WO2023171197A1 - Production management system, production management method, and production management program - Google Patents

Production management system, production management method, and production management program Download PDF

Info

Publication number
WO2023171197A1
WO2023171197A1 PCT/JP2023/003843 JP2023003843W WO2023171197A1 WO 2023171197 A1 WO2023171197 A1 WO 2023171197A1 JP 2023003843 W JP2023003843 W JP 2023003843W WO 2023171197 A1 WO2023171197 A1 WO 2023171197A1
Authority
WO
WIPO (PCT)
Prior art keywords
change
index
factor
information
production
Prior art date
Application number
PCT/JP2023/003843
Other languages
French (fr)
Japanese (ja)
Inventor
弘之 森
真由子 田中
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2023171197A1 publication Critical patent/WO2023171197A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a production management system, a production management method, and a production management program that manage production on a product production line.
  • product inspection equipment is placed in intermediate and final processes of the line to detect defects and sort out defective products.
  • a production line for component mounting boards there is generally a device that prints cream solder on printed wiring boards (printing device), a device that mounts components on the board printed with cream solder (mounting device), and a device that mounts components on the board printed with cream solder.
  • an inspection device placed after each production device inspects whether the work in each device is being performed correctly as planned.
  • a production management system is in operation that collects information from each manufacturing device and inspection device and comprehensively manages defect rates, production volume, etc., which improves the productivity of the entire production line. Contributing to improvement.
  • the present invention was made in view of the above circumstances, and its purpose is to provide a technology that makes it possible to more efficiently improve the quality and productivity of a production line.
  • the present invention for solving the above-mentioned problems has a production line that has a single or plural manufacturing equipment and inspection equipment, and in which a product manufacturing process and an inspection process are performed by the manufacturing equipment and the inspection equipment.
  • a production management system relating to, a change detection unit that detects a change in a predetermined factor related to the manufacturing process and/or the inspection process; an index change acquisition unit that acquires a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected by the change detection unit; an information generation unit that generates information indicating a relationship between a change in the factor and the index based on the change in the index acquired by the index change acquisition unit;
  • This is a production management system that is characterized by comprising:
  • the changes in the predetermined factors include planned changes that are carried out in a planned manner and other changes,
  • the information generated by the information generation unit and indicating the relationship between the change in the factor and the index may include information as to whether the change in the factor is the planned change
  • the change in a predetermined factor related to the manufacturing process and/or the inspection process detected by the change detection section may be a change in inspection conditions.
  • the indicators related to productivity and/or manufacturing quality in the manufacturing process are numerical values such as the false judgment rate and direct delivery rate, which are calculated based on the inspection results of the board or parts in a predetermined period, and are based on changes in the factors described above.
  • the relationship with the index may be an increase or decrease in a numerical value calculated based on the inspection results of the board or component based on the 4M change.
  • the manufacturing process and/or the testing process refers to at least one of the manufacturing process and the testing process. The same applies to “productivity and/or manufacturing quality" and similar expressions below.
  • information on a change in the predetermined factor detected by the change detection unit information on a change in the index acquired by the indicator change acquisition unit, and a relationship between the change in the factor and the index are provided. It is also possible to further include a database unit that stores and accumulates the information in association with the information indicating the information.
  • information on a change in the predetermined factor detected by the change detection unit information on a change in the index acquired by the indicator change acquisition unit, and a relationship between the change in the factor and the index are provided. It is also possible to further include an output unit that outputs the information in association with the information indicating the information. According to this, it is possible to report findings on how planned or accidental changes to manufacturing processes and inspection processes, as well as unplanned changes, affect productivity and manufacturing quality in manufacturing processes. , it is possible to share within the organization more reliably.
  • the change in the predetermined factor is a 4M change in the manufacturing process
  • the index related to productivity and/or manufacturing quality in the manufacturing process is a numerical value calculated based on the number of defects or the number of defects in a predetermined period
  • the relationship between the change in the factor and the index may be an increase or decrease in the number of defects or a numerical value calculated based on the number of defects based on the 4M change.
  • the index related to productivity and/or manufacturing quality in the manufacturing process is a numerical value indicating the production amount or production speed calculated based on the production number or production time in a predetermined period, and is a numerical value indicating the production amount or production speed, and The relationship with the index may be an increase or decrease in numerical values indicating production volume or production speed based on the 4M change. Examples of numerical values indicating the above-mentioned production amount and production speed include the number of products produced per unit time or the average time required for production per product.
  • the index related to productivity and/or manufacturing quality in the manufacturing process is a numerical value indicating productivity and quality calculated based on the number of products produced and the number of defects in a predetermined period, and changes in the factors and the index The relationship may be an increase or decrease in numerical values indicating productivity and quality based on the 4M change.
  • the numerical value indicating the productivity and quality mentioned above for example, OEE (Overall Equipment Efficiency) can be exemplified.
  • the index related to productivity and/or manufacturing quality in the manufacturing process is a numerical value that is calculated based on the measured value of product quality and indicates process capability such as not being defective, but close to defective, or not close to defective.
  • the relationship between the change in the factor and the index may be an increase or decrease in the numerical value indicating the process capability based on the 4M change. Examples of numerical values indicating this process capability include Cpk and Cp (process capability index).
  • the index related to productivity and/or manufacturing quality in the manufacturing process is calculated based on or at least one of the number of defects, process capacity, production volume, and production speed in a predetermined period. is a numerical value
  • the relationship between the change in the factors and the index may be an increase or decrease in at least one of the number of defects, process capacity, production volume, and production speed based on the 4M change, or a numerical value calculated based on them. . According to this, it is possible to more reliably understand the impact of 4M changes in the manufacturing process on quality, such as the number of defects, defective rate, and process capacity, and the impact on productivity, such as production volume and production speed. It is possible.
  • information indicating a relationship between a change in the factor and the index newly generated by the information generation unit an information confirmation unit that acquires a relationship between a change in the factor and information that has been generated in the past by the information generation unit in response to a change in the same factor and indicates a relationship between a change in the same factor and the index; It is also possible to prepare further.
  • the present disclosure also provides a production control method relating to a production line that includes a single or multiple manufacturing device and inspection device, and in which a product manufacturing process and an inspection process are performed by the manufacturing device and inspection device, a change detection step of detecting a change in a predetermined factor related to the manufacturing process and/or the inspection process; an index change acquisition step of acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected in the change detection step; an information generation step of generating information indicating a relationship between the change in the factor and the index from the change in the index acquired in the index change acquisition step; It may be a production control method characterized by having the following.
  • the change in the predetermined factor includes a planned change that is carried out in a planned manner and a change other than that
  • the information generated in the information generation step and indicating the relationship between the change in the factor and the index is characterized in that it includes information as to whether the change in the factor is the planned change or another change.
  • the above production control method may be used.
  • the present disclosure also provides information on a change in the predetermined factor detected in the change detection step, information on a change in the index acquired in the index change acquisition step, and information on a change in the factor and the index.
  • the production management method described above may further include a database creation step of storing and accumulating the information in association with the information indicating the relationship.
  • the present disclosure also provides information on a change in the predetermined factor detected in the change detection step, information on a change in the index acquired in the index change acquisition step, and information on a change in the factor and the index.
  • the production management method described above may further include an output step of correlating and outputting information indicating a relationship.
  • the change in the predetermined factor is a so-called 4M change in the manufacturing process
  • the index related to productivity and/or manufacturing quality in the manufacturing process is at least one of the number of defects, process capacity, production volume, and production speed in a predetermined period, or a numerical value calculated based on them
  • the relationship between the change in the factors and the index is an increase or decrease in at least one of the number of defects, process capacity, production volume, and production speed, or a numerical value calculated based on them, based on the 4M change.
  • the above production control method may be characterized in that:
  • the present disclosure also provides information indicating a relationship between a change in the factor newly generated in the information generation step and the index; an information confirmation step of acquiring the relationship between the change in the factor and information that has been generated in the past in the information generation step and indicates the relationship between the change in the same factor and the index;
  • the above production control method may further include the following.
  • a production management program relating to a production line that has a single or multiple manufacturing equipment and inspection equipment, and executes a product manufacturing process and an inspection process using the manufacturing equipment and inspection equipment, a change detection step of causing a computer to detect a change in a predetermined factor related to the manufacturing process and/or the inspection process; an index change acquisition step of acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected in the change detection step; an information generation step of generating information indicating a relationship between the change in the factor and the index from the change in the index acquired in the index change acquisition step; It may be a production management program characterized by causing the execution of the following.
  • the change in the predetermined factor includes a planned change that is carried out in a planned manner and other changes
  • the information generated in the information generation step and indicating the relationship between the change in the factor and the index includes information as to whether the change in the factor is the planned change or another change. , or the above-mentioned production management program.
  • the quality and productivity of the production line can be improved more efficiently.
  • FIG. 1 is a schematic configuration diagram of a production management system according to an embodiment of the present invention.
  • FIG. 1 is a functional block diagram of a production management system according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining planned change information and accidental change information when operating a production line according to an embodiment of the present invention.
  • 1 is a diagram showing features of a production management system according to an embodiment of the present invention.
  • 1 is a flowchart of processing in the entire production management system according to an embodiment of the present invention.
  • 5 is a flowchart of a data accumulation process and a case accumulation process according to an embodiment of the present invention.
  • 2 is a detailed flowchart of a knowledge extraction process and a process for setting narrowing conditions according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a process for continuous evaluation of knowledge according to an embodiment of the present invention.
  • 1 is a flowchart of a process for continuing evaluation of knowledge according to an embodiment of the present invention. It is a figure which shows the example of the report of a fluctuation
  • FIG. 3 is a diagram showing an example of a table in which cases are extracted and listed according to an embodiment of the present invention. It is a figure which shows the example of the table which extracts and lists the cases based on the Example of this invention, and is further narrowed down. It is a figure which shows the example of the table which extracts and lists the cases based on the Example of this invention, and is further narrowed down.
  • a production line 10 to which the present invention is applied includes a solder printing device 10a, a solder printing post-inspection device 10b, a mounter 10c, a post-mounting inspection device 10d, a reflow oven 10e, and a post-reflow inspection device 10f.
  • Each device in the production line 10 is connected to a mounting machine server 1c, an inspection machine server 1e, and a line management server 1a via a network such as a LAN.
  • FIG. 2 shows a schematic block diagram of the production management system 1 according to this embodiment.
  • the production management system 1 includes a control unit 11b for managing information on the influence of the 4M change on the production line 10 on the quality or productivity of the production line 10.
  • the control unit 11c also includes a database unit 11c that stores information generated by the control unit 11b regarding the influence of 4M changes on the production line 10 on the quality or productivity of the production line 10 in a database.
  • the control unit 11b further includes a change detection unit 110a, an index change acquisition unit 110b, and an information generation unit 110c as functional modules.
  • the change detection unit 110a detects changes in the manufacturing process and inspection process in the production line 10 during a specified period.
  • the index change acquisition unit 110b acquires changes in the number of defects, defective rate, etc. before and after the changes related to the manufacturing process and inspection process.
  • the information generation unit 110c generates changes in the manufacturing process and inspection process based on the change information detected by the change detection unit 110b and changes in the number of defects, defective rate, etc. acquired by the index change acquisition unit. and information indicating the relationship between changes in indicators such as the number of defectives and defective rate.
  • This application example starts with a change in the cause, accumulates examples of its effects, and converts it into knowledge.
  • planned changes such as work (setup changes, parameter changes) based on production plans, work standards, and instructions for improvement, or work that naturally occurs in the progress of production (replacement when parts are out of stock ⁇ parts lot changes) ) or fluctuations that occur within the production equipment (vacuum pressure, temperature, etc.).
  • data is used to confirm improvement/deterioration/no change in quality, improvement/deterioration/no change in productivity, and improvement/deterioration/no change in cost.
  • a production management system 1 includes, for example, a production line 10 as shown in FIG. 1, and performs production management of this production line 10.
  • the production line 10 in FIG. 1 is a surface mounting line for printed circuit boards.
  • the production line 10 according to the present embodiment includes, in order from the upstream side, a solder printing device 10a, a post-solder printing inspection device 10b, a mounter 10c, a post-mount inspection device 10d, a reflow oven 10e, and a solder post-printing inspection device 10d.
  • An inspection device 10f is provided.
  • the solder printing device 10a is a device that prints solder paste for electrode parts on a printed circuit board.
  • the mounter 10c is a device for placing a large number of electronic components to be mounted on a printed circuit board onto solder paste.
  • the reflow oven 10e is a heating device for soldering electronic components placed on a printed circuit board to printed wiring on the board.
  • the post-solder printing inspection device 10b, the post-mount inspection device 10d, and the post-reflow inspection device 10f inspect the condition of the printed circuit board at the exit of each process, and automatically detect defects or potential defects.
  • the solder printing device 10a, mounter 10c, and reflow oven 10e (hereinafter also collectively referred to as manufacturing devices) described above are connected to the mounting machine server 1c via a network such as a LAN.
  • a maintenance device 1g for maintaining the manufacturing device is connected to this mounting machine server 1c.
  • the solder printing post-inspection device 10b, the post-mount inspection device 10d, and the post-reflow inspection device 10f (hereinafter also collectively referred to as inspection devices) are connected to the inspection machine server 1e via a network.
  • the mounting machine server 1c and the inspection machine server 1e are further connected to a line management server 1a, which is a server that collectively manages the production line 10.
  • the line management server 1a, the mounting machine server 1c, and the inspection machine server 1e are composed of general-purpose computer systems equipped with a CPU (processor), a main storage device (memory), an auxiliary storage device (hard disk, etc.), and the like. Ru. Note that a line manager terminal 1b operated by a line manager and a work instruction/work record terminal 1f operated by a worker are connected to the line management server 1a.
  • the line manager terminal 1b is equipped with an application for checking and analyzing the situation.
  • the work instruction/work record terminal 1f is equipped with a work instruction/record application.
  • a terminal 1d for a mounting machine staff operated by a mounting machine staff is connected to the mounting machine server 1c.
  • the mounting machine personnel terminal 1d is equipped with a mounting program creation application.
  • the line manager's terminal 1b, the mounting machine person's terminal 1d, and the work instruction/work record terminal 1f are equipped with input devices (keyboard, mouse, controller, touch panel, etc.), output devices (display, printer, speakers, etc.) as appropriate. , equipped.
  • a production management system 1 includes these entire systems. In the production management system 1 described above, various parameters related to the production of the production line 10 are determined, and variations in these parameters affect the quality and productivity of the production line 10. Therefore, the production management system 1 manages these parameters while constantly changing them appropriately.
  • FIG. 2 shows a schematic block diagram of the production management system 1 according to this embodiment.
  • the production management system 1 includes a data acquisition unit 11a that receives data from each manufacturing device and each inspection device on the production line 10.
  • the control unit 11b also includes a control unit 11b for managing information on the influence of the 4M change on the production line 10 on the quality or productivity of the production line 10 based on the data acquired by the data acquisition unit 11a.
  • the database unit 11c also includes a database unit 11c that stores data acquired by the data acquisition unit 11a and information generated by the control unit 11b regarding the influence of the 4M change on the production line 10 on the quality or productivity of the production line 10.
  • the control unit 11b further includes a change detection unit 110a, an index change acquisition unit 110b, and an information generation unit 110c as functional modules.
  • Each functional module is realized, for example, by a CPU (not shown) reading and executing a program stored in a database unit 11c having an information storage function.
  • the 4M changes mentioned above are changes related to people, machines (equipment), methods, materials, and measurements in the manufacturing process or inspection process, and include planned changes and accidental changes. In addition to physical changes, the meaning includes all changes that occur in the manufacturing process or inspection process, such as changes in conditions and parameters.
  • the change detection unit 110a detects changes related to manufacturing processes and inspection processes in the production line 10, mainly 4M changes that occur intentionally or accidentally, during a specified period.
  • the index change acquisition unit 110b obtains indicators related to productivity and manufacturing quality before and after the changes related to the manufacturing process and inspection process, based on the data from each manufacturing device and each inspection device acquired by the data acquisition unit 11a. Changes in the number of defects, defective rate, etc. are obtained.
  • the information generation unit 110c generates changes in the manufacturing process and inspection process based on the change information detected by the change detection unit 110b and changes in the number of defects, defective rate, etc. acquired by the index change acquisition unit. and information indicating the relationship between changes in indicators such as the number of defectives and defective rate.
  • planned change information refers to information for work that is studied in advance and systematically implemented to improve the quality and productivity of the production line 10 when producing a predetermined product.
  • This information is information that is known in advance to the line manager. For example, when executing a component mounting program for a printed circuit board that is a product, work such as changing the type of nozzle or feeder used for a specific component number, or changing the mounting conditions for a specific component number. Then, the mounting program in the mounting machine server 1c is changed. Further, for example, when a nozzle, feeder, head, etc. are removed from the mounter 10c and taken to the maintenance device 1g to perform regular maintenance, the information is sent from the maintenance device 1g to the mounting machine server 1c.
  • accidental change information refers to information related to work that is not planned and is performed depending on the situation. From the line manager's perspective, this information is a task that cannot be grasped because it is neither planned nor reported one by one. Regarding this, for example, when checking a nozzle with many defects, the nozzle is clogged, or when checking a feeder with many mounting errors, the feeder is distorted.
  • the information is sent to the mounting machine server 1c or the line management server 1a.
  • the person in charge of the mounting machine performs tasks such as replacing the reel when a component runs out, replacing the feeder when a number of defects occur, or temporarily changing mounting conditions when a number of mounting errors occur, that information may be transferred to the mounter. 10c to the mounting machine server 1c.
  • mounter 10c that automatically switches to a spare feeder when a component runs out, and in this case, change information is automatically sent to the mounting machine server 1c without any work.
  • Nozzle replacement The scope of influence is that each of the nozzle ID before replacement and the nozzle ID after replacement is a component (1-2) Change in mounting parameters of part part number: Impact The scope is the entire part before and after the changed part number (1-3) Changes in the nozzle or feeder model assigned to the part number: The affected range is the part number (including the combination of the part number and nozzle or feeder model) good) (1-4) Implementation of mask cleaning: The scope of influence is likely to be the entire part before and after the changed part number.
  • the mounter program should be changed to Rev. A to Rev. B (assignment change). Then, when determining the effect of this feeder change, the mounter program Rev. A to Rev. A method of comparing components C1 and C2 before being changed to B (allocation change) and components C1 and C2 after the allocation change, and components C1 and C2 mounted on Feeder A and component C1 mounted on Feeder B. It is conceivable to compare it with C2.
  • nozzle and feeder specifications As information accompanying the change information, nozzle and feeder specifications, component part numbers, component libraries, and component types and sizes may be linked and managed. Further, in order to have an overview of the entire production process, each change may be managed in association with changes in quality, productivity, and cost at the time of occurrence. Further, by extracting and reporting common points between changes that improve the quality and productivity of the production line and incidental information, it may be possible to contribute to the work of changing production rules. In this case, the target of the report is the creator of production rules and work standards. Degrading changes may also be reported as well. This makes it possible to clarify tasks that should not be performed. In addition, the basis for improvement and deterioration should be clarified by showing correlation coefficients, etc. The itemization of this embodiment is that hidden know-how can be clarified and the entire process can be improved. Another point is that the entire process can be improved by improving unseen deteriorating factors.
  • the production rules may be changed based on the knowledge obtained in this example.
  • Specific production rules include selection of nozzles and feeders for parts, image processing methods for parts (determining which nozzles to use for parts of the same shape, etc.), and maintenance intervals (such as determining quality between the previous maintenance and the next maintenance). comparison).
  • there are tasks that should be improved (method of attaching the component reel to the feeder) and tasks that should be done (replacing the feeder and resetting incorrect learning of the suction position).
  • the points of change are found, and the results are confirmed and accumulated.
  • a recommended new production rule may be presented based on a comparison before and after the change. In that case, we will indicate recommended production conditions and data (number of improvements/number of cases, etc.) (for example, it is recommended to use this nozzle for 1608 chip resistors).
  • the starting point was the result, such as a decline in quality, and only intentional (planned) changes were considered as the cause.
  • a change in the result is used as a starting point to identify and correct the cause, or a change in the cause is used as a starting point to check whether there is a change in the result. They then identified the common causes of good or bad results and turned it into know-how.
  • this embodiment is characterized by starting from a change in the cause, accumulating examples of its effects, and turning it into knowledge.
  • planned changes such as work (setup changes, parameter changes) based on production plans, work standards, and instructions for improvement, or work that naturally occurs in the progress of production (replacement when parts are out of stock ⁇ parts lot changes) ) or fluctuations that occur within the production equipment (vacuum pressure, temperature, etc.).
  • data is used to confirm improvement/deterioration/no change in quality, improvement/deterioration/no change in productivity, and improvement/deterioration/no change in cost.
  • step S101 to step S111 is performed by the line management server 1a, and the processing from step S112 to step S119 is performed by the situation confirmation/analysis application on the line manager terminal 1b.
  • step S101 of this flow newly arrived data regarding mounting, inspection, and changes is confirmed.
  • step S102 mounting/inspection/change data is collected, and in step S103, the mounting/inspection/change data is saved.
  • step S104 defects and mounting errors are totaled and stored for each time period or for each predetermined range.
  • step S105 it is determined whether there is a change in the mounting/inspection/change data. If it is determined in step S105 that there is a change, the process advances to step S106. On the other hand, if it is determined in step S105 that there is no change, the process returns to step S101.
  • step S106 the influence range (data collection range) of the change is specified based on the content of the change.
  • step S107 the defect/mounting error tally results before and after the change are obtained for the affected range specified in step S106.
  • step S108 a determination is made as to whether the defects or mounting errors are improving or worsening.
  • step S109 the improvement/deterioration determination results for defects/mounting errors are saved.
  • step S110 it is determined whether the improvement/deterioration determination result of defects/mounting errors obtained in step S108 meets the notification conditions. If it is determined in step S110 that the facility conditions are not met (negative determination), the process returns to step S101. On the other hand, if it is determined that the notification conditions are met, the process proceeds to step S111, and notification of improvement or deterioration of the defect/mounting error is made.
  • step S112 a notification of improvement or deterioration of defects or mounting errors is received in the situation confirmation/analysis application of the line manager terminal 1b.
  • step S113 a regular timing occurs other than the timing at which the defect/mounting error improvement/deterioration notification is received. Or something you want to investigate occurs.
  • step S114 a situation confirmation/analysis application is opened.
  • step S115 improvement/deterioration status of defects/mounting errors is confirmed.
  • step S116 improvement/deterioration results when the same type of change occurs are collected.
  • step S117 a list of improvement and deterioration results in the same type of change is displayed.
  • step S118 common change points are extracted.
  • step S119 conditions for improvement are reported.
  • step S201 new mounting, inspection, and change data is confirmed.
  • step S202 data collection regarding mounting, inspection, and changes is performed.
  • step S203 mounting/inspection/change data is saved. This is repeated continuously. As long as production continues, data will continue to accumulate.
  • case accumulation is first started in step S301. Then, in step S302, change information within the target period is searched. In step S303, it is determined whether the change information is finished (whether all change information has been searched). If it is determined that the change information is not finished, the process advances to step S304.
  • step S304 the range of influence of the change (data collection range) is specified.
  • step S305 the total results of defects and mounting errors before and after the change are obtained.
  • step S306 it is determined whether the defect or mounting error is improved or worsened.
  • step S307 the improvement/deterioration determination results for defects/mounting errors are saved.
  • step S303 it is determined whether the change information is finished (whether all change information has been searched). If it is determined that the change information is finished, the process advances to step S308. In step S308, knowledge is extracted.
  • step S401 cases in the target period are read.
  • step S402 narrowing conditions are set.
  • conditions are set to narrow down the cases to be displayed based on conditions such as the subject of change and the details of the change, and select and display only the cases that the user wants to check.
  • step S403 cases are narrowed down based on the conditions set in step S402.
  • step S404 it is determined whether or not there are two or more cases whose results have improved due to changes among the narrowed down cases.
  • step S404 it is determined whether there are two or more improved cases. If it is determined in step S404 that the number of improved cases among the narrowed down cases is not two or more, the process returns to step S402. If it is determined that there are two or more improved cases among the cases narrowed down in step S404, the process advances to step S405.
  • step S405 it is determined whether the sum of the narrowed down cases is an improvement determination.
  • the narrowed down cases include a mixture of improved cases, worsened cases, or unchanged cases, it is determined whether improvement has been observed as the total value of those cases. If it is determined in step S405 that the total is not an improvement determination, the process returns to step S402. If it is determined in step S405 that the total is an improvement determination, the process advances to step S406. That is, if the total has improved, it is determined that there is an effect. In step S406, it is saved as knowledge of the improvement effect. In step S407, it is determined whether there is a next narrowing pattern. If it is determined that there is a next narrowing pattern, the process returns to step S402.
  • step S407 If it is determined in step S407 that there is no next narrowing pattern, the process advances to step S408.
  • step S408 the findings are written in a report. It may be possible to report only those cases where the improvement effect is greater than or equal to a predetermined value.
  • step S402 for setting narrowing conditions.
  • the loop of steps S501, S502, and steps S510 to S514 is a loop for setting conditions regarding the category to be changed.
  • the loop from step S503 to step S509 is a loop for setting conditions regarding the change content category.
  • step S501 one category to be changed is selected.
  • one category is selected from categories such as "change target,” "target name,” and "target attribute.”
  • step S502 one content is further selected from among the selected categories to be changed.
  • step S503 the cases are narrowed down and the change content category and its content are extracted.
  • change content categories such as “change content”, “before change”, and “after change” and their specific contents are extracted.
  • step S504 one content is selected from the changed content. Specifically, contents such as “nozzle model change” and “maintenance” are selected as the change contents.
  • step S505 the category to be changed is added to the narrowing down condition list.
  • step S506 one is selected from the contents before and after the change included in the selected change contents. For example, when the selected change content is "nozzle type change", content such as “nozzle diameter 0.5 mm" is selected as the "before change” content.
  • step S507 the selected change content, before change content, and after change content are added to the "change content narrowing condition list".
  • step S508 it is determined whether there is the following content before and after the change.
  • step S506 it is determined whether there is the next change content. If it is determined in step S509 that there is the next change content, the process returns to step S504. If it is determined in step S509 that there is no next change, the process advances to step S510. This creates a filtered list for the selected change target category.
  • step S510 a narrowing condition with the category to be changed is created.
  • step S511 the filtering conditions for the selected change target category are added to each condition of the "change content filtering condition list" and added to the "refining condition list”.
  • step S512 it is determined whether there is the next content of the selected change target category. In step S512, if it is determined that there is the next content of the selected change target category, the process returns to step S502.
  • step S512 if it is determined that there is no next content for the selected change target category, the process advances to step S513.
  • step S513 it is determined whether there is a next category to be changed.
  • step S513 if it is determined that there is the next category to be changed, the process returns to step S501. If it is determined in step S513 that there is no next category to be changed, the process advances to step S514.
  • step S514 the creation of the "narrowing down condition list" is completed.
  • step S601 new knowledge is extracted as described in step S308.
  • step S602 knowledge is added to the list.
  • step S603 past findings under the same conditions are extracted.
  • step S604 it is determined whether the new knowledge and the past knowledge under the same conditions match the determination of improvement or deterioration. If it is determined in step S604 that the determinations of improvement and deterioration match, the process advances to step S606. If it is determined in step S604 that the determinations of improvement and deterioration do not match, the process advances to step S605. In step S605, it is notified that a case contrary to past knowledge has occurred.
  • step S607 it is confirmed whether or not past knowledge is to be deleted. If it is determined in step S607 that past knowledge is to be deleted, the process advances to step S608. If it is determined in step S607 that past knowledge is to be maintained, the process advances to step S609. In step S608, past knowledge of the same conditions is deleted. In S609, knowledge of the same past conditions is maintained. Note that in step S606, which is proceeded to when it is determined in step S604 that the determinations of improvement and deterioration are consistent, it is notified that a case supported by past knowledge has occurred. When the processing in steps S606, S608, and S609 is completed, the process advances to step S610. In step S610, a command to proceed to the next knowledge extraction cycle is issued, and the process proceeds to step S601.
  • step S701 knowledge is extracted in step S701.
  • step S702 past findings under the same conditions are extracted.
  • step S703 cases that are the basis of past knowledge are extracted.
  • step S704 knowledge is extracted again including cases that are the basis of past knowledge.
  • step S705 it is determined whether the determinations of improvement and deterioration match. If it is determined in step S705 that the determinations of improvement and deterioration match, the process advances to step S706. If it is determined in step S705 that the determinations of improvement and deterioration do not match, the process advances to step S708.
  • step S706 it is notified that the past knowledge is still valid.
  • step S708 it is notified that the validity of past knowledge is questionable.
  • step S709 it is confirmed whether to change past knowledge. If it is determined in step S709 that past knowledge is to be changed, the process advances to step S710. On the other hand, if it is determined in step S709 that past knowledge is not to be changed, the process advances to step S712.
  • step S710 past knowledge is rewritten.
  • step S712 past knowledge is maintained and new knowledge is added.
  • the method for determining improvement/deterioration may be the same as (2).
  • the method for determining improvement/deterioration may be the same as (2).
  • the number of parts is insufficient, if the number of parts is insufficient before the change, no evaluation will be made. If there is a shortage after the change, the next evaluation will be performed if the number of parts is sufficient. You may decide to do so.
  • FIG. 10A is a table displaying change history. That is, this is an example of a report of change information, in which the upper row displays the number of times work execution has been completed for each device type, and the lower row displays a list of information on changes that have occurred. All device types may be displayed in a chronological list, or they may be displayed sorted by device type or work content.
  • FIG. 10B is a table showing the termization of changes. In this table, Up means worse (increase in error rate), Down means better (decreased error rate), and Stay means no change (no change).
  • StartToWorkDone indicates before the change
  • ToWorkDoneToEnd indicates after the change.
  • the actual defective rate in AOI after mounting due to changes (nozzle maintenance in this example), the actual defective rate in AOI after mounting increase, respectively, the number of parts that are Up, Down, Stay, and parts for which there is no data. The number of is shown. This makes it clear whether an improvement or deterioration was observed in the actual defect rate in the post-mount AOI and in the post-reflow AOI.
  • the actual defective rate in the AOI after mounting, the defective rate in the AOI after reflow, the recognition error rate, and the results of Up, Down, and Stay, respectively, are displayed.
  • FIG. 11 shows an example of a table in which cases are extracted and listed.
  • “change target” in “change target category” indicates to which target the 4M variation has occurred.
  • the "target name” is the component part number name if the "change target” is a part part number, if it is a nozzle ID, it is the name of the nozzle ID, and if it is a feeder ID, it is the name of the feeder ID.
  • the target attribute is a library name when the "change target" is a part number, and is the name of the library used for the change target. This library is defined for multiple product numbers with the same specifications and implementation conditions.
  • specifications such as size and color of the object to be changed may be used.
  • the attribute may be displayed using the nozzle diameter, which is the specification itself to be changed.
  • the attribute of the target may be defined, such as the width of the feeder.
  • the table shown in FIG. 11 describes the contents of changes for each part number
  • the contents of the library will be changed, and the program will be rewritten in accordance with the changes.
  • the change time is also stated.
  • changes in the number of parts, actual number of defectives, and actual defective rate before and after the change are described. You can use this table to get a bird's-eye view of improvement, deterioration, and no change, and then focus on any of the data to check more detailed information.
  • the entire data before and after the change for the corresponding working day is also listed.
  • part number COMP001 which is the change target in the top row in FIG. 11
  • This part indicates a capacitor (0.6 mm x 0.3 mm square chip) with part number COMP001, and its specifications and production conditions are defined by a library with part library name C0603.
  • this nozzle was changed from a diameter of 0.5 mm to a diameter of 0.7 mm, a change in the mounting conditions for the component with part number COMP001 occurred, and when comparing before and after the change, it was found that there was an effect of reducing actual defects.
  • FIG. 12 This is a table when the display contents of the table shown in FIG. 11 are further narrowed down by the "part part number" to be changed.
  • the display content may be narrowed down to "nozzle model change”
  • the nozzle diameter before the change may be narrowed down to "nozzle diameter 0.5 mm.”
  • Conditions can be narrowed down. As a result, 5 cases were extracted, of which 2 cases improved, 2 cases deteriorated, and 1 case remained unchanged. In this example, as a result of the total change in nozzle type, the effect of reducing actual defects remains unchanged before and after the change. Note that a general statistical method is used to determine whether the change in the calculated actual defective rate is significant, so the explanation will be omitted here.
  • the table shown in FIG. 13 is a diagram obtained by further narrowing down the table shown in FIG. 12.
  • changes made simultaneously to parts with part numbers COMP001, 004, and 005 whose target attribute is "C0603" (library name) are extracted.
  • the nozzle diameter was changed from 0.5 mm to 0.7 mm.
  • three cases were extracted. Of these, two cases improved, one case worsened, and multiple cases improved. In this case, the result was that the actual defective rate improved before and after the change for all extracted cases.
  • the change target has the same "target attribute" as the extracted case.
  • the change content category the contents of "change content”, "before change”, and “after change” are the same. After this, the extraction conditions are relaxed and confirmed, and if the results are effective under broader conditions (conditions with a large number of extracted items), the findings can be made effective over a wider range.
  • FIG. 14 cases are extracted in which the "change target" corresponds to the nozzle ID and the "change content" corresponds to maintenance.
  • three cases are extracted, and three cases are improved.
  • the overall actual defect rate has also improved.
  • FIGS. 15A and 15B will be explained.
  • the "change target" is the feeder ID and the "change content” is reel exchange.
  • 3 cases were extracted, 2 cases of deterioration and 1 case of no change.
  • things were getting worse.
  • cases are extracted where the "change target" is the feeder ID and the "change content” is reel set state correction.
  • two cases are extracted. There were two cases where the condition improved. Overall, things are improving. There are also multiple cases of improvement. From this, it can be found that it is effective to correct the reel set state to the feeder that has occurred accidentally (at the operator's own discretion).
  • FIG. 16A is an example in which a filter is applied based on each narrowing-down pattern and its effect, and results with a clear conclusion of improvement, deterioration, or no change are filtered and notified.
  • FIG. 16B is an example of displaying these items in order of priority in descending order of effectiveness in reducing actual defects. From this, it is possible to clarify effective countermeasures for urgently reducing the defective rate.
  • FIG. 17 is an example of a report of improved cases.
  • Examples of filtering cases described in this improvement notification include (1) X or more improvement cases, (2) Y or less deterioration cases, and (3) reduction in actual defective rate by X% or more. (4) A combination of these.
  • the number of improvement cases is 3 or more
  • the number of deterioration cases is 0 or less
  • the number of actual defects has been reduced by 50% or more.
  • examples of prioritization in the table include (1) descending order of reduction rate of actual defects, (2) descending order of most improved cases, (3) descending order of improved cases - most deteriorating cases, (4) Combinations of these etc. are possible.
  • the rules to be used are selected and the order in which the order is determined is determined. For example, the highest priority may be given to the order with the most improvement cases, and then the order with the largest reduction rate of actual defects. In the example of FIG. 16, two cases were extracted.
  • FIG. 18 is an example of a deterioration report.
  • the filtering in this case is (1) the number of worse cases is X or more, (2) the number of improved cases is Y or less, (3) the actual defective rate increases by X% or more, and (4) a combination of these.
  • the number of deterioration cases is two or more, the number of improvement cases is zero or less, and the number of actual defects has increased by 50% or more.
  • (1) descending order of increasing rate of actual defects, (2) descending order of increasing number of worsening cases, (3) descending order of worsening cases - descending order of improving cases, (4) order of these It may be in the order of combination.
  • the rules to be used are selected and the order for determining the order is determined. For example, the order with the highest number of deterioration cases may be given the highest priority, and then the order with the highest increase rate of actual defects may be given. In the example of FIG. 17, one item was extracted.
  • a production line ( 10 ) A production management system (1) according to a change detection unit (110a) that detects a change in a predetermined factor related to the manufacturing process and/or the inspection process; an index change acquisition unit (110b) that acquires a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected by the change detection unit; an information generation unit (110c) that generates information indicating a relationship between the change in the factor and the index from the change in the index acquired by the index change acquisition unit;
  • a production management system comprising: ⁇ Additional note 6> A production line ( 10 ), the production control method according to a change detection step (S101 to S103) of detecting a change in a predetermined factor related to the manufacturing process and/or the inspection process; an index change acquisition
  • a production line (10) that has a single or multiple manufacturing equipment (10a, 10c, 10e) and inspection equipment (10b, 10d, 10f), and executes a product manufacturing process and an inspection process using the manufacturing equipment and inspection equipment.
  • a production management program relating to, a change detection step (S101 to S103) in which the computer detects a change in a predetermined factor related to the manufacturing process and/or the inspection process; an index change acquisition step (S106 to S107) for acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected in the change detection step; an information generation step (S108 to S116) of generating information indicating a relationship between the change in the factor and the index from the change in the index acquired in the index change acquisition step; A production management program that executes.
  • Production management system 1a Server for line management 1c... Server for mounting machine 1e... Server for inspection machine 10... Production line 10a... Solder printing device 10b... Solder printing Post-inspection device 10c... Mounter 10d... Post-mount inspection device 10e... Reflow oven 10f... Post-reflow inspection device 11a... Data acquisition section 11b... Control section 11c... Database section 11d ... Output section 110a... Change detection section 110b... Index change acquisition section 110c... Information generation section

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

Provided is a technology that makes it possible to improve the quality and productivity of a production line more efficiently. A production management system (1) for a production line (10) that has at least one manufacturing device (10a, 10c, 10e) and inspection device (10b, 10d, 10f) and in which the manufacturing device and inspection device are used to perform a product manufacturing step and an inspection step, comprising: a change detection unit (110a) that detects a change in a prescribed factor relating to the manufacturing step and/or the inspection step; an indicator change acquisition unit (110b) that acquires the change in an indicator temporally before and after the change in the factor that was detected by the change detection unit, said indicator relating to the productivity and/or the manufacturing quality of the manufacturing step; and an information generation unit (110c) that uses the change in the indicator that was acquired by the indicator change acquisition unit to generate information indicating the relationship between the indicator and the change in the factor.

