WO2022158222A1 - プリプレグ、成形体および一体化成形体 - Google Patents

プリプレグ、成形体および一体化成形体 Download PDF

Info

Publication number
WO2022158222A1
WO2022158222A1 PCT/JP2021/047257 JP2021047257W WO2022158222A1 WO 2022158222 A1 WO2022158222 A1 WO 2022158222A1 JP 2021047257 W JP2021047257 W JP 2021047257W WO 2022158222 A1 WO2022158222 A1 WO 2022158222A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
resin
thermoplastic resin
thermosetting resin
mold
Prior art date
Application number
PCT/JP2021/047257
Other languages
English (en)
French (fr)
Inventor
小野寺美穂
武部佳樹
内藤悠太
三角潤
中山義文
本間雅登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US18/270,013 priority Critical patent/US20240066758A1/en
Priority to CN202180085543.6A priority patent/CN116761713A/zh
Priority to JP2022502064A priority patent/JP7088433B1/ja
Priority to EP21921323.8A priority patent/EP4282644A1/en
Priority to KR1020237022425A priority patent/KR20230135056A/ko
Publication of WO2022158222A1 publication Critical patent/WO2022158222A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs

Definitions

  • the present invention relates to a prepreg in which a reinforcing fiber is impregnated with a thermosetting resin and a thermoplastic resin is present on at least a part of its surface.
  • Fiber-reinforced composite materials which use a thermosetting resin as a matrix and are combined with reinforcing fibers such as carbon fiber and glass fiber, are lightweight and have excellent mechanical properties such as strength and rigidity, as well as heat resistance and corrosion resistance. • Has been applied in many fields such as space, automobiles, railroad vehicles, ships, civil engineering and sports equipment. However, these fiber-reinforced composite materials are not suitable for manufacturing parts or structures having complex shapes in a single molding process. Therefore, in the above applications, it is often necessary to fabricate a member made of a fiber-reinforced composite material and then integrate it with members of the same or different type.
  • Mechanical joining methods such as bolts, rivets, screws, etc., and joining methods using adhesives are used as methods for integrating fiber-reinforced composite materials made of reinforcing fibers and thermosetting resins with members of the same or different types.
  • the mechanical joining method requires a process to process the joining part such as drilling in advance, which leads to a longer manufacturing process, an increase in manufacturing cost, and a decrease in material strength due to the drilling of holes.
  • Bonding methods that use adhesive require a bonding process that includes preparation and application of the adhesive, as well as a curing process. There was a problem of not being satisfied.
  • Patent Document 1 discloses a method of bonding a fiber-reinforced composite material composed of reinforcing fibers and a thermosetting resin via an adhesive.
  • Patent Document 2 discloses a method of providing a thermoplastic resin on the surface of a fiber-reinforced composite material composed of reinforcing fibers and a thermosetting resin, and integrating members formed of the thermoplastic resin by injection molding.
  • the method of bonding members together with an adhesive requires time for the adhesive to harden, and in some cases, the bonding strength depends on the strength of the adhesive itself. .
  • Patent Document 2 discloses a fiber-reinforced composite material in which a thermoplastic resin film is laminated on the surface of a prepreg made of reinforcing fibers and a thermosetting resin, and then the prepreg and the thermoplastic resin layer are integrated by heating and pressure curing. discloses a method of integrally molding a member containing a thermoplastic resin onto a thermoplastic resin layer on the surface thereof by injection molding.
  • the fiber-reinforced composite material obtained by this method is rigid because the thermosetting resin is hardened, and it is difficult to shape using a mold having a complicated surface shape.
  • the hardened thermosetting resin loses its surface adhesiveness, it cannot be accurately fixed to the desired location in the mold. . For this reason, the technology described in Patent Document 2 is considered to be limited to application within a mold having a simple planar shape.
  • An object of the present invention is to provide a prepreg having a thermoplastic resin on its surface, which has moderate flexibility and adhesiveness, excellent formability to a complicated mold surface and excellent adhesion to the mold surface. That is.
  • a further object of the present invention is to use the prepreg to produce a high-quality fiber-reinforced composite material molded article, especially a molded article having a complicated shape without difficulty.
  • thermosetting resin has a peak in the temperature range of more than 100° C. and 180° C. or less in the loss tangent tan ⁇ curve obtained by isokinetic heating measurement by dynamic viscoelasticity measurement (DMA method).
  • the prepreg has a point showing a maximum value in a loss angle ⁇ curve obtained by isothermal measurement by dynamic viscoelasticity measurement (DMA method), and There is a point at which the loss angle ⁇ is 5° or more smaller than the maximum value on the short-time side of the point showing the maximum value.
  • the prepreg has a loss angle ⁇ curve obtained by isothermal measurement by dynamic viscoelasticity measurement (DMA method), even if the loss angle ⁇ curve has a maximum value There is no point on the short-time side of the point where the loss angle ⁇ is 5° or more smaller than the maximum value, or there is no point showing the maximum value, and the loss angle ⁇ is -1.4°/min or more. has a section that exhibits a descent behavior that decreases by 5° or more with an inclination of .
  • the prepreg of the present invention it is possible to obtain a prepreg having a thermoplastic resin on its surface, which has moderate flexibility and adhesiveness, excellent moldability to a complicated mold surface and excellent adhesion to the mold surface. can be done.
  • the prepreg of the present invention it is possible to obtain a molded body of a fiber-reinforced composite material of excellent quality. Furthermore, even when applied to reinforcement and stiffening, the prepreg of the present invention is less likely to be misaligned and can be efficiently arranged at the target location.
  • FIG. 4 is a diagram for explaining a loss angle ⁇ curve measured for a region in which (A) a reinforcing fiber is impregnated with (B) a thermosetting resin. It is a cross-sectional schematic diagram of one embodiment of the prepreg according to the present invention. It is a schematic diagram for demonstrating the drape evaluation method. BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram for demonstrating the preparation procedure of the sample for tensile shear strength evaluation used by the section of an Example.
  • FIG. 1 shows one embodiment of the prepreg of the present invention.
  • a thermosetting resin is impregnated into (A) reinforcing fibers, and
  • a thermoplastic resin is provided on one surface of the sheet-shaped prepreg. is provided.
  • the thermoplastic resin Since the thermoplastic resin has heat-welding properties, by allowing it to exist on the surface, it is possible to perform good welding and joining in a short time with another member, particularly a member on which the thermoplastic resin exists on the surface.
  • the form in which (C) the thermoplastic resin is present is not particularly limited, and it may cover all or part of the surface of the prepreg.
  • thermoplastic resin regions may be provided in the form of islands.
  • the proportion of the thermoplastic resin present on the surface is 50% or more, with the area of the prepreg surface on the side where the (C) thermoplastic resin exists as 100%, from the viewpoint of ensuring stable heat-welding properties. is preferably 80% or more. Among these, it is more preferable to cover 100% of one surface of the prepreg, that is, to form a layer on the surface.
  • (A) reinforcing fibers and sides that are not actually visible from a perspective view are also indicated by solid lines in order to facilitate understanding of the invention, but they actually exist in the prepreg. Note that FIG. 1 is a perspective view.
  • the (C) thermoplastic resin does not exist on the surface opposite to the surface on which the (C) thermoplastic resin exists. That is, the (C) thermoplastic resin is present only on one surface of the prepreg, and the other surface is formed by a layer of (A) reinforcing fibers impregnated with (B) a thermosetting resin.
  • a general mold temperature 60 to 160 ° C.
  • thermosetting resin exceeds 100 ° C. and is 180 ° C. or less in the loss tangent tan ⁇ curve measured at a constant rate of temperature rise by dynamic viscoelasticity measurement (DMA method). have a peak.
  • the (B) loss tangent tan ⁇ curve of the thermosetting resin measured by the dynamic viscoelasticity measurement method (DMA method) in the present invention is obtained by the following method. i.e. i) Remove the thermoplastic portion from the prepreg to prepare a piece of sample consisting only of thermoset resin and reinforcing fibers. The sample amount is about 1 g.
  • the peak temperature of the tan ⁇ curve is determined by isokinetic heating measurement in accordance with JIS C6481.
  • the peak temperature plots a curve with temperature on the horizontal axis and tan ⁇ obtained as the ratio (G′′/G′) of the storage elastic modulus G′ and the loss elastic modulus G′′ of the prepreg on the vertical axis. Measurement conditions are as follows.
  • Heating rate 5°C/min Frequency: 1Hz.
  • the peak temperature of the tan ⁇ curve obtained from the relationship between temperature and tan ⁇ is higher than 100 ° C., so that the tackiness of the thermosetting resin is suppressed and the handleability is improved. Arrangement in the mold is facilitated.
  • the peak temperature of the tan ⁇ curve is 100° C. or less, the prepreg exhibits adhesiveness in a room temperature environment (23° C.), resulting in poor handleability and difficulty in placement in a molding die. .
  • the peak temperature of the tan ⁇ curve by setting the peak temperature of the tan ⁇ curve to 180°C or less, it exhibits appropriate flexibility and adhesiveness at a general mold temperature (60 to 160°C), and can be shaped into complex mold surfaces.
  • thermosetting resin in a prepreg with a high heat-resistant resin as a matrix, if the peak temperature of the tan ⁇ curve of the thermosetting resin exceeds 100°C and is outside the range of 180°C or less, the member containing the thermoplastic resin is efficiently reinforced and It is not possible to obtain an integrally molded body that is stiffened and has excellent appearance characteristics.
  • a preferable range of the peak temperature of the tan ⁇ curve of the thermosetting resin is over 105° C. and 160° C. or less, more preferably over 110° C. and 140° C. or less.
  • thermosetting resin It is known that the peak temperature of the tan ⁇ curve of thermosetting resin depends on the degree of cure of the thermosetting resin.
  • a prepreg that satisfies the condition [I] can be obtained, for example, by adjusting the curing temperature and time of the thermosetting resin used to adjust the degree of curing of the thermosetting resin in the prepreg.
  • condition [II] or condition [III] satisfies condition [II] or condition [III].
  • condition [II] or condition [III] is determined by measuring the region in which (A) reinforcing fibers are impregnated with (B) thermosetting resin.
  • Condition [II] is that the area where (A) the reinforcing fiber is impregnated with (B) the thermosetting resin is isothermally measured by the dynamic viscoelasticity measurement method (DMA method), and in the loss angle ⁇ curve,
  • the loss angle ⁇ curve has a point indicating a maximum value, and has a point on the short-time side of the point indicating the maximum value at which the loss angle ⁇ is 5° or more smaller than the maximum value. be.
  • the loss angle ⁇ curve is obtained by the following method. i.e. i) Remove any thermoplastic resin present in the prepreg and prepare a strip of sample consisting only of thermoset resin and reinforcing fibers. Furthermore, a sample is obtained by laminating such that the thickness is about 0.5 to 3 mm, typically about 1 mm. In addition, when the sample is a unidirectional material, it is assumed to be symmetrical lamination.
  • the measurement conditions are as follows. As the measurement temperature, the measurement is performed at the following three measurement temperatures, and any one of the obtained loss angle ⁇ curves may satisfy the conditions of the preferable loss angle ⁇ curve described above or described later. . It should be noted that the mold temperature employed during molding should be selected to satisfy this condition or a temperature in the vicinity thereof. Incidentally, since the thermosetting resins used in the examples can be integrally molded at an injection mold temperature of 140°C, the results obtained are shown at a measurement temperature of 140°C. In addition, since a lower mold temperature is preferable in terms of energy efficiency, it is preferable to use a prepreg that gives the above-described or later-described preferable loss angle ⁇ curve at a measurement temperature of 140°C.
  • Heating rate 5°C/min Start rate: 30°C Measurement temperature: 80°C, 110°C, or 140°C Frequency: 10Hz.
  • the height when viewed from the short time side that is, the surface temperature of a general mold for injection molding and press molding ( 60 to 160°C)
  • appropriate flexibility and adhesiveness can be expressed. Therefore, it is easy to shape even a mold curved surface with a small radius of curvature.
  • prepreg can be easily attached to a vertical mold surface, so positional deviation occurs due to the effects of vibration when the mold is closed and pressure when resin is filled. Integral molding is possible without
  • the shape of the loss angle ⁇ curve having a peak the shape (shape 1) shown in FIG.
  • Condition [III] is that the region where (A) the reinforcing fiber is impregnated with (B) the thermosetting resin is isothermally measured by the dynamic viscoelasticity measurement method (DMA method), and in the loss angle ⁇ curve, Even if the loss angle ⁇ curve has a maximum value as shown in FIG. It has a section that does not have a point indicating a maximum value or does not have a point that indicates a maximum value, and exhibits a descending behavior in which the loss angle ⁇ decreases by 5° or more at an inclination of -1.4°/min or more.
  • DMA method dynamic viscoelasticity measurement method
  • this section is whether or not there is a section with a decrease width of 5° in the region where the loss angle ⁇ curve decreases with the passage of time, and the slope in that section is -1.4°/min or more. is judged by As a result, it has excellent handleability in a room temperature environment (23° C.), and exhibits flexibility and adhesiveness at the surface temperature (60 to 160° C.) of general molds for injection molding and press molding. Therefore, it is possible to shape a flat plate or a mold curved surface with a large radius of curvature. In particular, during high-pressure molding of a large area, it has excellent shape retention that can withstand high pressure.
  • a prepreg having a peak with a height of 5° or more when viewed from the short time side has moderate flexibility at the surface temperature (60 to 160°C) of a general mold for injection molding and press molding. It is suitable for mold curved surfaces with small curvature radii because it is easy to shape in order to develop properties and adhesiveness. Prepreg without peaks is slightly rigid compared to prepregs with peaks, but it has excellent shape retention that can withstand high pressure, so it is suitable for high-pressure molding of flat plates and curved mold surfaces with large curvature radii. It is preferably used.
  • the prepreg of the present invention has (A) reinforcement that exists across the boundary between (B) a resin region containing a thermosetting resin and (C) a resin region containing a thermoplastic resin. It preferably has fibers.
  • (A) reinforcing fibers present across the interface between (B) a resin region containing a thermosetting resin and (C) a resin region containing a thermoplastic resin are defined as A state in which both the (B) thermosetting resin and (C) the thermoplastic resin are in contact with the entire circumference, and/or the entire circumference is in contact with the (B) thermosetting resin in a portion with a fiber cross section, In addition, it refers to (A) reinforcing fibers in a state where the entire circumference of another portion of the fiber cross section is in contact with the (C) thermoplastic resin.
  • both (B) the resin region containing the thermosetting resin and (C) the resin region containing the thermoplastic resin are bonded via (A) the reinforcing fiber.
  • (B) The resin region containing a thermosetting resin and the (C) resin region containing a thermoplastic resin are improved in bonding strength, making it difficult for the two to separate. Therefore, even if the (C) resin region containing a thermoplastic resin is integrated with another thermoplastic resin member to form a molded product, the (B) resin region containing a thermosetting resin of the prepreg of the present invention can be used.
  • thermoplastic resin is also impregnated in (A) the reinforcing fiber.
  • thermosetting resin As a method for forming a state in which (A) reinforcing fibers exist across the interface between (B) a resin region containing a thermosetting resin and (C) a resin region containing a thermoplastic resin, (A) reinforcing fibers (C) A method in which a thermoplastic resin is melted and coated from one side, and then (B) a thermosetting resin is impregnated from the opposite side, and (A) a reinforcing fiber is coated with (B) a thermosetting resin.
  • thermoplastic resin is attached to the surface in the form of a sheet, a nonwoven fabric, or a particle, and heated and pressed to form (B) the thermosetting resin and (C )
  • the heating temperature is (C) the melting point + 30 ° C. or higher when the thermoplastic resin is crystalline, and (B) the glass transition temperature of the thermosetting resin + 30 ° C. or higher when amorphous. can.
  • the thermoplastic resin (C) it is preferable to first cover one side with the thermoplastic resin (C) because the melting point of the thermoplastic resin is high.
  • the prepreg of the present invention is obtained by a test based on JIS K6850 (1994), and the tensile strength at the interface between the thermoset (B) resin region containing the thermosetting resin and the (C) resin region containing the thermoplastic resin.
  • the shear strength is preferably 10 MPa or more at room temperature (23° C.).
  • the tensile shear strength at the interface between (B) the resin region containing the thermosetting resin and (C) the resin region containing the thermoplastic resin is more preferably 20 MPa or more, and still more preferably 30 MPa or more. Although the upper limit of the tensile shear strength is not particularly limited, 100 MPa or less is practically sufficient.
  • the prepreg of the present invention preferably has a drape property of 3° or more as defined below. As a result, it is possible to obtain good shapeability when arranging in a mold having a complicated shape with curved surfaces and corners for injection molding or press molding.
  • the drapeability is more preferably 10° or more.
  • the upper limit is not particularly limited, it is preferable to set the angle to 90° or less because even if the degree of curvature is large, the handleability may be poor.
  • Drapability is an index that expresses the flexibility of the prepreg, that is, the ease with which it can be shaped into a mold.
