WO2022158430A1 - 質量分析装置とその制御方法 - Google Patents

質量分析装置とその制御方法 Download PDF

Info

Publication number
WO2022158430A1
WO2022158430A1 PCT/JP2022/001456 JP2022001456W WO2022158430A1 WO 2022158430 A1 WO2022158430 A1 WO 2022158430A1 JP 2022001456 W JP2022001456 W JP 2022001456W WO 2022158430 A1 WO2022158430 A1 WO 2022158430A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
measurement
amplitude
mass spectrometer
mass
Prior art date
Application number
PCT/JP2022/001456
Other languages
English (en)
French (fr)
Inventor
佑香 菅原
雄一郎 橋本
博幸 安田
益之 杉山
陸 田村
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US18/270,878 priority Critical patent/US20240063010A1/en
Priority to CN202280009064.0A priority patent/CN116806309A/zh
Priority to EP22742552.7A priority patent/EP4283290A1/en
Priority to JP2022576677A priority patent/JP7480364B2/ja
Publication of WO2022158430A1 publication Critical patent/WO2022158430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters

Definitions

  • the present disclosure relates to a mass spectrometer and its control method.
  • a mass spectrometer creates a vacuum inside the device, installs electrodes of various shapes inside, and controls and selects the ions introduced into the device with an electric field.
  • a quadrupole mass spectrometer (QMS) is also called a quadrupole mass filter (QMF) and has four cylindrical electrodes. The cylindrical electrodes are assembled with the center of the circle at the vertex of the square.
  • a positive and negative DC voltage ⁇ U and a high-frequency voltage ⁇ V ⁇ cos ⁇ t are superimposed on adjacent electrodes of the fixed cylindrical electrodes, and a voltage ⁇ U ⁇ V ⁇ cos ⁇ t is applied.
  • the ions introduced into the cylindrical electrode only certain ions pass through the electrode while vibrating stably according to the voltage and frequency applied to the electrode. On the other hand, the other ions vibrate greatly while passing through the electrode, collide with the electrode, etc., and cannot pass through.
  • a mass spectrum is obtained by linearly changing the high-frequency voltage while keeping the ratio of the DC voltage and the high-frequency
  • the mass spectrometer controls ions with an electric field
  • the accuracy and stability of the DC voltage and the high-frequency voltage applied to the electrodes are directly linked to the device performance, for example, the stability of the mass axis. Therefore, the specifications required for the DC voltage and the high frequency voltage are strict, and the voltage applied to the electrodes of the QMF is required to have accuracy and stability on the order of ppm.
  • the usage environment of the device is expanding from companies and university laboratories to hospital clinical laboratories, etc., and it is necessary to operate the device in the temperature range of 5 to 35 degrees Celsius, for example.
  • the temperature of the control board that generates the DC voltage and the high frequency voltage also changes, so the DC voltage and the high frequency voltage change, resulting in fluctuations in the mass axis.
  • Patent Document 1 relates to a technique for shortening the time required for temperature changes around the detection circuit.
  • the document states that "Before supplying the cathode current to the cathode electrode, control is performed so that an operation for selecting ions having the maximum mass-to-charge ratio is performed in the filter section. The operation for selecting ions having the maximum mass-to-charge ratio is performed. By doing so, it is possible to generate maximum heat in the coil that generates the high frequency, and the heat generated by this coil can raise the temperature around the detector circuit to some extent, so that when the cathode current is supplied to the cathode electrode, The time required for temperature change around the detection circuit can be shortened, and the period during which the resolution changes can be shortened. This enables smooth partial pressure measurement.” See paragraph 0018).
  • the present disclosure has been made in view of the technical problems described above, and aims to provide a mass spectrometer and a control method thereof that can reduce displacement of the mass axis due to heat generation of an AC voltage control circuit. aim.
  • the block diagram of the high frequency voltage generation part of a quadrupole mass spectrometer The figure which shows the control content of AC voltage when the next measurement content is known. The figure which shows the control content of AC voltage when the next measurement content is known. The figure which shows the control content of AC voltage when the next measurement content is known. The figure which shows the control content of AC voltage when the next measurement content is unknown. The figure which shows the apparatus structure of the mass spectrometer used in an Example. 4 is a flow chart of AC voltage control according to the embodiment.
  • FIG. 5 shows the device configuration of the mass spectrometer used in the embodiment of the present disclosure.
  • a measurement sample sent from a pump such as a liquid chromatograph is ionized by an ion source 500 . Since the ion source is under atmospheric pressure and the mass spectrometer operates in vacuum, ions 510 are introduced into the mass spectrometer through the air/vacuum interface 520 .
  • Ions generated from the ion source have various masses, but an AC voltage (high frequency voltage) and a DC A voltage is applied from the quadrupole power supply 580 to selectively pass only the target ions derived from the measurement sample.
  • a collision gas 570 nitrogen gas, argon gas, or the like
  • a collision gas 570 for dissociating target ions is introduced from a supply source through a gas line 571 into the second quadrupole electrode section 541 .
  • the second quadrupole electrode 531 normally applies only an AC voltage from the quadrupole power supply 580 to eliminate mass selectivity, and causes the target ions and gas that have passed through the first quadrupole electrode section 540 to collide. to generate fragment ions.
  • the generated fragment ions pass through the second quadrupole electrode section 541 and enter the third quadrupole electrode section 542 .
  • TripleQMS triple quadrupole mass spectrometer
  • a quadrupole mass filter will be described as an example, but the technology of the present disclosure is applicable not only to quadrupole mass filters but also to multipole mass filters.
  • FIG. 1 is a configuration diagram of the high-frequency voltage generator of the quadrupole mass spectrometer in this embodiment.
  • the quadrupole electrode 111 is connected to the secondary coil L2 of the transformer 109.
  • a high-frequency current is passed through the primary coil L1 of the transformer 109 by the RF amplifier 108 to generate a high-frequency voltage in the secondary coil and apply the high-frequency voltage to the quadrupole electrodes 111 .
  • a detection circuit 110 detects the amplitude of the applied high-frequency voltage.
  • the output of the detection circuit 110 is analog-digital converted by the AD converter circuit 107 .
  • the detection output data converted into digital values are input to the logic circuit 101 .
  • an adder (subtractor) 102 calculates the difference between the detection output data and the amplitude setting data of the high-frequency voltage input from the control unit 100, and based on the difference, for example, a PID calculation 103, etc. performs feedback control calculations.
  • a multiplier 104 multiplies the data after the feedback control operation by the sine wave data 105 corresponding to the frequency of the high frequency voltage to generate high frequency signal data.
  • the generated high-frequency signal data is input to the DA converter circuit 106, and digital-analog conversion is performed to generate a high-frequency signal.
  • a high-frequency signal is input to the RF amplifier 108, and the RF amplifier 108 causes a high-frequency current to flow through the primary coil L1 of the transformer 109, thereby generating a high-frequency voltage in the secondary coil L2.
  • the feedback control calculation for controlling the amplitude of the high-frequency voltage to the target value is performed by digital calculation that is not affected by temperature changes. If the temperature stability is ensured, the amplitude value of the high frequency voltage can be measured without temperature fluctuations. The voltage amplitude can be stabilized without being affected by temperature changes.
  • various operation coefficients such as a proportional coefficient, an integral coefficient, and a differential coefficient of PID control are set from the control unit 100 to a register of a logic circuit. and can be easily changed to an arbitrary frequency by using a configuration such as a Direct Digital Synthesizer for the sine wave data 105. has the advantage of
  • the digital operation performed by the logic circuit 101 may be performed using, for example, the control unit 100 and memory instead of the logic circuit.
  • the AD converter circuit and the DA converter circuit are connected to the controller 100 . This configuration is inexpensive and space-saving because it does not require the use of logic circuits.
  • the control unit 100 receives measurement item information regarding the content of measurement.
  • the measurement item information may be received from another control device via communication, or may be input by the user via an input device (not shown).
  • the control unit 100 changes the amplitude setting data of the high frequency voltage based on the measurement item information.
  • FIGS. 2 to 4 are diagrams showing the control contents of the AC voltage amplitude and application time according to this embodiment. 2, 3A, and 3B show the contents of control when the contents of the next measurement are known to the controller 100, and FIG. 4 shows the contents of control when the contents of the next measurement are unknown to the controller 100.
  • FIG. FIG. 6 is a flow chart showing the flow of AC voltage control.
  • the AC voltage of the amplitude to be used next is applied before the measurement. This method can reduce the change in the amount of heat generated by the application of the AC voltage to the quadrupole electrodes 111 before and during the measurement, so that the measurement can be performed with the mass axis stable immediately after the start of the measurement.
  • the measurement content of measurement 1 is known before the start of measurement 1, and the measurement content of measurement 2 is known before the start of measurement 2.
  • the value of the AC voltage to be applied to the quadrupole electrodes 111 in the measurement may be known by the timing when the application of the AC voltage becomes possible as a preparatory operation before the measurement.
  • the “timing at which AC voltage can be applied as a preparatory operation before measurement” is, for example, the timing indicated by “AC voltage ON” for measurement 1, and the timing at which measurement 1 is completed for measurement 2.
  • the value of the AC voltage applied to the quadrupole electrode 111 in the measurement may be input to the control unit 100 as part of the measurement item information, or may be preset by the control unit 100 based on the measurement item information. It may be read from a data table or the like.
  • the amplitude and application time of the AC voltage applied before measurement are determined by the amount of heat generated when this AC voltage is applied to the quadrupole electrode 111, which thermally brings the AC voltage of the amplitude applied in the measurement into a steady state. It is set so that it is equivalent to the amount of heat generated when the voltage is applied until the
  • FIG. 3A is an example via application of an amplitude V1 at time T1 before the start of measurement 1.
  • the amount of heat generated is proportional to the product of the amplitude of the AC voltage and the application time. Assuming that the amount of heat generated when the amplitude V2 is applied for the time T2 is J1, as shown in FIG .
  • the amplitude and application time of the AC voltage applied before measurement may be input to the control unit 100 as part of the measurement item information, or the measurement item information and the AC voltage applied to the quadrupole electrode 111 during measurement. Based on the setting value, the control unit 100 may read from a preset data table or the like, or the control unit 100 may obtain the value based on a predetermined calculation formula.
  • FIG. 4 shows an example of AC voltage control when the next measurement is unknown.
  • the amplitude of the voltage applied to the quadrupole electrode 111 during the measurement operation of the ion having the maximum m/z (mass-to-charge ratio) measurable by the mass spectrometer be the maximum amplitude Vmax
  • half the amplitude be the intermediate amplitude Vmax . /2. Since the measurement contents are unknown for both the measurement 1 and the measurement 2, the application of the AC voltage is started at the intermediate amplitude V max /2 from the timing when the application of the AC voltage becomes possible as a preparatory operation before the start of the measurement.
  • the timing at which it is determined that the content of the next measurement is unknown may be the timing when the application of the AC voltage becomes possible as a preparatory operation before the measurement, or the timing when the application of the AC voltage becomes possible as a preparatory operation before the measurement. It may be after a predetermined time has passed from the timing.
  • control unit 100 After starting the process (S101), the control unit 100 checks whether there is measurement item information regarding the next measurement (S102).
  • the amplitude and application time of the AC voltage are determined based on the measurement item information about the next measurement (S103), and the AC voltage before measurement is applied (S105).
  • the application amplitude in this case may be such that, for example, after the amplitude is determined, application of the AC voltage is continued until the measurement is started, or if the measurement start timing is known, the measurement can be started.
  • the application may be started a predetermined time before the start timing.
  • the predetermined time here is, for example, the application time required for the quadrupole electrode 111 to reach a thermally steady state at the intermediate amplitude V max /2.
  • the sample is measured (S106). It is determined whether or not there is a next measurement (S107), and if there is a next measurement, the process returns to confirmation of whether or not there is measurement item information regarding the next measurement (S102). If there is no next measurement, the process ends (S108).
  • control unit 100 may be a single device, or may be composed of a plurality of devices.
  • the control unit 100 may be incorporated in the mass spectrometer, or may be provided outside the mass spectrometer.
  • the present disclosure is not limited to the above-described embodiments, and includes various modifications.
  • the above embodiments have been described in detail to facilitate understanding of the present disclosure, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本開示は、交流電圧の制御回路の発熱による質量軸のずれを低減することができる質量分析装置とその制御方法を提供することを目的とする。本開示に係る質量分析装置は、交流電圧が印加される四重極電極111と、前記交流電圧の電圧値を制御する制御部100と、を備え、前記四重極電極111をマスフィルタとして用いる質量分析装置において、測定の前に、所定の振幅V1の前記交流電圧を所定の時間T1前記多重極電極に印加し、前記所定の振幅V1の前記交流電圧を所定の時間T1前記多重極電極に印加したときに発生する発熱量J1が、前記測定において印加する振幅の交流電圧を熱的に定常状態になるまで印加するときに発生する発熱量と同等である(図3A参照)。

Description

質量分析装置とその制御方法
 本開示は、質量分析装置とその制御方法に関する。
 質量分析装置は装置内部に真空を生成し、内部に様々な形状をした電極を設置、装置に導入されたイオンを電場で制御、選択する。四重極型質量分析装置(Quadrupole Mass Spectrometer,QMS)は、四重極マスフィルタ(Quadrupole Mass Filter,QMF)とも呼ばれ、4本の円柱状電極を有する。円柱状電極は、円の中心を正方形の頂点に置く形で組み合わされる。固定された円柱状電極の隣り合った電極に、それぞれに正負の直流電圧±Uと高周波電圧±V・cosωtを重畳し、±U±V・cosωtなる電圧を印加する。円柱状電極内に導入されたイオンは、電極に印加された電圧と周波数とに応じて、ある一定のイオンのみ安定な振動をして電極内を通過する。一方、それ以外のイオンは電極内を通過中に振動が大きくなり、電極に衝突するなどして、通過することができなくなる。この直流電圧と高周波電圧の比を一定に保ちつつ高周波電圧を直線的に変化させる事で質量スペクトルを得る。
 質量分析装置は電場でイオンを制御することから、電極に印加される直流電圧と高周波電圧の精度安定性は、例えば質量軸安定性という装置性能に直結する。そのため直流電圧、高周波電圧に求められる仕様も厳しく、QMFの電極に印加する電圧はppmオーダーの精度安定性が必要となっている。
 また、装置の使用環境も、企業、大学の研究室から病院の臨床検査室等へと広がってきており、例えば5~35℃の温度範囲で装置を動作させる必要がある。しかしながら、質量分析装置の周囲温度が変化すると直流電圧や高周波電圧を生成する制御基板の温度も変化するため、直流電圧や高周波電圧が変化し、結果、質量軸の変動につながる。
 下記特許文献1は、検波回路周辺の温度変化に要する時間を短くする技術に関するものである。同文献は、「カソード電極にカソード電流を供給する前に、フィルタ部において最大質量電荷比を有するイオンを選別する動作が行われるように制御する。最大質量電荷比を有するイオンを選別する動作を行うことによって、高周波を発生するコイルにおいて最大限の熱を発生させることができる。このコイルの発熱によって検波回路周辺の温度をある程度上昇させることができるので、カソード電極にカソード電流を供給したときの検波回路周辺の温度変化に要する時間を短くすることができ、分解能が変化する期間を短くすることができる。これにより、スムーズな分圧測定が可能となる。」という技術を記載している(段落0018参照)。
WO2008/133074
 多重極電極に印加する交流電圧の振幅を変化させると交流電圧を制御している回路中の素子が発熱する。この発熱によって多重極に印加する交流電圧の振幅が変化し、マススペクトル上の質量軸がずれる。
 特許文献1のような従来の質量分析装置においては、測定前に最大振幅の交流電圧を印加することで質量軸のずれを抑制していた。しかし、この方法は次の測定で小さい振幅を使用する場合についての検討はなされていなかった。
 本開示は、上記のような技術的課題に鑑みてなされたものであり、交流電圧の制御回路の発熱による質量軸のずれを低減することができる質量分析装置とその制御方法を提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
 本開示に係る質量分析装置とその制御方法によれば、交流電圧の制御回路の発熱による質量軸のずれを低減することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
四重極質量分析装置の高周波電圧発生部の構成図。 次の測定内容が既知である場合の交流電圧の制御内容を示す図。 次の測定内容が既知である場合の交流電圧の制御内容を示す図。 次の測定内容が既知である場合の交流電圧の制御内容を示す図。 次の測定内容が不明である場合の交流電圧の制御内容を示す図。 実施例で用いる質量分析装置の装置構成を示す図。 実施例に係る交流電圧の制御のフローチャート。
 以下、図面を用いて本開示の実施例を説明する。
 図5は、本開示の実施例で用いる質量分析装置の装置構成である。液体クロマトグラフ等のポンプより送液された測定試料を、イオン源500にてイオン化する。イオン源は大気圧下であり質量分析装置は真空で動作する事から、大気と真空のインターフェース520を通して、イオン510を質量分析装置内に導入する。
 イオン源から発生するイオンは様々な質量を持っているが、第1の四重極電極部540(内部に四重極電極530あり)に目的のイオンを通過させる交流電圧(高周波電圧)と直流電圧を四重極電源580より印加し、測定試料の由来の目的イオンのみを選択通過させる。第2の四重極電極部541には、目的イオンを解離させるためのコリジョンガス570(窒素ガスやアルゴンガス等)が供給源から、ガスライン571を通して導入されている。
 第2の四重極電極531は、通常、四重極電源580より交流電圧のみを印加し質量選択性を無くし、第1の四重極電極部540を通過してきた目的イオンとガスを衝突させる事でフラグメントイオンを生成する。生成したフラグメントイオンは、第2の四重極電極部541を通過し、第3の四重極電極部542に入る。