Description

生産管理システム、生産管理方法、及び生産管理プログラムProduction management system, production management method, and production management program
 本発明は、製品の生産ラインにおいて生産を管理する、生産管理システム、生産管理方法及び、生産管理プログラムに関する。 The present invention relates to a production management system, a production management method, and a production management program that manage production on a product production line.
 製品の生産ラインにおいては、ラインの中間工程や最終工程に製品の検査装置を配置し、不良の検出や不良品の仕分けなどが行われている。例えば、部品実装基板の生産ラインにおいては一般的に、プリント配線基板にクリームはんだを印刷する装置(印刷装置)、クリームはんだが印刷された基板に部品を実装する装置(マウント装置)、部品実装後の基板を加熱して部品を基板にはんだ付けするする装置(リフロー装置)が含まれる。そして、各生産装置の後に配置された検査装置において、各装置における作業が予定通り正しく行われているかの検査が行われる。 On product production lines, product inspection equipment is placed in intermediate and final processes of the line to detect defects and sort out defective products. For example, in a production line for component mounting boards, there is generally a device that prints cream solder on printed wiring boards (printing device), a device that mounts components on the board printed with cream solder (mounting device), and a device that mounts components on the board printed with cream solder. This includes equipment (reflow equipment) that heats the board to solder components to the board. Then, an inspection device placed after each production device inspects whether the work in each device is being performed correctly as planned.
 また、上記の生産ラインにおいては、各製造装置及び検査装置から情報を収集し、不良率、生産量等を総合的に管理する生産管理システムが稼働しており、生産ライン全体としての生産性の向上に寄与している。 In addition, on the above production line, a production management system is in operation that collects information from each manufacturing device and inspection device and comprehensively manages defect rates, production volume, etc., which improves the productivity of the entire production line. Contributing to improvement.
 上記の生産ラインの状態については、ライン管理者によって予め予定された意図的な変化の他、生産中に必然的・偶発的に発生する変化が多数あり、それらの発生の事実やその影響が必ずしも把握できておらず、原因不明の品質・生産性の変動が発生している。例えば、必然的・偶発的に発生する変化については、仮にデータとしては存在しても、その量が膨大でありライン管理者は把握できていない。また、意図的な変化についても、オペレータの判断で実施されるものも多く、ライン管理者が把握できていないものが多い。そして、これらの変化を把握しようとすると、膨大な工数がかかり、現実的ではない。 Regarding the state of the production line mentioned above, in addition to intentional changes planned in advance by line managers, there are many changes that occur inevitably or accidentally during production, and the fact of their occurrence and its impact are not always known. Unidentified and unexplained fluctuations in quality and productivity occur. For example, even if data exists about changes that occur inevitably or accidentally, the amount of data is enormous and cannot be grasped by line managers. In addition, many intentional changes are implemented at the operator's discretion, and are often not understood by line managers. Trying to understand these changes requires a huge amount of man-hours and is not realistic.
 上記のような状況において、生産ラインの品質や生産性が悪化した時に、その原因を迅速に特定し、是正が可能であることが求められていた。特に必然的・偶発的に発生する変化については、隠れた改善対象を発見できることが求められていた。また、改善による意図的な変化の効果を確認する時に、それ以外の変動要因の有無を確認でき、外乱のない状態で効果を確認できることが求められていた。 In the situation described above, when the quality or productivity of a production line deteriorates, it is required to be able to quickly identify the cause and make corrections. In particular, there was a need to be able to discover hidden areas for improvement when it comes to changes that occur either inevitably or accidentally. In addition, when confirming the effects of intentional changes due to improvements, it is required to be able to confirm the presence or absence of other fluctuation factors and to confirm the effects in the absence of disturbances.
国際公開第2012/165275号International Publication No. 2012/165275 国際公開第2015/122272号International Publication No. 2015/122272 特開2004-198148号公報Japanese Patent Application Publication No. 2004-198148
 本発明は上記実情に鑑みなされたものであり、その目的とするところは、より効率的に、生産ラインの品質や生産性を改善することを可能とする技術を提供することである。 The present invention was made in view of the above circumstances, and its purpose is to provide a technology that makes it possible to more efficiently improve the quality and productivity of a production line.
 上記の解決しようとする課題を解決するための本発明は、単一または複数の製造装置及び検査装置を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程が実行される生産ラインに係る生産管理システムであって、
 前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出部と、
 前記変化検出部が検出した前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得部と、
 前記指標変化取得部により取得した前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成部と、
 を備えることを特徴とする、生産管理システムである。
 なお、前記所定の要因の変化は、計画的に実施される計画的変化と、それ以外の変化とを含み、
 前記情報生成部が生成する、前記要因の変化と前記指標との関係を示す情報は、前記要因の変化が、前記計画的変化か、それ以外の変化かの情報を含むこととしてもよい。
The present invention for solving the above-mentioned problems has a production line that has a single or plural manufacturing equipment and inspection equipment, and in which a product manufacturing process and an inspection process are performed by the manufacturing equipment and the inspection equipment. A production management system relating to,
a change detection unit that detects a change in a predetermined factor related to the manufacturing process and/or the inspection process;
an index change acquisition unit that acquires a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected by the change detection unit;
an information generation unit that generates information indicating a relationship between a change in the factor and the index based on the change in the index acquired by the index change acquisition unit;
This is a production management system that is characterized by comprising:
Note that the changes in the predetermined factors include planned changes that are carried out in a planned manner and other changes,
The information generated by the information generation unit and indicating the relationship between the change in the factor and the index may include information as to whether the change in the factor is the planned change or another change.
 これによれば、製造工程や検査工程に計画的または偶発的に行った変更や、予定外に生じる変化が、製造工程における生産性や製造品質に如何なる影響を及ぼすかの知見を取得し、これを情報化することが可能である。その結果、より確実に、製造工程の生産性や製造品質を向上させることが可能である。より詳しくは、例えば、品質や生産性が悪化した時に、その原因を特定し、是正ができる。なお、前記要因は、計画的な変動であるか、それ以外であるかの情報を関連付けて保存してもよい。また、特に、計画的な変動以外の変化の例としての必然的・偶発的に発生する変化については、隠れた改善対象を発見できる。また、改善による意図的な変化の効果を確認する時に、それ以外の変動要因の有無を確認でき、外乱のない状態で効果を確認できる。また、前記変化検出部で検出する製造工程および/または前記検査工程に関わる所定の要因の変化は、検査条件の変化であってもよい。また、前記製造工程における生産性および/または製造品質に関わる指標は、所定期間における基板または部品の検査結果に基づいて算出される、誤判定率や直行率などの数値であり、前記要因の変化と前記指標との関係は、前記4M変更に基づく、基板または部品の検査結果に基づいて算出される数値の増減であることとしてもよい。これによれば、検査工程に計画的に行った変更や、担当者の判断で行った変更が、製造工程における生産性や検査精度に如何なる影響を及ぼすかの知見を取得し、これを情報化することが可能である。その結果、生産性や検査工程の精度を、より確実に向上させることが可能である。なお、ここでいう、「前記製造工程および/または前記検査工程」は、前記製造工程および前記検査工程のうちの少なくとも一方であることを示す。「生産性および/または製造品質」及び、以下の同様の表現についても同じである。 According to this, it is possible to obtain knowledge of how planned or accidental changes or unplanned changes in the manufacturing process or inspection process affect productivity and manufacturing quality in the manufacturing process. It is possible to convert information into information. As a result, it is possible to improve the productivity and manufacturing quality of the manufacturing process more reliably. More specifically, for example, when quality or productivity deteriorates, the cause can be identified and corrected. Note that information regarding whether the factor is a planned change or something else may be stored in association with the above-mentioned factor. In addition, hidden improvement targets can be discovered, especially for changes that occur inevitably or accidentally, as examples of changes other than planned changes. Furthermore, when confirming the effects of intentional changes due to improvements, it is possible to confirm the presence or absence of other fluctuation factors, and the effects can be confirmed in the absence of disturbances. Furthermore, the change in a predetermined factor related to the manufacturing process and/or the inspection process detected by the change detection section may be a change in inspection conditions. In addition, the indicators related to productivity and/or manufacturing quality in the manufacturing process are numerical values such as the false judgment rate and direct delivery rate, which are calculated based on the inspection results of the board or parts in a predetermined period, and are based on changes in the factors described above. The relationship with the index may be an increase or decrease in a numerical value calculated based on the inspection results of the board or component based on the 4M change. According to this, it is possible to obtain knowledge of how planned changes to the inspection process or changes made at the discretion of the person in charge will affect productivity and inspection accuracy in the manufacturing process, and to convert this information into information. It is possible to do so. As a result, productivity and accuracy of the inspection process can be improved more reliably. Note that "the manufacturing process and/or the testing process" herein refers to at least one of the manufacturing process and the testing process. The same applies to "productivity and/or manufacturing quality" and similar expressions below.
 また、本開示においては、前記変化検出部が検出した前記所定の要因の変化の情報と、前記指標変化取得部が取得した前記指標の変化の情報と、前記要因の変化と前記指標との関係を示す情報とを関連付けて保存し蓄積するデータベース部をさらに備えることとしてもよい。 Further, in the present disclosure, information on a change in the predetermined factor detected by the change detection unit, information on a change in the index acquired by the indicator change acquisition unit, and a relationship between the change in the factor and the index are provided. It is also possible to further include a database unit that stores and accumulates the information in association with the information indicating the information.
 これによれば、製造工程や検査工程に計画的または偶発的に行った変更や、予定外に生じる変化が、製造工程における生産性や製造品質に如何なる影響を及ぼすかの知見を取得し、これをデータベースかして情報を蓄積することが可能である。 According to this, it is possible to obtain knowledge of how planned or accidental changes or unplanned changes in the manufacturing process or inspection process affect productivity and manufacturing quality in the manufacturing process. It is possible to store information using a database.
 また、本開示においては、前記変化検出部が検出した前記所定の要因の変化の情報と、前記指標変化取得部が取得した前記指標の変化の情報と、前記要因の変化と前記指標との関係を示す情報とを関連付けて出力する出力部をさらに備えることとしてもよい。これによれば、製造工程や検査工程に計画的または偶発的に行った変更や、予定外に生じる変化が、製造工程における生産性や製造品質に如何なる影響を及ぼすかの知見をレポートすることで、より確実に、組織内に共有することが可能である。 Further, in the present disclosure, information on a change in the predetermined factor detected by the change detection unit, information on a change in the index acquired by the indicator change acquisition unit, and a relationship between the change in the factor and the index are provided. It is also possible to further include an output unit that outputs the information in association with the information indicating the information. According to this, it is possible to report findings on how planned or accidental changes to manufacturing processes and inspection processes, as well as unplanned changes, affect productivity and manufacturing quality in manufacturing processes. , it is possible to share within the organization more reliably.
 また、本開示においては、前記所定の要因の変化は、前記製造工程における4M変更であり、
 前記製造工程における生産性および/または製造品質に関わる指標は、所定期間における不良数または不良数に基づいて算出される数値であり、
 前記要因の変化と前記指標との関係は、前記4M変更に基づく、不良数または不良数に基づいて算出される数値の増減であることとしてもよい。
 また、前記製造工程における生産性および/または製造品質に関わる指標は、所定期間における生産数または生産時間に基づいて算出される、生産量や生産速度を示す数値であり、前記要因の変化と前記指標との関係は、前記4M変更に基づく、生産量や生産速度を示す数値の増減であることとしてもよい。上記の生産量や生産速度を示す数値としては、単位時間当たりの生産数または製品1つあたりの生産に要する時間の平均などを例示できる。
 また、前記製造工程における生産性および/または製造品質に関わる指標は、所定期間における生産数と不良数に基づいて算出される、生産性と品質を示す数値であり、前記要因の変化と前記指標との関係は、前記4M変更に基づく、生産性と品質を示す数値の増減であることとしてもよい。なお、上記の生産性と品質を示す数値としては、例えばOEE(設備総合効率)などを例示できる。
 さらに、前記製造工程における生産性および/または製造品質に関わる指標は、製品の品質の計測値に基づいて算出される、不良ではないが不良に近い、あるいは近くないといった工程能力を示す数値であり、前記要因の変化と前記指標との関係は、前記4M変更に基づく、前記工程能力を示す数値の増減であることとしてもよい。この工程能力を示す数値としては、例えばCpk、Cp(工程能力指数)を例示できる。
Further, in the present disclosure, the change in the predetermined factor is a 4M change in the manufacturing process,
The index related to productivity and/or manufacturing quality in the manufacturing process is a numerical value calculated based on the number of defects or the number of defects in a predetermined period,
The relationship between the change in the factor and the index may be an increase or decrease in the number of defects or a numerical value calculated based on the number of defects based on the 4M change.
In addition, the index related to productivity and/or manufacturing quality in the manufacturing process is a numerical value indicating the production amount or production speed calculated based on the production number or production time in a predetermined period, and is a numerical value indicating the production amount or production speed, and The relationship with the index may be an increase or decrease in numerical values indicating production volume or production speed based on the 4M change. Examples of numerical values indicating the above-mentioned production amount and production speed include the number of products produced per unit time or the average time required for production per product.
In addition, the index related to productivity and/or manufacturing quality in the manufacturing process is a numerical value indicating productivity and quality calculated based on the number of products produced and the number of defects in a predetermined period, and changes in the factors and the index The relationship may be an increase or decrease in numerical values indicating productivity and quality based on the 4M change. Note that, as the numerical value indicating the productivity and quality mentioned above, for example, OEE (Overall Equipment Efficiency) can be exemplified.
Furthermore, the index related to productivity and/or manufacturing quality in the manufacturing process is a numerical value that is calculated based on the measured value of product quality and indicates process capability such as not being defective, but close to defective, or not close to defective. The relationship between the change in the factor and the index may be an increase or decrease in the numerical value indicating the process capability based on the 4M change. Examples of numerical values indicating this process capability include Cpk and Cp (process capability index).
 すなわち、本開示における、前記製造工程における生産性および/または製造品質に関わる指標は、所定期間における不良数、工程能力、生産量および生産速度のうちの少なくとも何れかまたは、それらに基づいて算出される数値であり、
 前記要因の変化と前記指標との関係は、前記4M変更に基づく、不良数、工程能力、生産量および生産速度のうちの少なくとも何れかまたは、それらに基づいて算出される数値の増減としてもよい。これによれば、より確実に、製造工程における4M変更の、不良数や不良率や工程能力などの品質への影響、および生産量や生産速度などの生産性への影響を知識化することが可能である。
That is, in the present disclosure, the index related to productivity and/or manufacturing quality in the manufacturing process is calculated based on or at least one of the number of defects, process capacity, production volume, and production speed in a predetermined period. is a numerical value,
The relationship between the change in the factors and the index may be an increase or decrease in at least one of the number of defects, process capacity, production volume, and production speed based on the 4M change, or a numerical value calculated based on them. . According to this, it is possible to more reliably understand the impact of 4M changes in the manufacturing process on quality, such as the number of defects, defective rate, and process capacity, and the impact on productivity, such as production volume and production speed. It is possible.
 また、本開示においては、前記情報生成部が新たに生成した前記要因の変化と前記指標との関係を示す情報と、
 前記要因の変化と同一の要因の変化に対して前記情報生成部が過去に生成した、前記同一の要因の変化と前記指標との関係を示す情報と、の関係を取得する、情報確認部をさらに備えることとしてもよい。
Further, in the present disclosure, information indicating a relationship between a change in the factor and the index newly generated by the information generation unit;
an information confirmation unit that acquires a relationship between a change in the factor and information that has been generated in the past by the information generation unit in response to a change in the same factor and indicates a relationship between a change in the same factor and the index; It is also possible to prepare further.
 また、本開示は、単一または複数の製造装置及び検査装置を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程が実行される生産ラインに係る生産管理方法であって、
 前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出工程と、
 前記変化検出工程において検出された前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得工程と、
 前記指標変化取得工程において取得した前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成工程と、
 を有することを特徴とする、生産管理方法であってもよい。
The present disclosure also provides a production control method relating to a production line that includes a single or multiple manufacturing device and inspection device, and in which a product manufacturing process and an inspection process are performed by the manufacturing device and inspection device,
a change detection step of detecting a change in a predetermined factor related to the manufacturing process and/or the inspection process;
an index change acquisition step of acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected in the change detection step;
an information generation step of generating information indicating a relationship between the change in the factor and the index from the change in the index acquired in the index change acquisition step;
It may be a production control method characterized by having the following.
 また、本開示は、前記所定の要因の変化は、計画的に実施される計画的変化と、それ以外の変化とを含み、
 前記情報生成工程において生成される、前記要因の変化と前記指標との関係を示す情報は、前記要因の変化が、前記計画的変化か、それ以外の変化かの情報を含むことを特徴とする、上記の生産管理方法であってもよい。
Further, the present disclosure provides that the change in the predetermined factor includes a planned change that is carried out in a planned manner and a change other than that,
The information generated in the information generation step and indicating the relationship between the change in the factor and the index is characterized in that it includes information as to whether the change in the factor is the planned change or another change. , the above production control method may be used.
 また、本開示は、前記変化検出工程において検出された前記所定の要因の変化の情報と、前記指標変化取得工程において取得された前記指標の変化の情報と、前記要因の変化と前記指標との関係を示す情報とを関連付けて保存し蓄積するデータベース化工程をさらに備えることを特徴とする、上記の生産管理方法であってもよい。 The present disclosure also provides information on a change in the predetermined factor detected in the change detection step, information on a change in the index acquired in the index change acquisition step, and information on a change in the factor and the index. The production management method described above may further include a database creation step of storing and accumulating the information in association with the information indicating the relationship.
 また、本開示は、前記変化検出工程において検出された前記所定の要因の変化の情報と、前記指標変化取得工程において取得された前記指標の変化の情報と、前記要因の変化と前記指標との関係を示す情報とを関連付けて出力する出力工程をさらに備えることを特徴とする、上記の生産管理方法であってもよい。 The present disclosure also provides information on a change in the predetermined factor detected in the change detection step, information on a change in the index acquired in the index change acquisition step, and information on a change in the factor and the index. The production management method described above may further include an output step of correlating and outputting information indicating a relationship.
 また、本開示は、前記所定の要因の変化は、前記製造工程における所謂4M変更であり、
 前記製造工程における生産性および/または製造品質に関わる指標は、所定期間における不良数、工程能力、生産量および生産速度のうちの少なくとも何れかまたは、それらに基づいて算出される数値であり、
 前記要因の変化と前記指標との関係は、前記4M変更に基づく、不良数、工程能力、生産量および生産速度のうちの少なくとも何れかまたは、それらに基づいて算出される数値の増減であることを特徴とする、上記の生産管理方法であってもよい。
Further, the present disclosure provides that the change in the predetermined factor is a so-called 4M change in the manufacturing process,
The index related to productivity and/or manufacturing quality in the manufacturing process is at least one of the number of defects, process capacity, production volume, and production speed in a predetermined period, or a numerical value calculated based on them,
The relationship between the change in the factors and the index is an increase or decrease in at least one of the number of defects, process capacity, production volume, and production speed, or a numerical value calculated based on them, based on the 4M change. The above production control method may be characterized in that:
 また、本開示は、前記情報生成工程において新たに生成された前記要因の変化と前記指標との関係を示す情報と、
 前記要因の変化と同一の要因の変化に対して前記情報生成工程において過去に生成された、前記同一の要因の変化と前記指標との関係を示す情報と、の関係を取得する、情報確認工程をさらに備えることを特徴とする、上記の生産管理方法であってもよい。
The present disclosure also provides information indicating a relationship between a change in the factor newly generated in the information generation step and the index;
an information confirmation step of acquiring the relationship between the change in the factor and information that has been generated in the past in the information generation step and indicates the relationship between the change in the same factor and the index; The above production control method may further include the following.
 単一または複数の製造装置及び検査装置を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程を実行する生産ラインに係る生産管理プログラムであって、
 コンピュータに、前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出ステップと、
 前記変化検出ステップにおいて検出された前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得ステップと、
 前記指標変化取得ステップにおいて取得された前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成ステップと、
 を実行させることを特徴とする、生産管理プログラムであってもよい。
A production management program relating to a production line that has a single or multiple manufacturing equipment and inspection equipment, and executes a product manufacturing process and an inspection process using the manufacturing equipment and inspection equipment,
a change detection step of causing a computer to detect a change in a predetermined factor related to the manufacturing process and/or the inspection process;
an index change acquisition step of acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected in the change detection step;
an information generation step of generating information indicating a relationship between the change in the factor and the index from the change in the index acquired in the index change acquisition step;
It may be a production management program characterized by causing the execution of the following.
 また、前記所定の要因の変化は、計画的に実施される計画的変化と、それ以外の変化とを含み、
 前記情報生成ステップにおいて生成される、前記要因の変化と前記指標との関係を示す情報は、前記要因の変化が、前記計画的変化か、それ以外の変化かの情報を含むことを特徴とする、上記の生産管理プログラムであってもよい。
Further, the change in the predetermined factor includes a planned change that is carried out in a planned manner and other changes,
The information generated in the information generation step and indicating the relationship between the change in the factor and the index includes information as to whether the change in the factor is the planned change or another change. , or the above-mentioned production management program.
 なお、上記構成および処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。 Note that each of the above configurations and processes can be combined with each other to constitute the present invention unless technical contradiction occurs.
 本発明によれば、より効率的に、生産ラインの品質や生産性を改善することができる。 According to the present invention, the quality and productivity of the production line can be improved more efficiently.
本発明の実施例に係る生産管理システムの概略構成図である。1 is a schematic configuration diagram of a production management system according to an embodiment of the present invention. 本発明の実施例に係る生産管理システムの機能ブロック図である。FIG. 1 is a functional block diagram of a production management system according to an embodiment of the present invention. 本発明の実施例に係る生産ラインを稼働させる際の計画的変更情報と偶発的変更情報について説明するための図である。FIG. 3 is a diagram for explaining planned change information and accidental change information when operating a production line according to an embodiment of the present invention. 本発明の実施例に係る生産管理システムの特徴を示す図である。1 is a diagram showing features of a production management system according to an embodiment of the present invention. 本発明の実施例に係る生産管理システム全体における処理のフローチャートである。1 is a flowchart of processing in the entire production management system according to an embodiment of the present invention. 本発明の実施例に係るデータ蓄積プロセス及び事例蓄積のプロセスのフローチャートである。5 is a flowchart of a data accumulation process and a case accumulation process according to an embodiment of the present invention. 本発明の実施例に係る知見抽出プロセス及び絞り込み条件を設定する処理の詳細のフローチャートである。2 is a detailed flowchart of a knowledge extraction process and a process for setting narrowing conditions according to an embodiment of the present invention. 本発明の実施例に係る知見の継続的な評価プロセスのフローチャートである。2 is a flowchart of a process for continuous evaluation of knowledge according to an embodiment of the present invention. 本発明の実施例に係る知見の評価を継続するプロセスのフローチャートである。1 is a flowchart of a process for continuing evaluation of knowledge according to an embodiment of the present invention. 本発明の実施例に係る変動とその影響のレポートの例を示す図である。It is a figure which shows the example of the report of a fluctuation|variation and its influence based on the Example of this invention. 本発明の実施例に係る事例を抽出してリスト化した表の例を示す図である。FIG. 3 is a diagram showing an example of a table in which cases are extracted and listed according to an embodiment of the present invention. 本発明の実施例に係る事例を抽出してリスト化し、さらに絞った表の例を示す図である。It is a figure which shows the example of the table which extracts and lists the cases based on the Example of this invention, and is further narrowed down. 本発明の実施例に係る事例を抽出してリスト化し、さらに絞った表の例を示す図である。It is a figure which shows the example of the table which extracts and lists the cases based on the Example of this invention, and is further narrowed down. 本発明の実施例に係る事例を抽出してリスト化し、さらに絞った表の例を示す図である。It is a figure which shows the example of the table which extracts and lists the cases based on the Example of this invention, and is further narrowed down. 本発明の実施例に係る事例を抽出してリスト化し、さらに絞った表の例を示す図である。It is a figure which shows the example of the table which extracts and lists the cases based on the Example of this invention, and is further narrowed down. 本発明の実施例に係る事例を抽出してリスト化し、さらに絞った表の例を示す図である。It is a figure which shows the example of the table which extracts and lists the cases based on the Example of this invention, and is further narrowed down. 本発明の実施例に係る良化した事例のレポートの例である。It is an example of the report of the improved case based on the Example of this invention. 本発明の実施例に係る悪化した事例のレポートの例である。3 is an example of a report of an aggravated case according to an embodiment of the present invention.
 <適用例>
 本発明が適用される生産ライン10は、図1に示すように、はんだ印刷装置10a、はんだ印刷後検査装置10b、マウンタ10c、マウント後検査装置10d、リフロー炉10e、リフロー後検査装置10fを含む。生産ライン10における各装置は、LANなどのネットワークを介して実装機用サーバ1c、検査機用サーバ1e、ライン管理用サーバ1aに接続されている。
<Application example>
As shown in FIG. 1, a production line 10 to which the present invention is applied includes a solder printing device 10a, a solder printing post-inspection device 10b, a mounter 10c, a post-mounting inspection device 10d, a reflow oven 10e, and a post-reflow inspection device 10f. . Each device in the production line 10 is connected to a mounting machine server 1c, an inspection machine server 1e, and a line management server 1a via a network such as a LAN.
 図2に、本実施例に係る生産管理システム1についての概略ブロック図を示す。生産管理システム1は、生産ライン10における4M変更の、生産ライン10の品質または生産性への影響の情報を管理するための制御部11bを有する。また、制御部11bで生成した、生産ライン10における4M変更の、生産ライン10の品質または生産性への影響に関する情報をデータベース化して記憶するデータベース部11cを有する。制御部11bはさらに機能モジュールとして、変化検出部110a、指標変化取得部110b、情報生成部110cを備えている。 FIG. 2 shows a schematic block diagram of the production management system 1 according to this embodiment. The production management system 1 includes a control unit 11b for managing information on the influence of the 4M change on the production line 10 on the quality or productivity of the production line 10. The control unit 11c also includes a database unit 11c that stores information generated by the control unit 11b regarding the influence of 4M changes on the production line 10 on the quality or productivity of the production line 10 in a database. The control unit 11b further includes a change detection unit 110a, an index change acquisition unit 110b, and an information generation unit 110c as functional modules.
 変化検出部110aでは、指定された期間における、生産ライン10における製造工程や検査工程に係る変化が検出される。指標変化取得部110bでは、上記の製造工程や検査工程に係る変化の前後における不良数や不良率等の変化が取得される。そして、情報生成部110cにおいては、変化検出部110bによって検出された変化情報と、指標変化取得部によって取得された不良数や不良率等の変化に基づき、上記の製造工程や検査工程に係る変化と、不良数や不良率等の指標の変化との関係を示す情報を生成する。 The change detection unit 110a detects changes in the manufacturing process and inspection process in the production line 10 during a specified period. The index change acquisition unit 110b acquires changes in the number of defects, defective rate, etc. before and after the changes related to the manufacturing process and inspection process. Then, the information generation unit 110c generates changes in the manufacturing process and inspection process based on the change information detected by the change detection unit 110b and changes in the number of defects, defective rate, etc. acquired by the index change acquisition unit. and information indicating the relationship between changes in indicators such as the number of defectives and defective rate.
 次に、図4を用いて、本適用例における生産管理システム1の特徴について示す。本適用例は、原因側の変化を起点として、その影響の事例を蓄積し、知見化する。すなわち、生産計画・作業標準や改善のための指示に基づく作業(段取り替え、パラメータ変更)等の計画的な変更あるいは、生産の進捗上自然に発生する作業(部品切れ時の交換⇒部品ロット変化)や生産装置内で発生した変動(真空圧、温度など)等の偶発的な変更を起点とする。そして、品質の良化/悪化/変化なし、生産性の良化/悪化/変化なし、コストの良化/悪化/変化なしをデータにより確認し、知見化を図る。 Next, using FIG. 4, the features of the production management system 1 in this application example will be described. This application example starts with a change in the cause, accumulates examples of its effects, and converts it into knowledge. In other words, planned changes such as work (setup changes, parameter changes) based on production plans, work standards, and instructions for improvement, or work that naturally occurs in the progress of production (replacement when parts are out of stock ⇒ parts lot changes) ) or fluctuations that occur within the production equipment (vacuum pressure, temperature, etc.). Then, data is used to confirm improvement/deterioration/no change in quality, improvement/deterioration/no change in productivity, and improvement/deterioration/no change in cost.
 これにより、従来の方法によれば認識できない要因を検出可能であり、より確実に、生産ラインの品質や生産性を向上させることが可能である。また、本実施例においては、個々の事例をのみを扱うのでなく、データを蓄積して得られた根拠を元に工程改善を図ることになるので、改善のための施策の根拠を明示することができ、より効率的に工程改善を図ることが可能である。 As a result, it is possible to detect factors that cannot be recognized using conventional methods, and it is possible to more reliably improve the quality and productivity of the production line. In addition, in this example, we will not only deal with individual cases, but will aim to improve the process based on the basis obtained by accumulating data, so it is necessary to clearly state the basis of the measures for improvement. It is possible to improve the process more efficiently.
 以下、図面に基づいて、本発明の実施形態について説明する。ただし、以下の各例に記載されている構成要素については、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, embodiments of the present invention will be described based on the drawings. However, the scope of the present invention is not intended to be limited to the constituent elements described in the following examples unless otherwise specified.
 <実施例>
 本発明に係る生産管理システム1は例えば、図1に示すような生産ライン10を含み、この生産ライン10の生産管理を行う。図1における生産ライン10は、プリント基板の表面実装ラインである。図1に示すように、本実施例に係る生産ライン10には、上流側から順に、はんだ印刷装置10a、はんだ印刷後検査装置10b、マウンタ10c、マウント後検査装置10d、リフロー炉10e、リフロー後検査装置10fが設けられている。
<Example>
A production management system 1 according to the present invention includes, for example, a production line 10 as shown in FIG. 1, and performs production management of this production line 10. The production line 10 in FIG. 1 is a surface mounting line for printed circuit boards. As shown in FIG. 1, the production line 10 according to the present embodiment includes, in order from the upstream side, a solder printing device 10a, a post-solder printing inspection device 10b, a mounter 10c, a post-mount inspection device 10d, a reflow oven 10e, and a solder post-printing inspection device 10d. An inspection device 10f is provided.
 はんだ印刷装置10aは、プリント基板上の電極部はんだペーストを印刷する装置である。マウンタ10cは、プリント基板に実装すべき多数の電子部品をはんだペーストの上に載置するための装置である。また、リフロー炉10eは、プリント基板上に載置された電子部品を基板上のプリント配線にはんだ接合するための加熱装置である。そして、はんだ印刷後検査装置10b、マウント後検査装置10d、リフロー後検査装置10fは各工程の出口でプリント基板の状態を検査し、不良あるいは不良のおそれを自動的に検出する。 The solder printing device 10a is a device that prints solder paste for electrode parts on a printed circuit board. The mounter 10c is a device for placing a large number of electronic components to be mounted on a printed circuit board onto solder paste. Further, the reflow oven 10e is a heating device for soldering electronic components placed on a printed circuit board to printed wiring on the board. The post-solder printing inspection device 10b, the post-mount inspection device 10d, and the post-reflow inspection device 10f inspect the condition of the printed circuit board at the exit of each process, and automatically detect defects or potential defects.
 上述したはんだ印刷装置10a、マウンタ10c、リフロー炉10e(以下、これらをまとめて製造装置ともいう。)は、LANなどのネットワークを介して実装機用サーバ1cに接続されている。この実装機用サーバ1cには、製造装置をメンテナンスするためのメンテナンス用装置1gが接続されている。また、はんだ印刷後検査装置10b、マウント後検査装置10d、リフロー後検査装置10f(以下、これらをまとめて検査装置ともいう。)は、ネットワークを介して検査機用サーバ1eに接続されている。また、実装機用サーバ1cと検査機用サーバ1eとは、さらに生産ライン10を統括的に管理するサーバであるライン管理用サーバ1aに接続されている。 The solder printing device 10a, mounter 10c, and reflow oven 10e (hereinafter also collectively referred to as manufacturing devices) described above are connected to the mounting machine server 1c via a network such as a LAN. A maintenance device 1g for maintaining the manufacturing device is connected to this mounting machine server 1c. Further, the solder printing post-inspection device 10b, the post-mount inspection device 10d, and the post-reflow inspection device 10f (hereinafter also collectively referred to as inspection devices) are connected to the inspection machine server 1e via a network. Moreover, the mounting machine server 1c and the inspection machine server 1e are further connected to a line management server 1a, which is a server that collectively manages the production line 10.
 ライン管理用サーバ1a、実装機用サーバ1c、検査機用サーバ1eは、CPU(プロセッサ)、主記憶装置(メモリ)、補助記憶装置(ハードディスクなど)などを具備する汎用的なコンピュータシステムにより構成される。なお、ライン管理用サーバ1aには、ラインの管理者が操作するライン管理者用端末1bと、作業者が操作する作業指示・作業記録端末1fが接続されている。ライン管理者用端末1bには、状況確認・分析用アプリが装備されている。作業指示・作業記録端末1fには作業指示・記録アプリが装備されている。 The line management server 1a, the mounting machine server 1c, and the inspection machine server 1e are composed of general-purpose computer systems equipped with a CPU (processor), a main storage device (memory), an auxiliary storage device (hard disk, etc.), and the like. Ru. Note that a line manager terminal 1b operated by a line manager and a work instruction/work record terminal 1f operated by a worker are connected to the line management server 1a. The line manager terminal 1b is equipped with an application for checking and analyzing the situation. The work instruction/work record terminal 1f is equipped with a work instruction/record application.
 そして、実装機用サーバ1cには、実装機担当者が操作する実装機担当者用端末1dが接続されている。実装機担当者用端末1dには実装プログラム作成アプリが装備されている。ライン管理者用端末1b、実装機担当者用端末1d、作業指示・作業記録端末1fは、入力装置(キーボード、マウス、コントローラ、タッチパネルなど)、出力装置(ディスプレイ、プリンタ、スピーカなど)などが適宜、備えられている。これらのシステム全体を含んで、生産管理システム1が構成されている。以上の生産管理システム1においては、生産ライン10の生産に関わる様々なパラメータが定められており、これらのパラメータが変動することで、生産ライン10の品質や生産性に影響を及ぼす。従って、生産管理システム1は、これらのパラメータを常に適切に変動させながら管理する。 A terminal 1d for a mounting machine staff operated by a mounting machine staff is connected to the mounting machine server 1c. The mounting machine personnel terminal 1d is equipped with a mounting program creation application. The line manager's terminal 1b, the mounting machine person's terminal 1d, and the work instruction/work record terminal 1f are equipped with input devices (keyboard, mouse, controller, touch panel, etc.), output devices (display, printer, speakers, etc.) as appropriate. , equipped. A production management system 1 includes these entire systems. In the production management system 1 described above, various parameters related to the production of the production line 10 are determined, and variations in these parameters affect the quality and productivity of the production line 10. Therefore, the production management system 1 manages these parameters while constantly changing them appropriately.
 図2に、本実施例に係る生産管理システム1についての概略ブロック図を示す。図2に示すように、生産管理システム1は、生産ライン10の各製造装置及び各検査装置からのデータを受信するデータ取得部11aを有する。また、データ取得部11aが取得したデータに基づいて生産ライン10における4M変更の、生産ライン10の品質または生産性への影響の情報を管理するための制御部11bを有する。また、データ取得部11aで取得したデータや、制御部11bで生成した、生産ライン10における4M変更の、生産ライン10の品質または生産性への影響に関する情報をデータベース化して記憶するデータベース部11cを有する。さらに、制御部11bで生成した、生産ライン10における4M変更の、生産ライン10の品質または生産性への影響に関する情報を出力可能な出力部11dを有する。制御部11bはさらに機能モジュールとして、変化検出部110a、指標変化取得部110b、情報生成部110cを備えている。各機能モジュールは、例えば、情報記憶機能を有するデータベース部11cに格納されたプログラムをCPU(不図示)が読み込み実行することにより実現される。なお、上記でいう4M変更とは、製造工程または検査工程における、人、機械(設備)、方法、材料及び、測定に関わる変更であり、計画的な変更と偶発的に生じる変更を含み、また、物理的な変更の他、条件やパラメータの変更等、製造工程または検査工程で生じるあらゆる変更を含む趣旨である。 FIG. 2 shows a schematic block diagram of the production management system 1 according to this embodiment. As shown in FIG. 2, the production management system 1 includes a data acquisition unit 11a that receives data from each manufacturing device and each inspection device on the production line 10. The control unit 11b also includes a control unit 11b for managing information on the influence of the 4M change on the production line 10 on the quality or productivity of the production line 10 based on the data acquired by the data acquisition unit 11a. The database unit 11c also includes a database unit 11c that stores data acquired by the data acquisition unit 11a and information generated by the control unit 11b regarding the influence of the 4M change on the production line 10 on the quality or productivity of the production line 10. have Furthermore, it has an output section 11d that can output information generated by the control section 11b regarding the influence of the 4M change on the production line 10 on the quality or productivity of the production line 10. The control unit 11b further includes a change detection unit 110a, an index change acquisition unit 110b, and an information generation unit 110c as functional modules. Each functional module is realized, for example, by a CPU (not shown) reading and executing a program stored in a database unit 11c having an information storage function. The 4M changes mentioned above are changes related to people, machines (equipment), methods, materials, and measurements in the manufacturing process or inspection process, and include planned changes and accidental changes. In addition to physical changes, the meaning includes all changes that occur in the manufacturing process or inspection process, such as changes in conditions and parameters.
