) 2021-01-22 2021-12-06 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
EP21921462.4A EP4216332A1 (en) 2021-01-22 2021-12-06 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN202180091583.1A CN116745960A (zh) 2021-01-22 2021-12-06 用于可再充电锂电池的电解质和包括电解质的可再充电锂电池
JP2023539180A JP2024501001A (ja) 2021-01-22 2021-12-06 リチウム二次電池用電解液およびこれを含むリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210009660A KR20220106578A (ko) 2021-01-22 2021-01-22 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR10-2021-0009660 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022158703A1 true WO2022158703A1 (ko) 2022-07-28

Family

ID=82549538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018322 WO2022158703A1 (ko) 2021-01-22 2021-12-06 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Country Status (6)

Country Link
US (1) US20230253621A1 (ko)
EP (1) EP4216332A1 (ko)
JP (1) JP2024501001A (ko)
KR (1) KR20220106578A (ko)
CN (1) CN116745960A (ko)
WO (1) WO2022158703A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4386921A1 (en) * 2022-12-15 2024-06-19 Samsung SDI Co., Ltd. Electrolyte solution for rechargeable lithium battery and rechargeable lithium battery comprising the same
EP4391138A1 (en) * 2022-12-19 2024-06-26 Samsung SDI Co., Ltd. Rechargeable lithium batteries
EP4421937A1 (en) * 2023-02-24 2024-08-28 Samsung SDI Co., Ltd. Rechargeable lithium battery
EP4421934A1 (en) * 2023-02-24 2024-08-28 Samsung SDI Co., Ltd. Rechargeable lithium battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023059079A1 (ko) * 2021-10-06 2023-04-13 솔브레인 주식회사 전해액 및 이를 포함하는 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100133455A (ko) * 2006-04-27 2010-12-21 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 이차 전지
JP2015191851A (ja) * 2014-03-28 2015-11-02 株式会社日本触媒 非水電解液及びこれを含む蓄電デバイス
KR20170018739A (ko) * 2015-08-10 2017-02-20 삼성에스디아이 주식회사 리튬 전지용 전해질 및 상기 전해질을 포함한 리튬 전지
KR20180027997A (ko) * 2016-09-07 2018-03-15 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
KR20180036340A (ko) * 2016-09-30 2018-04-09 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100133455A (ko) * 2006-04-27 2010-12-21 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 이차 전지
JP2015191851A (ja) * 2014-03-28 2015-11-02 株式会社日本触媒 非水電解液及びこれを含む蓄電デバイス
KR20170018739A (ko) * 2015-08-10 2017-02-20 삼성에스디아이 주식회사 리튬 전지용 전해질 및 상기 전해질을 포함한 리튬 전지
KR20180027997A (ko) * 2016-09-07 2018-03-15 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
KR20180036340A (ko) * 2016-09-30 2018-04-09 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 리튬 이차 전지

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4386921A1 (en) * 2022-12-15 2024-06-19 Samsung SDI Co., Ltd. Electrolyte solution for rechargeable lithium battery and rechargeable lithium battery comprising the same
EP4391138A1 (en) * 2022-12-19 2024-06-26 Samsung SDI Co., Ltd. Rechargeable lithium batteries
EP4421937A1 (en) * 2023-02-24 2024-08-28 Samsung SDI Co., Ltd. Rechargeable lithium battery
EP4421934A1 (en) * 2023-02-24 2024-08-28 Samsung SDI Co., Ltd. Rechargeable lithium battery

Also Published As

Publication number Publication date
KR20220106578A (ko) 2022-07-29
EP4216332A1 (en) 2023-07-26
JP2024501001A (ja) 2024-01-10
CN116745960A (zh) 2023-09-12
US20230253621A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
WO2022158703A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019017567A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022158728A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2022220474A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022158701A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2023003133A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2020036337A1 (ko) 리튬 이차 전지용 전해질
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2021194073A1 (ko) 리튬 이차 전지
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022203206A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2023048550A1 (ko) 리튬 이차전지용 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차전지
WO2022265259A1 (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
WO2022055307A1 (ko) 고분자 전해질용 전구체 조성물 및 이로부터 형성된 젤 고분자 전해질
WO2023003451A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2023224188A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023224187A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023003127A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2023140428A1 (ko) 리튬 이차 전지
WO2021080197A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021921462

Country of ref document: EP

Effective date: 20230421

WWE Wipo information: entry into national phase

Ref document number: 2023539180

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180091583.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE