WO2022158225A1 - Production floor management system, work instruction method, and work instruction program - Google Patents

Production floor management system, work instruction method, and work instruction program Download PDF

Info

Publication number
WO2022158225A1
WO2022158225A1 PCT/JP2021/047304 JP2021047304W WO2022158225A1 WO 2022158225 A1 WO2022158225 A1 WO 2022158225A1 JP 2021047304 W JP2021047304 W JP 2021047304W WO 2022158225 A1 WO2022158225 A1 WO 2022158225A1
Authority
WO
WIPO (PCT)
Prior art keywords
countermeasure
production
state
management system
unit
Prior art date
Application number
PCT/JP2021/047304
Other languages
French (fr)
Japanese (ja)
Inventor
道明 馬渡
義明 粟田
憲一郎 石本
憲 末継
利彦 永冶
裕起 竹原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180090583.XA priority Critical patent/CN116745713A/en
Priority to DE112021006886.5T priority patent/DE112021006886T5/en
Priority to JP2022577055A priority patent/JPWO2022158225A1/ja
Publication of WO2022158225A1 publication Critical patent/WO2022158225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32194Quality prediction

Definitions

  • the present disclosure relates to a production floor management system that manages the state of a production floor equipped with production equipment that produces products, a work instruction method, and a work instruction program in the system.
  • Patent Document 1 When a problem occurs in a production device, a technique has been disclosed that outputs work instructions according to the method of coping while updating the method of coping with the problem (for example, Patent Document 1).
  • Patent Document 1 multiple problems may occur in production equipment, and with the technology disclosed in Patent Document 1, it is difficult to output optimal work instructions from multiple coping methods in such cases.
  • the present disclosure provides a production floor management system and the like that can output optimal work instructions from a plurality of coping methods.
  • a production floor management system is a production floor management system that manages a state on a production floor that includes production equipment that produces a product, the first state monitoring a first state on the production floor.
  • a monitoring unit a first countermeasure determining unit that determines a first countermeasure corresponding to the first state, a second state monitoring unit that monitors a second state different from the first state on the production floor, and a second countermeasure determination unit that determines a second countermeasure corresponding to a second state
  • a countermeasure mediation unit that mediates between the first countermeasure and the second countermeasure
  • an instruction output unit that outputs an instruction corresponding to the countermeasure.
  • FIG. 1 is a diagram showing a mounting line to which a production floor management system according to an embodiment is applied.
  • FIG. 2 is a configuration diagram showing an example of the production floor management system according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of a monitoring target of a state monitoring unit according to the embodiment;
  • FIG. 4 is a diagram schematically showing the flow of operations of the production floor management system according to the embodiment.
  • 5 is a flowchart illustrating an example of the operation of the state monitoring unit according to the embodiment;
  • FIG. 6 is a flowchart illustrating an example of an operation of a countermeasure determination unit according to the embodiment;
  • FIG. 7 is a table showing an example of a countermeasure candidate list according to the embodiment.
  • FIG. 8 is a table showing an example of a priority countermeasure list according to the embodiment
  • 9 is a flowchart illustrating an example of the operation of a countermeasure mediation unit according to the embodiment
  • FIG. FIG. 10 is a table showing an example of a resource management table according to the embodiment.
  • 11 is a flowchart illustrating an example of operations of an instruction output unit, an effect determination unit, and an update unit according to the embodiment
  • FIG. 12 is a table showing an example of an updated countermeasure candidate list according to the embodiment.
  • FIG. 13 is a flow chart showing an example of a work instruction method according to another embodiment.
  • a production floor management system of the present disclosure is a production floor management system that manages the state of a production floor that includes production equipment that produces a product, the system comprising: a first state monitoring unit that monitors a first state of the production floor; a first countermeasure determination unit that determines a first countermeasure corresponding to the first state; a second state monitoring unit that monitors a second state different from the first state on the production floor; a second countermeasure determination unit that determines a corresponding second countermeasure; a countermeasure arbitration unit that arbitrates between the first countermeasure and the second countermeasure; and an instruction output unit that outputs an instruction.
  • a first measure and a second measure are determined for dealing with different first and second situations on the production floor, but the first measure and the second measure are arbitrated. , an instruction corresponding to the optimum first or second countermeasure can be output. In this way, according to the production floor management system of the present disclosure, it is possible to output optimum work instructions from a plurality of coping methods.
  • the first state monitoring unit monitors the first state and the first countermeasure determining unit determines the first countermeasure
  • the second state monitoring unit monitors the second state and determines the second countermeasure.
  • the determination of the second countermeasure by the department may be performed in parallel.
  • the first countermeasure and the second countermeasure determined when the first state and the second state are monitored in parallel may be countermeasures that are difficult to make compatible, but in the present disclosure, the first Since the countermeasure and the second countermeasure are arbitrated, an instruction corresponding to the optimum first countermeasure or second countermeasure can be output. Further, when the first measure and the second measure are measures that can be compatible, it is possible to output instructions corresponding to the first measure and the second measure in parallel without performing arbitration, Efficient countermeasures can be taken.
  • the countermeasure arbitration unit performs the arbitration based on the degree of problem set in the first state corresponding to the first countermeasure and the degree of problem set in the second state corresponding to the second countermeasure. you can go
  • the countermeasure arbitration unit may be performed with priority given to the first countermeasure.
  • the production floor management system determines whether the first countermeasure or the second countermeasure corresponding to the output instruction is executed based on at least one of the first state and the second state before and after the execution of the second countermeasure.
  • An effect determination unit that determines the effect of the first countermeasure or the second countermeasure may be further provided.
  • the first state may be the production state of the production equipment
  • the second state may be the state of production resources managed on the production floor and used for production.
  • MTTR Mobile Time To Repair
  • MTTR Mobile Time To Repair
  • the first countermeasure is to solve the problem of the production status. Since this is a countermeasure for solving the problem, the MTTR can be improved by taking a countermeasure according to the first countermeasure.
  • MTBF Mel Time Between Failure
  • the second measure is to solve the problem of production resource status. For example, if the problem of the status of production resources is left unsolved, a problem may occur in the production status. Therefore, the MTBF can be improved by taking measures according to the second measure. In other words, it is possible to prevent the occurrence of production problems.
  • the countermeasure arbitration unit may perform the arbitration based on the presence or absence of the production resources required for the first countermeasure or the second countermeasure.
  • the first measure to solve the problem of production status and the second measure to solve the problem of production resource status are often measures related to production resources, and the production resources are already in use. In this case, even if an instruction corresponding to the first countermeasure or the second countermeasure is output, it is difficult to deal with the output instruction.
  • arbitration is performed based on the presence or absence of production resources, it is possible to output an instruction corresponding to the optimum first or second countermeasure depending on the presence or absence of production resources.
  • the production floor management system further includes a first learning model for detecting a first predetermined state occurring on the production floor corresponding to the production state, and the first state monitoring unit performs the first learning model.
  • the first predetermined state may be detected based on a model. Specifically, the first state monitoring unit collects, within a predetermined period, production error information that has occurred in the production apparatus, production volume information of the product produced by the production apparatus, and production error information produced by the production apparatus.
  • the first predetermined state corresponding to a production index related to at least one item of quality information may be detected, and the first countermeasure determination unit may determine the first countermeasure including countermeasures for improving the production index.
  • the production floor management system further includes a second learning model for detecting a second predetermined state occurring on the production floor corresponding to the state of the production resource, and
  • the second predetermined state may be detected based on two learning models.
  • the second state monitoring unit detects the second predetermined state corresponding to an operation index related to the operating state of the production equipment included in the production resource, and the second countermeasure determination unit detects the operation
  • the second countermeasure including countermeasures for the production equipment corresponding to the index may be determined.
  • the second state monitoring unit detects the second predetermined state corresponding to the work index related to the work performed by the worker included in the production resource, and the second countermeasure determination unit
  • the second countermeasure including work of the worker corresponding to the work index may be determined.
  • the second predetermined state can be effectively detected.
  • a work instruction method of the present disclosure is a work instruction method in a production floor management system that manages the state of a production floor provided with production equipment that produces a product, the method monitors a first state on the production floor, , monitoring a second state different from the first state, determining a first countermeasure corresponding to the first state, determining a second countermeasure corresponding to the second state, and determining the first countermeasure and the Arbitrating with a second countermeasure, and outputting an instruction corresponding to the first countermeasure or the second countermeasure according to the arbitration.
  • the work instruction program of the present disclosure is a work instruction program that causes a computer to execute the work instruction method described above.
  • FIG. 1 An embodiment will be described below with reference to FIGS. 1 to 12.
  • FIG. 1 An embodiment will be described below with reference to FIGS. 1 to 12.
  • FIG. 1 is a diagram showing a mounting line 4 to which the production floor management system 1 according to the embodiment is applied.
  • the mounting line 4 is equipped with a plurality of production devices that produce products.
  • the mounting line 4 has a function of mounting a component (electronic component) on a substrate to produce a product (for example, a mounting substrate), and has a function of supplying, delivering, and retrieving the substrate to be mounted. have.
  • the substrate supply device M1, the substrate transfer device M2, the printer M3, the mounting devices M4 and M5, the reflow device M6, and the substrate recovery device M7 are arranged in this order. connected in series. Each device from the substrate supply device M1 to the substrate recovery device M7 is connected to the management device 5 via the communication network 2.
  • FIG. 1 the substrate supply device M1, the substrate transfer device M2, the printer M3, the mounting devices M4 and M5, the reflow device M6, and the substrate recovery device M7 are arranged in this order. connected in series.
  • Each device from the substrate supply device M1 to the substrate recovery device M7 is connected to the management device 5 via the communication network 2.
  • the solder printing device M3, the component mounting devices M4 and M5, and the reflow device M6 perform component mounting work for mounting components on the board conveyed along the mounting line 4. That is, the substrate supplied by the substrate supply device M1 is carried into the printer M3 via the substrate transfer device M2.
  • the printer M3 performs a solder printing operation of screen-printing solder for joining components to the board that has been carried in.
  • the solder-printed boards are sequentially delivered to the mounting devices M4 and M5.
  • the mounting apparatuses M4 and M5 perform a component mounting operation for mounting components on the substrate after solder printing.
  • the component mounting apparatuses M4 and M5 are equipped with a base, a board transfer section, a component supply device, a mounting head, and the like.
  • a substrate is arranged on the base.
  • the substrate transfer section can transfer a substrate transferred from an upstream device to a downstream device.
  • the component supply device can supply components to the mounting head.
  • a component supply device is provided with a plurality of tape feeders for supplying components to the mounting head.
  • the mounting head can pick up the component from the tape feeder by suction, move it above the board, and mount the component at the mounting position on the board.
  • the mounting head is equipped with suction nozzles that suction and hold components and that can move up and down individually. Component mounting work is performed by such component mounting apparatuses M4 and M5.
  • the board after component mounting is carried into the reflow device M6 and heated according to a predetermined heating profile.
  • the solder for joining components printed on the heated substrate is melted and solidified.
  • soldering the component to the board in this manner a mounting board having the component mounted on the board is completed.
  • the completed mounting substrate is recovered by the substrate recovery device M7.
  • FIG. 2 is a configuration diagram showing an example of the production floor management system 1 according to the embodiment.
  • the production floor management system 1 is a system that manages the status of production floors equipped with production equipment that produces products.
  • the production floor includes, for example, the mounting line 4, inventory warehouses, preparation areas and maintenance areas.
  • production devices such as the mounting devices M4 and M5 and the printing device M3 and inspection devices are arranged. Materials such as parts, solder, and screen masks are stored in the inventory warehouse.
  • preparation area preparation of equipment elements such as carriages, feeders, nozzles and heads is carried out.
  • maintenance area maintenance of the equipment elements, jigs, and the like is performed.
  • the jig mentioned here is for adjusting the feeder, nozzle, head, etc., and may also be for adjusting the head moving mechanism and the transport mechanism of the equipment.
  • the production floor management system 1 is a computer placed on the production floor.
  • the functions of the production floor management system 1 may be provided in the management device 5 .
  • the production floor management system 1 may be a computer provided in one housing, or may be divided into two or more housings and implemented by two or more computers.
  • the production floor management system 1 may not be arranged on the production floor, and may be a computer such as a server provided outside the production floor. Note that workers are not limited to humans, and include robots, work mechanisms, and automated guided vehicles that perform the above-described work.
  • the production floor management system 1 is a system that outputs instructions to workers or production equipment on the production floor according to the state of the production floor.
  • the production floor management system 1 includes an acquisition unit 10, a state monitoring unit 20, a countermeasure determination unit 30, a countermeasure mediation unit 40, an instruction output unit 50, an effect determination unit 60, an update unit 70, learning models 23, 24, 33 and 34, Also, a resource database 41 is provided.
  • the production floor management system 1 is implemented by a computer including a processor, memory and the like.
  • the acquisition unit 10, the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70 are implemented by the processor operating according to the program stored in the memory. .
  • the state monitoring unit 20 may be provided independently as a computer, or may be provided in the production apparatus.
  • the production floor management system 1 may include a plurality of state monitoring units 20 .
  • the learning models 23, 24, 33 and 34 and the resource database 41 are stored in memory.
  • the memory in which the programs, learning models 23, 24, 33 and 34, and resource database 41 are stored may be the same memory or different memories.
  • the acquisition unit 10 acquires information for monitoring the state on the production floor. For example, the acquisition unit 10 acquires information indicating the production status of the production floor. Specifically, the acquisition unit 10 acquires the results of the production process of the production equipment (specifically, productivity, quality, or the presence or absence of defects, etc.) as information indicating the production status of the production floor. The result of the production process may be a sensing history record by a sensor, or may be data input by a person. Also, for example, the acquisition unit 10 acquires information indicating the state of production resources managed on the production floor and used for production. Production resources are, for example, production equipment, facility elements, workers, materials, or jigs.
  • information indicating the state of production resources may be sensing data from a camera, sensor, or the like, or may be data input by a person.
  • the acquisition unit 10 acquires event information that has changed on the production floor. More specifically, the acquisition unit 10 detects when the production apparatus stops, when the feeder, nozzle, parts, or board attached to the production apparatus is replaced, when the worker who performs the work is replaced, or when the operation data of the production apparatus is changed. Acquire information indicating that the
  • the state monitoring unit 20 monitors the state of the production floor through the information acquired by the acquisition unit 10 .
  • the state monitoring unit 20 detects a predetermined state based on a first condition for detecting a predetermined state (for example, a first state or a second state described later) among the states on the production floor.
  • the first condition is a learning model associated with a detection threshold corresponding to a given state. Note that the first condition may be a set detection threshold instead of the learning model.
  • the state monitoring section 20 has a first state monitoring section 21 and a second state monitoring section 22 .
  • the first state monitoring section 21 and the second state monitoring section 22 each perform the operation of the state monitoring section 20 described above.
  • the first state monitoring unit 21 monitors the first state on the production floor.
  • the first state is the production state of the production device, and the first state monitoring unit 21 monitors the result of the production process as the production state of the production device.
  • the first state monitoring section 21 detects the first predetermined state based on the learning model 23 .
  • the learning model 23 is a first learning model for detecting a first predetermined state occurring on the production floor corresponding to the production state of the production equipment.
  • the learning model 23 is also a learning model (that is, the first condition) associated with the detection threshold corresponding to the production state of the production equipment.
  • the first state monitoring unit 21 monitors, within a predetermined period, at least information on production errors occurring in the production equipment, information on the amount of products produced by the production equipment, and quality information on the products produced by the production equipment. A first predetermined condition corresponding to a production index for one is detected.
  • the second state monitoring unit 22 monitors a second state different from the first state on the production floor.
  • the second state is the state of the production resource
  • the second state monitoring section 22 monitors the state of the production resource.
  • the second state monitoring section 22 detects the second predetermined state based on the learning model 24 .
  • Learning model 24 is a second learning model for detecting a second predetermined state occurring on the production floor corresponding to the state of production resources.
  • Learning model 24 is also a learning model (ie, first condition) associated with a detection threshold corresponding to the state of the production resource.
  • the second state monitoring unit 22 detects a second predetermined state corresponding to an operating index related to the operating state of production equipment included in the production resource.
  • the second state monitoring unit 22 detects a second predetermined state corresponding to the work index related to the work performed by the worker included in the production resource.
  • FIG. 3 is a diagram showing an example of objects monitored by the state monitoring unit 20 according to the embodiment.
  • the production apparatus is assumed to be a mounting apparatus, and the production process is assumed to be a mounting process.
  • the state monitoring unit 20 (specifically, the first state monitoring unit 21) monitors the result of the mounting process including processes such as suction, recognition, and mounting as the production state. For example, the first state monitoring unit 21, within a predetermined period, at least information on mounting errors occurring in the mounting apparatus, information on the amount of mounted components mounted by the mounting apparatus, and information on the quality of the mounted components mounted by the mounting apparatus.
  • a first predetermined state corresponding to one production index is detected.
  • the state monitoring unit 20 monitors, as the state of production resources, elements (production resources) related to the mounting process such as substrates, parts, workers, heads, nozzles, and feeders. Monitor status.
  • the second state monitoring unit 22 detects a second predetermined state (for example, deterioration of mounting devices, nozzles, and feeders, etc.) corresponding to operation indicators relating to the operating states of mounting devices included in production resources.
  • the second state monitoring unit 22 detects a second predetermined state corresponding to a work index (for example, a worker's work error, etc.) related to work performed on a mounting apparatus by a worker included in the production resource.
  • a second predetermined state may be detected that corresponds to a time index related to the measurement index, the expiry date and time of the solder or component, and the date and time of actual measurement.
  • the countermeasure determination unit 30 determines a countermeasure to be executed from among a plurality of countermeasures extracted corresponding to the state of the production floor monitored by the state monitor unit 20.
  • the countermeasure to be executed out of the plurality of countermeasures corresponds to a first priority instruction, a second priority instruction, etc., which will be described later.
  • the countermeasure determination unit 30 determines a countermeasure to be executed based on a second condition for determining a countermeasure (for example, a first countermeasure or a second countermeasure to be described later) corresponding to a predetermined state.
  • the second condition is a learning model associated with a plurality of measures corresponding to a predetermined state and priority, including a priority set for each of the plurality of measures to be extracted.
  • the countermeasure determining unit 30 selects the first countermeasure to be executed from among the plurality of countermeasures based on the priority of each of the plurality of countermeasures extracted corresponding to the state of the production floor monitored by the state monitoring unit 20. Determine priority instructions.
  • the countermeasure determination unit 30 determines a countermeasure (that is, the first priority instruction) to be executed from among the plurality of countermeasures based on the priority of each of the plurality of countermeasures extracted corresponding to the predetermined state.
  • the countermeasure determination unit 30 uses operation information of production equipment acquired on the production floor, worker information working on the production floor, and material information used for the product. analyse. In the analysis, there are cases where countermeasures can be determined based only on the tendency of the predetermined state, and cases where the countermeasure cannot be determined based only on the tendency of the predetermined state.
  • the countermeasure determination unit 30 obtains operation information of production equipment acquired on the production floor for each production resource based on event information, information on workers working on the production floor, Also, by analyzing material information used in the product, executing a predetermined countermeasure and further analyzing trends before and after the execution of the predetermined countermeasure, it is possible to determine a countermeasure corresponding to the predetermined state. Also, the analysis may be performed using an analysis unit independent of the countermeasure determination unit 30 . Further, for example, the countermeasure determination unit 30 may change the state of the production floor after the execution of the first priority instruction to the state of the production floor before the execution of the first priority instruction, which is caused by the execution of the first priority instruction.
  • the countermeasure determination unit 30 updates the priority based on a learning model for updating the priority.
  • the second condition may be a data table containing priorities set for each of a plurality of countermeasures instead of the learning model.
  • the countermeasure determination unit 30 has a first countermeasure determination unit 31 and a second countermeasure determination unit 32 .
  • the first countermeasure determination unit 31 and the second countermeasure determination unit 32 each perform the operation of the countermeasure determination unit 30 described above.
  • the first countermeasure determining unit 31 determines a first countermeasure corresponding to the first state monitored by the first state monitoring unit 21. For example, the first countermeasure determining unit 31 executes a first countermeasure (that is, a first priority instruction) from among the plurality of countermeasures based on the respective priorities of the plurality of countermeasures extracted corresponding to the first state. to decide. For example, the first countermeasure determination unit 31 determines first countermeasures including countermeasures for improving the production index. Specifically, the first countermeasure determining unit 31 determines a first countermeasure for improving MTTR.
  • MTTR is an index indicating the maintainability of a system or equipment, and the shorter the MTTR, the higher the maintainability.
  • the first countermeasure determination unit 31 determines the first countermeasure based on the learning model 33 .
  • the learning model 33 is a learning model for determining the first countermeasure corresponding to the first state, and specifically, a learning model for updating the priority.
  • the learning model 33 is also a learning model (that is, the second condition) associated with multiple countermeasures and priorities corresponding to the predetermined state.
  • the second countermeasure determining unit 32 determines a second countermeasure corresponding to the second state monitored by the second state monitoring unit 22. For example, the second countermeasure determination unit 32 executes a second countermeasure (that is, a first priority instruction) from among the plurality of countermeasures based on the respective priorities of the plurality of countermeasures extracted corresponding to the first state. to decide. For example, the second countermeasure determination unit 32 determines countermeasures (maintenance/replacement) for production equipment and facility elements corresponding to the operation index, or second countermeasures including work availability and work training for workers corresponding to the work index. to decide. Specifically, the second countermeasure determination unit 32 determines a second countermeasure for improving MTBF.
  • a second countermeasure that is, a first priority instruction
  • the second countermeasure determination unit 32 determines the second countermeasure based on the learning model 34 .
  • the learning model 34 is a learning model for determining a second countermeasure corresponding to the second state, and more specifically, a learning model for updating the priority.
  • the learning model 34 is also a learning model (that is, the second condition) associated with multiple countermeasures and priorities corresponding to the predetermined state.
  • the second countermeasure determined here may be completed by notifying the second countermeasure to a maintenance plan creation device or worker management device provided separately from the production floor management system 1, or the second countermeasure may be completed. 2 It may be completed after receiving the execution result of countermeasures.
  • the countermeasure arbitration unit 40 arbitrates between the first countermeasure and the second countermeasure.
  • the reason why mediation between the first measure and the second measure is necessary will be explained in detail with reference to FIG.
  • the result of the mounting process for picking is associated with the substrate, component, worker, head, nozzle and feeder
  • the result of the mounting process for recognition is associated with the component, head and nozzle.
  • the first countermeasure includes countermeasures for substrates, parts, workers, heads, nozzles, or feeders, depending on the results of the production process.
  • the second countermeasures also include countermeasures for substrates, parts, workers, heads, nozzles, or feeders corresponding to the state of production resources.
  • the production resource targeted by the first measure and the production resource targeted by the second measure may overlap. If the production resources targeted by the first measure and the production resources targeted by the second measure overlap, it is difficult to implement both the first measure and the second measure at the same time. It is necessary to mediate with two countermeasures.
  • the countermeasure arbitration unit 40 selects the first countermeasure and the second countermeasure based on the problem level set in the first state corresponding to the first countermeasure and the problem level set in the second state corresponding to the second countermeasure. conduct mediation with Also, for example, the countermeasure arbitration unit 40 arbitrates between the first countermeasure and the second countermeasure based on the presence or absence of production resources required for the first countermeasure or the second countermeasure. The presence or absence of production resources is managed by the resource database 41 .
  • the instruction output unit 50 outputs the first priority instruction. Specifically, the instruction output unit 50 outputs the first countermeasure or the second countermeasure, which is the first priority instruction, according to the arbitration by the countermeasure arbitration unit 40 . For example, until the effect determination unit 60, which will be described later, determines the effect of the executed first priority instruction, the instruction output unit 50 determines the second priority instruction, which is determined from among the plurality of countermeasures, and has the priority after the first priority instruction. Do not output priority instructions. Further, for example, when the first priority instruction is executed, the effect determination unit 60 changes the state of the production floor after execution of the first priority instruction to the state of the production floor before execution of the first priority instruction.
  • the instruction output unit 50 does not output the second priority instruction before execution, which is extracted in relation to the state on the production floor corresponding to the first priority instruction. Further, for example, when the first priority instruction is executed, the effect determination unit 60 changes the state of the production floor after execution of the first priority instruction to the state of the production floor before execution of the first priority instruction. If it is determined that there is no improvement tendency as described above, the countermeasure determination unit 30 determines the second priority instruction to be executed based on the priority of each of the plurality of countermeasures excluding the first priority instruction, and the instruction output unit 50 outputs the second priority indication.
  • the countermeasure determination unit 30 determines the second priority to be executed based on the priority of each of the plurality of countermeasures excluding the first priority instruction. After determining the instruction, the instruction output unit 50 outputs the second priority instruction.
  • the instruction output unit 50 may output an instruction to a control unit of a production apparatus or a mobile terminal possessed by a worker, or through a production management apparatus that manages the production apparatus or a worker management apparatus that manages workers. Instructions may be output to production equipment and workers.
  • the effect determination unit 60 determines the effect of the executed countermeasure (instruction) based on the state of the production floor before and after the determined countermeasure (in other words, the output first priority instruction) was executed. Specifically, the effect determination unit 60 determines whether the first countermeasure or the second countermeasure corresponding to the output instruction is executed based on at least one of the first state and the second state before and after the first countermeasure or the second countermeasure is executed. Determine the effect of the countermeasure or the second countermeasure.