 第3の四重極電極532に、目的のフラグメントイオンを通過させる高周波電圧と直流電圧を四重極電源580より印加すると、目的のフラグメントイオンのみが第3の四重極電極部542を通過する。通過した目的フラグメントイオンを検出器550で検出する。検出信号がデータ処理部560へ送られることで、質量分析が行われる。
 ここではTripleQMSと呼ばれる、三連四重極型質量分析装置の装置形態を一例として示したが、本開示の技術は内部にQMFを単数設置したSingleQMS、四重極質量分析装置にも適用可能である。また、実施例ではマスフィルタとして四重極を例に説明するが、本開示の技術は四重極に限らず多重極のマスフィルタに適用可能である。
 図1は本実施例における、四重極質量分析装置の高周波電圧発生部の構成図である。
 四重極電極111はトランス109の2次側コイルL2に接続されている。トランス109の一次側コイルL1にRFアンプ108により高周波電流を流すことで、2次側コイルに高周波電圧を発生させ、四重極電極111に高周波電圧を印加する。印加された高周波電圧の振幅は、検波回路110にて検出する。検波回路110の出力はADコンバータ回路107によりアナログ-ディジタル変換される。ディジタル値に変換された検波出力データは論理回路101に入力される。
 論理回路101内では、加算器(減算器)102により検波出力データと制御部100から入力された高周波電圧の振幅設定データとの差分を計算し、その差分をもとに、例えばPID演算103などのフィードバック制御の演算を行う。フィードバック制御演算後のデータに高周波電圧の周波数に対応した正弦波データ105を乗算器104にて乗算し、高周波信号データを生成する。生成した高周波信号データをDAコンバータ回路106に入力し、ディジタル-アナログ変換を行うことで高周波信号を生成する。高周波信号をRFアンプ108に入力し、RFアンプ108がトランス109の一次側コイルL1に高周波電流を流すことで、2次側コイルL2に高周波電圧を生成する。
 このように、高周波電圧の振幅を目標値に制御するためのフィードバック制御の演算は温度変化の影響のないディジタル演算で行われるので、検波回路110やADコンバータ回路107からなるフィードバック経路のアナログ部の温度安定性を確保すれば、高周波電圧の振幅値を温度変動なしに測定することができるので、DAコンバータ回路106やRFアンプ108の温度が変化して出力が変動しても、フィードバック制御により高周波電圧の振幅を温度変化の影響を受けず安定化することができる。
 また、高周波電圧の振幅のフィードバック制御の演算をディジタル演算で行うことには、例えばPID制御の比例係数、積分係数、微分係数などの各種演算係数を制御部100から論理回路のレジスタなどに設定するのみで簡易に変更可能になることや、正弦波データ105部に、例えばダイレクト・ディジタル・シンセサイザ(Direct Digital Sybthsizer)のような構成を用いることで、任意の周波数に簡易に変更可能になる、などの利点がある。
 また、論理回路101で行うディジタル演算は、論理回路ではなく、例えば、制御部100とメモリなどを用いて行ってもよい。この場合は、ADコンバータ回路とDAコンバータ回路を制御部100に接続する。この構成だと、論理回路を用いなくて済む分、廉価、省スペースである。
 制御部100は測定の内容に関する測定項目情報を受信する。測定項目情報は通信を介して他の制御装置から受け取ってもよいし、図示しない入力機器を介してユーザーが入力してもよい。制御部100は、測定項目情報に基づいて高周波電圧の振幅設定データを変更する。
 図2~図4は本実施例に係る交流電圧の振幅及び印加時間の制御内容を示す図である。図2,図3A,図3Bは制御部100にとって次の測定内容が既知である場合、図4は制御部100にとって次の測定内容が不明である場合の制御内容を示している。図6は、交流電圧の制御の流れを示すフローチャートである。
<次の測定内容が既知である場合>
 次の測定内容が既知である場合は、次に使用する振幅の交流電圧を測定前に印加する。この方法では測定前と測定中との、四重極電極111への交流電圧の印加による発熱量の変化を低減できるため、測定開始直後から質量軸が安定した測定をすることができる。
 図2の例では、測定1の測定内容が測定1の開始前に既知であり、測定2の測定内容が測定2の開始前に既知である。具体的には、測定前の準備動作として交流電圧の印加が可能になったタイミングまでに、当該測定で四重極電極111に印加する交流電圧の値が判明していればよい。「測定前の準備動作として交流電圧の印加が可能になったタイミング」は、例えば、測定1については「交流電圧ON」で示したタイミング、測定2については測定1が終了したタイミングである。「当該測定で四重極電極111に印加する交流電圧の値」は、測定項目情報の一部として制御部100に入力されてもよいし、測定項目情報に基づいて制御部100が予め設定されたデータテーブルなどから読み出してもよい。
