WO2022158206A1 - Electromagnetic clutch - Google Patents

Electromagnetic clutch Download PDF

Info

Publication number
WO2022158206A1
WO2022158206A1 PCT/JP2021/046832 JP2021046832W WO2022158206A1 WO 2022158206 A1 WO2022158206 A1 WO 2022158206A1 JP 2021046832 W JP2021046832 W JP 2021046832W WO 2022158206 A1 WO2022158206 A1 WO 2022158206A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
outer plate
rotor
wall
facing
Prior art date
Application number
PCT/JP2021/046832
Other languages
French (fr)
Japanese (ja)
Inventor
和真 橘
清 黒畑
敏弘 林
俊宏 小西
茂圭 櫻場
広樹 永橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022158206A1 publication Critical patent/WO2022158206A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs

Definitions

  • This disclosure relates to an electromagnetic clutch.
  • an electromagnetic clutch that switches between a state of transmitting torque from a driver to a driven body and a state of not transmitting torque.
  • the electromagnetic clutch described in Patent Literature 1 is a hub that transmits torque from a rotor, which is a driving body that rotates under the power of an engine, to an air-conditioning compressor, which is a driven body.
  • This electromagnetic clutch includes an armature provided facing a rotor, an outer plate fixed to the armature, an inner hub and an elastic member provided between the armature and the outer plate.
  • the armature provided in this electromagnetic clutch is formed in an annular shape, and includes an outer ring portion provided on the outer peripheral side, an inner ring portion provided on the rotating shaft side with respect to the outer ring portion, and an armature extending in the circumferential direction between the outer ring portion and the inner ring portion. It has an elongated hole extending in an arc shape.
  • the rotor is also formed in an annular shape and has a rotor inner diameter portion, a rotor central portion, and a rotor outer diameter portion.
  • this electromagnetic clutch has a structure in which an elastic member is sandwiched between the armature and the outer plate. An elastic member is arranged so as to straddle the inner ring portion and the outer ring portion of the armature, and the elastic member is pressed against the armature by the outer plate.
  • the operating noise includes contact noise generated when the armature contacts the rotor when the electromagnetic coil is energized, and resonance noise generated by vibration generated by slippage between the armature and the rotor.
  • this electromagnetic clutch is configured such that an elastic member is sandwiched between a surface of the outer plate facing the rotational direction and a surface of the inner hub facing the rotational direction. As a result, this electromagnetic clutch has increased durability against torque fluctuations.
  • the outer plate and the elastic member are arranged across the inner ring portion and the outer ring portion of the armature in order to reduce operating noise.
  • magnetic flux leakage may occur between Specifically, when the electromagnetic coil is energized, the amount of magnetic flux flowing through “armature inner ring – outer plate – armature outer ring” increases, and the magnetic flux flowing through “armature inner ring – rotor center – armature outer ring” increases. Decrease.
  • the magnetic attraction force between the rotor and the armature is weakened, there is a risk that torque transmission from the rotor to the driven body will be deteriorated.
  • the thickness of the elastic member arranged between the outer plate and the armature (that is, the distance in the direction of the rotational axis of the electromagnetic clutch in the elastic member) is generally adjusted to It can be considered to be thicker.
  • the height of the surface of the outer plate facing the rotational direction (that is, the distance in the rotational axis direction of the electromagnetic clutch between the surface of the outer plate facing the rotational direction) is reduced. Therefore, the elastic member disposed between the surface of the outer plate that faces the rotational direction and the surface of the inner hub that faces the rotational direction also becomes smaller, resulting in reduced durability against torque fluctuations.
  • An object of the present disclosure is to provide an electromagnetic clutch capable of reducing operating noise, improving durability, and further improving torque transmissibility by improving magnetic performance.
  • the armature is provided to face the rotor on one side in the direction of the rotation axis of the rotor, and includes an outer ring portion provided on the outer peripheral side, an inner ring portion provided on the side of the rotation shaft with respect to the outer ring portion, and an outer ring portion and an inner ring portion.
  • the outer plate is fixed to the armature, has a facing wall facing a surface of the armature opposite to the rotor, an upright wall extending from the facing wall in the rotation axis direction of the rotor, and one of the upright walls on the side opposite to the facing wall. It has a flange extending from the portion perpendicular to the axis of rotation of the rotor and rotates with the armature.
  • the inner hub is provided between the armature and the outer plate, has an inner standing wall facing the standing wall and an inner flange facing the flange, and transmits torque to the driven body.
  • the elastic member includes an urging portion provided between the flange and the inner flange, a buffer portion provided between a surface of the vertical wall facing the rotational direction and a surface of the internal vertical wall facing the rotational direction, and an opposing wall. It has a damping part provided between it and the armature. At least one of the opposing wall and the armature is provided with a concave portion that makes the distance between the armature and the opposing wall greater than the distance between the armature and the portion where the opposing wall and the standing wall are connected.
  • the damping portion of the elastic member against the inner ring portion and the outer ring portion of the armature by the opposing wall of the outer plate, the vibration of the inner ring portion and the outer ring portion of the armature is suppressed when the electromagnetic coil is energized. Sound can be reduced.
  • the height of the vertical wall and the buffer portion i.e., Since it is possible to increase the distance in the rotation axis direction, it is possible to increase durability against torque fluctuations.
  • the magnetic path formed by the "armature inner ring portion-opposing wall-armature outer ring portion" is formed when the electromagnetic coil is energized. It becomes possible to increase the magnetic resistance. Therefore, when the electromagnetic coil is energized, magnetic flux leakage between the armature and the outer plate is reduced, and the amount of magnetic flux flowing through "armature inner ring portion-rotor center portion-armature outer ring portion" is increased. Therefore, the magnetic attractive force between the rotor and the armature is increased. As a result, this electromagnetic clutch has improved magnetic performance, and can enhance torque transmission from the rotor to the driven body.
  • an electromagnetic clutch that switches between a state in which torque is transmitted from a rotor that has an electromagnetic coil and rotates about a predetermined rotation axis to a driven member and a state in which torque is not transmitted, includes an armature, an outer plate, and an inner hub. and an elastic member.
  • the armature is provided to face the rotor on one side in the direction of the rotation axis of the rotor, and includes an outer ring portion provided on the outer peripheral side, an inner ring portion provided on the side of the rotation shaft with respect to the outer ring portion, and an outer ring portion and an inner ring portion.
  • the outer plate is fixed to the armature, has a facing wall facing a surface of the armature opposite to the rotor, an upright wall extending from the facing wall in the rotation axis direction of the rotor, and one of the upright walls on the side opposite to the facing wall. It has a flange extending from the portion perpendicular to the axis of rotation of the rotor and rotates with the armature.
  • the inner hub is provided between the armature and the outer plate, has an inner standing wall facing the standing wall and an inner flange facing the flange, and transmits torque to the driven body.
  • the elastic member includes an urging portion provided between the flange and the inner flange, a buffer portion provided between a surface of the vertical wall facing the rotational direction and a surface of the internal vertical wall facing the rotational direction, and an opposing wall. It has a damping part provided between it and the armature.
  • the opposing wall is divided into a radially inner portion and a radially outer portion, and the magnetic resistance between the radially inner portion of the opposing wall and the radially outer portion of the opposing wall is determined.
  • the damping portion of the elastic member against the inner ring portion and the outer ring portion of the armature by the opposing wall of the outer plate, the vibration of the inner ring portion and the outer ring portion of the armature is suppressed when the electromagnetic coil is energized. Sound can be reduced.
  • the height of the vertical wall and the buffer portion i.e., Since it is possible to increase the distance in the rotation axis direction, it is possible to increase durability against torque fluctuations.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle to which an electromagnetic clutch according to a first embodiment is applied;
  • FIG. 1 is an exploded perspective view of an electromagnetic clutch, a rotor, and a stator according to the first embodiment;
  • FIG. 1 is a plan view of an electromagnetic clutch according to a first embodiment;
  • FIG. 4 is a cross-sectional view of an electromagnetic clutch, a rotor, etc. taken along line IV-IV of FIG. 3;
  • FIG. 3 is a plan view of an armature included in the electromagnetic clutch according to the first embodiment;
  • 3 is a plan view of an outer plate included in the electromagnetic clutch according to the first embodiment;
  • FIG. 3 is a plan view showing a state in which only an armature and an outer plate included in the electromagnetic clutch according to the first embodiment are assembled;
  • FIG. 4 is a cross-sectional view of the electromagnetic clutch, rotor, etc. taken along line VIII-VIII in FIG. 3, and is an explanatory diagram for explaining the flow of magnetic flux when the electromagnetic coil is energized;
  • 3 is a plan view of an inner hub included in the electromagnetic clutch according to the first embodiment;
  • FIG. 4 is a plan view of an elastic member included in the electromagnetic clutch according to the first embodiment;
  • FIG. It is a top view which shows some electromagnetic clutches which concern on 2nd Embodiment.
  • FIG. 11 is a cross-sectional view showing part of an electromagnetic clutch according to a third embodiment;
  • FIG. 11 is a cross-sectional view showing part of an electromagnetic clutch according to a fourth embodiment;
  • FIG. 11 is a plan view showing part of an electromagnetic clutch according to a fourth embodiment;
  • FIG. 11 is a cross-sectional view showing part of an electromagnetic clutch according to a fifth embodiment;
  • FIG. 11 is a plan view showing part of an electromagnetic clutch according to a fifth embodiment;
  • FIG. 5 is an explanatory diagram for explaining the flow of magnetic flux when an electromagnetic coil is energized in an electromagnetic clutch of a comparative example;
  • the electromagnetic clutch 1 of this embodiment is a torque transmission device for intermittently transmitting torque from a rotor 50 as a driving body to a compressor 70 as a driven body.
  • the electromagnetic clutch 1 is also called a hub.
  • a refrigeration cycle 71 using a compressor 70 as a driven body will be described.
  • the refrigerating cycle 71 is used in a vehicle air conditioner (not shown) that air-conditions the interior of the vehicle or the interior of the refrigerator.
  • a refrigerating cycle 71 is configured as a closed circuit in which a compressor 70 , a condenser 72 , an expansion valve 73 , and an evaporator 74 are annularly connected by a refrigerant pipe 75 .
  • the compressor 70 sucks refrigerant from a refrigerant pipe 75 on the evaporator 74 side, compresses it, and discharges it.
  • the condenser 72 is a heat exchanger that condenses the refrigerant by exchanging heat between the refrigerant discharged from the compressor 70 and the outside air.
  • the expansion valve 73 decompresses and expands the refrigerant flowing out of the condenser 72 .
  • the evaporator 74 is a heat exchanger that evaporates the refrigerant decompressed and expanded by the expansion valve 73 by exchanging heat with the air that is blown into the vehicle interior or the refrigerator.
  • the compressor 70 for example, a fixed capacity compressor such as a scroll type or vane type, or a variable capacity type compressor such as a swash plate type is adopted.
  • a rotor 50 as a driving body is provided on one end side of the compressor 70 .
  • the rotor 50 is rotatable relative to the housing of the compressor 70 and the like.
  • the vehicle is provided with an engine 80 for driving the vehicle as a power generation source.
  • a pulley 82 provided on a drive shaft 81 of the engine 80 and the rotor 50 are connected by a power transmission belt 83 .
  • Torque output from the engine 80 is transmitted from the pulley 82 to the rotor 50 via the belt 83 . Therefore, the rotor 50 rotates as the engine 80 is driven.
  • An electromagnetic clutch 1 is provided on the side opposite to the compressor 70 with respect to the rotor 50 . Torque transmitted from the engine 80 to the rotor 50 is configured to be transmitted to the shaft of the compressor 70 via the electromagnetic clutch 1 .
  • the rotor 50 is mainly made of a ferromagnetic material such as iron, and is rotatable around a predetermined rotation axis Ax.
  • the side closer to the rotation axis Ax may be referred to as the radial inner side
  • the side farther from the rotation axis Ax may be referred to as the radial outer side.
  • the rotor 50 includes an outer tubular portion 51 provided on the outer peripheral side, an inner tubular portion 52 provided radially inwardly of the outer tubular portion 51, and an annular portion connecting the outer tubular portion 51 and the inner tubular portion 52. 53 integrally.
  • the outer tubular portion 51 is formed in a cylindrical shape.
  • a V-groove portion 54 formed of a plurality of grooves having a V-shaped cross section parallel to the rotation axis Ax is formed on the outer circumference of the outer cylindrical portion 51 .
  • a belt 83 for transmitting the torque output from the engine 80 is stretched over the V groove portion 54 .
  • the inner cylindrical portion 52 is formed in a cylindrical shape and is provided closer to the rotation axis Ax than the outer cylindrical portion 51 is.
  • An outer ring 91 of a ball bearing 90 is fixed to the inner peripheral side of the inner tubular portion 52 .
  • the inner ring 92 of the ball bearing 90 is fixed to a cylindrical portion 77 projecting cylindrically from the housing of the compressor 70 .
  • the rotor 50 is provided rotatably relative to the housing of the compressor 70 .
  • the annular portion 53 is formed in an annular shape and connects the outer tubular portion 51 and the inner tubular portion 52 .
  • the annular portion 53 is provided with a plurality of slits 55 extending in an arc shape in the circumferential direction.
  • the plurality of slits 55 has an outer slit 551 and an inner slit 552 provided radially outside the outer slit 551 .
  • a portion of the rotor 50 radially outside the outer slit 551 may be referred to as a "rotor outer diameter portion 501".
  • a portion between the outer slit 551 and the inner slit 552 may be called a "rotor central portion 502".
  • a portion radially inward of the inner slit 552 may be referred to as a "rotor inner diameter portion 503".
  • the end surface of the annular portion 53 opposite to the compressor 70 serves as a friction surface that contacts the armature 10 of the electromagnetic clutch 1 .
  • the friction surface is referred to as the end surface 59 of the rotor 50.
  • FIG. A friction member 56 for increasing the coefficient of friction is arranged at a portion of the end face 59 of the rotor 50 where the outer slit 551 is provided.
  • a non-magnetic material such as alumina hardened with resin or a sintered body of metal powder such as aluminum is used.
  • a stator 57 and an electromagnetic coil 58 are provided inside the rotor 50 .
  • the stator 57 is made of a ferromagnetic material such as iron.
  • the electromagnetic coil 58 is fixed inside the stator 57 while being molded with an insulating resin material. Therefore, the rotor 50 has an electromagnetic coil 58 inside.
  • the electromagnetic coil 58 When the electromagnetic coil 58 is energized, magnetic flux flows through a magnetic circuit formed by the stator 57, the rotor 50, and the armature 10 of the electromagnetic clutch 1, which will be described later. As a result, a magnetic attractive force is generated that draws the armature 10 toward the rotor 50 side.
  • the electromagnetic clutch 1 includes an armature 10, an outer plate 20, an inner hub 30, elastic members 40, and the like.
  • the armature 10 is mainly made of a ferromagnetic material such as iron and has an annular shape, and is provided to face the end face 59 of the rotor 50 .
  • a predetermined gap (for example, about 0.5 mm) is formed between the end surface 59 of the rotor 50 and the armature 10 when the electromagnetic coil 58 of the rotor 50 is not energized.
  • FIG. 4 for the sake of explanation, the gap between the end surface 59 of the rotor 50 and the armature 10 is shown relatively large.
  • the electromagnetic coil 58 when the electromagnetic coil 58 is energized, the armature 10 is drawn toward the rotor 50 by the magnetic attraction force generated by the electromagnetic coil 58 and comes into contact with the end face 59 of the rotor 50 .
  • the armature 10 is joined to the end surface 59 of the rotor 50 by frictional force. In that state, the electromagnetic clutch 1 rotates together with the rotor 50 .
  • the armature 10 is formed in an annular shape, and includes an outer ring portion 11 provided on the outer peripheral side, an inner ring portion 12 provided on the rotation axis Ax side of the outer ring portion 11, and an outer ring portion. Between 11 and inner ring portion 12, there are a plurality of elongated holes 13 extending in an arc shape in the circumferential direction. The plurality of elongated holes 13 serve as magnetic resistance portions that increase the magnetic resistance between the inner ring portion 12 and the outer ring portion 11 .
  • the inner ring portion 12 and the outer ring portion 11 are mechanically connected by a connecting portion 14 provided between the plurality of long holes 13 .
  • the armature 10 is provided with a plurality of rivets 15 for fixing to the outer plate 20 .
  • the rivet 15 is provided near the outer periphery of the armature 10 .
  • the rivet 15 and the connection portion 14 are provided at positions overlapping each other in the radial direction.
  • the positions of the rivet 15 and the connecting portion 14 are not limited to the position where they overlap in the radial direction as shown in FIG. 5, and can be set arbitrarily.
  • the armature 10 and the rivet 15 may be configured as separate members.