  • the update unit 70 updates the first and second conditions, that is, the learning models 23, 24, 33 and 34, based on the determined effects.
  • the details of the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70 will be described later.
  • FIG. 4 is a diagram schematically showing the flow of operations of the production floor management system 1 according to the embodiment.
  • the production floor management system 1 performs problem discovery by the state monitoring unit 20, determination of countermeasure policies by the countermeasure determination unit 30, arbitration by the countermeasure arbitration unit 40, and execution of countermeasures by the instruction output unit 50. These can be applied to so-called OODA loops, where problem finding corresponds to 'Observe', policy decision to 'Orient', mediation to 'Decide', and countermeasure execution to 'Action'. corresponds to
  • the monitoring of the first state by the first state monitoring unit 21 and the determination of the first countermeasure by the first countermeasure determining unit 31 are for improving the MTTR as described above.
  • a cycle of problem discovery by the unit 21, determination of a countermeasure policy by the first countermeasure determination unit 31, arbitration by the countermeasure arbitration unit 40, and countermeasure execution by the instruction output unit 50 is defined as an MTTR cycle.
  • the monitoring of the second state by the second state monitoring unit 22 and the determination of the second countermeasure by the second countermeasure determining unit 32 are for improving the MTBF as described above.
  • a cycle of problem discovery by the unit 22, determination of a countermeasure policy by the second countermeasure determination unit 32, arbitration by the countermeasure arbitration unit 40, and countermeasure execution by the instruction output unit 50 is defined as an MTBF cycle.
  • the monitoring of the first state by the first state monitoring unit 21 and the determination of the first countermeasure by the first countermeasure determining unit 31, the monitoring of the second state by the second state monitoring unit 22 and the second countermeasure determining unit 32 The determination of the second countermeasure by is carried out in parallel. For example, process guarantees can be achieved by the OODA loop from both MTBF and MTTR.
  • each process of the OODA loop, problem finding, policy decision, arbitration, and countermeasure execution maintains independence and is executed in parallel to minimize the waiting time between processes, enabling real-time control. can be realized. Details will be described later, but it is possible to implement countermeasures while changing the order of priority for the conditions on the production floor that change over time.
  • the first state is the production state of the production equipment and the second state is the production resource state
  • the present invention is not limited to this.
  • the first state may be the production state of the production device
  • the second state may be the production state of the production device different from the first state.
  • the first state may be the state of the production resource
  • the second state may be the state of the production resource different from the first state.
  • FIG. 4 shows an example in which the MTBF cycle and the MTTR cycle are performed in parallel, a plurality of MTBF cycles may be performed in parallel, or a plurality of MTTR cycles may be performed in parallel.
  • the countermeasure arbitration unit 40 may prioritize the first countermeasure over the second countermeasure.
  • the degree of problem which will be described below, the operation of the production equipment can be maintained by giving priority to the first countermeasure.
  • the phrase "there is no difference in the degree of problem" as used herein includes that the degree of problem is the same and that the difference in the degree of problem is within a predetermined difference.
  • FIG. 5 the details of the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70 will be described with reference to FIGS. 5 to 12.
  • FIG. 5 the details of the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70 will be described with reference to FIGS. 5 to 12.
  • FIG. 5 is a flow chart showing an example of the operation of the state monitoring section 20 according to the embodiment.
  • FIG. 5 shows problem finding (Observe) processing in the OODA loop.
  • the state monitoring unit 20 acquires monitoring data (step S11). Specifically, the first state monitoring unit 21 obtains monitoring data regarding the production state of the production equipment, and the second state monitoring unit 22 obtains monitoring data regarding the state of the production resource.
  • the state monitoring unit 20 reads the learning model (step S12). Specifically, the first state monitoring unit 21 reads the learning model 23 and the second state monitoring unit 22 reads the learning model 24 .
  • the learning model 23 is a first learning model for detecting a first predetermined state that occurs on the production floor corresponding to the production state of the production equipment, and is associated with a detection threshold corresponding to the production state of the production equipment.
  • the learning model 23 is input with acquired monitoring data, and the acquired monitoring data indicates production error information occurring in a production apparatus, production volume information of a product produced by the production apparatus, and It is learned to output a first predetermined state (for example, productivity, quality, or scrap) corresponding to a production index related to at least one piece of quality information of a product produced by the production apparatus.
  • a first predetermined state for example, productivity, quality, or scrap
  • productivity is increased and quality is decreased.
  • the learning policy is set to emphasize quality, learning is performed so that the detection threshold corresponding to productivity is loosened (decrease in productivity is less likely to be detected) based on the above effect. . Thereby, a detection threshold that balances productivity and quality is learned.
  • the learning model 24 is a second learning model for detecting a second predetermined state occurring on the production floor corresponding to the state of the production resource, and is associated with a detection threshold corresponding to the state of the production resource.
  • the learning model 24 is input with acquired monitoring data, so that the operating index related to the operating state of the production equipment included in the production resource indicated by the acquired monitoring data, or the worker included in the production resource is learned to output a second predetermined state (eg, deterioration of a production device or facility element, or an error in an operator's work, etc.) corresponding to a work index related to the work performed by the .
  • a second predetermined state eg, deterioration of a production device or facility element, or an error in an operator's work, etc.
  • the learning method (update method) of the learning model 24 will be described with a specific example.
  • a decrease in the flow rate of the nozzle is detected based on the detection threshold corresponding to the flow rate of the nozzle associated with the learning model 24, and a countermeasure to perform maintenance of the nozzle within one week is output.
  • the adsorption error rate worsens before maintenance is performed (before one week has passed) after countermeasures are output, and the output countermeasures are not effective.
  • the decrease in the flow rate of the nozzle was detected too late. learning is done in such a way that As a result, the detection threshold is learned so that maintenance can be performed at the optimum time.
  • the detection threshold corresponding to the flow rate of the nozzle is an example, and other detection thresholds may be set for the deviation of the tape stop position of the feeder, the deviation of the pickup position of the component sucked by the nozzle, or the deviation of the transfer position of the board. can also apply the above learning.
  • the state monitoring unit 20 determines whether or not a problem has been detected in the first predetermined state or the second predetermined state (step S13). For example, the first state monitoring unit 21 determines whether or not it is detected that the productivity is declining, the quality is declining, or the number of defective products is increasing. For example, the second state monitoring unit 22 determines whether or not it has detected that the production equipment is deteriorating, that the equipment elements are deteriorating, or that there is an error in the worker's work.
  • step S13 If no problem is detected (No in step S13), the process from step S11 is repeated until a problem is detected.
  • step S13 If a problem is detected (Yes in step S13), a countermeasure policy for the detected problem is determined.
  • FIG. 6 is a flow chart showing an example of the operation of the countermeasure determination unit 30 according to the embodiment.
  • FIG. 6 shows the processing of policy determination (Orient) in the OODA loop.
  • the countermeasure determination unit 30 analyzes the production resources (for example, production resources that can be the cause) for the problem detected by the state monitoring unit 20 (step S21). For example, when the first state monitoring unit 21 detects a problem that the productivity is declining in the mounting process of the mounting apparatus, the production resources that can cause the problem are substrates, parts, workers, heads, nozzles, and so on. and feeders (see FIG. 3). Also, for example, when the second state monitoring unit 22 detects a problem of nozzle deterioration, it analyzes that the nozzle is the production resource that can cause the problem.
  • the production resources for example, production resources that can be the cause the problem.
  • the countermeasure determination unit 30 reads the learning model (step S22). Specifically, the first countermeasure determination unit 31 reads the learning model 33 and the second countermeasure determination unit 32 reads the learning model 34 .
  • the learning model 33 is a learning model for determining the first countermeasure corresponding to the production state of the production equipment. Specifically, learning for updating the priority for determining the priority of the first countermeasure. is a model. For example, the learning model 33 is trained to output countermeasures for the detected problem as candidates by inputting the detected problem. If multiple candidates are output for the detected problem, multiple countermeasures are extracted corresponding to the multiple candidates. A learning method of the learning model 33 will be described later.
  • the learning model 34 is a learning model for determining the second countermeasure corresponding to the state of production resources, and specifically, a learning model for updating the priority for determining the priority of the second countermeasure. is.
  • the learning model 34 is trained to output countermeasures for the detected problem as candidates by inputting the detected problem. If multiple candidates are output for the detected problem, multiple countermeasures are extracted corresponding to the multiple candidates. A learning method of the learning model 34 will be described later.
  • the countermeasure determination unit 30 analyzes the priority for determining the priority of each of the multiple countermeasures (step S23). For example, when the learning models 33 and 34 output countermeasures for the detected problem as candidates, they are output in association with the priority of the countermeasures. Thereby, the countermeasure determination unit 30 can grasp the priority of each countermeasure.
  • the countermeasure determination unit 30 creates a countermeasure candidate list (step S24).
  • the countermeasure candidate list will be described with reference to FIG.
  • FIG. 7 is a table showing an example of a countermeasure candidate list according to the embodiment.
  • the learning model 33 outputs countermeasure candidates such as pickup position teaching, feeder replacement, and nozzle replacement, and also outputs a priority probability as the priority of each countermeasure candidate.
  • the countermeasure determination unit 30 can create a countermeasure candidate list as shown in FIG. In the countermeasure candidate list shown in FIG. 7, the pick-up position teaching has a priority probability of 60% as a countermeasure candidate, and has the highest priority among the countermeasure candidates for the problem of deterioration of the pick-up error rate. Note that if there are countermeasure candidates with the same priority probability, it may be determined based on past results (countermeasure success count, transition of priority probability, etc.).
  • the countermeasure determination unit 30 registers the countermeasure candidate with the highest priority in the created countermeasure candidate list in the priority countermeasure list as a countermeasure against the detected problem (step S25). For example, when the countermeasure candidate list shown in FIG. 7 is created, the countermeasure of suction position teaching is registered in the priority countermeasure list for the problem of deterioration of the suction error rate. For example, a plurality of countermeasures extracted corresponding to the state on the production floor when the problem of deterioration of the pick-up error rate is detected are pick-up position teaching, feeder replacement, and nozzle replacement.
  • the countermeasure determination unit 30 registers the countermeasure of suction position teaching in the priority countermeasure list, it is a first priority instruction to be executed from among the plurality of countermeasures based on the order of priority (priority) of each of the plurality of countermeasures. , means that the adsorption position teaching is determined.
  • acquisition of monitoring data is repeated at predetermined time intervals, and various problems can be detected. For example, one problem may be detected before the remedy for another problem is completed. For example, multiple problems with a first predetermined condition (e.g., productivity, quality, or work errors, etc.) may be detected. In this way, each time a problem is detected, a countermeasure candidate list for that problem is created, and the countermeasure with the highest priority for each countermeasure candidate list is added to the priority countermeasure list.
  • FIG. 8 shows an example of the priority countermeasure list.
  • FIG. 8 is a table showing an example of a priority countermeasure list according to the embodiment.
  • a countermeasure of suction position teaching is registered in the priority countermeasure list for the problem of deterioration of the suction error rate described above.
  • the countermeasure of cleaning is registered in the priority countermeasure list for the problem of feeder sliding failure.
  • the countermeasure of replacing the conveyor belt is registered in the priority countermeasure list for the problem of wear of the conveyor belt.
  • a problem level is set in advance as an index indicating the seriousness of the problem for the first predetermined state and the second predetermined state.
  • the problem of deterioration of the suction error rate can be said to be the problem of the first state (the production state of the production apparatus) when the problem is detected, so the problem level is set to the problem of deterioration of the suction error rate. can be said to be the degree of problem set in the first state when the problem is detected.
  • the problem of feeder sliding failure can be said to be a problem in the second state (the state of the production resource) when the problem is detected, so the problem level is set to the problem of feeder sliding failure. can be said to be the degree of problem set in the second state when the problem is detected.
  • FIG. 9 is a flow chart showing an example of the operation of the countermeasure arbitration unit 40 according to the embodiment.
  • FIG. 9 shows arbitration (Decide) processing in the OODA loop.
  • the countermeasure arbitration unit 40 reads the prioritized countermeasure list (step S31) and selects countermeasures with high priority (that is, degree of problem) (step S32). For example, when the read priority measure list is the list shown in FIG. 8, the measure arbitration unit 40 selects suction position teaching as a measure with a high priority.
  • the countermeasure arbitration unit 40 reads resource data (resource management table) from the resource database 41 (step S33).
  • the resource management table will be explained using FIG.
  • FIG. 10 is a table showing an example of a resource management table according to the embodiment.
  • the presence or absence of each production resource specifically, whether each production resource is currently taking some measures, or whether each production resource is currently taking any measures It is managed whether or not In FIG. 10, the presence or absence of production resources is indicated by locking on and off.
  • the resource management table shown in FIG. 10 manages the presence or absence of heads, nozzles, feeders, and workers A and B as production resources.
  • the head and feeder are currently under some kind of countermeasure and the lock is on.
  • the nozzle is currently unlocked as no countermeasures are being taken. Workers A and B are currently unlocked because they are not taking any countermeasures.
  • the lock referred to here may include either real space or virtual space, or both.
  • prohibiting removal from a production device until the lock is turned off for a feeder whose resources are locked means locking in the real space. Also, prohibiting the use of a feeder in which a resource is locked when creating or updating a production plan means locking in virtual space.
  • the countermeasure arbitration unit 40 determines whether or not the production resource is locked for the selected countermeasure (step S34). For example, it is assumed that the countermeasure mediation unit 40 selects suction position teaching. Also, for example, it is assumed that the suction position teaching is a countermeasure that the worker A takes. In this case, the countermeasure arbitration unit 40 confirms the lock state of worker A in the read resource management table.
  • step S34 If the production resource for the selected countermeasure is locked (Yes in step S34), the countermeasure arbitration unit 40 selects the countermeasure with the next highest priority (step S35), and performs the processing from step S33 again.
  • the countermeasure arbitration unit 40 locks the production resource for the selected countermeasure (step S36).
  • step S37 it is determined whether or not the production resources for all the measures included in the priority measure list are locked. If the production resources for all countermeasures are not locked (No in step S37), the process from step S32 is performed again except for the countermeasure selected this time. If the production resources for all the measures are locked (Yes in step S37), the selected high-priority measures among the measures in the prioritized measure list whose production resources were not locked are executed. will be
  • FIG. 11 is a flow chart showing an example of operations of the instruction output unit 50, the effect determination unit 60, and the updating unit 70 according to the embodiment.
  • FIG. 11 shows countermeasure execution (Action) in the OODA loop and processing after the countermeasure is executed.
  • a specific example 2 is a case where the countermeasure selected by the countermeasure arbitration unit 40 for the feeder sliding failure problem is cleaning, and the locked production resource is the feeder and the worker B.
  • the instruction output unit 50 executes a countermeasure for the production resource locked by the countermeasure arbitration unit 40 (step S41).
  • the instruction output unit 50 outputs a first countermeasure (for example, a first priority instruction) that causes the worker A to perform the pickup position teaching.
  • the instruction output unit 50 outputs a second countermeasure (for example, a first priority instruction) to have worker B clean the feeder. In this way, instructions corresponding to countermeasures are output and executed. Execution of instructions may be performed manually by an operator or the like, or may be performed automatically by a production device or the like.
  • the effect determination unit 60 acquires monitoring data (step S42). Specifically, the effect determination unit 60 acquires monitoring data regarding the production status of production equipment or monitoring data regarding the status of production resources.
  • the reason why the effect determination unit 60 acquires the monitoring data is to confirm the change in the state on the production floor due to the execution of the instruction according to the countermeasure, that is, to determine the effect of the instruction according to the executed countermeasure. is.
  • the effect determination unit 60 acquires monitoring data about the result of the mounting process regarding suction. That is, the effect determination unit 60 monitors the tendency of the error information related to the monitored nozzle as monitoring data.
  • the effect determination unit 60 acquires monitoring data about the state of the feeder.
  • the effect determination unit 60 monitors the tendency of the error information related to the monitored feeder as monitoring data. For example, the effect determination section 60 detects the first predetermined state or the second predetermined state using the learning model 23 or 24 in the same way as the state monitoring section 20 does.
  • the effect determination unit 60 determines whether or not a problem has been detected in the first predetermined state or the second predetermined state (step S43). When a problem is detected, it can be determined that there is no effect of the instructions according to the measures taken, or that the effects of the instructions according to the measures taken have not yet appeared, and the problem is detected. If not, it can be determined that the instruction was effective in accordance with the countermeasures taken.
  • the updating unit 70 updates the learning model 33 or 34 based on the determined effect (step S44). For example, in the case of Concrete Example 1, when the problem is no longer detected, the updating unit 70 determines that the suction position teaching was effective against the problem, and the priority of the suction position teaching is increased.
  • the learning model 33 is updated as follows. For example, in the case of Specific Example 2, when the problem is no longer detected, the updating unit 70 determines that cleaning was effective against the problem, and sets the learning model so that cleaning has a higher priority. Update 34.
  • the effect determination unit 60 unlocks the production resource that was locked when executing the instruction of this time (step S45). For example, in the case of the specific example 1, the locked worker A is unlocked. For example, in the case of the specific example 2, the locked operator B and the feeder are unlocked.
  • the effect determination unit 60 deletes the measures that have been executed according to this instruction from the prioritized measures list (step S46). For example, in the case of specific example 1, the pickup position teaching is deleted from the priority countermeasure list. For example, in the case of specific example 2, cleaning is deleted from the priority measure list.
  • the effect determination unit 60 deletes the countermeasure candidate list for the problem that is no longer detected by this instruction (step S47). For example, in the case of Specific Example 1, the problem of deterioration of the suction error rate is no longer detected, and countermeasures for this problem are unnecessary, so the countermeasure candidate list shown in FIG. 7 is deleted. Deletion of the countermeasure candidate list means that the effect determination unit 60 determines that the first priority instruction (instruction to teach the pickup position) is executed, and the state (suction error rate) before execution of the instruction to teach the pickup position.
  • the instruction output unit 50 When it is determined that the suction error rate after execution of the suction position teaching instruction is improved by a predetermined amount or more, the instruction output unit 50 outputs the extracted suction error rate corresponding to the suction position teaching instruction. , means that the second priority instruction (instruction of feeder replacement or nozzle replacement) before execution is not output.
  • the effect determination unit 60 may also determine whether a problem presented in the prioritized countermeasure list continues in addition to the problem for which countermeasures have been taken. The effect determination unit 60 may delete the prioritized countermeasure list for problems for which no problems are detected other than the problems for which countermeasures have been taken. Some of the problems detected are relevant and efficient countermeasures can be taken against such problems.
  • step S48 determines whether or not timeout has occurred. In other words, the effect determination unit 60 determines whether or not the effect cannot be determined for a predetermined period of time. Since it may take some time for the effect to appear after the instruction is executed, the process in step S48 is performed. For the predetermined period, for example, the time required for harvesting the effect is set for each instruction. In addition, such as measures added to the production plan and maintenance plan, by creating a plan that does not take immediate action, the production resource is unlocked and the effect judgment is executed. may be done after
  • step S48 If the timeout has not occurred (No in step S48), the processes in steps S42, S43, and S48 are repeated until the problem is no longer detected or the timeout occurs.
  • the update unit 70 updates the learning model 33 or 34 based on the determined effect (step S49). For example, in the case of Concrete Example 1, if a timeout occurs while a problem is being detected, the updating unit 70 determines that the suction position teaching was not effective against the problem, and the priority of the suction position teaching is set to Update the learning model 33 so that it becomes lower. For example, in the case of Concrete Example 2, if a timeout occurs while a problem is detected, the updating unit 70 determines that cleaning was not effective against the problem, and lowers the priority of cleaning. Update the learning model 34. In addition, when a problem is detected but there is an improvement in the trend of the monitoring data (there is an improvement trend below a predetermined level), the updating unit 70 updates the learning model 34 so that the degree of priority decrease is small. to update.
  • the effect determination unit 60 unlocks the production resources that were locked when executing the current instruction (step S50). For example, in the case of the specific example 1, the locked worker A is unlocked. For example, in the case of the specific example 2, the locked operator B and the feeder are unlocked.
  • the effect determination unit 60 deletes the countermeasures that have been executed according to this instruction from the priority countermeasure list (step S51). For example, in the case of specific example 1, the pickup position teaching is deleted from the priority countermeasure list. For example, in the case of specific example 2, cleaning is deleted from the priority measure list.
  • the effect determination unit 60 updates the countermeasure candidate list for problems that remain detected even after the current instruction is executed (step S52).
  • updating of the countermeasure candidate list in the case of specific example 1 will be described with reference to FIG. 12 .
  • FIG. 12 is a table showing an example of the updated countermeasure candidate list according to the embodiment.
  • the effect determination unit 60 may analyze the priority and update the priority in the countermeasure candidate list. For example, in the countermeasure candidate list shown in FIG. 7, the ratio of priority (priority probability) between feeder replacement and nozzle exchange is 3:1, but in the countermeasure candidate list shown in FIG. I know it's changing.
  • the effect determination unit 60 registers the highest-priority measure candidate in the created measure candidate list in the priority measure list as a measure against the detected problem (step S53). For example, when the countermeasure candidate list shown in FIG. 12 is created, a countermeasure of exchanging nozzles is registered in the priority countermeasure list for the problem of deterioration of the suction error rate. In other words, an instruction to replace the nozzle can be output in response to the problem that the suction error rate continues to deteriorate even after the suction position teaching is performed.
  • step S50 the operations after step S50 are not executed until the effect determination unit 60 determines the effect of the executed first priority instruction (suction position teaching). , feeder exchange and nozzle exchange), and the second priority instruction (feeder exchange or nozzle exchange) after the pickup position teach instruction is not output. This is because the instruction to replace the nozzle is output after it is determined that the suction position teaching is ineffective.
  • the effect determination unit 60 determines that the state (suction error rate) before execution of the suction position teaching is compared with the state (suction error rate) after the execution of the suction position teaching due to the execution of the first priority instruction (suction position teaching).
  • the countermeasure determination unit 30 determines the first countermeasure to be executed based on the priority of each of the plurality of countermeasures (feeder replacement and nozzle replacement) excluding the suction position teaching. This means that the 2nd priority instruction (nozzle replacement) is determined, and the instruction output unit 50 outputs the nozzle replacement instruction. This is because instructions to replace nozzles are output with priorities after the suction position teaching, which has the highest priority.
  • the countermeasure determination unit 30 selects a plurality of countermeasures (feeder exchange instruction and nozzle exchange instruction) excluding the first priority instruction (suction position teaching). ), the second priority instruction (nozzle replacement) to be executed is determined, and the instruction output unit 50 outputs the nozzle replacement instruction. This is because, after the time-out, an instruction to replace the nozzle with the highest priority among the plurality of countermeasures excluding the suction position teaching is output.
  • step S13 after a problem is detected by the status monitoring unit 20 and a high-priority countermeasure is registered in the priority countermeasure list from the countermeasure candidate list for the problem, the registered countermeasure may have a low priority.
  • the registered countermeasures may not be executed easily because the production resources for the registered countermeasures have already been locked.
  • the previously executed countermeasures for other problems may solve the problems corresponding to the unexecuted countermeasures.
  • it may be deleted from the priority countermeasure list and the countermeasure candidate list may also be deleted.
  • the first and second countermeasures are determined to deal with the different first and second conditions on the production floor, and the first and second countermeasures are arbitrated. By doing so, it is possible to output the optimum first or second countermeasure. In this way, according to the production floor management system 1 of the present disclosure, it is possible to output the optimum work instructions from a plurality of coping methods.
  • the production floor management system 1 includes the effect determination unit 60, the update unit 70, and the learning models 23, 34, 33, and 34, but it does not have to.
  • the first state is the production state of the production equipment and the second state is the production resource state, but the present invention is not limited to this.
  • the first state and the second state are not particularly limited as long as they are different states on the production floor.
  • the production floor management system 1 includes the acquisition unit 10, the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70. , some of which may be included in the production equipment.
  • a production device may include the acquisition unit 10 , the state monitoring unit 20 , and the countermeasure determination unit 30 .
  • instructions according to countermeasures may consist of multiple instructions.
  • instructions corresponding to countermeasures may be output to a plurality of production apparatuses or mobile terminals possessed by a plurality of workers.
  • the present disclosure can be realized not only as the production floor management system 1, but also as a work instruction method including steps (processes) performed by each component constituting the production floor management system 1.
  • FIG. 13 is a flow chart showing an example of a work instruction method according to another embodiment.
  • the work instruction method is a work instruction method in a production floor management system that manages the state of a production floor equipped with production equipment that produces products, and as shown in FIG. 13, the first state of the production floor is monitored.
  • Step S1 a second state different from the first state on the production floor is monitored (Step S2), a first countermeasure corresponding to the first state is determined (Step S3), and a second countermeasure corresponding to the second state is determined (Step S3).
  • Two countermeasures are determined (step S4), the first countermeasure and the second countermeasure are arbitrated (step S5), and an instruction corresponding to the first countermeasure or the second countermeasure is output according to the arbitration (step S6). include.
  • the steps in the work instruction method may be executed by a computer (computer system).
  • the present disclosure can be realized as a program for causing a computer to execute the steps included in the work instruction method.
  • the present disclosure can be implemented as a non-temporary computer-readable recording medium such as a CD-ROM recording the program.
  • each step is executed by executing the program using hardware resources such as the CPU, memory, and input/output circuits of the computer. . That is, each step is executed by the CPU acquiring data from a memory, an input/output circuit, or the like, performing an operation, or outputting the operation result to the memory, an input/output circuit, or the like.
  • each component included in the production floor management system 1 of the above embodiment may be realized as a dedicated or general-purpose circuit.
  • each component included in the production floor management system 1 of the above embodiment may be implemented as an LSI (Large Scale Integration), which is an integrated circuit (IC).
  • LSI Large Scale Integration
  • IC integrated circuit
  • the integrated circuit is not limited to an LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor capable of reconfiguring connections and settings of circuit cells inside the LSI may be used.
  • the present disclosure can be used, for example, for managing production floors.

