WO2022158233A1 - 光検出装置、電子機器及び測距システム - Google Patents

光検出装置、電子機器及び測距システム Download PDF

Info

Publication number
WO2022158233A1
WO2022158233A1 PCT/JP2021/047601 JP2021047601W WO2022158233A1 WO 2022158233 A1 WO2022158233 A1 WO 2022158233A1 JP 2021047601 W JP2021047601 W JP 2021047601W WO 2022158233 A1 WO2022158233 A1 WO 2022158233A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
semiconductor substrate
light
photodetector
region
Prior art date
Application number
PCT/JP2021/047601
Other languages
English (en)
French (fr)
Inventor
睦 岡崎
悠介 大竹
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US18/260,674 priority Critical patent/US20240055457A1/en
Priority to JP2022577059A priority patent/JPWO2022158233A1/ja
Priority to CN202180080846.9A priority patent/CN116568992A/zh
Publication of WO2022158233A1 publication Critical patent/WO2022158233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present disclosure relates to a photodetector, an electronic device, and a ranging system.
  • a SPAD Single Photon Avalanche Diode
  • one light (photon) is incident, and electrons (charges) generated by photoelectric conversion are multiplied in the PN junction region (avalanche amplification), thereby detecting light with high accuracy.
  • the distance measuring system the distance can be measured with high accuracy by detecting the timing at which the current due to the multiplied electrons flows.
  • PDE Photodetection Efficiency
  • the present disclosure proposes a photodetector, an electronic device, and a ranging system that can further improve the photodetection efficiency.
  • a pixel array unit including a plurality of pixels that are arranged in a matrix on a semiconductor substrate and detect light, each pixel surrounds each pixel and separates each pixel from each other.
  • a separation wall a photoelectric conversion section provided in the semiconductor substrate for generating electric charge by light, a multiplication region provided in the semiconductor substrate for amplifying the electric charge from the photoelectric conversion section, and outside the semiconductor substrate.
  • first and second reflecting portions for reflecting light toward the inside of the semiconductor substrate; Provided is the photodetector provided so as to protrude from the wall toward the center of the pixel, and wherein the second reflecting portion is provided on a second surface of the semiconductor substrate that faces the first surface.
  • a pixel array section including a plurality of pixels arranged in a matrix on a semiconductor substrate and detecting light
  • the pixels surround the pixels and connect the pixels to each other.
  • a pixel separation wall for separation;
  • a photoelectric conversion section provided in the semiconductor substrate for generating charge by light;
  • a multiplication region provided in the semiconductor substrate for amplifying the charge from the photoelectric conversion section;
  • first and second reflectors for reflecting light directed to the outside of the semiconductor substrate into the semiconductor substrate, wherein the first reflector is on a first surface of the semiconductor substrate that receives light
  • the photodetector is provided so as to protrude from the pixel separation wall toward the center of the pixel, and the second reflection section is provided on a second surface of the semiconductor substrate that faces the first surface.
  • an illumination device that emits irradiation light and a photodetector that receives reflected light of the irradiation light reflected by an object are provided, and the photodetector is arranged in a matrix on a semiconductor substrate.
  • a pixel array portion including a plurality of pixels arranged in a row and detecting light, each pixel including: a pixel separation wall surrounding and separating each pixel; and a pixel separation wall provided in the semiconductor substrate.
  • a photoelectric conversion portion for generating charges by light
  • a multiplication region provided in the semiconductor substrate for amplifying the charges from the photoelectric conversion portion
  • first and second reflecting portions wherein the first reflecting portion protrudes from the pixel separation wall toward the center of the pixel on the light-receiving first surface of the semiconductor substrate
  • the second reflector is provided on a second surface of the semiconductor substrate that faces the first surface.
  • FIG. 2 is an explanatory diagram for explaining an example of a circuit configuration of a pixel 10;
  • FIG. 4 is a graph showing changes in the cathode voltage VS of the photodiode 20 and the detection signal PF out according to incident light.
  • 3 is a block diagram showing a configuration example of a photodetector 501.
  • FIG. 2 is a block diagram showing a configuration example of a distance measuring system 611 incorporating a photodetector 501.
  • FIG. FIG. 3 is a schematic plan view showing an example of a detailed configuration of a pixel 10a according to a comparative example;
  • FIG. 3 is a cross-sectional schematic diagram showing an example of a detailed configuration of a pixel 10a according to a comparative example
  • 1 is a schematic plan view showing an example of a detailed configuration of a pixel 10 according to the first embodiment of the present disclosure
  • FIG. 1 is a cross-sectional schematic diagram showing an example of a detailed configuration of a pixel 10 according to the first embodiment of the present disclosure
  • FIG. 4 is a schematic plan view showing an example of a detailed configuration of a pixel 10 according to a second embodiment of the present disclosure
  • FIG. FIG. 10 is a cross-sectional schematic diagram (part 1) showing an example of a detailed configuration of a pixel 10 according to the second embodiment of the present disclosure
  • FIG. 5 is a cross-sectional schematic diagram (Part 2) showing an example of the detailed configuration of the pixel 10 according to the second embodiment of the present disclosure
  • FIG. 10 is a schematic plan view showing an example of a detailed configuration of a pixel 10 according to a third embodiment of the present disclosure
  • FIG. 11 is an explanatory diagram for explaining a detailed configuration of a pixel 10 according to a fourth embodiment of the present disclosure
  • FIG. 11 is an explanatory diagram for explaining a detailed configuration of a pixel 10 according to a fifth embodiment of the present disclosure
  • FIG. FIG. 13 is a schematic plan view showing an example of a detailed configuration of a pixel array section 512 according to the sixth embodiment of the present disclosure
  • FIG. 11 is a schematic plan view showing an example of a detailed configuration of a pixel 10 according to a sixth embodiment of the present disclosure
  • FIG. 11 is a cross-sectional schematic diagram (part 1) showing an example of a detailed configuration of a pixel 10 according to the sixth embodiment of the present disclosure
  • FIG. 21 is a schematic cross-sectional view (part 2) showing an example of the detailed configuration of the pixel 10 according to the sixth embodiment of the present disclosure
  • FIG. 12 is a schematic diagram (part 1) for explaining a method for manufacturing the pixel 10 according to the seventh embodiment of the present disclosure
  • FIG. 21 is a schematic diagram (part 2) for explaining the method for manufacturing the pixel 10 according to the seventh embodiment of the present disclosure
  • FIG. 20 is a schematic diagram (Part 3) for explaining a method for manufacturing the pixel 10 according to the seventh embodiment of the present disclosure
  • FIG. 21 is a schematic diagram (part 4) for explaining the method for manufacturing the pixel 10 according to the seventh embodiment of the present disclosure
  • FIG. 20 is a schematic diagram (No. 5) for explaining the method for manufacturing the pixel 10 according to the seventh embodiment of the present disclosure
  • FIG. 21 is a schematic diagram (No. 6) for explaining the method for manufacturing the pixel 10 according to the seventh embodiment of the present disclosure
  • FIG. 2 is a block diagram showing a configuration example of a smart phone 900 as an electronic device to which a ranging system 611 according to an embodiment of the present disclosure is applied;
  • the drawings referred to in the following description are drawings for explaining the embodiments of the present disclosure and promoting understanding thereof, and for the sake of clarity, the shapes, dimensions, ratios, etc. shown in the drawings are actual. may differ.
  • the photodetector shown in the drawings and the components included in the photodetector can be appropriately changed in design in consideration of the following description and known techniques.
  • the vertical direction of the laminated structure of the photodetector is the case where the photodetector is arranged so that the light incident on the photodetector is directed from the bottom to the top. shall correspond to the relative orientation of
  • electrically connected refers to a connection in which electricity (signal) is conducted between a plurality of elements. means that in addition, "electrically connected” in the following description includes not only the case of directly and electrically connecting a plurality of elements, but also the case of indirectly and electrically connecting a plurality of elements through other elements. It also includes the case of connecting to
  • gate refers to the gate electrode of a field effect transistor.
  • drain represents the drain region of the field effect transistor, and “source” represents the source region of the field effect transistor.
  • first conductivity type refers to either “p-type” or “n-type”
  • second conductivity type refers to the “p-type” different from the “first conductivity type”. ” or “n-type”.
  • the term "provided in common” means that another element is provided so as to be shared by a plurality of one elements, in other words , other elements are shared by each of the predetermined number of one elements.
  • FIG. 1 is an explanatory diagram for explaining an example of the circuit configuration of the pixel 10.
  • FIG. 1 shows a photodiode (light-receiving element) 20 having a SPAD (Single Photon Avalanche Diode) structure, which is applicable to a distance measuring sensor that measures distance by a direct ToF (Time-of-Flight) method.
  • SPAD Single Photon Avalanche Diode
  • FIG. 1 shows a circuit configuration of a pixel 10 including;
  • the pixel 10 includes a photodiode 20, a constant current source 22, an inverter 24, and a transistor 26, as shown in FIG.
  • the photodiode 20 has a SPAD structure and can be operated at a bias voltage higher than the breakdown voltage VBD (Geiger mode).
  • the photodiode 20 detects one light (photon) for each pixel 10 by multiplying electrons (charges) generated by photoelectric conversion in a high electric field PN junction region provided for each pixel 10. It is an element that can Specifically, the photodiode 20 avalanche-multiplies electrons (charges) generated by incident light and outputs a signal voltage VS obtained by the multiplication to the inverter 24 (single-photon avalanche photodiode). ).
  • Photodiode 20 has a cathode electrically connected to constant current source 22 , the input terminal of inverter 24 , and the drain of transistor 26 . Furthermore, the photodiode 20 has an anode electrically connected to a power supply. For example, in order to efficiently detect light (photons), a voltage higher than the breakdown voltage VBD of the photodiode 20 (hereinafter referred to as excess bias) is applied to the photodiode 20 . Further, the power supply voltage VCC supplied to the anode of the photodiode 20 is, for example, the same negative bias (negative potential) as the breakdown voltage VBD of the photodiode 20 .
  • the constant current source 22 is composed of, for example, a p-type MOS (Metal Oxide Semiconductor) transistor that operates in the saturation region, and performs passive quenching by acting as a quenching resistor.
  • a power supply voltage VE is supplied to the constant current source 22 .
  • a pull-up resistor or the like may be used as the constant current source 22 instead of the p-type MOS transistor.
  • the drain of the transistor 26 is connected to the cathode of the photodiode 20, the input terminal of the inverter 24, and the constant current source 22, and the source of the transistor 26 is connected to ground (GND).
  • a control signal is supplied to the gate of the transistor 26 from a pixel driving section (not shown) that drives the pixel 10 .
  • a Lo (Low) control signal is supplied from the pixel driving section to the gate of the transistor 26 .
  • a Hi (High) control signal is supplied from the pixel driving section to the gate of the transistor 26 .
  • effective pixels are pixels that can detect light, while pixels that are not effective pixels mean pixels that do not detect light.
  • the inverter 24 outputs a Hi signal PF out when the voltage VS from the cathode of the photodiode 20 as an input signal is Lo, and outputs a Lo signal PF out when the voltage VS from the cathode is Hi. do.
  • FIG. 2 is a graph showing changes in the cathode voltage VS of the photodiode 20 and the detection signal PF out according to incident light.
  • the transistor 26 is turned off by the Lo control signal.
  • the cathode of the photodiode 20 is supplied with the power supply voltage VE, and the anode thereof is supplied with the power supply VCC. Therefore, by applying a reverse voltage higher than the breakdown voltage VBD to the photodiode 20, the photodiode 20 is set to the Geiger mode. In this state, the cathode voltage VS of the photodiode 20 is the same as the power supply voltage VE.
  • avalanche multiplication occurs and current flows through the photodiode 20 .
  • a current also flows through the p-type MOS transistor as the constant current source 22, and the resistance component of the MOS transistor causes a voltage rise. A descent will occur.
  • the cathode voltage VS of the photodiode 20 becomes lower than 0 V
  • a reverse voltage smaller than the breakdown voltage VBD is applied to the photodiode 20, so avalanche multiplication stops.
  • the current generated by the avalanche multiplication flows through the constant current source 22 to generate a voltage drop, and the cathode voltage VS becomes lower than 0 V with the generated voltage drop, thereby performing the avalanche multiplication.
  • the operation to stop is called a quench operation.
  • a Hi (High) PF out signal is output during the period from time t1 to time t3.
  • a Hi control signal is supplied from the pixel driving section (not shown) to the gate of the transistor 26 to turn on the transistor 26 .
  • the cathode voltage VS of the photodiode 20 becomes 0 V (GND)
  • the anode-cathode voltage of the photodiode 20 becomes equal to or less than the breakdown voltage VBD. never.
  • FIG. 3 is a block diagram showing a configuration example of the photodetector 501. As shown in FIG. 3
  • the photodetector 501 has a pixel driving section 511, a pixel array section 512, a MUX (multiplexer) 513, a time measuring section 514, and an input/output section 515.
  • a pixel driving section 511 a pixel driving section 511
  • a pixel array section 512 a pixel array section 512
  • a MUX (multiplexer) 513 a time measuring section 514
  • an input/output section 515 As shown in FIG. 3, for example, the photodetector 501 has a pixel driving section 511, a pixel array section 512, a MUX (multiplexer) 513, a time measuring section 514, and an input/output section 515.
  • Pixels 10 are arranged in a matrix in a pixel array portion 512, which will be described later, and pixel drive lines 522 are horizontally wired for each row of the pixels 10.
  • the pixel drive section 511 drives each pixel 10 by supplying a predetermined drive signal to each pixel 10 through the pixel drive line 522 .
  • the pixel drive unit 511 drives part of the plurality of pixels 10 two-dimensionally arranged in a matrix at timing corresponding to a light emission timing signal supplied from the outside via an input/output unit 515, which will be described later. It is possible to perform control to make it an effective pixel.
  • the pixel array unit 512 has a configuration in which the pixels 10 that detect light and output detection signals PF out indicating detection results as pixel signals are two-dimensionally arranged in rows and columns in a matrix. Note that the number of rows and the number of columns of the pixels 10 in the pixel array section 512 are not limited to the numbers shown in FIG. Then, as described above, the pixel driving lines 522 are wired in the horizontal direction for each pixel row in the matrix-like pixel arrangement of the pixel array section 512 . Furthermore, although the pixel drive line 522 is shown as one wiring, it can be configured with a plurality of wirings. Also, one end of the pixel driving line 522 is connected to an output terminal corresponding to each pixel row of the pixel driving section 511 .
  • the MUX 513 selects outputs from effective pixels in accordance with switching between effective pixels and non-effective pixels in the pixel array section 512, and outputs pixel signals input from the selected effective pixels to the time measurement section 514, which will be described later. can be done.
  • Time measurement unit 5114 Based on the pixel signal of the effective pixel supplied from the MUX 513 and the light emission timing signal indicating the light emission timing of the light emission source (not shown), the time measurement unit 514 measures the time when the effective pixel emits light after the light emission source emits light. generates a count value corresponding to the time to detect The light emission timing signal is externally supplied via an input/output unit 515, which will be described later.
  • the input/output unit 515 outputs the effective pixel count value supplied from the time measurement unit 514 to the outside as a pixel signal.
  • the input/output unit 515 also supplies an externally supplied light emission timing signal to the pixel driving unit 511 and the time measurement unit 514 .
  • FIG. 4 is a block diagram showing a configuration example of a distance measuring system 611 incorporating the photodetector 501.
  • the ranging system 611 is a system that captures a range image using, for example, the ToF method.
  • the distance image is an image composed of distance pixel signals based on the detected distance detected by detecting the distance in the depth direction from the distance measuring system 611 to the subjects 612 and 613 for each pixel.
  • the ranging system 611 has an illumination device 621 and an imaging device 622. The details of each block included in the distance measuring system 611 will be described below.
  • the illumination device 621 has an illumination controller 631 and a light source 632 as shown in FIG.
  • the illumination control unit 631 controls the pattern of light irradiation from the light source 632 under the control of the control unit 642 of the imaging device 622 .
  • the illumination control unit 631 controls the pattern in which the light source 632 emits light according to the irradiation code included in the irradiation signal supplied from the control unit 642 .
  • the irradiation code consists of two values of 1 (High) and 0 (Low). 632 is turned off.
  • the light source 632 emits light in a predetermined wavelength range under the control of the illumination control section 631 .
  • Light source 632 may comprise, for example, an infrared laser diode. Note that the type of the light source 632 and the wavelength range of the irradiation light can be arbitrarily set according to the application of the distance measuring system 611 and the like.
  • the imaging device 622 is a device that receives light (irradiation light) emitted from the illumination device 621 and reflected by the subject 612 and the subject 613 or the like.
  • the imaging device 622 has an imaging unit 641, a control unit 642, a display unit 643, and a storage unit 644, as shown in FIG.
  • the imaging unit 641 has a lens 651, a signal processing circuit 653, and a photodetector 501, as shown in FIG.
  • the lens 651 can form an image of incident light on the light receiving surface of the photodetector 501 .
  • the configuration of the lens 651 is arbitrary, and for example, it is possible to configure the lens 651 with a plurality of lens groups.
  • the photodetector 501 described above can be applied to the photodetector 501 .
  • the photodetector 501 Under the control of the control unit 642 , the photodetector 501 receives reflected light from the subject 612 , the subject 613 , and the like, and supplies the resulting pixel signal to the signal processing circuit 653 .
  • the pixel signal indicates a digital count value obtained by counting the time from when the illumination device 621 emits irradiation light until when the photodetector device 501 receives the light.
  • a light emission timing signal indicating the timing at which the light source 632 emits light is supplied from the controller 642 to the photodetector 501 .
  • the signal processing circuit 653 processes pixel signals supplied from the photodetector 501 under the control of the control unit 642 . For example, the signal processing circuit 653 detects the distances to the subjects 612 and 613 for each pixel 10 based on the pixel signals supplied from the photodetector 501, and indicates the distances to the subjects 612 and 613 for each pixel 10. Generate a range image. Specifically, the signal processing circuit 653 measures the time (count value) from when the light source 632 emits light to when each pixel 10 of the photodetector 501 receives light a plurality of times (for example, Thousands to tens of thousands of times). The signal processing circuit 653 creates a histogram corresponding to the acquired times.
  • the signal processing circuit 653 determines the time until the light emitted from the light source 632 is reflected by the object 612 or 613 and returns. Further, the signal processing circuit 653 performs calculations to find the distances to the objects 612 and 613 based on the determined time and speed of light. The signal processing circuit 653 then supplies the generated distance image to the control section 642 .
  • the control unit 642 is composed of, for example, a control circuit such as an FPGA (Field Programmable Gate Array) or a DSP (Digital Signal Processor), a processor, or the like.
  • the controller 642 controls the illumination controller 631 and the photodetector 501 . Specifically, the controller 642 supplies an irradiation signal to the illumination controller 631 and a light emission timing signal to the photodetector 501 .
  • the light source 632 emits irradiation light according to the irradiation signal.
  • the light emission timing signal may be an illumination signal supplied to the illumination control section 631 .
  • the control unit 642 supplies the distance image acquired from the imaging unit 641 to the display unit 643 and causes the display unit 643 to display it. Furthermore, the control unit 642 stores the distance image acquired from the imaging unit 641 in the storage unit 644 . Also, the control unit 642 outputs the distance image acquired from the imaging unit 641 to the outside.
  • the display unit 643 is, for example, a panel-type display device such as a liquid crystal display device or an organic EL (Electro Luminescence) display device.
  • a panel-type display device such as a liquid crystal display device or an organic EL (Electro Luminescence) display device.
  • the storage unit 644 can be configured by any storage device, storage medium, or the like, and stores distance images and the like.
  • FIG. 5 is a schematic plan view showing an example of the detailed configuration of the pixel 10a according to the comparative example. plane.
  • FIG. 6 is a schematic cross-sectional view showing an example of the detailed configuration of the pixel 10a according to the comparative example, and specifically shows a cross section taken along line AA' shown in FIG.
  • the comparative example means the pixel 10a that the inventors of the present invention repeatedly studied before making the embodiment of the present disclosure.
  • the pixels 10a are of the back-illuminated type, in which light is incident from the lower surface (back surface 100a) side of FIG.
  • the pixel 10a is not limited to the back-illuminated type, and is a front-illuminated pixel in which light is incident via a wiring layer (not shown) provided on the front surface 100b (see FIG. 6) of the semiconductor substrate. 10a.