  • the outer plate 20 is provided on the side of the armature 10 opposite to the rotor 50. As shown in FIGS. The outer plate 20 is formed by pressing a ferromagnetic material such as an iron plate. By making the outer plate 20 and the armature 10 of the same kind of material, they have the same coefficient of linear expansion, and deformation of the outer plate 20 and the armature 10 can be prevented.
  • the outer plate 20 integrally has a facing wall 21, a vertical wall 22 and a flange 23.
  • the facing wall 21 is a portion of the armature 10 that faces the surface of the armature 10 opposite to the rotor 50 .
  • the standing wall 22 is a portion extending from the opposing wall 21 in the rotation axis direction of the rotor 50 .
  • the flange 23 is a portion extending perpendicularly to the rotation axis Ax of the rotor 50 from a portion of the standing wall 22 opposite to the opposing wall 21 .
  • the facing wall 21 of the outer plate 20 is provided with insertion holes 24 into which the rivets 15 are inserted.
  • the insertion hole 24 is provided at a position near the outer periphery of the outer plate 20 .
  • a rivet 15 provided on the armature 10 is inserted into the insertion hole 24 .
  • a portion of the facing wall 21 is provided with an outer plate recessed portion 25 as a recessed portion.
  • the outer plate recessed portion 25 is formed in a substantially fan shape when viewed from the rotation axis direction, and is provided at four locations in the circumferential direction of the outer plate 20 .
  • the outer plate recessed portion 25 is provided between the standing wall 22 and the rivet 15 .
  • the outer plate concave portion 25 is farther from the armature 10 than the portion 21a of the opposing wall 21 that is connected to the standing wall 22 and the portion 21b of the opposing wall 21 that is provided with the insertion hole 24 into which the rivet 15 is inserted. Concave like this. Note that the outer plate concave portion 25 has a concave shape when viewed from the armature 10 side, and has a convex shape when viewed from the side opposite to the armature 10 . The outer plate concave portion 25 has a function of increasing the magnetic resistance between the armature 10 and the opposing wall 21 by increasing the distance between the armature 10 and the opposing wall 21 . Further, the outer plate concave portion 25 also has a function of increasing the rigidity of the opposing wall 21 .
  • FIG. 7 shows a state in which only the outer plate 20 and the armature 10 are assembled (that is, a state in which the inner hub 30 and the elastic member 40 are removed from the electromagnetic clutch 1).
  • the facing wall 21 of the outer plate 20 is arranged across the inner ring portion 12 and the outer ring portion 11 of the armature 10 .
  • An outer plate concave portion 25 provided in the facing wall 21 is provided across the inner ring portion 12 and the outer ring portion 11 of the armature 10 at a portion facing the long hole 13 of the armature 10 .
  • FIG. 8 is a cross-sectional view of the electromagnetic clutch 1, rotor 50, etc. taken along line VIII-VIII in FIG.
  • the distance between the armature 10 and the portion 21a where the opposing wall 21 and the standing wall 22 are connected is defined as D1.
  • the distance between the outer plate concave portion 25 provided in the opposing wall 21 and the armature 10 is defined as D2.
  • the distance D2 between the outer plate concave portion 25 and the armature 10 is greater than the distance D1 between the armature 10 and the portion 21a where the opposing wall 21 and the standing wall 22 are connected. Therefore, the outer plate concave portion 25 functions as a magnetic resistance portion that increases magnetic resistance between the armature 10 and the opposing wall 21 .
  • FIG. 8 shows a state in which the electromagnetic coil 58 of the rotor 50 is energized (hereinafter referred to as "when the electromagnetic coil 58 is energized").
  • the magnetic flux flowing through the magnetic circuit formed by the stator 57, the rotor 50, and the armature 10 when the electromagnetic coil 58 is energized is indicated by a solid line M1.
  • the magnetic flux leaking from the armature 10 to the opposing wall 21 of the outer plate 20 at that time is indicated by a dashed line M2.
  • the provision of the outer plate recess 25 in the opposing wall 21 increases the distance D2 between the outer plate recess 25 of the opposing wall 21 and the armature 10, increasing the magnetic resistance therebetween.
  • magnetic flux flows in the direction of smaller reluctance. Therefore, as indicated by the dashed line M2, the amount of magnetic flux flowing through “the inner ring portion 12 of the armature 10—the opposing wall 21 of the outer plate 20—the outer ring portion 11 of the armature 10” is negligibly small. 20 is reduced.
  • a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--armature 10 outer ring portion 11--rotor outer diameter portion 501--stator 57" is formed.
  • the amount of magnetic flux flowing increases. Therefore, the magnetic attraction force between the rotor 50 and the armature 10 increases.
  • the electromagnetic clutch 1 can improve the magnetic performance and improve the torque transmissibility from the rotor 50 to the compressor 70 .
  • the standing wall 22 of the outer plate 20 extends from the facing wall 21 in the rotation axis direction of the rotor 50 .
  • the flange 23 of the outer plate 20 extends perpendicularly to the rotation axis Ax of the rotor 50 from a portion of the vertical wall 22 opposite to the opposing wall 21. extended.
  • the flange 23 is provided with an opening 26 that is shaped like a + sign (that is, shaped like a plus sign) when viewed from the axial direction. Therefore, the upright wall 22 and the flange 23 are shaped so as to border the plus sign-shaped opening 26 .
  • the radially outer portion of the + symbol-shaped end portion is referred to as a first flange 231
  • the curved portion of the + symbol-shaped central portion is referred to as a second flange. It is sometimes called 232.
  • the inner hub 30 is provided between the armature 10 and the outer plate 20.
  • the inner hub 30 has a tubular boss portion 31 and a plate portion 32 extending radially outward from the end portion of the boss portion 31 .
  • a radially inner portion of the plate portion 32 and the boss portion 31 are made of metal.
  • the radially outer portion of the plate portion 32 is made of resin.
  • the inner hub 30 has a metal part and a resin part integrally formed by insert molding.
  • a female thread 33 is formed on the inner periphery of the boss portion 31 .
  • the inner hub 30 is fixed to the end of the shaft 76 of the compressor 70 by screwing together the female thread 33 formed on the inner periphery of the boss portion 31 and the male thread 78 formed on the outer periphery of the shaft 76 of the compressor 70 . . This allows the inner hub 30 to transmit torque to the compressor 70 .
  • the plate portion 32 of the inner hub 30 is formed in the shape of a + sign.
  • the plate portion 32 is provided between the flange 23 of the outer plate 20 and the armature 10 inside the standing wall 22 of the outer plate 20 .
  • the outer plate 20 and the armature 10 are provided so as to be movable relative to each other in the rotation axis direction.
  • the inner hub 30 also has an inner standing wall 34 facing the standing wall 22 of the outer plate 20 and an inner flange 35 facing the flange 23 of the outer plate 20 .
  • An inner vertical wall 34 of the inner hub 30 is provided substantially parallel to the vertical wall 22 of the outer plate 20 .
  • a predetermined space is provided between the inner vertical wall 34 of the inner hub 30 and the vertical wall 22 of the outer plate 20 so that a cushioning portion of the elastic member 40, which will be described later, can be arranged.
  • the inner flange 35 of the inner hub 30 is provided substantially parallel to the flange 23 of the outer plate 20 .
  • a predetermined space is also provided between the inner flange 35 of the inner hub 30 and the flange 23 of the outer plate 20 so that the urging portion of the elastic member 40, which will be described later, can be arranged.
  • first inner flange 351 A portion of the inner flange 35 of the inner hub 30 that faces the first flange 231 of the outer plate 20 is sometimes called a second inner flange 352 .
  • the elastic member 40 is shaped to correspond to the space between the outer plate 20 and the inner hub 30 and the space between the outer plate 20 and the armature 10. It is a highly durable rubber member.
  • the elastic member 40 is fitted between the outer plate 20 and the inner hub 30 and between the outer plate 20 and the armature 10 in a compressed state.
  • the elastic member 40 has an urging portion 41 , a buffer portion 42 and a damping portion 43 .
  • the biasing portion 41 is a portion arranged between the flange 23 of the outer plate 20 and the inner flange 35 of the inner hub 30 .
  • the buffer portion 42 is a portion arranged between the upright wall 22 of the outer plate 20 and the inner upright wall 34 of the inner hub 30 .
  • the damping portion 43 is a portion arranged between the facing wall 21 of the outer plate 20 and the armature 10 .
  • a portion of the biasing portion 41 of the elastic member 40 that is arranged between the first flange 231 and the first inner flange 351 may be referred to as a first biasing portion 411 .
  • a portion of the biasing portion 41 of the elastic member 40 that is arranged between the second flange 232 and the second inner flange 352 is sometimes called a second biasing portion 412 .
  • the first biasing portion 411 or the second biasing portion 412 biases the flange 23 against the inner flange 35 to the side opposite to the rotor 50 . Therefore, as shown in FIG. 4 , when the electromagnetic coil 58 of the rotor 50 is not energized, the armature 10 is separated from the end surface 59 of the rotor 50 . At this time, the position of the armature 10 in the rotation axis direction is determined by the contact between the plate portion 32 of the inner hub 30 and the armature 10 . On the other hand, when the electromagnetic coil 58 is energized, magnetic flux flows through the magnetic circuit formed by the stator 57 , rotor 50 and armature 10 .
  • the armature 10 Due to the magnetic attraction force generated between the rotor 50 and the armature 10 , the armature 10 is drawn toward the rotor 50 against the biasing force of the biasing portion 41 of the elastic member 40 and comes into contact with the end face 59 of the rotor 50 .
  • the cushioning portion 42 of the elastic member 40 is compressed between the surface of the vertical wall 22 of the outer plate 20 facing the rotational direction and the surface of the inner vertical wall 34 of the inner hub 30 facing the rotational direction. is embedded in the The buffer portion 42 absorbs torque fluctuations between the inner hub 30 and the outer plate 20 when torque is transmitted from the rotor 50 to the compressor 70 , and transmits torque from the outer plate 20 to the inner hub 30 in a cushioning manner.
  • the height of the vertical wall 22 of the outer plate 20 i.e., the distance in the direction of the rotational axis of the vertical wall 22
  • the height of the buffer portion 42 of the elastic member 40 i.e., the distance in the buffer portion 42
  • the damping portion 43 of the elastic member 40 is fitted in a compressed state between the opposing wall 21 of the outer plate 20 and the armature 10 .
  • the damping portion 43 is arranged across the inner ring portion 12 and the outer ring portion 11 of the armature 10 . That is, the damping portion 43 is pressed against the inner ring portion 12 and the outer ring portion 11 of the armature 10 by the facing wall 21 of the outer plate 20 . Therefore, when the electromagnetic coil 58 is energized, the damping portion 43 can suppress the vibration of the inner ring portion 12 and the outer ring portion 11 of the armature 10 and reduce the operation noise.
  • the operating noise includes contact noise generated when the armature 10 contacts the rotor 50 when the electromagnetic coil 58 is energized, and resonance caused by vibration generated by slippage between the armature 10 and the rotor 50. Sound included.
  • the damping portion 43 of the elastic member 40 has a thick portion 44 and a thin portion 45 .
  • the thick portion 44 is a portion provided between the outer plate concave portion 25 and the armature 10 .
  • the thick portion 44 is in contact with the armature 10 side surface of the outer plate recessed portion 25 and the outer plate recessed portion 25 side surface of the armature 10 , and is compressed between the outer plate recessed portion 25 and the armature 10 . provided in the state.
  • the thin portion 45 is provided in a compressed state between the armature 10 and the portion 21 a of the opposing wall 21 that is connected to the standing wall 22 and its vicinity.
  • the thin portion 45 is also provided in a compressed state between the portion of the opposing wall 21 surrounding the rivet 15 and the armature 10 .
  • the rivets 15 that fix the outer plate 20 and the armature 10 are provided at positions close to the outer periphery of the outer plate 20 . Therefore, when the vibration damping portion 43 of the elastic member 40 is fitted between the opposing wall 21 of the outer plate 20 and the armature 10 in a compressed state, the elastic force of the vibration damping portion 43 causes the rivet portion of the opposing wall 21 to move. There is concern that the radially inner portion far from 15 may be deformed. In contrast, in the present embodiment, the outer plate recessed portion 25 enhances the rigidity of the facing wall 21, so deformation of the facing wall 21 is prevented.
  • the damping portion 43 of the elastic member 40 can be reliably pressed against the inner ring portion 12 and the outer ring portion 11 of the armature 10 by the opposing wall 21 . Therefore, the electromagnetic clutch 1 of the present embodiment can reliably suppress vibrations of the inner ring portion 12 and the outer ring portion 11 of the armature 10 and reduce operating noise.
  • the armature 10 Due to the magnetic attraction force, the armature 10 is drawn toward the rotor 50 against the biasing force of the biasing portion 41 of the elastic member 40 and comes into contact with the end surface 59 of the rotor 50 .
  • the armature 10 is joined to the end surface 59 of the rotor 50 by frictional force.
  • the torque transmitted from the engine 80 to the rotor 50 is transmitted in the order of rotor 50 ⁇ armature 10 ⁇ outer plate 20 ⁇ elastic member 40 ⁇ inner hub 30 ⁇ shaft 76, and compressor 70 is driven.
  • an electromagnetic clutch 100 of a comparative example will be described for comparison with the electromagnetic clutch 1 of the first embodiment described above.
  • FIG. 17 is a cross-sectional view showing part of the electromagnetic clutch 100 and part of the rotor 50 of the comparative example.
  • the opposing wall 21 of the outer plate 20 included in the electromagnetic clutch 100 of the comparative example is not provided with the outer plate concave portion 25 . Therefore, the opposing wall 21 of the outer plate 20 is planar, and the distance D5 between the opposing wall 21 and the armature 10 is short.
  • the amount of magnetic flux flowing through "inner ring portion 12 of armature 10--opposing wall 21 of outer plate 20--outer ring portion 11 of armature 10" increases.
  • a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--outer ring portion 11 of armature 10--rotor outer diameter portion 501--stator 57" is formed.
  • the amount of magnetic flux that flows is reduced.
  • the electromagnetic clutch 100 of the comparative example the magnetic attraction force between the rotor 50 and the armature 10 is weakened, and there is a risk that the torque transmission performance from the rotor 50 to the driven member will be deteriorated.
  • the damping portion 43 of the elastic member 40 is made thick overall, and the opposing wall 21 and the armature 10 are separated. It is conceivable to increase the distance D5 of .
  • the height of the vertical wall 22 of the outer plate 20 that is, the distance in the direction of the rotation axis of the vertical wall 22
  • the height of the cushioning portion 42 of the elastic member 40 that is, the distance in the rotation axis direction of the cushioning portion 42
  • the durability against torque fluctuation is lowered.
  • the facing wall 21 of the outer plate 20 is not provided with the outer plate concave portion 25, so the rigidity of the facing wall 21 is lower than that of the first embodiment. Therefore, there is concern that the radially inner portion of the opposing wall 21 far from the rivet 15 may be deformed by the elastic force of the damping portion 43 of the elastic member 40 .
  • the force with which the opposing wall 21 presses the damping portion 43 of the elastic member 40 against the inner ring portion 12 and the outer ring portion 11 of the armature 10 is weakened. Therefore, the vibration damping function of the inner ring portion 12 and the outer ring portion 11 of the armature 10 by the damping portion 43 of the elastic member 40 is deteriorated, and there is a possibility that the operation noise cannot be sufficiently reduced.
  • the electromagnetic clutch 1 of the first embodiment has the following effects. (1) In the electromagnetic clutch 1 of the first embodiment, a distance D2 It has an outer plate concave portion 25 as a concave shape portion that distances the .
  • the electromagnetic clutch 1 can improve the magnetic performance and improve the torque transmissibility from the rotor 50 to the compressor 70 .
  • the damping portion 43 of the elastic member 40 is provided between the facing wall 21 of the outer plate 20 and the armature 10 . Since the rigidity of the opposing wall 21 of the outer plate 20 is increased by the outer plate concave portion 25, the opposing wall 21 reliably presses the damping portion 43 of the elastic member 40 against the inner ring portion 12 and the outer ring portion 11 of the armature 10. is possible. Therefore, the electromagnetic clutch 1 of the first embodiment can reduce operating noise by reliably suppressing vibrations of the inner ring portion 12 and the outer ring portion 11 of the armature 10 with the damping portion 43 of the elastic member 40 .
  • the damping portion 43 of the elastic member 40 as described in the description of the electromagnetic clutch 100 of the comparative example is made thicker overall, and the opposing wall 21 and the armature 10 are It is not configured to increase the distance D5 of . That is, the electromagnetic clutch 1 of the first embodiment is provided with the outer plate concave portion 25, so that the distance D1 between the armature 10 and the portion 21a where the opposing wall 21 and the standing wall 22 of the outer plate 20 are connected can be shortened. is possible.
  • the height of the buffer portion 42 of the elastic member 40 and the vertical wall 22 (that is, the distance in the direction of the rotation axis) can be reduced without increasing the size of the electromagnetic clutch 1 in the direction of the rotation axis. It is possible to make it larger. Therefore, the electromagnetic clutch 1 of the first embodiment can improve durability against torque fluctuations.