  • a sample for evaluation is obtained by cutting out a piece having a width of 25 mm and a length of 300 mm. In a room temperature environment (23° C.), as shown in FIG. 4, 100 mm from the edge of the sample is fixed to the upper surface of a horizontal test stand with adhesive tape, and further fixed with cellophane tape from above.
  • the remaining 200 mm part is arranged to protrude from the test table in the air, hold the sample horizontally, remove the hold and let it hang down, 5 minutes after releasing the sample, by its own weight
  • the drape angle is evaluated based on the tip of the bent sample and the horizontal plane of the test table.
  • the drape angle is set vertically from point a and horizontally from point b, with point a being the lowest point of the tip of the sample bent by its own weight and point b being the root protruding into the air.
  • the drape angle (.theta.; reference numeral 21 in FIG. 4) is given by the following equation. This measurement is performed at 5 points, and the arithmetic average value is taken as Trape's property.
  • Drape angle ⁇ (°) ⁇ tan ⁇ 1 (lac/lbc) ⁇ (180/ ⁇ )
  • lac is the distance between points a and c
  • lbc is the distance between points b and c.
  • the average thickness of the entire prepreg is 50 ⁇ m or more and 400 ⁇ m or less, and the average thickness of the resin region containing (C) the thermoplastic resin is 2% or more and 55% or less when the average thickness is 100%.
  • the ratio of the average thickness of the (C) thermoplastic resin-containing resin region to the average thickness of the entire prepreg within the above range, drapeability is improved and shaping into a mold is facilitated.
  • This ratio is more preferably 10% or more and 40% or less, and still more preferably 10% or more and 25% or less. , a prepreg having excellent unwindability can be obtained.
  • the average thickness of the entire prepreg and the average thickness of (C) the resin region containing the thermoplastic resin can be measured as follows by observing the cross section of the prepreg using an optical microscope.
  • a 20 mm long x 25 mm wide sample was taken from the prepreg, and the thickness of each part was measured as follows.
  • the cross section of the sample is magnified 200 times with a laser microscope (manufactured by Keyence Corporation, VK-9510), randomly selected except for the part where the thickness of the thermoplastic resin is 0 mm, and the fields of view overlap each other Photographs were taken at 10 locations that were not exposed (observed, for example, as shown in FIG. 3).
  • 10 measurement positions were determined at equal intervals, and the thickness of the entire prepreg and the thickness of the thermoplastic resin were measured.
  • the average value of the measurement data for a total of 100 points was determined as the typical average thickness T of the entire prepreg and the average thickness Tp of the resin region containing the thermoplastic resin. The difference was defined as the average thickness Ts of the thermosetting resin.
  • (A) reinforcing fibers are preferably arranged in one direction.
  • (A) the portion containing the thermoplastic resin can be efficiently reinforced and stiffened.
  • the tensile strength in the direction perpendicular to the direction in which the reinforcing fibers are arranged and parallel to the sheet surface is preferably 0.3 MPa or more.
  • the tensile strength is more preferably 1.2 MPa or more, and by setting it in this range, it is possible to withstand the injection pressure during injection molding, which is accompanied by the fluidity of the resin and generates high pressure.
  • the upper limit is not particularly limited, and the higher the pressure, the better, but about 1.5 MPa is preferable.
  • the tensile strength in the direction perpendicular to the fiber is measured by the method described below.
  • a prepreg in which reinforcing fibers are arranged in one direction is cut into a width of 50 mm and a length of 150 mm with the direction perpendicular to the fibers as the longitudinal direction, and used as an evaluation sample.
  • the sample for evaluation is set in a desktop precision universal testing machine (Autograph AGS: manufactured by Shimadzu Corporation) so that the distance between the gripping jigs is 100 mm, and the speed is 100 mm / min in a room temperature environment (23 ° C.). Perform a tensile test.
  • the tensile strength in the direction perpendicular to the fiber (MPa) from the following formula, where Pmax is the maximum load until the sample breaks, and A is the horizontal cross-sectional area perpendicular to the longitudinal direction of the sample.
  • the number of evaluation samples shall be 5 or more, and the arithmetic mean value shall be adopted.
  • the tensile strength is a value obtained as a yield stress during a tensile test.
  • the molded article of the present invention is a molded article obtained by heating and curing the prepreg described above on a mold.
  • the molded body is heated and hardened on the mold so that it has the same shape as the desired reinforcement/stiffening part on the existing part. do.
  • it is a compact that can efficiently reinforce and stiffen large parts that are difficult to reinsert into the mold.
  • the peak temperature of the tan ⁇ curve of the molded body obtained is 195° C. or higher.
  • the integrated molded body of the present invention is a molded body obtained by integrating the prepreg with a thermoplastic resin by injection molding or press molding. By using the prepreg, it is possible to efficiently reinforce and stiffen the target portion of the thermoplastic resin member.
  • thermosetting resin thermosetting resin
  • thermoplastic resin thermoplastic resin
  • reinforcing fibers include carbon fibers, glass fibers, metal fibers, aromatic polyamide fibers, polyaramid fibers, alumina fibers, silicon carbide fibers, boron fibers, basalt fibers, and the like. These may be used alone or in combination of two or more. These reinforcing fibers may be surface-treated. Surface treatments include metal adhesion treatment, coupling agent treatment, sizing agent treatment, and additive adhesion treatment. These reinforcing fibers also contain conductive reinforcing fibers. Carbon fibers are preferably used as the reinforcing fibers because of their low specific gravity, high strength, and high elastic modulus.
  • (A) reinforcing fibers are arranged in one direction. Continuous fibers such as aligned long fibers (fiber bundles) and woven fabrics, and discontinuous fibers such as mats and non-woven fabrics may be used.
  • the reinforcing fiber may be used to mean an aggregate of such reinforcing fibers.
  • the reinforcing fibers may be composed of a plurality of fibers of the same form, or may be composed of a plurality of fibers of different forms.
  • the number of reinforcing fibers constituting one reinforcing fiber bundle is usually 300 to 60,000, preferably 300 to 48,000, more preferably 300 to 48,000 in consideration of the production of the base material. , 1,000 to 24,000.
  • the range may be a combination of any of the above upper limits and any of the above lower limits.
  • Carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T700G-24K, “Torayca (registered trademark)” T700S- 24K, “Torayca (registered trademark)” T300-3K, and “Torayca (registered trademark)” T1100G-24K (manufactured by Toray Industries, Inc.).
  • Thermosetting resins include, for example, unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, urea resins, melamine resins, polyimide resins, cyanate ester resins, bismaleimide resins, benzoxazine resins, or these. and a resin blended with at least two of these.
  • An elastomer or rubber component may be added to the thermosetting resin to improve impact resistance.
  • epoxy resins are preferable because of their excellent mechanical properties, heat resistance, and adhesiveness to reinforcing fibers.
  • Examples of the main agent of the epoxy resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, and brominated epoxy such as tetrabromobisphenol A diglycidyl ether.
  • bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, and brominated epoxy such as tetrabromobisphenol A diglycidyl ether.
  • Curing agents for epoxy resins include, for example, dicyandiamide, aromatic urea compounds, aromatic amine compounds, phenol novolak resins, cresol novolak resins, polyphenol compounds, imidazole derivatives, tetramethylguanidine, thiourea-added amines, carboxylic acid hydrazides, carboxylic acid acid amides, polymercaptans and the like.
  • an epoxy resin having good heat resistance can be obtained by using an aromatic amine compound as the amine compound.
  • aromatic amine compounds examples include 3,3′-diisopropyl-4,4′-diaminodiphenylsulfone, 3,3′-di-t-butyl-4,4′-diaminodiphenylsulfone, 3,3′- Diethyl-5,5'-dimethyl-4,4'-diaminodiphenylsulfone, 3,3'-diisopropyl-5,5'-dimethyl-4,4'-diaminodiphenylsulfone, 3,3'-di-t- Butyl-5,5'-dimethyl-4,4'-diaminodiphenylsulfone, 3,3',5,5'-tetraethyl-4,4'-diaminodiphenylsulfone, 3,3'-diisopropyl-5,5' -diethyl-4,4'-diaminodiphenylsulfone, 3,
  • the epoxy resin preferably contains a thermoplastic resin component that is soluble in the epoxy resin in a dissolved state as a viscosity modifier. Since such a thermoplastic resin component dissolves in an epoxy resin and exhibits thermosetting properties as a whole, it is considered to be one component of the thermosetting resin (B).
  • the term "soluble in epoxy resin” refers to the presence of a temperature range in which a homogeneous phase is formed by heating or heating and stirring a mixture of a thermoplastic resin component and an epoxy resin.
  • form a homogeneous phase means that a state without separation can be visually observed.
  • the "dissolved state” refers to a state in which an epoxy resin containing a thermoplastic resin component is brought to a certain temperature range and forms a homogeneous phase. Once a homogeneous phase is formed in a certain temperature range, separation may occur outside that temperature range, eg, at room temperature.
  • the thermoplastic resin component soluble in the epoxy resin generally has a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a thioether bond, a sulfone bond and a carbonyl bond in the main chain. It is preferably a thermoplastic resin having a bond selected from the group consisting of Further, this thermoplastic resin component may have a partially crosslinked structure, and may be crystalline or amorphous.
  • polyamides, polycarbonates, polyacetals, polyphenylene oxides, polyphenylene sulfides, polyarylates, polyesters, polyamideimides, polyimides, polyetherimides, polyimides having a phenyltrimethylindane structure, polysulfones, polyethersulfones, polyetherketones, polyetheretherketones , polyaramid, polyvinyl formal, polyvinyl butyral, phenoxy resin, polyethernitrile and polybenzimidazole are preferred.
  • it is preferable to have a glass transition temperature of over 180°C from the viewpoint of resistance to thermal deformation when used as a molded article and polyetherimide and polyethersulfone are suitable examples. It is mentioned as.
  • thermoplastic resin is not particularly limited as long as it can be melted by heating.
  • examples include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and liquid crystal polyester Polyolefins such as polyethylene, polypropylene, and polybutylene, styrene resins, urethane resins, polyoxymethylene, polyamides such as polyamide 6 and polyamide 66, polycarbonate, polymethyl methacrylate, polyvinyl chloride, polyphenylene sulfide, and polyphenylene ether , modified polyphenylene ether, polyimide, polyamideimide, polyetherimide, polysulfone, modified polysulfone, polyethersulfone, polyketone, polyetherketone, polyetherketoneketone, polyarylene ether ketone, polyarylate, poly Ether
  • thermoplastic resins may be copolymers or modified products of the above resins, or may be blends of two or more selected from the above resins and their copolymers and modified products.
  • one or more selected from polyarylene ether ketone, polyphenylene sulfide or polyetherimide is (C) a resin or resin containing 60% by weight or more of the thermoplastic resin A composition is preferred.
  • An elastomer or rubber component may be added to improve impact resistance.
  • other fillers and additives may be contained as appropriate depending on the intended use, etc., as long as the object of the present invention is not impaired.
  • inorganic fillers for example, inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers, release agents , antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, foam control agents, coupling agents and the like.
  • thermoplastic resin when the (C) thermoplastic resin is applied to the sheet-like material in which the (A) reinforcing fibers are preliminarily impregnated with the (B) thermosetting resin, various application forms can be employed.
  • (C) a method of forming a thermoplastic resin into a sheet or non-woven fabric and laminating it, or a method of dispersing particulate (C) thermoplastic resin on the sheet and applying heat to integrate it. There is a method to make it possible.
  • the integrally molded article of the present invention can be obtained by placing a prepreg in a mold for injection molding or press molding and integrating it with a member containing a thermoplastic resin by insert molding.
  • the integrally molded product of the present invention is preferably used for aircraft structural members, wind turbine blades, automobile outer panels and sheets, computer applications such as IC trays and laptop computer cases, and sports applications such as golf shafts and tennis rackets.
  • A Materials used (A) Reinforcing fibers
  • A-1 Carbon fibers (“Torayca (registered trademark)” T700S-24K, manufactured by Toray Industries, Inc., strand tensile strength: 4.9 GPa) are arranged in parallel at regular intervals. What I did.
  • A-2 A woven fabric obtained by plain weaving carbon fibers (basis weight: 193 g/m 2 ).
  • ⁇ Curing agent for epoxy resin d) 4,4'-diaminodiphenylsulfone (Seikacure S, manufactured by Wakayama Seika Kogyo Co., Ltd., active hydrogen equivalent: 62 (g/eq.)).
  • ⁇ Viscosity modifier e) Polyethersulfone (“Sumika Excel” (registered trademark) PES5003P, manufactured by Sumitomo Chemical Co., Ltd.).
  • thermosetting resins B-1 and B-2 were produced according to the following method.
  • B-1 a) tetraglycidyldiaminodiphenylmethane (60 parts by mass), b) bisphenol A type epoxy resin (40 parts by mass), and e) polyethersulfone (10 parts by mass) are put into a kneading device and heated and kneaded. was performed to dissolve the viscosity modifier. Next, the temperature was lowered to 100° C. or lower while kneading was continued, and d) 4,4′-diaminodiphenylsulfone (45 parts by mass) was added and stirred to obtain a thermosetting resin B-1.
  • thermosetting resin B-2 a) tetraglycidyldiaminodiphenylmethane (60 parts by mass), c) bisphenol F type epoxy resin (40 parts by mass), and e) polyethersulfone (10 parts by mass) are put into a kneading device and heated and kneaded. was performed to dissolve the viscosity modifier. Next, the temperature was lowered to 100° C. or lower while kneading was continued, and d) 4,4′-diaminodiphenylsulfone (45 parts by mass) was added and stirred to obtain a thermosetting resin B-2.
  • Thermoplastic resin C-1 A film made of polyamide 6 (“Amilan” (registered trademark) CM1007 (manufactured by Toray Industries, Inc., melting point 225° C.)) and having a basis weight of 10 g/m 2 was used.
  • C-2 A film having a basis weight of 30 g/m 2 made of polyamide 6 (“Amilan” (registered trademark) CM1007 (manufactured by Toray Industries, Inc., melting point: 225°C)) was used.
  • C-3 A film having a basis weight of 85 g/m 2 made of polyamide 6 (“Amilan” (registered trademark) CM1007 (manufactured by Toray Industries, Inc., melting point: 225°C)) was used.
  • C-4 A film made of acid-modified polypropylene (“ADMER” (registered trademark) QB510 (manufactured by Mitsui Chemicals, Inc., melting point 165° C.)) and having a basis weight of 30 g/m 2 was used.
  • ADMER acid-modified polypropylene
  • D-1 80 parts of polyamide 6 and 20 parts of T700S were put into a twin-screw extruder and heated and kneaded at 250° C. to obtain pellets for injection molding.
  • the average fiber length of T700S in the pellet was 0.1 mm.
  • D-2 80 parts of acid-modified polypropylene and 20 parts of T700S were put into a twin-screw extruder and heated and kneaded at 250° C. to obtain pellets for injection molding.
  • the average fiber length of T700S in the pellet was 0.1 mm.
  • D-3 80 parts of polyether ketone ketone and 20 parts of T700S were put into a twin-screw extruder and heated and kneaded at 360° C. to obtain pellets for injection molding.
  • the average fiber length of T700S in the pellet was 0.1 mm.
  • E Thermoplastic Plate
  • E-1 A randomly oriented fiber-reinforced thermoplastic resin composed of 80 parts of polyamide 6 and 20 parts of T700S was used. The plate thickness was 5 mm.
  • E-2 A randomly oriented fiber-reinforced thermoplastic resin composed of 80 parts of acid-modified polypropylene and 20 parts of T700S was used. The plate thickness was 5 mm.
  • E-3 A randomly oriented fiber-reinforced thermoplastic resin composed of 80 parts of polyether ketone ketone and 20 parts of T700S was used. The plate thickness was 5 mm.
  • Method I A reinforcing fiber sheet having a basis weight of 193 g/m 2 made of reinforcing fibers (described in the sections of Examples and Comparative Examples; the same applies to methods II and III) is pulled out, and while the reinforcing fiber sheet is running, A predetermined (C) thermoplastic resin film (described in the sections of Examples and Comparative Examples; the same applies to methods II and III) is placed on the reinforcing fiber sheet and heated with an IR heater ( C) Melt the thermoplastic resin and attach it to the entire surface of one side of the reinforcing fiber sheet, and (C) pressurize with a nip roll maintained at a melting temperature of the thermoplastic resin or less to cool the impregnated reinforcing fiber sheet.
  • thermosetting resin (described in the section of each example and comparative example, the same applies to methods II and III) is applied on release paper with a resin basis weight of 100 g / m 2 using a knife coater. After coating to produce a thermosetting resin film, the thermosetting resin film is superimposed on the surface of the intermediate (C) opposite to the surface impregnated with the thermoplastic resin, and heated with a heat roll.
  • a prepreg was obtained by impregnating the fiber-reinforced resin intermediate while pressurizing. At this time, the peak temperature of the tan ⁇ curve of the prepreg is adjusted by the contact time between the fiber bundle passing through the heat roll and the roll and the roll temperature.
  • the contact time between the fiber bundle and the roll was adjusted by the number of roll stages and the passing speed of the fiber bundle.
  • the running direction of the reinforcing fiber sheet during impregnation is the longitudinal direction with respect to the reinforcing fibers in the case of a prepreg in which the reinforcing fibers are arranged in one direction, and the longitudinal direction of the fabric in the case of a prepreg made of reinforcing fiber fabric. is.
  • thermosetting resin was coated on release paper with a resin basis weight of 50 g/m 2 using a knife coater to prepare a thermosetting resin film. This resin film is superimposed on both sides of (A) a reinforcing fiber sheet having a basis weight of 193 g/m 2 made of reinforcing fibers, and using a heat roll, the reinforcing fiber sheet is impregnated with a thermosetting resin while being heated and pressed to reinforce the fiber. A resin intermediate was obtained. A (C) thermoplastic resin film was placed on the surface of the fiber-reinforced resin intermediate, and the (C) thermoplastic resin was impregnated with heat and pressure to obtain a prepreg. The peak temperature of the tan ⁇ curve of the prepreg was adjusted by the contact time between the fiber bundle passing through the heat roll and the roll and the roll temperature in the same manner as described above.