  • the cross-sectional configuration of the pixel 10a will be described.
  • the cross-sectional view of the pixel 10a shown in FIG. 6 mainly shows the structure related to the semiconductor substrate 100, the lower side of FIG. 140, etc. are formed.
  • the back surface 100a serves as a light receiving surface on which reflected light reflected from the subjects 612 and 613 is incident.
  • the upper side of FIG. 6 is the surface 100b side of the semiconductor substrate 100, and although not shown, wiring layers (not shown) including circuits for driving the pixels 10a are formed.
  • the pixel 10a includes an n-type sub-region 102, a p-type semiconductor region 104, an n-type semiconductor region 106, and a high-concentration semiconductor region 106 provided in an n-type semiconductor substrate 100 made of silicon. It has an n-type semiconductor region 106a, a hole accumulation region 108, and a high-concentration p-type semiconductor region 108a.
  • the pixel 10a has a pixel separation portion (pixel separation wall) 120 that surrounds the pixel 10a and separates it from other adjacent pixels 10a.
  • the pixel 10 has a cathode electrode 130 electrically connected to the high-concentration n-type semiconductor region 106a and an anode electrode 132 electrically connected to the high-concentration p-type semiconductor region 108a. Furthermore, the pixel 10 a has an on-chip lens (lens portion) 140 on the back surface 100 a of the semiconductor substrate 100 .
  • the n-type sub-region (photoelectric conversion portion) 102 is a region with a low impurity concentration in the semiconductor substrate 100 having n-type conductivity, absorbs light, and converts electrons (charges) generated by photoelectric conversion into an avalanche region, which will be described later. Generating an electric field that transfers to the multiplication region.
  • a p-type semiconductor region 104 and an n-type semiconductor region 106 are laminated on the n-type sub-region 102 in the semiconductor substrate 100 so as to form a PN junction.
  • a depletion layer generated in a region where the p-type semiconductor region 104 and the n-type semiconductor region 106 are joined forms the above-described avalanche multiplication region.
  • the balanche multiplication region can amplify electrons (charge).
  • the impurity concentration of the n-type sub-region 102 is preferably set to a low concentration of 1E+14/cm 3 or less. By doing so, the photodetection efficiency called PDE (Photon Detection Efficiency) can be improved.
  • the impurity concentration of each of the n-type semiconductor region 106 and the p-type semiconductor region 104 forming the avalanche multiplication region is preferably set to a high concentration of 1E+16/cm 3 or more.
  • the n-type semiconductor region 106 has a high-concentration n-type semiconductor region 106a, which is a semiconductor region containing a high concentration of n-type impurities, formed at a predetermined depth from the surface 100b side of the semiconductor substrate 100 at the upper center thereof. have.
  • the high-concentration n-type semiconductor region 106a functions as a contact portion connected to a cathode electrode (cathode portion) 130 for supplying a negative voltage for forming an avalanche multiplication region. Therefore, the power supply voltage VE is applied from the cathode electrode 130 to the high-concentration n-type semiconductor region 106a.
  • the hole accumulation region 108 is a p-type semiconductor region formed so as to surround the outer surface of the n-type sub-region 102 and cover the inner surface of the pixel separation section 120, and accumulate holes generated by photoelectric conversion. be able to.
  • the hole accumulation region 108 traps electrons generated at the interface with the pixel separation portion 120, which will be described later, and has the effect of suppressing DCR (dark count rate).
  • DCR dark count rate
  • a high-concentration p-type semiconductor region 108a having a high p-type impurity concentration is provided in a region of the hole accumulation region 108 near the surface 100b of the semiconductor substrate 100.
  • the high-concentration p-type semiconductor region 108 a functions as a contact portion connected to the anode electrode (anode portion) 132 . Therefore, the power supply voltage VCC is applied from the anode electrode 132 to the high-concentration p-type semiconductor region 108a.
  • the cathode electrode 130 and the anode electrode 132 described above are provided on the surface (second surface) 100b of the semiconductor substrate 100 via an insulating film (not shown). preferably formed.
  • the cathode electrode 130 and the anode electrode 132 can transmit the semiconductor substrate 100 and reflect the light emitted from the surface 100 b of the semiconductor substrate 100 to the inside of the semiconductor substrate 100 .
  • the photodetection efficiency (PDE) of 10a can be improved. That is, the cathode electrode 130 and the anode electrode 132 can function as a reflecting portion (second reflecting portion) that reflects light.
  • the reflecting portion for reflecting the light emitted from the surface 100b of the semiconductor substrate 100 to the inside of the semiconductor substrate 100 may not be provided as the cathode electrode 130 or the anode electrode 132. It may be provided as a part.
  • a pixel separation portion (pixel separation wall) 120 for separating the pixels 10a is provided in the pixel boundary portion of the pixel 10a which is the boundary with the adjacent pixel 10a.
  • the pixel separation section 120 may have, for example, a double structure in which the outer side (n-type sub-region 102 side) of a metal film such as tungsten (W) is covered with an insulating film such as a silicon oxide film and a barrier metal film.
  • each semiconductor region of the pixel 10a has a conductivity type that is the opposite of the conductivity type described above.
  • the cathode electrode 130 and the anode electrode 132 are made of metal or the like that reflects light, so that the light transmitted through the semiconductor substrate 100 is transferred to the semiconductor substrate 100. It is reflected inside the substrate 100 .
  • the light transmitted through the semiconductor substrate 100 can be absorbed again by the photodiode 20 in the semiconductor substrate 100, so that the PDE of the pixel 10a can be improved.
  • a reflecting portion for reflecting light is provided on the front surface 100b side of the semiconductor substrate 100, so that the light transmitted through the semiconductor substrate 100 is reflected to the inside of the semiconductor substrate 100 by the reflecting portion. Therefore, the photodetection efficiency (PDE) of the pixel 10a can be improved.
  • the pixel 10a according to the comparative example since there is no reflecting portion that reflects light as described above on the side of the back surface 100a of the semiconductor substrate 100, the light emitted from the back surface 100a to the outside is reflected by the semiconductor substrate 100. It cannot be made to enter the interior again. Therefore, in the pixel 10a according to the comparative example, since the incident light is not sufficiently utilized, there is a limit to the improvement of the photodetection efficiency (PDE).
  • PDE photodetection efficiency
  • the present inventors have made extensive studies on the structure of the pixel 10a in order to further improve the light detection efficiency, and created the first embodiment of the present disclosure described below. reached.
  • the reflecting portion for reflecting light is provided only on the surface 100b side of the semiconductor substrate 100, but the pixel according to the first embodiment of the present disclosure created by the present inventors 10 (see FIG. 7), a reflecting portion 122 (see FIGS. 7 and 8) for reflecting light is also provided on the back surface 100a side of the semiconductor substrate 100.
  • the reflecting portion 122 for reflecting light is provided not only on the front surface 100b side of the semiconductor substrate 100 but also on the back surface 100a side, so that the light emitted from the back surface 100a to the outside is can be reflected into the semiconductor substrate 100 . Furthermore, in the present embodiment, since it is necessary to allow light to enter the photodiode 20 in the semiconductor substrate 100, it is necessary to provide the reflecting section 122 on the rear surface 100a side without obstructing the passage of such light. , the reflecting portion 122 is provided so as to protrude (protrude) from the pixel separation portion 120 by a small amount.
  • the light emitted from the back surface 100 a to the outside can be reflected inside the semiconductor substrate 100 , so that the photodiode 20 can absorb the light again.
  • Detection efficiency (PDE) can be further improved.
  • FIG. 7 is a schematic plan view showing an example of the detailed configuration of the pixel 10 according to this embodiment. Specifically, FIG. 7 shows a plane of a pixel array portion 512 in which four pixels 10 are arranged in a 2 ⁇ 2 matrix, viewed from above the back surface (first surface) 100a side of the semiconductor substrate 100. Illustration of the chip lens 140 (see FIG. 8) is omitted. In addition, in FIG. 7, in order to make it easy to understand the positional relationship of the constituent elements, the configuration is schematically shown, and may differ from the actual detailed configuration.
  • each pixel 10 is formed in a grid pattern, that is, a pixel separating portion (pixel separating portion) having a substantially rectangular frame shape surrounding the pixel 10a. are separated from each other by a separation wall 120 .
  • a reflective portion (first reflective portion) 122 is provided on the pixel separating portion 120 .
  • the reflective portion 122 is provided so as to protrude (protrude) from the pixel separation portion 120 toward the center of the pixel 10 . That is, the width of the reflective portion 122 is wider than the width of the pixel separating portion 120 . Therefore, the pixel separation section 120 is not shown in FIG. 7 because it is blocked by the reflection section 122 .
  • the reflecting portion 122 can reflect the light emitted from the back surface 100 a of the semiconductor substrate 100 to the inside of the semiconductor substrate 100 .
  • the photodiodes 20 inside the semiconductor substrate 100 can again absorb the light emitted from the rear surface 100a to the outside, so that the photodetection efficiency (PDE) of the pixels 10 can be further improved.
  • PDE photodetection efficiency
  • the reflective portion 122 is not limited to being provided so as to protrude from the entire contour line of the pixel separation portion (pixel separation wall) 120, but at least a part of the contour line. It is sufficient if it is provided so as to protrude from the
  • an n-type semiconductor region 106 forming an avalanche multiplication region is provided in the center of each pixel 10 .
  • the reflective portion 122 is provided without overlapping the n-type semiconductor region 106, the photodiode (photoelectric diode) located in the center of the pixel 10 is reflected from the back surface 100a while reflecting the light emitted from the back surface 100a to the outside. It does not block the incidence of light to the conversion unit) 20 (see FIG. 8).
  • the width of the reflective portion 122 is such that light emitted to the outside of the pixel 10 (semiconductor substrate 100) is reflected to the inside while ensuring that light enters the pixel 10 (inside the semiconductor substrate 100).
  • the width is not particularly limited as long as it can be used.
  • FIG. 8 is a schematic cross-sectional view showing an example of the detailed configuration of the pixel 10 according to the present embodiment, and specifically shows a cross section taken along line BB' shown in FIG.
  • FIG. 8 in order to make the positional relationship of the components easy to understand, it is schematically shown, and may differ from the actual cross section.
  • the pixels 10 are assumed to be back-illuminated pixels 10 in which light (indicated by arrows in the figure) is incident from the lower surface (back surface 100a) of FIG. do.
  • the pixel 10 is not limited to the back-illuminated type, and may be a front-illuminated pixel 10 in which light is incident through a wiring layer (not shown) provided on the front surface 100b of the semiconductor substrate 100. good.
  • the pixel 10 has an n-type sub-region 102 provided in an n-type semiconductor substrate 100 made of a silicon substrate, similarly to the pixel 10a according to the comparative example described above. , a p-type semiconductor region 104, an n-type semiconductor region 106, a high-concentration n-type semiconductor region 106a, a hole accumulation region 108, and a high-concentration p-type semiconductor region 108a.
  • Each pixel 10 has a pixel separation portion (pixel separation wall) 120 that surrounds the pixel 10 and separates it from other adjacent pixels 10 .
  • the pixel 10 has a cathode electrode 130 electrically connected to the high-concentration n-type semiconductor region 106a and an anode electrode 132 electrically connected to the high-concentration p-type semiconductor region 108a. Furthermore, the pixel 10 has an on-chip lens (lens portion) 140 on the back surface 100 a of the semiconductor substrate 100 .
  • the n-type sub-region (photoelectric conversion portion) 102 is a region with a low impurity concentration in the semiconductor substrate 100 having n-type conductivity. ) to the avalanche multiplication region described below.
  • a p-type semiconductor region 104 containing impurities of p-type conductivity (first conductivity type) and an n-type conductivity type (second conductivity type) are formed on the n-type sub-region 102 in the semiconductor substrate 100.
  • an n-type semiconductor region 106 containing impurities are stacked to form a PN junction.
  • a depletion layer generated in a region where the p-type semiconductor region 104 and the n-type semiconductor region 106 are joined forms an avalanche multiplication region (multiplication region).
  • the impurity concentration of the n-type sub-region 102 is preferably set to a low concentration of 1E+14/cm 3 or less.
  • the impurity concentration of each of the n-type semiconductor region 106 and the p-type semiconductor region 104 forming the avalanche multiplication region is preferably set to a high concentration of 1E+16/cm 3 or more.
  • the n-type semiconductor region 106 has a high-concentration n-type semiconductor region 106a, which is a semiconductor region containing n-type impurities at a high concentration, formed at a predetermined depth from the surface 100b side of the semiconductor substrate 100 in the upper central portion thereof. have.
  • the high-concentration n-type semiconductor region 106a functions as a contact portion connected to a cathode electrode (cathode portion) 130 for supplying a negative voltage for forming an avalanche multiplication region.
  • the hole accumulation region 108 is a p-type semiconductor region formed so as to surround the outer surface of the n-type sub-region 102 and cover the inner surface of the pixel separation portion (pixel separation wall) 120, and is generated by photoelectric conversion. can accumulate holes.
  • the hole accumulation region 108 traps electrons generated at the interface with the pixel isolation portion 120 and has an effect of suppressing DCR.
  • a high-concentration p-type semiconductor region 108a having a high impurity concentration is provided in a region of the hole accumulation region 108 in the vicinity of the surface 100b of the semiconductor substrate 100 .
  • the high-concentration p-type semiconductor region 108 a functions as a contact portion connected to the anode electrode (anode portion) 132 .
  • the cathode electrode 130 and the anode electrode 132 are provided on the surface (second surface) 100b of the semiconductor substrate 100 with an insulating film (not shown) interposed therebetween. preferable. By doing so, the cathode electrode 130 and the anode electrode 132 can transmit the semiconductor substrate 100 and reflect the light emitted to the outside from the surface 100 b to the inside of the semiconductor substrate 100 .
  • the cathode electrode 130 and the anode electrode 132 can function as a reflecting portion (second reflecting portion) that reflects light.
  • the reflecting portion for reflecting the light emitted to the outside from the surface 100b of the semiconductor substrate 100 to the inside of the semiconductor substrate 100 may not be provided as the cathode electrode 130 or the anode electrode 132. , may be provided as a functional portion that performs only reflection.
  • a pixel separation portion (pixel separation wall) 120 for separating the pixels 10a is provided in the pixel boundary portion between the pixels 10, which is the boundary between the adjacent pixels 10.
  • the pixel separation section 120 is formed of, for example, a metal film such as tungsten (W), aluminum (Al), titanium (Ti), titanium nitride (TiN), tungsten nitride (WN), or a laminated film thereof.
  • the pixel separation section 120 may have a double structure in which the outer side (on the n-type sub-region 102 side) of the metal film such as tungsten is covered with an insulating film such as a silicon oxide film and a barrier metal film.
  • the reflective portion (first reflective portion) 122 is provided on the pixel separation portion 120 and the hole accumulation region 108 on the back surface 100a side. Specifically, the reflective portion 122 is provided so as to protrude from the pixel separating portion 120 toward the center of the pixel 10 . That is, the width of the reflective portion 122 is wider than the width of the pixel separating portion 120 .
  • the reflecting portion 122 is provided without overlapping the n-type semiconductor region 106 forming the avalanche multiplication region (multiplication region). That is, in the present embodiment, the width of the reflective portion 122 (the width of the reflective portion 122 in the cross-sectional view of FIG.
  • the reflection section 122 is made of, for example, tungsten (W), aluminum (Al), titanium (Ti), titanium nitride (TiN), tungsten nitride (WN), or the like. or a laminated film of these.
  • the film thickness of the reflective portion 122 is, for example, about 500 nm to 600 nm, and is not particularly limited as long as it is a film thickness that reflects light.
  • the reflecting portion 122 As described above, in the present embodiment, since the reflecting portion 122 as described above is provided, the light emitted from the rear surface 100a to the outside (indicated by the arrow in FIG. 8) is reflected inside the semiconductor substrate 100. be able to. As a result, in this embodiment, the photodiodes 20 inside the semiconductor substrate 100 can again absorb the light emitted from the rear surface 100a to the outside.
  • the reflecting portion 122 is provided without overlapping with the n-type semiconductor region 106, thereby blocking light from entering the photodiode 20 located in the center of the pixel 10 from the rear surface 100a. never. That is, in the present embodiment, the light detection efficiency ( PDE) can be further improved.
  • each semiconductor region of the pixel 10 has a conductivity type that is the opposite of the conductivity type described above.
  • FIG. 9 is a schematic plan view showing an example of the detailed configuration of the pixel 10 according to this embodiment. Specifically, FIG. 9 shows a plane of a pixel array portion 512 in which four pixels 10 are arranged in a 2 ⁇ 2 matrix, viewed from above the back surface (first surface) 100a side of the semiconductor substrate 100. Illustration of the chip lens 140 is omitted. In addition, in FIG. 9, in order to make the positional relationship of the components easy to understand, it is schematically shown, and may differ from the actual detailed configuration.
  • reflective portions 122 are provided at the four corner positions of pixel separation portions (pixel separation walls) 120 formed in a grid pattern.
  • the reflective portion 122 is not limited to being provided at all four corners of the pixel separation portion (pixel separation wall) 120, and is provided at least one of the four corners.
  • the size of the reflective portion 122 is such that light emitted to the outside of the pixel 10 (semiconductor substrate 100) is reflected to the inside while ensuring that light enters the pixel 10 (inside the semiconductor substrate 100).
  • the size is not particularly limited as long as it can be used.
  • FIG. 10 is a schematic cross-sectional view showing an example of the detailed configuration of the pixel 10 according to the present embodiment, and in detail shows a cross section taken along line CC' shown in FIG.
  • FIG. 11 is a schematic cross-sectional view showing an example of the detailed configuration of the pixel 10 according to the present embodiment, and specifically shows a cross section taken along line DD' shown in FIG.
  • FIG.10 and FIG.11 in order to make the positional relationship of a component easy to understand, it represented typically, and may differ from an actual cross section.
  • reflective portions (first reflective portions) 122 are provided on the rear surface 100a side at the four corners of the pixel separation portion (pixel separation wall) 120 . Also, the size of the reflective portion 122 is wider than the intersection portion of the pixel separating portion 120 . In addition, in the present embodiment, the reflecting portion 122 is provided without overlapping the n-type semiconductor region 106 forming the avalanche multiplication region (multiplication region). Furthermore, in the present embodiment, as shown in FIG. 11, the reflective portion (first reflective portion) 122 is not provided on the back surface 100a side of the side portion of the pixel separating portion 120 .
  • the reflective portions 122 are provided at the four corner positions of the pixel separating portion 120 formed in a grid pattern. In this way, in the present embodiment, light emitted from the back surface 100a to the outside is prevented from being prevented from entering the photodiode 20 located in the center of the pixel 10 from the back surface 100a. can be reflected into the interior of the As a result, according to this embodiment, the photodetection efficiency (PDE) of the pixel 10 can be further improved.
  • PDE photodetection efficiency
  • FIG. 12 is a schematic plan view showing an example of the detailed configuration of the pixel 10 according to this embodiment. Specifically, FIG. 12 shows a plane of a pixel array portion 512 in which four pixels 10 are arranged in a 2 ⁇ 2 matrix, viewed from above on the back surface (first surface) 100a side of the semiconductor substrate 100. Illustration of the chip lens 140 is omitted. In addition, in FIG. 12, in order to make it easy to understand the positional relationship of the constituent elements, the configuration is schematically shown and may differ from the actual detailed configuration.
  • a reflecting portion 122 is provided so as to protrude (protrude). Furthermore, in the present embodiment, the reflective portions 122 are not provided at the four corner positions of the pixel separating portion 120 . In this way, in the present embodiment, light emitted from the back surface 100a to the outside is prevented from being prevented from entering the photodiode 20 located in the center of the pixel 10 from the back surface 100a.
  • the reflective portion 122 is not limited to being provided on all four side portions of the pixel separation portion (pixel separation wall) 120, and is provided on at least one of the four side portions. It is sufficient if it is provided in.
  • the width of the reflective portion 122 is such that light emitted to the outside of the pixel 10 (semiconductor substrate 100) is reflected to the inside while ensuring that light enters the pixel 10 (inside the semiconductor substrate 100). The width is not particularly limited as long as it can be used.
  • FIG. 12 corresponds to FIG. 10, and the FF' cross section of FIG. 12 corresponds to FIG. A description of the cross-sectional configuration is omitted.
  • the reflective portions 122 are provided at the positions of the four sides of the pixel separation portion 120 formed in a grid pattern. In this way, in the present embodiment, light emitted from the back surface 100a to the outside is prevented from being blocked from entering the photodiode 20 located in the center of the pixel 10 from the back surface 100a. can be reflected into the interior of the As a result, according to this embodiment, the photodetection efficiency (PDE) of the pixel 10 can be further improved.