Abstract

A production floor management system (1) manages conditions on a production floor provided with production equipment for producing products, said system comprising: a first condition monitoring unit (21) for monitoring a first condition on the production floor; a first countermeasure setting unit (31) for setting a first countermeasure corresponding to the first condition; a second condition monitoring unit (22) for monitoring a second condition, which differs from the first condition, on the production floor; a second countermeasure setting unit (32) for setting a second countermeasure corresponding to the second condition; a countermeasure mediation unit (40) that performs mediation between the first countermeasure and the second countermeasure; and an instruction output unit (50) that, in accordance with said mediation, outputs instructions corresponding to the first countermeasure or the second countermeasure.

Description

生産フロア管理システム、作業指示方法および作業指示プログラムProduction floor management system, work instruction method and work instruction program
 本開示は、生産物を生産する生産装置を備える生産フロアにおける状態を管理する生産フロア管理システム、当該システムにおける作業指示方法および作業指示プログラムに関する。 The present disclosure relates to a production floor management system that manages the state of a production floor equipped with production equipment that produces products, a work instruction method, and a work instruction program in the system.
 従来、生産装置に問題が発生した際に、その問題に対する対処方法を更新しながら、対処方法に応じた作業指示を出力する技術が開示されている(例えば特許文献1)。 Conventionally, when a problem occurs in a production device, a technique has been disclosed that outputs work instructions according to the method of coping while updating the method of coping with the problem (for example, Patent Document 1).
国際公開第2018/142604号WO2018/142604
 しかしながら、生産装置では複数の問題が発生する場合があり、上記特許文献1に開示された技術では、そのような場合に、複数の対処方法から最適な作業指示を出力することは難しい。 However, multiple problems may occur in production equipment, and with the technology disclosed in Patent Document 1, it is difficult to output optimal work instructions from multiple coping methods in such cases.
 そこで、本開示は、複数の対処方法から最適な作業指示を出力することができる生産フロア管理システム等を提供する。 Therefore, the present disclosure provides a production floor management system and the like that can output optimal work instructions from a plurality of coping methods.
 本開示の一態様に係る生産フロア管理システムは、生産物を生産する生産装置を備える生産フロアにおける状態を管理する生産フロア管理システムであって、前記生産フロアにおける第1状態を監視する第1状態監視部と、前記第1状態に対応した第1対策を決定する第1対策決定部と、前記生産フロアにおける、前記第1状態とは異なる第2状態を監視する第2状態監視部と、前記第2状態に対応した第2対策を決定する第2対策決定部と、前記第1対策と前記第2対策との調停を行う対策調停部と、前記調停に従って、前記第1対策または前記第2対策に対応した指示を出力する指示出力部と、を備える。 A production floor management system according to one aspect of the present disclosure is a production floor management system that manages a state on a production floor that includes production equipment that produces a product, the first state monitoring a first state on the production floor. a monitoring unit, a first countermeasure determining unit that determines a first countermeasure corresponding to the first state, a second state monitoring unit that monitors a second state different from the first state on the production floor, and a second countermeasure determination unit that determines a second countermeasure corresponding to a second state; a countermeasure mediation unit that mediates between the first countermeasure and the second countermeasure; and an instruction output unit that outputs an instruction corresponding to the countermeasure.
 なお、これらの包括的または具体的な側面は、システム、装置、方法、記録媒体、または、コンピュータプログラムで実現されてもよく、システム、装置、方法、記録媒体、および、コンピュータプログラムの任意な組み合わせで実現されてもよい。 It should be noted that these general or specific aspects may be realized by systems, devices, methods, recording media, or computer programs, and any combination of systems, devices, methods, recording media, and computer programs. may be implemented with
 本開示に係る生産フロア管理システム等によれば、複数の対処方法から最適な作業指示を出力することができる。 According to the production floor management system and the like according to the present disclosure, it is possible to output optimal work instructions from multiple coping methods.
図1は、実施の形態に係る生産フロア管理システムが適用される実装ラインを示す図である。FIG. 1 is a diagram showing a mounting line to which a production floor management system according to an embodiment is applied. 図2は、実施の形態に係る生産フロア管理システムの一例を示す構成図である。FIG. 2 is a configuration diagram showing an example of the production floor management system according to the embodiment. 図3は、実施の形態に係る状態監視部の監視対象の一例を示す図である。FIG. 3 is a diagram illustrating an example of a monitoring target of a state monitoring unit according to the embodiment; 図4は、実施の形態に係る生産フロア管理システムの動作の流れを模式的に示す図である。FIG. 4 is a diagram schematically showing the flow of operations of the production floor management system according to the embodiment. 図5は、実施の形態に係る状態監視部の動作の一例を示すフローチャートである。5 is a flowchart illustrating an example of the operation of the state monitoring unit according to the embodiment; FIG. 図6は、実施の形態に係る対策決定部の動作の一例を示すフローチャートである。6 is a flowchart illustrating an example of an operation of a countermeasure determination unit according to the embodiment; FIG. 図7は、実施の形態に係る対策候補リストの一例を示す表である。FIG. 7 is a table showing an example of a countermeasure candidate list according to the embodiment. 図8は、実施の形態に係る優先対策リストの一例を示す表である。FIG. 8 is a table showing an example of a priority countermeasure list according to the embodiment; 図9は、実施の形態に係る対策調停部の動作の一例を示すフローチャートである。9 is a flowchart illustrating an example of the operation of a countermeasure mediation unit according to the embodiment; FIG. 図10は、実施の形態に係るリソース管理テーブルの一例を示す表である。FIG. 10 is a table showing an example of a resource management table according to the embodiment. 図11は、実施の形態に係る指示出力部、効果判定部および更新部の動作の一例を示すフローチャートである。11 is a flowchart illustrating an example of operations of an instruction output unit, an effect determination unit, and an update unit according to the embodiment; FIG. 図12は、実施の形態に係る、更新後の対策候補リストの一例を示す表である。FIG. 12 is a table showing an example of an updated countermeasure candidate list according to the embodiment. 図13は、その他の実施の形態に係る作業指示方法の一例を示すフローチャートである。FIG. 13 is a flow chart showing an example of a work instruction method according to another embodiment.
 本開示の生産フロア管理システムは、生産物を生産する生産装置を備える生産フロアにおける状態を管理する生産フロア管理システムであって、前記生産フロアにおける第1状態を監視する第1状態監視部と、前記第1状態に対応した第1対策を決定する第1対策決定部と、前記生産フロアにおける、前記第1状態とは異なる第2状態を監視する第2状態監視部と、前記第2状態に対応した第2対策を決定する第2対策決定部と、前記第1対策と前記第2対策との調停を行う対策調停部と、前記調停に従って、前記第1対策または前記第2対策に対応した指示を出力する指示出力部と、を備える。 A production floor management system of the present disclosure is a production floor management system that manages the state of a production floor that includes production equipment that produces a product, the system comprising: a first state monitoring unit that monitors a first state of the production floor; a first countermeasure determination unit that determines a first countermeasure corresponding to the first state; a second state monitoring unit that monitors a second state different from the first state on the production floor; a second countermeasure determination unit that determines a corresponding second countermeasure; a countermeasure arbitration unit that arbitrates between the first countermeasure and the second countermeasure; and an instruction output unit that outputs an instruction.
 これによれば、生産フロアにおける異なる第1状態および第2状態に対する対処を行わせるための第1対策および第2対策が決定されるが、第1対策と第2対策との調停が行われることで、最適な第1対策または第2対策に対応した指示を出力することができる。このように、本開示の生産フロア管理システムによれば、複数の対処方法から最適な作業指示を出力することができる。 According to this, a first measure and a second measure are determined for dealing with different first and second situations on the production floor, but the first measure and the second measure are arbitrated. , an instruction corresponding to the optimum first or second countermeasure can be output. In this way, according to the production floor management system of the present disclosure, it is possible to output optimum work instructions from a plurality of coping methods.
 また、前記第1状態監視部による前記第1状態の監視および前記第1対策決定部による前記第1対策の決定と、前記第2状態監視部による前記第2状態の監視および前記第2対策決定部による前記第2対策の決定とは、並行して行われてもよい。 The first state monitoring unit monitors the first state and the first countermeasure determining unit determines the first countermeasure, and the second state monitoring unit monitors the second state and determines the second countermeasure. The determination of the second countermeasure by the department may be performed in parallel.
 例えば、並行して第1状態および第2状態が監視されたときに決定された第1対策と第2対策とは、両立させることが難しい対策である場合があるが、本開示では、第1対策と第2対策との調停が行われるため、最適な第1対策または第2対策に対応した指示を出力することができる。また、第1対策と第2対策とが両立させることができる対策である場合には、調停を行わずに、並行して第1対策および第2対策に対応した指示を出力することができ、効率的に対処を行うことができる。 For example, the first countermeasure and the second countermeasure determined when the first state and the second state are monitored in parallel may be countermeasures that are difficult to make compatible, but in the present disclosure, the first Since the countermeasure and the second countermeasure are arbitrated, an instruction corresponding to the optimum first countermeasure or second countermeasure can be output. Further, when the first measure and the second measure are measures that can be compatible, it is possible to output instructions corresponding to the first measure and the second measure in parallel without performing arbitration, Efficient countermeasures can be taken.
 また、前記対策調停部は、前記第1対策に対応する前記第1状態に設定される問題度と前記第2対策に対応する前記第2状態に設定される問題度に基づいて、前記調停を行ってもよい。 Further, the countermeasure arbitration unit performs the arbitration based on the degree of problem set in the first state corresponding to the first countermeasure and the degree of problem set in the second state corresponding to the second countermeasure. you can go
 これによれば、問題度の高い状態に対応する対策を優先的に出力することができる。 According to this, it is possible to preferentially output countermeasures for high-problem situations.
 また、前記対策調停部は、前記第1対策に対応する前記第1状態に設定される問題度と前記第2対策に対応する前記第2状態に設定される問題度に差がない場合に前記第1対策を優先して前記調停を行ってもよい。 Further, if there is no difference between the problem level set in the first state corresponding to the first countermeasure and the problem level set in the second state corresponding to the second countermeasure, the countermeasure arbitration unit The arbitration may be performed with priority given to the first countermeasure.
 これによれば、問題度に差がない場合に第1対策を優先することで生産装置の稼働を維持することができる。 According to this, it is possible to maintain the operation of production equipment by prioritizing the first measure when there is no difference in the degree of problem.
 また、生産フロア管理システムは、出力された指示に対応する前記第1対策または前記第2対策が実行された前後の前記第1状態および前記第2状態の少なくとも一方に基づいて、実行された前記第1対策または前記第2対策の効果を判定する効果判定部をさらに備えてもよい。 In addition, the production floor management system determines whether the first countermeasure or the second countermeasure corresponding to the output instruction is executed based on at least one of the first state and the second state before and after the execution of the second countermeasure. An effect determination unit that determines the effect of the first countermeasure or the second countermeasure may be further provided.
 これによれば、実行された対策の効果が判定されることで、生産フロアにおける状態に対応して決定された対策が適切であったか等を検証することができ、今後の対策の改善に役立てることができる。 According to this, by judging the effect of the implemented countermeasures, it is possible to verify whether the countermeasures determined in response to the conditions on the production floor were appropriate, etc., which can be used to improve future countermeasures. can be done.
 また、前記第1状態は、前記生産装置の生産状態であってもよく、前記第2状態は、前記生産フロアで管理され、生産に用いられる生産リソースの状態であってもよい。 Also, the first state may be the production state of the production equipment, and the second state may be the state of production resources managed on the production floor and used for production.
 例えば、生産装置の生産状態が監視され、生産状態に対応した第1対策が出力されることで、MTTR(Mean Time To Repair)を改善することができる。例えば、生産状態の監視の結果、生産状態に問題があることが検出された場合(例えば、生産性もしくは品質が悪い場合または仕損がある場合等)、第1対策は、生産状態の問題を解決するための対策となるため、第1対策に応じた対処がなされることで、MTTRが改善し得る。 For example, MTTR (Mean Time To Repair) can be improved by monitoring the production status of production equipment and outputting a first countermeasure corresponding to the production status. For example, as a result of monitoring the production status, if it is detected that there is a problem in the production status (for example, if productivity or quality is poor, or if there is a defect, etc.), the first countermeasure is to solve the problem of the production status. Since this is a countermeasure for solving the problem, the MTTR can be improved by taking a countermeasure according to the first countermeasure.
 また、例えば、生産リソースの状態が監視され、生産リソースの状態に対応した第2対策が出力されることで、MTBF(Mean Time Between Failure)を改善することができる。例えば、リソースの状態の監視の結果、リソースの状態に問題があることが検出された場合(例えば、生産装置もしくは設備要素が劣化している場合または作業者の作業に誤りがある場合等)、第2対策は、生産リソースの状態の問題を解決するための対策となる。例えば、生産リソースの状態の問題を解決せずに放置していると、生産状態に問題が発生し得るため、第2対策に応じた対処がなされることで、MTBFが改善し得る。言い換えると、生産状態の問題の発生を未然に防止し得る。 Also, for example, by monitoring the state of production resources and outputting a second countermeasure corresponding to the state of production resources, MTBF (Mean Time Between Failure) can be improved. For example, if it is detected that there is a problem in the state of the resource as a result of monitoring the state of the resource (for example, if a production device or facility element is degraded, or if there is an error in the worker's work, etc.), The second measure is to solve the problem of production resource status. For example, if the problem of the status of production resources is left unsolved, a problem may occur in the production status. Therefore, the MTBF can be improved by taking measures according to the second measure. In other words, it is possible to prevent the occurrence of production problems.
 また、前記対策調停部は、前記第1対策または前記第2対策に必要な前記生産リソースの有無に基づいて、前記調停を行ってもよい。 Further, the countermeasure arbitration unit may perform the arbitration based on the presence or absence of the production resources required for the first countermeasure or the second countermeasure.
 例えば、生産状態の問題を解決するための第1対策、および、生産リソースの状態の問題を解決するための第2対策は、それぞれ生産リソースに関わる対策となる場合が多く、生産リソースがすでに使用されている場合、第1対策または第2対策に対応した指示が出力されても、出力された指示に対処することが難しい。これに対して、本態様では、生産リソースの有無に基づいて調停が行われるため、生産リソースの有無に応じて、最適な第1対策または第2対策に対応した指示を出力することができる。 For example, the first measure to solve the problem of production status and the second measure to solve the problem of production resource status are often measures related to production resources, and the production resources are already in use. In this case, even if an instruction corresponding to the first countermeasure or the second countermeasure is output, it is difficult to deal with the output instruction. On the other hand, in this aspect, since arbitration is performed based on the presence or absence of production resources, it is possible to output an instruction corresponding to the optimum first or second countermeasure depending on the presence or absence of production resources.
 また、前記生産フロア管理システムは、前記生産状態に対応して前記生産フロアで生じる第1所定状態を検出するための第1学習モデルをさらに備え、前記第1状態監視部は、前記第1学習モデルに基づいて前記第1所定状態を検出してもよい。具体的には、前記第1状態監視部は、所定期間内において、前記生産装置で発生した生産ミス情報、前記生産装置で生産した生産物の生産量情報、および、前記生産装置で生産した生産物の良否情報の少なくともひとつに関する生産指標に対応する前記第1所定状態を検出し、前記第1対策決定部は、前記生産指標を改善する対策を含む前記第1対策を決定してもよい。 Further, the production floor management system further includes a first learning model for detecting a first predetermined state occurring on the production floor corresponding to the production state, and the first state monitoring unit performs the first learning model. The first predetermined state may be detected based on a model. Specifically, the first state monitoring unit collects, within a predetermined period, production error information that has occurred in the production apparatus, production volume information of the product produced by the production apparatus, and production error information produced by the production apparatus. The first predetermined state corresponding to a production index related to at least one item of quality information may be detected, and the first countermeasure determination unit may determine the first countermeasure including countermeasures for improving the production index.
 このように、第1学習モデルを用いることで、第1所定状態を効果的に検出することができる。 Thus, by using the first learning model, it is possible to effectively detect the first predetermined state.
 また、前記生産フロア管理システムは、前記生産リソースの状態に対応して前記生産フロアで生じる第2所定状態を検出するための第2学習モデルをさらに備え、前記第2状態監視部は、前記第2学習モデルに基づいて前記第2所定状態を検出してもよい。具体的には、前記第2状態監視部は、前記生産リソースに含まれる前記生産装置の稼働状態に関する稼動指標に対応する前記第2所定状態を検出し、前記第2対策決定部は、前記稼動指標に対応する前記生産装置に対する対策を含む前記第2対策を決定してもよい。また、具体的には、前記第2状態監視部は、前記生産リソースに含まれる作業者が実施した作業に関する作業指標に対応する前記第2所定状態を検出し、前記第2対策決定部は、前記作業指標に対応する前記作業者の作業を含む前記第2対策を決定してもよい。 The production floor management system further includes a second learning model for detecting a second predetermined state occurring on the production floor corresponding to the state of the production resource, and The second predetermined state may be detected based on two learning models. Specifically, the second state monitoring unit detects the second predetermined state corresponding to an operation index related to the operating state of the production equipment included in the production resource, and the second countermeasure determination unit detects the operation The second countermeasure including countermeasures for the production equipment corresponding to the index may be determined. Specifically, the second state monitoring unit detects the second predetermined state corresponding to the work index related to the work performed by the worker included in the production resource, and the second countermeasure determination unit The second countermeasure including work of the worker corresponding to the work index may be determined.
 このように、第2学習モデルを用いることで、第2所定状態を効果的に検出することができる。 Thus, by using the second learning model, the second predetermined state can be effectively detected.
 本開示の作業指示方法は、生産物を生産する生産装置を備える生産フロアにおける状態を管理する生産フロア管理システムにおける作業指示方法であって、前記生産フロアにおける第1状態を監視し、前記生産フロアにおける、前記第1状態とは異なる第2状態を監視し、前記第1状態に対応した第1対策を決定し、前記第2状態に対応した第2対策を決定し、前記第1対策と前記第2対策との調停を行い、前記調停に従って、前記第1対策または前記第2対策に対応した指示を出力することを含む。 A work instruction method of the present disclosure is a work instruction method in a production floor management system that manages the state of a production floor provided with production equipment that produces a product, the method monitors a first state on the production floor, , monitoring a second state different from the first state, determining a first countermeasure corresponding to the first state, determining a second countermeasure corresponding to the second state, and determining the first countermeasure and the Arbitrating with a second countermeasure, and outputting an instruction corresponding to the first countermeasure or the second countermeasure according to the arbitration.
 これによれば、複数の対処方法から最適な作業指示を出力することができる作業指示方法を提供できる。 According to this, it is possible to provide a work instruction method that can output the optimum work instruction from multiple coping methods.
 本開示の作業指示プログラムは、上記の作業指示方法をコンピュータにより実行させる作業指示プログラムである。 The work instruction program of the present disclosure is a work instruction program that causes a computer to execute the work instruction method described above.
 これによれば、複数の対処方法から最適な作業指示を出力することができる作業指示プログラムを提供できる。 According to this, it is possible to provide a work instruction program that can output optimal work instructions from multiple coping methods.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。 It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure.
 (実施の形態)
 以下、図1から図12を用いて実施の形態について説明する。
(Embodiment)
An embodiment will be described below with reference to FIGS. 1 to 12. FIG.
 図1は、実施の形態に係る生産フロア管理システム1が適用される実装ライン4を示す図である。 FIG. 1 is a diagram showing a mounting line 4 to which the production floor management system 1 according to the embodiment is applied.
 図1に示すように、実装ライン4には、生産物を生産する生産装置が複数備えられている。 As shown in FIG. 1, the mounting line 4 is equipped with a plurality of production devices that produce products.
 実装ライン4は、基板に部品(電子部品)を実装して生産物(例えば、実装基板)を生産する機能を有しており、実装対象の基板をそれぞれ供給、受渡し、および、回収する機能を有している。 The mounting line 4 has a function of mounting a component (electronic component) on a substrate to produce a product (for example, a mounting substrate), and has a function of supplying, delivering, and retrieving the substrate to be mounted. have.
 具体的には、実装ライン4では、基板供給装置M1と、基板受渡装置M2と、印刷装置M3と、実装装置M4、M5と、リフロー装置M6と、基板回収装置M7とが、この並び順で直列に連結されている。基板供給装置M1から基板回収装置M7までの各装置は、通信ネットワーク2を介して管理装置5に接続されている。 Specifically, in the mounting line 4, the substrate supply device M1, the substrate transfer device M2, the printer M3, the mounting devices M4 and M5, the reflow device M6, and the substrate recovery device M7 are arranged in this order. connected in series. Each device from the substrate supply device M1 to the substrate recovery device M7 is connected to the management device 5 via the communication network 2. FIG.
 例えば、半田印刷装置M3、部品実装装置M4、M5およびリフロー装置M6は、実装ライン4に沿って搬送される基板に対して部品を実装するための部品実装作業を行う。すなわち、基板供給装置M1によって供給された基板は、基板受渡装置M2を介して印刷装置M3に搬入される。印刷装置M3は、搬入された基板に対して、部品接合用の半田をスクリーン印刷する半田印刷作業を行う。 For example, the solder printing device M3, the component mounting devices M4 and M5, and the reflow device M6 perform component mounting work for mounting components on the board conveyed along the mounting line 4. That is, the substrate supplied by the substrate supply device M1 is carried into the printer M3 via the substrate transfer device M2. The printer M3 performs a solder printing operation of screen-printing solder for joining components to the board that has been carried in.
 半田印刷された基板は、実装装置M4、M5に順次受渡される。実装装置M4、M5は、半田印刷後の基板に対して部品を実装する部品実装作業を実行する。 The solder-printed boards are sequentially delivered to the mounting devices M4 and M5. The mounting apparatuses M4 and M5 perform a component mounting operation for mounting components on the substrate after solder printing.
 部品実装装置M4、M5は、基台、基板搬送部、部品供給装置、および、実装ヘッド等を備えている。基台には、基板が配置される。基板搬送部は、上流側装置から受け渡された基板を下流側装置へ搬送することができる。部品供給装置は、実装ヘッドに対して部品を供給することができる。部品供給装置には、実装ヘッドに対して部品を供給するための複数のテープフィーダが設けられている。実装ヘッドは、テープフィーダから部品を吸着して取り出し、基板の上方に移動して部品を基板の実装位置に搭載することができる。実装ヘッドには、部品を吸着して保持し個別に昇降可能な吸着ノズルが装着されている。このような部品実装装置M4、M5により、部品実装作業が実行される。 The component mounting apparatuses M4 and M5 are equipped with a base, a board transfer section, a component supply device, a mounting head, and the like. A substrate is arranged on the base. The substrate transfer section can transfer a substrate transferred from an upstream device to a downstream device. The component supply device can supply components to the mounting head. A component supply device is provided with a plurality of tape feeders for supplying components to the mounting head. The mounting head can pick up the component from the tape feeder by suction, move it above the board, and mount the component at the mounting position on the board. The mounting head is equipped with suction nozzles that suction and hold components and that can move up and down individually. Component mounting work is performed by such component mounting apparatuses M4 and M5.
 そして、部品実装後の基板は、リフロー装置M6に搬入され、所定の加熱プロファイルに従って加熱される。これにより、加熱された基板に印刷されている部品接合用の半田が溶融固化する。こうして部品が基板に半田接合されることで、基板に部品を実装した実装基板が完成する。完成した実装基板は、基板回収装置M7に回収される。 Then, the board after component mounting is carried into the reflow device M6 and heated according to a predetermined heating profile. As a result, the solder for joining components printed on the heated substrate is melted and solidified. By soldering the component to the board in this manner, a mounting board having the component mounted on the board is completed. The completed mounting substrate is recovered by the substrate recovery device M7.
 次に、生産フロアシステム1の構成について図2を用いて説明する。 Next, the configuration of the production floor system 1 will be explained using FIG.
 図2は、実施の形態に係る生産フロア管理システム1の一例を示す構成図である。 FIG. 2 is a configuration diagram showing an example of the production floor management system 1 according to the embodiment.
 生産フロア管理システム1は、生産物を生産する生産装置を備える生産フロアにおける状態を管理するシステムである。生産フロアには、例えば、実装ライン4、在庫倉庫、準備エリアおよびメンテナンスエリア等が含まれる。実装ライン4には、上述したように、実装装置M4、M5および印刷装置M3等の生産装置や検査装置が配置される。在庫倉庫には、部品、はんだ、スクリーンマスク等の材料が保管される。準備エリアでは、台車、フィーダ、ノズルおよびヘッド等の設備要素の準備が行われる。メンテナンスエリアでは、上記設備要素および治具等のメンテナンスが行われる。ここで言う治具とは、フィーダ、ノズル、ヘッド等の調整を行うものであり、その他に設備のヘッド移動機構や搬送機構の調整を行うものであってもよい。作業者は、生産フロアにおける各エリアにおいて生産、準備およびメンテナンス等の作業を行ったり、各エリア間で部品および設備要素の移送の作業を行ったりする。例えば、生産フロア管理システム1は、生産フロアに配置されるコンピュータである。例えば、生産フロア管理システム1が有する機能は、管理装置5に備えられていてもよい。なお、生産フロア管理システム1は、1つの筐体内に設けられたコンピュータであってもよいし、2つ以上の筐体に分けられ、2つ以上のコンピュータによって実現されてもよい。また、生産フロア管理システム1は、生産フロアに配置されなくてもよく、生産フロアの外部に設けられたサーバ等のコンピュータであってもよい。なお、作業者は人に限定されず、上述の作業を行うロボット、作業機構、および自動搬送車を含む。 The production floor management system 1 is a system that manages the status of production floors equipped with production equipment that produces products. The production floor includes, for example, the mounting line 4, inventory warehouses, preparation areas and maintenance areas. In the mounting line 4, as described above, production devices such as the mounting devices M4 and M5 and the printing device M3 and inspection devices are arranged. Materials such as parts, solder, and screen masks are stored in the inventory warehouse. In the preparation area preparation of equipment elements such as carriages, feeders, nozzles and heads is carried out. In the maintenance area, maintenance of the equipment elements, jigs, and the like is performed. The jig mentioned here is for adjusting the feeder, nozzle, head, etc., and may also be for adjusting the head moving mechanism and the transport mechanism of the equipment. Workers perform operations such as production, preparation, and maintenance in each area on the production floor, and perform operations such as transferring parts and equipment elements between areas. For example, the production floor management system 1 is a computer placed on the production floor. For example, the functions of the production floor management system 1 may be provided in the management device 5 . The production floor management system 1 may be a computer provided in one housing, or may be divided into two or more housings and implemented by two or more computers. Moreover, the production floor management system 1 may not be arranged on the production floor, and may be a computer such as a server provided outside the production floor. Note that workers are not limited to humans, and include robots, work mechanisms, and automated guided vehicles that perform the above-described work.
 生産フロア管理システム1は、生産フロアにおける状態に応じて、生産フロアにおける作業者または生産装置等に対して指示を出力するシステムである。生産フロア管理システム1は、取得部10、状態監視部20、対策決定部30、対策調停部40、指示出力部50、効果判定部60、更新部70、学習モデル23、24、33および34、ならびに、リソースデータベース41を備える。生産フロア管理システム1は、プロセッサ、メモリ等を含むコンピュータにより実現される。取得部10、状態監視部20、対策決定部30、対策調停部40、指示出力部50、効果判定部60および更新部70は、プロセッサがメモリに記憶されたプログラムに従って動作することにより実現される。また、状態監視部20はコンピュータとして独立して設けられてもよいし、生産装置に備えられていてもよい。また、生産フロア管理システム1は、複数の状態監視部20を備えていてもよい。学習モデル23、24、33および34、ならびに、リソースデータベース41は、メモリに記憶される。プログラム、学習モデル23、24、33および34、ならびに、リソースデータベース41が記憶されるメモリは、それぞれ同じメモリであってもよいし、異なるメモリであってもよい。 The production floor management system 1 is a system that outputs instructions to workers or production equipment on the production floor according to the state of the production floor. The production floor management system 1 includes an acquisition unit 10, a state monitoring unit 20, a countermeasure determination unit 30, a countermeasure mediation unit 40, an instruction output unit 50, an effect determination unit 60, an update unit 70, learning models 23, 24, 33 and 34, Also, a resource database 41 is provided. The production floor management system 1 is implemented by a computer including a processor, memory and the like. The acquisition unit 10, the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70 are implemented by the processor operating according to the program stored in the memory. . Moreover, the state monitoring unit 20 may be provided independently as a computer, or may be provided in the production apparatus. Moreover, the production floor management system 1 may include a plurality of state monitoring units 20 . The learning models 23, 24, 33 and 34 and the resource database 41 are stored in memory. The memory in which the programs, learning models 23, 24, 33 and 34, and resource database 41 are stored may be the same memory or different memories.