  • thermosetting resin was coated on release paper with a resin basis weight of 50 g/m 2 using a knife coater to prepare a thermosetting resin film.
  • This resin film is superimposed on both sides of (A) a reinforcing fiber sheet having a basis weight of 193 g/m 2 made of reinforcing fibers, and using a heat roll, the reinforcing fiber sheet is impregnated with a thermosetting resin while being heated and pressurized to form a prepreg. Obtained.
  • the peak temperature of the tan ⁇ curve of the prepreg was adjusted by the contact time between the fiber bundle passing through the heat roll and the roll and the roll temperature in the same manner as described above.
  • the prepreg was cut into a width of 25 mm and a length of 300 mm to obtain an evaluation sample.
  • the longitudinal direction of the fibers is taken as the longitudinal direction of the sample
  • the longitudinal direction of the fabric is taken as the longitudinal direction of the sample.
  • 100 mm from the edge of the sample is fixed to the upper surface of a horizontal test table with adhesive tape, and further fixed with cellophane tape from above.
  • Drape angle ⁇ (°) ⁇ tan ⁇ 1 (lac/lbc) ⁇ (180/ ⁇ )
  • lac is the distance between points a and c
  • lbc is the distance between points b and c.
  • Thickness of Prepreg, Thermoplastic Resin Layer, and Thermosetting Resin Layer A 20 mm long ⁇ 25 mm wide sample was obtained from the prepreg, and the thickness of each portion was measured as follows. The cross section of the sample is magnified 200 times with a laser microscope (VK-9510: manufactured by Keyence Corporation), randomly selected except for the part where the thickness of the thermoplastic resin is 0 mm, and the fields of view overlap each other Photographs were taken at 10 locations that were not exposed (observed, for example, as shown in FIG. 3). In each photographed image, 10 measurement positions (perpendicular base line for thickness measurement: 15) were set at equal intervals, and the overall thickness of the prepreg and the thickness of the thermoplastic resin layer were measured. The average value of the measurement data for a total of 100 points was defined as the representative prepreg thickness T and the thickness Tp of the thermoplastic resin layer, and the difference between them was defined as the thickness Ts of the thermosetting resin layer.
  • Tensile strength in the direction perpendicular to the fiber A prepreg in which the reinforcing fibers are arranged in one direction is cut into a width of 50 mm and a length of 150 mm with the direction perpendicular to the direction of orientation of the reinforcing fibers as the longitudinal direction, and used as an evaluation sample. did.
  • the sample for evaluation is set in a desktop precision universal testing machine (Autograph AGS: manufactured by Shimadzu Corporation) so that the distance between the gripping jigs is 100 mm, and the speed is 100 mm / min in a room temperature environment (23 ° C.).
  • a tensile test was performed.
  • the tensile strength in the direction perpendicular to the fiber (MPa) was calculated from the following formula, where Pmax is the maximum load until the sample breaks, and A is the horizontal cross-sectional area perpendicular to the longitudinal direction of the sample.
  • the prepreg is inserted into a mold preheated to 140 ° C. so that the surface where the thermoplastic resin is not present (C) is in contact with the mold surface for injection molding, and (D) the injection molding material is placed in the mold.
  • An integrally molded body reinforced and stiffened by the prepreg was obtained by injection filling into the prepreg.
  • the injection molding material (D) was heated and melted in a heating cylinder to the melting point of the injection molding material + 30 ° C., and was injection molded at a screw rotation speed of 60 rpm, an injection speed of 90 mm / sec, an injection pressure of 200 MPa, and a back pressure of 0.5 MPa. .
  • the injection mold used for the integral molding has a curved surface with an arc length of 302 mm in a cylinder with a radius of 225 mm and a height of 280 mm on a plane measuring 300 mm long by 300 mm wide.
  • Formability on the curved surface of the mold when the prepreg is placed in the injection mold is relatively evaluated in the following four stages. evaluated.
  • Flexibility was exhibited in 3 seconds or more and less than 10 seconds after pressing the prepreg against the mold, but the flexibility was unstable, and the mold surface was curved in the range of 2 to 4 times in 5 molding times. I was able to shape along.
  • Flexibility is low even after 10 seconds or more have passed since the prepreg was pressed against the mold, so shaping along the curved mold surface was possible in the range of 0 to 1 in 5 molding times. .
  • the formability of the prepreg of the present invention is expressed by relatively evaluating the adhesion to the mold and the formability to the curved surface of the mold.
  • thermosetting resin used in the corresponding example or comparative example
  • a release paper was coated with a resin basis weight of 50 g/m 2 using a knife coater to prepare a thermosetting resin film.
  • This resin film is superimposed on both sides of the reinforcing fiber sheet (A) made of reinforcing fibers and having a basis weight of 193 g / m 2 used in the corresponding example or comparative example, and a heat roll is used to heat and press the thermosetting resin.
  • the peak temperature of the tan ⁇ curve of the lower layer prepreg was adjusted to less than 30° C. by adjusting the contact time between the fiber bundle passing through the heat roll and the roll and the roll temperature.
  • the direction in which the (A) reinforcing fibers are oriented is set to 0 °, and the direction orthogonal to the direction is set to 90 °, and the front and back surfaces are distinguished. [0°/90°] 2S (symbol S indicates specular symmetry).
  • the prepreg prepared in the example or comparative example was placed in the injection mold for preparing the sample for tensile shear strength evaluation shown in FIG.
  • the laminate was arranged so that the surface on the side opposite to the surface was formed.
  • an injection molding machine J150EII-P: manufactured by JSW
  • an injection molding material described in the section of each example and comparative example
  • a width of 200 mm ⁇ length of 12.5 mm was introduced.
  • An integrally molded body for tensile shear strength evaluation was produced in which the injection molding material and the laminate were joined in the region.
  • the integrally molded body was placed in an oven, and the (B) thermosetting resin was completely cured by heat treatment.
  • the injection molding material (D) was melted by heating to a melting point of +30°C in a heating cylinder, and injection molded at a screw rotation speed of 60 rpm, an injection speed of 90 mm/sec, an injection pressure of 200 MPa, and a back pressure of 0.5 MPa.
  • the obtained integrated molded body for tensile shear strength evaluation was cut into a size of 180 mm in width ⁇ 172.5 mm in length so that the fiber direction of the surface was the longitudinal direction of the sample, and then placed in a vacuum oven for 24 hours. It was dried for a period of time, tab-bonded in accordance with ISO4587:1995 (JIS K6850 (1994)), and cut at a width of 25 mm to obtain a sample for tensile shear strength evaluation.
  • the sample for tensile shear strength evaluation having the same uneven shape as shown in FIG.
  • the laminate was arranged so that the prepreg was on the side opposite to the side facing the mold. Then, after adjusting the thickness by heat and pressure molding at a melting point of +30 ° C. so that it can be placed in the press molding die, the thermoplastic plate material cut into a width of 200 mm and a length of 150 mm (see the section of each example and comparative example) described) were prepared.
  • thermoplastic plate material was placed in a press molding die so as to be joined to the laminate in a region of width 200 mm ⁇ length 12.5 mm, and an integrated molded body for evaluation of tensile shear strength was produced.
  • the mold temperature was preheated to 140° C., and after placing the laminate and the thermoplastic plate material in the mold, the temperature was raised to +30° C. of the melting point of the thermoplastic plate material, and then the pressure was reduced to 0.5 MPa. ) and high pressure (5.0 MPa).
  • the temperature was lowered and the integrated molded body for tensile shear strength evaluation was taken out, and the fiber direction of the surface was aligned with the longitudinal direction of the sample. , dried in a vacuum oven for 24 hours, tab-bonded according to ISO4587:1995 (JIS K6850 (1994)), and cut at a width of 25 mm to obtain a sample for tensile shear strength evaluation.
  • the obtained sample for tensile shear strength evaluation was measured under a room temperature environment (23°C) based on ISO4587:1995 (JIS K6850 (1994)).
  • the moldability was good, but the tensile shear strength of the obtained integrally molded products was extremely low.
  • Example 1 (Example 1, Example 2) Using (A) A-1 as a reinforcing fiber, (B) B-1 as a thermosetting resin, and (C) C-4 as a thermoplastic resin, the tan ⁇ curve shown in Table 1 is produced by the preparation method II. A prepreg with a peak temperature was produced. After that, the prepreg was inserted into an injection mold, and insert injection molding was performed using D-2 as an injection molding material. Separately, the prepreg produced by the production method II was inserted into a press molding die, and press molding was performed using E-2 as a thermoplastic plate material. Table 1 summarizes the properties of the prepreg, the moldability, and the evaluation results of the integrally molded body after injection molding and the integrally molded body after press molding.
  • the moldability was good, and all exhibited tensile shear strength that was satisfactory as an integrally molded product.
  • Example 2 the fiber straightness of the integrally molded body was greatly disturbed, and in Comparative Example 4, the prepreg moved in the mold and could not be placed at the desired location.
  • Examples 5 to 8 have high bonding strength, and Examples 6 and 7 in particular show good adhesion to the mold and moldability to the curved surface of the mold in addition to handleability at room temperature. The moldability was also good, and extremely high tensile shear strength was developed.
  • Example 8 was more excellent in handleability in a room temperature environment (23 ° C.) and inferior in moldability to Examples 5 to 7, but even in an integrally molded body by high pressure press molding, the straightness of fibers was improved. There was no disturbance, and the appearance was better than those of Examples 6 and 7 press-molded under the same conditions.
  • the fibers were disordered from the ends of the prepregs placed.
  • Example 3 Using the (A) reinforcing fiber, (B) thermosetting resin, and (C) thermoplastic resin shown in Table 1, a prepreg having a peak temperature of the tan ⁇ curve shown in Table 1 is produced by the first production method. did. After that, the prepreg was inserted into an injection mold, and insert injection molding was performed using D-1 as an injection molding material. Separately, the prepreg produced by the above production method I was inserted into a press molding die, and press molding was performed using E-1 as a thermoplastic plate material. Table 1 summarizes the properties of the prepreg, the moldability, and the evaluation results of the integrally molded body after injection molding and the integrally molded body after press molding.
  • Example 4 although the prepreg had high rigidity, it had good adhesion to the mold and could be integrally molded.
  • Examples 3 and 4 exhibited excellent tensile shear strength, although the straightness of the fibers in the injection-molded articles was slightly impaired in some areas.
  • the integrally molded product obtained by high-pressure press molding the straightness of the fibers was greatly disturbed and spread as the resin flowed, and the shape could not be maintained.
  • Example 9 Using (A) A-2 as a reinforcing fiber, (B) B-1 as a thermosetting resin, and (C) C-2 as a thermoplastic resin, the tan ⁇ curve shown in Table 1 is produced by the first production method. A prepreg with a peak temperature was produced. After that, the prepreg was inserted into an injection mold, and insert injection molding was performed using D-1 as an injection molding material. Separately, the prepreg produced by the above production method I was inserted into a press molding die, and press molding was performed using E-1 as a thermoplastic plate material. Table 1 summarizes the properties of the prepreg, the moldability, and the evaluation results of the integrally molded body after injection molding and the integrally molded body after press molding.
  • the injection-integrated molded article was superior in appearance with straightness of fibers maintained as compared with Comparative Example 3, but the appearance of the integrally molded article subjected to high-pressure press molding was disturbed in straightness of fibers from the prepreg end.
  • Examples 10-12 Using (A) A-1 as a reinforcing fiber, (B) B-2 as a thermosetting resin, and (C) C-5 as a thermoplastic resin, the tan ⁇ curve shown in Table 2 is produced by the first production method. A prepreg with adjusted peak temperature was produced. After that, the prepreg was inserted into an injection mold, and insert injection molding was performed using D-3 as an injection molding material.
  • the prepreg produced by the above production method I was inserted into a press molding die, and press molding was performed using E-3 as a thermoplastic plate material.
  • Table 1 summarizes the properties of the prepreg, the moldability, and the evaluation results of the integrally molded body after injection molding and the integrally molded body after press molding.
  • Example 10 was excellent in formability and exhibited extremely high tensile shear strength. On the other hand, in high-pressure press molding, the appearances of Examples 11 and 12 were better than that of Example 10.
  • the tensile shear strength measured in the integrated molded body exceeded 10 MPa, so the resin region containing the cured (B) thermosetting resin of the prepreg produced in each example and (C) the resin region containing the thermoplastic resin is estimated to have a tensile shear strength of more than 10 MPa.
  • Example 1 resulted in excellent tensile shear strength of the integrally molded body. This is because the surface of the prepreg of Example 1 is coated with the (C) thermoplastic resin having heat-welding properties, so that the prepreg can be integrated with the injection material. On the other hand, (C) the prepreg of Comparative Example 1, which was not coated with a thermoplastic resin, was seemingly integrated with the injection material, but had such a low tensile shear strength that it could be easily peeled off manually.
  • the peak temperature of the tan ⁇ curve exceeds 100 ° C. and is 180 ° C. or less, so that the adhesion to the mold for injection molding and the shapeability are good. It was confirmed that the moldability was excellent. This is thought to be due to the development of appropriate adhesiveness and flexibility on the mold, and due to this effect, an integrally molded product excellent in appearance and tensile shear strength was obtained. In particular, Examples 6, 7, and 10 were excellent in the balance between the moldability and the appearance of the integrally molded product. This is because the peak temperature of the tan ⁇ curve is about 110 ° C. or higher and 140 ° C. or lower, (A) while maintaining the straightness of the reinforcing fibers, good adhesion and flexibility are obtained by heating from the mold surface. It was thought that it was possible.
  • Example 9 was excellent in appearance of the integrally molded body. It is believed that this is because even when (A) the reinforcing fibers are woven fabrics, the (B) thermosetting resin has a specific peak temperature of the tan ⁇ curve, which makes it easier for the straightness of the fibers to be maintained. rice field.
  • Example 3 By comparing Examples 3 to 12, it was confirmed that even if the prepreg manufacturing method is different, by adjusting the peak temperature of the tan ⁇ curve, the same degree of moldability and appearance of the integrally molded product can be obtained.
  • Example 3 As a result of using layers of (C) thermoplastic resin with different thicknesses, Example 3 having a smaller thickness was found to be superior to Example 4 and Example 5. Compared with No. 5, the drape property was excellent, but the tensile shear strength was slightly inferior.
  • Example 6 is a result that is even more excellent in tensile shear strength after integral molding, and (A) the reinforcing fiber is the interface between (B) the thermosetting resin and (C) the thermoplastic resin It was thought that strong bonding strength could be expressed by straddling the This tendency was also confirmed by comparing Example 2 and Example 7.
  • Example 8 was less moldable than Example 6, which was attributed to the prepreg being less flexible and rigid. Furthermore, in Example 4, the moldability to the curved surface of the mold was inferior to that in Example 6, and it was considered that this was because the thermoplastic resin (C) was thick and had low flexibility. Although Example 3 was excellent in adhesion to the curved surface of the mold and formability, the appearance of the integrally molded product was slightly inferior to Example 6. It is thought that this is because the prepreg has a low tensile strength in the direction perpendicular to the fibers, so that the straightness of the fibers is impaired by the pressure and resin flow during hot-press molding. In comparing Example 11 and Example 12, although there was a difference in flexibility, both were within the range of appropriate condition [II], so it was confirmed that the prepreg is suitable for use.
  • Example 6 By comparing Example 6 with Example 10, and Example 8 with Example 11, it was found that any prepreg made of different materials could be formed with the same degree of moldability and integrality by adjusting the peak temperature of the tan ⁇ curve. It was confirmed that the appearance of chemical molding can be obtained. It was also confirmed that a prepreg that does not have a peak with a height of 5° or more in the loss angle ⁇ curve is even more excellent in handleability in a room temperature environment (23° C.). On the other hand, although the formability, which is expressed by the adhesion to the mold and the ability to shape onto the curved surface of the mold, is inferior, it is suggested that the straightness of the fibers is less disturbed even during high-pressure press molding, and that the shape retention is excellent. was done.
  • the integrally molded product of the present invention is preferably used for computer applications such as aircraft structural members, wind turbine blades, automobile outer panels and sheets, IC trays and notebook computer cases, and sports applications such as golf shafts and tennis rackets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、適度な柔軟性と粘着性を発現し、複雑な金型表面への賦形性と、金型表面への密着性に優れ、プリプレグの位置ズレがなく、目的箇所へ効率良く補強・補剛することが可能なプリプレグ、および一体化成形体を提供することを課題とし、(A)強化繊維、(B)熱硬化性樹脂、および、(C)熱可塑性樹脂を含むプリプレグであって、かつ、プリプレグの表面の少なくとも一部に(C)熱可塑性樹脂が存在しており、かつ、条件[I]を満たし、かつ、条件[II]等を満たすプリプレグとすることを本旨とする。 [I]:(B)熱硬化性樹脂は、動的粘弾性測定法(DMA法)により等速昇温測定した損失正接tanδ曲線において100℃を超え180℃以下の温度域にピークを有する。 [II]:該プリプレグは、動的粘弾性測定法(DMA法)により等温測定して求められた損失角δ曲線において、当該損失角δ曲線は極大値を示す点を有し、かつ、当該極大値を示す点よりも短時間側に当該極大値より損失角δが5°以上小さな値を示す点を有する。