  • PDE photodetection efficiency
  • first to third embodiments of the present disclosure are preferably selected according to restrictions on the (chip) area of the semiconductor substrate 100 on which the pixels 10 are provided, the characteristics required of the pixels 10, and the like.
  • FIG. 13 is an explanatory diagram for explaining the detailed configuration of the pixel 10 according to this embodiment, and more specifically, a schematic cross-sectional view showing an example of the detailed configuration of the pixel 10 according to this embodiment.
  • the height of the on-chip lens 140 is low, as shown in the upper side of FIG. Therefore, it may not be possible to enter the photodiodes 20 in the semiconductor substrate 100 .
  • the on-chip lens (lens section) 140 is adjusted so as to function to refract the light incident from the rear surface 100a side in order to prevent the light incident from the rear surface 100a side from being reflected by the reflecting section 122. .
  • the photodetection efficiency (PDE) of the pixel 10 can be further improved.
  • the adjustment of the height of the on-chip lens 140 is not limited to adjusting the height of the on-chip lens 140, but by changing the material forming the on-chip lens 140 to adjust the refractive index. Reflection of light incident from the side of 100a by the reflecting portion 122 may be prevented.
  • FIG. 14 is an explanatory diagram for explaining the detailed configuration of the pixel 10 according to this embodiment, and more specifically, a schematic cross-sectional view showing an example of the detailed configuration of the pixel 10 according to this embodiment.
  • a p-type semiconductor region 104 and an n-type semiconductor region 106 forming an avalanche multiplication region are positioned on the back surface 100a side to generate a Charges can be multiplied more efficiently.
  • the n-type sub-region 102 between the high-concentration n-type semiconductor region 106a and the n-type semiconductor region 106 is likely to be depleted.
  • depletion is likely to occur, making it difficult to efficiently apply a desired voltage from the cathode electrode 130 to the avalanche multiplication region via the high-concentration n-type semiconductor region 106a.
  • an n-type well region (third semiconductor region) 110 is provided.
  • the impurity concentration of the n-type well region 110 is preferably lower than that of the n-type semiconductor region 106 and higher than that of the n-type sub-region 102 .
  • the n-type well region 110 is thicker than the avalanche multiplication region (multiplication region) formed from the p-type semiconductor region 104 and the n-type semiconductor region 106. good. By doing so, in the present embodiment, it is possible to prevent the space between the high-concentration n-type semiconductor regions 106a and 106 from becoming easily depleted.
  • a voltage is applied to the avalanche multiplication region from the cathode electrode 130 via the avalanche multiplication region, a desired voltage can be efficiently applied to the avalanche multiplication region.
  • the p-type semiconductor region 104 and the n-type semiconductor region 106 forming the avalanche multiplication region are positioned on the back surface 100a side, and the high-concentration n-type semiconductor region 106a and the n-type semiconductor region 106, an n-type well region 110 having n-type conductivity is provided.
  • the generated charges can be multiplied more efficiently, and in addition, the avalanche multiplication region can be separated from the cathode electrode 130 via the high-concentration n-type semiconductor region 106a.
  • a desired voltage can be efficiently applied to the increased avalanche multiplication region.
  • FIG. 15A is a schematic plan view showing an example of the detailed configuration of the pixel array section 512 according to this embodiment.
  • FIG. 15B is a schematic plan view showing an example of the detailed configuration of the pixel 10 according to this embodiment.
  • FIG. 15C is a schematic cross-sectional view showing an example of the detailed configuration of the pixel 10 according to the present embodiment, and specifically shows a cross section taken along line GG' shown in FIG. 15B.
  • FIG. 15D is a schematic cross-sectional view showing an example of the detailed configuration of the pixel 10 according to the present embodiment, and specifically shows a cross section taken along line HH' shown in FIG. 15B.
  • the incident angle of light to the pixel 10 changes depending on the position in the pixel array section 512 . Therefore, in the present embodiment, the position and width of the reflective portion 122 (degree of protrusion toward the center of the pixel 10) are changed depending on the position of the pixel 10 in the pixel array portion 512. FIG. By doing so, according to the present embodiment, even if the positions in the pixel array section 512 are different, in each pixel 10, the reflection section 122 does not block the incidence of light, and the light is emitted to the outside from the back surface 100a. It becomes possible to reflect the emitted light inside the semiconductor substrate 100, and the photodetection efficiency (PDE) of the pixel 10 can be further improved.
  • PDE photodetection efficiency
  • the reflecting portions 122 are provided so that the positions and widths (W1, W2) of the reflecting portions 122 are uniform.
  • the reflection portion increases from the central portion 512c of the pixel array portion 512 toward the end portion 512s along the X direction (first direction) in the drawing.
  • Reference numeral 122 denotes a width (distance) (W3, W4, W5) protruding from the pixel separation portion (pixel separation wall) 120 toward the center of the pixel 10 along the Y direction (second direction) in the figure. Become. That is, in the present embodiment, the width and the degree of protrusion (shift amount) of the reflecting section 122 increase toward the edge of the pixel array section 512 .
  • the reflection section 122 does not block the incidence of light, and the light emitted from the back surface 100a to the outside is reflected from the semiconductor substrate.
  • the light detection efficiency (PDE) of the pixel 10 can be further improved because the light can be reflected into the interior of the pixel 100 .
  • the reflecting section 122 extends in the Y direction (second direction), the widths (distances) (W3, W4, W5) protruding from the pixel separating portion (pixel separating wall) 120 toward the center of the pixel 10 are not limited to increasing.
  • the reflection section 122 extends in the X direction (first direction), the widths (distances) (W3, W4, W5) protruding from the pixel separating portion (pixel separating wall) 120 toward the center of the pixel 10 may be increased.
  • the above two configurations may be combined.
  • the position and height of the on-chip lens 140 may be changed toward the edge of the pixel array section 512 .
  • FIGS. 16A to 16F are schematic diagrams for explaining the manufacturing method of the pixel 10 according to this embodiment, and more specifically, each drawing is a cross-sectional view of the pixel 10 at each stage in the manufacturing process.
  • the upper side of the drawing is the side of the back surface 100a of the semiconductor substrate 100
  • the lower side of the drawing is the side of the front surface 100b of the semiconductor substrate 100.
  • a p-type semiconductor region 104, an n-type semiconductor region 106, a high-concentration n-type semiconductor region 106a, a hole accumulation region 108, and a high-concentration p-type semiconductor region 108a are formed at predetermined positions.
  • a mask material 150 is layered on the back surface 100a of the semiconductor substrate 100 provided with the .
  • a resist 160 having a predetermined pattern is formed on the mask material 150 .
  • trenches 124 are formed through the semiconductor substrate 100 from the rear surface 100a to the front surface 100b.
  • the mask material 150 is removed.
  • an oxide film (not shown) and a barrier metal film (not shown) are formed so as to cover the bottom and side walls of the trench 124 .
  • a metal film 126 is formed to fill the trenches 124 and cover the back surface 100 a of the semiconductor substrate 100 .
  • a patterned resist 162 is formed on the metal film 126 .
  • the pixel 10 according to the present embodiment can be obtained.
  • the pixel 10 according to the embodiment of the present disclosure can be manufactured easily and inexpensively using existing manufacturing processes for semiconductor devices.
  • the reflecting portion 122 as described above is provided, the light emitted from the back surface 100 a to the outside can be reflected inside the semiconductor substrate 100 .
  • the photodiodes 20 inside the semiconductor substrate 100 can again absorb the light emitted from the rear surface 100a to the outside.
  • the reflecting portion 122 since the reflecting portion 122 is provided without overlapping the n-type semiconductor region 106, it blocks the incidence of light from the rear surface 100a to the photodiode 20 located in the center of the pixel 10. never.
  • the reflection section 122 can reflect the light emitted to the outside from the back surface 100 a to the inside of the semiconductor substrate 100 without blocking the incidence of light.
  • Photodetection efficiency (PDE) can be further improved.
  • the semiconductor substrate 100 does not necessarily have to be a silicon substrate, and may be another substrate (for example, an SOI (Silicon On Insulator) substrate, a SiGe substrate, etc.). Also, the semiconductor substrate 100 may be one in which a semiconductor structure or the like is formed on such various substrates.
  • SOI Silicon On Insulator
  • SiGe substrate SiGe substrate
  • the conductivity types of the semiconductor substrate 100 and each semiconductor region may be reversed.
  • this embodiment is applied to the pixels 10 that use holes as signal charges. It is possible. That is, in the embodiment of the present disclosure described above, the pixel 10 having the photodiode 20 in which the first conductivity type is the p-type, the second conductivity type is the n-type, and electrons are used as the signal charge has been described. , the embodiments of the present disclosure are not limited to such examples. For example, embodiments of the present disclosure can be applied to a pixel 10 having a photodiode 20 where the first conductivity type is n-type, the second conductivity type is p-type, and holes are used as signal charges. .
  • the pixel 10 according to the embodiment of the present disclosure is not limited to being applied to the photodetector 501 applied to the distance measuring system 611.
  • the pixel 10 according to the embodiment of the present disclosure may be applied to an imaging device that captures an image obtained by detecting the distribution of incident light amount of visible light.
  • the present embodiment includes an imaging device that captures the distribution of incident amounts of infrared rays, X-rays, particles, etc. as an image, and a distribution of other physical quantities, such as pressure and capacitance, that is detected and captured as an image. It can be applied to an imaging device (physical quantity distribution detection device) such as a fingerprint detection sensor.
  • methods for forming each layer, each film, each element, etc. described above include, for example, a physical vapor deposition method (PVD method) and a chemical vapor deposition method (chemical vapor deposition method). Vapor deposition: CVD) and the like can be mentioned.
  • the PVD method includes a vacuum deposition method using resistance heating or high frequency heating, an EB (electron beam) deposition method, various sputtering methods (magnetron sputtering method, RF (Radio Frequency)-DC (Direct Current) combined bias sputtering method, ECR (Electron Cyclotron Resonance) sputtering method, facing target sputtering method, high frequency sputtering method, etc.), ion plating method, laser ablation method, molecular beam epitaxy (MBE) method, laser transfer method, etc.
  • Examples of CVD methods include plasma CVD, thermal CVD, MO (Metal Organic)-CVD, and optical CVD.
  • other methods include electrolytic plating method, electroless plating method, spin coating method; immersion method; casting method; microcontact printing method; drop casting method; screen printing method, inkjet printing method, offset printing method, and gravure printing.
  • Various printing methods such as printing method, flexographic printing method; stamp method; spray method; air doctor coater method, blade coater method, rod coater method, knife coater method, squeeze coater method, reverse roll coater method, transfer roll coater method, gravure coater method , kiss coater method, cast coater method, spray coater method, slit orifice coater method and calendar coater method.
  • planarization techniques include a CMP (Chemical Mechanical Polishing) method, a laser planarization method, a reflow method, and the like. That is, the pixel 10 according to the embodiment of the present disclosure can be manufactured easily and inexpensively using existing manufacturing processes for semiconductor devices.
  • each step in the manufacturing method according to the embodiment of the present disclosure described above does not necessarily have to be processed in the described order.
  • each step may be processed in an appropriately changed order.
  • the method used in each step does not necessarily have to be performed along the described method, and may be performed by another method.
  • FIG. 17 is a block diagram showing a configuration example of a smart phone 900 as an electronic device to which the ranging system 611 according to the embodiment of the present disclosure is applied.
  • a smartphone 900 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, and a RAM (Random Access Memory) 903.
  • Smartphone 900 also includes storage device 904 , communication module 905 , and sensor module 907 .
  • smart phone 900 includes ranging system 611 described above, and additionally includes imaging device 909 , display device 910 , speaker 911 , microphone 912 , input device 913 , and bus 914 .
  • the smartphone 900 may have a processing circuit such as a DSP (Digital Signal Processor) in place of the CPU 901 or together with it.
  • DSP Digital Signal Processor
  • the CPU 901 functions as an arithmetic processing device and a control device, and controls all or part of the operations within the smartphone 900 according to various programs recorded in the ROM 902, RAM 903, storage device 904, or the like.
  • a ROM 902 stores programs and calculation parameters used by the CPU 901 .
  • a RAM 903 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like.
  • the CPU 901 , ROM 902 and RAM 903 are interconnected by a bus 914 .
  • the storage device 904 is a data storage device configured as an example of a storage unit of the smartphone 900 .
  • the storage device 904 is composed of, for example, a magnetic storage device such as a HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or the like.
  • the storage device 904 stores programs executed by the CPU 901, various data, and various data acquired from the outside.
  • the communication module 905 is, for example, a communication interface configured with a communication device for connecting to the communication network 906.
  • the communication module 905 can be, for example, a communication card for wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication module 905 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various types of communication, or the like.
  • a communication network 906 connected to the communication module 905 is a wired or wireless network, such as the Internet, home LAN, infrared communication, or satellite communication.
  • the sensor module 907 is, for example, a motion sensor (eg, an acceleration sensor, a gyro sensor, a geomagnetic sensor, etc.), a biological information sensor (eg, a pulse sensor, a blood pressure sensor, a fingerprint sensor, etc.), or a position sensor (eg, GNSS (Global Navigation Satellite system) receiver, etc.) and various sensors.
  • a motion sensor eg, an acceleration sensor, a gyro sensor, a geomagnetic sensor, etc.
  • a biological information sensor eg, a pulse sensor, a blood pressure sensor, a fingerprint sensor, etc.
  • GNSS Global Navigation Satellite system
  • the distance measurement system 611 is provided on the surface of the smartphone 900, and can acquire, for example, the distance and three-dimensional shape of the subjects 612 and 613 facing the surface as distance measurement results.
  • the imaging device 909 is provided on the surface of the smartphone 900 and can image subjects 612 and 613 located around the smartphone 900 .
  • the imaging device 909 includes an imaging device (not shown) such as a CMOS (Complementary MOS) image sensor, and a signal processing circuit (not shown) that performs imaging signal processing on signals photoelectrically converted by the imaging device.
  • an imaging device such as a CMOS (Complementary MOS) image sensor
  • a signal processing circuit (not shown) that performs imaging signal processing on signals photoelectrically converted by the imaging device.
  • the imaging device 909 includes an optical system mechanism (not shown) composed of an imaging lens, an aperture mechanism, a zoom lens, a focus lens, and the like, and a drive system mechanism (not shown) for controlling the operation of the optical system mechanism. You can have more.
  • the image sensor collects incident light from subjects 612, 613, etc., as an optical image, and the signal processing circuit photoelectrically converts the formed optical image pixel by pixel, and picks up the signal of each pixel.
  • a picked-up image can be acquired by reading out as a signal and performing image processing.
  • the display device 910 is provided on the surface of the smartphone 900 and can be, for example, a display device such as an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence) display.
  • the display device 910 can display an operation screen, captured images acquired by the imaging device 909 described above, and the like.
  • the speaker 911 can output to the user, for example, call voice, voice accompanying the nesting content displayed by the display device 910 described above, and the like.
  • the microphone 912 can collect, for example, the user's call voice, voice including commands for activating functions of the smartphone 900 , and ambient environment voice of the smartphone 900 .
  • the input device 913 is, for example, a device operated by a user, such as a button, keyboard, touch panel, or mouse.
  • the input device 913 includes an input control circuit that generates an input signal based on information input by the user and outputs the signal to the CPU 901 .
  • the user can input various data to the smartphone 900 and instruct processing operations.
  • a configuration example of the smartphone 900 has been shown above.
  • Each component described above may be configured using general-purpose members, or may be configured by hardware specialized for the function of each component. Such a configuration can be changed as appropriate according to the technical level of implementation.
  • a pixel array unit including a plurality of pixels arranged in a matrix on a semiconductor substrate and detecting light, Each pixel is a pixel separation wall surrounding each pixel and separating each pixel from each other; a photoelectric conversion unit that is provided in the semiconductor substrate and generates electric charges by light; a multiplication region provided in the semiconductor substrate for amplifying charges from the photoelectric conversion unit; first and second reflectors that reflect light directed toward the outside of the semiconductor substrate into the semiconductor substrate; have The first reflecting portion is provided on a light-receiving first surface of the semiconductor substrate so as to protrude from the pixel separation wall toward the center of the pixel, The second reflector is provided on a second surface of the semiconductor substrate that faces the first surface, Photodetector.
  • the pixel separation wall has a substantially rectangular frame shape surrounding each pixel, The photodetector according to any one of (1) to (4) above.
  • the first reflectors are positioned at four corners of the substantially rectangular frame, The photodetector according to (5) above.
  • the first reflectors are positioned on four sides of the substantially rectangular frame, The photodetector according to (5) or (6) above.
  • a photodetector according to claim 1. (9) According to the distance of each pixel from the center of the pixel array section, the height of the lens portion with respect to the first surface varies; The photodetector according to (8) above. (10) The multiplication region is a first semiconductor region provided on the second surface side of the photoelectric conversion unit and containing first conductivity type impurities; a second semiconductor region provided on the second surface side of the first semiconductor region and containing impurities of a second conductivity type opposite to the first conductivity type; having The photodetector according to any one of (1) to (9) above.
  • Each pixel is a third semiconductor region provided on the second surface side of the second semiconductor region and containing impurities of the second conductivity type; the impurity concentration of the third semiconductor region is lower than that of the second semiconductor region; The photodetector according to (10) above. (12) the impurity concentration of the third semiconductor region is higher than that of the semiconductor substrate; The photodetector according to (11) above. (13) The photodetector according to (11) or (12) above, wherein the third semiconductor region is thicker than the multiplication region. (14) The photodetector according to any one of (1) to (13) above, wherein the second reflection section includes a cathode section electrically connected to the multiplication region.
  • each pixel has a hole accumulation region covering an inner surface of the pixel isolation wall; The photodetector according to (14) above.
  • the second reflector includes an anode provided on the second surface side of the hole accumulation region.
  • the photodetector according to (17) above. (19) having a pixel array section including a plurality of pixels arranged in a matrix on a semiconductor substrate for detecting light; Each pixel is a pixel separation wall surrounding each pixel and separating each pixel from each other; a photoelectric conversion unit that is provided in the semiconductor substrate and generates electric charges by light; a multiplication region provided in the semiconductor substrate for amplifying charges from the photoelectric conversion unit; first and second reflectors that reflect light directed toward the outside of the semiconductor substrate into the semiconductor substrate; have The first reflecting portion is provided on a light-receiving first surface of the semiconductor substrate so as to protrude from the pixel separation wall toward the center of the pixel, The second reflector is provided on a second surface of the semiconductor substrate that faces the first surface, An electronic device equipped with a photodetector.
  • a lighting device that emits irradiation light; a photodetector that receives reflected light of the irradiation light reflected by a subject; with The photodetector is having a pixel array section including a plurality of pixels arranged in a matrix on a semiconductor substrate for detecting light; Each pixel is a pixel separation wall surrounding each pixel and separating each pixel from each other; a photoelectric conversion unit that is provided in the semiconductor substrate and generates electric charges by light; a multiplication region provided in the semiconductor substrate for amplifying charges from the photoelectric conversion unit; first and second reflectors that reflect light directed toward the outside of the semiconductor substrate into the semiconductor substrate; have The first reflecting portion is provided on a light-receiving first surface of the semiconductor substrate so as to protrude from the pixel separation wall toward the center of the pixel, The second reflector is provided on a second surface of the semiconductor substrate that faces the first surface, ranging system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