 変化検出部110aでは、指定された期間に、計画的または偶発的に発生する4M変更を中心とした、生産ライン10における製造工程や検査工程に係る変化が検出される。指標変化取得部110bでは、データ取得部11aにおいて取得された各製造装置及び各検査装置からのデータに基づき、上記の製造工程や検査工程に係る変化の前後における、生産性や製造品質に関わる指標としての不良数や不良率等の変化が取得される。そして、情報生成部110cにおいては、変化検出部110bによって検出された変化情報と、指標変化取得部によって取得された不良数や不良率等の変化に基づき、上記の製造工程や検査工程に係る変化と、不良数や不良率等の指標の変化との関係を示す情報を生成する。 The change detection unit 110a detects changes related to manufacturing processes and inspection processes in the production line 10, mainly 4M changes that occur intentionally or accidentally, during a specified period. The index change acquisition unit 110b obtains indicators related to productivity and manufacturing quality before and after the changes related to the manufacturing process and inspection process, based on the data from each manufacturing device and each inspection device acquired by the data acquisition unit 11a. Changes in the number of defects, defective rate, etc. are obtained. Then, the information generation unit 110c generates changes in the manufacturing process and inspection process based on the change information detected by the change detection unit 110b and changes in the number of defects, defective rate, etc. acquired by the index change acquisition unit. and information indicating the relationship between changes in indicators such as the number of defectives and defective rate.
 ところで、上述のように、生産管理システム1のパラメータを適切に管理するための情報として、以下に説明するように、計画的変更情報と偶発的変更情報が存在する。次に、図3を用いて、生産ライン10を稼働させる際の計画的変更情報と偶発的変更情報について説明する。先ず計画的変更情報は、所定の製品の生産に際して、予め検討が行われ、生産ライン10の品質や生産性を改善するために、計画的に実施される作業のための情報をいう。この情報は、ライン管理者には予め把握されている情報である。例えば、製品であるプリント基板に対する部品の実装プログラムの実行に際して、特定の部品品番に対して使用するノズルやフィーダの種別を変更する、特定の部品品番の実装条件を変更する等の作業を行うことで、実装機用サーバ1c内の実装プログラムが変更される。また、例えば、ノズル、フィーダ、ヘッド等をマウンタ10cから外して、メンテナンス用装置1gに持って行き、定期メンテナンスを行うと、その情報がメンテナンス用装置1gから実装機用サーバ1cに送られる。 By the way, as described above, as information for appropriately managing the parameters of the production management system 1, there are planned change information and accidental change information, as described below. Next, planned change information and accidental change information when operating the production line 10 will be explained using FIG. 3. First, planned change information refers to information for work that is studied in advance and systematically implemented to improve the quality and productivity of the production line 10 when producing a predetermined product. This information is information that is known in advance to the line manager. For example, when executing a component mounting program for a printed circuit board that is a product, work such as changing the type of nozzle or feeder used for a specific component number, or changing the mounting conditions for a specific component number. Then, the mounting program in the mounting machine server 1c is changed. Further, for example, when a nozzle, feeder, head, etc. are removed from the mounter 10c and taken to the maintenance device 1g to perform regular maintenance, the information is sent from the maintenance device 1g to the mounting machine server 1c.
 次に、偶発的変更情報は、計画にない、状況に応じて実施される作業に関わる情報をいう。この情報は、ライン管理者から見ると、計画にもなく1つ1つ報告される訳でもないことから、把握できていない作業である。これについては、例えば、不良が多発するノズルを確認した時にノズルが詰まっている、実装エラーが多発するフィーダを確認した時にフィーダが歪んでいる、などの異常内容を、実装機担当者が実装機担当者用端末1dに記録すると、その情報が実装機用サーバ1cまたはライン管理用サーバ1aに送られる。あるいは、実装機担当者が、部品切れに際してリール交換したり、不良の多発に際してフィーダを交換したり、実装エラーの多発に際して一時的な実装条件を変更する等の作業を行うと、その情報がマウンタ10cから実装機用サーバ1cに送られる。なお、部品切れの時、予備のフィーダに自動的に切り替わるマウンタ10cも存在し、この場合には、作業なしで変更情報が自動的に実装機用サーバ1cに送られる。 Next, accidental change information refers to information related to work that is not planned and is performed depending on the situation. From the line manager's perspective, this information is a task that cannot be grasped because it is neither planned nor reported one by one. Regarding this, for example, when checking a nozzle with many defects, the nozzle is clogged, or when checking a feeder with many mounting errors, the feeder is distorted. When recorded on the person in charge terminal 1d, the information is sent to the mounting machine server 1c or the line management server 1a. Alternatively, if the person in charge of the mounting machine performs tasks such as replacing the reel when a component runs out, replacing the feeder when a number of defects occur, or temporarily changing mounting conditions when a number of mounting errors occur, that information may be transferred to the mounter. 10c to the mounting machine server 1c. There is also a mounter 10c that automatically switches to a spare feeder when a component runs out, and in this case, change information is automatically sent to the mounting machine server 1c without any work.
 次に、上述した計画的変更情報と偶発的変更情報の各々の変更情報が、生産ライン10における如何なる範囲に影響を及ぼすかの具体例について説明する。
(1)計画的変更情報について
(1-1)ノズルの交換:影響範囲は、交換前のノズルID、交換後のノズルIDの各々が部品
(1-2)部品品番の実装パラメータの変更:影響範囲は、変更した部品品番の変更前後の部品全体
(1-3)部品品番に対して割り当てるノズルやフィーダの型式の変更:影響範囲は、部品品番(部品品番とノズルまたはフィーダの型式の組合せでも良い)
(1-4)マスククリーニングの実施:影響範囲は、変更した部品品番の変更前後の部品全体
 等が考えられる。
 例えば、フィーダの形式を、FeederAからFeederBに変更した場合、マウンタプログラムはRev.AからRev.Bに変更される(割り当て変更)。そして、このフィーダの変更の影響を判定する場合には、マウンタプログラムがRev.AからRev.Bに変更される(割り当て変更)前の部品C1、C2と、割り当て変更後の部品C1、C2について比較する方法と、FeederAで実装された部品C1、C2と、FeederBで実装された部品C1、C2とを比較することが考えられる。
Next, a specific example of the range on the production line 10 affected by each of the above-mentioned planned change information and accidental change information will be described.
(1) Regarding planned change information (1-1) Nozzle replacement: The scope of influence is that each of the nozzle ID before replacement and the nozzle ID after replacement is a component (1-2) Change in mounting parameters of part part number: Impact The scope is the entire part before and after the changed part number (1-3) Changes in the nozzle or feeder model assigned to the part number: The affected range is the part number (including the combination of the part number and nozzle or feeder model) good)
(1-4) Implementation of mask cleaning: The scope of influence is likely to be the entire part before and after the changed part number.
For example, if the feeder format is changed from FeederA to FeederB, the mounter program should be changed to Rev. A to Rev. B (assignment change). Then, when determining the effect of this feeder change, the mounter program Rev. A to Rev. A method of comparing components C1 and C2 before being changed to B (allocation change) and components C1 and C2 after the allocation change, and components C1 and C2 mounted on Feeder A and component C1 mounted on Feeder B. It is conceivable to compare it with C2.
 また、フィーダ型式の交換の場合は、変更前後の部品全体における、実装エラー率、実不良率、ずれ量のCpk等を確認する(マウンタ全般の変更について同様の影響を確認する必要がある)。マスククリーニングの実施の場合は、印刷後のはんだの体積、リフロー後のはんだ濡れあがり高さ等を確認する(印刷機全般の変更について同様の影響を確認する必要がある)。 In addition, when replacing the feeder model, check the mounting error rate, actual defective rate, Cpk of deviation amount, etc. for the entire part before and after the change (it is necessary to check the same effect for changes to the mounter in general). When performing mask cleaning, check the volume of solder after printing, the height of solder wetting after reflow, etc. (it is necessary to check the same effect for changes to the printing machine in general).
(2)偶発的変更情報について
(2-1)部品切れ時のリール交換:影響範囲は、同一スロット(フィーダを取り付ける位置)のフィーダで実装された部品
(2-2)マウンタが実装エラー警告が出て止まり、作業者がフィーダの抜き差し(交換せず)を行った:影響範囲は、そのフィーダIDで実装された部品
 等が考えられる。
 例えば、部品リールIDをReelAからReelBにリール交換した場合、フィーダIDはFeederID1のまま維持される。そして、このリールの交換の影響を判定する場合には、リールが交換される前の部品C1、C2と、リール交換後の部品C1、C2について比較する方法がある。
 また、フィーダの抜き差しが行われた場合には、フィーダ抜き差し前の部品C1、C2と、フィーダ抜き差し後の部品C1、C2について比較する方法がある。
(2) About accidental change information (2-1) Reel replacement when parts run out: The affected area is the parts mounted on the feeder in the same slot (position where the feeder is installed) (2-2) The mounter has a mounting error warning The feeder stopped and the worker inserted and removed the feeder (without replacing it): The affected area is likely to be the parts mounted with that feeder ID.
For example, when the component reel ID is changed from ReelA to ReelB, the feeder ID is maintained as FeederID1. When determining the influence of this reel replacement, there is a method of comparing the parts C1 and C2 before the reel replacement with the parts C1 and C2 after the reel replacement.
Furthermore, when the feeder is inserted and removed, there is a method of comparing the parts C1 and C2 before the feeder is inserted and removed, and the parts C1 and C2 after the feeder is inserted and removed.
 次に、生産ライン10における変更対象の具体例について説明する。
(1)作業種別の具体例として以下のものが挙げられる。
(1-1)メンテナンス(ヘッド、ノズル、フィーダ)
(1-2)実装パラメータ変更(部品サイズの変更、部品認識パラメータの変更、部品認識許容範囲の変更)
(1-3)部品品番とノズル・フィーダの型式の割り当ての変更(直径が違うノズル、磁石で部品が立たないようにしたフィーダとそうでないフィーダ)
(1-4)ノズル、フィーダの交換
(2)変更種別の具体例として以下のものが挙げられる。
(2-1)部品切れによる部品ロットの切り替わり
(2-2)オペレータによる一時的な実装パラメータの変更(範囲は限定的)
(2-3)段取り替えによる、オペレータが一時的に変更したパラメータのリセット
Next, a specific example of changes to be made in the production line 10 will be described.
(1) Specific examples of work types include the following.
(1-1) Maintenance (head, nozzle, feeder)
(1-2) Change mounting parameters (change component size, change component recognition parameters, change component recognition tolerance range)
(1-3) Changing the assignment of part numbers and nozzle/feeder models (nozzles with different diameters, feeders that use magnets to prevent parts from standing up, and feeders that do not)
(1-4) Replacement of nozzle and feeder (2) Specific examples of change types include the following.
(2-1) Switching of parts lot due to parts shortage (2-2) Temporary change of mounting parameters by operator (limited scope)
(2-3) Resetting parameters temporarily changed by the operator due to setup change
 なお、本実施例においては、変更情報に付帯する情報として、ノズルやフィーダの仕様、部品品番、部品ライブラリ、部品種・サイズを紐づけて管理してもよい。また、生産工程全体を俯瞰できるように、各変更が発生した時点に対する品質・生産性・コストの変化と紐づけて管理してもよい。また、生産ラインの品質や生産性が良化する変更と付帯情報の共通点を抽出してレポートすることで、生産ルールの変更作業に寄与可能としてもよい。この場合のレポートの対象は生産ルールや作業標準の作成者である。また、悪化する変更も同様にレポートしてもよい。これにより、やってはいけない作業等を明確化できる。また、良化および悪化の根拠は、相関係数を示す等にて明確化すべきである。本実施例の項化としては、隠れたノウハウを明確化して、工程全体を改善できる点が挙げられる。また、見えていなかった悪化要因を改善することで工程全体を改善できる点が挙げられる。 In this embodiment, as information accompanying the change information, nozzle and feeder specifications, component part numbers, component libraries, and component types and sizes may be linked and managed. Further, in order to have an overview of the entire production process, each change may be managed in association with changes in quality, productivity, and cost at the time of occurrence. Further, by extracting and reporting common points between changes that improve the quality and productivity of the production line and incidental information, it may be possible to contribute to the work of changing production rules. In this case, the target of the report is the creator of production rules and work standards. Degrading changes may also be reported as well. This makes it possible to clarify tasks that should not be performed. In addition, the basis for improvement and deterioration should be clarified by showing correlation coefficients, etc. The itemization of this embodiment is that hidden know-how can be clarified and the entire process can be improved. Another point is that the entire process can be improved by improving unseen deteriorating factors.
 本実施例において得られる知見に基づいて、生産ルールを変更するようにしてもよい。具体的な生産ルールとしては、部品に対するノズルやフィーダの選択、部品の画像処理方法(同一形状の部品に使用するノズルを決めるなど)、メンテナンス間隔(前回のメンテナンスから次のメンテナンスの間の品質を比較)が挙げられる。また、改善すべき作業(フィーダへの部品リールの取り付け方法)、やるべき作業(フィーダの差し替え・吸着位置の誤学習のリセット)が挙げられる。また、本実施例においては、それらの変化点を見つけて、結果を確認・蓄積する。また、本実施例においては、変更前後の比較から、推奨する新たな生産ルールを提示するようにしてもよい。その際は、推奨の生産条件とデータ(改善数/事例数など)を示す(1608チップ抵抗にはこのノズルを使用するとよいなど)。 The production rules may be changed based on the knowledge obtained in this example. Specific production rules include selection of nozzles and feeders for parts, image processing methods for parts (determining which nozzles to use for parts of the same shape, etc.), and maintenance intervals (such as determining quality between the previous maintenance and the next maintenance). comparison). In addition, there are tasks that should be improved (method of attaching the component reel to the feeder) and tasks that should be done (replacing the feeder and resetting incorrect learning of the suction position). Furthermore, in this embodiment, the points of change are found, and the results are confirmed and accumulated. Further, in this embodiment, a recommended new production rule may be presented based on a comparison before and after the change. In that case, we will indicate recommended production conditions and data (number of improvements/number of cases, etc.) (for example, it is recommended to use this nozzle for 1608 chip resistors).
 次に、図4を用いて、本実施例における生産管理システム1の特徴について示す。従来の生産管理においては、品質が低下したなどの結果を起点とし、原因は意図的(計画的)な変更のみを対象としていた。そして、従来の生産管理においては、結果の変化を起点に、原因を特定し修正し、あるいは、原因の変化を起点に、結果の変化有無を確認していた。そして、結果が良くなる・悪くなることに共通する原因を特定しノウハウ化していた。 Next, the features of the production management system 1 in this embodiment will be described using FIG. 4. In conventional production management, the starting point was the result, such as a decline in quality, and only intentional (planned) changes were considered as the cause. In conventional production management, a change in the result is used as a starting point to identify and correct the cause, or a change in the cause is used as a starting point to check whether there is a change in the result. They then identified the common causes of good or bad results and turned it into know-how.
 これに対し、本実施例は、原因側の変化を起点として、その影響の事例を蓄積し、知見化する点が特徴である。すなわち、生産計画・作業標準や改善のための指示に基づく作業(段取り替え、パラメータ変更)等の計画的な変更あるいは、生産の進捗上自然に発生する作業(部品切れ時の交換⇒部品ロット変化)や生産装置内で発生した変動(真空圧、温度など)等の偶発的な変更を起点とする。そして、品質の良化/悪化/変化なし、生産性の良化/悪化/変化なし、コストの良化/悪化/変化なしをデータにより確認し、知見化を図るものである。これにより、従来の方法によれば認識できない要因を検出可能であり、より確実に、生産ラインの品質や生産性を向上させることが可能である。また、本実施例においては、個々の事例をのみを扱うのでなく、データを蓄積して得られた根拠を元に工程改善を図ることになるので、改善のための施策の根拠を明示することができ、より効率的に工程改善を図ることが可能である。 On the other hand, this embodiment is characterized by starting from a change in the cause, accumulating examples of its effects, and turning it into knowledge. In other words, planned changes such as work (setup changes, parameter changes) based on production plans, work standards, and instructions for improvement, or work that naturally occurs in the progress of production (replacement when parts are out of stock ⇒ parts lot changes) ) or fluctuations that occur within the production equipment (vacuum pressure, temperature, etc.). Then, data is used to confirm improvement/deterioration/no change in quality, improvement/deterioration/no change in productivity, and improvement/deterioration/no change in cost. As a result, it is possible to detect factors that cannot be recognized using conventional methods, and it is possible to more reliably improve the quality and productivity of the production line. In addition, in this example, we will not only deal with individual cases, but will aim to improve the process based on the basis obtained by accumulating data, so it is necessary to clearly state the basis of the measures for improvement. It is possible to improve the process more efficiently.
 次に、図5を用いて、本実施例に係るシステム全体のフローについて説明する。ステップS101~ステップS111の処理は、ライン管理用サーバ1aにおける処理、ステップS112~ステップS119の処理は、ライン管理者用端末1bにおける状況確認・分析用アプリによる処理である。本フローのステップS101においては、実装・検査・変化の新着データの確認が行われる。ステップS102においては、実装・検査・変化のデータ収集が行われ、ステップS103においては、実装・検査・変化のデータが保存される。そして、ステップS104においては、この際、時間帯毎あるいは所定の範囲毎に不良・実装エラーの集計・保存が行われる。 Next, the flow of the entire system according to this embodiment will be explained using FIG. 5. The processing from step S101 to step S111 is performed by the line management server 1a, and the processing from step S112 to step S119 is performed by the situation confirmation/analysis application on the line manager terminal 1b. In step S101 of this flow, newly arrived data regarding mounting, inspection, and changes is confirmed. In step S102, mounting/inspection/change data is collected, and in step S103, the mounting/inspection/change data is saved. Then, in step S104, defects and mounting errors are totaled and stored for each time period or for each predetermined range.
 そして、ステップS105においては、実装・検査・変化のデータに変化があるかどうかが判断される。ステップS105において変化があると判断された場合にはステップS106に進む。一方、ステップS105において変化がないと判断された場合には、ステップS101に戻る。ステップS106においては、変化の内容に基づいて当該変化の影響範囲(データ収集範囲)を特定する。ステップS107においては、ステップS106において特定した影響範囲に対して、変化前後における不良・実装エラー集計結果を取得する。ステップS108においては、不良・実装エラーの良化・悪化判定を行う。ステップS109においては、不良・実装エラーの良化・悪化判定結果の保存を行う。 Then, in step S105, it is determined whether there is a change in the mounting/inspection/change data. If it is determined in step S105 that there is a change, the process advances to step S106. On the other hand, if it is determined in step S105 that there is no change, the process returns to step S101. In step S106, the influence range (data collection range) of the change is specified based on the content of the change. In step S107, the defect/mounting error tally results before and after the change are obtained for the affected range specified in step S106. In step S108, a determination is made as to whether the defects or mounting errors are improving or worsening. In step S109, the improvement/deterioration determination results for defects/mounting errors are saved.
 ステップS110においては、ステップS108において得られた不良・実装エラーの良化・悪化判定結果が、通知条件に合致しているか否かが判定される。ステップS110で通所条件に合致していないと判定された場合(否定判定)には、ステップS101に戻る。一方、通知条件に合致すると判定された場合には、ステップS111に進み、不良・実装エラーの良化・悪化を通知する。 In step S110, it is determined whether the improvement/deterioration determination result of defects/mounting errors obtained in step S108 meets the notification conditions. If it is determined in step S110 that the facility conditions are not met (negative determination), the process returns to step S101. On the other hand, if it is determined that the notification conditions are met, the process proceeds to step S111, and notification of improvement or deterioration of the defect/mounting error is made.
 ステップS112においては、ライン管理者用端末1bの状況確認・分析用アプリにおいて、不良・実装エラーの良化・悪化通知を受ける。ステップS113においては、不良・実装エラーの良化・悪化通知を受けるタイミング以外で、定期的なタイミングが到来する。あるいは調べたいものが発生する。ステップS114においては、状況確認・分析用アプリを開く。ステップS115においては、不良・実装エラーの良化・悪化状況を確認する。ステップS116においては、同種の変化が生じた際の良化・悪化結果を収集する。ステップS117においては、同種変化における良化・悪化結果を一覧表示する。ステップS118においては、共通する変化点を抽出する。ステップS119においては、良化する条件をレポートする。 In step S112, a notification of improvement or deterioration of defects or mounting errors is received in the situation confirmation/analysis application of the line manager terminal 1b. In step S113, a regular timing occurs other than the timing at which the defect/mounting error improvement/deterioration notification is received. Or something you want to investigate occurs. In step S114, a situation confirmation/analysis application is opened. In step S115, improvement/deterioration status of defects/mounting errors is confirmed. In step S116, improvement/deterioration results when the same type of change occurs are collected. In step S117, a list of improvement and deterioration results in the same type of change is displayed. In step S118, common change points are extracted. In step S119, conditions for improvement are reported.