Description

プリプレグ、成形体および一体化成形体
 本発明は、熱硬化性樹脂が強化繊維に含浸されて存在するとともに、熱可塑性樹脂がその表面の少なくとも一部に存在するプリプレグに関する。
 熱硬化性樹脂をマトリックスとして用い、炭素繊維やガラス繊維などの強化繊維と組み合わせた繊維強化複合材料は、軽量でありながら強度や剛性などの力学特性や耐熱性や耐食性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に応用されてきた。しかしながら、これらの繊維強化複合材料は、複雑な形状を有する部品や構造体を単一の成形工程で製造するには不向きである。そのため、上記した用途においては繊維強化複合材料からなる部材を作製し、次いで、同種または異種の部材と一体化することが必要となることが多い。強化繊維と熱硬化性樹脂からなる繊維強化複合材料と同種または異種の部材を一体化する手法として、ボルト、リベット、ビスなどの機械的接合方法や、接着剤を使用する接合方法が用いられている。機械的接合方法では、予め穴あけなど接合部分を加工する工程を必要とするため、製造工程の長時間化および製造コストの増加につながることや、穴をあけるために材料強度が低下するという問題があった。接着剤を使用する接合方法では、接着剤の準備や接着剤の塗布作業を含む接着工程および硬化工程を必要とするため、製造工程の長時間化につながり、接着強度においても信頼性に十分な満足が得られないという課題があった。
 こうした課題に対し、特許文献1には強化繊維と熱硬化性樹脂からなる繊維強化複合材料を、接着剤を介して接合する方法が開示されている。また、特許文献2では強化繊維と熱硬化性樹脂からなる繊維強化複合材料の表面に熱可塑性樹脂を備え、熱可塑性樹脂で形成される部材を射出成形で一体化する手法が開示されている。
特開2018-161801号公報 特開平10-138354号公報
 一般的に、特許文献1に記載されているような接着剤により部材同士を接着する方法は、接着剤の硬化に時間を要する他、接合強度も接着剤自体の強度に依存する場合があった。
 特許文献2には、強化繊維と熱硬化性樹脂からなるプリプレグの表面に、熱可塑性樹脂フィルムを積層した後に、加熱・加圧硬化によりプリプレグと熱可塑性樹脂層を一体化させた繊維強化複合材料にその表面の熱可塑性樹脂層へ射出成形により熱可塑性樹脂を含む部材を一体化成形させる手法が開示されている。しかしながら、この手法によって得られた繊維強化複合材料は、熱硬化性樹脂が硬化しているために剛直であり、複雑な表面形状を有する金型を用いて賦形することが困難である。また、硬化した熱硬化性樹脂は表面の粘着性を失うことから、金型内の所望する箇所に正確に固定することできないため効率の良い補強・補剛するために配置精度が劣ることができない。このため、特許文献2に記載の技術は、簡単な平面形状を有する金型内への適用に限定されると考えられる。
 本発明の課題は、適度な柔軟性と粘着性を有し、複雑な金型表面への賦形性と金型表面への密着性に優れた、表面に熱可塑性樹脂を有するプリプレグを提供することである。また、本発明のさらなる課題は、当該プリプレグを用いて優れた品位の繊維強化複合材料の成形体、とりわけ複雑な形状でも困難性なく成形体を作製することである。
 前記した課題は、(A)強化繊維、(B)熱硬化性樹脂、および、(C)熱可塑性樹脂を含むプリプレグであって、(B)熱硬化性樹脂は(A)強化繊維に含浸されており、かつ、プリプレグの表面の少なくとも一部に(C)熱可塑性樹脂が存在しており、かつ、条件[I]を満たし、かつ、条件[II]または条件[III]を満たすプリプレグによって解決することができる。
[I]:(B)熱硬化性樹脂は、動的粘弾性測定法(DMA法)により等速昇温測定した損失正接tanδ曲線において100℃を超え180℃以下の温度域にピークを有する。
[II]:該プリプレグは、動的粘弾性測定法(DMA法)により等温測定して求められた損失角δ曲線において、当該損失角δ曲線は極大値を示す点を有し、かつ、当該極大値を示す点よりも短時間側に当該極大値より損失角δが5°以上小さな値を示す点を有する。
[III]:該プリプレグは、動的粘弾性測定法(DMA法)により等温測定して求められた損失角δ曲線において、当該損失角δ曲線は、極大値を有したとしても当該極大値を示す点よりも短時間側に当該極大値より損失角δが5°以上小さな値を示す点を持たないか、極大値を示す点を持たず、損失角δが-1.4°/分以上の傾きでもって5°以上小さくなる降下挙動を示す区間を有する。
 本発明によれば、適度な柔軟性と粘着性を有し、複雑な金型表面への賦形性と金型表面への密着性に優れた、表面に熱可塑性樹脂を有するプリプレグを得ることができる。また、本発明のプリプレグを用いることによって、優れた品位の繊維強化複合材料の成形体を得ることができる。さらに、補強・補剛に適用する場合にも、本発明のプリプレグは位置ズレが生じ難く、目的箇所へ効率良く配置することが可能となる。
本発明に係るプリプレグの一実施態様である、(A)強化繊維に(B)熱硬化性樹脂が含浸された層の全面に(C)熱可塑性樹脂の層が設けられたプリプレグの模式図(透視図)である。 (A)強化繊維に(B)熱硬化性樹脂が含浸された領域を対象として測定される損失角δ曲線を説明するための図である。 本発明に係るプリプレグの一実施態様の断面模式図である。 ドレープ性の評価方法を説明するための模式図である。 実施例の項で用いた、引張せん断強度評価用サンプルの作製手順を説明するための模式図である。
 以下に本発明について具体的に例を挙げつつ、詳細に説明する。
 図1は本発明のプリプレグの一実施態様を示している。図1に示すプリプレグにあっては、(B)熱硬化性樹脂は(A)強化繊維に含浸されており、また、シート状の形状をしたプリプレグの一方の表面には(C)熱可塑性樹脂が設けられている。(C)熱可塑性樹脂は熱溶着性を有するので、表面に存在させることによって、他の部材、特に熱可塑性樹脂が表面に存在する部材との間で短時間かつ良好に溶着接合が可能となる。ここで、(C)熱可塑性樹脂の存在する形態には特に制限は無く、プリプレグの表面の全てを覆っていても、一部を覆っていても構わない。また、複数の熱可塑性樹脂の領域を島状に設けるような態様であっても構わない。(C)熱可塑性樹脂が表面に存在する割合としては、安定的な熱溶着性を確保する観点から、(C)熱可塑性樹脂が存在する側のプリプレグ表面の面積を100%として、50%以上とすることが好ましく、80%以上とすることがさらに好ましい。この中でもプリプレグの一方の表面を100%覆う、すなわち表面に層状に設けられる態様が一層好ましい。なお、図1の描画においては、発明の理解を助けるために(A)強化繊維や、斜視からでは実際見えていない辺も実線で示されているが、実際はプリプレグ中に存在する。なお、図1は透視図である。
 図1に示すプリプレグは、(C)熱可塑性樹脂が存在する面とは反対側の表面においては、(C)熱可塑性樹脂は存在しない。すなわち、(C)熱可塑性樹脂はプリプレグの一方の表面にのみ存在し、他方の表面は(A)強化繊維に(B)熱硬化性樹脂が含浸された層によって形成されている。このような態様とすることで、射出成形やプレス成形の一般的な金型温度(60~160℃)で適度な粘着性を発現し、プリプレグの金型内の位置ズレを抑制することができる。
 本発明のプリプレグは、条件[I]として、(B)熱硬化性樹脂は動的粘弾性測定法(DMA法)により等速昇温測定した損失正接tanδ曲線において100℃を超え180℃以下にピークを有する。本発明において動的粘弾性測定法(DMA法)により測定される(B)熱硬化性樹脂の損失正接tanδ曲線は、次のとおりの方法によって求められるものである。すなわち、
 i)プリプレグから熱可塑性樹脂の部分を取り除き、熱硬化性樹脂と強化繊維のみからなる一片の試料を調製する。サンプル量は1g程度とする。
 ii)動的粘弾性分析装置を用い、JIS C6481に準拠して、等速昇温測定によりtanδ曲線のピーク温度を求める。ピーク温度は、横軸に温度、縦軸にプリプレグの貯蔵弾性率G’および損失弾性率G”の比(G”/G’)として求められるtanδをおき、曲線を描く。
測定条件は、次のとおりである。
   昇温速度:5℃/分
   周波数 :1Hz    。
 本発明のプリプレグは、温度とtanδの関係から得られるtanδ曲線のピーク温度を100℃より高くすることで、熱硬化性樹脂の粘着性を抑制して取り扱い性が良好となることから、成形用金型内での配置が容易となる。一方、tanδ曲線のピーク温度が100℃以下であると、該プリプレグが室温環境下(23℃)において粘着性を発現するため取り扱い性が不良となり、成形用金型内への配置が困難となる。また、tanδ曲線のピーク温度を180℃以下とすることで、一般的な金型温度(60~160℃)で適度な柔軟性と粘着性を発現し、複雑な金型表面への賦形性が容易、且つ、プリプレグの金型内の位置ズレを抑制することができる。一方、tanδ曲線のピーク温度が180℃を超えるとプリプレグの固化が進み、一般的な金型の表面温度(60~160℃)で適度な柔軟性と粘着性を発現せず、複雑形状の金型表面への賦形性が困難、且つ、プリプレグの金型内配置において位置ズレを発生させる。すなわち、高耐熱性樹脂をマトリックスとするプリプレグにおいて、熱硬化性樹脂のtanδ曲線のピーク温度が100℃を超え、180℃以下の範囲から外れる場合は、熱可塑性樹脂を含む部材を効率良く補強・補剛し、且つ、優れた外観特性を有する一体化成形体を得ることができない。熱硬化性樹脂のtanδ曲線のピーク温度の好ましい範囲は、105℃を超え160℃以下、さらに好ましくは110℃を超え140℃以下である。
 なお、熱硬化性樹脂のtanδ曲線のピーク温度は熱硬化性樹脂の硬化度に依存することが知られている。条件[I]を満たすプリプレグは、例えば、用いる熱硬化性樹脂の硬化温度と時間とを調整してプリプレグ中の熱硬化性樹脂の硬化度を調整することによって得ることができる。
 さらに、本発明のプリプレグは、条件[II]または条件[III]を満たす。ここで、条件[II]または条件[III]の充足は、(A)強化繊維に(B)熱硬化性樹脂が含浸された領域を対象とした測定によって判断される。
 条件[II]は、(A)強化繊維に(B)熱硬化性樹脂が含浸された領域が、動的粘弾性測定法(DMA法)により等温測定して求められた損失角δ曲線において、当該損失角δ曲線は極大値を示す点を有し、かつ、当該極大値を示す点よりも短時間側に当該極大値より損失角δが5°以上小さな値を示す点を有するというものである。本発明において、前記した損失角δ曲線は、次のとおりの方法によって求められるものである。すなわち、
 i)プリプレグに存在する熱可塑性樹脂は取り除き、熱硬化性樹脂と強化繊維のみからなる一片の試料を調製する。さらに、厚みが0.5~3mm程度、典型的には厚み1mm程度、となるように積層してサンプルとする。なお、サンプルが一方向材の場合は対称積層とする。
 ii)動的粘弾性分析装置を用い、JIS K7244-10に準拠して、等温条件で測定する。横軸に経過時間、縦軸にプリプレグの貯蔵弾性率G’および損失弾性率G”を用いて求められる損失角δ(°)=tan-1(G”/G’)をおき、曲線を描く。
 測定条件は次のとおりである。なお、測定温度としては下記する3つの測定温度で測定を行い、得られた損失角δ曲線の何れか1つが前記した、あるいは、後述する好ましい損失角δ曲線の条件を充足していれば良い。なお、成形時に採用する金型温度はこの条件が充足される温度あるいはその近傍の温度が選択されるべきである。ちなみに、実施例に用いた熱硬化性樹脂では、射出成形用金型温度140℃で一体化成形できることから、測定温度を140℃として求めた結果を示している。また、金型温度は低い方がエネルギー効率的に好ましいことから、測定温度140℃で前記したあるいは後述する好ましい損失角δ曲線を与えるプリプレグであることが好ましい。
   昇温速度:5℃/分
   開始速度:30℃
   測定温度:80℃、110℃、または、140℃
   周波数 :10Hz    。
 損失角δ曲線において、短時間側からみて高さ、すなわち正の損失角の変化量が5°以上あるピークを一つ有することにより、射出成形やプレス成形の一般的な金型の表面温度(60~160℃)で適度な柔軟性と粘着性を発現できる。そのため、曲率半径の小さな金型曲面に対しても賦形し易い。また、横型射出成形装置を用いる成形では、垂直に立つ金型面に対してもプリプレグを容易に貼り付けることができるため、型閉時の振動や樹脂充填時の圧力の影響による位置ズレをおこすことなく一体化成形が可能となる。ピークを有する損失角δ曲線の形状としては、傾きが緩くて起伏のない領域6から極大値が発現する図2(a)に示す形状(形状1)、および、1.4°/分以上で上昇する正の傾きの曲線から極大値が発現する図2(b)に示す形状(形状2)があり、その中では、形状2であることがより好ましい。これにより、室温環境下(23℃)におけるプリプレグ表面の粘着性がないため、より一層取り扱い性に優れる。
 条件[III]は、(A)強化繊維に(B)熱硬化性樹脂が含浸された領域が、動的粘弾性測定法(DMA法)により等温測定して求められた損失角δ曲線において、当該損失角δ曲線が図2(c)に示されるような、極大値を有したとしても当該極大値を示す点よりも短時間側に当該極大値より損失角δが5°以上小さな値を示す点を持たないか、極大値を示す点を持たず、損失角δが-1.4°/分以上の傾きで5°以上小さくなる降下挙動を示す区間を有するというものである。この区間の有無は損失角δ曲線が経過時間とともに減少してゆく領域において、5°の低下幅をもつ区間としてその区間における傾きが-1.4°/分以上であるものがあるか否かで判断される。これにより、室温環境下(23℃)における取り扱い性に優れ、且つ、射出成形やプレス成形の一般的な金型の表面温度(60~160℃)で柔軟性と粘着性を発現する。そのため、平板や曲率半径の大きな金型曲面への賦形が可能である。特に、大面積の高圧成形時には、高い圧力でも耐え得る形状保持性に優れる。
 すなわち、損失角δ曲線において、短時間側からみて高さが5°以上あるピークを有するプリプレグは、射出成形やプレス成形の一般的な金型の表面温度(60~160℃)で適度な柔軟性と粘着性を発現するために形状賦形し易いことから、曲率半径の小さい金型曲面に対して好適に用いられる。ピークのないプリプレグは、ピークを有するプリプレグと対比してわずかに剛直である一方で、高い圧力でも耐え得る形状保持性に優れることから、平板や曲率半径の大きな金型曲面の高圧成形に対して好適に用いられる。
 また、本発明のプリプレグは、図3に示すように、(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との境界面をまたいで存在する(A)強化繊維を有していることが好ましい。ここで、「(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との境界面をまたいで存在する(A)強化繊維」とは、繊維断面のある部分において全周に(B)熱硬化性樹脂と(C)熱可塑性樹脂の両方が接している状態、および/または、繊維断面のある部分では全周の全てが(B)熱硬化性樹脂に接し、且つ、繊維断面の別の部分では全周の全てが(C)熱可塑性樹脂に接している状態の(A)強化繊維をいう。
 このようなプリプレグとすることによって、(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との両方に(A)強化繊維を介しての結合がなされるので、(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との接合力が向上し、両者が剥離しがたくなる。そのため、(C)熱可塑性樹脂を含む樹脂領域を利用して別の熱可塑樹脂製の部材と一体化させて成形品としても、本発明のプリプレグの(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域の境界面での剥離が抑制されていることで、成形品の剪断応力による境界面での破壊に強く抗することができる。なお、このような態様においては(C)熱可塑性樹脂もまた(A)強化繊維に含浸されているといえる。