  • the outer plate 20 is positioned across the inner ring portion 12 and the outer ring portion 11 of the armature 10 at a portion of the opposing wall 21 of the outer plate 20 that faces the long hole 13 of the armature 10 .
  • a recess 25 is provided. According to this, the magnetic resistance between the outer plate concave portion 25 and the inner ring portion 12 of the armature 10 can be increased, and the magnetic resistance between the outer plate concave portion 25 and the outer ring portion 11 of the armature 10 can be increased. It becomes possible. Therefore, the magnetic flux leakage between the armature 10 and the outer plate 20 can be reduced, and the magnetic attraction force between the rotor 50 and the armature 10 can be increased.
  • the outer plate concave portion 25 provided in the electromagnetic clutch 1 of the first embodiment is formed by connecting the vertical wall 22 and the opposing wall 21 of the outer plate 20 and the rivets 15 that fix the outer plate 20 and the armature 10 together. located in the middle part. According to this, it is possible to increase the rigidity of the portion of the facing wall 21 of the outer plate 20 between the portion where the standing wall 22 and the facing wall 21 are connected and the rivet 15 by the outer plate concave portion 25 . Therefore, the damping portion 43 of the elastic member 40 is reliably pressed against the inner ring portion 12 and the outer ring portion 11 of the armature 10 by the opposing wall 21 of the outer plate 20, thereby suppressing the vibration of the inner ring portion 12 and the outer ring portion 11. Sound can be reduced.
  • the damping portion 43 of the elastic member 40 provided in the electromagnetic clutch 1 of the first embodiment has a thick portion 44 arranged between the outer plate concave portion 25 and the armature 10 .
  • the thick portion 44 is in contact with the armature 10 side surface of the outer plate recessed portion 25 and the outer plate recessed portion 25 side surface of the armature 10 , and is compressed between the outer plate recessed portion 25 and the armature 10 . It is installed in the According to this, by providing the thick portion 44 in the damping portion 43 of the elastic member 40, the function of damping the vibrations of the inner ring portion 12 and the outer ring portion 11 of the armature 10 is enhanced, and the operation noise is reliably reduced. can be done.
  • 2nd Embodiment changes the position of the rivet 15, and the shape of the outer plate recessed part 25 with respect to 1st Embodiment, Since it is the same as that of 1st Embodiment about others, Only different parts will be explained.
  • the rivet 15 for fixing the armature 10 and the outer plate 20 is positioned between the surface 22a of the upright wall 22 of the outer plate 20 facing the rotation direction and the outer plate concave portion 25. provided in the part.
  • the rivet 15 is molded integrally with the armature 10, is inserted into an insertion hole 24 provided in the opposing wall 21 of the outer plate 20, and has its tip end crimped.
  • the outer plate recessed portion 25 is provided between the vertical walls 22, and is shaped like a fan when viewed from the rotation axis direction. Further, the outer plate recessed portion 25 is provided at a position other than the rivet 15 .
  • the outer plate recessed portion 25 of the second embodiment has a larger area when viewed from the rotation axis direction than the outer plate recessed portion 25 described in the first embodiment. Therefore, in the second embodiment, the magnetic resistance between the outer plate concave portion 25 and the armature 10 is greater than in the first embodiment.
  • the rivet 15 is provided at a position close to the surface 22a of the standing wall 22 of the outer plate 20 facing the rotational direction, thereby ensuring a large area for the outer plate concave portion 25. It is possible. Therefore, when the electromagnetic coil 58 is energized, the magnetic flux leakage between the armature 10 and the outer plate 20 is further reduced, and the amount of magnetic flux flowing through "the inner ring portion 12 of the armature 10 - the rotor center portion 502 - the outer ring portion 11 of the armature 10" is reduced. It is possible to increase more. Therefore, the electromagnetic clutch 1 of the second embodiment can improve the magnetic performance as compared with the first embodiment, and can increase the magnetic attraction force between the rotor 50 and the armature 10 .
  • a third embodiment will be described.
  • part of the configuration of the armature 10 and part of the configuration of the outer plate 20 are changed with respect to the first embodiment and the like, and the rest is the same as the first embodiment and the like. Therefore, only parts different from the first embodiment and the like will be described.
  • an armature concave portion 16 is provided as a concave portion on the surface of the armature 10 on the outer plate 20 side.
  • the outer plate concave portion 25 is not provided in the facing wall 21 of the outer plate 20 .
  • the armature recess 16 is provided in a portion of the armature 10 that includes the elongated hole 13 and is recessed so that the distance D3 from the facing wall 21 of the outer plate 20 increases. Specifically, the distance D3 between the opposing wall 21 of the outer plate 20 and the armature recess 16 is greater than the distance D1 between the portion of the armature 10 where the armature recess 16 is not provided and the opposing wall 21 of the outer plate 20. It's becoming As a result, the distance D3 between the armature concave portion 16 and the opposing wall 21 is increased, thereby increasing the magnetic resistance therebetween. Therefore, as indicated by the broken line M4 in FIG. Magnetic flux leakage between the outer plate 20 is reduced.
  • a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--armature 10 outer ring portion 11--rotor outer diameter portion 501--stator 57" is formed.
  • the amount of magnetic flux flowing increases. Therefore, the magnetic attraction force between the rotor 50 and the armature 10 increases.
  • the electromagnetic clutch 1 of the third embodiment can also improve the magnetic performance as in the first embodiment and the like, and the torque transmission from the rotor 50 to the compressor 70 can be enhanced.
  • the elastic member 40 provided in the electromagnetic clutch 1 of the third embodiment also has a thick portion 46 in the damping portion 43 .
  • the thick portion 46 is in contact with the surface of the armature recess 16 on the side of the opposing wall 21 and the surface of the opposing wall 21 on the side of the armature recess 16 , and is compressed between the armature recess 16 and the opposing wall 21 . provided in the state. Therefore, the vibration of the inner ring portion 12 and the outer ring portion 11 of the armature 10 can be suppressed by the thick portion 46 of the damping portion 43 of the elastic member 40 . Therefore, the electromagnetic clutch 1 of the third embodiment can also reliably reduce operating noise, like the first embodiment.
  • magnetic resistance holes 27 are provided in the opposing wall 21 of the outer plate 20.
  • the outer plate recessed portion 25 and the armature recessed portion 16 as recessed portions are not provided in the outer plate 20 and the armature 10 .
  • the magnetic resistance hole 27 is provided at a position facing the elongated hole 13 of the armature 10 . Further, as shown in FIG. 14, the magnetic resistance hole 27 is formed in the facing wall 21 of the outer plate 20 in an arc shape centered on the rotation axis Ax. The magnetic resistance hole 27 divides the opposing wall 21 into a radially inner portion 21c and a radially outer portion 21d. The magnetic resistance hole 27 has a function of increasing magnetic resistance between a radially inner portion 21c of the facing wall 21 and a radially outer portion 21d of the facing wall 21 . Therefore, as indicated by the dashed line M5 in FIG.
  • the electromagnetic clutch 1 of the fourth embodiment can also improve the magnetic performance as in the first embodiment and the like, and can improve the torque transmissibility from the rotor 50 to the compressor 70 .
  • 5th Embodiment is the structure which combined 1st Embodiment and 4th Embodiment.
  • an outer plate recessed portion 25 is provided in the facing wall 21 of the outer plate 20 .
  • a magnetic resistance hole 27 is provided in the outer plate concave portion 25 .
  • the magnetic resistance hole 27 is provided at a position facing the elongated hole 13 of the armature 10.
  • the magnetic resistance hole 27 is formed in an arcuate shape around the rotation axis Ax at a position including the outer plate concave portion 25 in the facing wall 21 of the outer plate 20 .
  • the facing wall 21 of the outer plate 20 is provided with the outer plate recessed portion 25 and the magnetic resistance hole 27 . Therefore, as indicated by the dashed line M6 in FIG. 15, the amount of magnetic flux flowing through "the inner ring portion 12 of the armature 10--the opposing wall 21 of the outer plate 20--the outer ring portion 11 of the armature 10" can be made extremely small. That is, magnetic flux leakage between the armature 10 and the outer plate 20 can be further reduced.
  • a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--armature 10 outer ring portion 11--rotor outer diameter portion 501--stator 57" is formed.
  • the amount of magnetic flux that flows can be further increased. Therefore, the magnetic attraction force between the rotor 50 and the armature 10 can be increased.
  • the electromagnetic clutch 1 of the fifth embodiment can further improve the magnetic performance and improve torque transmissibility from the rotor 50 to the compressor 70 .
  • the outer plate 20 of the electromagnetic clutch 1 is provided with the + sign-shaped opening 26.
  • the shape of the opening 26 provided in the outer plate 20 is not limited to this. Any shape such as a shape, * shape, or the like can be used. In that case, the shape of the inner hub 30 and the elastic member 40 can also be made into various shapes according to the shape of the opening 26 .
  • the electromagnetic clutch 1 has the outer plate concave portion 25 as the concave portion. Although it was set as the structure provided with, it is not restricted to it.
  • the electromagnetic clutch 1 may be configured to include both the outer plate recess 25 and the armature recess 16 as recessed portions, and may further be configured to include the magnetic resistance hole 27 .
  • the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc.

Abstract

An armature (10) has an outer ring portion (11), an inner ring portion (12), and a long hole (13) having an arc shape. An outer plate (20) has: an opposing wall (21) fixed to the armature (10) and facing the armature (10); and an upright wall (22) extending from the opposing wall (21) in the rotation axis direction. An inner hub (30) is provided between the armature (10) and the outer plate (20), and transmits a torque to a driven body (70). An elastic member (40) has: a buffer portion (42) provided between the upright wall (22) and an inner-side upright wall (34); and a vibration damping portion (43) provided between the opposing wall (21) and the armature (10). At least one of the opposing wall (21) and the armature (10) is provided with a recess-shaped portion (16, 25) that makes a distance (D2) between the armature (10) and the opposing wall (21) longer than a distance (D1) between the armature (10) and a part (21a) where the opposing wall (21) and the upright wall (22) are connected to each other.

Description

電磁クラッチelectromagnetic clutch 関連出願への相互参照Cross-references to related applications
 本出願は、2021年1月20日に出願された日本特許出願番号2021-7298号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2021-7298 filed on January 20, 2021, the contents of which are incorporated herein by reference.
 本開示は、電磁クラッチに関するものである。 This disclosure relates to an electromagnetic clutch.
 従来、駆動体から従動体にトルクを伝達する状態と遮断する状態とを切り替える電磁クラッチが知られている。
 特許文献1に記載の電磁クラッチは、エンジンの動力により回転する駆動体としてのロータから、従動体としてのエアコン用コンプレッサにトルクを伝達するハブである。この電磁クラッチは、ロータに対向して設けられるアーマチャと、そのアーマチャに固定されるアウタープレートと、アーマチャとアウタープレートとの間に設けられるインナーハブおよび弾性部材を備えている。
Conventionally, an electromagnetic clutch is known that switches between a state of transmitting torque from a driver to a driven body and a state of not transmitting torque.
The electromagnetic clutch described in Patent Literature 1 is a hub that transmits torque from a rotor, which is a driving body that rotates under the power of an engine, to an air-conditioning compressor, which is a driven body. This electromagnetic clutch includes an armature provided facing a rotor, an outer plate fixed to the armature, an inner hub and an elastic member provided between the armature and the outer plate.
 この電磁クラッチの備えるアーマチャは円環状に成形され、外周側に設けられる外輪部と、その外輪部に対して回転軸側に設けられる内輪部と、外輪部と内輪部との間で周方向に円弧状に延びる長穴を有している。一方、ロータも円環状に成形され、ロータ内径部と、ロータ中央部と、ロータ外径部を有している。この構成により、ロータの内側に設けられた電磁コイルへの通電時に、「ロータ内径部-アーマチャ内輪部-ロータ中央部-アーマチャ外輪部-ロータ外径部」というようにロータとアーマチャとの間を複数回往復するように磁束が流れる。これにより、この電磁クラッチは、ロータとアーマチャとの磁気吸引力を増加している。 The armature provided in this electromagnetic clutch is formed in an annular shape, and includes an outer ring portion provided on the outer peripheral side, an inner ring portion provided on the rotating shaft side with respect to the outer ring portion, and an armature extending in the circumferential direction between the outer ring portion and the inner ring portion. It has an elongated hole extending in an arc shape. On the other hand, the rotor is also formed in an annular shape and has a rotor inner diameter portion, a rotor central portion, and a rotor outer diameter portion. With this configuration, when the electromagnetic coil provided inside the rotor is energized, the rotor and armature are connected in the order of "rotor inner diameter - armature inner ring - rotor center - armature outer ring - rotor outer diameter". Magnetic flux flows so as to reciprocate multiple times. This electromagnetic clutch thereby increases the magnetic attraction force between the rotor and the armature.
 また、この電磁クラッチは、アーマチャとアウタープレートとの間に弾性部材を挟み込む構成としている。そして、アーマチャの有する内輪部と外輪部とに跨がるように弾性部材を配置し、アウタープレートにより弾性部材をアーマチャに押し付けている。これにより、この電磁クラッチは、電磁コイルの通電時に、弾性部材によりアーマチャの内輪部および外輪部の振動を抑え、作動音を低減している。なお、作動音には、電磁コイルの通電時においてアーマチャがロータに接触する際に発生する接触音、および、アーマチャとロータとの滑りにより発生する振動を加振源とする共振音が含まれる。
 さらに、この電磁クラッチは、アウタープレートのうち回転方向を向く面と、インナーハブのうち回転方向を向く面との間にも弾性部材を挟み込む構成としている。これにより、この電磁クラッチは、トルク変動に対する耐久性を高めている。
Also, this electromagnetic clutch has a structure in which an elastic member is sandwiched between the armature and the outer plate. An elastic member is arranged so as to straddle the inner ring portion and the outer ring portion of the armature, and the elastic member is pressed against the armature by the outer plate. As a result, when the electromagnetic coil is energized, the electromagnetic clutch suppresses vibrations of the inner ring portion and the outer ring portion of the armature by means of the elastic member, thereby reducing operating noise. The operating noise includes contact noise generated when the armature contacts the rotor when the electromagnetic coil is energized, and resonance noise generated by vibration generated by slippage between the armature and the rotor.
Furthermore, this electromagnetic clutch is configured such that an elastic member is sandwiched between a surface of the outer plate facing the rotational direction and a surface of the inner hub facing the rotational direction. As a result, this electromagnetic clutch has increased durability against torque fluctuations.
特開2019-27490号公報JP 2019-27490 A
 しかしながら、特許文献1に記載の電磁クラッチは、作動音を低減するためアウタープレートと弾性部材とがアーマチャの有する内輪部と外輪部とに跨がって配置されているので、アーマチャとアウタープレートとの間で磁束漏れが生じることが懸念される。具体的には、電磁コイルへの通電時に、「アーマチャ内輪部-アウタープレート-アーマチャ外輪部」に流れる磁束量が増加し、「アーマチャ内輪部-ロータ中央部-アーマチャ外輪部」を流れる磁束量が減少する。これにより、ロータとアーマチャとの磁気吸引力が弱くなると、ロータから従動体へのトルク伝達性が悪化するおそれがある。 However, in the electromagnetic clutch disclosed in Patent Document 1, the outer plate and the elastic member are arranged across the inner ring portion and the outer ring portion of the armature in order to reduce operating noise. There is concern that magnetic flux leakage may occur between Specifically, when the electromagnetic coil is energized, the amount of magnetic flux flowing through “armature inner ring – outer plate – armature outer ring” increases, and the magnetic flux flowing through “armature inner ring – rotor center – armature outer ring” increases. Decrease. As a result, if the magnetic attraction force between the rotor and the armature is weakened, there is a risk that torque transmission from the rotor to the driven body will be deteriorated.
 なお、アーマチャとアウタープレートとの間の磁束漏れを防ぐため、アウタープレートとアーマチャとの間に配置される弾性部材の厚み(すなわち、弾性部材における電磁クラッチの回転軸方向の距離)を全体的に厚くすることが考えられる。しかし、そうすると、アウタープレートのうち回転方向を向く面の高さ(すなわち、アウタープレートのうち回転方向を向く面における電磁クラッチの回転軸方向の距離)が低くなる。そのため、アウタープレートのうち回転方向を向く面と、インナーハブのうち回転方向を向く面との間に配置される弾性部材も小さくなり、トルク変動に対する耐久性が低下するといった背反がある。 In order to prevent magnetic flux leakage between the armature and the outer plate, the thickness of the elastic member arranged between the outer plate and the armature (that is, the distance in the direction of the rotational axis of the electromagnetic clutch in the elastic member) is generally adjusted to It can be considered to be thicker. However, in this case, the height of the surface of the outer plate facing the rotational direction (that is, the distance in the rotational axis direction of the electromagnetic clutch between the surface of the outer plate facing the rotational direction) is reduced. Therefore, the elastic member disposed between the surface of the outer plate that faces the rotational direction and the surface of the inner hub that faces the rotational direction also becomes smaller, resulting in reduced durability against torque fluctuations.