半導体基板(100)上にマトリックス状に配列し、光を検出する複数の画素(10)を含む画素アレイ部を備え、前記各画素は、前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁(120)と、前記半導体基板内に設けられ、光により電荷を発生する光電変換部(102)と、前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、有し、前記第1の反射部(122)は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、前記第2の反射部(130、132)は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、光検出装置を提供する。

Description

光検出装置、電子機器及び測距システム
 本開示は、光検出装置、電子機器及び測距システムに関する。
 近年、ToF(Time of Flight)法により距離計測を行う測距システムが注目されている。測距システムに含まれる受光素子として、SPAD(Single Photon Avalanche Diode)を用いたものがある。当該SPADにおいては、1個の光(フォトン)が入射し、光電変換により発生した電子(電荷)を、PN接合領域で増倍させること(アバランシェ増幅)で、高精度に光を検出することができる。そして、当該測距システムにおいては、増倍された電子による電流が流れたタイミングを検出することで、高精度に距離を計測することができる。
国際公開第2018/074530号
 SPADに対しては、精度よく測距を行うために、PDE(Photon Detection Efficiency)と呼ばれる光検出効率をより向上させることが求められている。しかしながら、従来から検討されていたSPADにおいては、光検出効率(PDE)を向上させることに限界があった。
 そこで、本開示では、光検出効率をより向上させることができる、光検出装置、電子機器及び測距システムを提案する。
 本開示によれば、半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を備え、前記各画素は、前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、有し、前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、光検出装置が提供される。
 また、本開示によれば、半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を有し、前記各画素は、前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、有し、前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、光検出装置を、搭載する電子機器が提供される。
 さらに、本開示によれば、照射光を照射する照明装置と、前記照射光が被写体により反射された反射光を受光する光検出装置とを備え、前記光検出装置は、半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を有し、前記各画素は、前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、有し、前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、測距システムが提供される。
画素10の回路構成の一例を説明するための説明図である。 光の入射に応じたフォトダイオード20のカソード電圧VSの変化と検出信号PFoutを示すグラフである。 光検出装置501の構成例を示すブロック図である。 光検出装置501を組み込んだ測距システム611の構成例を示すブロック図である。 比較例に係る画素10aの詳細構成の一例を表す平面模式図である。 比較例に係る画素10aの詳細構成の一例を表す断面模式図である。 本開示の第1の実施形態に係る画素10の詳細構成の一例を表す平面模式図である。 本開示の第1の実施形態に係る画素10の詳細構成の一例を表す断面模式図である。 本開示の第2の実施形態に係る画素10の詳細構成の一例を表す平面模式図である。 本開示の第2の実施形態に係る画素10の詳細構成の一例を表す断面模式図(その1)である。 本開示の第2の実施形態に係る画素10の詳細構成の一例を表す断面模式図(その2)である。 本開示の第3の実施形態に係る画素10の詳細構成の一例を表す平面模式図である。 本開示の第4の実施形態に係る画素10の詳細構成を説明するための説明図である。 本開示の第5の実施形態に係る画素10の詳細構成を説明するための説明図である。 本開示の第6の実施形態に係る画素アレイ部512の詳細構成の一例を表す平面模式図である。 本開示の第6の実施形態に係る画素10の詳細構成の一例を表す平面模式図である。 本開示の第6の実施形態に係る画素10の詳細構成の一例を表す断面模式図(その1)である。 本開示の第6の実施形態に係る画素10の詳細構成の一例を表す断面模式図(その2)である。 本開示の第7の実施形態に係る画素10の製造方法を説明するための模式図(その1)である。 本開示の第7の実施形態に係る画素10の製造方法を説明するための模式図(その2)である。 本開示の第7の実施形態に係る画素10の製造方法を説明するための模式図(その3)である。 本開示の第7の実施形態に係る画素10の製造方法を説明するための模式図(その4)である。 本開示の第7の実施形態に係る画素10の製造方法を説明するための模式図(その5)である。 本開示の第7の実施形態に係る画素10の製造方法を説明するための模式図(その6)である。 本開示の実施形態に係る測距システム611を適用した電子機器としてのスマートフォン900の構成例を示すブロック図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 また、以下の説明で参照される図面は、本開示の実施形態の説明とその理解を促すための図面であり、わかりやすくするために、図中に示される形状や寸法、比などは実際と異なる場合がある。さらに、図中に示される光検出装置や光検出装置に含まれる構成要素等は、以下の説明と公知の技術を参酌して適宜、設計変更することができる。また、以下の説明においては、光検出装置の積層構造の上下方向は、特段の断りがない限りは、光検出装置へ入射する光が下から上へ向かうように、光検出装置を配置した場合の相対方向に対応するものとする。
 以下の説明における具体的な形状についての記載は、幾何学的に定義される形状だけを意味するものではない。詳細には、以下の説明における具体的な形状についての記載は、画素、光検出装置、その製造工程、及び、その使用・動作において許容される程度の違い(誤差・ひずみ)がある場合やその形状に類似する形状をも含むものとする。以下の説明において「略矩形状」と表現した場合には、四角に限定されるものではなく、例えば、4隅のいずれかが面取りされた四角に類似する形状をも含むことを意味することとなる。
 また、以下の回路(電気的な接続)の説明においては、特段の断りがない限りは、「電気的に接続」とは、複数の要素の間を電気(信号)が導通するように接続することを意味する。加えて、以下の説明における「電気的に接続」には、複数の要素を直接的に、且つ、電気的に接続する場合だけでなく、他の要素を介して間接的に、且つ、電気的に接続する場合も含むものとする。
 なお、本明細書において、「ゲート」とは、電界効果トランジスタのゲート電極を表す。また、「ドレイン」とは、電界効果トランジスタのドレイン領域を表し、「ソース」とは、電界効果トランジスタのソース領域を表す。また、「第1の導電型」とは、「p型」又は「n型」のいずれか一方を表し、「第2の導電型」とは、「第1の導電型」と異なる「p型」又は「n型」のいずれか他方を表す。
 また、以下の説明において、「共通して設けられる」とは、特段の断りがない限りは、複数の一の要素が共有するように他の要素が設けられていることを意味し、言い換えると、他の要素は、所定の数の一の要素のそれぞれに共有されていることを意味する。
 以下、本開示を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1. 本発明者らが本開示の実施形態を創作するに至る背景
    1.1 画素10の回路構成
    1.2 光検出装置501の構成例
    1.3 測距システム611の構成例
    1.4 比較例に係る画素10aの詳細構成
    1.5 背景
 2. 第1の実施形態
    2.1 平面構成
    2.2 断面構成
 3. 第2の実施形態
    3.1 平面構成
    3.2 断面構成
 4. 第3の実施形態
 5. 第4の実施形態
 6. 第5の実施形態
 7. 第6の実施形態
 8. 第7の実施形態
 9. まとめ
 10. 適用例
 11. 補足
 <<1. 本発明者らが本開示の実施形態を創作するに至る背景>>
 <1.1 画素10の回路構成>
 まずは、本開示の実施形態の詳細を説明する前に、図1を参照して、本開示の実施形態を適用することができる画素10の回路構成の一例を説明する。図1は、画素10の回路構成の一例を説明するための説明図である。詳細には、図1は、直接型ToF(Time-of-Flight)法により距離計測を行う測距センサに適用可能な、SPAD(Single Photon Avalanche Diode)構造を持つフォトダイオード(受光素子)20を含む画素10の回路構成を示す。
 図1に示すように、画素10は、フォトダイオード20と、定電流源22と、インバータ24と、トランジスタ26とを含む。
 フォトダイオード20は、先に説明したように、SPAD構造を有し、降伏電圧VBDよりも大きなバイアス電圧で動作させる(ガイガーモード)ことができる。当該フォトダイオード20は、光電変換により発生した電子(電荷)を画素10毎に設けられた高電界のPN接合領域で増倍させることで、1個の光(フォトン)を画素10毎に検出することができる素子である。詳細には、フォトダイオード20は、入射した光により発生した電子(電荷)をアバランシェ増倍させて、増倍させて得た信号電圧VSをインバータ24に出力するフォトダイオード(単一光子アバランシェフォトダイオード)である。フォトダイオード20は、定電流源22、インバータ24の入力端子、及び、トランジスタ26のドレインに電気的に接続されたカソードを有する。さらに、当該フォトダイオード20は、電源に電気的に接続されたアノードを有する。例えば、フォトダイオード20には、効率よく、光(フォトン)を検出するため、フォトダイオード20の降伏電圧VBDよりも大きな電圧(以下、過剰バイアス(Excess Bias)と称する。)が印加される。さらに、フォトダイオード20のアノードに供給される電源電圧VCCは、例えば、フォトダイオード20の降伏電圧VBDと同じ電圧の負バイアス(負の電位)とされる。
 また、定電流源22は、例えば、飽和領域で動作するp型のMOS(Metal Oxide Semiconductor)トランジスタで構成され、クエンチング抵抗として働くことにより、パッシブクエンチを行う。なお、定電流源22には、電源電圧VEが供給されている。なお、定電流源22は、p型のMOSトランジスタの代わりに、プルアップ抵抗等を用いてもよい。
 また、トランジスタ26のドレインは、フォトダイオード20のカソード、インバータ24の入力端子、及び、定電流源22に接続され、トランジスタ26のソースは、グランド(GND)に接続されている。トランジスタ26のゲートには、制御信号が、画素10を駆動する画素駆動部(図示省略)から供給される。具体的には、画素10が有効画素とされる場合には、Lo(Low)の制御信号が、画素駆動部からトランジスタ26のゲートに供給される。一方、画素10が有効画素とされていない場合には、Hi(High)の制御信号が、画素駆動部からトランジスタ26のゲートに供給される。なお、ここで、有効画素とは、光を検出することができる状態の画素であり、一方、有効画素とされていない画素は、光を検出しない画素のことを意味する。
 そして、インバータ24は、入力信号としてのフォトダイオード20のカソードからの電圧VSがLoのとき、Hiの信号PFoutを出力し、カソードからの電圧VSがHiのとき、Loの信号PFoutを出力する。
 次に、図2を参照して、画素10が有効画素とされた場合の動作について説明する。図2は、光の入射に応じたフォトダイオード20のカソード電圧VSの変化と検出信号PFoutを示すグラフである。
 まず、画素10が有効画素である場合、トランジスタ26は、Loの制御信号により、オフに設定される。そして、時刻t0以前の時刻においては、フォトダイオード20のカソードには電源電圧VEが供給され、アノードには電源VCCが供給される。従って、フォトダイオード20に降伏電圧VBDより大きい逆電圧が印加されることにより、フォトダイオード20はガイガーモードに設定される。この状態においては、フォトダイオード20のカソード電圧VSは、電源電圧VEと同じである。
 そして、ガイガーモードに設定されたフォトダイオード20に光が入射すると、アバランシェ増倍が発生し、フォトダイオード20に電流が流れる。具体的には、時刻t0において、アバランシェ増倍が発生し、フォトダイオード20に電流が流れた場合、定電流源22としてのp型のMOSトランジスタにも電流が流れ、MOSトランジスタの抵抗成分により電圧降下が発生することとなる。
 さらに、フォトダイオード20のカソード電圧VSが0Vよりも低くなると、降伏電圧VBDよりも小さな逆電圧がフォトダイオード20に印加されることとなるため、アバランシェ増倍が停止する。ここで、アバランシェ増倍により発生する電流が定電流源22に流れることで電圧降下を発生させ、発生した電圧降下に伴って、カソード電圧VSが0Vよりも低い状態となることでアバランシェ増倍を停止させる動作のことを、クエンチ動作と呼ぶ。
 そして、時刻t2においてアバランシェ増倍が停止すると、定電流源22に流れる電流が徐々に減少することから、時刻t4において、カソード電圧VSが再び元の電源電圧VEまで回復し、フォトダイオード20は、新たに光を検出できる状態となる(リチャージ動作)。
 例えば、インバータ24は、入力電圧であるカソード電圧VSが所定の閾値電圧Vth(=VE/2)以上のとき、Lo(Low)のPFout信号を出力し、カソード電圧VSが所定の閾値電圧Vth未満のとき、HiのPFout信号を出力する。図2に示す例では、時刻t1から時刻t3の期間、Hi(High)のPFout信号が出力される。
 なお、画素10が有効画素とされていない場合には、Hiの制御信号が、画素駆動部(図示省略)からトランジスタ26のゲートに供給され、トランジスタ26がオンされることとなる。これにより、フォトダイオード20のカソード電圧VSが0V(GND)となり、フォトダイオード20のアノード-カソード間電圧が降伏電圧VBD以下となるので、フォトダイオード20に光が入射しても、電流を発生することはない。
 <1.2 光検出装置501の構成例>
 上述した画素10は、例えば、図3に示される光検出装置501の画素に適用することができる。図3は、光検出装置501の構成例を示すブロック図である。
 図3に示すように、例えば、光検出装置501は、画素駆動部511と、画素アレイ部512と、MUX(マルチプレクサ)513と、時間計測部514と、入出力部515とを有する。以下、光検出装置501に含まれる各ブロックの詳細を順次説明する。
 (画素駆動部511)
 後述する画素アレイ部512には、マトリックス状に画素10が配列しており、画素10の行ごとに画素駆動線522が水平方向に沿って配線されている。そして、画素駆動部511は、画素駆動線522を介して所定の駆動信号を各画素10に供給することにより、各画素10を駆動する。具体的には、画素駆動部511は、後述する入出力部515を介して外部から供給される発光タイミング信号に応じたタイミングにより、マトリックス状に2次元配置された複数の画素10の一部を有効画素とする制御を行うことができる。
 (画素アレイ部512)
 画素アレイ部512は、光を検出し、検出結果を示す検出信号PFoutを画素信号として出力する画素10が行方向及び列方向の行列状(マトリックス状)に2次元配置された構成を持つ。なお、画素アレイ部512の画素10の行数、列数が、図3に示す数に限定されるものではない。そして、先に説明したように、画素アレイ部512の行列状の画素配列に対して、画素行ごとに画素駆動線522が水平方向に沿って配線されている。さらに、画素駆動線522は、1本の配線として示しているが、複数の配線で構成することもできる。また、画素駆動線522の一端は、画素駆動部511の各画素行に対応した出力端に接続されている。
 (MUX513)
 MUX513は、画素アレイ部512内の有効画素と非有効画素の切替えに従い、有効画素からの出力を選択し、選択した有効画素から入力される画素信号を、後述する時間計測部514へ出力することができる。
 (時間計測部514)
 時間計測部514は、MUX513から供給される有効画素の画素信号と、発光源(図示省略)の発光タイミングを示す発光タイミング信号とに基づいて、発光源が光を発光してから有効画素が光を検出するまでの時間に対応するカウント値を生成する。なお、発光タイミング信号は、後述する入出力部515を介して外部から供給される。
 (入出力部515)
 入出力部515は、時間計測部514から供給される有効画素のカウント値を、画素信号として外部に出力する。また、入出力部515は、外部から供給される発光タイミング信号を、画素駆動部511及び時間計測部514に供給する。
 <1.3 測距システム611の構成例>
 上述した光検出装置501は、例えば、図4に示される測距システム611に適用することができる。図4は、光検出装置501を組み込んだ測距システム611の構成例を示すブロック図である。測距システム611は、例えば、ToF法を用いて距離画像の撮影を行うシステムである。ここで、距離画像とは、測距システム611から被写体612、613までの奥行き方向の距離を画素10毎に検出し、検出した距離に基づく距離画素信号からなる画像のことである。
 図4に示すように、測距システム611は、照明装置621及び撮像装置622を有する。以下、測距システム611に含まれる各ブロックの詳細を順次説明する。
 (照明装置621)
 照明装置621は、図4に示すように、照明制御部631及び光源632を有する。照明制御部631は、撮像装置622の制御部642の制御により、光源632の光を照射するパターンを制御する。具体的には、照明制御部631は、制御部642から供給される照射信号に含まれる照射コードに従って、光源632が光を照射するパターンを制御する。例えば、照射コードは、1(High)と0(Low)の2値からなり、照明制御部631は、照射コードの値が1のとき光源632を点灯させ、照射コードの値が0のとき光源632を消灯させる。
 光源632は、照明制御部631の制御により、所定の波長域の光を照射する。光源632は、例えば、赤外線レーザダイオードからなることができる。なお、光源632の種類、及び、照射光の波長域は、測距システム611の用途等に応じて任意に設定することができる。
 (撮像装置622)
 撮像装置622は、照明装置621から照射された光(照射光)が被写体612及び被写体613等により反射された反射光を受光する装置である。撮像装置622は、図4に示すように、撮像部641、制御部642、表示部643、及び、記憶部644を有する。
 詳細には、撮像部641は、図4に示すように、レンズ651、信号処理回路653、及び、光検出装置501を有する。レンズ651は、入射光を光検出装置501の受光面に結像させることができる。なお、レンズ651の構成は任意であり、例えば、複数のレンズ群によりレンズ651を構成することも可能である。