 測定前に印加する交流電圧の振幅と印加時間とは、この交流電圧を四重極電極111に印加したときに発生する発熱量が、測定において印加する振幅の交流電圧を熱的に定常状態になるまで印加するときに発生する発熱量と同等であるように設定する。
 図3A,図3Bを用いて、交流電圧の振幅、印加時間、および発熱量の関係について説明する。測定1で振幅Vを使用するものとする。振幅Vを時間T印加すると熱的に定常状態になるものとし、この時に発生する発熱量をJとする。ここで、測定1開始前の準備動作として交流電圧の印加が可能になったタイミング(図3Aの「交流電圧ON」で示したタイミング)から測定1の開始タイミング(図3Aの「測定1開始」で示したタイミング)までの間に、四重極電極111の発熱量がJと同等となるような振幅及び印加時間で交流電圧を印加すればよい。
 図3Aは、測定1開始の時間T前に、振幅Vの印加を介した例である。ここで、発熱量は交流電圧の振幅と印加時間との積に比例する。振幅Vを時間T印加した場合の発熱量をJとすると、図3Bに示すように、測定1開始の時間T前から、振幅Vで交流電圧を印加しても良い。
 測定前に印加する交流電圧の振幅と印加時間とは、測定項目情報の一部として制御部100に入力されてもよいし、測定項目情報や測定で四重極電極111に印加する交流電圧の設定値に基づいて、制御部100が予め設定されたデータテーブルなどから読み出したり、制御部100が所定の計算式に基づいて求めたりしてもよい。
<次の測定内容が不明な場合>
 次の測定内容が不明な場合は、測定前に中間の振幅の交流電圧を印加しておく。従来技術のように最大の電圧を印加してから低電圧に切り替えると、発熱量の差が大きく質量軸ずれに与える影響が大きい。しかし、中間の振幅の交流電圧を印加することで、次の測定で用いる交流電圧の振幅がどのようなものであっても、従来技術のように最大の電圧を印加する場合に比べ、平均的に質量軸ずれを低減することができる。
 図4は次の測定内容が不明な場合の交流電圧の制御内容の例である。その質量分析装置で測定できるm/z(質量電荷比)が最大のイオンの測定動作時に四重極電極111に印加する電圧の振幅を最大振幅Vmaxとし、その半分の振幅を中間振幅Vmax/2とする。測定1、測定2共に測定内容が不明のため、測定開始前の準備動作として交流電圧の印加が可能になったタイミングから、中間振幅Vmax/2で交流電圧の印加を開始する。
 次の測定内容が不明であると判断するタイミングについては、測定前の準備動作として交流電圧の印加が可能になったタイミングでもよいし、測定前の準備動作として交流電圧の印加が可能になったタイミングから所定時間経過後としてもよい。
 上記した測定内容が既知の場合の制御と測定内容が不明な場合の制御とは組み合わせることが可能である。例えば、初回の測定1については測定内容が既知であり、測定1の次の測定2については測定内容が不明である場合、測定1の開始前は、測定1で使用する交流電圧の振幅を熱的に定常状態になるまで印加した場合の発熱量と同等となるように四重極電極111に交流電圧を印加し、測定1の終了後、測定2が開始されるまでは中間振幅Vmax/2で交流電圧を四重極電極111に印加すればよい。
<交流電圧の制御の流れ>
 図6を用いて実施例に係る交流電圧の制御の流れを説明する。本フローチャートは制御部100によって実施される。
 処理を開始(S101)した後、制御部100は次の測定に関する測定項目情報があるか確認する(S102)。
 次の測定に関する測定項目情報がある場合、次の測定に関する測定項目情報に基づき
交流電圧の振幅、印加時間を決定し(S103)、測定前の交流電圧の印加を行う(S105)。
 次の測定に関する測定項目情報がない場合、m/zが最大のイオンの測定動作時に四重極電極111に印加する電圧の振幅の半分(中間振幅Vmax/2)を印加振幅として設定し(S104)、測定前の交流電圧の印加を行う(S105)。この場合の印加時間は、例えば、振幅の決定後、交流電圧の印加が可能になってから測定を開始するまで印加を続ける形としてもよいし、測定の開始タイミングが既知であれば、測定の開始タイミングの所定時間前に印加を開始する形としてもよい。ここでの所定時間とは、例えば中間振幅Vmax/2で四重極電極111が熱的に定常状態となるまでに必要な印加時間である。
 測定前の交流電圧の印加(S105)の後、試料の測定を行う(S106)。次の測定があるか判定し(S107)、次の測定がある場合は当該次の測定に関する測定項目情報があるかの確認(S102)に戻る。次の測定がない場合は終了となる(S108)。
 なお、制御部100は単一の機器であってもよいし、複数の機器で構成されていてもよい。制御部100は質量分析装置に組み込まれていてもよいし、質量分析装置の外部に設けられていてもよい。
 なお、本開示は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
100・・・制御部
101・・・論理回路
102・・・加算器(減算器)
103・・・PID演算
104・・・乗算器
105・・・正弦波データ
106・・・DAコンバータ回路
107・・・ADコンバータ回路
108・・・RFアンプ
109・・・トランス
110・・・検波回路
111・・・四重極電極