 本開示は、作動音を低減し、耐久性を高め、さらに磁気性能の向上によりトルク伝達性を高めることの可能な電磁クラッチを提供することを目的とする。 An object of the present disclosure is to provide an electromagnetic clutch capable of reducing operating noise, improving durability, and further improving torque transmissibility by improving magnetic performance.
 本開示の1つの観点によれば、電磁コイルを有し所定の回転軸を中心に回転するロータから従動体にトルクを伝達する状態と遮断する状態とを切り替える電磁クラッチは、アーマチャ、アウタープレート、インナーハブおよび弾性部材を備える。アーマチャは、ロータの回転軸方向の一方側でロータに対向して設けられ、外周側に設けられる外輪部、その外輪部に対して回転軸側に設けられる内輪部、および、外輪部と内輪部との間で周方向に円弧状に延びる長穴を有し、電磁コイルの発生する磁気吸引力によりロータに当接可能である。アウタープレートは、アーマチャに固定され、アーマチャのうちロータとは反対側の面に向き合う対向壁、その対向壁からロータの回転軸方向に延びる立壁、および、その立壁のうち対向壁とは反対側の部位からロータの回転軸に垂直に延びるフランジを有し、アーマチャと共に回転する。インナーハブは、アーマチャとアウタープレートとの間に設けられ、立壁に向き合う内側立壁、および、フランジに向き合う内側フランジを有し、従動体にトルクを伝える。弾性部材は、フランジと内側フランジとの間に設けられる付勢部、立壁のうち回転方向に向く面と内側立壁のうち回転方向に向く面との間に設けられる緩衝部、および、対向壁とアーマチャとの間に設けられる制振部を有する。
 そして、対向壁およびアーマチャの少なくとも一方には、対向壁と立壁とが接続する部位とアーマチャとの距離に比べて、アーマチャと対向壁との距離を遠くする凹み形状部が設けられている。
According to one aspect of the present disclosure, an electromagnetic clutch that switches between a state in which torque is transmitted from a rotor that has an electromagnetic coil and rotates about a predetermined rotation axis to a driven body and a state in which torque is blocked includes an armature, an outer plate, It has an inner hub and an elastic member. The armature is provided to face the rotor on one side in the direction of the rotation axis of the rotor, and includes an outer ring portion provided on the outer peripheral side, an inner ring portion provided on the side of the rotation shaft with respect to the outer ring portion, and an outer ring portion and an inner ring portion. It has an elongated hole that extends in an arc shape in the circumferential direction between and can contact the rotor by the magnetic attraction force generated by the electromagnetic coil. The outer plate is fixed to the armature, has a facing wall facing a surface of the armature opposite to the rotor, an upright wall extending from the facing wall in the rotation axis direction of the rotor, and one of the upright walls on the side opposite to the facing wall. It has a flange extending from the portion perpendicular to the axis of rotation of the rotor and rotates with the armature. The inner hub is provided between the armature and the outer plate, has an inner standing wall facing the standing wall and an inner flange facing the flange, and transmits torque to the driven body. The elastic member includes an urging portion provided between the flange and the inner flange, a buffer portion provided between a surface of the vertical wall facing the rotational direction and a surface of the internal vertical wall facing the rotational direction, and an opposing wall. It has a damping part provided between it and the armature.
At least one of the opposing wall and the armature is provided with a concave portion that makes the distance between the armature and the opposing wall greater than the distance between the armature and the portion where the opposing wall and the standing wall are connected.
 これによれば、アウタープレートの有する対向壁により弾性部材の制振部をアーマチャの内輪部および外輪部に押し付けることで、電磁コイルの通電時におけるアーマチャの内輪部および外輪部の振動を抑え、作動音を低減することができる。
 また、アウタープレートの有する対向壁と立壁とが接続する部位とアーマチャとの距離を近くすることで、電磁クラッチの回転軸方向の体格を大型化することなく、立壁および緩衝部の高さ(すなわち回転軸方向の距離)を大きくすることが可能となるので、トルク変動に対する耐久性を高めることができる。
 さらに、対向壁およびアーマチャの少なくとも一方に設けた凹み形状部によりアーマチャと対向壁との距離を遠くすることで、電磁コイルの通電時に「アーマチャ内輪部-対向壁-アーマチャ外輪部」による磁路の磁気抵抗を大きくすることが可能となる。そのため、電磁コイルの通電時にアーマチャとアウタープレートとの間の磁束漏れが低減し、「アーマチャ内輪部-ロータ中央部-アーマチャ外輪部」を流れる磁束量が増加する。したがって、ロータとアーマチャとの磁気吸引力が大きくなる。その結果、この電磁クラッチは、磁気性能が向上し、ロータから従動体へのトルク伝達性を高めることができる。
According to this, by pressing the damping portion of the elastic member against the inner ring portion and the outer ring portion of the armature by the opposing wall of the outer plate, the vibration of the inner ring portion and the outer ring portion of the armature is suppressed when the electromagnetic coil is energized. Sound can be reduced.
In addition, by shortening the distance between the portion of the outer plate where the opposing wall and the vertical wall are connected to the armature, the height of the vertical wall and the buffer portion (i.e., Since it is possible to increase the distance in the rotation axis direction, it is possible to increase durability against torque fluctuations.
Further, by increasing the distance between the armature and the opposing wall by means of the recessed portion provided in at least one of the opposing wall and the armature, the magnetic path formed by the "armature inner ring portion-opposing wall-armature outer ring portion" is formed when the electromagnetic coil is energized. It becomes possible to increase the magnetic resistance. Therefore, when the electromagnetic coil is energized, magnetic flux leakage between the armature and the outer plate is reduced, and the amount of magnetic flux flowing through "armature inner ring portion-rotor center portion-armature outer ring portion" is increased. Therefore, the magnetic attractive force between the rotor and the armature is increased. As a result, this electromagnetic clutch has improved magnetic performance, and can enhance torque transmission from the rotor to the driven body.
 また別の観点によれば、電磁コイルを有し所定の回転軸を中心に回転するロータから従動体にトルクを伝達する状態と遮断する状態とを切り替える電磁クラッチにおいて、アーマチャ、アウタープレート、インナーハブおよび弾性部材を備える。アーマチャは、ロータの回転軸方向の一方側でロータに対向して設けられ、外周側に設けられる外輪部、その外輪部に対して回転軸側に設けられる内輪部、および、外輪部と内輪部との間で周方向に円弧状に延びる長穴を有し、電磁コイルの発生する磁気吸引力によりロータに当接可能である。アウタープレートは、アーマチャに固定され、アーマチャのうちロータとは反対側の面に向き合う対向壁、その対向壁からロータの回転軸方向に延びる立壁、および、その立壁のうち対向壁とは反対側の部位からロータの回転軸に垂直に延びるフランジを有し、アーマチャと共に回転する。インナーハブは、アーマチャとアウタープレートとの間に設けられ、立壁に向き合う内側立壁、および、フランジに向き合う内側フランジを有し、従動体にトルクを伝える。弾性部材は、フランジと内側フランジとの間に設けられる付勢部、立壁のうち回転方向に向く面と内側立壁のうち回転方向に向く面との間に設けられる緩衝部、および、対向壁とアーマチャとの間に設けられる制振部を有する。
 そして、対向壁には、対向壁を径方向内側の部位と径方向外側の部位とに分断し、その対向壁のうち径方向内側の部位と対向壁のうち径方向外側の部位との磁気抵抗を大きくする磁気抵抗穴がアーマチャの長穴と向き合う位置に設けられている。
According to another aspect, an electromagnetic clutch that switches between a state in which torque is transmitted from a rotor that has an electromagnetic coil and rotates about a predetermined rotation axis to a driven member and a state in which torque is not transmitted, includes an armature, an outer plate, and an inner hub. and an elastic member. The armature is provided to face the rotor on one side in the direction of the rotation axis of the rotor, and includes an outer ring portion provided on the outer peripheral side, an inner ring portion provided on the side of the rotation shaft with respect to the outer ring portion, and an outer ring portion and an inner ring portion. It has an elongated hole that extends in an arc shape in the circumferential direction between and can contact the rotor by the magnetic attraction force generated by the electromagnetic coil. The outer plate is fixed to the armature, has a facing wall facing a surface of the armature opposite to the rotor, an upright wall extending from the facing wall in the rotation axis direction of the rotor, and one of the upright walls on the side opposite to the facing wall. It has a flange extending from the portion perpendicular to the axis of rotation of the rotor and rotates with the armature. The inner hub is provided between the armature and the outer plate, has an inner standing wall facing the standing wall and an inner flange facing the flange, and transmits torque to the driven body. The elastic member includes an urging portion provided between the flange and the inner flange, a buffer portion provided between a surface of the vertical wall facing the rotational direction and a surface of the internal vertical wall facing the rotational direction, and an opposing wall. It has a damping part provided between it and the armature.
The opposing wall is divided into a radially inner portion and a radially outer portion, and the magnetic resistance between the radially inner portion of the opposing wall and the radially outer portion of the opposing wall is determined. A reluctance hole for increasing the .DELTA.
 これによれば、アウタープレートの有する対向壁により弾性部材の制振部をアーマチャの内輪部および外輪部に押し付けることで、電磁コイルの通電時におけるアーマチャの内輪部および外輪部の振動を抑え、作動音を低減することができる。
 また、アウタープレートの有する対向壁と立壁とが接続する部位とアーマチャとの距離を近くすることで、電磁クラッチの回転軸方向の体格を大型化することなく、立壁および緩衝部の高さ(すなわち回転軸方向の距離)を大きくすることが可能となるので、トルク変動に対する耐久性を高めることができる。
 さらに、アウタープレートの有する対向壁に磁気抵抗穴を設けることで、電磁コイルの通電時に「アーマチャ内輪部-対向壁-アーマチャ外輪部」による磁路の磁気抵抗を大きくすることが可能となる。そのため、電磁コイルの通電時にアーマチャとアウタープレートとの間の磁束漏れが低減し、「アーマチャ内輪部-ロータ中央部-アーマチャ外輪部」を流れる磁束量が増加する。したがって、ロータとアーマチャとの磁気吸引力が大きくなる。その結果、この電磁クラッチは、磁気性能が向上し、ロータから従動体へのトルク伝達性を高めることができる。
According to this, by pressing the damping portion of the elastic member against the inner ring portion and the outer ring portion of the armature by the opposing wall of the outer plate, the vibration of the inner ring portion and the outer ring portion of the armature is suppressed when the electromagnetic coil is energized. Sound can be reduced.
In addition, by shortening the distance between the portion of the outer plate where the opposing wall and the vertical wall are connected to the armature, the height of the vertical wall and the buffer portion (i.e., Since it is possible to increase the distance in the rotation axis direction, it is possible to increase durability against torque fluctuations.
Furthermore, by providing a magnetic resistance hole in the opposing wall of the outer plate, it is possible to increase the magnetic resistance of the magnetic path by "armature inner ring portion-opposing wall-armature outer ring portion" when the electromagnetic coil is energized. Therefore, when the electromagnetic coil is energized, magnetic flux leakage between the armature and the outer plate is reduced, and the amount of magnetic flux flowing through "armature inner ring portion-rotor center portion-armature outer ring portion" is increased. Therefore, the magnetic attractive force between the rotor and the armature is increased. As a result, this electromagnetic clutch has improved magnetic performance, and can enhance torque transmission from the rotor to the driven body.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 It should be noted that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence relationship between the component etc. and the specific component etc. described in the embodiment described later.
第1実施形態に係る電磁クラッチが適用される冷凍サイクルの全体構成図である。1 is an overall configuration diagram of a refrigeration cycle to which an electromagnetic clutch according to a first embodiment is applied; FIG. 第1実施形態に係る電磁クラッチとロータ、ステータの分解斜視図である。1 is an exploded perspective view of an electromagnetic clutch, a rotor, and a stator according to the first embodiment; FIG. 第1実施形態に係る電磁クラッチの平面図である。1 is a plan view of an electromagnetic clutch according to a first embodiment; FIG. 図3のIV―IV線における電磁クラッチおよびロータ等の断面図である。FIG. 4 is a cross-sectional view of an electromagnetic clutch, a rotor, etc. taken along line IV-IV of FIG. 3; 第1実施形態に係る電磁クラッチが備えるアーマチャの平面図である。FIG. 3 is a plan view of an armature included in the electromagnetic clutch according to the first embodiment; 第1実施形態に係る電磁クラッチが備えるアウタープレートの平面図である。3 is a plan view of an outer plate included in the electromagnetic clutch according to the first embodiment; FIG. 第1実施形態に係る電磁クラッチが備えるアーマチャとアウタープレートのみを組み付けた状態の平面図である。FIG. 3 is a plan view showing a state in which only an armature and an outer plate included in the electromagnetic clutch according to the first embodiment are assembled; 図3のVIII―VIII線における電磁クラッチおよびロータ等の断面図であり、電磁コイルへの通電時における磁束の流れを説明するための説明図である。FIG. 4 is a cross-sectional view of the electromagnetic clutch, rotor, etc. taken along line VIII-VIII in FIG. 3, and is an explanatory diagram for explaining the flow of magnetic flux when the electromagnetic coil is energized; 第1実施形態に係る電磁クラッチが備えるインナーハブの平面図である。3 is a plan view of an inner hub included in the electromagnetic clutch according to the first embodiment; FIG. 第1実施形態に係る電磁クラッチが備える弾性部材の平面図である。4 is a plan view of an elastic member included in the electromagnetic clutch according to the first embodiment; FIG. 第2実施形態に係る電磁クラッチの一部を示す平面図である。It is a top view which shows some electromagnetic clutches which concern on 2nd Embodiment. 第3実施形態に係る電磁クラッチの一部を示す断面図である。FIG. 11 is a cross-sectional view showing part of an electromagnetic clutch according to a third embodiment; 第4実施形態に係る電磁クラッチの一部を示す断面図である。FIG. 11 is a cross-sectional view showing part of an electromagnetic clutch according to a fourth embodiment; 第4実施形態に係る電磁クラッチの一部を示す平面図である。FIG. 11 is a plan view showing part of an electromagnetic clutch according to a fourth embodiment; 第5実施形態に係る電磁クラッチの一部を示す断面図である。FIG. 11 is a cross-sectional view showing part of an electromagnetic clutch according to a fifth embodiment; 第5実施形態に係る電磁クラッチの一部を示す平面図である。FIG. 11 is a plan view showing part of an electromagnetic clutch according to a fifth embodiment; 比較例の電磁クラッチにおいて電磁コイルへの通電時における磁束の流れを説明するための説明図である。FIG. 5 is an explanatory diagram for explaining the flow of magnetic flux when an electromagnetic coil is energized in an electromagnetic clutch of a comparative example;
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in each of the following embodiments, the same or equivalent portions are denoted by the same reference numerals, and description thereof will be omitted.
 (第1実施形態)
 第1実施形態について説明する。図1に示すように、本実施形態の電磁クラッチ1は、駆動体としてのロータ50から、従動体としてのコンプレッサ70にトルクを断続的に伝達するためのトルク伝達装置である。電磁クラッチ1はハブとも呼ばれる。
(First embodiment)
A first embodiment will be described. As shown in FIG. 1, the electromagnetic clutch 1 of this embodiment is a torque transmission device for intermittently transmitting torque from a rotor 50 as a driving body to a compressor 70 as a driven body. The electromagnetic clutch 1 is also called a hub.
 まず、従動体としてのコンプレッサ70が用いられる冷凍サイクル71について説明する。冷凍サイクル71は、車室内または庫内等の空調を行う図示しない車両用空調装置に使用される。図1に示すように、冷凍サイクル71は、コンプレッサ70、コンデンサ72、エキスパンションバルブ73、およびエバポレータ74が冷媒配管75により環状に接続された閉回路として構成されている。コンプレッサ70は、エバポレータ74側の冷媒配管75から冷媒を吸入し圧縮して吐き出す。コンデンサ72は、コンプレッサ70から吐き出された冷媒と外気との熱交換により冷媒を凝縮させる熱交換器である。エキスパンションバルブ73は、コンデンサ72から流出した冷媒を減圧膨張させる。エバポレータ74は、エキスパンションバルブ73で減圧膨張された冷媒を、車室内または庫内等に送風する空気との熱交換により蒸発させる熱交換器である。 First, a refrigeration cycle 71 using a compressor 70 as a driven body will be described. The refrigerating cycle 71 is used in a vehicle air conditioner (not shown) that air-conditions the interior of the vehicle or the interior of the refrigerator. As shown in FIG. 1 , a refrigerating cycle 71 is configured as a closed circuit in which a compressor 70 , a condenser 72 , an expansion valve 73 , and an evaporator 74 are annularly connected by a refrigerant pipe 75 . The compressor 70 sucks refrigerant from a refrigerant pipe 75 on the evaporator 74 side, compresses it, and discharges it. The condenser 72 is a heat exchanger that condenses the refrigerant by exchanging heat between the refrigerant discharged from the compressor 70 and the outside air. The expansion valve 73 decompresses and expands the refrigerant flowing out of the condenser 72 . The evaporator 74 is a heat exchanger that evaporates the refrigerant decompressed and expanded by the expansion valve 73 by exchanging heat with the air that is blown into the vehicle interior or the refrigerator.