 次に、図6Aを用いて、本実施例におけるデータ蓄積プロセスについて説明する。これは、生産ライン10において製品が生産される過程において継続的にデータを蓄積するフローである。ステップS201においては、実装・検査・変化の新着データが確認される。ステップS202においては、実装・検査・変化のデータ収集が行われる。ステップS203においては、実装・検査・変化のデータを保存する。これが継続的に繰り返される。生産が続く限り、データの蓄積が続く。 Next, the data accumulation process in this embodiment will be explained using FIG. 6A. This is a flow in which data is continuously accumulated in the process of producing products on the production line 10. In step S201, new mounting, inspection, and change data is confirmed. In step S202, data collection regarding mounting, inspection, and changes is performed. In step S203, mounting/inspection/change data is saved. This is repeated continuously. As long as production continues, data will continue to accumulate.
 次に、図6Bを用いて、事例蓄積のプロセスについて説明する。これは、例えば、1日1回定期的に、図6Aで収集した変更情報を読み出し、事例を蓄積して知見を抽出するプロセスである。本フローでは、先ずステップS301において事例蓄積が開始される。そして、ステップS302において、対象期間内の変更情報を探索する。ステップS303において、変更情報が終わりかどうか(全ての変更情報が探索できたか)が判定される。ここで変更情報が終わりでないと判定された場合にはステップS304に進む。 Next, the case accumulation process will be explained using FIG. 6B. This is a process of periodically reading out the change information collected in FIG. 6A once a day, accumulating cases, and extracting knowledge, for example. In this flow, case accumulation is first started in step S301. Then, in step S302, change information within the target period is searched. In step S303, it is determined whether the change information is finished (whether all change information has been searched). If it is determined that the change information is not finished, the process advances to step S304.
 ステップS304においては、変化の影響範囲(データ収集範囲)が特定される。ステップS305においては、変化前後の不良・実装エラー集計結果が取得される。ステップS306においては、不良・実装エラーの良化・悪化判定がなされる。ステップS307においては、不良・実装エラーの良化・悪化判定結果が保存される。ステップS307の処理が終了するとステップS302に戻る。そして、ステップS303において、変更情報が終わりかどうか(全ての変更情報が探索できたか)が判定される。ここで変更情報が終わりと判定されるとステップS308に進む。ステップS308においては、知見が抽出される。 In step S304, the range of influence of the change (data collection range) is specified. In step S305, the total results of defects and mounting errors before and after the change are obtained. In step S306, it is determined whether the defect or mounting error is improved or worsened. In step S307, the improvement/deterioration determination results for defects/mounting errors are saved. When the process in step S307 is completed, the process returns to step S302. Then, in step S303, it is determined whether the change information is finished (whether all change information has been searched). If it is determined that the change information is finished, the process advances to step S308. In step S308, knowledge is extracted.
 次に、図7Aを用いて、事例から知識化する知見抽出プロセスの全体の流れについて説明する。この流れでは、n通りの条件があれば、n通りの条件について順繰りに実行する。ステップS401において、対象期間の事例が読み込まれる。ステップS402においては、絞り込み条件を設定する。ここでは、表示する事例を、変更対象、変更内容等の条件で絞込み確認したい事例のみを選択、表示させるための条件を設定する。ステップS403において、ステップS402で設定した条件によって事例を絞り込む。ステップS404において、絞り込んだ事例の中で、変更によって結果が良化した良化件数が2件以上あるか否かが判定される。ここでは良化件数が1件では知見とは言えないので、良化件数2件以上あるか否かを判定する。ステップS404で絞り込んだ事例の良化件数が2件以上ないと判定された場合には、ステップS402に戻る。ステップS404で絞り込んだ事例の中に良化件数が2件以上あると判定された場合には、ステップS405に進む。 Next, the overall flow of the knowledge extraction process for converting cases into knowledge will be explained using FIG. 7A. In this flow, if there are n conditions, the n conditions are sequentially executed. In step S401, cases in the target period are read. In step S402, narrowing conditions are set. Here, conditions are set to narrow down the cases to be displayed based on conditions such as the subject of change and the details of the change, and select and display only the cases that the user wants to check. In step S403, cases are narrowed down based on the conditions set in step S402. In step S404, it is determined whether or not there are two or more cases whose results have improved due to changes among the narrowed down cases. Here, since one improved case cannot be considered as knowledge, it is determined whether there are two or more improved cases. If it is determined in step S404 that the number of improved cases among the narrowed down cases is not two or more, the process returns to step S402. If it is determined that there are two or more improved cases among the cases narrowed down in step S404, the process advances to step S405.
 ステップS405においては、絞り込んだ事例の合計が良化判定か否かが判定される。ここでは、絞り込んだ事例に良化件数と悪化件数または不変件数が混在しているときに、それらの事例の合計値として良化が見られたか否かを判定する。ステップS405において合計が良化判定でないと判定された場合には、ステップS402に戻る。ステップS405において合計が良化判定であると判定された場合には、ステップS406に進む。すなわち、合計が良化しているのであれば、効果があると判定する。ステップS406においては、改善効果の知見として保存される。ステップS407においては、次の絞り込みパターンがあるか否かが判定される。次の絞り込みパターンがあると判定された場合には、ステップS402に戻る。ステップS407において次に絞り込みパターンがないと判定された場合には、ステップS408に進む。ステップS408においては、知見をレポートに記載する。良化の効果が所定値以上のものについてのみ、レポートするようにしてもよい。 In step S405, it is determined whether the sum of the narrowed down cases is an improvement determination. Here, when the narrowed down cases include a mixture of improved cases, worsened cases, or unchanged cases, it is determined whether improvement has been observed as the total value of those cases. If it is determined in step S405 that the total is not an improvement determination, the process returns to step S402. If it is determined in step S405 that the total is an improvement determination, the process advances to step S406. That is, if the total has improved, it is determined that there is an effect. In step S406, it is saved as knowledge of the improvement effect. In step S407, it is determined whether there is a next narrowing pattern. If it is determined that there is a next narrowing pattern, the process returns to step S402. If it is determined in step S407 that there is no next narrowing pattern, the process advances to step S408. In step S408, the findings are written in a report. It may be possible to report only those cases where the improvement effect is greater than or equal to a predetermined value.
 次に、図7Bを用いて、絞り込み条件を設定するステップS402の処理の詳細について説明する。ステップS501、ステップS502、ステップS510~ステップS514のループは、変更対象カテゴリに関して条件設定するループである。ステップS503~ステップS509のループは、変更内容カテゴリに関して条件設定するループである。本フローが実行されると先ず、ステップS501において変更対象カテゴリを1つ選択する。ここでは、「変更対象」、「対象の名称」、「対象の属性」等のカテゴリの中から一つのカテゴリを選択する。ステップS502において、選択した変更対象カテゴリの中からさらに内容を1つ選択する。 Next, details of the process of step S402 for setting narrowing conditions will be described using FIG. 7B. The loop of steps S501, S502, and steps S510 to S514 is a loop for setting conditions regarding the category to be changed. The loop from step S503 to step S509 is a loop for setting conditions regarding the change content category. When this flow is executed, first, in step S501, one category to be changed is selected. Here, one category is selected from categories such as "change target," "target name," and "target attribute." In step S502, one content is further selected from among the selected categories to be changed.
 ここでは例えば、「部品品番」、「ノズルID」等の項目を選択する。ステップS503において、事例を絞り込み、変更内容カテゴリとその内容を抽出する。ここでは、「変更内容」、「変更前」、「変更後」等の変更内容カテゴリ及び、その具体的な内容を抽出する。ステップS504において、変更内容から内容を1つ選択する。具体的には、変更内容として「ノズル型式変更」、「メンテナンス」等の内容を選択する。ステップS505において、変更対象カテゴリの絞り込み条件リストに追加する。 Here, for example, items such as "parts product number" and "nozzle ID" are selected. In step S503, the cases are narrowed down and the change content category and its content are extracted. Here, change content categories such as "change content", "before change", and "after change" and their specific contents are extracted. In step S504, one content is selected from the changed content. Specifically, contents such as "nozzle model change" and "maintenance" are selected as the change contents. In step S505, the category to be changed is added to the narrowing down condition list.
 ステップS506において、選択した変更内容に含まれる変更前・変更後の内容から1つ選択する。例えば、選択した変更内容が「ノズル型式変更」の場合には、「変更前」の内容として、「ノズル径0.5mm」等の内容を選択する。ステップS507において、選択した変更内容・変更前・変更後の内容を「変更内容の絞り込み条件リスト」に追加する。ステップS508においては、次の変更前・変更後の内容があるか否かが判定される。 In step S506, one is selected from the contents before and after the change included in the selected change contents. For example, when the selected change content is "nozzle type change", content such as "nozzle diameter 0.5 mm" is selected as the "before change" content. In step S507, the selected change content, before change content, and after change content are added to the "change content narrowing condition list". In step S508, it is determined whether there is the following content before and after the change.
 ここで、次の変更前・変更後の内容があると判定された場合には、ステップS506に戻る。次の変更前・変更後の内容がないと判定された場合には、ステップS509に進む。ステップS509においては、次の変更内容の内容がある否かが判定される。ステップS509において、次の変更内容の内容があると判定された場合には、ステップS504に戻る。ステップS509において、次の変更内容の内容がないと判定された場合には、ステップS510に進む。これにより、選択した変更対象カテゴリにおける、絞り込みリストができる。 Here, if it is determined that there is the next content before and after the change, the process returns to step S506. If it is determined that there is no next content before or after the change, the process advances to step S509. In step S509, it is determined whether there is the next change content. If it is determined in step S509 that there is the next change content, the process returns to step S504. If it is determined in step S509 that there is no next change, the process advances to step S510. This creates a filtered list for the selected change target category.
 ステップS510においては、変更対象カテゴリとの絞り込み条件を作成する。ステップS511においては、「変更内容の絞り込み条件リスト」の各条件に、選択した変更対象カテゴリの絞り込み条件を追加し、「絞り込み条件リスト」に追加する。ステップS512においては、選択した変更対象カテゴリの次の内容があるか否かが判定される。ステップS512においては、選択した変更対象カテゴリの次の内容があると判定された場合には、ステップS502に戻る。 In step S510, a narrowing condition with the category to be changed is created. In step S511, the filtering conditions for the selected change target category are added to each condition of the "change content filtering condition list" and added to the "refining condition list". In step S512, it is determined whether there is the next content of the selected change target category. In step S512, if it is determined that there is the next content of the selected change target category, the process returns to step S502.
 ステップS512においては、選択した変更対象カテゴリの次の内容がないと判定された場合には、ステップS513に進む。ステップS513においては、次の変更対象カテゴリがあるか否かが判定される。ステップS513においては、次の変更対象カテゴリがあると判定された場合には、ステップS501に戻る。ステップS513において、次の変更対象カテゴリがないと判定された場合には、ステップS514に進む。ステップS514においては、「絞り込み条件リスト」作成完となる。 In step S512, if it is determined that there is no next content for the selected change target category, the process advances to step S513. In step S513, it is determined whether there is a next category to be changed. In step S513, if it is determined that there is the next category to be changed, the process returns to step S501. If it is determined in step S513 that there is no next category to be changed, the process advances to step S514. In step S514, the creation of the "narrowing down condition list" is completed.
 次に、図8において、知見の継続的な評価プロセスについて説明する。ステップS601においては、ステップS308で説明したように、新たな知見を抽出する。ステップS602においては、知見をリストに追加する。ステップS603においては、同一条件の過去の知見を抽出する。ステップS604については、新たな知見と同一条件の過去の知見とで良化・悪化の判定が一致しているか否かが判定される。ステップS604において、良化・悪化の判定が一致していると判定された場合には、ステップS606に進む。ステップS604において、良化・悪化の判定が一致していないと判定された場合には、ステップS605に進む。ステップS605においては、過去の知見に反する事例が発生したことを通知する。 Next, referring to FIG. 8, the continuous evaluation process of knowledge will be explained. In step S601, new knowledge is extracted as described in step S308. In step S602, knowledge is added to the list. In step S603, past findings under the same conditions are extracted. In step S604, it is determined whether the new knowledge and the past knowledge under the same conditions match the determination of improvement or deterioration. If it is determined in step S604 that the determinations of improvement and deterioration match, the process advances to step S606. If it is determined in step S604 that the determinations of improvement and deterioration do not match, the process advances to step S605. In step S605, it is notified that a case contrary to past knowledge has occurred.
 ステップS607においては、過去の知見を削除するか否か確認する。ステップS607において、過去の知見を削除すると判断された場合には、ステップS608に進む。ステップS607において、過去の知見を維持すると判断された場合には、ステップS609に進む。ステップS608において、過去の同一条件の知見を削除する。S609においては、過去の同一条件の知見を維持する。なお、ステップS604において、良化・悪化の判定が一致していると判定された場合に進んだ、ステップS606においては、過去の知見が裏付ける事例が発生したことを通知する。ステップS606、ステップS608、ステップS609の処理が終了すると、ステップS610に進む。ステップS610においては、次の知見抽出サイクルへ進む指令が出され、ステップS601の処理に進む。 In step S607, it is confirmed whether or not past knowledge is to be deleted. If it is determined in step S607 that past knowledge is to be deleted, the process advances to step S608. If it is determined in step S607 that past knowledge is to be maintained, the process advances to step S609. In step S608, past knowledge of the same conditions is deleted. In S609, knowledge of the same past conditions is maintained. Note that in step S606, which is proceeded to when it is determined in step S604 that the determinations of improvement and deterioration are consistent, it is notified that a case supported by past knowledge has occurred. When the processing in steps S606, S608, and S609 is completed, the process advances to step S610. In step S610, a command to proceed to the next knowledge extraction cycle is issued, and the process proceeds to step S601.
 図9においては、知見の評価を継続するルーチンについて説明する。本ルーチンにおいては、先ず、ステップS701において、知見が抽出される。ステップS702においては、同一条件の過去の知見を抽出する。ステップS703においては、過去の知見のもととなる事例を抽出する。ステップS704においては、過去の知見のもととなる事例を含めて再度知見を抽出する。ステップS705においては、良化・悪化の判定が一致するか否かが判定される。ステップS705において、良化・悪化の判定が一致すると判定された場合には、ステップS706に進む。ステップS705において、良化・悪化の判定が一致しないと判定された場合には、ステップS708に進む。 In FIG. 9, a routine for continuing evaluation of findings will be described. In this routine, first, knowledge is extracted in step S701. In step S702, past findings under the same conditions are extracted. In step S703, cases that are the basis of past knowledge are extracted. In step S704, knowledge is extracted again including cases that are the basis of past knowledge. In step S705, it is determined whether the determinations of improvement and deterioration match. If it is determined in step S705 that the determinations of improvement and deterioration match, the process advances to step S706. If it is determined in step S705 that the determinations of improvement and deterioration do not match, the process advances to step S708.
 ステップS706においては、過去の知見が現在も有効であることを通知する。ステップS708においては、過去の知見の有効性に疑問が生じたことを通知する。ステップS709においては、過去の知見を変更するか確認される。ステップS709において、過去の知見を変更すると判断された場合には、ステップS710に進む。一方、ステップS709において、過去の知見を変更しないと判断された場合には、ステップS712に進む。ステップS710においては、過去の知見を書き換える。ステップS712においては、過去の知見を維持し、新しい知見を追加する。ステップS706、ステップS710、ステップS712の処理が終了するとステップS707に進む。ステップS707においては、次の知見抽出サイクルに進む指示が受信される。ステップS707の処理が終了するとステップS701に戻る。 In step S706, it is notified that the past knowledge is still valid. In step S708, it is notified that the validity of past knowledge is questionable. In step S709, it is confirmed whether to change past knowledge. If it is determined in step S709 that past knowledge is to be changed, the process advances to step S710. On the other hand, if it is determined in step S709 that past knowledge is not to be changed, the process advances to step S712. In step S710, past knowledge is rewritten. In step S712, past knowledge is maintained and new knowledge is added. When the processing in steps S706, S710, and S712 is completed, the process advances to step S707. In step S707, an instruction to proceed to the next knowledge extraction cycle is received. When the process in step S707 is completed, the process returns to step S701.
 次に、事例を評価する方法について説明する。事例を評価する方法としては、以下が考えられる。
(1)平均値の差の検定を行う
 変更前後の不良率に差がある場合に、変更前の不良率>変更後の不良率であれば、良化と判断し、変更前の不良率<変更後の不良率であれば、悪化と判断してもよい。また、不良率に差がない場合は不変としてもよい。
(2)変化の前後24時間分のデータの比較を行う。
 この場合は、変更前後共に、部品500個以上のデータがあること等の制限を設けてもよい。この場合の判定方法としては、例えば、不良率が25%以上低減した場合は良化と判断し、不良率が50%以上増加した場合は悪化と判断し、それ以外は不変としてもよい。
(3)変化の前後、部品500個以上のデータの比較を行う。
 この場合の良化・悪化の判定方法は(2)と同じにしてもよい。なお、部品数が不足する場合について、変更前が不足した場合には評価しない。変更後が不足した場合には、次回の評価タイミングで部品数が足りていれば評価する。ということにしてもよい。
Next, a method for evaluating cases will be explained. Possible ways to evaluate a case are as follows.
(1) Test the difference in average values If there is a difference in the defective rate before and after the change, if the defective rate before the change is > the defective rate after the change, it is judged as an improvement, and the defective rate before the change is < If it is the defective rate after the change, it may be determined that the defect rate has deteriorated. Alternatively, if there is no difference in the defective rate, it may be left unchanged.
(2) Compare data for 24 hours before and after the change.
In this case, a restriction may be set such that there is data for 500 or more parts both before and after the change. As a determination method in this case, for example, if the defective rate has decreased by 25% or more, it is determined that the condition has improved, if the defective rate has increased by 50% or more, it is determined that the condition has deteriorated, and otherwise it may be determined that the condition has not changed.
(3) Compare the data of more than 500 parts before and after the change.
In this case, the method for determining improvement/deterioration may be the same as (2). In addition, regarding the case where the number of parts is insufficient, if the number of parts is insufficient before the change, no evaluation will be made. If there is a shortage after the change, the next evaluation will be performed if the number of parts is sufficient. You may decide to do so.
 次に、図10には、変動とその影響のレポートの例について説明する。図10Aは、変更履歴を表示する表である。すなわち、変更情報のレポート例であり、上段では、デバイス種別毎の作業実施完了回数を表示するとともに、下段においては、発生した変化の情報をリスト表示する。全てのデバイス種別に関して時系列的にリスト表示してもよいし、デバイス種別、作業内容別にソートして表示しても構わない。図10Bは、変更の項化を示す表である。この表において、Upは悪化(エラー率増加)、Downは良化(エラー率減少)、Stayは変化なし(変動なし)を意味する。 Next, an example of a report of fluctuations and their effects will be described with reference to FIG. FIG. 10A is a table displaying change history. That is, this is an example of a report of change information, in which the upper row displays the number of times work execution has been completed for each device type, and the lower row displays a list of information on changes that have occurred. All device types may be displayed in a chronological list, or they may be displayed sorted by device type or work content. FIG. 10B is a table showing the termization of changes. In this table, Up means worse (increase in error rate), Down means better (decreased error rate), and Stay means no change (no change).
 また、StartToWorkDoneは変化前であることを示し、ToWorkDoneToEndは変化後であることを示す。図10Bの上段においては、変更(この例ではノズルのメンテナンス)によって、マウント後AOIにおける実不良率、リフロー後AOIの実不良率が夫々、Up、Down、Stayした部品の数、データが無い部品の数が示されている。これで、マウント後AOIにおける実不良率、リフロー後AOIにおいて、良化か悪化かいずれの影響が見られたのかが明確になる。図10Bの下段においては、デバイス(ノズル)毎の、マウント後AOIにおける実不良率、リフロー後AOIにおける不良率、認識エラー率と、夫々、Up、Down、Stayの結果が表示されている。 Additionally, StartToWorkDone indicates before the change, and ToWorkDoneToEnd indicates after the change. In the upper part of FIG. 10B, due to changes (nozzle maintenance in this example), the actual defective rate in AOI after mounting, the actual defective rate in AOI after reflow increase, respectively, the number of parts that are Up, Down, Stay, and parts for which there is no data. The number of is shown. This makes it clear whether an improvement or deterioration was observed in the actual defect rate in the post-mount AOI and in the post-reflow AOI. In the lower part of FIG. 10B, for each device (nozzle), the actual defective rate in the AOI after mounting, the defective rate in the AOI after reflow, the recognition error rate, and the results of Up, Down, and Stay, respectively, are displayed.