 (A)強化繊維が(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との境界面をまたいで存在する状態を形成する方法として、(A)強化繊維に(C)熱可塑性樹脂を溶融させて片側の面から被覆させた後、その反対面から(B)熱硬化性樹脂を含浸させる方法と、(A)強化繊維に(B)熱硬化性樹脂を含浸させた後、その表面に(C)熱可塑性樹脂をシート状、不織布状、あるいは、粒子状の形態で付着させ、加熱・加圧成形することによって、(B)熱硬化性樹脂と(C)熱可塑性樹脂の境界面において、両樹脂を共に流動せしめて前記状態を形成する方法が例示できる。この場合の加熱温度は(C)熱可塑性樹脂が結晶性の場合にはその融点+30℃以上、非晶性の場合には(B)熱硬化性樹脂のガラス転移温度+30℃以上の温度を例示できる。(C)熱可塑性樹脂として耐熱性に優れる樹脂を用いる場合には、熱可塑性樹脂の融点が高いため、先に(C)熱可塑性樹脂を片側の面から被覆させる方法が好ましい。
 本発明のプリプレグは、JIS K6850(1994)に基づく試験により得られる、熱硬化済みの(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との境界面における引張せん断強度が、室温(23℃)において10MPa以上であることが好ましい。このような引張せん断強度を有することによって、他の熱可塑性樹脂製の部材との一体成形において、射出成形やプレス成形のような異なる成形手法を用いても、本発明のプリプレグ中の(B)熱硬化性樹脂と(C)熱硬化性樹脂との境界面を基点とした破壊を抑制される。(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との境界面における引張せん断強度は、より好ましくは20MPa以上であり、さらに好ましくは30MPa以上である。該引張せん断強度の上限値は特に限定されないが、100MPa以下とすることで実用上は十分である。
 本発明のプリプレグは、以下に定義するドレープ性が3°以上であることが好ましい。これにより、射出成形やプレス成形の湾曲面や角部を有する複雑な形状を有する金型へ配置する際の良好な賦形性が得られる。ドレープ性は、より好ましくは10°以上である。上限値については特に制限はないが、湾曲の度合いが大きくても取り扱い性には劣ることがあるため、90°以下とすることが好ましい。
 ドレープ性とは、プリプレグの柔軟性、すなわち、金型への賦形のしやすさを表す一つの指標である。測定方法は、幅25mm、長さ300mmに切り出し、評価用サンプルを得る。これを室温環境下(23℃)において、図4に示すように、当該サンプルの端部から100mmを水平な試験台の上面に粘着テープで固定し、更にその上からセロハンテープで固定する。残りの200mmの部分は試験台から空中に突き出るように配し、水平になるようにサンプルを保持した後、保持を外して垂下させ、サンプルの保持を開放してから5分後における、自重で撓んだサンプルの先端と試験台の水平面とを基にドレープ角度として評価する。このとき、ドレープ角度は、図4に示すように自重で撓んだサンプル先端の最下点を点a、空中に突き出した根元を点bとして、点aから鉛直方向に、点bから水平方向に伸ばした際の交点を点cとすると、ドレープ角度(θ。図4中符号21)は以下の式によって示される。この測定を5点行い、その算術平均値をトレープ性とする。なお、図4ではサンプルの撓みが点bでのみ生じているが、実際のサンプルではサンプルは弧を描くことが通常である。
 ドレープ角度θ(°)= {tan-1(lac/lbc)}・(180/π)
ここで、lacは点aと点c間の距離、lbcは点bと点c間の距離である。
 本発明のプリプレグは、プリプレグ全体の平均厚みが50μm以上400μm以下であって、前記平均厚みを100%としたとき、(C)熱可塑性樹脂を含む樹脂領域の平均厚みが2%以上55%以下であることが好ましい。プリプレグ全体の平均厚みに占める(C)熱可塑性樹脂を含む樹脂領域の平均厚みの割合を前記範囲とすることにより、ドレープ性が良好となり、金型への賦形が容易となる。この割合は、より好ましくは10%以上40%以下であり、さらに好ましくは10%以上25%以下であり、この範囲とすることでさらに、賦形性に加えて、プリプレグの巻取り性、および、解舒性に優れたプリプレグを得ることができる。なお、プリプレグ全体の平均厚み、および、(C)熱可塑性樹脂を含む樹脂領域の平均厚みは、光学顕微鏡を用いたプリプレグの断面観察によって以下のとおり測定することができる。
 すなわち、プリプレグから縦20mm×横25mmを採取してサンプルとし、以下のように各部の厚みを測定した。前記サンプルの断面をレーザー顕微鏡(キーエンス(株)製、VKー9510)で200倍に拡大し、熱可塑性樹脂の厚みが0mmの部分を除いて無作為に選定し、且つ、互いの視野が重複しない10カ所について、撮影をおこなった(例えば、図3に示されるように観察される)。撮影した各画像において、等間隔となるように10点の測定位置を定め、プリプレグ全体の厚み、熱可塑性樹脂の厚みを測定した。計100点分の測定データの平均値を代表的なプリプレグ全体の平均厚みT、熱可塑性樹脂を含む樹脂領域の平均厚みTpとして求めた。なお、その差は熱硬化性樹脂の平均厚みTsとした。
 本発明のプリプレグは、(A)強化繊維が一方向に配列されていることが好ましい。(A)強化繊維を一方向に配列させることで、熱可塑性樹脂を含む部位を効率良く補強・補剛できる。この場合、(A)強化繊維の配列する方向に対して直交し、シート表面に平行な方向における引張強度(繊維直角方向引張強度)が0.3MPa以上であることが好ましい。この範囲にすることで、後の工程で熱可塑性樹脂の部材を積層あるいは接合する方法として、射出成形やプレス成形を採用したとき、射出圧力およびプレス圧力による繊維乱れを抑制することができる。前記の引張強度は、より好ましくは1.2MPa以上であり、この範囲とすることで、とりわけ樹脂の流動性を伴い、高い圧力を発生する射出成形時の射出圧に耐え得ることができる。なお、上限としては特に制限は無く、高いほど好ましいが、1.5MPa程度とすることが好ましい。
 なおここで、繊維直角方向引張強度は以下に記載の方法で測定される。
 (A)強化繊維が一方向に配列されたプリプレグを、繊維直角方向を長手方向として幅50mm、長さ150mmに切り出し、評価用サンプルとする。評価用サンプルを、つかみ治具間の距離が100mmになるように卓上型精密万能試験機(オートグラフAGS:島津製作所製)にセットし、室温環境下(23℃)で100mm/分の速度で引張試験を行う。サンプルが破断するまでの最大荷重をPmax、サンプルの長手方向に垂直に交わる水平断面積をAとして、以下の式から繊維直角方向引張強度(MPa)を計算することで、得ることができる。なお、評価サンプル数は5以上とし、その算術平均値を採用する。なお、引張強度は、引張試験時の降伏応力として求められる値である。
 繊維直角方向引張強度(MPa)= Pmax/A   。
 本発明の成形体は、前記したプリプレグを金型上で加熱硬化して得た成形体である。既存パーツに対して、所望の補強・補剛箇所と等しい形状となるように金型上で加熱硬化させた成形体は、既存パーツ表面から剥離することなく、優れた補強・補剛効果を発揮する。特に、金型へ再挿入困難な大型パーツに対して効率的に補強・補剛することができる成形体である。なお、得られた成形体のtanδ曲線のピーク温度195℃以上を有する。
 本発明の一体化成形体は、前記プリプレグに、熱可塑性樹脂を射出成形またはプレス成形して一体化させた成形体である。前記プリプレグを用いることで熱可塑性樹脂部材の目的箇所へ効率良く補強・補剛することができる。
 次に、本発明に好適に用いることができる、(A)強化繊維、(B)熱硬化性樹脂、および、(C)熱可塑性樹脂の各々について説明する。
 <(A)強化繊維>
 (A)強化繊維種としては、炭素繊維、ガラス繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、玄武岩繊維などがある。これらは、単独で用いてもよいし、2種以上併用して用いてもよい。これらの強化繊維は、表面処理が施されているものであっても良い。表面処理としては、金属の被着処理、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。これらの強化繊維の中には、導電性を有する強化繊維も含まれている。強化繊維としては、比重が小さく、高強度、高弾性率であることから炭素繊維が好ましく使用される。
 (A)強化繊維の形態としては、図1では、(A)強化繊維は一方向に配列しているが、補強効果が得られる形態であれば特に制限は無く、強化繊維が一方向に引き揃えた長繊維(繊維束)や織物など連続繊維でも、マットや不織布のような不連続繊維でも良い。なお、本明細書において、強化繊維とはこのような強化繊維の集合体の意味で用いられることがある。
 さらに、(A)強化繊維は、同一の形態の複数本の繊維から構成されていても、異なる形態の複数本の繊維から構成されていても良い。一つの強化繊維束を構成する強化繊維の単糸数は、通常、300~60,000本であるが、基材の製造を考慮すると、好ましくは、300~48,000本であり、より好ましくは、1,000~24,000本である。上記の上限のいずれかと下限のいずれかとの組み合わせによる範囲であってもよい。
 炭素繊維の市販品としては、“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T800S-24K、“トレカ(登録商標)”T700G-24K、“トレカ(登録商標)”T700S-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T1100G-24K(以上、東レ(株)製)などが挙げられる。
 <(B)熱硬化性樹脂>
 (B)熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリイミド樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、またはこれらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂がある。耐衝撃性向上のために、熱硬化性樹脂には、エラストマーもしくはゴム成分が添加されていても良い。中でも、エポキシ樹脂は、力学特性、耐熱性および強化繊維との接着性に優れ、好ましい。エポキシ樹脂の主剤としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、テトラブロモビスフェノールAジグリシジルエーテルなどの臭素化エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジンなどのグリシジルアミン型エポキシ樹脂、レゾルシンジグリシジルエーテル、トリグリシジルイソシアヌレートなどを挙げることができる。
 エポキシ樹脂の硬化剤としては、例えば、ジシアンジアミド、芳香族ウレア化合物、芳香族アミン化合物、フェノールノボラック樹脂、クレゾールノボラック樹脂、ポリフェノール化合物、イミダゾール誘導体、テトラメチルグアニジン、チオ尿素付加アミン、カルボン酸ヒドラジド、カルボン酸アミド、ポリメルカプタンなどが挙げられる。中でも、アミン化合物として芳香族アミン化合物を用いることにより、耐熱性の良好なエポキシ樹脂が得られる。芳香族アミン化合物としては、例えば、3,3’-ジイソプロピル-4,4’-ジアミノジフェニルスルホン、3,3’-ジ-t-ブチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジエチル-5,5’-ジメチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジイソプロピル-5,5’-ジメチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジ-t-ブチル-5,5’-ジメチル-4,4’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジイソプロピル-5,5’-ジエチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジ-t-ブチル-5,5’-ジエチル-4,4’-ジアミノジフェニルスルホン、3,3’,5,5’-テトライソプロピル-4,4’-ジアミノジフェニルスルホン、3,3’-ジ-t-ブチル-5,5’-ジイソプロピル-4,4’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラ-t-ブチル-4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホンなどが挙げられる。
 さらに、エポキシ樹脂には、エポキシ樹脂に可溶な熱可塑性樹脂成分を粘度調整剤として溶解した状態で含むことが好ましい。かかる熱可塑性樹脂成分は、エポキシ樹脂に溶解して全体として熱硬化性を呈するので(B)熱硬化性樹脂の一成分であるとみなされる。ここで「エポキシ樹脂に可溶」とは、熱可塑性樹脂成分をエポキシ樹脂に混合したものを加熱、または加熱撹拌することによって、均一相をなす温度領域が存在することを指す。ここで、「均一相をなす」とは、目視で分離のない状態が得られることを指す。ここで、「溶解した状態」とは、熱可塑性樹脂成分を含むエポキシ樹脂を、ある温度領域にし、均一相をなした状態を指す。一旦ある温度領域で均一相をなせば、その温度領域以外、例えば室温で分離が起こっても構わない。
 エポキシ樹脂に可溶な前記熱可塑性樹脂成分としては、一般に、主鎖に炭素-炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合からなる群から選ばれる結合を有する熱可塑性樹脂であることが好ましい。また、この熱可塑性樹脂成分は、部分的に架橋構造を有していても差し支えなく、結晶性を有していても非晶性であってもよい。特に、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルイミド、フェニルトリメチルインダン構造を有するポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアラミド、ポリビニルホルマール、ポリビニルブチラール、フェノキシ樹脂、ポリエーテルニトリルおよびポリベンズイミダゾールからなる群から選ばれる少なくとも一つの樹脂が好適である。良好な耐熱性を得るためには、成形体として用いたときに熱変形を起こしにくいという観点から、180℃を超えるガラス転移温度を有することが好ましく、ポリエーテルイミドやポリエーテルスルホンが好適な例として挙げられる。
 <(C)熱可塑性樹脂>
 (C)熱可塑性樹脂としては、加熱することにより溶融できる樹脂であれば、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等のポリエステル系樹脂や、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィンや、スチレン系樹脂、ウレタン樹脂の他や、ポリオキシメチレン、ポリアミド6やポリアミド66等のポリアミド、ポリカーボネート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリフェニレンスルフィド、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、変性ポリスルホン、ポリエーテルスルホンや、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等のポリアリーレンエーテルケトン、ポリアリレート、ポリエーテルニトリル、フェノール系樹脂、フェノキシ樹脂などが挙げられる。また、これら熱可塑性樹脂は、上述の樹脂の共重合体や変性体であっても良く、また、上述の樹脂およびその共重合体や変性体から選ばれる2種類以上がブレンドされたものであってもよい。これらの中でも、耐熱性の観点から、ポリアリーレンエーテルケトン、ポリフェニレンスルフィドまたはポリエーテルイミドから選ばれる1種または2種以上が、(C)熱可塑性樹脂中に60重量%以上含まれた樹脂あるいは樹脂組成物とすることが好ましい。耐衝撃性向上のために、エラストマーもしくはゴム成分が添加されていても良い。さらに、用途等に応じ、本発明の目的を損なわない範囲で適宜、他の充填材や添加剤を含有しても良い。例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。
 また、(C)熱可塑性樹脂を、予め(A)強化繊維に(B)熱硬化性樹脂を含浸したシート状物に付与するに際しては、様々な付与形態を採用することができる。例えば、(C)熱可塑性樹脂をシート状あるいは不織布状に成形して積層する方法や、粒子状の(C)熱可塑性樹脂を前記のシート状物上に散布し、熱を印可して一体化させる方法を挙げることができる。
 <用途>