 コンプレッサ70として、例えば、スクロール式またはベーン式などの固定容量型コンプレッサ、または、斜板式などの可変容量型コンプレッサが採用される。コンプレッサ70の一端側には、駆動体としてのロータ50が設けられている。ロータ50は、コンプレッサ70のハウジング等に対して相対回転可能に設けられている。 As the compressor 70, for example, a fixed capacity compressor such as a scroll type or vane type, or a variable capacity type compressor such as a swash plate type is adopted. A rotor 50 as a driving body is provided on one end side of the compressor 70 . The rotor 50 is rotatable relative to the housing of the compressor 70 and the like.
 車両には、動力発生源としての車両走行用のエンジン80が設けられている。そのエンジン80の駆動軸81に設けられたプーリ82と、ロータ50とは、動力伝達用のベルト83により連結されている。エンジン80から出力されるトルクは、プーリ82からベルト83を経由してロータ50に伝達される。そのため、ロータ50は、エンジン80の駆動と共に回転する。ロータ50に対してコンプレッサ70とは反対側に、電磁クラッチ1が設けられている。エンジン80からロータ50に伝達されるトルクは、電磁クラッチ1を経由してコンプレッサ70のシャフトに伝達されるように構成されている。 The vehicle is provided with an engine 80 for driving the vehicle as a power generation source. A pulley 82 provided on a drive shaft 81 of the engine 80 and the rotor 50 are connected by a power transmission belt 83 . Torque output from the engine 80 is transmitted from the pulley 82 to the rotor 50 via the belt 83 . Therefore, the rotor 50 rotates as the engine 80 is driven. An electromagnetic clutch 1 is provided on the side opposite to the compressor 70 with respect to the rotor 50 . Torque transmitted from the engine 80 to the rotor 50 is configured to be transmitted to the shaft of the compressor 70 via the electromagnetic clutch 1 .
 次に、ロータ50について、図2および図4を参照して説明する。ロータ50は、鉄等の強磁性材料を主体に形成され、所定の回転軸Axを中心として回転可能に設けられる。以下の説明では、回転軸Axに近い側を径方向内側といい、回転軸Axから遠い側を径方向外側ということがある。ロータ50は、外周側に設けられる外側筒部51、その外側筒部51に対して径方向内側に設けられる内側筒部52、および、外側筒部51と内側筒部52とを接続する環状部53を一体に有している。 Next, the rotor 50 will be described with reference to FIGS. 2 and 4. FIG. The rotor 50 is mainly made of a ferromagnetic material such as iron, and is rotatable around a predetermined rotation axis Ax. In the following description, the side closer to the rotation axis Ax may be referred to as the radial inner side, and the side farther from the rotation axis Ax may be referred to as the radial outer side. The rotor 50 includes an outer tubular portion 51 provided on the outer peripheral side, an inner tubular portion 52 provided radially inwardly of the outer tubular portion 51, and an annular portion connecting the outer tubular portion 51 and the inner tubular portion 52. 53 integrally.
 外側筒部51は、円筒状に形成されている。外側筒部51の外周には、回転軸Axに平行な断面がV字状の複数の溝により構成されるV溝部54が形成されている。そのV溝部54に、エンジン80から出力されるトルクを伝えるためのベルト83が掛け渡される。 The outer tubular portion 51 is formed in a cylindrical shape. A V-groove portion 54 formed of a plurality of grooves having a V-shaped cross section parallel to the rotation axis Ax is formed on the outer circumference of the outer cylindrical portion 51 . A belt 83 for transmitting the torque output from the engine 80 is stretched over the V groove portion 54 .
 内側筒部52は、円筒状に形成されており、外側筒部51よりも回転軸Ax側に設けられている。内側筒部52の内周側には、ボールベアリング90の外輪91が固定されている。一方、そのボールベアリング90の内輪92は、コンプレッサ70のハウジングから円筒状に突出する円筒部77に固定されている。これにより、ロータ50は、コンプレッサ70のハウジングに対して相対回転可能に設けられる。 The inner cylindrical portion 52 is formed in a cylindrical shape and is provided closer to the rotation axis Ax than the outer cylindrical portion 51 is. An outer ring 91 of a ball bearing 90 is fixed to the inner peripheral side of the inner tubular portion 52 . On the other hand, the inner ring 92 of the ball bearing 90 is fixed to a cylindrical portion 77 projecting cylindrically from the housing of the compressor 70 . Thereby, the rotor 50 is provided rotatably relative to the housing of the compressor 70 .
 環状部53は、環状に形成され、外側筒部51と内側筒部52とを接続している。環状部53には、周方向に円弧状に延びる複数のスリット55が設けられている。図4に示すように、複数のスリット55は、外側スリット551と、その外側スリット551より径方向外側に設けられる内側スリット552とを有している。以下の説明では、ロータ50のうち外側スリット551より径方向外側の部位を「ロータ外径部501」と呼ぶことがある。また、外側スリット551と内側スリット552との間の部位を「ロータ中央部502」と呼ぶことがある。また、内側スリット552より径方向内側の部位を「ロータ内径部503」と呼ぶことがある。 The annular portion 53 is formed in an annular shape and connects the outer tubular portion 51 and the inner tubular portion 52 . The annular portion 53 is provided with a plurality of slits 55 extending in an arc shape in the circumferential direction. As shown in FIG. 4 , the plurality of slits 55 has an outer slit 551 and an inner slit 552 provided radially outside the outer slit 551 . In the following description, a portion of the rotor 50 radially outside the outer slit 551 may be referred to as a "rotor outer diameter portion 501". Also, a portion between the outer slit 551 and the inner slit 552 may be called a "rotor central portion 502". Also, a portion radially inward of the inner slit 552 may be referred to as a "rotor inner diameter portion 503".
 環状部53のうちコンプレッサ70とは反対側の端面は、電磁クラッチ1が備えるアーマチャ10と接する摩擦面となる。以下の説明では、その摩擦面を、ロータ50の端面59という。ロータ50の端面59のうち外側スリット551が設けられる箇所には、摩擦係数を増加させるための摩擦部材56が配置されている。摩擦部材56として、例えば、アルミナを樹脂で固めたものや、アルミニウム等の金属粉末の焼結体などの非磁性材料が用いられる。 The end surface of the annular portion 53 opposite to the compressor 70 serves as a friction surface that contacts the armature 10 of the electromagnetic clutch 1 . In the following description, the friction surface is referred to as the end surface 59 of the rotor 50. FIG. A friction member 56 for increasing the coefficient of friction is arranged at a portion of the end face 59 of the rotor 50 where the outer slit 551 is provided. As the friction member 56, for example, a non-magnetic material such as alumina hardened with resin or a sintered body of metal powder such as aluminum is used.
 ロータ50の内部には、ステータ57および電磁コイル58が設けられている。ステータ57は、鉄などの強磁性材料により形成されている。電磁コイル58は、絶縁性の樹脂材料でモールディングされた状態でステータ57の内側に固定されている。したがって、ロータ50は、内側に電磁コイル58を有している。電磁コイル58に通電されると、ステータ57、ロータ50、および後述する電磁クラッチ1が備えるアーマチャ10より形成される磁気回路に磁束が流れる。これにより、アーマチャ10をロータ50側に引き寄せる磁気吸引力が発生する。 A stator 57 and an electromagnetic coil 58 are provided inside the rotor 50 . The stator 57 is made of a ferromagnetic material such as iron. The electromagnetic coil 58 is fixed inside the stator 57 while being molded with an insulating resin material. Therefore, the rotor 50 has an electromagnetic coil 58 inside. When the electromagnetic coil 58 is energized, magnetic flux flows through a magnetic circuit formed by the stator 57, the rotor 50, and the armature 10 of the electromagnetic clutch 1, which will be described later. As a result, a magnetic attractive force is generated that draws the armature 10 toward the rotor 50 side.
 続いて、電磁クラッチ1について説明する。 Next, the electromagnetic clutch 1 will be explained.
 図3および図4に示すように、電磁クラッチ1は、アーマチャ10、アウタープレート20、インナーハブ30および弾性部材40などを備えている。 As shown in FIGS. 3 and 4, the electromagnetic clutch 1 includes an armature 10, an outer plate 20, an inner hub 30, elastic members 40, and the like.
 アーマチャ10は、鉄などの強磁性材料を主体に円環状に形成され、ロータ50の端面59に対向して設けられている。ロータ50の有する電磁コイル58に通電されていない状態で、ロータ50の端面59とアーマチャ10との間には、所定の隙間(例えば0.5mm程度)が形成される。なお、図4では、説明のために、ロータ50の端面59とアーマチャ10との隙間を比較的大きく記載している。 The armature 10 is mainly made of a ferromagnetic material such as iron and has an annular shape, and is provided to face the end face 59 of the rotor 50 . A predetermined gap (for example, about 0.5 mm) is formed between the end surface 59 of the rotor 50 and the armature 10 when the electromagnetic coil 58 of the rotor 50 is not energized. In FIG. 4, for the sake of explanation, the gap between the end surface 59 of the rotor 50 and the armature 10 is shown relatively large.
 一方、電磁コイル58に通電されると、アーマチャ10は、電磁コイル58の発生する磁気吸引力によりロータ50側に引き寄せられロータ50の端面59に当接する。そして、アーマチャ10は、ロータ50の端面59に摩擦力により接合される。その状態で、電磁クラッチ1はロータ50と共に回転する。 On the other hand, when the electromagnetic coil 58 is energized, the armature 10 is drawn toward the rotor 50 by the magnetic attraction force generated by the electromagnetic coil 58 and comes into contact with the end face 59 of the rotor 50 . The armature 10 is joined to the end surface 59 of the rotor 50 by frictional force. In that state, the electromagnetic clutch 1 rotates together with the rotor 50 .
 図5に示すように、アーマチャ10は、円環状に成形されており、外周側に設けられる外輪部11と、その外輪部11に対して回転軸Ax側に設けられる内輪部12と、外輪部11と内輪部12との間で周方向に円弧状に延びる複数の長穴13を有している。複数の長穴13は、内輪部12と外輪部11との間の磁気抵抗を増加する磁気抵抗部となる。なお、内輪部12と外輪部11とは、複数の長穴13同士の間に設けられる接続部14により機械的に接続されている。また、アーマチャ10には、アウタープレート20と固定するための複数のリベット15が設けられている。リベット15は、アーマチャ10の外周に近い位置に設けられている。また、リベット15と接続部14とは径方向に重なる位置に設けられている。ただし、リベット15と接続部14の位置は、図5に示したような径方向に重なる位置に限らず、任意に設定することができる。また、アーマチャ10とリベット15とは別部材で構成されていてもよい。 As shown in FIG. 5, the armature 10 is formed in an annular shape, and includes an outer ring portion 11 provided on the outer peripheral side, an inner ring portion 12 provided on the rotation axis Ax side of the outer ring portion 11, and an outer ring portion. Between 11 and inner ring portion 12, there are a plurality of elongated holes 13 extending in an arc shape in the circumferential direction. The plurality of elongated holes 13 serve as magnetic resistance portions that increase the magnetic resistance between the inner ring portion 12 and the outer ring portion 11 . In addition, the inner ring portion 12 and the outer ring portion 11 are mechanically connected by a connecting portion 14 provided between the plurality of long holes 13 . Also, the armature 10 is provided with a plurality of rivets 15 for fixing to the outer plate 20 . The rivet 15 is provided near the outer periphery of the armature 10 . Also, the rivet 15 and the connection portion 14 are provided at positions overlapping each other in the radial direction. However, the positions of the rivet 15 and the connecting portion 14 are not limited to the position where they overlap in the radial direction as shown in FIG. 5, and can be set arbitrarily. Also, the armature 10 and the rivet 15 may be configured as separate members.
 図3、図4および図6に示すように、アウタープレート20は、アーマチャ10のうちロータ50とは反対側に設けられる。アウタープレート20は、例えば鉄板などの強磁性材料をプレス加工して成形されている。アウタープレート20とアーマチャ10とを同種の材料とすることで、線膨張係数を同一とし、アウタープレート20とアーマチャ10の変形などを防ぐことができる。 As shown in FIGS. 3, 4 and 6, the outer plate 20 is provided on the side of the armature 10 opposite to the rotor 50. As shown in FIGS. The outer plate 20 is formed by pressing a ferromagnetic material such as an iron plate. By making the outer plate 20 and the armature 10 of the same kind of material, they have the same coefficient of linear expansion, and deformation of the outer plate 20 and the armature 10 can be prevented.
 アウタープレート20は、対向壁21、立壁22およびフランジ23を一体に有している。対向壁21は、アーマチャ10のうちロータ50とは反対側の面に向き合う部位である。立壁22は、対向壁21からロータ50の回転軸方向に延びる部位である。フランジ23は、立壁22のうち対向壁21とは反対側の部位からロータ50の回転軸Axに垂直に延びる部位である。 The outer plate 20 integrally has a facing wall 21, a vertical wall 22 and a flange 23. The facing wall 21 is a portion of the armature 10 that faces the surface of the armature 10 opposite to the rotor 50 . The standing wall 22 is a portion extending from the opposing wall 21 in the rotation axis direction of the rotor 50 . The flange 23 is a portion extending perpendicularly to the rotation axis Ax of the rotor 50 from a portion of the standing wall 22 opposite to the opposing wall 21 .
 アウタープレート20の有する対向壁21には、リベット15が挿入される挿入穴24が設けられている。挿入穴24は、アウタープレート20の外周に近い位置に設けられている。その挿入穴24に対し、アーマチャ10に設けられたリベット15が挿入される。そのリベット15の先端部を加締めることで、アウタープレート20とアーマチャ10とが固定される。そのため、アウタープレート20はアーマチャ10と共に回転する。 The facing wall 21 of the outer plate 20 is provided with insertion holes 24 into which the rivets 15 are inserted. The insertion hole 24 is provided at a position near the outer periphery of the outer plate 20 . A rivet 15 provided on the armature 10 is inserted into the insertion hole 24 . By crimping the tip of the rivet 15, the outer plate 20 and the armature 10 are fixed. Therefore, the outer plate 20 rotates together with the armature 10 .
 また、対向壁21の一部には、凹み形状部としてのアウタープレート凹部25が設けられている。アウタープレート凹部25は、回転軸方向から視てほぼ扇状に成形され、アウタープレート20の周方向に4カ所設けられている。アウタープレート凹部25は、立壁22とリベット15との間に設けられている。 A portion of the facing wall 21 is provided with an outer plate recessed portion 25 as a recessed portion. The outer plate recessed portion 25 is formed in a substantially fan shape when viewed from the rotation axis direction, and is provided at four locations in the circumferential direction of the outer plate 20 . The outer plate recessed portion 25 is provided between the standing wall 22 and the rivet 15 .
 アウタープレート凹部25は、対向壁21のうち立壁22と接続する部位21aや、対向壁21のうちリベット15が挿入される挿入穴24が設けられる部位21bに対し、アーマチャ10からの距離が遠くなるように凹んでいる。なお、アウタープレート凹部25は、アーマチャ10側から視て凹形状であり、アーマチャ10とは反対側から視て凸形状となっている。アウタープレート凹部25は、アーマチャ10と対向壁21との距離を遠くすることで、アーマチャ10と対向壁21との間の磁気抵抗を大きくする機能を有している。また、アウタープレート凹部25は、対向壁21の剛性を高める機能も有している。 The outer plate concave portion 25 is farther from the armature 10 than the portion 21a of the opposing wall 21 that is connected to the standing wall 22 and the portion 21b of the opposing wall 21 that is provided with the insertion hole 24 into which the rivet 15 is inserted. Concave like this. Note that the outer plate concave portion 25 has a concave shape when viewed from the armature 10 side, and has a convex shape when viewed from the side opposite to the armature 10 . The outer plate concave portion 25 has a function of increasing the magnetic resistance between the armature 10 and the opposing wall 21 by increasing the distance between the armature 10 and the opposing wall 21 . Further, the outer plate concave portion 25 also has a function of increasing the rigidity of the opposing wall 21 .