 図11には、事例を抽出してリスト化した表の例について示す。この表において、「変更対象カテゴリ」の中の「変更対象」は、何れの対象に対して4M変動が生じたかを示す。「対象の名称」は、「変更対象」が部品品番であれば部品品番名、ノズルIDであればノズルIDの名称、フィーダIDであればフィーダIDの名称である。対象の属性は、「変更対象」が部品品番の場合はライブラリ名称であり、変更対象に対して用いられるライブラリの名称である。このライブラリは仕様や実装条件が同一である複数の品番について定義されるものである。対象の属性は、変更対象のサイズ、色等のスペックが用いられてもよい。すなわち、「変更対象」がノズルIDの場合のように、変更対象の仕様自体であるノズル径で属性が表示されても良い。「変更対象」がフィーダIDの場合には、フィーダの幅などを対象の属性を規定してもよい。 FIG. 11 shows an example of a table in which cases are extracted and listed. In this table, "change target" in "change target category" indicates to which target the 4M variation has occurred. The "target name" is the component part number name if the "change target" is a part part number, if it is a nozzle ID, it is the name of the nozzle ID, and if it is a feeder ID, it is the name of the feeder ID. The target attribute is a library name when the "change target" is a part number, and is the name of the library used for the change target. This library is defined for multiple product numbers with the same specifications and implementation conditions. As the attribute of the object, specifications such as size and color of the object to be changed may be used. That is, as in the case where the "change target" is a nozzle ID, the attribute may be displayed using the nozzle diameter, which is the specification itself to be changed. When the "change target" is a feeder ID, the attribute of the target may be defined, such as the width of the feeder.
 また、図11示す表では、部品品番毎の変更内容を記載しているが、実際には、ライブラリの内容変更を行うこととなり、変更に伴いプログラムが書き換えられる。変更時刻についても記載されている。そして、図10の表では、変更前と変更後の部品数、実不良数、実不良率の変化が記載されている。良化、悪化、不変の別もこの表を用いて俯瞰的に一覧し、その後にいずれかのデータにフォーカスしてより詳細の情報を確認することが可能である。最下段には、該当稼働日一日の全体の変更前後のデータについても記載されている。 Furthermore, although the table shown in FIG. 11 describes the contents of changes for each part number, in reality, the contents of the library will be changed, and the program will be rewritten in accordance with the changes. The change time is also stated. In the table of FIG. 10, changes in the number of parts, actual number of defectives, and actual defective rate before and after the change are described. You can use this table to get a bird's-eye view of improvement, deterioration, and no change, and then focus on any of the data to check more detailed information. At the bottom, the entire data before and after the change for the corresponding working day is also listed.
 ここで、例えば、図11おいて最上段の変更対象である、部品品番COMP001に使用するノズルの型式を変更した場合について考える。この部品は、部品品番COMP001のコンデンサ(0.6mm×0.3mmの角チップ)を示しており、これは、部品ライブラリ名C0603のライブラリによって仕様、生産条件が定義されている。このノズルを径0.5mmから径0.7mmに変更した場合に、部品品番COMP001の部品の実装条件変更が発生し、変更の前後比較をすると、実不良の低減効果が認められている。 Here, for example, consider the case where the nozzle type used for part number COMP001, which is the change target in the top row in FIG. 11, is changed. This part indicates a capacitor (0.6 mm x 0.3 mm square chip) with part number COMP001, and its specifications and production conditions are defined by a library with part library name C0603. When this nozzle was changed from a diameter of 0.5 mm to a diameter of 0.7 mm, a change in the mounting conditions for the component with part number COMP001 occurred, and when comparing before and after the change, it was found that there was an effect of reducing actual defects.
 部品ライブラリC0603を使用している部品品番は他にも例えば、COMP004、COMP005があり、上記変更によって、これらの部品品番COMP004、COMP005に使用するノズルも変更になる。その結果、それらの部品品番に対しても変更が発生し、変更の前後比較をすると、各々実不良低減効果が認められた。また、図10の表では、NOZZLE002、006、007に対して、ノズルのメンテナンスも実施している。その結果、変更の前後比較をすると、実不良低減効果が認められている。そして、それらの変更と変更の前後比較の結果をデータベースに登録する。なお、この1行毎のデータ群が「事例」に相当する。また、最下段には、これらの変更の全体としての前後比較の結果が表示されている。図10の例では、変更の全体としては実不良率が低減しており、品質が向上したことが読み取れる。これにより、改善取り組みとしては効果があったことが分かる。 There are other component numbers that use the component library C0603, such as COMP004 and COMP005, and the above change also changes the nozzles used for these component numbers COMP004 and COMP005. As a result, changes were made to the part numbers for these parts, and when comparing before and after the changes, it was found that each had an effect on reducing actual defects. Further, in the table of FIG. 10, nozzle maintenance is also performed for NOZZLE002, 006, and 007. As a result, when comparing before and after the change, the effect of reducing actual defects was recognized. Then, those changes and the results of comparison before and after the changes are registered in the database. Note that this data group for each row corresponds to a "case". Also, at the bottom, the results of a before-and-after comparison of these changes as a whole are displayed. In the example of FIG. 10, it can be seen that the actual defective rate has decreased as a result of the changes as a whole, and the quality has improved. This shows that the improvement efforts were effective.
 次に、図12の表について説明する。これは図11した表の表示内容を変更対象「部品品番」でさらに絞った場合の表である。表示内容は、変更対象を「部品品番」に絞ることに加え、変更内容を「ノズル型式変更」に絞る、さらに、変更前のノズル径を「ノズル径0.5mm」に絞る等、表示内容の条件を狭めることができる。結果として、5件抽出され、そのうち良化したものが2件、悪化したものが2件、不変であったものが1件であった。この例では、ノズル型式の変更の合計の結果として、変更前後で、実不良の低減効果は不変となっている。なお、算出された実不良率の変化が有意であるかの判断には一般的な統計的手法を用いるので、ここでは説明は省略する。 Next, the table in FIG. 12 will be explained. This is a table when the display contents of the table shown in FIG. 11 are further narrowed down by the "part part number" to be changed. In addition to limiting the display content to "part part number," the display content may be narrowed down to "nozzle model change," and the nozzle diameter before the change may be narrowed down to "nozzle diameter 0.5 mm." Conditions can be narrowed down. As a result, 5 cases were extracted, of which 2 cases improved, 2 cases deteriorated, and 1 case remained unchanged. In this example, as a result of the total change in nozzle type, the effect of reducing actual defects remains unchanged before and after the change. Note that a general statistical method is used to determine whether the change in the calculated actual defective rate is significant, so the explanation will be omitted here.
 次に、図13示す表は、図12示す表をさらに絞り込んだ図である。この例では対象の属性が「C0603」(ライブラリ名称)である、部品品番COMP001、004、005の部品に対して同時に行った変更について抽出した。いずれの変更も、変更前のノズル径0.5mmを0.7mmに変更したものである。この例では3件の事例が抽出された。そのうち、良化した事例が2件、悪化した事例が1件、また良化事例が複数あった。この場合、抽出事例全体として、変更前後で実不良率が良化したという結果が得られた。これにより、C0603のライブラリが用いられる部品品番COMP001、004、005の部品については、ノズル径は0.5mmより0.7mmの方が良いという知見が得られる。 Next, the table shown in FIG. 13 is a diagram obtained by further narrowing down the table shown in FIG. 12. In this example, changes made simultaneously to parts with part numbers COMP001, 004, and 005 whose target attribute is "C0603" (library name) are extracted. In both changes, the nozzle diameter was changed from 0.5 mm to 0.7 mm. In this example, three cases were extracted. Of these, two cases improved, one case worsened, and multiple cases improved. In this case, the result was that the actual defective rate improved before and after the change for all extracted cases. As a result, it is found that for the parts with part numbers COMP001, 004, and 005 for which the C0603 library is used, it is better to have a nozzle diameter of 0.7 mm than 0.5 mm.
 この例における抽出条件において、変更対象は、抽出された事例の「対象の属性」が同じものである。そして、変更内容カテゴリについては、「変更内容」、「変更前」、「変更後」の内容が同じものである。この後、抽出条件を緩和して確認し、より広い条件(抽出件数が多い条件)で効果があれば、より広い範囲に効果のある知見とすることができる。 In the extraction conditions in this example, the change target has the same "target attribute" as the extracted case. Regarding the change content category, the contents of "change content", "before change", and "after change" are the same. After this, the extraction conditions are relaxed and confirmed, and if the results are effective under broader conditions (conditions with a large number of extracted items), the findings can be made effective over a wider range.
 次に、図14ついて説明する。図14おいては、「変更対象」がノズルID、「変更内容」がメンテナンスに該当する事例を抽出している。この事例では、3件抽出されており、良化が3件である。全体としての実不良率も良化している。また良化事例が複数ある。結果として、ノズルのメンテナンスは効果ありとする知見を得ることができる。 Next, FIG. 14 will be explained. In FIG. 14, cases are extracted in which the "change target" corresponds to the nozzle ID and the "change content" corresponds to maintenance. In this example, three cases are extracted, and three cases are improved. The overall actual defect rate has also improved. There are also multiple cases of improvement. As a result, it is possible to obtain knowledge that nozzle maintenance is effective.
 次に、図15A、Bについて説明する。図15Aにおいては、「変更対象」はフィーダIDであり、「変更内容」はリール交換である事例を抽出している。ここでは3件の事例が抽出され、悪化した事例が2件、不変の事例が1件。全体としては悪化していた。結果として、偶発的に部品切れが発生した場合の、フィーダへのリール交換によって、悪化が発生しやすいという知見が得られる。 Next, FIGS. 15A and 15B will be explained. In FIG. 15A, an example is extracted in which the "change target" is the feeder ID and the "change content" is reel exchange. Here, 3 cases were extracted, 2 cases of deterioration and 1 case of no change. Overall, things were getting worse. As a result, it has been found that when parts are accidentally out of stock, replacing the reel to the feeder is likely to cause deterioration.
 次に、図15Bにおいては、「変更対象」はフィーダID、「変更内容」はリールセット状態修正」に該当する事例を抽出している。この事例では、2件の事例が抽出され。良化した事例が2件である。全体としては良化している。また良化事例が複数ある。このことより、偶発的に(オペレータが自分の判断で)発生した、フィーダへのリールセット状態を修正は効果があるという知見が得られる。 Next, in FIG. 15B, cases are extracted where the "change target" is the feeder ID and the "change content" is reel set state correction. In this case, two cases are extracted. There were two cases where the condition improved. Overall, things are improving. There are also multiple cases of improvement. From this, it can be found that it is effective to correct the reel set state to the feeder that has occurred accidentally (at the operator's own discretion).
 このような知見が得られた場合、システムが通知する内容ではないが、ユーザはこの2つの結論から、(1)リール交換作業の作業内容に問題があるので、教育を行う。(2)リール交換後に不良が発生したら、リールセット状態を修正する、という作業手順を追加する。という対処を行うことができる。 If such knowledge is obtained, although the system does not notify the user, the user can draw the following two conclusions: (1) There is a problem with the content of the reel replacement work, so educate the user. (2) Add a work procedure to correct the reel set condition if a defect occurs after replacing the reel. This can be done.
 次に、図16A、Bについて説明する。図16Aは、各絞り込みパターンとその効果を基にフィルタをかけて、良化、悪化、不変の結論が明確な結果をフィルタリングして通知する例である。図16Bは、これを、実不良低減効果の高いものから優先順位を付けて表示した例である。このことから、緊急で不良率を低減させるために有効な対処を明確化させることが可能である。 Next, FIGS. 16A and 16B will be explained. FIG. 16A is an example in which a filter is applied based on each narrowing-down pattern and its effect, and results with a clear conclusion of improvement, deterioration, or no change are filtered and notified. FIG. 16B is an example of displaying these items in order of priority in descending order of effectiveness in reducing actual defects. From this, it is possible to clarify effective countermeasures for urgently reducing the defective rate.
 次に、図17について説明する。図17は、良化した事例のレポートの例である。この良化の通知に記載する事例のフィルタリングの例としては、(1)良化事例がX件以上、(2)悪化事例がY件以下、(3)実不良率がX%以上削減した。(4)これらの組み合わせとする。例えば、良化事例が3件以上または、悪化事例が0件以下で、且つ、実不良が50%以上削減したことなどである。 Next, FIG. 17 will be explained. FIG. 17 is an example of a report of improved cases. Examples of filtering cases described in this improvement notification include (1) X or more improvement cases, (2) Y or less deterioration cases, and (3) reduction in actual defective rate by X% or more. (4) A combination of these. For example, the number of improvement cases is 3 or more, the number of deterioration cases is 0 or less, and the number of actual defects has been reduced by 50% or more.
 また、表における優先順位付けの例としては、(1)実不良の削減率が大きい順、(2)良化事例が多い順、(3)良化事例-悪化事例が多い順、(4)これらの組み合わせ等が考えられる。このように、使用するルールを選び、順番を判定する順番を決める。例えば、良化事例が多い順が最優先で、次に、実不良の削減率が大きい順というようにしてもよい。図16の例では、2件を抽出した。そして、通知の内容として、「『変更対象=ノズルID』『変更内容=メンテナンス』で実不良削減の効果がありました(良化事例3件、実不良が80.4%削減)」とする。 In addition, examples of prioritization in the table include (1) descending order of reduction rate of actual defects, (2) descending order of most improved cases, (3) descending order of improved cases - most deteriorating cases, (4) Combinations of these etc. are possible. In this way, the rules to be used are selected and the order in which the order is determined is determined. For example, the highest priority may be given to the order with the most improvement cases, and then the order with the largest reduction rate of actual defects. In the example of FIG. 16, two cases were extracted. The contents of the notification are as follows: ``There was an effect of reducing actual defects with ``change target = nozzle ID'' and ``change content = maintenance'' (3 improvement cases, 80.4% reduction in actual defects).
 次に、図18の表について説明をする。図18は、悪化のレポートの例である。この場合のフィルタリングとしては、(1)悪化事例がX件以上、(2)良化事例がY件以下、(3)実不良率がX%以上増加、(4)これらの組み合わせである。例えば、悪化事例が2件以上または、良化事例が0件以下で、且つ、実不良が50%以上増加等である。 Next, the table in FIG. 18 will be explained. FIG. 18 is an example of a deterioration report. The filtering in this case is (1) the number of worse cases is X or more, (2) the number of improved cases is Y or less, (3) the actual defective rate increases by X% or more, and (4) a combination of these. For example, the number of deterioration cases is two or more, the number of improvement cases is zero or less, and the number of actual defects has increased by 50% or more.
 次に、優先順位付けの例としては、(1)実不良の増加率が大きい順、(2)悪化事例が多い順、(3)悪化事例-良化事例が多い順、(4)これらの組み合わせの順としてもよい。このように、優先順位付けの場合には、使用するルールを選び、順番を判定する順位を決める。例えば、悪化事例が多い順が最優先で、次に、実不良の増加率が大きい順というようにしてもよい。図17の例では、1件を抽出した。そして、レポートの内容として、「『変更対象=フィーダID』『変更内容=リール交換』で実不良が増加しました(悪化事例2件、実不良が240.7%増加)」とする。なお、上記の実施例においては、製造工程における生産性および/または製造品質に関わる指標として、不良数や不良率を用いた例について説明したが、前記指標として、単位時間当たりの生産数、製品1つあたりの生産に要する時間の平均、OEE(設備総合効率)、Cpk、Cp(工程能力指数)を用いてもよい。 Next, as an example of prioritization, (1) descending order of increasing rate of actual defects, (2) descending order of increasing number of worsening cases, (3) descending order of worsening cases - descending order of improving cases, (4) order of these It may be in the order of combination. In this way, in the case of prioritization, the rules to be used are selected and the order for determining the order is determined. For example, the order with the highest number of deterioration cases may be given the highest priority, and then the order with the highest increase rate of actual defects may be given. In the example of FIG. 17, one item was extracted. Then, the content of the report is "Actual defects increased for 'Change target = Feeder ID' and 'Change content = Reel replacement' (2 cases of deterioration, actual defects increased by 240.7%)." In addition, in the above embodiment, an example was explained in which the number of defects and defective rate were used as indicators related to productivity and/or manufacturing quality in the manufacturing process. The average time required for production per item, OEE (overall equipment efficiency), Cpk, and Cp (process capability index) may be used.
 なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで付記しておく。
<付記1>
 単一または複数の製造装置(10a、10c、10e)及び検査装置(10b、10d、10f)を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程が実行される生産ライン(10)に係る生産管理システム(1)であって、
 前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出部(110a)と、
 前記変化検出部が検出した前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得部(110b)と、
 前記指標変化取得部により取得した前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成部(110c)と、
 を備えることを特徴とする、生産管理システム。
<付記6>
 単一または複数の製造装置(10a、10c、10e)及び検査装置(10b、10d、10f)を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程が実行される生産ライン(10)に係る生産管理方法であって、
 前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出工程(S101~S103)と、
 前記変化検出部が検出した前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得工程(S106~S107)と、
 前記指標変化取得部により取得した前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成工程(S108~S116)と、
 を有することを特徴とする、生産管理方法。
<付記11>
 単一または複数の製造装置(10a、10c、10e)及び検査装置(10b、10d、10f)を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程を実行する生産ライン(10)に係る生産管理プログラムであって、
 コンピュータに、前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出ステップ(S101~S103)と、
 前記変化検出ステップにおいて検出された前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得ステップ(S106~S107)と、
 前記指標変化取得ステップにおいて取得された前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成ステップ(S108~S116)と、
 を実行させることを特徴とする、生産管理プログラム。
In addition, in order to make it possible to compare the constituent features of the present invention and the configurations of the embodiments, the constituent features of the present invention will be appended with reference numerals in the drawings.
<Additional note 1>
A production line ( 10 ) A production management system (1) according to
a change detection unit (110a) that detects a change in a predetermined factor related to the manufacturing process and/or the inspection process;
an index change acquisition unit (110b) that acquires a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected by the change detection unit;
an information generation unit (110c) that generates information indicating a relationship between the change in the factor and the index from the change in the index acquired by the index change acquisition unit;
A production management system comprising:
<Additional note 6>
A production line ( 10 ), the production control method according to
a change detection step (S101 to S103) of detecting a change in a predetermined factor related to the manufacturing process and/or the inspection process;
an index change acquisition step (S106 to S107) of acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected by the change detection unit;
an information generation step (S108 to S116) of generating information indicating a relationship between the change in the factor and the index from the change in the index acquired by the index change acquisition unit;
A production control method characterized by having the following.
<Additional note 11>
A production line (10) that has a single or multiple manufacturing equipment (10a, 10c, 10e) and inspection equipment (10b, 10d, 10f), and executes a product manufacturing process and an inspection process using the manufacturing equipment and inspection equipment. A production management program relating to,
a change detection step (S101 to S103) in which the computer detects a change in a predetermined factor related to the manufacturing process and/or the inspection process;
an index change acquisition step (S106 to S107) for acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected in the change detection step;
an information generation step (S108 to S116) of generating information indicating a relationship between the change in the factor and the index from the change in the index acquired in the index change acquisition step;
A production management program that executes.
 1・・・生産管理システム
 1a・・・ライン管理用サーバ
 1c・・・実装機用サーバ
 1e・・・検査機用サーバ
 10・・・生産ライン
 10a・・・はんだ印刷装置
 10b・・・はんだ印刷後検査装置
 10c・・・マウンタ
 10d・・・マウント後検査装置
 10e・・・リフロー炉
 10f・・・リフロー後検査装置
 11a・・・データ取得部
 11b・・・制御部
 11c・・・データベース部
 11d・・・出力部
 110a・・・変化検出部
 110b・・・指標変化取得部
 110c・・・情報生成部
1... Production management system 1a... Server for line management 1c... Server for mounting machine 1e... Server for inspection machine 10... Production line 10a... Solder printing device 10b... Solder printing Post-inspection device 10c... Mounter 10d... Post-mount inspection device 10e... Reflow oven 10f... Post-reflow inspection device 11a... Data acquisition section 11b... Control section 11c... Database section 11d ... Output section 110a... Change detection section 110b... Index change acquisition section 110c... Information generation section