 光検出装置501は、先に説明した光検出装置501を適用することができる。光検出装置501は、制御部642の制御により、被写体612及び被写体613等からの反射光を受光し、その結果得られた画素信号を信号処理回路653に供給する。詳細には、当該画素信号は、照明装置621が照射光を照射してから光検出装置501が受光するまでの時間をカウントしたデジタルのカウント値を示す。そして、光源632が発光するタイミングを示す発光タイミング信号は、制御部642から光検出装置501に供給される。
 信号処理回路653は、制御部642の制御により、光検出装置501から供給される画素信号の処理を行う。例えば、信号処理回路653は、光検出装置501から供給される画素信号に基づいて、画素10毎に被写体612、613までの距離を検出し、画素10毎の被写体612、613までの距離を示す距離画像を生成する。具体的には、信号処理回路653は、光源632が光を発光してから光検出装置501の各画素10が光を受光するまでの時間(カウント値)を画素10毎に複数回(例えば、数千乃至数万回)取得する。信号処理回路653は、取得した時間に対応するヒストグラムを作成する。そして、信号処理回路653は、ヒストグラムのピークを検出することで、光源632から照射された光が被写体612又は被写体613で反射して戻ってくるまでの時間を判定する。さらに、信号処理回路653は、判定した時間と光速に基づいて被写体612、613までの距離を求める演算を行う。そして、信号処理回路653は、生成した距離画像を制御部642に供給する。
 制御部642は、例えば、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)等の制御回路やプロセッサ等により構成される。制御部642は、照明制御部631、及び、光検出装置501の制御を行う。具体的には、制御部642は、照明制御部631に照射信号を供給するとともに、発光タイミング信号を光検出装置501に供給する。光源632は、照射信号に応じて照射光を発光する。発光タイミング信号は、照明制御部631に供給される照射信号であってもよい。また、制御部642は、撮像部641から取得した距離画像を表示部643に供給し、表示部643に表示させる。さらに、制御部642は、撮像部641から取得した距離画像を記憶部644に格納する。また、制御部642は、撮像部641から取得した距離画像を外部に出力する。
 表示部643は、例えば、液晶表示装置や有機EL(Electro Luminescence)表示装置等のパネル型表示装置からなる。
 記憶部644は、任意の記憶装置や記憶媒体等により構成することができ、距離画像等を記憶する。
 <1.4 比較例に係る画素10aの詳細構成>
 次に、図5及び図6を参照して、本開示の実施形態と比較される比較例に係る画素10aの詳細構成の一例を説明する。図5は、比較例に係る画素10aの詳細構成の一例を表す平面模式図であり、詳細には、4つの画素10aがマトリックス状に並ぶ半導体基板100の裏面100a(図6 参照)側から見た平面を示す。また、図6は、比較例に係る画素10aの詳細構成の一例を表す断面模式図であって、詳細には、図5に示すA-A´で切断した断面を示す。なお、図5及び図6においては、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の構成と異なっていてもよい。なお、ここで、比較例とは、本発明者らが本開示の実施形態をなす前に、検討を重ねていた画素10aのことを意味するものとする。
 なお、以下の説明においては、図6の下側の面(裏面100a)側から光が入射される、裏面照射型の画素10aであるものとして説明する。しかしながら、画素10aは、裏面照射型に限定されるものではなく、半導体基板の表面100b(図6参照)側に設けられた配線層(図示省略)を介して光が入射する表面照射型の画素10aであってもよい。
 まずは、図5を参照して、画素10aの平面構成を説明する。図5は、先に説明したように半導体基板100を裏面100aの上方から見た場合であって、2×2の4個の画素10aが配置されている状態を示し、図5においては、オンチップレンズ140(図6参照)の図示が省略されている。詳細には、各画素10aは、格子状に形成されている、言い換えると、画素10aを取り囲む略矩形状の枠の形状を持つ画素分離部(画素分離壁)120により分離されている。各画素分離部120の内側には、画素分離部120に沿って、ホール蓄積領域108が設けられている。さらに、各画素10aの中央には、アバランシェ増倍領域(増倍領域)を形成するn型半導体領域106が設けられている。
 次に、図6を参照して、画素10aの断面構成を説明する。詳細には、図6に示される画素10aの断面図においては、主に半導体基板100に関する構造が示され、図6の下側が半導体基板100の裏面102a側となり、裏面102a上にはオンチップレンズ140等が形成される。当該裏面100aは、被写体612、613から反射されてきた反射光が入射される受光面となる。一方、図6の上側が半導体基板100の表面100b側であり、図示は省略されているが、画素10aを駆動する回路等を含む配線層(図示省略)が形成される。
 図6に示されるように、画素10aは、シリコン基板からなるn型半導体基板100内に設けられた、n型サブ領域102と、p型半導体領域104と、n型半導体領域106と、高濃度n型半導体領域106aと、ホール蓄積領域108と、高濃度p型半導体領域108aとを有する。そして、画素10aは、画素10aを取り囲み、隣接する他の画素10aと分離する画素分離部(画素分離壁)120を有する。さらに、画素10は、高濃度n型半導体領域106aと電気的に接続するカソード電極130と、高濃度p型半導体領域108aと電気的に接続するアノード電極132とを有する。さらに、画素10aは、半導体基板100の裏面100a上に、オンチップレンズ(レンズ部)140を有する。
 n型サブ領域(光電変換部)102は、n型の導電型を有する半導体基板100内の不純物濃度が薄い領域であり、光を吸収し、光電変換により発生する電子(電荷)を後述するアバランシェ増倍領域へ転送する電界を生成する。
 そして、半導体基板100内のn型サブ領域102上に、p型半導体領域104とn型半導体領域106とが、PN接合を形成するように積層される。当該p型半導体領域104とn型半導体領域106とが接合する領域に生成される空乏層によって、上述のアバランシェ増倍領域が形成される。先に説明したように、バランシェ増倍領域は、電子(電荷)を増幅することができる。なお、例えば、n型サブ領域102の不純物濃度は、1E+14/cm以下の低濃度とされることが好ましい。このようにすることで、PDE(Photon Detection Efficiency)と呼ばれる光検出効率を向上させることができる。また、例えば、アバランシェ増倍領域を形成するn型半導体領域106とp型半導体領域104のそれぞれの不純物濃度は、1E+16/cm以上の高濃度とすることが好ましい。
 n型半導体領域106は、その中央上部に、半導体基板100の表面100b側から所定の深さで形成された、n型の不純物の高濃度に含む半導体領域である高濃度n型半導体領域106aを有する。高濃度n型半導体領域106aは、アバランシェ増倍領域を形成するための負電圧を供給するためのカソード電極(カソード部)130と接続されるコンタクト部として機能する。従って、高濃度n型半導体領域106aには、カソード電極130から電源電圧VEが印加される。
 また、ホール蓄積領域108は、n型サブ領域102の外側面を囲い、画素分離部120の内側面を覆うように形成されるp型の半導体領域であり、光電変換により発生したホールを蓄積することができる。また、ホール蓄積領域108は、後述する画素分離部120との界面で発生した電子をトラップし、DCR(ダークカウントレート)を抑制する効果も有する。さらに、ホール蓄積領域108をn型サブ領域102の側面に設けることで、横方向の電界が形成され、高電界領域に電子(電荷)をより集めやすくすることができ、PDEを向上させることができる。
 さらに、ホール蓄積領域108の、半導体基板100の表面100bの近傍領域には、p型の不純物濃度が高い、高濃度p型半導体領域108aが設けられている。高濃度p型半導体領域108aは、アノード電極(アノード部)132と接続されるコンタクト部として機能する。従って、高濃度p型半導体領域108aには、アノード電極132から電源電圧VCCが印加される。なお、上述したカソード電極130やアノード電極132は、半導体基板100の表面(第2の面)100b上に絶縁膜(図示省略)を介して設けられるが、これらは、光を反射する金属等から形成されることが好ましい。このようにすることで、カソード電極130やアノード電極132は、半導体基板100を透過し、半導体基板100の表面100bから外部へ出射する光を半導体基板100の内部へ反射させることができることから、画素10aの光検出効率(PDE)を向上させることができる。すなわち、カソード電極130やアノード電極132は、光を反射する反射部(第2の反射部)として機能することができる。なお、半導体基板100の表面100bから外部へ出射する光を半導体基板100の内部へ反射させる反射部は、カソード電極130やアノード電極132として設けられていなくてもよく、すなわち、反射のみを行う機能部として設けられていてもよい。
 隣接画素10aとの境界である画素10aの画素境界部には、画素10a間を分離する画素分離部(画素分離壁)120が設けられる。画素分離部120は、例えば、タングステン(W)等の金属膜の外側(n型サブ領域102側)を、シリコン酸化膜等の絶縁膜及びバリアメタル膜で覆う2重構造であってもよい。そして、画素分離部120とホール蓄積領域108とを設けることにより、画素10a間における、電気的、及び、光学的なクロストークを低減することができる。
 なお、上述した画素10aは、信号電荷(電荷)として電子を読み出す構造であるものとして説明したが、これに限定されるものではなく、ホールを読み出す構造であってもよい。この場合、画素10aの各半導体領域は、上述した導電型が反転した導電型を持つこととなる。
 <1.5 背景>
 次に、上述した比較例に係る画素10aの構成を踏まえ、本発明者らが本開示の実施形態を創作するに至った背景の詳細を、図6を参照して説明する。先に説明した比較例に係る画素10aにおいては、図6に示すように、カソード電極130やアノード電極132を、光を反射する金属等により形成することにより、半導体基板100を透過した光を半導体基板100の内部へ反射する。このような構成を用いることにより、画素10aにおいては、半導体基板100を透過した光を半導体基板100内のフォトダイオード20に再度吸収させることができることから、画素10aのPDEを向上させることができる。すなわち、比較例に係る画素10aにおいては、半導体基板100の表面100b側に、光を反射させる反射部が設けることにより、当該反射部により半導体基板100を透過した光を半導体基板100の内部へ反射させることができることから、画素10aの光検出効率(PDE)を向上させることができる。
 しかしながら、比較例に係る画素10aにおいては、半導体基板100の裏面100a側には、上述のような光を反射する反射部が存在しないことから、裏面100aから外部へ出射する光を半導体基板100の内部へ再度入射させることができない。従って、比較例に係る画素10aにおいては、入射光を十分に利用できているものではないことから、光検出効率(PDE)の向上に限界があった。
 そこで、本発明者らは、上述した状況を鑑み、光検出効率をより向上させようと、画素10aの構造について、鋭意検討を重ね、以下に説明する本開示の第1の実施形態を創作するに至った。比較例に係る画素10aにおいては、半導体基板100の表面100b側にのみ、光を反射させる反射部が設けられていたが、本発明者らが創作した本開示の第1の実施形態に係る画素10(図7 参照)においては、半導体基板100の裏面100a側にも、光を反射する反射部122(図7、図8 参照)を設ける。詳細には、従って、本実施形態においては、半導体基板100の表面100b側だけでなく、裏面100a側にも、光を反射する反射部122が設けられることから、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができる。さらに、本実施形態においては、半導体基板100内のフォトダイオード20に光を入射させる必要があることから、このような光の通り道を阻害せずに裏面100a側にも反射部122を設けるために、当該反射部122は、画素分離部120から少しだけ張り出す(突出する)ように設けられる。その結果、本実施形態においては、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができるため、当該光をフォトダイオード20が再度吸収することができることから、画素10の光検出効率(PDE)をより向上させることができる。以下、このような本開示の第1の実施形態の詳細を順次説明する。
 <<2. 第1の実施形態>>
 <2.1 平面構成>
 まずは、図7を参照して、本発明者らが創作した本開示の第1の実施形態に係る画素10の平面構成の詳細を説明する。図7は、本実施形態に係る画素10の詳細構成の一例を表す平面模式図である。詳細には、図7は、4つの画素10が2×2でマトリックス状に並ぶ画素アレイ部512を、半導体基板100の裏面(第1の面)100a側の上方から見た平面を示し、オンチップレンズ140(図8参照)の図示が省略されている。なお、図7においては、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の詳細構成と異なっていてもよい。
 詳細には、本実施形態においては、図7に示すように、各画素10は、格子状に形成されている、すなわち、画素10aを取り囲む略矩形状の枠の形状を持つ画素分離部(画素分離壁)120により互いに分離されている。さらに、本実施形態においては、当該画素分離部120上に反射部(第1の反射部)122が設けられている。具体的には、反射部122は、画素分離部120から画素10の中心に向かって張り出す(突出する)ように設けられている。すなわち、反射部122の幅は、画素分離部120の幅に比べて広い。そのため、図7においては、画素分離部120は、反射部122に遮られるため図示されない。当該反射部122は、半導体基板100の裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができる。その結果、本実施形態においては、裏面100aから外部へ出射する光を半導体基板100の内部のフォトダイオード20が再度吸収することができることから、画素10の光検出効率(PDE)をより向上させることができる。なお、本実施形態においては、反射部122は、画素分離部(画素分離壁)120の全ての輪郭線から張り出すように設けられることに限定されるものではなく、当該輪郭線の少なくとも一部から張り出すように設けられていればよい。
 さらに、本実施形態においては、さらに、各画素10の中央には、アバランシェ増倍領域(増倍領域)を形成するn型半導体領域106が設けられている。また、反射部122は、n型半導体領域106と重なることなく設けられていることから、裏面100aから外部へ出射する光を反射させつつ、裏面100aから画素10の中央に位置するフォトダイオード(光電変換部)20(図8 参照)への光の入射を遮ることはない。
 すなわち、本実施形態においては、反射部122の幅は、画素10(半導体基板100内)への光の入射を確保しつつ、画素10(半導体基板100)の外部へ出射する光を内部へ反射することができるような幅であればよく、特に限定されるものではない。
 <2.2 断面構成>
 次に、図8を参照して、本実施形態に係る画素10の断面構成の詳細を説明する。図8は、本実施形態に係る画素10の詳細構成の一例を表す断面模式図であり、詳細には、図7に示すB-B´で切断した断面を示す。なお、図8においては、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の断面と異なっていてもよい。
 なお、以下の説明においては、画素10は、図8の下側の面(裏面100a)側から光(図中矢印で示される)が入射される、裏面照射型の画素10であるものとして説明する。しかしながら、画素10は、裏面照射型に限定されるものではなく、半導体基板100の表面100bに設けられた配線層(図示省略)を介して光が入射する表面照射型の画素10であってもよい。
 図8に示されるように、本実施形態においては、画素10は、上述の比較例に係る画素10aと同様に、シリコン基板からなるn型半導体基板100内に設けられた、n型サブ領域102と、p型半導体領域104と、n型半導体領域106と、高濃度n型半導体領域106aと、ホール蓄積領域108と、高濃度p型半導体領域108aとを有する。そして、画素10は、画素10を取り囲み、隣接する他の画素10と分離する画素分離部(画素分離壁)120を有する。さらに、画素10は、高濃度n型半導体領域106aと電気的に接続するカソード電極130と、高濃度p型半導体領域108aと電気的に接続するアノード電極132とを有する。さらに、画素10は、半導体基板100の裏面100a上に、オンチップレンズ(レンズ部)140を有する。
 n型サブ領域(光電変換部)102は、n型の導電型を有する半導体基板100内の不純物濃度が薄い領域であり、フォトダイオード20として、光を吸収し、光電変換により発生する電子(電子)を後述するアバランシェ増倍領域へ転送する電界を生成する。
 そして、半導体基板100内のn型サブ領域102上に、p型の導電型(第1の導電型)の不純物を含むp型半導体領域104と、n型の導電型(第2の導電型)の不純物を含むn型半導体領域106とが、PN接合を形成するように積層される。当該p型半導体領域104とn型半導体領域106とが接合する領域に生成される空乏層によって、アバランシェ増倍領域(増倍領域)が形成される。なお、例えば、n型サブ領域102の不純物濃度は、1E+14/cm以下の低濃度とされることが好ましい。このようにすることで、PDE(Photon Detection Efficiency)と呼ばれる光検出効率を向上させることができる。また、例えば、アバランシェ増倍領域を形成するn型半導体領域106とp型半導体領域104のそれぞれの不純物濃度は、1E+16/cm以上の高濃度とすることが好ましい。
 n型半導体領域106は、その中央上部に、半導体基板100の表面100b側から所定の深さで形成された、n型の不純物を高濃度に含む半導体領域である高濃度n型半導体領域106aを有する。高濃度n型半導体領域106aは、アバランシェ増倍領域を形成するための負電圧を供給するためのカソード電極(カソード部)130と接続されるコンタクト部として機能する。
 また、ホール蓄積領域108は、n型サブ領域102の外側面を囲い、画素分離部(画素分離壁)120の内側面を覆うように形成されるp型の半導体領域であり、光電変換により発生したホールを蓄積することができる。また、ホール蓄積領域108は、画素分離部120との界面で発生した電子をトラップし、DCRを抑制する効果も有する。