 本発明の一体化成形体は、プリプレグを射出成形またはプレス成形の金型内に配置して、インサート成形により熱可塑性樹脂を含む部材と一体化することによって得ることができる。本発明の一体化成形体は、航空機構造部材、風車羽、自動車外板やシート、ICトレイやノートパソコンの筐体などのコンピューター用途、さらにはゴルフシャフトやテニスラケットなどスポーツ用途に好ましく用いられる。
 以下、実施例により本発明をさらに詳細に説明する。ただし、本発明の範囲はこれらの実施例に限定して解釈されるものではない。
 (1)使用材料
 (A)強化繊維
・A-1:炭素繊維(“トレカ(登録商標)”T700S-24K、東レ(株)製、ストランド引張強度:4.9GPa)を等間隔で平行に配列したもの。
・A-2:炭素繊維(目付193g/m)を平織りした織物。
 (B)熱硬化性樹脂
 次の材料を用いて調整した。
・エポキシ樹脂の主剤:
a)テトラグリシジルジアミノジフェニルメタン(“アラルダイト”(登録商標)MY721、ハンツマン・アドバンスト・マテリアルズ社製、エポキシ当量:113(g/eq.)、4官能のグリシジルアミン型エポキシ樹脂)。
b)ビスフェノールA型エポキシ樹脂(“jER”(登録商標)825、三菱ケミカル(株)製、エポキシ当量:175(g/eq.))。
c)ビスフェノールfF型エポキシ樹脂(“Epc”(登録商標)830、DIC(株)製)エポキシ当量:170(g/eq.))。
・エポキシ樹脂の硬化剤:
d)4,4’-ジアミノジフェニルスルホン(セイカキュアS、和歌山精化工業(株)製、活性水素当量:62(g/eq.))。
・粘度調整剤:
e)ポリエーテルスルホン(“スミカエクセル”(登録商標)PES5003P 住友化学(株)製)。
 前記材料を用い、下記方法に従って熱硬化性樹脂B-1およびB-2を作製した。
・B-1:a)テトラグリシジルジアミノジフェニルメタン(60質量部)、b)ビスフェノールA型エポキシ樹脂(40質量部)、e)ポリエーテルスルホン(10質量部)を混練装置中に投入し、加熱混練を行って粘度調整剤を溶解させた。次いで、混練を続けたまま100℃以下の温度まで降温させ、d)4,4’-ジアミノジフェニルスルホン(45質量部)を加えて撹拌することにより、熱硬化性樹脂B-1を得た。
・B-2:a)テトラグリシジルジアミノジフェニルメタン(60質量部)、c)ビスフェノールF型エポキシ樹脂(40質量部)、e)ポリエーテルスルホン(10質量部)を混練装置中に投入し、加熱混練を行って粘度調整剤を溶解させた。次いで、混練を続けたまま100℃以下の温度まで降温させ、d)4,4’-ジアミノジフェニルスルホン(45質量部)を加えて撹拌することにより、熱硬化性樹脂B-2を得た。
 (C)熱可塑性樹脂
・C-1:ポリアミド6(“アミラン”(登録商標)CM1007(東レ(株)製、融点225℃))からなる目付10g/mのフィルムを用いた。
・C-2:ポリアミド6(“アミラン”(登録商標)CM1007(東レ(株)製、融点225℃))からなる目付30g/mのフィルムを用いた。
・C-3:ポリアミド6(“アミラン”(登録商標)CM1007(東レ(株)製、融点225℃))からなる目付85g/mのフィルムを用いた。
・C-4:酸変性ポリプロピレン(“アドマー”(登録商標)QB510(三井化学(株)性、融点165℃))からなる目付30g/mのフィルムを用いた。
・C-5:ポリエーテルケトンケトン(“KEPSTAN”(登録商標)7002(アルケマ社製、融点331℃))からなる目付30g/mのフィルムを用いた。
 (D)射出成形材料
・D-1:二軸押出機中に、ポリアミド6を80部および前記T700Sを20部投入し、250℃の加熱混練を行い、射出成形用のペレットを得た。ペレット中のT700Sの平均繊維長は0.1mmであった。
・D-2:二軸押出機中に、酸変性ポリプロピレンを80部および前記T700Sを20部投入し、250℃の加熱混練を行い、射出成形用のペレットを得た。ペレット中のT700Sの平均繊維長は0.1mmであった。
・D-3:二軸押出機中に、ポリエーテルケトンケトンを80部および前記T700Sを20部投入し、360℃の加熱混練を行い、射出成形用のペレットを得た。ペレット中のT700Sの平均繊維長は0.1mmであった。
 (E)熱可塑性板材
・E-1:ポリアミド6を80部および前記T700Sを20部からなるランダム配向繊維強化熱可塑性樹脂を用いた。板厚は5mmであった。
・E-2:酸変性ポリプロピレンを80部および前記T700Sを20部からなるランダム配向繊維強化熱可塑性樹脂を用いた。板厚は5mmであった。
・E-3:ポリエーテルケトンケトンを80部および前記T700Sを20部からなるランダム配向繊維強化熱可塑性樹脂を用いた。板厚は5mmであった。
 (2)プリプレグの作製方法
 以下に、本実施例の項で用いたプリプレグの作製方法を示す。
 [第Iの方法]
 (A)強化繊維(各実施例・比較例の項に記載。第II、第IIIの方法において同様)からなる目付193g/mの強化繊維シートを引き出し、該強化繊維シートを走行させつつ、所定の(C)熱可塑性樹脂のフィルム(各実施例・比較例の項に記載。第II、第IIIの方法において同様)を前記強化繊維シート上に配置して、IRヒータで加熱して(C)熱可塑性樹脂を溶融し、前記強化繊維シート片面の全面に付着させ、(C)熱可塑性樹脂の溶融温度以下に保たれたニップロールで加圧して、強化繊維シートに含浸したものを冷却させて繊維強化樹脂中間体を得た。次いで、所定の(B)熱硬化性樹脂(各実施例・比較例の項に記載。第II、第IIIの方法において同様)を、ナイフコーターを用いて樹脂目付100g/mで離型紙上にコーティングし、熱硬化性樹脂フィルムを作製した後、上記中間体の(C)熱可塑性樹脂の含浸を行った面とは反対側の表面に上記熱硬化性樹脂フィルムを重ね、ヒートロールにより加熱加圧しながら繊維強化樹脂中間体に含浸させ、プリプレグを得た。このとき、当該プリプレグのtanδ曲線のピーク温度は、ヒートロールを通る繊維束/ロール間の接触時間とロール温度によって調整される。なお、繊維束/ロール間の接触時間は、ロール段数ならびに繊維束の通過速度によって調整を行った。なお、含浸時の強化繊維シートの走行方向は、強化繊維が一方向に配列されているプリプレグの場合は強化繊維に対して長手方向であり、強化繊維織物によるプリプレグの場合は織物の長尺方向である。
 [第IIの方法]
 (B)熱硬化性樹脂を、ナイフコーターを用いて樹脂目付50g/mで離型紙上にコーティングし、熱硬化性樹脂のフィルムを作製した。この樹脂フィルムを、(A)強化繊維からなる目付193g/mの強化繊維シートの両側に重ね合せてヒートロールを用い、加熱加圧しながら熱硬化性樹脂を強化繊維シートに含浸させて繊維強化樹脂中間体を得た。前記繊維強化樹脂中間体の表面に(C)熱可塑性樹脂のフィルムを配置して、加熱加圧しながら(C)熱可塑性樹脂を含浸させ、プリプレグを得た。当該プリプレグのtanδ曲線のピーク温度は、上記記載の方法と同様にして、ヒートロールを通る繊維束/ロール間の接触時間とロール温度によって調整した。
 [第IIIの方法]
 (B)熱硬化性樹脂を、ナイフコーターを用いて樹脂目付50g/mで離型紙上にコーティングし、熱硬化性樹脂のフィルムを作製した。この樹脂フィルムを、(A)強化繊維からなる目付193g/mの強化繊維シートの両側に重ね合せてヒートロールを用い、加熱加圧しながら熱硬化性樹脂を強化繊維シートに含浸させ、プリプレグを得た。当該プリプレグのtanδ曲線のピーク温度は、上記記載の方法と同様にして、ヒートロールを通る繊維束/ロール間の接触時間とロール温度によって調整した。
 (3)動的粘弾性測定法(DMA法)による損失正接tanδピーク温度の測定
 プリプレグから(B)熱硬化性樹脂が(A)強化繊維に含浸された領域のみの一片を1g程度採取してサンプルとし、同サンプルに対して、JIS C6481に準拠し、動的粘弾性分析装置(ARESレオメーター:TAインスツルメント社製)を用いてDMA法により、tanδ曲線のピーク温度を求めた。各プリプレグの貯蔵弾性率G’および損失弾性率G”の比から得られるtanδ=G”/G’曲線において、そのピークに対応する温度を評価した。昇温速度は5℃/分、周波数fは1Hzで等速昇温測定した。
 (4)動的粘弾性測定法(DMA法)による損失角δ曲線の測定
 プリプレグから(B)熱硬化性樹脂が(A)強化繊維に含浸された領域のみを採取し、測定に供した。ただし、試料の厚みが1mmに充たないときは、1mm程度の厚みとなるよう積層を行い、また、一軸方向材にあっては(A)強化繊維の繊維方向を0°とし、繊維直角方向を90°と定義して、[0°/90°](記号Sは鏡面対象を示す)で積層してサンプルとした。同サンプルに対して、JIS K7244-10に準拠し、動的粘弾性分析装置(ARESレオメーター:TAインスツルメント社製)を用いてDMA法により、損失角δ(=tan-1(G”/G’))を等温測定した。30℃から140℃まで昇温速度5℃/分で等速昇温した後、140℃で等温測定を開始した。周波数は10Hzで測定した。ちなみに、140℃は一体化成形において良く用いられる金型温度として採用した。
 (5)境界面の繊維の確認方法
 プリプレグから縦10mm×横10mmを採取してサンプルとし、以下の手順で(B)熱硬化性樹脂の樹脂領域と(C)熱可塑性樹脂の樹脂領域の境界面をまたぐ(A)強化繊維の存在を確認した。前記サンプルは無作為に選定した10カ所から採取し、各サンプルをメチルアルコールで30分間超音波洗浄を行い、(C)熱可塑性樹脂を除去した。得られたサンプルを走査型電子顕微鏡(VKー9510:キーエンス(株)製)にて観察した。10カ所分のサンプル表面全てにおいて、各1本以上の繊維がむき出されている状態が観察された場合には、(B)熱硬化性樹脂と(B)熱硬化性樹脂の境界面をまたぐ(A)強化繊維が存在すると判定した。
 (6)ドレープ性
 図4に示すように、プリプレグを、幅25mm、長さ300mmに切り出し、評価用サンプルとした。なお、強化繊維が一方向に配列されているプリプレグの場合は繊維長手方向を試料の長さ方向とし、強化繊維織物によるプリプレグの場合は織物の長尺を試料の長手方向とした。室内環境下(23℃)において、当該サンプルの端部から100mmを水平な試験台の上面に粘着テープで固定し、更にその上からセロハンテープで固定する。残りの200mmの部分を空中に突き出し、水平になるようにサンプルを保持した後、保持を外して垂下させてから5分後における、サンプルの先端が自重で撓んだ角度をドレープ性として評価した。このとき、自重で撓んだサンプル先端の最下点を点a、空中に突き出した根元を点bとして、点aから鉛直方向に、点bから水平方向に伸ばした際の交点を点cとし、ドレープ角度θは以下の式によって示される。この測定を5点行い、その算術平均値をトレープ性とする。
ドレープ角度θ(°)= {tan-1(lac/lbc)}・(180/π)
ここで、lacは点aと点c間の距離、lbcは点bと点c間の距離である。
 (7)プリプレグ、熱可塑性樹脂層、熱硬化性樹脂層の厚み
 プリプレグから縦20mm×横25mmを採取してサンプルとし、以下のように各部の厚みを測定した。前記サンプルの断面をレーザー顕微鏡(VKー9510:キーエンス(株)製)で200倍に拡大し、熱可塑性樹脂の厚みが0mmの部分を除いて無作為に選定し、且つ、互いの視野が重複しない10カ所について、撮影をおこなった(例えば、図3に示されるように観察される)。撮影した各画像において、等間隔となるように10点の測定位置(厚み測定用垂基線。15)を定め、プリプレグの全体厚み、熱可塑性樹脂層の厚みを測定した。計100点分の測定データの平均値を代表的なプリプレグ厚みT、熱可塑性樹脂層の厚みTpとし、その差を熱硬化性樹脂層の厚みTsとした。
 (8)繊維直角方向引張強度
 強化繊維が一方向に配列されているプリプレグについて、強化繊維の配向する方向に対して直角の方向を長手方向として幅50mm、長さ150mmに切り出し、評価用サンプルとした。評価用サンプルを、つかみ治具間の距離が100mmになるように卓上型精密万能試験機(オートグラフAGS:島津製作所製)にセットし、室温環境下(23℃)で100mm/分の速度で引張試験を行った。サンプルが破断するまでの最大荷重をPmax、サンプルの長手方向に垂直に交わる水平断面積をAとして、以下の式から繊維直角方向引張強度(MPa)を計算した。
 繊維直角方向引張強度(MPa)= Pmax/A   。
 (9)取り扱い性
 本発明のプリプレグを室温環境下(23℃)で取り扱った際の作業手袋への貼り付き性の観点から、扱い易さについて以下の4段階で相対的に評価した。
◎ :プリプレグを手に取った際に、作業手袋に貼り付かず、樹脂も付着しない。
〇:プリプレグを手に取った際に、作業手袋に貼り付かないが、わずかに樹脂が付着する。
△:プリプレグを手に取った際に、作業手袋に貼り付くが、プリプレグに含まれる(A)強化繊維の配向は乱れない。
×:プリプレグを手に取った際に、作業手袋に貼り付き、プリプレグに含まれる(A)強化繊維の配向が乱れる。
 (10)成形体の成形
 プリプレグを(C)熱可塑性樹脂が存在しない面と射出成形の金型面とが接するようにして、140℃に予備加熱された金型上に置き、完全硬化するまで保持することで、金型形状に即した成形体を得た。
 (11)一体化成形体の成形
 以下に、射出成形およびプレス成形による方法をそれぞれ示す。
 [射出成形による一体化]
 プリプレグを(C)熱可塑性樹脂が存在しない面と射出成形の金型面とが接するようにして、140℃に予備加熱された金型内に挿入し、(D)射出成形材料を金型内に射出充填することによって、プリプレグによって補強・補剛された一体化成形体を得た。ここで、(D)射出成形材料は加熱シリンダー内で射出成形材料の融点+30℃に加熱溶融し、スクリュー回転数60rpm、射出速度90mm/秒、射出圧力200MPa、背圧0.5MPaで射出成形した。
 一体化成形に用いた射出成形用金型は、縦300mm×横300mmの平面に、半径225mm×高さ280mmの円柱における弧の長さ302mmの曲面を有するものである。
 [プレス成形による一体化]
 プリプレグの(C)熱可塑性樹脂が存在する面と(E)熱可塑性板材を重ねた後、(C)熱可塑性樹脂が存在しない面と140℃に予備加熱された平板金型面とが接するように配置し、プレス機で圧力を加え、(E)熱可塑性板材の融点+30℃まで昇温後、1分間保持してから降温し、一体化成形体を得た。なお、プレス機で加える圧力として、低圧力(0.5MPa)の場合と、高圧力(5.0MPa)の場合との2条件で評価を行った。
 (12)金型との密着性
 上記一体化成形体の成形時において、プリプレグを射出成形用金型内に配置した際の金型への密着性について、以下の4段階で相対的に評価した。
◎ :プリプレグを金型に押し当ててから3秒未満で金型と密着し、金型上で位置ズレが発生しなかった。
〇:プリプレグを金型に押し当ててから3秒以上10秒未満で金型と密着し、かつ、成形回数5回において5回とも金型上で位置ズレが発生しなかった。
△:プリプレグを金型に押し当ててから3秒以上10秒未満で金型と密着したが、密着性は不安定であり、成形回数5回において2~4回の範囲で金型上での位置ズレが発生しなかった。
×:プリプレグを金型に押し当ててから10秒以上経過しても金型と密着しにくく、成形回数5回において0~1回の範囲で金型上での位置ズレが発生しなかった。
 (13)金型曲面への賦形性
 上記一体化成形体の成形時において、プリプレグを射出成形用金型へ配置した際の金型曲面への賦形性について、以下の4段階で相対的に評価した。
◎ :プリプレグを金型に押し当ててから3秒未満で柔軟性を発現し、プリプレグが湾曲した金型表面に沿って賦形できた。
〇 :プリプレグを金型に押し当ててから3秒以上10秒未満で柔軟性を発現し、かつ、成形回数5回において5回とも湾曲した金型表面に沿って賦形できた。
△ :プリプレグを金型に押し当ててから3秒以上10秒未満で柔軟性を発現したが、柔軟性は不安定であり、成形回数5回において2~4回の範囲で湾曲した金型表面に沿った賦形ができた。
× :プリプレグを金型に押し当ててから10秒以上経過しても柔軟性が低いために、成形回数5回において0~1回の範囲で湾曲した金型表面に沿った賦形ができた。
 なお、金型との密着性ならびに金型曲面への賦形性を合わせて相対的に評価することで、本発明のプリプレグにおける成形性を表す。
 (14)一体化成形体の外観評価
 上記一体化成形体の成形後において、プリプレグの成形品内部方向へのズレ、成形品側面方向へのズレ、繊維直進性の維持、および、プリプレグ内部に発生した隙間の有無の観点に基づき、次の4段階で評価した。
◎ :いずれも良好なもの
〇 :いずれか1点で劣るもの
△ :いずれか2点で劣るもの