Claims (6)

  1.  交流電圧が印加される多重極電極と、前記交流電圧の電圧値を制御する制御部と、を備え、前記多重極電極をマスフィルタとして用いる質量分析装置において、
     前記制御部は、測定の前に、所定の振幅の前記交流電圧を所定の時間前記多重極電極に印加し、
     前記所定の振幅の前記交流電圧を所定の時間前記多重極電極に印加したときに発生する発熱量が、前記測定において印加する振幅の交流電圧を熱的に定常状態になるまで印加するときに発生する発熱量と同等である、
     質量分析装置。
  2.  請求項1に記載の質量分析装置であって、
     前記制御部が、前記測定に関する測定項目情報に基づいて、前記所定の振幅と前記所定の時間とを設定する、
     質量分析装置。
  3.  請求項1に記載の質量分析装置であって、
     前記制御部は、前記測定に関する測定項目情報が不明な場合、前記制御部が、m/zが最大のイオンの測定動作時に前記多重極電極に印加する電圧の振幅の半分を前記所定の振幅として設定する、
     質量分析装置。
  4.  交流電圧が印加される多重極電極を備え、前記多重極電極をマスフィルタとして用いる質量分析装置の制御方法であって、
     測定の前に、所定の振幅の前記交流電圧を所定の時間前記多重極電極に印加し、
     前記所定の振幅の前記交流電圧を所定の時間前記多重極電極に印加したときに発生する発熱量が、前記測定において印加する振幅の交流電圧を熱的に定常状態になるまで印加するときに発生する発熱量と同等となるように、前記所定の振幅と前記所定の時間とを設定する、
     質量分析装置の制御方法。
  5.  請求項4に記載の質量分析装置の制御方法であって、
     前記測定に関する測定項目情報に基づいて、前記所定の振幅と前記所定の時間とを設定する、
     質量分析装置の制御方法。
  6.  請求項4に記載の質量分析装置の制御方法であって、
     前記測定に関する測定項目情報が不明な場合、m/zが最大のイオンの測定動作時に前記多重極電極に印加する電圧の振幅の半分を前記所定の振幅として設定する、
     質量分析装置の制御方法。
PCT/JP2022/001456 2021-01-22 2022-01-17 質量分析装置とその制御方法 WO2022158430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/270,878 US20240063010A1 (en) 2021-01-22 2022-01-17 Mass spectrometry device and method for controlling same
CN202280009064.0A CN116806309A (zh) 2021-01-22 2022-01-17 质量分析装置及其控制方法
EP22742552.7A EP4283290A1 (en) 2021-01-22 2022-01-17 Mass spectrometry device and method for controlling same
JP2022576677A JP7480364B2 (ja) 2021-01-22 2022-01-17 質量分析装置とその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-008963 2021-01-22
JP2021008963 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022158430A1 true WO2022158430A1 (ja) 2022-07-28