Claims (14)

  1.  単一または複数の製造装置及び検査装置を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程が実行される生産ラインに係る生産管理システムであって、
     前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出部と、
     前記変化検出部が検出した前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得部と、
     前記指標変化取得部により取得した前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成部と、
     を備えることを特徴とする、生産管理システム。
    A production management system relating to a production line that has a single or multiple manufacturing equipment and inspection equipment, and in which product manufacturing processes and inspection processes are executed by the manufacturing equipment and inspection equipment,
    a change detection unit that detects a change in a predetermined factor related to the manufacturing process and/or the inspection process;
    an index change acquisition unit that acquires a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected by the change detection unit;
    an information generation unit that generates information indicating a relationship between a change in the factor and the index based on the change in the index acquired by the index change acquisition unit;
    A production management system characterized by:
  2.  前記所定の要因の変化は、計画的に実施される計画的変化と、それ以外の変化とを含み、
     前記情報生成部が生成する、前記要因の変化と前記指標との関係を示す情報は、前記要因の変化が、前記計画的変化か、それ以外の変化かの情報を含むことを特徴とする、請求項1に記載の生産管理システム。
    The changes in the predetermined factors include planned changes that are carried out in a planned manner and other changes,
    The information generated by the information generation unit and indicating the relationship between the change in the factor and the index includes information as to whether the change in the factor is the planned change or another change, The production management system according to claim 1.
  3.  前記変化検出部が検出した前記所定の要因の変化の情報と、前記指標変化取得部が取得した前記指標の変化の情報と、前記要因の変化と前記指標との関係を示す情報とを関連付けて保存し蓄積するデータベース部をさらに備えることを特徴とする、請求項1または2に記載の生産管理システム。 associating information on a change in the predetermined factor detected by the change detection unit, information on a change in the index acquired by the indicator change acquisition unit, and information indicating a relationship between a change in the factor and the index; 3. The production management system according to claim 1, further comprising a database section for storing and accumulating data.
  4.  前記変化検出部が検出した前記所定の要因の変化の情報と、前記指標変化取得部が取得した前記指標の変化の情報と、前記要因の変化と前記指標との関係を示す情報とを関連付けて出力する出力部をさらに備えることを特徴とする、請求項1から3のいずれか一項に記載の生産管理システム。 associating information on a change in the predetermined factor detected by the change detection unit, information on a change in the index acquired by the indicator change acquisition unit, and information indicating a relationship between a change in the factor and the index; The production management system according to any one of claims 1 to 3, further comprising an output section for outputting.
  5.  前記所定の要因の変化は、前記製造工程における4M変更であり、
     前記製造工程における生産性および/または製造品質に関わる指標は、所定期間における不良数、工程能力、生産量および生産速度のうちの少なくとも何れかまたは、それらに基づいて算出される数値であり、
     前記要因の変化と前記指標との関係は、前記4M変更に基づく、不良数、工程能力、生産量および生産速度のうちの少なくとも何れかまたは、それらに基づいて算出される数値の増減であることを特徴とする、請求項1から4のいずれか一項に記載の生産管理システム。
    The change in the predetermined factor is a 4M change in the manufacturing process,
    The index related to productivity and/or manufacturing quality in the manufacturing process is at least one of the number of defects, process capacity, production volume, and production speed in a predetermined period, or a numerical value calculated based on them,
    The relationship between the change in the factors and the index is an increase or decrease in at least one of the number of defects, process capacity, production volume, and production speed, or a numerical value calculated based on them, based on the 4M change. The production management system according to any one of claims 1 to 4, characterized by:
  6.  前記情報生成部が新たに生成した前記要因の変化と前記指標との関係を示す情報と、
     前記要因の変化と同一の要因の変化に対して前記情報生成部が過去に生成した、前記同一の要因の変化と前記指標との関係を示す情報と、の関係を取得する、情報確認部をさらに備えることを特徴とする、請求項1から5のいずれか一項に記載の生産管理システム。
    Information indicating a relationship between a change in the factor and the index newly generated by the information generation unit;
    an information confirmation unit that acquires a relationship between a change in the factor and information that has been generated in the past by the information generation unit in response to a change in the same factor and indicates a relationship between a change in the same factor and the index; The production management system according to any one of claims 1 to 5, further comprising: a production management system according to claim 1;
  7.  単一または複数の製造装置及び検査装置を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程が実行される生産ラインに係る生産管理方法であって、
     前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出工程と、
     前記変化検出工程において検出された前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得工程と、
     前記指標変化取得工程において取得された前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成工程と、
     を有することを特徴とする、生産管理方法。
    A production control method relating to a production line that has a single or multiple manufacturing equipment and inspection equipment, and in which a product manufacturing process and an inspection process are performed by the manufacturing equipment and the inspection equipment,
    a change detection step of detecting a change in a predetermined factor related to the manufacturing process and/or the inspection process;
    an index change acquisition step of acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected in the change detection step;
    an information generation step of generating information indicating a relationship between a change in the factor and the index from the change in the index acquired in the index change acquisition step;
    A production control method characterized by having the following.
  8.  前記所定の要因の変化は、計画的に実施される計画的変化と、それ以外の変化とを含み、
     前記情報生成工程において生成される、前記要因の変化と前記指標との関係を示す情報は、前記要因の変化が、前記計画的変化か、それ以外の変化かの情報を含むことを特徴とする、請求項7に記載の生産管理方法。
    The changes in the predetermined factors include planned changes that are carried out in a planned manner and other changes,
    The information generated in the information generation step and indicating the relationship between the change in the factor and the index is characterized in that it includes information as to whether the change in the factor is the planned change or another change. , The production control method according to claim 7.
  9.  前記変化検出工程において検出された前記所定の要因の変化の情報と、前記指標変化取得工程において取得された前記指標の変化の情報と、前記要因の変化と前記指標との関係を示す情報とを関連付けて保存し蓄積するデータベース化工程をさらに備えることを特徴とする、請求項7または8に記載の生産管理方法。 Information on a change in the predetermined factor detected in the change detection step, information on a change in the index obtained in the index change acquisition step, and information indicating a relationship between a change in the factor and the index. The production management method according to claim 7 or 8, further comprising a database creation step of storing and accumulating the data in association with each other.
  10.  前記変化検出工程において検出された前記所定の要因の変化の情報と、前記指標変化取得工程において取得された前記指標の変化の情報と、前記要因の変化と前記指標との関係を示す情報とを関連付けて出力する出力工程をさらに備えることを特徴とする、請求項7から9のいずれか一項に記載の生産管理方法。 Information on a change in the predetermined factor detected in the change detection step, information on a change in the index obtained in the index change acquisition step, and information indicating a relationship between a change in the factor and the index. The production management method according to any one of claims 7 to 9, further comprising an output step of outputting in association with each other.
  11.  前記所定の要因の変化は、前記製造工程における4M変更であり、
     前記製造工程における生産性および/または製造品質に関わる指標は、所定期間における不良数、工程能力、生産量および生産速度のうちの少なくとも何れかまたは、それらに基づいて算出される数値であり、
     前記要因の変化と前記指標との関係は、前記4M変更に基づく、不良数、工程能力、生産量および生産速度のうちの少なくとも何れかまたは、それらに基づいて算出される数値の増減であることを特徴とする、請求項7から10のいずれか一項に記載の生産管理方法。
    The change in the predetermined factor is a 4M change in the manufacturing process,
    The index related to productivity and/or manufacturing quality in the manufacturing process is at least one of the number of defects, process capacity, production volume, and production speed in a predetermined period, or a numerical value calculated based on them,
    The relationship between the change in the factors and the index is an increase or decrease in at least one of the number of defects, process capacity, production volume, and production speed, or a numerical value calculated based on them, based on the 4M change. The production control method according to any one of claims 7 to 10, characterized by:
  12.  前記情報生成工程において新たに生成された前記要因の変化と前記指標との関係を示す情報と、
     前記要因の変化と同一の要因の変化に対して前記情報生成工程において過去に生成された、前記同一の要因の変化と前記指標との関係を示す情報と、の関係を取得する、情報確認工程をさらに備えることを特徴とする、請求項7から11のいずれか一項に記載の生産管理方法。
    information indicating a relationship between a change in the factor newly generated in the information generation step and the index;
    an information confirmation step of acquiring the relationship between the change in the factor and information that has been generated in the past in the information generation step and indicates the relationship between the change in the same factor and the index; The production control method according to any one of claims 7 to 11, further comprising:
  13.  単一または複数の製造装置及び検査装置を有し、前記製造装置及び検査装置による製品の製造工程及び検査工程を実行する生産ラインに係る生産管理プログラムであって、
     コンピュータに、前記製造工程および/または前記検査工程に関わる所定の要因の変化を検出する変化検出ステップと、
     前記変化検出ステップにおいて検出された前記要因の変化の時間的な前後の、前記製造工程における生産性および/または製造品質に関わる指標の変化を取得する指標変化取得ステップと、
     前記指標変化取得ステップにおいて取得された前記指標の変化より、前記要因の変化と前記指標との関係を示す情報を生成する情報生成ステップと、
     を実行させることを特徴とする、生産管理プログラム。
    A production management program relating to a production line that has a single or multiple manufacturing equipment and inspection equipment, and executes a product manufacturing process and an inspection process using the manufacturing equipment and inspection equipment,
    a change detection step of causing a computer to detect a change in a predetermined factor related to the manufacturing process and/or the inspection process;
    an index change acquisition step of acquiring a change in an index related to productivity and/or manufacturing quality in the manufacturing process before and after the change in the factor detected in the change detection step;
    an information generation step of generating information indicating a relationship between the change in the factor and the index from the change in the index acquired in the index change acquisition step;
    A production management program that executes.
  14.  前記所定の要因の変化は、計画的に実施される計画的変化と、それ以外の変化とを含み、
     前記情報生成ステップにおいて生成される、前記要因の変化と前記指標との関係を示す情報は、前記要因の変化が、前記計画的変化か、それ以外の変化かの情報を含むことを特徴とする、請求項13に記載の生産管理プログラム。
    The changes in the predetermined factors include planned changes that are carried out in a planned manner and other changes,
    The information generated in the information generation step and indicating the relationship between the change in the factor and the index includes information as to whether the change in the factor is the planned change or another change. , the production management program according to claim 13.
PCT/JP2023/003843 2022-03-11 2023-02-06 Production management system, production management method, and production management program WO2023171197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022038596A JP2023132966A (en) 2022-03-11 2022-03-11 Production managing system, production managing method and production managing program
JP2022-038596 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171197A1 true WO2023171197A1 (en) 2023-09-14