 取得部10は、生産フロアにおける状態を監視するための情報を取得する。例えば、取得部10は、生産フロアの生産状態を示す情報を取得する。具体的には、取得部10は、生産フロアの生産状態を示す情報として、生産装置の生産プロセスの結果(具体的には生産性、品質または仕損の有無等)を取得する。生産プロセスの結果は、センサによるセンシング履歴記録であってもよいし、人によって入力されたデータであってもよい。また、例えば、取得部10は、生産フロアで管理され、生産に用いられる生産リソースの状態を示す情報を取得する。生産リソースは、例えば、生産装置、設備要素、作業者、材料または治具等である。例えば、生産リソースの状態を示す情報は、カメラまたはセンサ等のセンシングデータであってもよいし、人によって入力されたデータであってもよい。また、例えば、取得部10は、生産フロアで変化したイベント情報を取得する。具体的には、取得部10は、生産装置が停止したり、生産装置に取り付けられるフィーダ、ノズル、部品、基板が交換されたり、作業する作業者が交替したり、生産装置の動作データが変更されたりしたことを示す情報を取得する。 The acquisition unit 10 acquires information for monitoring the state on the production floor. For example, the acquisition unit 10 acquires information indicating the production status of the production floor. Specifically, the acquisition unit 10 acquires the results of the production process of the production equipment (specifically, productivity, quality, or the presence or absence of defects, etc.) as information indicating the production status of the production floor. The result of the production process may be a sensing history record by a sensor, or may be data input by a person. Also, for example, the acquisition unit 10 acquires information indicating the state of production resources managed on the production floor and used for production. Production resources are, for example, production equipment, facility elements, workers, materials, or jigs. For example, information indicating the state of production resources may be sensing data from a camera, sensor, or the like, or may be data input by a person. Also, for example, the acquisition unit 10 acquires event information that has changed on the production floor. More specifically, the acquisition unit 10 detects when the production apparatus stops, when the feeder, nozzle, parts, or board attached to the production apparatus is replaced, when the worker who performs the work is replaced, or when the operation data of the production apparatus is changed. Acquire information indicating that the
 状態監視部20は、取得部10が取得した情報を介して生産フロアにおける状態を監視する。例えば、状態監視部20は、生産フロアにおける状態のうち所定状態(例えば、後述する第1状態または第2状態)を検出するための第1条件に基づいて、所定状態を検出する。例えば、第1条件は、所定状態に対応した検出閾値に関連付けられた学習モデルである。なお、第1条件は学習モデルでなく設定された検出閾値であってもよい。 The state monitoring unit 20 monitors the state of the production floor through the information acquired by the acquisition unit 10 . For example, the state monitoring unit 20 detects a predetermined state based on a first condition for detecting a predetermined state (for example, a first state or a second state described later) among the states on the production floor. For example, the first condition is a learning model associated with a detection threshold corresponding to a given state. Note that the first condition may be a set detection threshold instead of the learning model.
 状態監視部20は、第1状態監視部21および第2状態監視部22を有する。第1状態監視部21および第2状態監視部22は、それぞれ、上述した状態監視部20の動作を行う。 The state monitoring section 20 has a first state monitoring section 21 and a second state monitoring section 22 . The first state monitoring section 21 and the second state monitoring section 22 each perform the operation of the state monitoring section 20 described above.
 第1状態監視部21は、生産フロアにおける第1状態を監視する。例えば、第1状態は、生産装置の生産状態であり、第1状態監視部21は、生産装置の生産状態として生産プロセスの結果を監視する。例えば、第1状態監視部21は、学習モデル23に基づいて、第1所定状態を検出する。学習モデル23は、生産装置の生産状態に対応して生産フロアで生じる第1所定状態を検出するための第1学習モデルである。また、学習モデル23は、生産装置の生産状態に対応した検出閾値に関連付けられた学習モデル(すなわち第1条件)でもある。例えば、第1状態監視部21は、所定期間内において、生産装置で発生した生産ミス情報、生産装置で生産した生産物の生産量情報、および、生産装置で生産した生産物の良否情報の少なくともひとつに関する生産指標に対応する第1所定状態を検出する。 The first state monitoring unit 21 monitors the first state on the production floor. For example, the first state is the production state of the production device, and the first state monitoring unit 21 monitors the result of the production process as the production state of the production device. For example, the first state monitoring section 21 detects the first predetermined state based on the learning model 23 . The learning model 23 is a first learning model for detecting a first predetermined state occurring on the production floor corresponding to the production state of the production equipment. The learning model 23 is also a learning model (that is, the first condition) associated with the detection threshold corresponding to the production state of the production equipment. For example, the first state monitoring unit 21 monitors, within a predetermined period, at least information on production errors occurring in the production equipment, information on the amount of products produced by the production equipment, and quality information on the products produced by the production equipment. A first predetermined condition corresponding to a production index for one is detected.
 第2状態監視部22は、生産フロアにおける、第1状態とは異なる第2状態を監視する。例えば、第2状態は、生産リソースの状態であり、第2状態監視部22は、生産リソースの状態を監視する。例えば、第2状態監視部22は、学習モデル24に基づいて、第2所定状態を検出する。学習モデル24は、生産リソースの状態に対応して生産フロアで生じる第2所定状態を検出するための第2学習モデルである。また、学習モデル24は、生産リソースの状態に対応した検出閾値に関連付けられた学習モデル(すなわち第1条件)でもある。例えば、第2状態監視部22は、生産リソースに含まれる生産装置の稼働状態に関する稼動指標に対応する第2所定状態を検出する。また、例えば、第2状態監視部22は、生産リソースに含まれる作業者が実施した作業に関する作業指標に対応する第2所定状態を検出する。 The second state monitoring unit 22 monitors a second state different from the first state on the production floor. For example, the second state is the state of the production resource, and the second state monitoring section 22 monitors the state of the production resource. For example, the second state monitoring section 22 detects the second predetermined state based on the learning model 24 . Learning model 24 is a second learning model for detecting a second predetermined state occurring on the production floor corresponding to the state of production resources. Learning model 24 is also a learning model (ie, first condition) associated with a detection threshold corresponding to the state of the production resource. For example, the second state monitoring unit 22 detects a second predetermined state corresponding to an operating index related to the operating state of production equipment included in the production resource. Also, for example, the second state monitoring unit 22 detects a second predetermined state corresponding to the work index related to the work performed by the worker included in the production resource.
 ここで、状態監視部20の監視対象の一例について図3を用いて説明する。 Here, an example of the monitoring target of the state monitoring unit 20 will be described using FIG.
 図3は、実施の形態に係る状態監視部20の監視対象の一例を示す図である。なお、図3では、生産装置を実装装置とし、生産プロセスを実装プロセスとして説明する。 FIG. 3 is a diagram showing an example of objects monitored by the state monitoring unit 20 according to the embodiment. In addition, in FIG. 3, the production apparatus is assumed to be a mounting apparatus, and the production process is assumed to be a mounting process.
 図3に示されるように、状態監視部20(具体的には第1状態監視部21)は、生産状態として、吸着、認識および装着等のプロセスからなる実装プロセスの結果を監視する。例えば、第1状態監視部21は、所定期間内において、実装装置で発生した実装ミス情報、実装装置で実装した実装部品の実装量情報、および、実装装置で実装した実装部品の良否情報の少なくともひとつに関する生産指標に対応する第1所定状態(具体的には、実装ミス(仕損)の有無、実装量(生産性)および実装の品質等)を検出する。 As shown in FIG. 3, the state monitoring unit 20 (specifically, the first state monitoring unit 21) monitors the result of the mounting process including processes such as suction, recognition, and mounting as the production state. For example, the first state monitoring unit 21, within a predetermined period, at least information on mounting errors occurring in the mounting apparatus, information on the amount of mounted components mounted by the mounting apparatus, and information on the quality of the mounted components mounted by the mounting apparatus. A first predetermined state corresponding to one production index (specifically, the presence or absence of a mounting error (spoilage), mounting amount (productivity), mounting quality, etc.) is detected.
 また、状態監視部20(具体的には第2状態監視部22)は、生産リソースの状態として、基板、部品、作業者、ヘッド、ノズルおよびフィーダ等の実装プロセスに関わる要素(生産リソース)の状態を監視する。例えば、第2状態監視部22は、生産リソースに含まれる実装装置の稼働状態に関する稼動指標に対応する第2所定状態(例えば実装装置、ノズルおよびフィーダの劣化等)を検出する。また、例えば、第2状態監視部22は、生産リソースに含まれる作業者が実装装置について実施した作業に関する作業指標(例えば作業者の作業の誤り等)に対応する第2所定状態を検出する。また、作業指標の他に、基板、半田、または部品の設計データ上での数値(縦、横、厚み、各種マークの座標位置、粘度)と実際にカメラやセンサで測定した数値との差異に関する計測指標、半田や部品の使用期限日時と実際に測定した日時に関する時間指標に対応する第2所定状態を検出してもよい。 In addition, the state monitoring unit 20 (specifically, the second state monitoring unit 22) monitors, as the state of production resources, elements (production resources) related to the mounting process such as substrates, parts, workers, heads, nozzles, and feeders. Monitor status. For example, the second state monitoring unit 22 detects a second predetermined state (for example, deterioration of mounting devices, nozzles, and feeders, etc.) corresponding to operation indicators relating to the operating states of mounting devices included in production resources. Also, for example, the second state monitoring unit 22 detects a second predetermined state corresponding to a work index (for example, a worker's work error, etc.) related to work performed on a mounting apparatus by a worker included in the production resource. In addition to the work index, it is also related to the difference between the numerical values (length, width, thickness, coordinate positions of various marks, viscosity) on the design data of the board, solder, or parts and the numerical values actually measured by the camera or sensor. A second predetermined state may be detected that corresponds to a time index related to the measurement index, the expiry date and time of the solder or component, and the date and time of actual measurement.
 図2での説明に戻り、対策決定部30は、状態監視部20によって監視されている生産フロアにおける状態に対応して抽出される複数の対策のうちから実行する対策を決定する。複数の対策のうちから実行する対策とは、後述する第1優先指示、第2優先指示等に対応する。例えば、対策決定部30は、所定状態に対応した対策(例えば、後述する第1対策または第2対策)を決定するための第2条件に基づいて、実行する対策を決定する。例えば、第2条件は、抽出される複数の対策毎に設定される優先度を含み、所定状態に対応した複数の対策および優先度に関連付けられた学習モデルである。例えば、対策決定部30は、状態監視部20によって監視されている生産フロアにおける状態に対応して抽出される複数の対策のそれぞれの優先順位に基づいて、複数の対策のうちから実行する第1優先指示を決定する。言い換えると、対策決定部30は、所定状態に対応して抽出される複数の対策のそれぞれの優先度に基づいて、複数の対策のうちから実行する対策(すなわち第1優先指示)を決定する。例えば、対策決定部30は、所定状態に対応した対策を決定するために、生産フロアで取得される生産装置の稼働情報、生産フロアで作業する作業者情報、および生産物に用いられる材料情報を分析する。なお、分析には所定状態の傾向だけで対策を決定できる場合と所定状態の傾向だけでは対策を決定できない場合がある。所定状態の傾向だけでは対策を決定できない場合には、対策決定部30は、イベント情報を基に生産リソース毎に生産フロアで取得される生産装置の稼働情報、生産フロアで作業する作業者情報、および生産物に用いられる材料情報を分析したり、所定の対策を実行させてその前後での傾向をさらに分析したりすることで所定状態に対応した対策を決定することができる。また、対策決定部30とは独立した分析部を用いて分析が行われてもよい。また、例えば、対策決定部30は、第1優先指示の実行により生じた、第1優先指示の実行前の生産フロアにおける状態に対する第1優先指示の実行後の生産フロアにおける状態の変化に基づいて、第1優先指示(対策)に対する優先順位を決定するための優先度を更新する。また、例えば、対策決定部30は、優先度を更新するための学習モデルに基づいて優先度を更新する。なお、第2条件は学習モデルでなく、複数の対策毎に設定される優先度を含むデータテーブルであってもよい。 Returning to the description of FIG. 2, the countermeasure determination unit 30 determines a countermeasure to be executed from among a plurality of countermeasures extracted corresponding to the state of the production floor monitored by the state monitor unit 20. The countermeasure to be executed out of the plurality of countermeasures corresponds to a first priority instruction, a second priority instruction, etc., which will be described later. For example, the countermeasure determination unit 30 determines a countermeasure to be executed based on a second condition for determining a countermeasure (for example, a first countermeasure or a second countermeasure to be described later) corresponding to a predetermined state. For example, the second condition is a learning model associated with a plurality of measures corresponding to a predetermined state and priority, including a priority set for each of the plurality of measures to be extracted. For example, the countermeasure determining unit 30 selects the first countermeasure to be executed from among the plurality of countermeasures based on the priority of each of the plurality of countermeasures extracted corresponding to the state of the production floor monitored by the state monitoring unit 20. Determine priority instructions. In other words, the countermeasure determination unit 30 determines a countermeasure (that is, the first priority instruction) to be executed from among the plurality of countermeasures based on the priority of each of the plurality of countermeasures extracted corresponding to the predetermined state. For example, in order to determine a countermeasure corresponding to a predetermined state, the countermeasure determination unit 30 uses operation information of production equipment acquired on the production floor, worker information working on the production floor, and material information used for the product. analyse. In the analysis, there are cases where countermeasures can be determined based only on the tendency of the predetermined state, and cases where the countermeasure cannot be determined based only on the tendency of the predetermined state. If countermeasures cannot be determined only by the tendency of the predetermined state, the countermeasure determination unit 30 obtains operation information of production equipment acquired on the production floor for each production resource based on event information, information on workers working on the production floor, Also, by analyzing material information used in the product, executing a predetermined countermeasure and further analyzing trends before and after the execution of the predetermined countermeasure, it is possible to determine a countermeasure corresponding to the predetermined state. Also, the analysis may be performed using an analysis unit independent of the countermeasure determination unit 30 . Further, for example, the countermeasure determination unit 30 may change the state of the production floor after the execution of the first priority instruction to the state of the production floor before the execution of the first priority instruction, which is caused by the execution of the first priority instruction. , update the priority for determining the priority for the first priority instruction (countermeasure). Also, for example, the countermeasure determination unit 30 updates the priority based on a learning model for updating the priority. The second condition may be a data table containing priorities set for each of a plurality of countermeasures instead of the learning model.
 対策決定部30は、第1対策決定部31および第2対策決定部32を有する。第1対策決定部31および第2対策決定部32は、それぞれ、上述した対策決定部30の動作を行う。 The countermeasure determination unit 30 has a first countermeasure determination unit 31 and a second countermeasure determination unit 32 . The first countermeasure determination unit 31 and the second countermeasure determination unit 32 each perform the operation of the countermeasure determination unit 30 described above.
 第1対策決定部31は、第1状態監視部21によって監視されている第1状態に対応した第1対策を決定する。例えば、第1対策決定部31は、第1状態に対応して抽出される複数の対策のそれぞれの優先順位に基づいて、複数の対策のうちから実行する第1対策(すなわち第1優先指示)を決定する。例えば、第1対策決定部31は、上記生産指標を改善する対策を含む第1対策を決定する。具体的には、第1対策決定部31は、MTTRを改善するための第1対策を決定する。MTTRは、システムまたは機器の保守性を示す指標であり、MTTRが短いほど保守性が高いことを意味する。例えば、第1対策決定部31は、学習モデル33に基づいて、第1対策を決定する。学習モデル33は、第1状態に対応した第1対策を決定するための学習モデルであり、具体的には、優先度を更新するための学習モデルである。また、学習モデル33は、所定状態に対応した複数の対策および優先度に関連付けられた学習モデル(すなわち第2条件)でもある。 The first countermeasure determining unit 31 determines a first countermeasure corresponding to the first state monitored by the first state monitoring unit 21. For example, the first countermeasure determining unit 31 executes a first countermeasure (that is, a first priority instruction) from among the plurality of countermeasures based on the respective priorities of the plurality of countermeasures extracted corresponding to the first state. to decide. For example, the first countermeasure determination unit 31 determines first countermeasures including countermeasures for improving the production index. Specifically, the first countermeasure determining unit 31 determines a first countermeasure for improving MTTR. MTTR is an index indicating the maintainability of a system or equipment, and the shorter the MTTR, the higher the maintainability. For example, the first countermeasure determination unit 31 determines the first countermeasure based on the learning model 33 . The learning model 33 is a learning model for determining the first countermeasure corresponding to the first state, and specifically, a learning model for updating the priority. The learning model 33 is also a learning model (that is, the second condition) associated with multiple countermeasures and priorities corresponding to the predetermined state.
 第2対策決定部32は、第2状態監視部22によって監視されている第2状態に対応した第2対策を決定する。例えば、第2対策決定部32は、第1状態に対応して抽出される複数の対策のそれぞれの優先順位に基づいて、複数の対策のうちから実行する第2対策(すなわち第1優先指示)を決定する。例えば、第2対策決定部32は、上記稼動指標に対応する生産装置や設備要素に対する対策(メンテナンス・交換)、または、上記作業指標に対応する作業者の作業可否や作業トレーニングを含む第2対策を決定する。具体的には、第2対策決定部32は、MTBFを改善するための第2対策を決定する。MTBFは、システムまたは機器の信頼性を示す指標であり、MTBFが長いほど信頼性が高いことを意味する。例えば、第2対策決定部32は、学習モデル34に基づいて、第2対策を決定する。学習モデル34は、第2状態に対応した第2対策を決定するための学習モデルであり、具体的には、優先度を更新するための学習モデルである。また、学習モデル34は、所定状態に対応した複数の対策および優先度に関連付けられた学習モデル(すなわち第2条件)でもある。なお、ここで決定された第2対策は、生産フロア管理システム1とは別に設けられたメンテナンス計画作成装置または作業者管理装置に第2対策が通知されることで完了したとしてもよいし、第2対策の実行結果を受けて完了してもよい。 The second countermeasure determining unit 32 determines a second countermeasure corresponding to the second state monitored by the second state monitoring unit 22. For example, the second countermeasure determination unit 32 executes a second countermeasure (that is, a first priority instruction) from among the plurality of countermeasures based on the respective priorities of the plurality of countermeasures extracted corresponding to the first state. to decide. For example, the second countermeasure determination unit 32 determines countermeasures (maintenance/replacement) for production equipment and facility elements corresponding to the operation index, or second countermeasures including work availability and work training for workers corresponding to the work index. to decide. Specifically, the second countermeasure determination unit 32 determines a second countermeasure for improving MTBF. MTBF is an index indicating the reliability of a system or equipment, and longer MTBF means higher reliability. For example, the second countermeasure determination unit 32 determines the second countermeasure based on the learning model 34 . The learning model 34 is a learning model for determining a second countermeasure corresponding to the second state, and more specifically, a learning model for updating the priority. The learning model 34 is also a learning model (that is, the second condition) associated with multiple countermeasures and priorities corresponding to the predetermined state. Note that the second countermeasure determined here may be completed by notifying the second countermeasure to a maintenance plan creation device or worker management device provided separately from the production floor management system 1, or the second countermeasure may be completed. 2 It may be completed after receiving the execution result of countermeasures.
 対策調停部40は、第1対策と第2対策との調停を行う。ここで、第1対策と第2対策との調停が必要な理由について、図3を用いて詳細に説明する。 The countermeasure arbitration unit 40 arbitrates between the first countermeasure and the second countermeasure. Here, the reason why mediation between the first measure and the second measure is necessary will be explained in detail with reference to FIG.
 例えば、図3に示されるように、吸着に関する実装プロセスの結果は、基板、部品、作業者、ヘッド、ノズルおよびフィーダと関連しており、認識に関する実装プロセスの結果は、部品、ヘッドおよびノズルと関連しており、装着に関する実装プロセスの結果は、基板、部品およびノズルと関連している。例えば、第1対策には、生産プロセスの結果に対応して、基板、部品、作業者、ヘッド、ノズルまたはフィーダに対する対策が含まれる。一方で、第2対策にも、生産リソースの状態に対応して、基板、部品、作業者、ヘッド、ノズルまたはフィーダに対する対策が含まれる。すなわち、第1対策の対象となる生産リソースと第2対策の対象となる生産リソースとが重複する場合がある。第1対策の対象となる生産リソースと第2対策の対象となる生産リソースとが重複する場合、第1対策および第2対策の両方を同時期に実行することが難しいため、第1対策と第2対策との調停が必要となっている。 For example, as shown in FIG. 3, the result of the mounting process for picking is associated with the substrate, component, worker, head, nozzle and feeder, and the result of the mounting process for recognition is associated with the component, head and nozzle. Related and results of the packaging process with respect to mounting are related to the board, components and nozzles. For example, the first countermeasure includes countermeasures for substrates, parts, workers, heads, nozzles, or feeders, depending on the results of the production process. On the other hand, the second countermeasures also include countermeasures for substrates, parts, workers, heads, nozzles, or feeders corresponding to the state of production resources. In other words, the production resource targeted by the first measure and the production resource targeted by the second measure may overlap. If the production resources targeted by the first measure and the production resources targeted by the second measure overlap, it is difficult to implement both the first measure and the second measure at the same time. It is necessary to mediate with two countermeasures.
 例えば、対策調停部40は、第1対策に対応する第1状態に設定される問題度と第2対策に対応する第2状態に設定される問題度に基づいて、第1対策と第2対策との調停を行う。また、例えば、対策調停部40は、第1対策または第2対策に必要な生産リソースの有無に基づいて、第1対策と第2対策との調停を行う。生産リソースの有無は、リソースデータベース41で管理される。 For example, the countermeasure arbitration unit 40 selects the first countermeasure and the second countermeasure based on the problem level set in the first state corresponding to the first countermeasure and the problem level set in the second state corresponding to the second countermeasure. conduct mediation with Also, for example, the countermeasure arbitration unit 40 arbitrates between the first countermeasure and the second countermeasure based on the presence or absence of production resources required for the first countermeasure or the second countermeasure. The presence or absence of production resources is managed by the resource database 41 .
 指示出力部50は、第1優先指示を出力する。具体的には、指示出力部50は、対策調停部40による調停に従って、第1優先指示である第1対策または第2対策を出力する。例えば、後述する効果判定部60が実行された第1優先指示の効果を判定するまで、指示出力部50は、複数の対策のうちから決定された、優先順位が第1優先指示以降の第2優先指示を出力しない。また、例えば、効果判定部60が、第1優先指示が実行されたことにより、第1優先指示の実行前の生産フロアにおける状態に対して第1優先指示の実行後の生産フロアにおける状態に所定以上の改善傾向があると判定した場合、指示出力部50は、第1優先指示に対応した生産フロアにおける状態に関連して抽出された、実行前の第2優先指示を出力しない。また、例えば、効果判定部60が、第1優先指示が実行されたことにより、第1優先指示の実行前の生産フロアにおける状態に対して第1優先指示の実行後の生産フロアにおける状態に所定以上の改善傾向がないと判定した場合、対策決定部30は、第1優先指示を除外した複数の対策のそれぞれの優先順位に基づいて、実行する第2優先指示を決定し、指示出力部50は、第2優先指示を出力する。また、例えば、効果判定部60が所定期間、効果を判定できなかった場合、対策決定部30は、第1優先指示を除外した複数の対策のそれぞれの優先順位に基づいて、実行する第2優先指示を決定し、指示出力部50は、第2優先指示を出力する。指示出力部50は、生産装置の制御部や作業者が所持する携帯端末に指示を出力してもよいし、生産装置を管理する生産管理装置や作業者を管理する作業者管理装置を介して生産装置や作業者へ指示を出力してもよい。 The instruction output unit 50 outputs the first priority instruction. Specifically, the instruction output unit 50 outputs the first countermeasure or the second countermeasure, which is the first priority instruction, according to the arbitration by the countermeasure arbitration unit 40 . For example, until the effect determination unit 60, which will be described later, determines the effect of the executed first priority instruction, the instruction output unit 50 determines the second priority instruction, which is determined from among the plurality of countermeasures, and has the priority after the first priority instruction. Do not output priority instructions. Further, for example, when the first priority instruction is executed, the effect determination unit 60 changes the state of the production floor after execution of the first priority instruction to the state of the production floor before execution of the first priority instruction. If it is determined that there is an improvement tendency as described above, the instruction output unit 50 does not output the second priority instruction before execution, which is extracted in relation to the state on the production floor corresponding to the first priority instruction. Further, for example, when the first priority instruction is executed, the effect determination unit 60 changes the state of the production floor after execution of the first priority instruction to the state of the production floor before execution of the first priority instruction. If it is determined that there is no improvement tendency as described above, the countermeasure determination unit 30 determines the second priority instruction to be executed based on the priority of each of the plurality of countermeasures excluding the first priority instruction, and the instruction output unit 50 outputs the second priority indication. Further, for example, when the effect determination unit 60 cannot determine the effect for a predetermined period of time, the countermeasure determination unit 30 determines the second priority to be executed based on the priority of each of the plurality of countermeasures excluding the first priority instruction. After determining the instruction, the instruction output unit 50 outputs the second priority instruction. The instruction output unit 50 may output an instruction to a control unit of a production apparatus or a mobile terminal possessed by a worker, or through a production management apparatus that manages the production apparatus or a worker management apparatus that manages workers. Instructions may be output to production equipment and workers.
 効果判定部60は、決定された対策(言い換えると出力された第1優先指示)が実行された前後の生産フロアにおける状態に基づいて、実行された対策(指示)の効果を判定する。具体的には、効果判定部60は、出力された指示に対応する第1対策または第2対策が実行された前後の第1状態および第2状態の少なくとも一方に基づいて、実行された第1対策または第2対策の効果を判定する。 The effect determination unit 60 determines the effect of the executed countermeasure (instruction) based on the state of the production floor before and after the determined countermeasure (in other words, the output first priority instruction) was executed. Specifically, the effect determination unit 60 determines whether the first countermeasure or the second countermeasure corresponding to the output instruction is executed based on at least one of the first state and the second state before and after the first countermeasure or the second countermeasure is executed. Determine the effect of the countermeasure or the second countermeasure.
 更新部70は、判定された効果に基づいて、第1条件および第2条件、すなわち学習モデル23、24、33および34を更新する。 The update unit 70 updates the first and second conditions, that is, the learning models 23, 24, 33 and 34, based on the determined effects.
 状態監視部20、対策決定部30、対策調停部40、指示出力部50、効果判定部60および更新部70の詳細については後述する。 The details of the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70 will be described later.
 第1状態監視部21による第1状態の監視および第1対策決定部31による第1対策の決定と、第2状態監視部22による第2状態の監視および第2対策決定部32による第2対策の決定とは、並行して行われる。これについて、図4を用いて説明する。 Monitoring of the first state by the first state monitoring unit 21 and determination of the first countermeasure by the first countermeasure determination unit 31, monitoring of the second state by the second state monitoring unit 22 and second countermeasure by the second countermeasure determination unit 32 decisions are made in parallel. This will be described with reference to FIG.
 図4は、実施の形態に係る生産フロア管理システム1の動作の流れを模式的に示す図である。 FIG. 4 is a diagram schematically showing the flow of operations of the production floor management system 1 according to the embodiment.
 生産フロア管理システム1は、状態監視部20による問題発見、対策決定部30による対策方針の決定、対策調停部40による調停および指示出力部50による対策実行を行う。これらは、いわゆるOODAループに適用することができ、問題発見は「Observe」に対応し、対策方針の決定は「Orient」に対応し、調停は「Decide」に対応し、対策実行は「Action」に対応する。 The production floor management system 1 performs problem discovery by the state monitoring unit 20, determination of countermeasure policies by the countermeasure determination unit 30, arbitration by the countermeasure arbitration unit 40, and execution of countermeasures by the instruction output unit 50. These can be applied to so-called OODA loops, where problem finding corresponds to 'Observe', policy decision to 'Orient', mediation to 'Decide', and countermeasure execution to 'Action'. corresponds to