Family

ID=82549396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001456 WO2022158430A1 (ja) 2021-01-22 2022-01-17 質量分析装置とその制御方法

Country Status (5)

Country Link
US (1) US20240063010A1 (ja)
EP (1) EP4283290A1 (ja)
JP (1) JP7480364B2 (ja)
CN (1) CN116806309A (ja)
WO (1) WO2022158430A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021871A (ja) * 1996-07-02 1998-01-23 Hitachi Ltd イオントラップ質量分析装置
JPH10112282A (ja) * 1996-10-07 1998-04-28 Shimadzu Corp 四重極質量分析装置
WO2008133074A1 (ja) 2007-04-16 2008-11-06 Ulvac, Inc. 質量分析計の制御方法及び質量分析計

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407616B2 (ja) 2009-07-14 2014-02-05 株式会社島津製作所 イオントラップ装置
JP6047414B2 (ja) 2013-01-30 2016-12-21 株式会社日立ハイテクノロジーズ 質量分析装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021871A (ja) * 1996-07-02 1998-01-23 Hitachi Ltd イオントラップ質量分析装置
JPH10112282A (ja) * 1996-10-07 1998-04-28 Shimadzu Corp 四重極質量分析装置
WO2008133074A1 (ja) 2007-04-16 2008-11-06 Ulvac, Inc. 質量分析計の制御方法及び質量分析計

Also Published As

Publication number Publication date
US20240063010A1 (en) 2024-02-22
JP7480364B2 (ja) 2024-05-09
EP4283290A1 (en) 2023-11-29
JPWO2022158430A1 (ja) 2022-07-28
CN116806309A (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
KR102661141B1 (ko) 대응하는 로크-인 (lock-in) 증폭기들을 갖는 RF 센서들을 포함하는, 기판 프로세싱 장치를 위한 RF 계측 시스템
US20050205532A1 (en) Methods and apparatus for optimizing a substrate in a plasma processing system
US7431857B2 (en) Plasma generation and control using a dual frequency RF source
KR101938151B1 (ko) 플라스마 처리 장치 및 플라스마 처리 방법
CN110192264A (zh) 具有双平衡线性混频器的射频检测器及相应的操作方法
KR20140105467A (ko) 플라즈마 처리 장치
JP6997642B2 (ja) プラズマ処理装置およびプラズマ処理方法
KR20170142925A (ko) 플라즈마 처리 장치 및 파형 보정 방법
TWI404111B (zh) 質量分析計之控制方法及質量分析計
WO2006104736A1 (en) Termination of secondary frequencies in rf power delivery
WO2022158430A1 (ja) 質量分析装置とその制御方法
Yu et al. Best impedance matching seeking of single-frequency capacitively coupled plasmas by numerical simulations
JP7444875B2 (ja) プラズマ処理装置用電圧波形生成器
US20230050506A1 (en) Plasma processing apparatus and plasma processing method
KR20220070425A (ko) 고주파 전력 회로, 플라즈마 처리 장치 및 플라즈마 처리 방법
KR101371350B1 (ko) Rf 플라즈마 시스템에서 각 소스로부터 출력되는 플라즈마 주파수의 서로 다른 위상을 제어하는 시스템 및 방법
JP4305832B2 (ja) 多重極型質量分析計
JPH10112282A (ja) 四重極質量分析装置
JP3946133B2 (ja) 質量分析装置及びその調整方法。
KR20040084079A (ko) 고주파 정합 장치 및 방법
WO2024062804A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2023074816A1 (ja) プラズマ処理装置、給電システム、制御方法、プログラム、及び記憶媒体
JP2023025675A (ja) プラズマ処理装置及びプラズマ処理方法
US20110117682A1 (en) Apparatus and method for plasma processing
JP2023046899A (ja) プラズマ処理装置及び処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576677

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009064.0

Country of ref document: CN

Ref document number: 18270878

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742552

Country of ref document: EP

Effective date: 20230822