× :いずれか3点以上で劣るもの。
 (15)引張せん断強度評価
 以下に、引張せん断評価用サンプルの作製手順および評価方法を示す。
 対応する実施例または比較例で用いた(B)熱硬化性樹脂を用い、ナイフコーターを用いて樹脂目付50g/mで離型紙上にコーティングし、熱硬化性樹脂のフィルムを作製した。この樹脂フィルムを、対応する実施例または比較例で用いた(A)強化繊維からなる目付193g/mの強化繊維シートの両側に重ね合せてヒートロールを用い、加熱加圧しながら熱硬化性樹脂を強化繊維に含浸させ、幅200mm×長さ150mmの大きさにカットし、プリプレグ(便宜上、下層プリプレグという)を得た。なお、当該下層プリプレグのtanδ曲線のピーク温度は30℃未満となるようヒートロールを通る繊維束/ロール間の接触時間とロール温度によって調整した。
 次いで、(A)強化繊維が一方向に配列されているプリプレグである場合は、実施例または比較例で作製したプリプレグ1枚を幅200mm×長さ150mmの大きさにカットし、前記の下層プリプレグ7枚に、次いで、(A)強化繊維の繊維方向を0°とし、繊維直角方向を90°と定義して、(C)熱可塑性樹脂を含む面が外に面した面として表れるように[0°/90°]2S(記号Sは鏡面対象を示す)と積層し、積層体を得た。
 また、(A)強化繊維が平織りした織物からなる場合は、実施例または比較例で作製したプリプレグ1枚を幅200mm×長さ150mmの大きさにカットし、前記の下層プリプレグ7枚に、(C)熱可塑性樹脂を含む面が外に面した面として表れるように積層し、積層体を得た。
 なお、試料に(C)熱可塑性樹脂を含む面が存在しない場合には、(A)強化繊維が配向する方向を0°とし、当該方向に直交する方向を90°として、表裏面を区別することなく[0°/90°]2S(記号Sは鏡面対象を示す)と積層した。
 射出成形による一体化成形体の引張せん断評価では、図5に示す引張せん断強度評価用サンプルを作製するための射出成形用金型内に、実施例または比較例で作製したプリプレグが金型の側の面とは反対側の面となるように前記積層体を配置した。次いで、射出成形機(J150EII―P:JSW社製)を用いて、射出成形材料(各実施例・比較例の項に記載)を金型内に導入し、幅200mm×長さ12.5mmの領域において射出成形材料と前記積層体とが接合した引張せん断強度評価用の一体化成形体を作製した。その後、該一体化成形体をオーブンの中に入れ、加熱処理により(B)熱硬化性樹脂を完全に硬化させた。ここで、(D)射出成形材料は加熱シリンダー内で融点+30℃に加熱溶融させ、スクリュー回転数60rpm、射出速度90mm/秒、射出圧力200MPa、背圧0.5MPaで射出成形した。得られた引張せん断強度評価用の一体化成形体を、表面の繊維方向がサンプルの長手方向となるようにして、幅180mm×長さ172.5mmの大きさにカットした後、真空オーブン中で24時間乾燥させ、ISO4587:1995(JIS K6850(1994))に準拠してタブ接着し、幅25mmでカットすることで、引張せん断強度評価用サンプルを得た。
 プレス成形による一体化成形体の引張せん断評価では、図5に示したと同じ凹凸形状を有する、引張せん断強度評価用サンプルを作製するためのプレス成形用金型内に、実施例または比較例で作製したプリプレグが金型の側の面とは反対側の面となるように前記積層体を配置した。次いで、プレス成形用金型内に配置できるように融点+30℃で加熱加圧成形して厚みを調整後、幅200mm×長さ150mmにカットした熱可塑板材(各実施例・比較例の項に記載)を用意した。幅200mm×長さ12.5mmの領域において前記積層体と接合するように前記熱可塑板材をプレス成形用金型内に配置し、引張せん断強度評価用の一体化成形体を作製した。ここで、金型温度は予め140℃に予熱しており、前記積層体および熱可塑板材を金型内に配置後、熱可塑板材の融点+30℃まで昇温してから低圧力(0.5MPa)の場合と、高圧力(5.0MPa)の場合との2条件でそれぞれ加熱加圧成形を行った。1分加圧状態を保持後、降温して引張せん断強度評価用の一体化成形体を取り出し、表面の繊維方向がサンプルの長手方向となるようにして、幅180mm×長さ172.5mmの大きさにカットした後、真空オーブン中で24時間乾燥させ、ISO4587:1995(JIS K6850(1994))に準拠してタブ接着し、幅25mmでカットすることで、引張せん断強度評価用サンプルを得た。
 得られた引張せん断強度評価用サンプルを、ISO4587:1995(JIS K6850(1994))に基づき、室温環境下(23℃)にて測定した。
 なお、この評価において、(A)強化繊維が一方向に配列されているプリプレグの場合は強化繊維の長手方向に沿うように実施例および比較例のプリプレグを調製し、強化繊維織物によるプリプレグの場合は織物の長尺方向に沿うように実施例および比較例のプリプレグを調製した。
 (比較例1)
 (A)強化繊維としてA-1、(B)熱硬化性樹脂としてB-1を用いて、第IIIの作製方法によって、表1に示すtanδ曲線のピーク温度を有したプリプレグを作製した。その後、該プリプレグを射出成形用金型内に挿入し、射出成形材料としてD-1を用いてインサート射出成形を実施した。また別に前記の第IIIの作製方法で作製したプリプレグをプレス成形用金型内に挿入し、熱可塑板材としてE-1を用いてプレス成形を実施した。プリプレグの特性、成形性、得られた射出成形後の一体化成形体およびプレス成形後の一体化成形体の評価結果を表1にまとめた。
 成形性は良好であったが、得られた一体化成形体の引張せん断強度は何れも極めて低かった。
 (実施例1、実施例2)
 (A)強化繊維としてA-1、(B)熱硬化性樹脂としてB-1、(C)熱可塑性樹脂としてC-4を用いて、第IIの作製方法によって、表1に示すtanδ曲線のピーク温度を有したプリプレグを作製した。その後、該プリプレグを射出成形用金型内に挿入し、射出成形材料としてD-2を用いてインサート射出成形を実施した。また別に前記の第IIの作製方法で作製したプリプレグをプレス成形用金型内に挿入し、熱可塑板材としてE-2を用いてプレス成形を実施した。プリプレグの特性、成形性、得られた射出成形後の一体化成形体およびプレス成形後の一体化成形体の評価結果を表1にまとめた。
 成形性は良好で、何れも一体化成形体として満足する引張せん断強度を発現した。
 (比較例2、比較例4、実施例5~8)
 表1に示す(A)強化繊維、(B)熱硬化性樹脂、(C)熱可塑性樹脂を用いて、第Iの作製方法によって、表1に示すtanδ曲線のピーク温度を有したプリプレグを作製した。その後、該プリプレグを射出成形用金型内に挿入し、射出成形材料としてD-1を用いてインサート射出成形を実施した。また別に前記の第Iの作製方法で作製したプリプレグをプレス成形用金型内に挿入し、熱可塑板材としてE-1を用いてプレス成形を実施した。プリプレグの特性、成形性、得られた射出成形後の一体化成形体およびプレス成形後の一体化成形体の評価結果を表1にまとめた。
 比較例2は一体化成形体の繊維直進性が大きく乱れており、比較例4はプリプレグが金型内で動き目的箇所へ配置することができなかった。一方で、実施例5~8は接合強度が高く、特に実施例6と7は、室温環境下での取り扱い性に加え、金型との密着性ならびに金型曲面への賦形性から表される成形性も良好でありながら極めて高い引張せん断強度を発現した。また、実施例8は、室温環境下(23℃)での取扱い性に一層優れ、成形性は実施例5~7に対して劣ったが、高圧プレス成形による一体化成形体においても繊維直進性の乱れなく、外観は同条件でプレス成形した実施例6および実施例7よりも良好であった。
 (比較例3)
 (A)強化繊維としてA-2、(B)熱硬化性樹脂としてB-1、(C)熱可塑性樹脂としてC-2を用いて、第Iの作製方法によってプリプレグを作製した。その後、該プリプレグを射出成形用金型内に挿入し、射出成形材料としてD-1を用いてインサート射出成形を実施した。また別に前記の第Iの作製方法で作製したプリプレグをプレス成形用金型内に挿入し、熱可塑板材としてE-1を用いてプレス成形を実施した。プリプレグの特性、成形性、得られた射出成形後の一体化成形体およびプレス成形後の一体化成形体の評価結果を表1にまとめた。
 一体化成形体は、何れも配置したプリプレグの端部から繊維が乱れるものだった。
 (実施例3、実施例4)
 表1に示す(A)強化繊維、(B)熱硬化性樹脂、(C)熱可塑性樹脂を用いて、第Iの作製方法によって、表1に示すtanδ曲線のピーク温度を有したプリプレグを作製した。その後、該プリプレグを射出成形用金型内に挿入し、射出成形材料としてD-1を用いてインサート射出成形を実施した。また別に前記の第Iの作製方法で作製したプリプレグをプレス成形用金型内に挿入し、熱可塑板材としてE-1を用いてプレス成形を実施した。プリプレグの特性、成形性、得られた射出成形後の一体化成形体およびプレス成形後一体化成形体の評価結果を表1にまとめた。
 実施例4は、プリプレグの剛性が高かったものの金型への密着性は良く、一体化成形することが可能であった。実施例3および4は、それぞれ射出一体化成形体における繊維直進性はわずかに損なわれている箇所があったものの、優れた引張せん断強度を発現した。一方で、高圧プレス成形による一体化成形体は、樹脂流れに伴って繊維直進性が大きく乱れて拡がり、形状保持できなかった。
 (実施例9)
 (A)強化繊維としてA-2、(B)熱硬化性樹脂としてB-1、(C)熱可塑性樹脂としてC-2を用いて、第Iの作製方法によって、表1に示すtanδ曲線のピーク温度を有したプリプレグを作製した。その後、該プリプレグを射出成形用金型内に挿入し、射出成形材料としてD-1を用いてインサート射出成形を実施した。また別に前記の第Iの作製方法で作製したプリプレグをプレス成形用金型内に挿入し、熱可塑板材としてE-1を用いてプレス成形を実施した。プリプレグの特性、成形性、得られた射出成形後の一体化成形体およびプレス成形後の一体化成形体の評価結果を表1にまとめた。
 射出一体化成形体は、比較例3よりも繊維直進性が保持できた外観に優れるものだったが、高圧プレス成形を行った一体化成形体の外観は、プリプレグ端部から繊維直進性が乱れた。
(実施例10~12)
 (A)強化繊維としてA-1、(B)熱硬化性樹脂としてB-2、(C)熱可塑性樹脂としてC-5を用いて、第Iの作製方法によって、表2に示すtanδ曲線のピーク温度を調整したプリプレグを作製した。その後、該プリプレグを射出成形用金型内に挿入し、射出成形材料としてD-3を用いてインサート射出成形を実施した。また別に前記の第Iの作製方法で作製したプリプレグをプレス成形用金型内に挿入し、熱可塑板材としてE-3を用いてプレス成形を実施した。プリプレグの特性、成形性、得られた射出成形後の一体化成形体およびプレス成形後の一体化成形体の評価結果を表1にまとめた。
 何れの一体化成形体においても、金型との密着性ならびに金型曲面への賦形性から表される成形性は良好であり、良好な外観であった。特に、実施例10は成形性に優れ、極めて高い引張せん断強度を発現した。一方で、高圧プレス成形においては、実施例11および実施例12の外観の方が実施例10と対比して良好であった。
 (まとめ)
 全ての実施例において、一体化成形体において測定された引張せん断強度は10MPaを上廻るものであったので、各実施例で作製されたプリプレグの硬化済の(B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との境界面における引張せん断強度は、10MPaを上廻る値であると推定される。
 実施例1は比較例1と対比して、一体化成形体の引張せん断強度に優れる結果となった。これは、実施例1のプリプレグの表面には熱溶着性を有する(C)熱可塑性樹脂が被覆するため、射出材料との一体化ができたためである。一方、(C)熱可塑性樹脂を被覆しない比較例1のプリプレグは、見かけ上は射出材料と一体化できたものの、人力によって容易に剥がせるような極めて低い引張せん断強度であった。
 比較例2、4および実施例5~12との対比により、tanδ曲線のピーク温度が100℃を超え180℃以下であることによって、射出成形用金型上との密着性ならびに賦形性が良好となり成形性に優れることが確認された。これは、金型上で適度な粘着性と柔軟性を発現するためと考えられ、本効果によって外観ならびに引張せん断強度に優れる一体化成形体が得られた。特に、実施例6、7、10は成形性と一体化成形体の外観のバランスに優れた。これは、tanδ曲線のピーク温度が110℃以上140℃以下程度であることによって、(A)強化繊維の直進性を保持しながら、金型表面からの加熱により良好な密着性と柔軟性を得ることができたためと考えられた。
 比較例2と比較例3は概ね一致する結果であった。これは、当該プリプレグの(A)強化繊維が織物であっても一方向に配列されたもの同様に、tanδ曲線のピーク温度が100℃以下であることから、インサート射出成形時の射出圧によってプリプレグ端部の繊維直線性が損なわれるためであると考えられた。なお、(A)強化繊維が織物と一方向に配列された何れの場合においても、同様の形状保持性を示すことは、実施例5と実施例9の対比によっても確認された。
 実施例9は比較例3と比較して、一体化成形体の外観に優れた。これは、(A)強化繊維が織物である場合にも、(B)熱硬化性樹脂が特定のtanδ曲線のピーク温度を有することによって繊維の直進性が保持され易くなったためであると考えられた。
 実施例3~12の対比により、プリプレグの製造方法が異なる場合においても、tanδ曲線のピーク温度を調整することによって同程度の成形性と一体化成形体の外観を得られることが確認された。なお、実施例3と実施例4および実施例5との比較において、(C)熱可塑性樹脂の層の厚みが異なるものを使用した結果、厚みの薄い実施例3は、実施例4および実施例5と比較し、ドレープ性に優れるものの、引張せん断強度は若干劣るものとなった。
 実施例6は実施例1と比較して、一体化成形後の引張せん断強度にさらに優れる結果であり、(A)強化繊維が(B)熱硬化性樹脂と(C)熱可塑性樹脂の境界面をまたぐことによって強固な接合力を発現できると考えられた。なお、本傾向は、実施例2と実施例7との対比によっても確認された。
 実施例8は実施例6よりも成形性が優れず、これは当該プリプレグの柔軟性が低く、剛直であることが起因すると考えられた。さらに、実施例4においても金型曲面への賦形性は実施例6に対して劣り、これは(C)熱可塑性樹脂の厚みが厚く柔軟性が低いためであると考えられた。
実施例3は金型曲面での密着性ならびに賦形性に優れるものの、一体成形品の外観は実施例6に対してわずかに劣った。これは、当該プリプレグの繊維直角方向引張強度が低いために、加熱加圧成形時の圧力や樹脂流動によって繊維直進性が損なわれるためであると考えられた。実施例11と実施例12の比較において、柔軟性の差異は見られたものの、いずれも適切な条件[II]の範囲内であったため、使用に適したプリプレグとなることを確認できた。
 実施例6と実施例10、実施例8と実施例11をそれぞれ対比することにより、使用材料が異なる何れのプリプレグにおいても、tanδ曲線のピーク温度を調整することによって、同程度の成形性と一体化成形の外観を得られることが確認された。また、損失角δ曲線において、高さ5°以上のピークを持たないプリプレグは、室温環境下(23℃)での取り扱い性に一層優れることも確認された。一方で、金型との密着性と金型曲面への賦形性から表される成形性が劣るものの、高圧プレス成形ときにも繊維直進性の乱れが少なく、形状保持性に優れることが示唆された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の一体化成形体は、航空機構造部材、風車羽、自動車外板やシート、ICトレイやノートパソコンの筐体などのコンピューター用途さらにはゴルフシャフトやテニスラケットなどスポーツ用途に好ましく用いられる。
1 :プリプレグ
2 :(A)強化繊維
3 :(B)熱硬化性樹脂
4 :(C)熱可塑性樹脂
5 :(A)強化繊維に(B)熱硬化性樹脂が含浸した層
6 :傾きが緩くて起伏のない領域
7 :ピークの位置
8 :損失角δ曲線(ピーク有り、形状1)
9 :損失角δ曲線(ピーク有り、形状2)
10:損失角δ曲線(ピーク無し)
11:(A)強化繊維
12:(B)熱硬化性樹脂を含む樹脂領域
13:(C)熱可塑性樹脂を含む樹脂領域
14:境界面
15:厚み測定用垂基線
16:プリプレグ
17:試験台
18:点a
19:点b
20:点c
21:ドレープ角度(°)
22:積層体
23:金型(可動側)
24:金型(固定側)
25:射出成形機
26:射出成形材料
27:引張せん断強度評価用サンプル