 第1状態監視部21による第1状態の監視および第1対策決定部31による第1対策の決定は、上述したように、MTTRを改善するためのものであり、図4では、第1状態監視部21による問題発見、第1対策決定部31による対策方針の決定、対策調停部40による調停および指示出力部50による対策実行のサイクルをMTTRサイクルとしている。第2状態監視部22による第2状態の監視および第2対策決定部32による第2対策の決定は、上述したように、MTBFを改善するためのものであり、図4では、第2状態監視部22による問題発見、第2対策決定部32による対策方針の決定、対策調停部40による調停および指示出力部50による対策実行のサイクルをMTBFサイクルとしている。 The monitoring of the first state by the first state monitoring unit 21 and the determination of the first countermeasure by the first countermeasure determining unit 31 are for improving the MTTR as described above. A cycle of problem discovery by the unit 21, determination of a countermeasure policy by the first countermeasure determination unit 31, arbitration by the countermeasure arbitration unit 40, and countermeasure execution by the instruction output unit 50 is defined as an MTTR cycle. The monitoring of the second state by the second state monitoring unit 22 and the determination of the second countermeasure by the second countermeasure determining unit 32 are for improving the MTBF as described above. A cycle of problem discovery by the unit 22, determination of a countermeasure policy by the second countermeasure determination unit 32, arbitration by the countermeasure arbitration unit 40, and countermeasure execution by the instruction output unit 50 is defined as an MTBF cycle.
 このように、第1状態監視部21による第1状態の監視および第1対策決定部31による第1対策の決定と、第2状態監視部22による第2状態の監視および第2対策決定部32による第2対策の決定とは、並行して行われる。例えば、MTBFおよびMTTRの両面からのOODAループによってプロセス保障を実現できる。 In this way, the monitoring of the first state by the first state monitoring unit 21 and the determination of the first countermeasure by the first countermeasure determining unit 31, the monitoring of the second state by the second state monitoring unit 22 and the second countermeasure determining unit 32 The determination of the second countermeasure by is carried out in parallel. For example, process guarantees can be achieved by the OODA loop from both MTBF and MTTR.
 また、OODAループの各プロセスである問題発見、対策方針の決定、調停および対策実行は、独立性を保っており、並列実行されることで、各プロセス間の待ち時間を最小化でき、リアルタイムコントロールを実現できる。詳細は後述するが、時間経過に伴い状況が多岐にわたり変わる生産フロアにおける状態に対し、優先順位を変えながら対策を実行していくことができる。 In addition, each process of the OODA loop, problem finding, policy decision, arbitration, and countermeasure execution, maintains independence and is executed in parallel to minimize the waiting time between processes, enabling real-time control. can be realized. Details will be described later, but it is possible to implement countermeasures while changing the order of priority for the conditions on the production floor that change over time.
 なお、第1状態は、生産装置の生産状態であり、第2状態は、生産リソースの状態である例を説明したが、これに限らない。例えば、第1状態は、生産装置の生産状態であり、第2状態は、第1状態とは異なる生産装置の生産状態であってもよい。また、例えば、第1状態は、生産リソースの状態であり、第2状態は、第1状態とは異なる生産リソースの状態であってもよい。例えば、図4では、MTBFサイクルとMTTRサイクルとが並行して行われる例を示しているが、複数のMTBFサイクルが並行して行われてもよいし、複数のMTTRサイクルが並行して行われてもよい。なお、MTBFサイクルとMTTRサイクルとが並行して行われて、第1対策と第2対策を調停する場合に対策調停部40は第2対策よりも第1対策を優先して決定してもよく、特に下述で説明する問題度に差がない場合に第1対策を優先することで生産装置の稼働を維持することができる。ここで言う問題度に差がないとは同じ問題度であることと問題度の差が所定差以内であること含む。 Although the first state is the production state of the production equipment and the second state is the production resource state, the present invention is not limited to this. For example, the first state may be the production state of the production device, and the second state may be the production state of the production device different from the first state. Also, for example, the first state may be the state of the production resource, and the second state may be the state of the production resource different from the first state. For example, although FIG. 4 shows an example in which the MTBF cycle and the MTTR cycle are performed in parallel, a plurality of MTBF cycles may be performed in parallel, or a plurality of MTTR cycles may be performed in parallel. may Note that when the MTBF cycle and the MTTR cycle are performed in parallel and the first and second countermeasures are arbitrated, the countermeasure arbitration unit 40 may prioritize the first countermeasure over the second countermeasure. In particular, when there is no difference in the degree of problem, which will be described below, the operation of the production equipment can be maintained by giving priority to the first countermeasure. The phrase "there is no difference in the degree of problem" as used herein includes that the degree of problem is the same and that the difference in the degree of problem is within a predetermined difference.
 次に、状態監視部20、対策決定部30、対策調停部40、指示出力部50、効果判定部60および更新部70の詳細について図5から図12を用いて説明する。 Next, the details of the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70 will be described with reference to FIGS. 5 to 12. FIG.
 まず、状態監視部20の詳細について、図5を用いて説明する。 First, the details of the state monitoring unit 20 will be explained using FIG.
 図5は、実施の形態に係る状態監視部20の動作の一例を示すフローチャートである。図5は、OODAループにおける問題発見(Observe)の処理を示す。 FIG. 5 is a flow chart showing an example of the operation of the state monitoring section 20 according to the embodiment. FIG. 5 shows problem finding (Observe) processing in the OODA loop.
 まず、状態監視部20は、監視データを取得する(ステップS11)。具体的には、第1状態監視部21は、生産装置の生産状態に関する監視データを取得し、第2状態監視部22は、生産リソースの状態に関する監視データを取得する。 First, the state monitoring unit 20 acquires monitoring data (step S11). Specifically, the first state monitoring unit 21 obtains monitoring data regarding the production state of the production equipment, and the second state monitoring unit 22 obtains monitoring data regarding the state of the production resource.
 次に、状態監視部20は、学習モデルを読み込む(ステップS12)。具体的には、第1状態監視部21は、学習モデル23を読み込み、第2状態監視部22は、学習モデル24を読み込む。 Next, the state monitoring unit 20 reads the learning model (step S12). Specifically, the first state monitoring unit 21 reads the learning model 23 and the second state monitoring unit 22 reads the learning model 24 .
 学習モデル23は、生産装置の生産状態に対応して生産フロアで生じる第1所定状態を検出するための第1学習モデルであり、生産装置の生産状態に対応した検出閾値に関連付けられている。例えば、学習モデル23は、取得された監視データが入力されることで、取得された監視データが示す、生産装置で発生した生産ミス情報、生産装置で生産した生産物の生産量情報、および、生産装置で生産した生産物の良否情報の少なくともひとつに関する生産指標に対応する第1所定状態(例えば、生産性、品質または仕損等)を出力するように学習されている。ここで、学習モデル23の学習方法(更新方法)について、具体例をあげて説明する。 The learning model 23 is a first learning model for detecting a first predetermined state that occurs on the production floor corresponding to the production state of the production equipment, and is associated with a detection threshold corresponding to the production state of the production equipment. For example, the learning model 23 is input with acquired monitoring data, and the acquired monitoring data indicates production error information occurring in a production apparatus, production volume information of a product produced by the production apparatus, and It is learned to output a first predetermined state (for example, productivity, quality, or scrap) corresponding to a production index related to at least one piece of quality information of a product produced by the production apparatus. Here, the learning method (update method) of the learning model 23 will be described with a specific example.
 例えば、学習モデル23に関連付けられている生産性に対応した検出閾値に基づいて、生産性が低下していることが検出され、生産性を上げる対策が出力されたとする。これにより、生産性が上がり品質が低下した、つまり、生産性については効果があり、品質については悪化したとする。例えば、学習の方針として品質を重視するように設定されている場合、上記効果に基づいて、生産性に対応した検出閾値を緩める(生産性の低下が検出されにくくなる)ように学習が行われる。これにより、生産性と品質とのバランスが取れた検出閾値が学習される。 For example, it is assumed that a decrease in productivity is detected based on the detection threshold corresponding to the productivity associated with the learning model 23, and countermeasures for increasing productivity are output. As a result, productivity is increased and quality is decreased. For example, if the learning policy is set to emphasize quality, learning is performed so that the detection threshold corresponding to productivity is loosened (decrease in productivity is less likely to be detected) based on the above effect. . Thereby, a detection threshold that balances productivity and quality is learned.
 学習モデル24は、生産リソースの状態に対応して生産フロアで生じる第2所定状態を検出するための第2学習モデルであり、生産リソースの状態に対応した検出閾値に関連付けられている。例えば、学習モデル24は、取得された監視データが入力されることで、取得された監視データが示す、生産リソースに含まれる生産装置の稼働状態に関する稼動指標、または、生産リソースに含まれる作業者が実施した作業に関する作業指標に対応する第2所定状態(例えば、生産装置もしくは設備要素の劣化、または、作業者の作業の誤り等)を出力するように学習されている。ここで、学習モデル24の学習方法(更新方法)について、具体例をあげて説明する。 The learning model 24 is a second learning model for detecting a second predetermined state occurring on the production floor corresponding to the state of the production resource, and is associated with a detection threshold corresponding to the state of the production resource. For example, the learning model 24 is input with acquired monitoring data, so that the operating index related to the operating state of the production equipment included in the production resource indicated by the acquired monitoring data, or the worker included in the production resource is learned to output a second predetermined state (eg, deterioration of a production device or facility element, or an error in an operator's work, etc.) corresponding to a work index related to the work performed by the . Here, the learning method (update method) of the learning model 24 will be described with a specific example.
 例えば、学習モデル24に関連付けられているノズルの流量に対応した検出閾値に基づいて、ノズルの流量が低下していることが検出され、1週間以内にノズルをメンテナンスするという対策が出力されたとする。例えば、対策が出力された後メンテナンスを行う前(1週間経過する前)に吸着エラー率が悪化して、出力された対策の効果が得られなかったとする。この場合、ノズルの流量の低下の検出が遅すぎた可能性があるため、上記効果に基づいて、ノズルの流量に対応した検出閾値を厳しくする(つまり、ノズルの流量の低下が早く検出されやすくなる)ように学習が行われる。これにより、最適な時期にメンテナンスを行うことができるような検出閾値が学習される。なお、ノズルの流量に対応した検出閾値は一例であって、その他にフィーダのテープ停止位置のずれ、ノズルが吸着した部品の吸着位置ずれ、または基板の搬送位置ずれ等に検出閾値を設定しても上記の学習を適用することができる。 For example, it is assumed that a decrease in the flow rate of the nozzle is detected based on the detection threshold corresponding to the flow rate of the nozzle associated with the learning model 24, and a countermeasure to perform maintenance of the nozzle within one week is output. . For example, it is assumed that the adsorption error rate worsens before maintenance is performed (before one week has passed) after countermeasures are output, and the output countermeasures are not effective. In this case, it is possible that the decrease in the flow rate of the nozzle was detected too late. learning is done in such a way that As a result, the detection threshold is learned so that maintenance can be performed at the optimum time. Note that the detection threshold corresponding to the flow rate of the nozzle is an example, and other detection thresholds may be set for the deviation of the tape stop position of the feeder, the deviation of the pickup position of the component sucked by the nozzle, or the deviation of the transfer position of the board. can also apply the above learning.
 次に、状態監視部20は、第1所定状態または第2所定状態に問題が検出されたか否かを判定する(ステップS13)。例えば、第1状態監視部21は、生産性が低下していること、品質が低下していること、または、仕損が多くなっていること等が検出されたか否かを判定する。例えば、第2状態監視部22は、生産装置が劣化していること、設備要素が劣化していること、または、作業者の作業に誤りがあること等が検出されたか否かを判定する。 Next, the state monitoring unit 20 determines whether or not a problem has been detected in the first predetermined state or the second predetermined state (step S13). For example, the first state monitoring unit 21 determines whether or not it is detected that the productivity is declining, the quality is declining, or the number of defective products is increasing. For example, the second state monitoring unit 22 determines whether or not it has detected that the production equipment is deteriorating, that the equipment elements are deteriorating, or that there is an error in the worker's work.
 問題が検出されなかった場合(ステップS13でNo)、問題が検出されるまでステップS11からの処理が繰り返される。 If no problem is detected (No in step S13), the process from step S11 is repeated until a problem is detected.
 問題が検出された場合(ステップS13でYes)、検出された問題に対する対策方針の決定が行われる。 If a problem is detected (Yes in step S13), a countermeasure policy for the detected problem is determined.
 次に、対策決定部30の詳細について、図6を用いて説明する。 Next, the details of the countermeasure determination unit 30 will be explained using FIG.
 図6は、実施の形態に係る対策決定部30の動作の一例を示すフローチャートである。図6は、OODAループにおける対策方針の決定(Orient)の処理を示す。 FIG. 6 is a flow chart showing an example of the operation of the countermeasure determination unit 30 according to the embodiment. FIG. 6 shows the processing of policy determination (Orient) in the OODA loop.
 対策決定部30は、状態監視部20によって検出された問題に対して、関連のある生産リソース(例えば原因となり得る生産リソース)を分析する(ステップS21)。例えば、第1状態監視部21によって、実装装置の実装プロセスにおいて生産性が低下しているという問題が検出された場合、当該問題の原因となり得る生産リソースが基板、部品、作業者、ヘッド、ノズルおよびフィーダであると分析する(図3参照)。また、例えば、第2状態監視部22によって、ノズルの劣化という問題が検出された場合、当該問題の原因となり得る生産リソースがノズルであると分析する。 The countermeasure determination unit 30 analyzes the production resources (for example, production resources that can be the cause) for the problem detected by the state monitoring unit 20 (step S21). For example, when the first state monitoring unit 21 detects a problem that the productivity is declining in the mounting process of the mounting apparatus, the production resources that can cause the problem are substrates, parts, workers, heads, nozzles, and so on. and feeders (see FIG. 3). Also, for example, when the second state monitoring unit 22 detects a problem of nozzle deterioration, it analyzes that the nozzle is the production resource that can cause the problem.
 次に、対策決定部30は、学習モデルを読み込む(ステップS22)。具体的には、第1対策決定部31は、学習モデル33を読み込み、第2対策決定部32は、学習モデル34を読み込む。 Next, the countermeasure determination unit 30 reads the learning model (step S22). Specifically, the first countermeasure determination unit 31 reads the learning model 33 and the second countermeasure determination unit 32 reads the learning model 34 .
 学習モデル33は、生産装置の生産状態に対応した第1対策を決定するための学習モデルであり、具体的には、第1対策に対する優先順位を決定するための優先度を更新するための学習モデルである。例えば、学習モデル33は、検出された問題が入力されることで、検出された問題の対策を候補として出力するように学習されている。検出された問題に対して、複数の候補が出力された場合、複数の候補に対応して複数の対策が抽出される。学習モデル33の学習方法については後述する。 The learning model 33 is a learning model for determining the first countermeasure corresponding to the production state of the production equipment. Specifically, learning for updating the priority for determining the priority of the first countermeasure. is a model. For example, the learning model 33 is trained to output countermeasures for the detected problem as candidates by inputting the detected problem. If multiple candidates are output for the detected problem, multiple countermeasures are extracted corresponding to the multiple candidates. A learning method of the learning model 33 will be described later.
 学習モデル34は、生産リソースの状態に対応した第2対策を決定するための学習モデルであり、具体的には、第2対策に対する優先順位を決定するための優先度を更新するための学習モデルである。例えば、学習モデル34は、検出された問題が入力されることで、検出された問題の対策を候補として出力するように学習されている。検出された問題に対して、複数の候補が出力された場合、複数の候補に対応して複数の対策が抽出される。学習モデル34の学習方法については後述する。 The learning model 34 is a learning model for determining the second countermeasure corresponding to the state of production resources, and specifically, a learning model for updating the priority for determining the priority of the second countermeasure. is. For example, the learning model 34 is trained to output countermeasures for the detected problem as candidates by inputting the detected problem. If multiple candidates are output for the detected problem, multiple countermeasures are extracted corresponding to the multiple candidates. A learning method of the learning model 34 will be described later.
 次に、対策決定部30は、複数の対策のそれぞれの優先順位を決定するための優先度を分析する(ステップS23)。例えば、学習モデル33および34は、検出された問題の対策を候補として出力する際に、対策の優先度を対応付けて出力する。これにより、対策決定部30は、各対策の優先度を把握することができる。 Next, the countermeasure determination unit 30 analyzes the priority for determining the priority of each of the multiple countermeasures (step S23). For example, when the learning models 33 and 34 output countermeasures for the detected problem as candidates, they are output in association with the priority of the countermeasures. Thereby, the countermeasure determination unit 30 can grasp the priority of each countermeasure.
 次に、対策決定部30は、対策候補リストを作成する(ステップS24)。対策候補リストについて図7を用いて説明する。 Next, the countermeasure determination unit 30 creates a countermeasure candidate list (step S24). The countermeasure candidate list will be described with reference to FIG.
 図7は、実施の形態に係る対策候補リストの一例を示す表である。 FIG. 7 is a table showing an example of a countermeasure candidate list according to the embodiment.
 例えば、第1所定状態(例えば、生産性、品質または仕損等)の問題としてノズルによる部品の吸着エラー率の悪化という問題が検出されたとする。この場合、学習モデル33から吸着位置ティーチ、フィーダ交換およびノズル交換といった対策候補が出力され、また、各対策候補の優先度として優先確率が出力される。これにより、対策決定部30は、図7に示されるような対策候補リストを作成することができる。図7に示される対策候補リストでは、対策候補として、吸着位置ティーチが優先確率60%となっており、吸着エラー率の悪化という問題に対する対策候補の中で最も優先度が高くなっている。なお、優先確率が同等の対策候補がある場合には、過去の実績(対策成功回数、優先確率の推移等)によって決定してもよい。 For example, it is assumed that a deterioration in the pick-up error rate of parts by nozzles is detected as a problem of the first predetermined state (for example, productivity, quality, or scrap). In this case, the learning model 33 outputs countermeasure candidates such as pickup position teaching, feeder replacement, and nozzle replacement, and also outputs a priority probability as the priority of each countermeasure candidate. As a result, the countermeasure determination unit 30 can create a countermeasure candidate list as shown in FIG. In the countermeasure candidate list shown in FIG. 7, the pick-up position teaching has a priority probability of 60% as a countermeasure candidate, and has the highest priority among the countermeasure candidates for the problem of deterioration of the pick-up error rate. Note that if there are countermeasure candidates with the same priority probability, it may be determined based on past results (countermeasure success count, transition of priority probability, etc.).
 図6での説明に戻り、次に、対策決定部30は、作成した対策候補リストにおける最も優先度の高い対策候補を、検出された問題に対する対策として優先対策リストへ登録する(ステップS25)。例えば、図7に示される対策候補リストが作成された場合、吸着エラー率の悪化という問題に対して、吸着位置ティーチという対策が優先対策リストへ登録される。例えば、吸着エラー率の悪化という問題が検出されたときの生産フロアにおける状態に対応して抽出される複数の対策は、吸着位置ティーチ、フィーダ交換およびノズル交換となる。対策決定部30が吸着位置ティーチという対策を優先対策リストへ登録することは、当該複数の対策のそれぞれの優先順位(優先度)に基づいて、当該複数の対策のうちから実行する第1優先指示として、吸着位置ティーチを決定することを意味する。 Returning to the description of FIG. 6, next, the countermeasure determination unit 30 registers the countermeasure candidate with the highest priority in the created countermeasure candidate list in the priority countermeasure list as a countermeasure against the detected problem (step S25). For example, when the countermeasure candidate list shown in FIG. 7 is created, the countermeasure of suction position teaching is registered in the priority countermeasure list for the problem of deterioration of the suction error rate. For example, a plurality of countermeasures extracted corresponding to the state on the production floor when the problem of deterioration of the pick-up error rate is detected are pick-up position teaching, feeder replacement, and nozzle replacement. When the countermeasure determination unit 30 registers the countermeasure of suction position teaching in the priority countermeasure list, it is a first priority instruction to be executed from among the plurality of countermeasures based on the order of priority (priority) of each of the plurality of countermeasures. , means that the adsorption position teaching is determined.
 なお、監視データの取得は、所定の時間間隔で繰り返し行われており、様々な問題が検出され得る。例えば、1つの問題に対する対策が完了する前に別の問題が検出される場合がある。例えば、第1所定状態(例えば、生産性、品質または仕損等)についての問題が複数検出される場合もあり、第2所定状態(例えば、生産装置もしくは設備要素の劣化、または、作業者の作業の誤り等)についての問題が複数検出される場合もある。このように、問題が検出されるごとにその問題の対策候補リストが作成され、対策候補リスト毎の優先度の最も高い対策が優先対策リストに追加されていく。ここで、優先対策リストの一例を図8に示す。 It should be noted that acquisition of monitoring data is repeated at predetermined time intervals, and various problems can be detected. For example, one problem may be detected before the remedy for another problem is completed. For example, multiple problems with a first predetermined condition (e.g., productivity, quality, or work errors, etc.) may be detected. In this way, each time a problem is detected, a countermeasure candidate list for that problem is created, and the countermeasure with the highest priority for each countermeasure candidate list is added to the priority countermeasure list. FIG. 8 shows an example of the priority countermeasure list.
 図8は、実施の形態に係る優先対策リストの一例を示す表である。 FIG. 8 is a table showing an example of a priority countermeasure list according to the embodiment.
 図8に示されるように、第1所定状態についての問題として、上述した吸着エラー率の悪化という問題に対して、吸着位置ティーチという対策が優先対策リストへ登録されていることがわかる。また、第2所定状態についての問題として、フィーダの摺動不良という問題に対して、清掃という対策が優先対策リストへ登録されていることがわかる。また、第2所定状態についての問題として、コンベアベルトの摩耗という問題に対して、交換という対策が優先対策リストへ登録されていることがわかる。また、第1所定状態および第2所定状態についての問題には、その問題の重大さを示す指標として問題度が予め設定されている。例えば、吸着エラー率の悪化という問題は、その問題が検出されたときの第1状態(生産装置の生産状態)の問題であるといえるため、吸着エラー率の悪化という問題に設定される問題度は、その問題が検出されたときの第1状態に設定される問題度であるといえる。また、例えば、フィーダの摺動不良という問題は、その問題を検出したときの第2状態(生産リソースの状態)の問題であるといえるため、フィーダの摺動不良という問題に設定される問題度は、その問題が検出されたときの第2状態に設定される問題度であるといえる。 As shown in FIG. 8, it can be seen that, as a problem for the first predetermined state, a countermeasure of suction position teaching is registered in the priority countermeasure list for the problem of deterioration of the suction error rate described above. As for the problem of the second predetermined state, it can be seen that the countermeasure of cleaning is registered in the priority countermeasure list for the problem of feeder sliding failure. As for the problem of the second predetermined state, it can be seen that the countermeasure of replacing the conveyor belt is registered in the priority countermeasure list for the problem of wear of the conveyor belt. Further, a problem level is set in advance as an index indicating the seriousness of the problem for the first predetermined state and the second predetermined state. For example, the problem of deterioration of the suction error rate can be said to be the problem of the first state (the production state of the production apparatus) when the problem is detected, so the problem level is set to the problem of deterioration of the suction error rate. can be said to be the degree of problem set in the first state when the problem is detected. Further, for example, the problem of feeder sliding failure can be said to be a problem in the second state (the state of the production resource) when the problem is detected, so the problem level is set to the problem of feeder sliding failure. can be said to be the degree of problem set in the second state when the problem is detected.
 次に、対策調停部40の詳細について、図9を用いて説明する。 Next, the details of the countermeasure arbitration unit 40 will be explained using FIG.
 図9は、実施の形態に係る対策調停部40の動作の一例を示すフローチャートである。図9は、OODAループにおける調停(Decide)の処理を示す。 FIG. 9 is a flow chart showing an example of the operation of the countermeasure arbitration unit 40 according to the embodiment. FIG. 9 shows arbitration (Decide) processing in the OODA loop.
 まず、対策調停部40は、優先対策リストを読み込み(ステップS31)、優先順位(すなわち問題度)の高い対策を選択する(ステップS32)。例えば、読み込まれた優先対策リストが図8に示されるリストである場合、対策調停部40は、優先順位の高い対策として吸着位置ティーチを選択する。 First, the countermeasure arbitration unit 40 reads the prioritized countermeasure list (step S31) and selects countermeasures with high priority (that is, degree of problem) (step S32). For example, when the read priority measure list is the list shown in FIG. 8, the measure arbitration unit 40 selects suction position teaching as a measure with a high priority.
 次に、対策調停部40は、リソースデータ(リソース管理テーブル)をリソースデータベース41から読み込む(ステップS33)。リソース管理テーブルについて、図10を用いて説明する。 Next, the countermeasure arbitration unit 40 reads resource data (resource management table) from the resource database 41 (step S33). The resource management table will be explained using FIG.
 図10は、実施の形態に係るリソース管理テーブルの一例を示す表である。 FIG. 10 is a table showing an example of a resource management table according to the embodiment.
 例えば、リソース管理テーブルでは、各生産リソースの有無、具体的には、各生産リソースが現在何かしらの対策を行っているか否か、または、各生産リソースに対して現在何かしらの対策が行われているか否かが管理されている。図10では、生産リソースの有無をロックのオンおよびオフで示している。図10に示されるリソース管理テーブルでは、生産リソースとして、ヘッド、ノズル、フィーダならびに作業者AおよびBの有無が管理されている。ヘッドおよびフィーダは、現在何かしらの対策が行われており、ロックがオンとなっている。ノズルは、現在何も対策が行われていないため、ロックがオフとなっている。作業者AおよびBは、現在何も対策を行っていないため、ロックがオフとなっている。ここで言うロックとは現実空間もしくは仮想空間のどちらか、または両方を含んでいてもよい。例えば、リソースがロックされたフィーダに対してロックがオフされるまで生産装置から取り外しを禁止することが現実空間でのロックを意味する。また、生産計画の作成または更新をする際に、リソースがロックされたフィーダを使用することを禁止することが仮想空間でのロックを意味する。 For example, in the resource management table, the presence or absence of each production resource, specifically, whether each production resource is currently taking some measures, or whether each production resource is currently taking any measures It is managed whether or not In FIG. 10, the presence or absence of production resources is indicated by locking on and off. The resource management table shown in FIG. 10 manages the presence or absence of heads, nozzles, feeders, and workers A and B as production resources. The head and feeder are currently under some kind of countermeasure and the lock is on. The nozzle is currently unlocked as no countermeasures are being taken. Workers A and B are currently unlocked because they are not taking any countermeasures. The lock referred to here may include either real space or virtual space, or both. For example, prohibiting removal from a production device until the lock is turned off for a feeder whose resources are locked means locking in the real space. Also, prohibiting the use of a feeder in which a resource is locked when creating or updating a production plan means locking in virtual space.
 図9での説明に戻り、次に、対策調停部40は、選択した対策について、生産リソースがロックされているか否かを判定する(ステップS34)。例えば、対策調停部40は、吸着位置ティーチを選択したとする。また、例えば、吸着位置ティーチは、作業者Aが行う対策であるとする。この場合、対策調停部40は、読み込んだリソース管理テーブルにおける作業者Aのロックの状態を確認する。 Returning to the description of FIG. 9, next, the countermeasure arbitration unit 40 determines whether or not the production resource is locked for the selected countermeasure (step S34). For example, it is assumed that the countermeasure mediation unit 40 selects suction position teaching. Also, for example, it is assumed that the suction position teaching is a countermeasure that the worker A takes. In this case, the countermeasure arbitration unit 40 confirms the lock state of worker A in the read resource management table.
 対策調停部40は、選択した対策についての生産リソースがロックされている場合(ステップS34でYes)、次に優先順位の高い対策を選択し(ステップS35)、再度ステップS33からの処理を行う。 If the production resource for the selected countermeasure is locked (Yes in step S34), the countermeasure arbitration unit 40 selects the countermeasure with the next highest priority (step S35), and performs the processing from step S33 again.
 対策調停部40は、選択した対策についての生産リソースがロックされていない場合(ステップS34でNo)、選択した対策についての生産リソースをロックする(ステップS36)。 If the production resource for the selected countermeasure is not locked (No in step S34), the countermeasure arbitration unit 40 locks the production resource for the selected countermeasure (step S36).
 そして、優先対策リストに含まれる全ての対策についての生産リソースがロックされているか否かを判定する(ステップS37)。全ての対策についての生産リソースがロックされていない場合(ステップS37でNo)、今回選択された対策を除いて再度ステップS32からの処理が行われる。全ての対策についての生産リソースがロックされている場合(ステップS37でYes)、優先対策リストにおける生産リソースがロックされていなかった対策のうち、選択された優先順位の高い対策について、対策実行が行われる。 Then, it is determined whether or not the production resources for all the measures included in the priority measure list are locked (step S37). If the production resources for all countermeasures are not locked (No in step S37), the process from step S32 is performed again except for the countermeasure selected this time. If the production resources for all the measures are locked (Yes in step S37), the selected high-priority measures among the measures in the prioritized measure list whose production resources were not locked are executed. will be
 次に、指示出力部50、効果判定部60および更新部70の詳細について、図11を用いて説明する。 Next, the details of the instruction output unit 50, the effect determination unit 60, and the update unit 70 will be described using FIG.