 図7は、説明のために、アウタープレート20とアーマチャ10のみを組み付けた状態(すなわち、電磁クラッチ1からインナーハブ30と弾性部材40を除いた状態)を示している。図7に示すように、アウタープレート20の対向壁21は、アーマチャ10の有する内輪部12と外輪部11とに跨がって配置されている。そして、その対向壁21に設けられるアウタープレート凹部25は、アーマチャ10の長穴13と対向する部位でアーマチャ10の内輪部12と外輪部11とに跨って設けられている。 FIG. 7 shows a state in which only the outer plate 20 and the armature 10 are assembled (that is, a state in which the inner hub 30 and the elastic member 40 are removed from the electromagnetic clutch 1). As shown in FIG. 7 , the facing wall 21 of the outer plate 20 is arranged across the inner ring portion 12 and the outer ring portion 11 of the armature 10 . An outer plate concave portion 25 provided in the facing wall 21 is provided across the inner ring portion 12 and the outer ring portion 11 of the armature 10 at a portion facing the long hole 13 of the armature 10 .
 図8は、図3のVIII-VIII線断面における電磁クラッチ1およびロータ50等の断面図である。図8に示すように、対向壁21と立壁22とが接続する部位21aとアーマチャ10との距離をD1とする。また、対向壁21に設けられたアウタープレート凹部25とアーマチャ10との距離をD2とする。このとき、対向壁21と立壁22とが接続する部位21aとアーマチャ10との距離D1に比べて、アウタープレート凹部25とアーマチャ10との距離D2は遠くなっている。そのため、アウタープレート凹部25は、アーマチャ10と対向壁21との間の磁気抵抗を大きくする磁気抵抗部としての機能を有している。 FIG. 8 is a cross-sectional view of the electromagnetic clutch 1, rotor 50, etc. taken along line VIII-VIII in FIG. As shown in FIG. 8, the distance between the armature 10 and the portion 21a where the opposing wall 21 and the standing wall 22 are connected is defined as D1. Also, the distance between the outer plate concave portion 25 provided in the opposing wall 21 and the armature 10 is defined as D2. At this time, the distance D2 between the outer plate concave portion 25 and the armature 10 is greater than the distance D1 between the armature 10 and the portion 21a where the opposing wall 21 and the standing wall 22 are connected. Therefore, the outer plate concave portion 25 functions as a magnetic resistance portion that increases magnetic resistance between the armature 10 and the opposing wall 21 .
 図8は、ロータ50の有する電磁コイル58に通電した状態(以下、「電磁コイル58の通電時」という)を示している。そして、図8では、電磁コイル58の通電時において、ステータ57、ロータ50、アーマチャ10により形成される磁気回路に流れる磁束を実線M1で示している。また、図8では、その際に、アーマチャ10からアウタープレート20の対向壁21に漏れる磁束を破線M2で示している。 FIG. 8 shows a state in which the electromagnetic coil 58 of the rotor 50 is energized (hereinafter referred to as "when the electromagnetic coil 58 is energized"). In FIG. 8, the magnetic flux flowing through the magnetic circuit formed by the stator 57, the rotor 50, and the armature 10 when the electromagnetic coil 58 is energized is indicated by a solid line M1. Further, in FIG. 8, the magnetic flux leaking from the armature 10 to the opposing wall 21 of the outer plate 20 at that time is indicated by a dashed line M2.
 本実施形態では、対向壁21にアウタープレート凹部25を設けたことで、対向壁21のアウタープレート凹部25とアーマチャ10との距離D2が遠くなり、その間の磁気抵抗が大きくなる。一般に、磁束は磁気抵抗が小さい方へ流れる。そのため、破線M2で示したように「アーマチャ10の内輪部12-アウタープレート20の対向壁21-アーマチャ10の外輪部11」を流れる磁束量は無視できる程度に小さいものとなり、アーマチャ10とアウタープレート20との間の磁束漏れが低減する。したがって、実線M1で示したように「ステータ57-ロータ内径部503-アーマチャ10の内輪部12-ロータ中央部502-アーマチャ10の外輪部11-ロータ外径部501-ステータ57」による磁気回路を流れる磁束量が増加する。そのため、ロータ50とアーマチャ10との磁気吸引力が大きくなる。その結果、この電磁クラッチ1は、磁気性能が向上し、ロータ50からコンプレッサ70へのトルク伝達性を高めることができる。 In this embodiment, the provision of the outer plate recess 25 in the opposing wall 21 increases the distance D2 between the outer plate recess 25 of the opposing wall 21 and the armature 10, increasing the magnetic resistance therebetween. In general, magnetic flux flows in the direction of smaller reluctance. Therefore, as indicated by the dashed line M2, the amount of magnetic flux flowing through “the inner ring portion 12 of the armature 10—the opposing wall 21 of the outer plate 20—the outer ring portion 11 of the armature 10” is negligibly small. 20 is reduced. Therefore, as indicated by the solid line M1, a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--armature 10 outer ring portion 11--rotor outer diameter portion 501--stator 57" is formed. The amount of magnetic flux flowing increases. Therefore, the magnetic attraction force between the rotor 50 and the armature 10 increases. As a result, the electromagnetic clutch 1 can improve the magnetic performance and improve the torque transmissibility from the rotor 50 to the compressor 70 .
 図4および図8に示すように、アウタープレート20の有する立壁22は、対向壁21からロータ50の回転軸方向に延びている。また、図3、図4、図6~図8に示すように、アウタープレート20の有するフランジ23は、立壁22のうち対向壁21とは反対側の部位からロータ50の回転軸Axに垂直に延びている。フランジ23には、軸方向から見て+記号状(すなわち、プラス記号状)の開口26が設けられている。そのため、立壁22とフランジ23は、その+記号状の開口26を縁取るような形状となっている。 As shown in FIGS. 4 and 8, the standing wall 22 of the outer plate 20 extends from the facing wall 21 in the rotation axis direction of the rotor 50 . As shown in FIGS. 3, 4, and 6 to 8, the flange 23 of the outer plate 20 extends perpendicularly to the rotation axis Ax of the rotor 50 from a portion of the vertical wall 22 opposite to the opposing wall 21. extended. The flange 23 is provided with an opening 26 that is shaped like a + sign (that is, shaped like a plus sign) when viewed from the axial direction. Therefore, the upright wall 22 and the flange 23 are shaped so as to border the plus sign-shaped opening 26 .
 なお、以下の説明では、アウタープレート20の有するフランジ23のうち、+記号状の端部の径方向外側の部位を第1フランジ231と呼び、+記号状の中央部の湾曲部分を第2フランジ232と呼ぶことがある。 In the following description, of the flanges 23 of the outer plate 20, the radially outer portion of the + symbol-shaped end portion is referred to as a first flange 231, and the curved portion of the + symbol-shaped central portion is referred to as a second flange. It is sometimes called 232.
 図3、図4および図9に示すように、インナーハブ30は、アーマチャ10とアウタープレート20との間に設けられている。インナーハブ30は、筒状のボス部31と、そのボス部31の端部から径方向外側に拡がるプレート部32を有している。プレート部32のうち径方向内側の部位とボス部31とは、金属により形成されている。一方、プレート部32のうち径方向外側の部位は、樹脂により形成されている。インナーハブ30は、その金属の部位と樹脂の部位とがインサート成形により一体に形成されている。 As shown in FIGS. 3, 4 and 9, the inner hub 30 is provided between the armature 10 and the outer plate 20. As shown in FIGS. The inner hub 30 has a tubular boss portion 31 and a plate portion 32 extending radially outward from the end portion of the boss portion 31 . A radially inner portion of the plate portion 32 and the boss portion 31 are made of metal. On the other hand, the radially outer portion of the plate portion 32 is made of resin. The inner hub 30 has a metal part and a resin part integrally formed by insert molding.
 ボス部31の内周には、雌ねじ33が形成されている。そのボス部31の内周に形成された雌ねじ33と、コンプレッサ70のシャフト76の外周に形成された雄ねじ78との螺合により、インナーハブ30はコンプレッサ70のシャフト76の端部に固定される。これにより、インナーハブ30は、コンプレッサ70にトルクを伝達可能である。 A female thread 33 is formed on the inner periphery of the boss portion 31 . The inner hub 30 is fixed to the end of the shaft 76 of the compressor 70 by screwing together the female thread 33 formed on the inner periphery of the boss portion 31 and the male thread 78 formed on the outer periphery of the shaft 76 of the compressor 70 . . This allows the inner hub 30 to transmit torque to the compressor 70 .
 インナーハブ30のプレート部32は、+記号状に形成されている。そして、プレート部32は、アウタープレート20の立壁22の内側で、アウタープレート20のフランジ23とアーマチャ10との間に設けられている。コンプレッサ70のシャフト76に固定されたインナーハブ30に対し、アウタープレート20とアーマチャ10は回転軸方向に相対移動可能に設けられている。 The plate portion 32 of the inner hub 30 is formed in the shape of a + sign. The plate portion 32 is provided between the flange 23 of the outer plate 20 and the armature 10 inside the standing wall 22 of the outer plate 20 . With respect to the inner hub 30 fixed to the shaft 76 of the compressor 70, the outer plate 20 and the armature 10 are provided so as to be movable relative to each other in the rotation axis direction.
 また、インナーハブ30は、アウタープレート20の立壁22に向き合う内側立壁34、および、アウタープレート20のフランジ23に向き合う内側フランジ35を有している。
 インナーハブ30の内側立壁34は、アウタープレート20の立壁22とほぼ平行に設けられる。そして、インナーハブ30の内側立壁34と、アウタープレート20の立壁22との間には、後述する弾性部材40の緩衝部を配置可能な所定の間隔が設けられる。
The inner hub 30 also has an inner standing wall 34 facing the standing wall 22 of the outer plate 20 and an inner flange 35 facing the flange 23 of the outer plate 20 .
An inner vertical wall 34 of the inner hub 30 is provided substantially parallel to the vertical wall 22 of the outer plate 20 . A predetermined space is provided between the inner vertical wall 34 of the inner hub 30 and the vertical wall 22 of the outer plate 20 so that a cushioning portion of the elastic member 40, which will be described later, can be arranged.
 インナーハブ30の内側フランジ35は、アウタープレート20のフランジ23とほぼ平行に設けられる。そして、インナーハブ30の内側フランジ35と、アウタープレート20のフランジ23との間にも、後述する弾性部材40の付勢部を配置可能な所定の間隔が設けられる。 The inner flange 35 of the inner hub 30 is provided substantially parallel to the flange 23 of the outer plate 20 . A predetermined space is also provided between the inner flange 35 of the inner hub 30 and the flange 23 of the outer plate 20 so that the urging portion of the elastic member 40, which will be described later, can be arranged.
 なお、以下の説明では、インナーハブ30の有する内側フランジ35のうち、アウタープレート20の第1フランジ231に向き合う部位を第1内側フランジ351と呼ぶことがある。また、インナーハブ30の有する内側フランジ35のうち、アウタープレート20の第2フランジ232に向き合う部位を第2内側フランジ352と呼ぶことがある。 In the following description, the portion of the inner flange 35 of the inner hub 30 that faces the first flange 231 of the outer plate 20 may be called a first inner flange 351. A portion of the inner flange 35 of the inner hub 30 that faces the second flange 232 of the outer plate 20 is sometimes called a second inner flange 352 .
 図3、図4および図10に示すように、弾性部材40は、アウタープレート20とインナーハブ30との間の空間、および、アウタープレート20とアーマチャ10との間の空間に対応する形状に形成された高耐久性のゴム部材である。弾性部材40は、アウタープレート20とインナーハブ30との間、および、アウタープレート20とアーマチャ10との間に、圧縮された状態で嵌め込まれている。 As shown in FIGS. 3, 4 and 10, the elastic member 40 is shaped to correspond to the space between the outer plate 20 and the inner hub 30 and the space between the outer plate 20 and the armature 10. It is a highly durable rubber member. The elastic member 40 is fitted between the outer plate 20 and the inner hub 30 and between the outer plate 20 and the armature 10 in a compressed state.
 弾性部材40は、付勢部41と緩衝部42と制振部43とを有している。付勢部41は、アウタープレート20のフランジ23とインナーハブ30の内側フランジ35との間に配置される部位である。緩衝部42は、アウタープレート20の立壁22とインナーハブ30の内側立壁34との間に配置される部位である。制振部43は、アウタープレート20の対向壁21とアーマチャ10との間に配置される部位である。なお、以下の説明では、弾性部材40の有する付勢部41のうち、第1フランジ231と第1内側フランジ351との間に配置される部位を第1付勢部411と呼ぶことがある。また、弾性部材40の有する付勢部41のうち、第2フランジ232と第2内側フランジ352との間に配置される部位を第2付勢部412と呼ぶことがある。 The elastic member 40 has an urging portion 41 , a buffer portion 42 and a damping portion 43 . The biasing portion 41 is a portion arranged between the flange 23 of the outer plate 20 and the inner flange 35 of the inner hub 30 . The buffer portion 42 is a portion arranged between the upright wall 22 of the outer plate 20 and the inner upright wall 34 of the inner hub 30 . The damping portion 43 is a portion arranged between the facing wall 21 of the outer plate 20 and the armature 10 . Note that, in the following description, a portion of the biasing portion 41 of the elastic member 40 that is arranged between the first flange 231 and the first inner flange 351 may be referred to as a first biasing portion 411 . A portion of the biasing portion 41 of the elastic member 40 that is arranged between the second flange 232 and the second inner flange 352 is sometimes called a second biasing portion 412 .
 第1付勢部411または第2付勢部412は、内側フランジ35に対しフランジ23をロータ50とは反対側に付勢している。そのため、図4に示すように、ロータ50の有する電磁コイル58に通電されていない状態では、ロータ50の端面59からアーマチャ10が離れた状態となる。このとき、インナーハブ30のプレート部32とアーマチャ10とが当接することで、アーマチャ10の回転軸方向の位置が定められる。一方、電磁コイル58に通電されると、ステータ57、ロータ50、アーマチャ10より形成される磁気回路に磁束が流れる。そして、ロータ50とアーマチャ10に発生する磁気吸引力により、アーマチャ10は弾性部材40の付勢部41の付勢力に抗してロータ50側に引き寄せられロータ50の端面59に当接する。 The first biasing portion 411 or the second biasing portion 412 biases the flange 23 against the inner flange 35 to the side opposite to the rotor 50 . Therefore, as shown in FIG. 4 , when the electromagnetic coil 58 of the rotor 50 is not energized, the armature 10 is separated from the end surface 59 of the rotor 50 . At this time, the position of the armature 10 in the rotation axis direction is determined by the contact between the plate portion 32 of the inner hub 30 and the armature 10 . On the other hand, when the electromagnetic coil 58 is energized, magnetic flux flows through the magnetic circuit formed by the stator 57 , rotor 50 and armature 10 . Due to the magnetic attraction force generated between the rotor 50 and the armature 10 , the armature 10 is drawn toward the rotor 50 against the biasing force of the biasing portion 41 of the elastic member 40 and comes into contact with the end face 59 of the rotor 50 .
 弾性部材40の有する緩衝部42は、アウタープレート20の有する立壁22のうち回転方向に向く面と、インナーハブ30の有する内側立壁34のうち回転方向に向く面との間に、圧縮された状態で嵌め込まれている。緩衝部42は、ロータ50からコンプレッサ70へのトルク伝達時に、インナーハブ30とアウタープレート20と間でトルク変動を吸収し、アウタープレート20からインナーハブ30にトルクを緩衝的に伝達する。トルク変動に対する耐久性を高めるため、アウタープレート20の有する立壁22の高さ(即ち、立壁22における回転軸方向の距離)と弾性部材40の有する緩衝部42の高さ(即ち、緩衝部42における回転軸方向の距離)をいずれも大きくすることが好ましい。 The cushioning portion 42 of the elastic member 40 is compressed between the surface of the vertical wall 22 of the outer plate 20 facing the rotational direction and the surface of the inner vertical wall 34 of the inner hub 30 facing the rotational direction. is embedded in the The buffer portion 42 absorbs torque fluctuations between the inner hub 30 and the outer plate 20 when torque is transmitted from the rotor 50 to the compressor 70 , and transmits torque from the outer plate 20 to the inner hub 30 in a cushioning manner. In order to increase durability against torque fluctuations, the height of the vertical wall 22 of the outer plate 20 (i.e., the distance in the direction of the rotational axis of the vertical wall 22) and the height of the buffer portion 42 of the elastic member 40 (i.e., the distance in the buffer portion 42) It is preferable to increase both the distances in the rotation axis direction.