 さらに、ホール蓄積領域108の、半導体基板100の表面100bの近傍領域には、不純物濃度が高い、高濃度p型半導体領域108aが設けられている。高濃度p型半導体領域108aは、アノード電極(アノード部)132と接続されるコンタクト部として機能する。なお、カソード電極130やアノード電極132は、半導体基板100の表面(第2の面)100b上に絶縁膜(図示省略)を介して設けられるが、光を反射する金属等から形成されることが好ましい。このようにすることで、カソード電極130やアノード電極132は、半導体基板100を透過し、表面100bから外部へ出射する光を半導体基板100の内部へ反射させることができることから、画素10の光検出効率(PDE)を向上させることができる。すなわち、カソード電極130やアノード電極132は、光を反射する反射部(第2の反射部)として機能することができる。また、本実施形態においては、半導体基板100の表面100bから外部へ出射する光を半導体基板100の内部へ反射させる反射部は、カソード電極130やアノード電極132として設けられていなくてもよく、すなわち、反射のみを行う機能部として設けられていてもよい。
 また、本実施形態においても、隣接画素10との境界である画素10の画素境界部には、画素10a間を分離する画素分離部(画素分離壁)120が設けられる。画素分離部120は、例えば、タングステン(W)、アルミニウム(Al)、チタン(Ti)、窒化チタン(TiN)、窒化タングステン(WN)等の金属膜や、これらの積層膜により形成される。また、画素分離部120は、タングステン等の金属膜の外側(n型サブ領域102側)を、シリコン酸化膜等の絶縁膜及びバリアメタル膜で覆う2重構造であってもよい。そして、画素分離部120とホール蓄積領域108とを設けることにより、画素10間における、電気的、及び、光学的なクロストークを低減することができる。
 さらに、本実施形態においては、先に説明したように、画素分離部120及びホール蓄積領域108の裏面100a側の上に、反射部(第1の反射部)122が設けられている。具体的には、反射部122は、画素分離部120から画素10の中心に向かって突出するように設けられている。すなわち、反射部122の幅は、画素分離部120の幅に比べて広い。また、本実施形態においては、反射部122は、アバランシェ増倍領域(増倍領域)を形成するn型半導体領域106と重なることなく設けられている。すなわち、本実施形態においては、反射部122の幅(図8の断面図における反射部122の幅)は、半導体基板100内のn型サブ領域102への光の入射を確保しつつ、半導体基板100の外部へ裏面100aから出射する光を内部へ反射することができるような幅であればよく、特に限定されるものではない。また、本実施形態においては、反射部122は、画素分離部120と同様に、例えば、タングステン(W)、アルミニウム(Al)、チタン(Ti)、窒化チタン(TiN)、窒化タングステン(WN)等の金属膜や、これらの積層膜により形成されることが好ましく、画素分離部120と同じ材料を用いることにより、製造工程数を減らすことができる。さらに、本実施形態においては、反射部122の膜厚は、例えば500nm~600nm程度であり、光を反射する膜厚であれば特に限定されるものではない。
 以上のように、本実施形態においては、上述のような反射部122が設けられることから、裏面100aから外部へ出射する光(図8では矢印で示される)を半導体基板100の内部へ反射させることができる。その結果、本実施形態においては、裏面100aから外部へ出射する光を半導体基板100の内部のフォトダイオード20が再度吸収することができる。また、本実施形態においては、当該反射部122は、n型半導体領域106と重なることなく設けられていることから、裏面100aから画素10の中央に位置するフォトダイオード20への光の入射を遮ることはない。すなわち、本実施形態においては、反射部122は、光の入射を遮ることなく、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができることから、画素10の光検出効率(PDE)をより向上させることができる。
 なお、上述した画素10は、信号電荷(電荷)として電子を読み出す構造であるものとして説明したが、これに限定されるものではなく、ホールを読み出す構造であってもよい。この場合、画素10の各半導体領域は、上述した導電型が反転した導電型を持つこととなる。
 <<3. 第2の実施形態>>
 <3.1 平面構成>
 次に、図9を参照して、本開示の第2の実施形態に係る画素10の平面構成の詳細を説明する。図9は、本実施形態に係る画素10の詳細構成の一例を表す平面模式図である。詳細には、図9は、4つの画素10が2×2でマトリックス状に並ぶ画素アレイ部512を、半導体基板100の裏面(第1の面)100a側の上方から見た平面を示し、オンチップレンズ140の図示が省略されている。なお、図9においては、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の詳細構成と異なっていてもよい。
 詳細には、本実施形態においては、図9に示すように、格子状に形成されている画素分離部(画素分離壁)120の4隅の位置に、反射部122を設けている。このようにすることで、本実施形態においては、裏面100aから画素10の中央に位置するフォトダイオード20への光の入射を妨げることを抑えつつ、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができる。その結果、本実施形態によれば、画素10の光検出効率(PDE)をより向上させることができる。なお、本実施形態においては、反射部122は、画素分離部(画素分離壁)120の4隅の全てに設けることに限定されるものではなく、4隅のうちの少なくとも1つに設けられていればよい。また、本実施形態においては、反射部122のサイズは、画素10(半導体基板100内)への光の入射を確保しつつ、画素10(半導体基板100)の外部へ出射する光を内部へ反射することができるようなサイズであればよく、特に限定されるものではない。
 <3.2 断面構成>
 次に、図10及び図11を参照して、本実施形態に係る画素10の断面構成の詳細を説明する。図10は、本実施形態に係る画素10の詳細構成の一例を表す断面模式図であり、詳細には、図9に示すC-C´で切断した断面を示す。また、図11は、本実施形態に係る画素10の詳細構成の一例を表す断面模式図であり、詳細には、図9に示すD-D´で切断した断面を示す。なお、図10及び図11においては、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の断面と異なっていてもよい。
 本実施形態においては、図10に示すように、画素分離部(画素分離壁)120の4隅の裏面100a側の上に、反射部(第1の反射部)122が設けられている。また、反射部122のサイズは、画素分離部120の交点部分に比べて広い。また、本実施形態においては、反射部122は、アバランシェ増倍領域(増倍領域)を形成するn型半導体領域106と重なることなく設けられている。さらに、本実施形態においては、図11に示すように、画素分離部120の辺部分の裏面100a側の上に、反射部(第1の反射部)122は設けられていない。
 以上のように、本実施形態においては、格子状に形成されている画素分離部120の4隅の位置に、反射部122を設けている。このようにすることで、本実施形態においては、裏面100aから画素10の中央に位置するフォトダイオード20への光の入射を妨げることを抑えつつ、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができる。その結果、本実施形態によれば、画素10の光検出効率(PDE)をより向上させることができる。
 <<4. 第3の実施形態>>
 次に、図12を参照して、本開示の第3の実施形態に係る画素10の平面構成の詳細を説明する。図12は、本実施形態に係る画素10の詳細構成の一例を表す平面模式図である。詳細には、図12は、4つの画素10が2×2でマトリックス状に並ぶ画素アレイ部512を、半導体基板100の裏面(第1の面)100a側の上方から見た平面を示し、オンチップレンズ140の図示が省略されている。なお、図12においては、構成要素の位置関係を分かりやすくするため、模式的に表したものであり、実際の詳細構成と異なっていてもよい。
 詳細には、本実施形態においては、図9に示すように、格子状に形成されている画素分離部(画素分離壁)120の辺部分の位置に、画素分離部120から画素10の中心に張り出す(突出する)ように反射部122を設けている。さらに、本実施形態においては、反射部122は、画素分離部120の4隅の位置に、反射部122が設けられていない。このようにすることで、本実施形態においては、裏面100aから画素10の中央に位置するフォトダイオード20への光の入射を妨げることを抑えつつ、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができる。その結果、本実施形態によれば、画素10の光検出効率(PDE)をより向上させることができる。なお、本実施形態においては、反射部122は、画素分離部(画素分離壁)120の4つの辺部分の全てに設けることに限定されるものではなく、4つの辺部分のうちの少なくとも1つに設けられていればよい。また、本実施形態においては、反射部122の幅は、画素10(半導体基板100内)への光の入射を確保しつつ、画素10(半導体基板100)の外部へ出射する光を内部へ反射することができるような幅であればよく、特に限定されるものではない。
 なお、本実施形態においては、図12のE-E´断面が、図10に対応し、図12のF-F´断面が、図11に対応することから、本実施形態に係る画素10の断面構成の説明は、省略する。
 以上のように、本実施形態においては、格子状に形成されている画素分離部120の4つの辺部分の位置に、反射部122を設けている。このようにすることで、本実施形態においては、裏面100aから画素10の中央に位置するフォトダイオード20への光の入射を妨げることを抑えつつ、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができる。その結果、本実施形態によれば、画素10の光検出効率(PDE)をより向上させることができる。
 なお、本開示の第1から第3の実施形態は、画素10が設けられる半導体基板100における(チップ)面積の制約や、画素10に求められる特性等に応じて、選択されることが好ましい。
 <<5. 第4の実施形態>>
 次に、図13を参照して、本開示の第4の実施形態に係る画素10の構成の詳細を説明する。図13は、本実施形態に係る画素10の詳細構成を説明するための説明図であって、詳細には、本実施形態に係る画素10の詳細構成の一例を表す断面模式図である。
 例えば、オンチップレンズ140の高さが低い場合には、図13の上側に示すように、これまで説明した反射部122により、裏面100a側から入射する光(図中矢印で示す)は反射されて、半導体基板100内のフォトダイオード20に入射することができない場合がある。
 そこで、本実施形態においては、このような裏面100a側から入射する光に対する反射部122による反射を防ぐために、反射されないよう屈折させるように機能するよう、オンチップレンズ(レンズ部)140を調整する。例えば、図13の下側に示すように、オンチップレンズ140の高さを高くすることにより、裏面100a側から入射する光に対する反射部122による反射を防ぐことができる。その結果、本実施形態においては、画素10の光検出効率(PDE)をより向上させることができる。なお、本実施形態においては、オンチップレンズ140の高さを調整することに限定されるものではなく、オンチップレンズ140を形成する材料を変更することにより、屈折率を調整することにより、裏面100a側から入射する光に対する反射部122による反射を防いでもよい。
 <<6. 第5の実施形態>>
 次に、図14を参照して、本開示の第5の実施形態に係る画素10の構成の詳細を説明する。図14は、本実施形態に係る画素10の詳細構成を説明するための説明図であって、詳細には、本実施形態に係る画素10の詳細構成の一例を表す断面模式図である。
 裏面100aから半導体基板100へ入射した光は、半導体基板100の裏面100aに対する深さに対して指数関数的に吸収される。従って、例えば、図14の上側に示すように、アバランシェ増倍領域(増倍領域)を形成するp型半導体領域104とn型半導体領域106とを、裏面100a側に位置させることにより、生成した電荷をより効率よく増倍させることができるようになる。
 しかしながら、図14の上側に示す構成では、高濃度n型半導体領域106aとn型半導体領域106との間のn型サブ領域102が空乏化しやすくなる。その結果、図14の上側に示す構成では、空乏しやすいことから、高濃度n型半導体領域106aを介してカソード電極130からアバランシェ増倍領域に所望の電圧を効率よく印加することは難しい。
 そこで、本実施形態においては、図14の下側に示すように、高濃度n型半導体領域106aとn型半導体領域106との間に、n型の導電性(第2の導電型)を持つn型ウェル領域(第3の半導体領域)110を設ける。本実施形態においては、n型ウェル領域110の不純物の濃度は、n型半導体領域106に比べて薄く、n型サブ領域102に比べて濃いことが好ましい。また、本実施形態においては、n型ウェル領域110の厚さは、p型半導体領域104とn型半導体領域106とから形成されるアバランシェ増倍領域(増倍領域)に比べて、厚くてもよい。このようにすることで、本実施形態においては、高濃度n型半導体領域106aとn型半導体領域106との間が空乏化しやすくなることを防ぐことができることから、高濃度n型半導体領域106aを介してカソード電極130からアバランシェ増倍領域は電圧を印加した場合、アバランシェ増倍領域に所望の電圧を効率的に印加することができる。
 すなわち、本実施形態においては、アバランシェ増倍領域を形成するp型半導体領域104とn型半導体領域106とを、裏面100a側に位置させ、且つ、高濃度n型半導体領域106aとn型半導体領域106との間に、n型の導電性を持つn型ウェル領域110を設ける。このようにすることで、本実施形態によれば、生成した電荷をより効率よく増倍させることができ、加えて、高濃度n型半導体領域106aを介してカソード電極130からアバランシェ増倍領域は電圧を印加した場合、増アバランシェ倍領域に所望の電圧を効率的に印加することができる。
 <<7. 第6の実施形態>>
 次に、図15Aから図15Dを参照して、本開示の第6の実施形態に係る画素10の構成の詳細を説明する。図15Aは、本実施形態に係る画素アレイ部512の詳細構成の一例を表す平面模式図である。また、図15Bは、本実施形態に係る画素10の詳細構成の一例を表す平面模式図である。さらに、図15Cは、本実施形態に係る画素10の詳細構成の一例を表す断面模式図であり、詳細には、図15Bに示すG-G´で切断した断面を示す。また、図15Dは、本実施形態に係る画素10の詳細構成の一例を表す断面模式図であり、詳細には、図15Bに示すH-H´で切断した断面を示す。
 ところで、画素アレイ部512内の位置によって、画素10に対する光の入射角度が変化する。そこで、本実施形態においては、画素アレイ部512内の画素10の位置によって、反射部122の位置や幅(画素10の中心への突出の程度)を変化させる。このようにすることで、本実施形態によれば、画素アレイ部512内の位置が異なっても、各画素10において、反射部122が、光の入射を遮ることなく、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができるようになり、画素10の光検出効率(PDE)をより向上させることができる。
 詳細には、図15Aに示すように、画素アレイ部512の中央部512cと端部512sとに分けて説明する。
 まずは、図15Bの上段に示す画素アレイ部512の中央部512cにおいては、反射部122の位置や幅(W1、W2)が均等になるように、反射部122が設けられている。一方、図15Bの下段に示す画素アレイ部512の端部512sにおいては、図中X方向(第1の方向)に沿って画素アレイ部512の中央部512cから端部512sへ向かうに従って、反射部122は、図中Y方向(第2の方向)に沿って、画素分離部(画素分離壁)120から画素10の中心に向かって突出する幅(距離)(W3、W4、W5)が、長くなる。すなわち、本実施形態においては、画素アレイ部512の端にいくほど、反射部122の幅や突出の程度(ずらし量)が大きくなる。
 このようにすることで、画素アレイ部512の中央部512cにおいては、図15Cに示すように、裏面100aに垂直に入射する光(図中矢印で示される)を、反射部122で遮ることなく、効率よく半導体基板100で吸収することができる。一方、画素アレイ部512の端部512sにおいては、図15Dに示すように、裏面100aに対して斜めに入射する光(図中矢印で示される)が半導体基板100を透過してカソード電極130等で反射され、半導体基板100の外部へ出射される場合であっても、広い反射部122により反射して、半導体基板100内へ再度入射させることができる。
 すなわち、本実施形態によれば、画素アレイ部512内の位置が異なっても、各画素10において、反射部122が、光の入射を遮ることなく、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができるようになることから、画素10の光検出効率(PDE)をより向上させることができる。
 なお、本実施形態においては、図中X方向(第1の方向)に沿って画素アレイ部512の中央部512cから端部512sへ向かうに従って、反射部122は、図中Y方向(第2の方向)に沿って、画素分離部(画素分離壁)120から画素10の中心向かって突出する幅(距離)(W3、W4、W5)が長くなることに限定されるものではない。本実施形態においては、例えば、図中Y方向(第2の方向)に沿って画素アレイ部512の中央部512cから端部512sへ向かうに従って、反射部122は、図中X方向(第1の方向)に沿って、画素分離部(画素分離壁)120から画素10の中心向かって突出する幅(距離)(W3、W4、W5)を、長くしてもよい。もしくは、本実施形態においては、上述の2つの構成を組み合わせてもよい。
 また、上述した第5の実施形態のように、本実施形態においては、画素アレイ部512の端にいくに従って、オンチップレンズ140の位置や高さを変化させてもよい。
 <<8. 第7の実施形態>>
 次に、図16Aから図16Fを参照して、本実施形態に係る画素10の製造方法を説明する。図16Aから図16Fは、本実施形態に係る画素10の製造方法を説明するための模式図であり、詳細には、各図面は、製造工程における各段階における、画素10の断面図である。なお、これら図においては、図中上側が半導体基板100の裏面100a側となり、図中下側が半導体基板100の表面100b側となる。
 まずは、図16Aに示すように、所定の位置に、p型半導体領域104と、n型半導体領域106と、高濃度n型半導体領域106aと、ホール蓄積領域108と、高濃度p型半導体領域108aとが設けられた半導体基板100の裏面100a上に、マスク材料150を積層する。さらに、マスク材料150の上に、所定のパターンを有するレジスト160を形成する。
 次に、図16Bに示すように、レジスト160のパターンに沿って加工されたマスク材料150に沿って、半導体基板100を裏面100aから表面100bまで貫くトレンチ124を形成する。
 そして、図16Cに示すように、マスク材料150を除去する。
 さらに、トレンチ124の底面や側壁を覆うように、酸化膜(図示省略)及びバリアメタル膜(図示省略)を形成する。そして、図16Dに示すように、トレンチ124を埋め込み、且つ、半導体基板100の裏面100aを覆うように、金属膜126を形成する。
 次に、図16Eに示すように、金属膜126上に、パターンを有するレジスト162を形成する。
 そして、レジスト162のパターンに従って、金属膜126をエッチングすることにより、図16Fに示すような構造を得ることができる。さらに、半導体基板100の裏面100a側に、複数の膜を積層させ、オンチップレンズ140を形成することにより、本実施形態に係る画素10を得ることができる。