 図11は、実施の形態に係る指示出力部50、効果判定部60および更新部70の動作の一例を示すフローチャートである。図11は、OODAループにおける対策実行(Action)および対策が実行された後の処理を示す。なお、以下では、吸着エラー率の悪化という問題に対して対策調停部40により選択された対策が吸着位置ティーチであり、ロックされた生産リソースが作業者Aである場合を具体例1の場合といい、フィーダの摺動不良という問題に対して対策調停部40により選択された対策が清掃であり、ロックされた生産リソースがフィーダおよび作業者Bである場合を具体例2の場合という。 FIG. 11 is a flow chart showing an example of operations of the instruction output unit 50, the effect determination unit 60, and the updating unit 70 according to the embodiment. FIG. 11 shows countermeasure execution (Action) in the OODA loop and processing after the countermeasure is executed. In the following, the case where the countermeasure selected by the countermeasure arbitration unit 40 for the problem of the worsening of the suction error rate is suction position teaching, and the locked production resource is the worker A will be described as the specific example 1. A specific example 2 is a case where the countermeasure selected by the countermeasure arbitration unit 40 for the feeder sliding failure problem is cleaning, and the locked production resource is the feeder and the worker B. FIG.
 まず、指示出力部50は、対策調停部40によりロックされた生産リソースについて、対策を実行する(ステップS41)。例えば、具体例1の場合、指示出力部50は、作業者Aに吸着位置ティーチを実施させる第1対策(例えば第1優先指示)を出力する。例えば、具体例2の場合、指示出力部50は、作業者Bにフィーダの清掃を実施させる第2対策(例えば第1優先指示)を出力する。このように、対策に応じた指示が出力され、指示が実行される。なお、指示の実行は作業者等によって手動で行われるものであってもよいし、生産装置等によって自動で行われるものであってもよい。 First, the instruction output unit 50 executes a countermeasure for the production resource locked by the countermeasure arbitration unit 40 (step S41). For example, in the case of Specific Example 1, the instruction output unit 50 outputs a first countermeasure (for example, a first priority instruction) that causes the worker A to perform the pickup position teaching. For example, in the case of Specific Example 2, the instruction output unit 50 outputs a second countermeasure (for example, a first priority instruction) to have worker B clean the feeder. In this way, instructions corresponding to countermeasures are output and executed. Execution of instructions may be performed manually by an operator or the like, or may be performed automatically by a production device or the like.
 次に、効果判定部60は、監視データを取得する(ステップS42)。具体的には、効果判定部60は、生産装置の生産状態に関する監視データまたは生産リソースの状態に関する監視データを取得する。効果判定部60が監視データを取得するのは、対策に応じた指示が実行されたことによる生産フロアにおける状態の変化を確認する、すなわち、実行された対策に応じた指示の効果を判定するためである。例えば、具体例1の場合、効果判定部60は、吸着に関する実装プロセスの結果についての監視データを取得する。すなわち、効果判定部60は、監視対象のノズルに関連するミス情報を監視データとして、その傾向を監視する。例えば、具体例2の場合、効果判定部60は、フィーダの状態についての監視データを取得する。すなわち、効果判定部60は、監視対象のフィーダに関連するミス情報を監視データとして、その傾向を監視する。例えば、効果判定部60は、状態監視部20と同じように学習モデル23または24を用いて第1所定状態または第2所定状態を検出する。 Next, the effect determination unit 60 acquires monitoring data (step S42). Specifically, the effect determination unit 60 acquires monitoring data regarding the production status of production equipment or monitoring data regarding the status of production resources. The reason why the effect determination unit 60 acquires the monitoring data is to confirm the change in the state on the production floor due to the execution of the instruction according to the countermeasure, that is, to determine the effect of the instruction according to the executed countermeasure. is. For example, in the case of Specific Example 1, the effect determination unit 60 acquires monitoring data about the result of the mounting process regarding suction. That is, the effect determination unit 60 monitors the tendency of the error information related to the monitored nozzle as monitoring data. For example, in the case of specific example 2, the effect determination unit 60 acquires monitoring data about the state of the feeder. That is, the effect determination unit 60 monitors the tendency of the error information related to the monitored feeder as monitoring data. For example, the effect determination section 60 detects the first predetermined state or the second predetermined state using the learning model 23 or 24 in the same way as the state monitoring section 20 does.
 次に、効果判定部60は、第1所定状態または第2所定状態に問題が検出されたか否かを判定する(ステップS43)。問題が検出された場合には、実行された対策に応じた指示の効果がない、または、実行された対策に応じた指示の効果がまだ表れていないと判定することができ、問題が検出されなかった場合には、実行された対策に応じた指示の効果があったと判定することができる。 Next, the effect determination unit 60 determines whether or not a problem has been detected in the first predetermined state or the second predetermined state (step S43). When a problem is detected, it can be determined that there is no effect of the instructions according to the measures taken, or that the effects of the instructions according to the measures taken have not yet appeared, and the problem is detected. If not, it can be determined that the instruction was effective in accordance with the countermeasures taken.
 問題が検出されなかった場合(ステップS43でNo)、更新部70は、判定された効果に基づいて学習モデル33または34を更新する(ステップS44)。例えば、具体例1の場合に、問題が検出されなくなった場合には、更新部70は、問題に対して吸着位置ティーチが効果的であったと判断して、吸着位置ティーチの優先度が高くなるように学習モデル33を更新する。例えば、具体例2の場合に、問題が検出されなくなった場合には、更新部70は、問題に対して清掃が効果的であったと判断して、清掃の優先度が高くなるように学習モデル34を更新する。 If no problem is detected (No in step S43), the updating unit 70 updates the learning model 33 or 34 based on the determined effect (step S44). For example, in the case of Concrete Example 1, when the problem is no longer detected, the updating unit 70 determines that the suction position teaching was effective against the problem, and the priority of the suction position teaching is increased. The learning model 33 is updated as follows. For example, in the case of Specific Example 2, when the problem is no longer detected, the updating unit 70 determines that cleaning was effective against the problem, and sets the learning model so that cleaning has a higher priority. Update 34.
 次に、効果判定部60は、今回の指示が完了したため、今回の指示を実行するにあたりロックされていた生産リソースのロックを解除する(ステップS45)。例えば、具体例1の場合、ロックされていた作業者Aのロックが解除される。例えば、具体例2の場合、ロックされていた作業者Bおよびフィーダのロックが解除される。 Next, since the instruction of this time is completed, the effect determination unit 60 unlocks the production resource that was locked when executing the instruction of this time (step S45). For example, in the case of the specific example 1, the locked worker A is unlocked. For example, in the case of the specific example 2, the locked operator B and the feeder are unlocked.
 次に、効果判定部60は、優先対策リストから今回の指示により実行された対策を削除する(ステップS46)。例えば、具体例1の場合、吸着位置ティーチが優先対策リストから削除される。例えば、具体例2の場合、清掃が優先対策リストから削除される。 Next, the effect determination unit 60 deletes the measures that have been executed according to this instruction from the prioritized measures list (step S46). For example, in the case of specific example 1, the pickup position teaching is deleted from the priority countermeasure list. For example, in the case of specific example 2, cleaning is deleted from the priority measure list.
 そして、効果判定部60は、今回の指示により検出されなくなった問題についての対策候補リストを削除する(ステップS47)。例えば、具体例1の場合、吸着エラー率の悪化という問題は検出されなくなり、当該問題の対策は不要となったため、図7に示される対策候補リストは削除される。対策候補リストを削除することは、効果判定部60が、第1優先指示(吸着位置ティーチの指示)が実行されたことにより、吸着位置ティーチの指示の実行前の状態(吸着エラー率)に対して吸着位置ティーチの指示の実行後の吸着エラー率に所定以上の改善傾向があると判定した場合、指示出力部50は、吸着位置ティーチの指示に対応した吸着エラー率に関連して抽出された、実行前の第2優先指示(フィーダ交換またはノズル交換の指示)が出力されないことを意味する。また、効果判定部60は、対策を実行した問題以外に優先対策リストに提示される問題が継続しているかも判定してもよい。効果判定部60は、対策を実行した問題以外に問題が検出されなくなった問題についての優先対策リストを削除してもよい。検出される問題によっては関連性を有しており、そのような問題に対して、効率的な対策を実行することができる。 Then, the effect determination unit 60 deletes the countermeasure candidate list for the problem that is no longer detected by this instruction (step S47). For example, in the case of Specific Example 1, the problem of deterioration of the suction error rate is no longer detected, and countermeasures for this problem are unnecessary, so the countermeasure candidate list shown in FIG. 7 is deleted. Deletion of the countermeasure candidate list means that the effect determination unit 60 determines that the first priority instruction (instruction to teach the pickup position) is executed, and the state (suction error rate) before execution of the instruction to teach the pickup position. When it is determined that the suction error rate after execution of the suction position teaching instruction is improved by a predetermined amount or more, the instruction output unit 50 outputs the extracted suction error rate corresponding to the suction position teaching instruction. , means that the second priority instruction (instruction of feeder replacement or nozzle replacement) before execution is not output. In addition, the effect determination unit 60 may also determine whether a problem presented in the prioritized countermeasure list continues in addition to the problem for which countermeasures have been taken. The effect determination unit 60 may delete the prioritized countermeasure list for problems for which no problems are detected other than the problems for which countermeasures have been taken. Some of the problems detected are relevant and efficient countermeasures can be taken against such problems.
 一方で、問題が検出された場合(ステップS43でYes)、効果判定部60は、タイムアウトしたか否かを判定する(ステップS48)。言い換えると、効果判定部60は、所定時間、効果が判定できていない状態であるか否かを判定する。指示が実行されてから、効果が表れるまでにある程度の時間を要する場合があるため、ステップS48での処理が行われる。所定期間は、例えば、指示毎に、効果の刈り取りに必要な時間が設定される。また、生産計画やメンテナンス計画に追加される対策のように、即時に行われない指示はその指示を行う計画が作成されたことで、生産リソースのロックを解除して効果判定は計画が実行された後に行われてもよい。 On the other hand, if a problem is detected (Yes in step S43), the effect determination unit 60 determines whether or not timeout has occurred (step S48). In other words, the effect determination unit 60 determines whether or not the effect cannot be determined for a predetermined period of time. Since it may take some time for the effect to appear after the instruction is executed, the process in step S48 is performed. For the predetermined period, for example, the time required for harvesting the effect is set for each instruction. In addition, such as measures added to the production plan and maintenance plan, by creating a plan that does not take immediate action, the production resource is unlocked and the effect judgment is executed. may be done after
 タイムアウトしていない場合(ステップS48でNo)、問題が検出されなくなる、あるいは、タイムアウトするまでステップS42、ステップS43およびステップS48での処理が繰り返される。 If the timeout has not occurred (No in step S48), the processes in steps S42, S43, and S48 are repeated until the problem is no longer detected or the timeout occurs.
 タイムアウトした場合(ステップS48でYes)、更新部70は、判定された効果に基づいて学習モデル33または34を更新する(ステップS49)。例えば、具体例1の場合に、問題が検出されたままタイムアウトした場合には、更新部70は、問題に対して吸着位置ティーチは効果的ではなかったと判断して、吸着位置ティーチの優先度が低くなるように学習モデル33を更新する。例えば、具体例2の場合に、問題が検出されたままタイムアウトした場合には、更新部70は、問題に対して清掃が効果的ではなかったと判断して、清掃の優先度が低くなるように学習モデル34を更新する。また、更新部70は、問題が検出されたものの、監視データに傾向の改善があった(所定以下の改善傾向があった)場合には、優先度の低下度合いを小さくなるように学習モデル34を更新する。 When timed out (Yes in step S48), the update unit 70 updates the learning model 33 or 34 based on the determined effect (step S49). For example, in the case of Concrete Example 1, if a timeout occurs while a problem is being detected, the updating unit 70 determines that the suction position teaching was not effective against the problem, and the priority of the suction position teaching is set to Update the learning model 33 so that it becomes lower. For example, in the case of Concrete Example 2, if a timeout occurs while a problem is detected, the updating unit 70 determines that cleaning was not effective against the problem, and lowers the priority of cleaning. Update the learning model 34. In addition, when a problem is detected but there is an improvement in the trend of the monitoring data (there is an improvement trend below a predetermined level), the updating unit 70 updates the learning model 34 so that the degree of priority decrease is small. to update.
 次に、効果判定部60は、今回の指示が完了したため、今回の指示を実行するにあたりロックされていた生産リソースのロックを解除する(ステップS50)。例えば、具体例1の場合、ロックされていた作業者Aのロックが解除される。例えば、具体例2の場合、ロックされていた作業者Bおよびフィーダのロックが解除される。 Next, since the current instruction has been completed, the effect determination unit 60 unlocks the production resources that were locked when executing the current instruction (step S50). For example, in the case of the specific example 1, the locked worker A is unlocked. For example, in the case of the specific example 2, the locked operator B and the feeder are unlocked.
 次に、効果判定部60は、優先対策リストから今回の指示により実行された対策を削除する(ステップS51)。例えば、具体例1の場合、吸着位置ティーチが優先対策リストから削除される。例えば、具体例2の場合、清掃が優先対策リストから削除される。 Next, the effect determination unit 60 deletes the countermeasures that have been executed according to this instruction from the priority countermeasure list (step S51). For example, in the case of specific example 1, the pickup position teaching is deleted from the priority countermeasure list. For example, in the case of specific example 2, cleaning is deleted from the priority measure list.
 次に、効果判定部60は、今回の指示が実行されても検出されたままの問題についての対策候補リストを更新する(ステップS52)。ここで、具体例1の場合における対策候補リストの更新について図12を用いて説明する。 Next, the effect determination unit 60 updates the countermeasure candidate list for problems that remain detected even after the current instruction is executed (step S52). Here, updating of the countermeasure candidate list in the case of specific example 1 will be described with reference to FIG. 12 .
 図12は、実施の形態に係る、更新後の対策候補リストの一例を示す表である。 FIG. 12 is a table showing an example of the updated countermeasure candidate list according to the embodiment.
 例えば、吸着位置ティーチの指示が実行されても吸着エラー率の悪化という問題は検出されたままの場合、図12に示されるように、対策候補リストから対策候補として吸着位置ティーチが削除される。また、図7に示される対策候補リストが作成されてから時間が経過しており、その間も生産フロアでは生産が継続して行われるため、フィーダおよびノズルの状態が変化し、それに伴いフィーダ交換およびノズル交換の優先度も変化している可能性がある。そこで、効果判定部60は、優先度の分析を行い対策候補リストにおける優先度を更新してもよい。例えば、図7に示される対策候補リストでは、フィーダ交換とノズル交換との優先度(優先確率)の比率は3:1であったが、図12に示される対策候補リストでは、2:3と変化していることがわかる。 For example, if the problem of deterioration of the suction error rate is still detected even if the instruction of the suction position teaching is executed, as shown in FIG. 12, the suction position teaching is deleted from the list of candidate measures. In addition, some time has passed since the countermeasure candidate list shown in FIG. 7 was created, and during that time production continues on the production floor. The priority of nozzle replacement may also have changed. Therefore, the effect determination unit 60 may analyze the priority and update the priority in the countermeasure candidate list. For example, in the countermeasure candidate list shown in FIG. 7, the ratio of priority (priority probability) between feeder replacement and nozzle exchange is 3:1, but in the countermeasure candidate list shown in FIG. I know it's changing.
 図11での説明に戻り、効果判定部60は、作成した対策候補リストにおける最も優先度の高い対策候補を、検出された問題に対する対策として優先対策リストへ登録する(ステップS53)。例えば、図12に示される対策候補リストが作成された場合、吸着エラー率の悪化という問題に対して、ノズル交換という対策が優先対策リストへ登録される。つまり、吸着位置ティーチが行われた後も継続している吸着エラー率の悪化という問題に対して、ノズル交換の指示が出力され得る。 Returning to the description of FIG. 11, the effect determination unit 60 registers the highest-priority measure candidate in the created measure candidate list in the priority measure list as a measure against the detected problem (step S53). For example, when the countermeasure candidate list shown in FIG. 12 is created, a countermeasure of exchanging nozzles is registered in the priority countermeasure list for the problem of deterioration of the suction error rate. In other words, an instruction to replace the nozzle can be output in response to the problem that the suction error rate continues to deteriorate even after the suction position teaching is performed.
 これは、効果判定部60が実行された第1優先指示(吸着位置ティーチ)の効果を判定するまで、ステップS50以降の動作が実行されないため、指示出力部50は、複数の対策(吸着位置ティーチ、フィーダ交換およびノズル交換)のうちから決定された、優先順位が吸着位置ティーチの指示以降の第2優先指示(フィーダ交換またはノズル交換)を出力しないことを意味する。吸着位置ティーチの効果がないと判定された後に、ノズル交換の指示が出力されるためである。 This is because the operations after step S50 are not executed until the effect determination unit 60 determines the effect of the executed first priority instruction (suction position teaching). , feeder exchange and nozzle exchange), and the second priority instruction (feeder exchange or nozzle exchange) after the pickup position teach instruction is not output. This is because the instruction to replace the nozzle is output after it is determined that the suction position teaching is ineffective.
 また、これは、効果判定部60が、第1優先指示(吸着位置ティーチ)が実行されたことにより、吸着位置ティーチの実行前の状態(吸着エラー率)に対して吸着位置ティーチの実行後の吸着エラー率に所定以上の改善傾向がないと判定した場合、対策決定部30は、吸着位置ティーチを除外した複数の対策(フィーダ交換およびノズル交換)のそれぞれの優先順位に基づいて、実行する第2優先指示(ノズル交換)を決定し、指示出力部50はノズル交換の指示を出力することを意味する。優先順位の最も高かった吸着位置ティーチ以降の優先順位のノズル交換の指示が出力されるためである。 In addition, the effect determination unit 60 determines that the state (suction error rate) before execution of the suction position teaching is compared with the state (suction error rate) after the execution of the suction position teaching due to the execution of the first priority instruction (suction position teaching). When it is determined that the suction error rate does not tend to improve beyond a predetermined level, the countermeasure determination unit 30 determines the first countermeasure to be executed based on the priority of each of the plurality of countermeasures (feeder replacement and nozzle replacement) excluding the suction position teaching. This means that the 2nd priority instruction (nozzle replacement) is determined, and the instruction output unit 50 outputs the nozzle replacement instruction. This is because instructions to replace nozzles are output with priorities after the suction position teaching, which has the highest priority.
 また、これは、効果判定部60が所定期間、効果を判定できなかった場合、対策決定部30は、第1優先指示(吸着位置ティーチ)を除外した複数の対策(フィーダ交換の指示およびノズル交換)のそれぞれの優先順位に基づいて、実行する第2優先指示(ノズル交換)を決定し、指示出力部50は、ノズル交換の指示を出力することを意味する。タイムアウトした後に、吸着位置ティーチを除外した複数の対策の中で優先順位が高いノズル交換の指示が出力されるためである。 Further, when the effect determination unit 60 cannot determine the effect for a predetermined period of time, the countermeasure determination unit 30 selects a plurality of countermeasures (feeder exchange instruction and nozzle exchange instruction) excluding the first priority instruction (suction position teaching). ), the second priority instruction (nozzle replacement) to be executed is determined, and the instruction output unit 50 outputs the nozzle replacement instruction. This is because, after the time-out, an instruction to replace the nozzle with the highest priority among the plurality of countermeasures excluding the suction position teaching is output.
 なお、ステップS13において、状態監視部20により問題が検出され、その問題に対する対策候補リストの中から優先度の高い対策が優先対策リストに登録された後、登録された対策の優先順位が低かったり、登録された対策についての生産リソースがすでにロックされていたりすることで、登録された対策がなかなか実行されない場合がある。このような場合に、先に実行された他の問題に対する対策によって、実行されていない対策に対応する問題が解決する場合がある。この場合には、登録された対策が実行される前であっても、優先対策リストから削除され、また、対策候補リストも削除されてもよい。 In step S13, after a problem is detected by the status monitoring unit 20 and a high-priority countermeasure is registered in the priority countermeasure list from the countermeasure candidate list for the problem, the registered countermeasure may have a low priority. In some cases, the registered countermeasures may not be executed easily because the production resources for the registered countermeasures have already been locked. In such a case, the previously executed countermeasures for other problems may solve the problems corresponding to the unexecuted countermeasures. In this case, even before the registered countermeasure is executed, it may be deleted from the priority countermeasure list and the countermeasure candidate list may also be deleted.
 以上説明したように、生産フロアにおける異なる第1状態および第2状態に対する対処を行わせるための第1対策および第2対策が決定されるが、第1対策と第2対策との調停が行われることで、最適な第1対策または第2対策を出力することができる。このように、本開示の生産フロア管理システム1によれば、複数の対処方法から最適な作業指示を出力することができる。 As described above, the first and second countermeasures are determined to deal with the different first and second conditions on the production floor, and the first and second countermeasures are arbitrated. By doing so, it is possible to output the optimum first or second countermeasure. In this way, according to the production floor management system 1 of the present disclosure, it is possible to output the optimum work instructions from a plurality of coping methods.
 (その他の実施の形態)
 以上、本開示の生産フロア管理システム1について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、および、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
Although the production floor management system 1 of the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above embodiments. As long as it does not deviate from the spirit of the present disclosure, modifications that can be made by those skilled in the art to the present embodiment, and forms constructed by combining the components of different embodiments are also included within the scope of the present disclosure. be
 例えば、上記実施の形態では、生産フロア管理システム1は、効果判定部60および更新部70ならびに学習モデル23、34、33および34を備える例について説明したが、備えていなくてもよい。 For example, in the above embodiment, the production floor management system 1 includes the effect determination unit 60, the update unit 70, and the learning models 23, 34, 33, and 34, but it does not have to.
 例えば、上記実施の形態では、第1状態は、生産装置の生産状態であり、第2状態は、生産リソースの状態である例を説明したが、これに限らない。例えば、第1状態および第2状態は、生産フロアにおける異なる状態であれば、特に限定されない。 For example, in the above embodiment, the first state is the production state of the production equipment and the second state is the production resource state, but the present invention is not limited to this. For example, the first state and the second state are not particularly limited as long as they are different states on the production floor.
 例えば、上記実施の形態では、生産フロア管理システム1が取得部10、状態監視部20、対策決定部30、対策調停部40、指示出力部50、効果判定部60、および更新部70を備える例について説明したが、それらの一部は、生産装置が備えていてもよい。例えば、生産装置が、取得部10と状態監視部20、および対策決定部30を備えていてもよい。 For example, in the above embodiment, the production floor management system 1 includes the acquisition unit 10, the state monitoring unit 20, the countermeasure determination unit 30, the countermeasure mediation unit 40, the instruction output unit 50, the effect determination unit 60, and the update unit 70. , some of which may be included in the production equipment. For example, a production device may include the acquisition unit 10 , the state monitoring unit 20 , and the countermeasure determination unit 30 .
 例えば、対策に応じた指示は複数の指示で構成されていてもよい。また、対策に応じた指示は複数の生産装置や複数の作業者が所持する携帯端末に出力されてもよい。 For example, instructions according to countermeasures may consist of multiple instructions. In addition, instructions corresponding to countermeasures may be output to a plurality of production apparatuses or mobile terminals possessed by a plurality of workers.
 例えば、本開示は、生産フロア管理システム1として実現できるだけでなく、生産フロア管理システム1を構成する各構成要素が行うステップ(処理)を含む作業指示方法として実現できる。 For example, the present disclosure can be realized not only as the production floor management system 1, but also as a work instruction method including steps (processes) performed by each component constituting the production floor management system 1.
 図13は、その他の実施の形態に係る作業指示方法の一例を示すフローチャートである。 FIG. 13 is a flow chart showing an example of a work instruction method according to another embodiment.
 作業指示方法は、生産物を生産する生産装置を備える生産フロアにおける状態を管理する生産フロア管理システムにおける作業指示方法であって、図13に示されるように、生産フロアにおける第1状態を監視し(ステップS1)、生産フロアにおける、第1状態とは異なる第2状態を監視し(ステップS2)、第1状態に対応した第1対策を決定し(ステップS3)、第2状態に対応した第2対策を決定し(ステップS4)、第1対策と第2対策との調停を行い(ステップS5)、調停に従って、第1対策または第2対策に対応した指示を出力する(ステップS6)ことを含む。 The work instruction method is a work instruction method in a production floor management system that manages the state of a production floor equipped with production equipment that produces products, and as shown in FIG. 13, the first state of the production floor is monitored. (Step S1), a second state different from the first state on the production floor is monitored (Step S2), a first countermeasure corresponding to the first state is determined (Step S3), and a second countermeasure corresponding to the second state is determined (Step S3). Two countermeasures are determined (step S4), the first countermeasure and the second countermeasure are arbitrated (step S5), and an instruction corresponding to the first countermeasure or the second countermeasure is output according to the arbitration (step S6). include.
 例えば、作業指示方法におけるステップは、コンピュータ(コンピュータシステム)によって実行されてもよい。そして、本開示は、作業指示方法に含まれるステップを、コンピュータに実行させるためのプログラムとして実現できる。さらに、本開示は、そのプログラムを記録したCD-ROM等である非一時的なコンピュータ読み取り可能な記録媒体として実現できる。 For example, the steps in the work instruction method may be executed by a computer (computer system). Further, the present disclosure can be realized as a program for causing a computer to execute the steps included in the work instruction method. Furthermore, the present disclosure can be implemented as a non-temporary computer-readable recording medium such as a CD-ROM recording the program.
 例えば、本開示が、プログラム(ソフトウェア)で実現される場合には、コンピュータのCPU、メモリおよび入出力回路等のハードウェア資源を利用してプログラムが実行されることによって、各ステップが実行される。つまり、CPUがデータをメモリまたは入出力回路等から取得して演算したり、演算結果をメモリまたは入出力回路等に出力したりすることによって、各ステップが実行される。 For example, when the present disclosure is implemented by a program (software), each step is executed by executing the program using hardware resources such as the CPU, memory, and input/output circuits of the computer. . That is, each step is executed by the CPU acquiring data from a memory, an input/output circuit, or the like, performing an operation, or outputting the operation result to the memory, an input/output circuit, or the like.
 また、上記実施の形態の生産フロア管理システム1に含まれる各構成要素は、専用または汎用の回路として実現されてもよい。 Also, each component included in the production floor management system 1 of the above embodiment may be realized as a dedicated or general-purpose circuit.
 また、上記実施の形態の生産フロア管理システム1に含まれる各構成要素は、集積回路(IC:Integrated Circuit)であるLSI(Large Scale Integration)として実現されてもよい。 Also, each component included in the production floor management system 1 of the above embodiment may be implemented as an LSI (Large Scale Integration), which is an integrated circuit (IC).
 また、集積回路はLSIに限られず、専用回路または汎用プロセッサで実現されてもよい。プログラム可能なFPGA(Field Programmable Gate Array)、または、LSI内部の回路セルの接続および設定が再構成可能なリコンフィギュラブル・プロセッサが、利用されてもよい。 Also, the integrated circuit is not limited to an LSI, and may be realized by a dedicated circuit or a general-purpose processor. A programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor capable of reconfiguring connections and settings of circuit cells inside the LSI may be used.
 さらに、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて、生産フロア管理システム1に含まれる各構成要素の集積回路化が行われてもよい。 Furthermore, if a technology for integrating circuits to replace LSIs emerges due to advances in semiconductor technology or another technology derived from it, then naturally each component included in the production floor management system 1 will be integrated into circuits using that technology. may be broken.
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, forms obtained by applying various modifications to the embodiments that a person skilled in the art can think of, and forms realized by arbitrarily combining the components and functions in each embodiment within the scope of the present disclosure are also included in this disclosure.
 本開示は、例えば、生産フロアの管理に利用できる。 The present disclosure can be used, for example, for managing production floors.
 1 生産フロア管理システム
 2 通信ネットワーク
 4 実装ライン
 5 管理装置
 10 取得部
 20 状態監視部
 21 第1状態監視部
 22 第2状態監視部
 23、24、33、34 学習モデル
 30 対策決定部
 31 第1対策決定部
 32 第2対策決定部
 40 対策調停部
 41 リソースデータベース
 50 指示出力部
 60 効果判定部
 70 更新部
 M1 基板供給装置
 M2 基板受渡装置
 M3 印刷装置
 M4、M5 実装装置
 M6 リフロー装置
 M7 基板回収装置
1 production floor management system 2 communication network 4 mounting line 5 management device 10 acquisition unit 20 state monitoring unit 21 first state monitoring unit 22 second state monitoring unit 23, 24, 33, 34 learning model 30 countermeasure determination unit 31 first countermeasure Determination unit 32 Second countermeasure determination unit 40 Countermeasure mediation unit 41 Resource database 50 Instruction output unit 60 Effect determination unit 70 Update unit M1 Board supply device M2 Board delivery device M3 Printer M4, M5 Mounting device M6 Reflow device M7 Board recovery device