 弾性部材40の有する制振部43は、アウタープレート20の有する対向壁21とアーマチャ10との間に圧縮された状態で嵌め込まれている。そして、制振部43は、アーマチャ10の有する内輪部12と外輪部11とに跨がって配置されている。すなわち、制振部43は、アウタープレート20の有する対向壁21によりアーマチャ10の有する内輪部12と外輪部11に押し付けられている。そのため、電磁コイル58の通電時に、制振部43は、アーマチャ10の内輪部12および外輪部11の振動を抑え、作動音を低減することが可能である。なお、作動音には、電磁コイル58の通電時においてアーマチャ10がロータ50に接触する際に発生する接触音、および、アーマチャ10とロータ50との滑りにより発生する振動を加振源とする共振音が含まれる。 The damping portion 43 of the elastic member 40 is fitted in a compressed state between the opposing wall 21 of the outer plate 20 and the armature 10 . The damping portion 43 is arranged across the inner ring portion 12 and the outer ring portion 11 of the armature 10 . That is, the damping portion 43 is pressed against the inner ring portion 12 and the outer ring portion 11 of the armature 10 by the facing wall 21 of the outer plate 20 . Therefore, when the electromagnetic coil 58 is energized, the damping portion 43 can suppress the vibration of the inner ring portion 12 and the outer ring portion 11 of the armature 10 and reduce the operation noise. The operating noise includes contact noise generated when the armature 10 contacts the rotor 50 when the electromagnetic coil 58 is energized, and resonance caused by vibration generated by slippage between the armature 10 and the rotor 50. Sound included.
 本実施形態では、弾性部材40の制振部43は、厚肉部44と薄肉部45とを有している。厚肉部44は、アウタープレート凹部25とアーマチャ10との間に設けられる部位である。厚肉部44は、アウタープレート凹部25のうちアーマチャ10側の面と、アーマチャ10のうちアウタープレート凹部25側の面とにそれぞれ当接し、アウタープレート凹部25とアーマチャ10との間に圧縮された状態で設けられる。一方、薄肉部45は、対向壁21のうち立壁22と接続する部位21a及びその近傍とアーマチャ10との間に圧縮された状態で設けられる。また、薄肉部45は、対向壁21のうちリベット15の周囲の部位とアーマチャ10との間にも圧縮された状態で設けられる。 In this embodiment, the damping portion 43 of the elastic member 40 has a thick portion 44 and a thin portion 45 . The thick portion 44 is a portion provided between the outer plate concave portion 25 and the armature 10 . The thick portion 44 is in contact with the armature 10 side surface of the outer plate recessed portion 25 and the outer plate recessed portion 25 side surface of the armature 10 , and is compressed between the outer plate recessed portion 25 and the armature 10 . provided in the state. On the other hand, the thin portion 45 is provided in a compressed state between the armature 10 and the portion 21 a of the opposing wall 21 that is connected to the standing wall 22 and its vicinity. The thin portion 45 is also provided in a compressed state between the portion of the opposing wall 21 surrounding the rivet 15 and the armature 10 .
 なお、上述したように、アウタープレート20とアーマチャ10とを固定するリベット15は、アウタープレート20の外周に近い位置に設けられている。そのため、アウタープレート20の有する対向壁21とアーマチャ10との間に弾性部材40の制振部43を圧縮した状態で嵌め込むと、その制振部43の弾性力により、対向壁21のうちリベット15から遠い径方向内側の部位が変形することが懸念される。それに対し、本実施形態では、アウタープレート凹部25により対向壁21の剛性が高められているので、対向壁21の変形が防がれる。そのため、対向壁21によって弾性部材40の制振部43をアーマチャ10の内輪部12および外輪部11に確実に押し付けることが可能である。したがって、本実施形態の電磁クラッチ1は、アーマチャ10の内輪部12および外輪部11の振動を確実に抑え、作動音を低減することできる。 It should be noted that, as described above, the rivets 15 that fix the outer plate 20 and the armature 10 are provided at positions close to the outer periphery of the outer plate 20 . Therefore, when the vibration damping portion 43 of the elastic member 40 is fitted between the opposing wall 21 of the outer plate 20 and the armature 10 in a compressed state, the elastic force of the vibration damping portion 43 causes the rivet portion of the opposing wall 21 to move. There is concern that the radially inner portion far from 15 may be deformed. In contrast, in the present embodiment, the outer plate recessed portion 25 enhances the rigidity of the facing wall 21, so deformation of the facing wall 21 is prevented. Therefore, the damping portion 43 of the elastic member 40 can be reliably pressed against the inner ring portion 12 and the outer ring portion 11 of the armature 10 by the opposing wall 21 . Therefore, the electromagnetic clutch 1 of the present embodiment can reliably suppress vibrations of the inner ring portion 12 and the outer ring portion 11 of the armature 10 and reduce operating noise.
 続いて、電磁クラッチ1の作動について説明する。
 図4に示したように、電磁コイル58に通電されていない場合、アーマチャ10は、弾性部材40の有する付勢部41の付勢力によりロータ50の端面59から離れている。そのため、エンジン80のプーリ82からベルト83を経由してロータ50に伝達されるトルクは、アーマチャ10を備える電磁クラッチ1には伝達されず、ボールベアリング90上でロータ50が空転する。したがって、コンプレッサ70は停止した状態となる。
Next, the operation of the electromagnetic clutch 1 will be explained.
As shown in FIG. 4 , when the electromagnetic coil 58 is not energized, the armature 10 is separated from the end surface 59 of the rotor 50 by the biasing force of the biasing portion 41 of the elastic member 40 . Therefore, the torque transmitted from the pulley 82 of the engine 80 to the rotor 50 via the belt 83 is not transmitted to the electromagnetic clutch 1 having the armature 10 , and the rotor 50 idles on the ball bearings 90 . Therefore, the compressor 70 is stopped.
 一方、図8に示したように、電磁コイル58に通電されると、ステータ57、ロータ50、アーマチャ10より形成される磁気回路に磁束が流れる。このとき、本実施形態では、アウタープレート凹部25により、アーマチャ10とアウタープレート20との間の磁束漏れが無視できる程度に小さいものとなる。そのため、「アーマチャ10の内輪部12-ロータ中央部502-アーマチャ10の外輪部11」を流れる磁束量が増加し、ロータ50とアーマチャ10との磁気吸引力が大きいものとなる。その磁気吸引力により、アーマチャ10は弾性部材40の付勢部41の付勢力に抗してロータ50側に引き寄せられロータ50の端面59に当接する。そして、アーマチャ10は、ロータ50の端面59に摩擦力により接合される。これにより、エンジン80からロータ50に伝達されるトルクは、ロータ50→アーマチャ10→アウタープレート20→弾性部材40→インナーハブ30→シャフト76の順に伝達され、コンプレッサ70が駆動する。 On the other hand, as shown in FIG. 8, when the electromagnetic coil 58 is energized, magnetic flux flows through the magnetic circuit formed by the stator 57, rotor 50, and armature 10. At this time, in this embodiment, the magnetic flux leakage between the armature 10 and the outer plate 20 becomes negligibly small due to the outer plate concave portion 25 . Therefore, the amount of magnetic flux flowing through “inner ring portion 12 of armature 10—rotor central portion 502—outer ring portion 11 of armature 10” increases, and the magnetic attraction force between rotor 50 and armature 10 increases. Due to the magnetic attraction force, the armature 10 is drawn toward the rotor 50 against the biasing force of the biasing portion 41 of the elastic member 40 and comes into contact with the end surface 59 of the rotor 50 . The armature 10 is joined to the end surface 59 of the rotor 50 by frictional force. As a result, the torque transmitted from the engine 80 to the rotor 50 is transmitted in the order of rotor 50→armature 10→outer plate 20→elastic member 40→inner hub 30→shaft 76, and compressor 70 is driven.
 ここで、上述した第1実施形態の電磁クラッチ1と比較するため、比較例の電磁クラッチ100について説明する。 Here, an electromagnetic clutch 100 of a comparative example will be described for comparison with the electromagnetic clutch 1 of the first embodiment described above.
 図17は、比較例の電磁クラッチ100の一部およびロータ50の一部を示した断面図である。
 図17に示すように、比較例の電磁クラッチ100が備えるアウタープレート20の対向壁21には、アウタープレート凹部25が設けられていない。そのため、アウタープレート20の対向壁21は平面状となっており、対向壁21とアーマチャ10との距離D5が近くなっている。これにより、図17の実線M3で示したように「アーマチャ10の内輪部12-アウタープレート20の対向壁21-アーマチャ10の外輪部11」を流れる磁束量(すなわち、磁束漏れ)が増大する。そのため、実線M1で示したように「ステータ57-ロータ内径部503-アーマチャ10の内輪部12-ロータ中央部502-アーマチャ10の外輪部11-ロータ外径部501-ステータ57」による磁気回路を流れる磁束量が減少する。これにより、比較例の電磁クラッチ100は、ロータ50とアーマチャ10との磁気吸引力が弱くなり、ロータ50から従動体へのトルク伝達性が悪化するおそれがある。
FIG. 17 is a cross-sectional view showing part of the electromagnetic clutch 100 and part of the rotor 50 of the comparative example.
As shown in FIG. 17, the opposing wall 21 of the outer plate 20 included in the electromagnetic clutch 100 of the comparative example is not provided with the outer plate concave portion 25 . Therefore, the opposing wall 21 of the outer plate 20 is planar, and the distance D5 between the opposing wall 21 and the armature 10 is short. As a result, as indicated by the solid line M3 in FIG. 17, the amount of magnetic flux flowing through "inner ring portion 12 of armature 10--opposing wall 21 of outer plate 20--outer ring portion 11 of armature 10" (that is, magnetic flux leakage) increases. Therefore, as indicated by the solid line M1, a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--outer ring portion 11 of armature 10--rotor outer diameter portion 501--stator 57" is formed. The amount of magnetic flux that flows is reduced. As a result, in the electromagnetic clutch 100 of the comparative example, the magnetic attraction force between the rotor 50 and the armature 10 is weakened, and there is a risk that the torque transmission performance from the rotor 50 to the driven member will be deteriorated.
 比較例の電磁クラッチ100において、アウタープレート20の対向壁21とアーマチャ10との間の磁束漏れを防ぐため、弾性部材40の制振部43を全体的に厚くし、対向壁21とアーマチャ10との距離D5を遠くすることが考えられる。しかし、そうすると、アウタープレート20の有する立壁22の高さ(すなわち、立壁22における回転軸方向の距離)が小さくなる。それに伴って弾性部材40の有する緩衝部42の高さ(すなわち、緩衝部42における回転軸方向の距離)も小さくなる。そのため、トルク変動に対する耐久性が低下するといった問題が生じる。 In the electromagnetic clutch 100 of the comparative example, in order to prevent magnetic flux leakage between the opposing wall 21 of the outer plate 20 and the armature 10, the damping portion 43 of the elastic member 40 is made thick overall, and the opposing wall 21 and the armature 10 are separated. It is conceivable to increase the distance D5 of . However, in this case, the height of the vertical wall 22 of the outer plate 20 (that is, the distance in the direction of the rotation axis of the vertical wall 22) is reduced. Along with this, the height of the cushioning portion 42 of the elastic member 40 (that is, the distance in the rotation axis direction of the cushioning portion 42) is also reduced. Therefore, there arises a problem that the durability against torque fluctuation is lowered.
 また、比較例の電磁クラッチ100は、アウタープレート20の対向壁21にアウタープレート凹部25が設けられていないので、第1実施形態に比べて、対向壁21の剛性が低いものとなっている。そのため、対向壁21のうちリベット15から遠い径方向内側の部位が、弾性部材40の制振部43の弾性力によって変形することが懸念される。アウタープレート20の対向壁21に変形が生じると、対向壁21によって弾性部材40の制振部43をアーマチャ10の内輪部12および外輪部11に押し付ける力が弱くなる。そのため、弾性部材40の制振部43によるアーマチャ10の内輪部12および外輪部11の制振機能が低下し、作動音を十分に低減できなくなる恐れがある。 Also, in the electromagnetic clutch 100 of the comparative example, the facing wall 21 of the outer plate 20 is not provided with the outer plate concave portion 25, so the rigidity of the facing wall 21 is lower than that of the first embodiment. Therefore, there is concern that the radially inner portion of the opposing wall 21 far from the rivet 15 may be deformed by the elastic force of the damping portion 43 of the elastic member 40 . When the opposing wall 21 of the outer plate 20 is deformed, the force with which the opposing wall 21 presses the damping portion 43 of the elastic member 40 against the inner ring portion 12 and the outer ring portion 11 of the armature 10 is weakened. Therefore, the vibration damping function of the inner ring portion 12 and the outer ring portion 11 of the armature 10 by the damping portion 43 of the elastic member 40 is deteriorated, and there is a possibility that the operation noise cannot be sufficiently reduced.
 このような比較例の電磁クラッチ100と比較して、第1実施形態の電磁クラッチ1は次の作用効果を奏する。
 (1)第1実施形態の電磁クラッチ1は、アウタープレート20の対向壁21と立壁22とが接続する部位21aとアーマチャ10との距離D1に比べて、アーマチャ10と対向壁21との距離D2を遠くする凹み形状部としてのアウタープレート凹部25を備えている。
 これによれば、電磁コイル58の通電時に「アーマチャ10の内輪部12-アウタープレート20の対向壁21-アーマチャ10の外輪部11」による磁路の磁気抵抗を大きくすることが可能となる。そのため、電磁コイル58の通電時にアーマチャ10とアウタープレート20との間の磁束漏れが低減し、「アーマチャ10の内輪部12-ロータ中央部502-アーマチャ10の外輪部11」を流れる磁束量が増加する。したがって、ロータ50とアーマチャ10との磁気吸引力が大きくなる。その結果、この電磁クラッチ1は、磁気性能が向上し、ロータ50からコンプレッサ70へのトルク伝達性を高めることができる。
Compared with the electromagnetic clutch 100 of the comparative example, the electromagnetic clutch 1 of the first embodiment has the following effects.
(1) In the electromagnetic clutch 1 of the first embodiment, a distance D2 It has an outer plate concave portion 25 as a concave shape portion that distances the .
According to this, when the electromagnetic coil 58 is energized, it is possible to increase the magnetic resistance of the magnetic path formed by "the inner ring portion 12 of the armature 10--the opposing wall 21 of the outer plate 20--the outer ring portion 11 of the armature 10." Therefore, the magnetic flux leakage between the armature 10 and the outer plate 20 is reduced when the electromagnetic coil 58 is energized, and the amount of magnetic flux flowing through "the inner ring portion 12 of the armature 10 - the rotor center portion 502 - the outer ring portion 11 of the armature 10" increases. do. Therefore, the magnetic attraction force between the rotor 50 and the armature 10 is increased. As a result, the electromagnetic clutch 1 can improve the magnetic performance and improve the torque transmissibility from the rotor 50 to the compressor 70 .
 (2)また、第1実施形態の電磁クラッチ1は、アウタープレート20の対向壁21とアーマチャ10との間に、弾性部材40の有する制振部43が設けられている。アウタープレート20の対向壁21はアウタープレート凹部25により剛性が高められているので、その対向壁21によって弾性部材40の制振部43をアーマチャ10の内輪部12および外輪部11に確実に押し付けることが可能である。したがって、第1実施形態の電磁クラッチ1は、アーマチャ10の内輪部12および外輪部11の振動を弾性部材40の制振部43によって確実に抑えることで、作動音を低減することできる。 (2) In the electromagnetic clutch 1 of the first embodiment, the damping portion 43 of the elastic member 40 is provided between the facing wall 21 of the outer plate 20 and the armature 10 . Since the rigidity of the opposing wall 21 of the outer plate 20 is increased by the outer plate concave portion 25, the opposing wall 21 reliably presses the damping portion 43 of the elastic member 40 against the inner ring portion 12 and the outer ring portion 11 of the armature 10. is possible. Therefore, the electromagnetic clutch 1 of the first embodiment can reduce operating noise by reliably suppressing vibrations of the inner ring portion 12 and the outer ring portion 11 of the armature 10 with the damping portion 43 of the elastic member 40 .
 (3)さらに、第1実施形態の電磁クラッチ1は、比較例の電磁クラッチ100の説明で述べたような弾性部材40の制振部43を全体的に厚くして対向壁21とアーマチャ10との距離D5を遠くするといった構成にしていない。すなわち、第1実施形態の電磁クラッチ1は、アウタープレート凹部25を備えていることで、アウタープレート20の対向壁21と立壁22とが接続する部位21aとアーマチャ10との距離D1を近くすることが可能である。そのため、第1実施形態の電磁クラッチ1は、電磁クラッチ1の回転軸方向の体格を大型化することなく、弾性部材40の緩衝部42および立壁22の高さ(すなわち回転軸方向の距離)を大きくすることが可能である。したがって、第1実施形態の電磁クラッチ1は、トルク変動に対する耐久性を高めることができる。 (3) Further, in the electromagnetic clutch 1 of the first embodiment, the damping portion 43 of the elastic member 40 as described in the description of the electromagnetic clutch 100 of the comparative example is made thicker overall, and the opposing wall 21 and the armature 10 are It is not configured to increase the distance D5 of . That is, the electromagnetic clutch 1 of the first embodiment is provided with the outer plate concave portion 25, so that the distance D1 between the armature 10 and the portion 21a where the opposing wall 21 and the standing wall 22 of the outer plate 20 are connected can be shortened. is possible. Therefore, in the electromagnetic clutch 1 of the first embodiment, the height of the buffer portion 42 of the elastic member 40 and the vertical wall 22 (that is, the distance in the direction of the rotation axis) can be reduced without increasing the size of the electromagnetic clutch 1 in the direction of the rotation axis. It is possible to make it larger. Therefore, the electromagnetic clutch 1 of the first embodiment can improve durability against torque fluctuations.