 以上のように、本開示の実施形態に係る画素10は、既存の半導体装置の製造工程を用いて、容易に、且つ、安価に製造することが可能である。
 <<9. まとめ>>
 以上のように、本開示の各実施形態によれば、上述のような反射部122が設けられることから、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができる。その結果、各実施形態においては、裏面100aから外部へ出射する光を半導体基板100の内部のフォトダイオード20が再度吸収することができる。さらに、各実施形態においては、当該反射部122は、n型半導体領域106と重なることなく設けられていることから、裏面100aから画素10の中央に位置するフォトダイオード20への光の入射を遮ることはない。すなわち、本開示の各実施形態によれば、反射部122が、光の入射を遮ることなく、裏面100aから外部へ出射する光を半導体基板100の内部へ反射させることができることから、画素10の光検出効率(PDE)をより向上させることができる。
 また、上述した本開示の実施形態においては、半導体基板100は、必ずしもシリコン基板でなくてもよく、他の基板(例えば、SOI(Silicon On Insulator)基板やSiGe基板等)であってもよい。また、上記半導体基板100は、このような種々の基板上に半導体構造等が形成されたものであってもよい。
 なお、上述した本開示の実施形態においては、上述した半導体基板100及び各半導体領域等の導電型を逆にしてもよく、例えば、本実施形態は、ホールを信号電荷として用いる画素10に適用することが可能である。すなわち、上述した本開示の実施形態においては、第1の導電型をp型とし、第2の導電型をn型とし、電子を信号電荷として用いたフォトダイオード20を有する画素10について説明したが、本開示の実施形態はこのような例に限定されるものではない。例えば、本開示の実施形態は、第1の導電型をn型とし、第2の導電型をp型とし、ホールを信号電荷として用いるフォトダイオード20を有する画素10に適用することが可能である。
 さらに、本開示の実施形態に係る画素10は、測距システム611に適用される光検出装置501に適用されることに限定されるものではない。例えば、本開示の実施形態に係る画素10は、可視光の入射光量の分布を検知した画像として撮像する撮像装置に適用されてもよい。また、例えば、本実施形態は、赤外線やX線、あるいは粒子等の入射量の分布を画像として撮像する撮像装置や、圧力や静電容量等、他の物理量の分布を検知して画像として撮像する指紋検出センサ等の撮像装置(物理量分布検知装置)に対して適用することができる。
 また、本開示の実施形態においては、上述の各層、各膜、各素子等を形成する方法としては、例えば、物理気相成長法(Physical Vapor Deposition:PVD法)及び化学気相成長法(Chemical Vapor Deposition:CVD)等を挙げることができる。PVD法としては、抵抗加熱あるいは高周波加熱を用いた真空蒸着法、EB(電子ビーム)蒸着法、各種スパッタリング法(マグネトロンスパッタリング法、RF(Radio Frequency)-DC(Direct Current)結合形バイアススパッタリング法、ECR(Electron Cyclotron Resonance)スパッタリング法、対向ターゲットスパッタリング法、高周波スパッタリング法等)、イオンプレーティング法、レーザーアブレーション法、分子線エピタキシー(Molecular Beam Epitaxy:MBE)法、レーザ転写法等を挙げることができる。また、CVD法としては、プラズマCVD法、熱CVD法、MO(Metal Organic)-CVD法、光CVD法等を挙げることができる。さらに、他の方法としては、電解メッキ法や無電解メッキ法、スピンコート法;浸漬法;キャスト法;マイクロコンタクトプリント法;ドロップキャスト法;スクリーン印刷法やインクジェット印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法といった各種印刷法;スタンプ法;スプレー法;エアドクタコーター法、ブレードコーター法、ロッドコーター法、ナイフコーター法、スクイズコーター法、リバースロールコーター法、トランスファーロールコーター法、グラビアコーター法、キスコーター法、キャストコーター法、スプレーコーター法、スリットオリフィスコーター法、カレンダーコーター法といった各種コーティング法を挙げることができる。また、各層のパターニング法としては、シャドーマスク、レーザ転写、フォトリソグラフィー等の化学的エッチング、紫外線やレーザ等による物理的エッチング等を挙げることができる。加えて、平坦化技術としては、CMP(Chemical Mechanical Polishing)法、レーザ平坦化法、リフロー法等を挙げることができる。すなわち、本開示の実施形態に係る画素10は、既存の半導体装置の製造工程を用いて、容易に、且つ、安価に製造することが可能である。
 また、上述した本開示の実施形態に係る製造方法における各ステップは、必ずしも記載された順序に沿って処理されなくてもよい。例えば、各ステップは、適宜順序が変更されて処理されてもよい。さらに、各ステップで用いられる方法についても、必ずしも記載された方法に沿って行われなくてもよく、他の方法によって行われてもよい。
 <<10. 適用例>>
 なお、上述した測距システム611は、例えば、測距機能を備えるカメラ、測距機能を備えたスマートフォン、生産ラインに設けられる産業用カメラといった各種の電子機器に適用することができる。そこで、図17を参照して、本技術を適用した電子機器としての、スマートフォン900の構成例について説明する。図17は、本開示の実施形態に係る測距システム611を適用した電子機器としてのスマートフォン900の構成例を示すブロック図である。
 図17に示すように、スマートフォン900は、CPU(Central Processing Unit)901、ROM(Read Only Memory)902、及びRAM(Random Access Memory)903を含む。また、スマートフォン900は、ストレージ装置904、通信モジュール905、及びセンサモジュール907を含む。さらに、スマートフォン900は、上述した測距システム611を含み、加えて、撮像装置909、表示装置910、スピーカ911、マイクロフォン912、入力装置913、及びバス914を含む。また、スマートフォン900は、CPU901に代えて、又はこれとともに、DSP(Digital Signal Processor)等の処理回路を有してもよい。
 CPU901は、演算処理装置及び制御装置として機能し、ROM902、RAM903、又はストレージ装置904等に記録された各種プログラムに従って、スマートフォン900内の動作全般又はその一部を制御する。ROM902は、CPU901が使用するプログラムや演算パラメータなどを記憶する。RAM903は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一次記憶する。CPU901、ROM902、及びRAM903は、バス914により相互に接続されている。また、ストレージ装置904は、スマートフォン900の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置904は、例えば、HDD(Hard Disk Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス等により構成される。このストレージ装置904は、CPU901が実行するプログラムや各種データ、及び外部から取得した各種のデータ等を格納する。
 通信モジュール905は、例えば、通信ネットワーク906に接続するための通信デバイスなどで構成された通信インタフェースである。通信モジュール905は、例えば、有線又は無線LAN(Local Area Network)、Bluetooth(登録商標)、WUSB(Wireless USB)用の通信カード等であり得る。また、通信モジュール905は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は、各種通信用のモデム等であってもよい。通信モジュール905は、例えば、インターネットや他の通信機器との間で、TCP/IPなどの所定のプロトコルを用いて信号等を送受信する。また、通信モジュール905に接続される通信ネットワーク906は、有線又は無線によって接続されたネットワークであり、例えば、インターネット、家庭内LAN、赤外線通信又は衛星通信等である。
 センサモジュール907は、例えば、モーションセンサ(例えば、加速度センサ、ジャイロセンサ、地磁気センサ等)、生体情報センサ(例えば、脈拍センサ、血圧センサ、指紋センサ等)、又は位置センサ(例えば、GNSS(Global Navigation Satellite System)受信機等)等の各種のセンサを含む。
 測距システム611は、スマートフォン900の表面に設けられ、例えば、当該表面と向かい合う、被写体612、613の距離や3次元形状を測距結果として取得することができる。
 撮像装置909は、スマートフォン900の表面に設けられ、スマートフォン900の周囲に位置する被写体612、613等を撮像することができる。詳細には、撮像装置909は、CMOS(Complementary MOS)イメージセンサ等の撮像素子(図示省略)と、撮像素子で光電変換された信号に対して撮像信号処理を施す信号処理回路(図示省略)とを含んで構成することができる。さらに、撮像装置909は、撮像レンズ、絞り機構、ズームレンズ、及びフォーカスレンズ等により構成される光学系機構(図示省略)及び、上記光学系機構の動作を制御する駆動系機構(図示省略)をさらに有することができる。そして、上記撮像素子は、被写体612、613等からの入射光を光学像として集光し、上記信号処理回路は、結像された光学像を画素単位で光電変換し、各画素の信号を撮像信号として読み出し、画像処理することにより撮像画像を取得することができる。
 表示装置910は、スマートフォン900の表面に設けられ、例えば、LCD(Liquid Crystal Display)、有機EL(Electro Luminescence)ディスプレイ等の表示装置であることができる。表示装置910は、操作画面や、上述した撮像装置909が取得した撮像画像などを表示することができる。
 スピーカ911は、例えば、通話音声や、上述した表示装置910が表示する営巣コンテンツに付随する音声等を、ユーザに向けて出力することができる。
 マイクロフォン912は、例えば、ユーザの通話音声、スマートフォン900の機能を起動するコマンドを含む音声や、スマートフォン900の周囲環境の音声を集音することができる。
 入力装置913は、例えば、ボタン、キーボード、タッチパネル、マウス等、ユーザによって操作される装置である。入力装置913は、ユーザが入力した情報に基づいて入力信号を生成してCPU901に出力する入力制御回路を含む。ユーザは、この入力装置913を操作することによって、スマートフォン900に対して各種のデータを入力したり処理動作を指示したりすることができる。
 以上、スマートフォン900の構成例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。かかる構成は、実施する時々の技術レベルに応じて適宜変更され得る。
 <<11. 補足>>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、本技術は以下のような構成も取ることができる。
(1)
 半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を備え、
 前記各画素は、
 前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、
 前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、
 前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、
 前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、
 有し、
 前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、
 前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、
 光検出装置。
(2)
 前記半導体基板を前記第1の面の上方から見た場合、前記第1の反射部の幅は、前記画素分離壁の幅より広い、上記(1)に記載の光検出装置。
(3)
 前記半導体基板を前記第1の面の上方から見た場合、前記第1の反射部は、前記増倍領域と重なることなく設けられている、上記(1)又は(2)に記載の光検出装置。
(4)
 前記第1の反射部は、タングステン、アルミニウム、チタン、窒化チタン、窒化タングステンからなる群から選択される少なくとも1つの材料を含む、上記(1)~(3)のいずれか1つに記載の光検出装置。
(5)
 前記半導体基板を前記第1の面の上方から見た場合、
 前記画素分離壁は、前記各画素を取り囲む略矩形の枠の形状を持つ、
 上記(1)~(4)のいずれか1つに記載の光検出装置。
(6)
 前記半導体基板を前記第1の面の上方から見た場合、
 前記第1の反射部は、前記略矩形の枠の4隅に位置する、
 上記(5)に記載の光検出装置。
(7)
 前記半導体基板を前記第1の面の上方から見た場合、
 前記第1の反射部は、前記略矩形の枠の4辺に位置する、
 上記(5)又は(6)に記載の光検出装置。
(8)
 前記各画素は、前記第1の面上に、外部からの光を前記第1の反射部で反射されないように屈折させる機能を持つレンズ部を有する、上記(1)~(7)のいずれか1つに記載の光検出装置。
(9)
 前記各画素の、前記画素アレイ部の中心からの距離に応じて、
 前記レンズ部の、前記第1の面に対する高さは、変化する、
 上記(8)に記載の光検出装置。
(10)
 前記増倍領域は、
 前記光電変換部の前記第2の面側の上に設けられ、第1の導電型の不純物を含む第1の半導体領域と、
 前記第1の半導体領域の前記第2の面側の上に設けられ、前記第1の導電型とは反対の導電型である第2の導電型の不純物を含む第2の半導体領域と、
 を有する、
 上記(1)~(9)のいずれか1つに記載の光検出装置。
(11)
 前記各画素は、
 前記第2の半導体領域の前記第2の面側の上に設けられ、前記第2の導電型の不純物を含む第3の半導体領域を有し、
 前記第3の半導体領域の不純物の濃度は、前記第2の半導体領域に比べて薄い、
 上記(10)に記載の光検出装置。
(12)
 前記第3の半導体領域の不純物の濃度は、前記半導体基板に比べて濃い、
 上記(11)に記載の光検出装置。
(13)
 前記第3の半導体領域は、前記増倍領域に比べて厚い、上記(11)又は(12)に記載の光検出装置。
(14)
 前記第2の反射部は、前記増倍領域と電気的に接続されるカソード部を含む、上記(1)~(13)のいずれか1つに記載の光検出装置。
(15)
 前記各画素は、前記画素分離壁の内側面を覆うホール蓄積領域を有する、
 上記(14)に記載の光検出装置。
(16)
 前記第2の反射部は、前記ホール蓄積領域の前記第2の面側の上に設けられたアノード部を含む、上記(15)に記載の光検出装置。
(17)
 第1の方向に沿って前記画素アレイ部の中心から端部へ向かうに従って、
 前記第1の方向に対して垂直な第2の方向に沿って、前記画素分離壁から前記画素中心向かって突出する距離が長くなる、
 上記(7)に記載の光検出装置。
(18)
 前記第2の方向に沿って前記画素アレイ部の中心から端部へ向かうに従って、
 前記第1の方向に沿って、前記画素分離壁から前記画素中心向かって突出する距離が長くなる、
 上記(17)に記載の光検出装置。
(19)
 半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を有し、
 前記各画素は、
 前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、
 前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、
 前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、
 前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、
 有し、
 前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、
 前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、
 光検出装置を、搭載する電子機器。
(20)
 照射光を照射する照明装置と、
 前記照射光が被写体により反射された反射光を受光する光検出装置と、
 を備え、
 前記光検出装置は、
 半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を有し、
 前記各画素は、
 前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、
 前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、
 前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、
 前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、
 有し、
 前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、
 前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、
 測距システム。
  10、10a  画素
  20  フォトダイオード
  22  定電流源
  24  インバータ
  26  トランジスタ
  100  半導体基板
  100a  裏面
  100b  表面
  102  n型サブ領域
  104  p型半導体領域
  106  n型半導体領域
  106a  高濃度n型半導体領域
  108  ホール蓄積領域
  108a  高濃度p型半導体領域
  110  n型ウェル領域
  120  画素分離部
  122  反射部
  124  トレンチ
  126  金属膜
  130  カソード電極
  132  アノード電極
  140  オンチップレンズ
  150  マスク材料
  160、162  レジスト
  501  光検出装置
  511  画素駆動部
  512  画素アレイ部
  512c  中央部
  512s  端部
  513  MUX
  514  時間計測部
  515  入出力部
  522  画素駆動線
  611  測距システム
  612、613  被写体
  621  照明装置
  622  撮像装置
  631  照明制御部
  632  光源
  641  撮像部
  642  制御部
  643  表示部
  644  記憶部
  651  レンズ
  653  信号処理回路
  900  スマートフォン
  901  CPU
  902  ROM
  903  RAM
  904  ストレージ装置
  905  通信モジュール
  906  通信ネットワーク
  907  センサモジュール
  909  撮像装置
  910  表示装置
  911  スピーカ
  912  マイクロフォン
  913  入力装置
  914  バス