Claims (14)

  1.  生産物を生産する生産装置を備える生産フロアにおける状態を管理する生産フロア管理システムであって、
     前記生産フロアにおける第1状態を監視する第1状態監視部と、
     前記第1状態に対応した第1対策を決定する第1対策決定部と、
     前記生産フロアにおける、前記第1状態とは異なる第2状態を監視する第2状態監視部と、
     前記第2状態に対応した第2対策を決定する第2対策決定部と、
     前記第1対策と前記第2対策との調停を行う対策調停部と、
     前記調停に従って、前記第1対策または前記第2対策に対応した指示を出力する指示出力部と、を備える
     生産フロア管理システム。
    A production floor management system for managing conditions on a production floor comprising production equipment that produces products, comprising:
    a first condition monitor for monitoring a first condition on the production floor;
    a first countermeasure determination unit that determines a first countermeasure corresponding to the first state;
    a second condition monitoring unit that monitors a second condition different from the first condition on the production floor;
    a second countermeasure determination unit that determines a second countermeasure corresponding to the second state;
    a countermeasure arbitration unit that arbitrates between the first countermeasure and the second countermeasure;
    an instruction output unit that outputs an instruction corresponding to the first countermeasure or the second countermeasure according to the arbitration.
  2.  前記第1状態監視部による前記第1状態の監視および前記第1対策決定部による前記第1対策の決定と、前記第2状態監視部による前記第2状態の監視および前記第2対策決定部による前記第2対策の決定とは、並行して行われる
     請求項1に記載の生産フロア管理システム。
    Monitoring of the first state by the first state monitoring section and determination of the first countermeasure by the first countermeasure determining section; Monitoring of the second state by the second state monitoring section and by the second countermeasure determining section The production floor management system according to claim 1, wherein the determination of the second countermeasure is performed in parallel.
  3.  前記対策調停部は、前記第1対策に対応する前記第1状態に設定される問題度と前記第2対策に対応する前記第2状態に設定される問題度に基づいて、前記調停を行う
     請求項1または2に記載の生産フロア管理システム。
    The countermeasure arbitration unit performs the arbitration based on the degree of problem set in the first state corresponding to the first countermeasure and the degree of problem set in the second state corresponding to the second countermeasure. 3. A production floor management system according to Item 1 or 2.
  4.  前記対策調停部は、前記第1対策に対応する前記第1状態に設定される問題度と前記第2対策に対応する前記第2状態に設定される問題度に差がない場合に前記第1対策を優先して前記調停を行う
     請求項3に記載の生産フロア管理システム。
    If there is no difference between the problem level set in the first state corresponding to the first countermeasure and the problem level set in the second state corresponding to the second countermeasure, the countermeasure mediation unit 4. The production floor management system according to claim 3, wherein said arbitration is performed with priority given to countermeasures.
  5.  前記生産フロア管理システムは、出力された指示に対応する前記第1対策または前記第2対策が実行された前後の前記第1状態および前記第2状態の少なくとも一方に基づいて、実行された前記第1対策または前記第2対策の効果を判定する効果判定部をさらに備える
     請求項1から4のいずれかひとつに記載の生産フロア管理システム。
    The production floor management system performs the executed second countermeasure based on at least one of the first state and the second state before and after the first countermeasure or the second countermeasure corresponding to the output instruction is executed. 5. The production floor management system according to any one of claims 1 to 4, further comprising an effect determination unit that determines the effect of the first countermeasure or the second countermeasure.
  6.  前記第1状態は、前記生産装置の生産状態であり、
     前記第2状態は、前記生産フロアで管理され、生産に用いられる生産リソースの状態である
     請求項1から5のいずれかひとつに記載の生産フロア管理システム。
    the first state is a production state of the production apparatus;
    The production floor management system according to any one of claims 1 to 5, wherein the second status is the status of production resources managed on the production floor and used for production.
  7.  前記対策調停部は、前記第1対策または前記第2対策に必要な前記生産リソースの有無に基づいて、前記調停を行う
     請求項6に記載の生産フロア管理システム。
    7. The production floor management system according to claim 6, wherein said countermeasure arbitration unit performs said arbitration based on the presence or absence of said production resource required for said first countermeasure or said second countermeasure.
  8.  前記生産フロア管理システムは、前記生産状態に対応して前記生産フロアで生じる第1所定状態を検出するための第1学習モデルをさらに備え、
     前記第1状態監視部は、前記第1学習モデルに基づいて前記第1所定状態を検出する
     請求項6または7に記載の生産フロア管理システム。
    The production floor management system further comprises a first learning model for detecting a first predetermined condition occurring on the production floor corresponding to the production condition;
    8. The production floor management system according to claim 6, wherein said first condition monitoring unit detects said first predetermined condition based on said first learning model.
  9.  前記第1状態監視部は、所定期間内において、前記生産装置で発生した生産ミス情報、前記生産装置で生産した生産物の生産量情報、および、前記生産装置で生産した生産物の良否情報の少なくともひとつに関する生産指標に対応する前記第1所定状態を検出し、
     前記第1対策決定部は、前記生産指標を改善する対策を含む前記第1対策を決定する
     請求項8に記載の生産フロア管理システム。
    The first state monitoring unit provides, within a predetermined period of time, production error information occurring in the production apparatus, production volume information of the product produced by the production apparatus, and quality information of the product produced by the production apparatus. detecting the first predetermined condition corresponding to at least one production index;
    9. The production floor management system according to claim 8, wherein said first countermeasure determination unit determines said first countermeasure including a countermeasure for improving said production index.
  10.  前記生産フロア管理システムは、前記生産リソースの状態に対応して前記生産フロアで生じる第2所定状態を検出するための第2学習モデルをさらに備え、
     前記第2状態監視部は、前記第2学習モデルに基づいて前記第2所定状態を検出する
     請求項6から9のいずれかひとつに記載の生産フロア管理システム。
    The production floor management system further comprises a second learning model for detecting a second predetermined condition occurring on the production floor corresponding to the condition of the production resource;
    The production floor management system according to any one of claims 6 to 9, wherein the second state monitoring unit detects the second predetermined state based on the second learning model.
  11.  前記第2状態監視部は、前記生産リソースに含まれる前記生産装置の稼働状態に関する稼動指標に対応する前記第2所定状態を検出し、
     前記第2対策決定部は、前記稼動指標に対応する前記生産装置に対する対策を含む前記第2対策を決定する
     請求項10に記載の生産フロア管理システム。
    The second state monitoring unit detects the second predetermined state corresponding to an operation index relating to the operation state of the production equipment included in the production resource,
    11. The production floor management system according to claim 10, wherein said second countermeasure determination unit determines said second countermeasure including countermeasures for said production equipment corresponding to said operation index.
  12.  前記第2状態監視部は、前記生産リソースに含まれる作業者が実施した作業に関する作業指標に対応する前記第2所定状態を検出し、
     前記第2対策決定部は、前記作業指標に対応する前記作業者の作業を含む前記第2対策を決定する
     請求項10または11に記載の生産フロア管理システム。
    The second state monitoring unit detects the second predetermined state corresponding to a work index related to a work performed by a worker included in the production resource,
    12. The production floor management system according to claim 10, wherein said second countermeasure determination unit determines said second countermeasure including work of said worker corresponding to said work index.
  13.  生産物を生産する生産装置を備える生産フロアにおける状態を管理する生産フロア管理システムにおける作業指示方法であって、
     前記生産フロアにおける第1状態を監視し、
     前記生産フロアにおける、前記第1状態とは異なる第2状態を監視し、
     前記第1状態に対応した第1対策を決定し、
     前記第2状態に対応した第2対策を決定し、
     前記第1対策と前記第2対策との調停を行い、
     前記調停に従って、前記第1対策または前記第2対策に対応した指示を出力することを含む
     作業指示方法。
    A work instruction method in a production floor management system that manages the state of a production floor equipped with production equipment that produces products,
    monitor a first condition on the production floor;
    monitor a second condition on the production floor that is different from the first condition;
    determining a first countermeasure corresponding to the first state;
    determining a second countermeasure corresponding to the second state;
    mediating between the first measure and the second measure;
    A work instruction method, including outputting an instruction corresponding to the first countermeasure or the second countermeasure according to the arbitration.
  14.  請求項13に記載の作業指示方法をコンピュータにより実行させる作業指示プログラム。 A work instruction program that causes a computer to execute the work instruction method according to claim 13.
PCT/JP2021/047304 2021-01-19 2021-12-21 Production floor management system, work instruction method, and work instruction program WO2022158225A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180090583.XA CN116745713A (en) 2021-01-19 2021-12-21 Production shop management system, job instruction method, and job instruction program
DE112021006886.5T DE112021006886T5 (en) 2021-01-19 2021-12-21 Production area management system, work instruction procedure and work instruction program
JP2022577055A JPWO2022158225A1 (en) 2021-01-19 2021-12-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-006684 2021-01-19
JP2021006684 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158225A1 true WO2022158225A1 (en) 2022-07-28