Family

ID=87936731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003843 WO2023171197A1 (en) 2022-03-11 2023-02-06 Production management system, production management method, and production management program

Country Status (2)

Country Link
JP (1) JP2023132966A (en)
WO (1) WO2023171197A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194921A (en) * 2016-04-22 2017-10-26 オムロン株式会社 Management device of production line
JP2019046311A (en) * 2017-09-05 2019-03-22 オムロン株式会社 Information processor and information processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194921A (en) * 2016-04-22 2017-10-26 オムロン株式会社 Management device of production line
JP2019046311A (en) * 2017-09-05 2019-03-22 オムロン株式会社 Information processor and information processing method

Also Published As

Publication number Publication date
JP2023132966A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
CN106079892B (en) A kind of PCB paste solder printing procedure quality intelligent monitor system and method
JP4552749B2 (en) Inspection standard setting device and method, and process inspection device
US8421803B2 (en) Information display system and information display method for quality control of component-mounted substrate
US10860004B2 (en) Management system and non-transitory computer-readable recording medium
CN110073396B (en) Data processing apparatus and data processing method
US8150895B2 (en) Quality improvement system
CN107305367A (en) The managing device of production line
CN110414838A (en) A kind of tobacco process quality management-control method, system, equipment and storage medium
CN103369952A (en) Information display system for supporting analysis operation of substrate inspection results and supporting method
JP4805475B2 (en) Quality evaluation device, quality evaluation method, quality display device, quality display method, and quality evaluation system
CN105302123B (en) The monitoring method of on-line measurement data
JP2010182015A (en) Quality control system, quality control apparatus, and quality control program
CN109840856A (en) Management system, managing device, management method and computer readable recording medium
JP2010087459A (en) Device and method for identifying failure cause
JP6953381B2 (en) Systems and methods to support manufacturing control
CN108966631A (en) Producing line technical solution applied to surface mounting technology
JP2007053264A (en) Failure detecting device for packaging quality and failure detecting method of packaging quality
JP2002251212A (en) Method for quality control and system for the same and recording medium with its program recorded
WO2023171197A1 (en) Production management system, production management method, and production management program
US20230351336A1 (en) Method for manufacturing system analysis and/or maintenance
CN109693459A (en) Information processing method and device
JP2007157781A (en) Apparatus, method, and program of judging part failure and recording medium storing the program
JP2018018917A (en) Substrate production management device and substrate production management method
JP2005338906A (en) Defect detection method for substrate and defect detection system therefor
JPH10275168A (en) Design support method and system therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766377

Country of ref document: EP

Kind code of ref document: A1