Claims (20)

  1.  半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を備え、
     前記各画素は、
     前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、
     前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、
     前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、
     前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、
     有し、
     前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、
     前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、
     光検出装置。
  2.  前記半導体基板を前記第1の面の上方から見た場合、前記第1の反射部の幅は、前記画素分離壁の幅より広い、請求項1に記載の光検出装置。
  3.  前記半導体基板を前記第1の面の上方から見た場合、前記第1の反射部は、前記増倍領域と重なることなく設けられている、請求項1に記載の光検出装置。
  4.  前記第1の反射部は、タングステン、アルミニウム、チタン、窒化チタン、窒化タングステンからなる群から選択される少なくとも1つの材料を含む、請求項1に記載の光検出装置。
  5.  前記半導体基板を前記第1の面の上方から見た場合、
     前記画素分離壁は、前記各画素を取り囲む略矩形の枠の形状を持つ、
     請求項1に記載の光検出装置。
  6.  前記半導体基板を前記第1の面の上方から見た場合、
     前記第1の反射部は、前記略矩形の枠の4隅に位置する、
     請求項5に記載の光検出装置。
  7.  前記半導体基板を前記第1の面の上方から見た場合、
     前記第1の反射部は、前記略矩形の枠の4辺に位置する、
     請求項5に記載の光検出装置。
  8.  前記各画素は、前記第1の面上に、外部からの光を前記第1の反射部で反射されないように屈折させる機能を持つレンズ部を有する、請求項1に記載の光検出装置。
  9.  前記各画素の、前記画素アレイ部の中心からの距離に応じて、
     前記レンズ部の、前記第1の面に対する高さは、変化する、
     請求項8に記載の光検出装置。
  10.  前記増倍領域は、
     前記光電変換部の前記第2の面側の上に設けられ、第1の導電型の不純物を含む第1の半導体領域と、
     前記第1の半導体領域の前記第2の面側の上に設けられ、前記第1の導電型とは反対の導電型である第2の導電型の不純物を含む第2の半導体領域と、
     を有する、
     請求項1に記載の光検出装置。
  11.  前記各画素は、
     前記第2の半導体領域の前記第2の面側の上に設けられ、前記第2の導電型の不純物を含む第3の半導体領域を有し、
     前記第3の半導体領域の不純物の濃度は、前記第2の半導体領域に比べて薄い、
     請求項10に記載の光検出装置。
  12.  前記第3の半導体領域の不純物の濃度は、前記半導体基板に比べて濃い、
     請求項11に記載の光検出装置。
  13.  前記第3の半導体領域は、前記増倍領域に比べて厚い、請求項11に記載の光検出装置。
  14.  前記第2の反射部は、前記増倍領域と電気的に接続されるカソード部を含む、請求項1に記載の光検出装置。
  15.  前記各画素は、前記画素分離壁の内側面を覆うホール蓄積領域を有する、
     請求項14に記載の光検出装置。
  16.  前記第2の反射部は、前記ホール蓄積領域の前記第2の面側の上に設けられたアノード部を含む、請求項15に記載の光検出装置。
  17.  第1の方向に沿って前記画素アレイ部の中心から端部へ向かうに従って、
     前記第1の方向に対して垂直な第2の方向に沿って、前記画素分離壁から前記画素中心向かって突出する距離が長くなる、
     請求項7に記載の光検出装置。
  18.  前記第2の方向に沿って前記画素アレイ部の中心から端部へ向かうに従って、
     前記第1の方向に沿って、前記画素分離壁から前記画素中心向かって突出する距離が長くなる、
     請求項17に記載の光検出装置。
  19.  半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を有し、
     前記各画素は、
     前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、
     前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、
     前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、
     前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、
     有し、
     前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、
     前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、
     光検出装置を、搭載する電子機器。
  20.  照射光を照射する照明装置と、
     前記照射光が被写体により反射された反射光を受光する光検出装置と、
     を備え、
     前記光検出装置は、
     半導体基板上にマトリックス状に配列し、光を検出する複数の画素を含む画素アレイ部を有し、
     前記各画素は、
     前記各画素を取り囲み、前記各画素を互いに分離する画素分離壁と、
     前記半導体基板内に設けられ、光により電荷を発生する光電変換部と、
     前記半導体基板内に設けられ、前記光電変換部からの電荷を増幅する増倍領域と、
     前記半導体基板外へ向かう光を前記半導体基板内へ反射する第1及び第2の反射部と、
     有し、
     前記第1の反射部は、前記半導体基板の光を受光する第1の面上において、前記画素分離壁から画素中心に向かって突出するように設けられ、
     前記第2の反射部は、前記半導体基板の、前記第1の面と対向する第2の面上に設けられる、
     測距システム。
PCT/JP2021/047601 2021-01-20 2021-12-22 光検出装置、電子機器及び測距システム WO2022158233A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/260,674 US20240055457A1 (en) 2021-01-20 2021-12-22 Photodetection device, electronic device, and distance measuring system
JP2022577059A JPWO2022158233A1 (ja) 2021-01-20 2021-12-22
CN202180080846.9A CN116568992A (zh) 2021-01-20 2021-12-22 光电检测装置、电子设备和测距系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-007033 2021-01-20
JP2021007033 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158233A1 true WO2022158233A1 (ja) 2022-07-28

Family

ID=82548199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047601 WO2022158233A1 (ja) 2021-01-20 2021-12-22 光検出装置、電子機器及び測距システム

Country Status (4)

Country Link
US (1) US20240055457A1 (ja)
JP (1) JPWO2022158233A1 (ja)
CN (1) CN116568992A (ja)
WO (1) WO2022158233A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118675A (ja) * 2014-12-22 2016-06-30 キヤノン株式会社 マイクロレンズ及びその製造方法
JP2020174149A (ja) * 2019-04-12 2020-10-22 ソニーセミコンダクタソリューションズ株式会社 受光装置、撮像装置および距離測定装置
WO2021005851A1 (ja) * 2019-07-11 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および光電変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118675A (ja) * 2014-12-22 2016-06-30 キヤノン株式会社 マイクロレンズ及びその製造方法
JP2020174149A (ja) * 2019-04-12 2020-10-22 ソニーセミコンダクタソリューションズ株式会社 受光装置、撮像装置および距離測定装置
WO2021005851A1 (ja) * 2019-07-11 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および光電変換装置

Also Published As

Publication number Publication date
CN116568992A (zh) 2023-08-08
JPWO2022158233A1 (ja) 2022-07-28
US20240055457A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
US20220384501A1 (en) Solid state image sensor and electronic device
US10468439B2 (en) Photoelectric conversion device, ranging apparatus, and information processing system
JP5558999B2 (ja) 距離センサ及び距離画像センサ
US20150281620A1 (en) Semiconductor photodetector
US11764314B2 (en) Scattering structures for single-photon avalanche diodes
TW201528488A (zh) 具有高度的短波長偵測效率之背側照明單光子崩潰二極體成像感測器
TW202044572A (zh) 崩潰光二極體感測器及感測裝置
JP2011112385A (ja) 距離センサ及び距離画像センサ
US20240105748A1 (en) Semiconductor packages with an array of single-photon avalanche diodes split between multiple semiconductor dice
US20230253513A1 (en) Semiconductor Devices with Single-Photon Avalanche Diodes and Light Scattering Structures
WO2022158233A1 (ja) 光検出装置、電子機器及び測距システム
WO2022163259A1 (ja) 受光素子、受光素子の製造方法及び測距システム
US20240006445A1 (en) Light receiving element, photodetector, and distance measurement system
JP2017037937A (ja) 光電変換デバイス、測距装置および情報処理システム
JP2017036971A (ja) 光電変換デバイス、測距装置および情報処理システム
WO2022254797A1 (ja) 光検出素子、光検出素子の製造方法、及び電子機器
US20230387332A1 (en) Scattering structures for single-photon avalanche diodes
US11870000B2 (en) Semiconductor packages with single-photon avalanche diodes and prisms
WO2022124139A1 (ja) 固体撮像装置、調整方法及び電子機器
US20220367534A1 (en) Semiconductor devices with single-photon avalanche diodes and isolation structures
US20240055537A1 (en) Semiconductor Devices with Single-Photon Avalanche Diodes, Light Scattering Structures, and Multiple Isolation Structures
JP2017037934A (ja) 光電変換デバイス、測距装置および情報処理システム
CN117995854A (zh) 具有单光子雪崩二极管像素的半导体器件的改善的密封件
JP2017037936A (ja) 光電変換デバイス、測距装置および情報処理システム
JP2017037935A (ja) 光電変換デバイス、測距装置および情報処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577059

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180080846.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18260674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921334

Country of ref document: EP

Kind code of ref document: A1