Family

ID=82548275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047304 WO2022158225A1 (en) 2021-01-19 2021-12-21 Production floor management system, work instruction method, and work instruction program

Country Status (4)

Country Link
JP (1) JPWO2022158225A1 (en)
CN (1) CN116745713A (en)
DE (1) DE112021006886T5 (en)
WO (1) WO2022158225A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10283028A (en) * 1997-04-07 1998-10-23 Toyota Motor Corp Facility information transmitter
JP2004005602A (en) * 2003-04-21 2004-01-08 Matsushita Electric Ind Co Ltd Mounting substrate production system and maintenance instruction system
JP2012145997A (en) * 2011-01-07 2012-08-02 Fuji Mach Mfg Co Ltd Production system
WO2018142604A1 (en) * 2017-02-06 2018-08-09 株式会社Fuji Work management device
WO2020152757A1 (en) * 2019-01-21 2020-07-30 三菱電機株式会社 Processing state detecting device, laser processing machine, and machine learning device
JP2020177547A (en) * 2019-04-22 2020-10-29 株式会社ジェイテクト Work support system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10283028A (en) * 1997-04-07 1998-10-23 Toyota Motor Corp Facility information transmitter
JP2004005602A (en) * 2003-04-21 2004-01-08 Matsushita Electric Ind Co Ltd Mounting substrate production system and maintenance instruction system
JP2012145997A (en) * 2011-01-07 2012-08-02 Fuji Mach Mfg Co Ltd Production system
WO2018142604A1 (en) * 2017-02-06 2018-08-09 株式会社Fuji Work management device
WO2020152757A1 (en) * 2019-01-21 2020-07-30 三菱電機株式会社 Processing state detecting device, laser processing machine, and machine learning device
JP2020177547A (en) * 2019-04-22 2020-10-29 株式会社ジェイテクト Work support system

Also Published As

Publication number Publication date
DE112021006886T5 (en) 2023-11-02
CN116745713A (en) 2023-09-12
JPWO2022158225A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP6475173B2 (en) Substrate production monitoring apparatus and substrate production monitoring method
CN110073396B (en) Data processing apparatus and data processing method
JP6413072B2 (en) Component mounting method and component mounting system
CN107305367A (en) The managing device of production line
JP6830538B2 (en) Board work management system
US11550293B2 (en) Board production management device and board production management method to determine a countermeasure to a board production device error
JP2007053264A (en) Failure detecting device for packaging quality and failure detecting method of packaging quality
JP2009134623A (en) Process improvement support apparatus, process improvement support method, process improvement support program and recording medium having process improvement support program recorded thereon
WO2022158225A1 (en) Production floor management system, work instruction method, and work instruction program
CN105282992B (en) Component mounting method and component mounting system
WO2022158227A1 (en) Production floor management system, work effect determination method, and work effect determination program
WO2022158226A1 (en) Production floor management system, work policy determination method, and work policy determination program
JP7176109B2 (en) Component mounting management device, component mounting management method, component mounting management program, recording medium
US20230351336A1 (en) Method for manufacturing system analysis and/or maintenance
JP7065294B2 (en) Manufacturing system and manufacturing method
JP7340741B2 (en) A production control device, a production control method, and a program that causes a computer to execute the production control method
US10891575B2 (en) Facility configuration creation support system and facility configuration creation support method
JP2018018917A (en) Substrate production management device and substrate production management method
JP4212342B2 (en) Board-to-board work line
JP2023040471A (en) Production line management system and production line management method
US20220076176A1 (en) Standby position determination device and standby position determination method
JP2004134774A (en) Quality-analyzing system and quality-analyzing method
WO2023079902A1 (en) Maintenance assistance system, maintenance assistance method, and maintenance assistance program
WO2023171197A1 (en) Production management system, production management method, and production management program
WO2023037693A1 (en) Production management method, production management device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577055

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180090583.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021006886

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921326

Country of ref document: EP

Kind code of ref document: A1