Claims (9)

  1. (A)強化繊維、(B)熱硬化性樹脂、および、(C)熱可塑性樹脂を含むプリプレグであって、(B)熱硬化性樹脂は(A)強化繊維に含浸されており、かつ、プリプレグの表面の少なくとも一部に(C)熱可塑性樹脂が存在しており、かつ、条件[I]を満たし、かつ、条件[II]または条件[III]を満たすプリプレグ。
    [I]:(B)熱硬化性樹脂は、動的粘弾性測定法(DMA法)により等速昇温測定した損失正接tanδ曲線において100℃を超え180℃以下の温度域にピークを有する。
    [II]:該プリプレグは、動的粘弾性測定法(DMA法)により等温測定して求められた損失角δ曲線において、当該損失角δ曲線は極大値を示す点を有し、かつ、当該極大値を示す点よりも短時間側に当該極大値より損失角δが5°以上小さな値を示す点を有する。
    [III]:該プリプレグは、動的粘弾性測定法(DMA法)により等温測定して求められた損失角δ曲線において、当該損失角δ曲線は、極大値を有したとしても当該極大値を示す点よりも短時間側に当該極大値より損失角δが5°以上小さな値を示す点を持たないか、極大値を示す点を持たず、損失角δが-1.4°/分以上の傾きでもって5°以上小さくなる降下挙動を示す区間を有する。
  2. (B)熱硬化性樹脂を含む樹脂領域と(C)熱可塑性樹脂を含む樹脂領域との境界面をまたいで存在する(A)強化繊維を有している請求項1に記載のプリプレグ。
  3. 用いられる(B)熱硬化性樹脂と(C)熱可塑性樹脂において、熱硬化済みの(B)熱硬化性樹脂と、(C)熱可塑性樹脂とが接着剤を介さずに接合された試験片を用いての、JIS K6850(1994)に基づき室温(23℃)の雰囲気下で測定された前記試験片の引張せん断強度が10MPa以上を示す、請求項1または2に記載のプリプレグ。
  4. ドレープ性が3°以上である請求項1から3のいずれかに記載のプリプレグ。
  5. プリプレグの平均厚みが50μm以上400μm以下であり、前記平均厚みを100%としたとき、(C)熱可塑性樹脂を含む樹脂領域の平均厚みが2%以上55%以下である請求項1から4のいずれかに記載のプリプレグ。
  6. (A)強化繊維が一方向に配列されている請求項1から5のいずれかに記載のプリプレグ。
  7. (A)強化繊維の配列する方向に対して直交し、プリプレグシートの表面に平行な方向における引張強度が0.3MPa以上である請求項6に記載のプリプレグ。
  8. 請求項1から7のいずれかに記載のプリプレグを用い、(B)熱硬化性樹脂を加熱硬化させた成形体。
  9. 請求項1から7のいずれかに記載のプリプレグの(C)熱可塑性樹脂が存在する側の面に、熱可塑性樹脂による成形物が一体化された一体化成形体。
PCT/JP2021/047257 2021-01-21 2021-12-21 プリプレグ、成形体および一体化成形体 WO2022158222A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/270,013 US20240066758A1 (en) 2021-01-21 2021-12-21 Prepreg, molded article, and integrally molded article
CN202180085543.6A CN116761713A (zh) 2021-01-21 2021-12-21 预浸料坯、成型体及一体化成型体
JP2022502064A JP7088433B1 (ja) 2021-01-21 2021-12-21 プリプレグ、成形体および一体化成形体
EP21921323.8A EP4282644A1 (en) 2021-01-21 2021-12-21 Prepreg, molded article, and integrally molded article
KR1020237022425A KR20230135056A (ko) 2021-01-21 2021-12-21 프리프레그, 성형체 및 일체화 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-007774 2021-01-21
JP2021007774 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022158222A1 true WO2022158222A1 (ja) 2022-07-28

Family

ID=82548285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047257 WO2022158222A1 (ja) 2021-01-21 2021-12-21 プリプレグ、成形体および一体化成形体

Country Status (2)

Country Link
TW (1) TW202241694A (ja)
WO (1) WO2022158222A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10138354A (ja) 1996-11-08 1998-05-26 Yamaha Corp 炭素繊維強化樹脂成形物とその製造方法
JP2004315743A (ja) * 2003-04-18 2004-11-11 Mitsubishi Rayon Co Ltd 熱硬化性樹脂組成物、プリプレグ及び繊維強化複合材料
JP2012086578A (ja) * 2004-02-27 2012-05-10 Toray Ind Inc 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体
JP2016113472A (ja) * 2014-12-11 2016-06-23 本田技研工業株式会社 マトリックス材
JP2018161801A (ja) 2017-03-27 2018-10-18 三菱ケミカル株式会社 接着構造部材
WO2020235487A1 (ja) * 2019-05-23 2020-11-26 東レ株式会社 プリプレグ、積層体および成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10138354A (ja) 1996-11-08 1998-05-26 Yamaha Corp 炭素繊維強化樹脂成形物とその製造方法
JP2004315743A (ja) * 2003-04-18 2004-11-11 Mitsubishi Rayon Co Ltd 熱硬化性樹脂組成物、プリプレグ及び繊維強化複合材料
JP2012086578A (ja) * 2004-02-27 2012-05-10 Toray Ind Inc 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体
JP2016113472A (ja) * 2014-12-11 2016-06-23 本田技研工業株式会社 マトリックス材
JP2018161801A (ja) 2017-03-27 2018-10-18 三菱ケミカル株式会社 接着構造部材
WO2020235487A1 (ja) * 2019-05-23 2020-11-26 東レ株式会社 プリプレグ、積層体および成形品

Also Published As

Publication number Publication date
TW202241694A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
JP7003662B2 (ja) プリプレグおよびその製造方法
US11878478B2 (en) Prepreg, laminate, and molding
WO2020235489A1 (ja) プリプレグ、積層体および成形品
US11840612B2 (en) Prepreg, laminate, and molding
EP3974466A1 (en) Prepreg, laminate, and molded article
WO2021131382A1 (ja) 複合プリプレグおよび繊維強化樹脂成形体
US20220212426A1 (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
WO2021131347A1 (ja) プリプレグ、成形体および一体化成形体
WO2022158222A1 (ja) プリプレグ、成形体および一体化成形体
JP7088433B1 (ja) プリプレグ、成形体および一体化成形体
JP7180790B2 (ja) プリプレグ、繊維強化樹脂成形体および一体化成形品
JP7088320B2 (ja) プリプレグ、積層体および一体化成形品
WO2021117461A1 (ja) プリプレグ、積層体および一体化成形品
TWI843916B (zh) 預浸漬物、積層體及一體成形品
WO2021117460A1 (ja) プリプレグ、積層体および一体化成形品
JP2020193336A (ja) 成形材料および成形品
CN116438069A (zh) 纤维增强树脂及一体化成型品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022502064

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180085543.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18270013

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021921323

Country of ref document: EP

Effective date: 20230821