 (4)第1実施形態の電磁クラッチ1は、アウタープレート20の対向壁21のうちアーマチャ10の長穴13と対向する部位でアーマチャ10の内輪部12と外輪部11とを跨ぐ位置にアウタープレート凹部25を備えている。
 これによれば、アウタープレート凹部25とアーマチャ10の内輪部12との間の磁気抵抗を大きくし、さらに、アウタープレート凹部25とアーマチャ10の外輪部11との間の磁気抵抗を大きくすることが可能となる。したがって、アーマチャ10とアウタープレート20との間の磁束漏れを低減し、ロータ50とアーマチャ10との磁気吸引力を大きくすることができる。
(4) In the electromagnetic clutch 1 of the first embodiment, the outer plate 20 is positioned across the inner ring portion 12 and the outer ring portion 11 of the armature 10 at a portion of the opposing wall 21 of the outer plate 20 that faces the long hole 13 of the armature 10 . A recess 25 is provided.
According to this, the magnetic resistance between the outer plate concave portion 25 and the inner ring portion 12 of the armature 10 can be increased, and the magnetic resistance between the outer plate concave portion 25 and the outer ring portion 11 of the armature 10 can be increased. It becomes possible. Therefore, the magnetic flux leakage between the armature 10 and the outer plate 20 can be reduced, and the magnetic attraction force between the rotor 50 and the armature 10 can be increased.
 (5)第1実施形態の電磁クラッチ1が備えるアウタープレート凹部25は、アウタープレート20において立壁22と対向壁21とが接続する箇所と、アウタープレート20とアーマチャ10とを固定するリベット15との間の部位に設けられている。
 これによれば、アウタープレート20の対向壁21のうち立壁22と対向壁21とが接続する箇所とリベット15との間の部位の剛性をアウタープレート凹部25により高めることが可能である。したがって、アウタープレート20の対向壁21によって弾性部材40の制振部43をアーマチャ10の内輪部12と外輪部11に確実に押圧し、内輪部12および外輪部11の振動を抑えることで、作動音を低減することができる。
(5) The outer plate concave portion 25 provided in the electromagnetic clutch 1 of the first embodiment is formed by connecting the vertical wall 22 and the opposing wall 21 of the outer plate 20 and the rivets 15 that fix the outer plate 20 and the armature 10 together. located in the middle part.
According to this, it is possible to increase the rigidity of the portion of the facing wall 21 of the outer plate 20 between the portion where the standing wall 22 and the facing wall 21 are connected and the rivet 15 by the outer plate concave portion 25 . Therefore, the damping portion 43 of the elastic member 40 is reliably pressed against the inner ring portion 12 and the outer ring portion 11 of the armature 10 by the opposing wall 21 of the outer plate 20, thereby suppressing the vibration of the inner ring portion 12 and the outer ring portion 11. Sound can be reduced.
 (6)第1実施形態の電磁クラッチ1が備える弾性部材40の制振部43は、アウタープレート凹部25とアーマチャ10との間に配置される厚肉部44を有している。その厚肉部44は、アウタープレート凹部25のうちアーマチャ10側の面と、アーマチャ10のうちアウタープレート凹部25側の面とにそれぞれ当接し、アウタープレート凹部25とアーマチャ10との間に圧縮された状態で設けられている。
 これによれば、弾性部材40の制振部43に厚肉部44を設けることで、アーマチャ10の内輪部12および外輪部11の振動を減衰する機能を高め、作動音を確実に低減することができる。
(6) The damping portion 43 of the elastic member 40 provided in the electromagnetic clutch 1 of the first embodiment has a thick portion 44 arranged between the outer plate concave portion 25 and the armature 10 . The thick portion 44 is in contact with the armature 10 side surface of the outer plate recessed portion 25 and the outer plate recessed portion 25 side surface of the armature 10 , and is compressed between the outer plate recessed portion 25 and the armature 10 . It is installed in the
According to this, by providing the thick portion 44 in the damping portion 43 of the elastic member 40, the function of damping the vibrations of the inner ring portion 12 and the outer ring portion 11 of the armature 10 is enhanced, and the operation noise is reliably reduced. can be done.
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対して、リベット15の位置とアウタープレート凹部25の形状を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second embodiment)
A second embodiment will be described. 2nd Embodiment changes the position of the rivet 15, and the shape of the outer plate recessed part 25 with respect to 1st Embodiment, Since it is the same as that of 1st Embodiment about others, Only different parts will be explained.
 図11に示すように、第2実施形態では、アーマチャ10とアウタープレート20とを固定するリベット15が、アウタープレート20において立壁22のうち回転方向を向く面22aとアウタープレート凹部25との間の部位に設けられている。そのリベット15は、アーマチャ10と一体に成形され、アウタープレート20の対向壁21に設けられた挿入穴24に挿入されて、その先端部が加締められている。 As shown in FIG. 11, in the second embodiment, the rivet 15 for fixing the armature 10 and the outer plate 20 is positioned between the surface 22a of the upright wall 22 of the outer plate 20 facing the rotation direction and the outer plate concave portion 25. provided in the part. The rivet 15 is molded integrally with the armature 10, is inserted into an insertion hole 24 provided in the opposing wall 21 of the outer plate 20, and has its tip end crimped.
 アウタープレート凹部25は、立壁22の間に設けられ、回転軸方向から視てほぼ扇状に成形されている。また、アウタープレート凹部25は、リベット15を除く位置に設けられている。第2実施形態のアウタープレート凹部25は、第1実施形態で説明したアウタープレート凹部25に比べて、回転軸方向から視たときの面積が大きいものとなっている。したがって、第2実施形態は、第1実施形態に比べて、アウタープレート凹部25とアーマチャ10との間の磁気抵抗が大きいものとなる。 The outer plate recessed portion 25 is provided between the vertical walls 22, and is shaped like a fan when viewed from the rotation axis direction. Further, the outer plate recessed portion 25 is provided at a position other than the rivet 15 . The outer plate recessed portion 25 of the second embodiment has a larger area when viewed from the rotation axis direction than the outer plate recessed portion 25 described in the first embodiment. Therefore, in the second embodiment, the magnetic resistance between the outer plate concave portion 25 and the armature 10 is greater than in the first embodiment.
 以上説明した第2実施形態の電磁クラッチ1は、アウタープレート20において立壁22のうち回転方向を向く面22aに近い位置にリベット15を設けることで、アウタープレート凹部25の面積を大きく確保することが可能である。そのため、電磁コイル58の通電時にアーマチャ10とアウタープレート20との間の磁束漏れをより低減し、「アーマチャ10の内輪部12-ロータ中央部502-アーマチャ10の外輪部11」を流れる磁束量をより増加することが可能となる。したがって、第2実施形態の電磁クラッチ1は、第1実施形態よりも磁気性能を向上し、ロータ50とアーマチャ10との磁気吸引力をより大きくすることができる。 In the electromagnetic clutch 1 of the second embodiment described above, the rivet 15 is provided at a position close to the surface 22a of the standing wall 22 of the outer plate 20 facing the rotational direction, thereby ensuring a large area for the outer plate concave portion 25. It is possible. Therefore, when the electromagnetic coil 58 is energized, the magnetic flux leakage between the armature 10 and the outer plate 20 is further reduced, and the amount of magnetic flux flowing through "the inner ring portion 12 of the armature 10 - the rotor center portion 502 - the outer ring portion 11 of the armature 10" is reduced. It is possible to increase more. Therefore, the electromagnetic clutch 1 of the second embodiment can improve the magnetic performance as compared with the first embodiment, and can increase the magnetic attraction force between the rotor 50 and the armature 10 .
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、第1実施形態等に対して、アーマチャ10の構成の一部とアウタープレート20の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Third Embodiment)
A third embodiment will be described. In the third embodiment, part of the configuration of the armature 10 and part of the configuration of the outer plate 20 are changed with respect to the first embodiment and the like, and the rest is the same as the first embodiment and the like. Therefore, only parts different from the first embodiment and the like will be described.
 図12に示すように、第3実施形態では、アーマチャ10のうちアウタープレート20側の面に凹み形状部としてのアーマチャ凹部16が設けられている。なお、第3実施形態では、アウタープレート20の対向壁21にアウタープレート凹部25は設けられていない。 As shown in FIG. 12, in the third embodiment, an armature concave portion 16 is provided as a concave portion on the surface of the armature 10 on the outer plate 20 side. In addition, in the third embodiment, the outer plate concave portion 25 is not provided in the facing wall 21 of the outer plate 20 .
 アーマチャ凹部16は、アーマチャ10のうち長穴13を含む部位に設けられ、アウタープレート20の対向壁21からの距離D3が遠くなるように凹んでいる。具体的に、アーマチャ10のうちアーマチャ凹部16が設けられていない部位とアウタープレート20の対向壁21との距離D1に比べて、アウタープレート20の対向壁21とアーマチャ凹部16との距離D3は大きくなっている。これにより、アーマチャ凹部16と対向壁21との距離D3が遠くなることで、その間の磁気抵抗が大きくなる。そのため、図12の破線M4で示したように「アーマチャ10の内輪部12-アウタープレート20の対向壁21-アーマチャ10の外輪部11」を流れる磁束量は無視できる程度に小さくなり、アーマチャ10とアウタープレート20との間の磁束漏れが低減する。したがって、実線M1で示したように「ステータ57-ロータ内径部503-アーマチャ10の内輪部12-ロータ中央部502-アーマチャ10の外輪部11-ロータ外径部501-ステータ57」による磁気回路を流れる磁束量が増加する。そのため、ロータ50とアーマチャ10との磁気吸引力が大きくなる。その結果、第3実施形態の電磁クラッチ1も、第1実施形態等と同じく磁気性能を向上し、ロータ50からコンプレッサ70へのトルク伝達性を高めることができる。 The armature recess 16 is provided in a portion of the armature 10 that includes the elongated hole 13 and is recessed so that the distance D3 from the facing wall 21 of the outer plate 20 increases. Specifically, the distance D3 between the opposing wall 21 of the outer plate 20 and the armature recess 16 is greater than the distance D1 between the portion of the armature 10 where the armature recess 16 is not provided and the opposing wall 21 of the outer plate 20. It's becoming As a result, the distance D3 between the armature concave portion 16 and the opposing wall 21 is increased, thereby increasing the magnetic resistance therebetween. Therefore, as indicated by the broken line M4 in FIG. Magnetic flux leakage between the outer plate 20 is reduced. Therefore, as indicated by the solid line M1, a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--armature 10 outer ring portion 11--rotor outer diameter portion 501--stator 57" is formed. The amount of magnetic flux flowing increases. Therefore, the magnetic attraction force between the rotor 50 and the armature 10 increases. As a result, the electromagnetic clutch 1 of the third embodiment can also improve the magnetic performance as in the first embodiment and the like, and the torque transmission from the rotor 50 to the compressor 70 can be enhanced.
 また、第3実施形態の電磁クラッチ1が備える弾性部材40も制振部43に厚肉部46を有している。その厚肉部46は、アーマチャ凹部16の対向壁21側の面と、対向壁21のうちアーマチャ凹部16側の面とにそれぞれ当接し、アーマチャ凹部16と対向壁21との間に圧縮された状態で設けられている。そのため、弾性部材40の制振部43が有する厚肉部46により、アーマチャ10の内輪部12および外輪部11の振動を抑えることが可能である。したがって、第3実施形態の電磁クラッチ1も、第1実施形態等と同じく、作動音を確実に低減することができる。 The elastic member 40 provided in the electromagnetic clutch 1 of the third embodiment also has a thick portion 46 in the damping portion 43 . The thick portion 46 is in contact with the surface of the armature recess 16 on the side of the opposing wall 21 and the surface of the opposing wall 21 on the side of the armature recess 16 , and is compressed between the armature recess 16 and the opposing wall 21 . provided in the state. Therefore, the vibration of the inner ring portion 12 and the outer ring portion 11 of the armature 10 can be suppressed by the thick portion 46 of the damping portion 43 of the elastic member 40 . Therefore, the electromagnetic clutch 1 of the third embodiment can also reliably reduce operating noise, like the first embodiment.
 (第4実施形態)
 第4実施形態について説明する。第4実施形態は、第1実施形態等に対して、アーマチャ10の構成の一部とアウタープレート20の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment will be described. In the fourth embodiment, part of the configuration of the armature 10 and part of the configuration of the outer plate 20 are changed with respect to the first embodiment and the like, and the rest is the same as the first embodiment and the like. Therefore, only parts different from the first embodiment and the like will be described.
 図13および図14に示すように、第4実施形態では、アウタープレート20の対向壁21に磁気抵抗穴27が設けられている。なお、第4実施形態では、アウタープレート20およびアーマチャ10に対し、凹み形状部としてのアウタープレート凹部25およびアーマチャ凹部16は設けられていない。 As shown in FIGS. 13 and 14, in the fourth embodiment, magnetic resistance holes 27 are provided in the opposing wall 21 of the outer plate 20. As shown in FIGS. In the fourth embodiment, the outer plate recessed portion 25 and the armature recessed portion 16 as recessed portions are not provided in the outer plate 20 and the armature 10 .
 図13に示すように、磁気抵抗穴27は、アーマチャ10の長穴13と向き合う位置に設けられている。また、図14に示すように、磁気抵抗穴27は、アウタープレート20の対向壁21に回転軸Axを中心とした円弧状に形成されている。磁気抵抗穴27は、対向壁21を径方向内側の部位21cと径方向外側の部位21dとに分断している。磁気抵抗穴27は、対向壁21のうち径方向内側の部位21cと、対向壁21のうち径方向外側の部位21dとの磁気抵抗を大きくする機能を有している。そのため、図13の破線M5で示したように「アーマチャ10の内輪部12-アウタープレート20の対向壁21-アーマチャ10の外輪部11」を流れる磁束量は無視できる程度に小さくなり、アーマチャ10とアウタープレート20との間の磁束漏れが低減する。したがって、実線M1で示したように「ステータ57-ロータ内径部503-アーマチャ10の内輪部12-ロータ中央部502-アーマチャ10の外輪部11-ロータ外径部501-ステータ57」による磁気回路を流れる磁束量が増加する。そのため、ロータ50とアーマチャ10との磁気吸引力が大きくなる。その結果、第4実施形態の電磁クラッチ1も、第1実施形態等と同じく磁気性能を向上し、ロータ50からコンプレッサ70へのトルク伝達性を高めることができる。 As shown in FIG. 13, the magnetic resistance hole 27 is provided at a position facing the elongated hole 13 of the armature 10 . Further, as shown in FIG. 14, the magnetic resistance hole 27 is formed in the facing wall 21 of the outer plate 20 in an arc shape centered on the rotation axis Ax. The magnetic resistance hole 27 divides the opposing wall 21 into a radially inner portion 21c and a radially outer portion 21d. The magnetic resistance hole 27 has a function of increasing magnetic resistance between a radially inner portion 21c of the facing wall 21 and a radially outer portion 21d of the facing wall 21 . Therefore, as indicated by the dashed line M5 in FIG. 13, the amount of magnetic flux flowing through “the inner ring portion 12 of the armature 10—the opposing wall 21 of the outer plate 20—the outer ring portion 11 of the armature 10” becomes negligibly small. Magnetic flux leakage between the outer plate 20 is reduced. Therefore, as indicated by the solid line M1, a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--armature 10 outer ring portion 11--rotor outer diameter portion 501--stator 57" is formed. The amount of magnetic flux flowing increases. Therefore, the magnetic attraction force between the rotor 50 and the armature 10 increases. As a result, the electromagnetic clutch 1 of the fourth embodiment can also improve the magnetic performance as in the first embodiment and the like, and can improve the torque transmissibility from the rotor 50 to the compressor 70 .
 (第5実施形態)
 第5実施形態について説明する。第5実施形態は、第1実施形態と第4実施形態とを組み合わせた構成である。
(Fifth embodiment)
A fifth embodiment will be described. 5th Embodiment is the structure which combined 1st Embodiment and 4th Embodiment.
 図15および図16に示すように、第5実施形態では、アウタープレート20の対向壁21にアウタープレート凹部25が設けられている。さらに、第5実施形態では、アウタープレート凹部25に磁気抵抗穴27が設けられている。図15に示すように、磁気抵抗穴27は、アーマチャ10の長穴13と向き合う位置に設けられている。また、図16に示すように、磁気抵抗穴27は、アウタープレート20の対向壁21においてアウタープレート凹部25を含む位置に回転軸Axを中心とした円弧状に形成されている。 As shown in FIGS. 15 and 16, in the fifth embodiment, an outer plate recessed portion 25 is provided in the facing wall 21 of the outer plate 20 . Furthermore, in the fifth embodiment, a magnetic resistance hole 27 is provided in the outer plate concave portion 25 . As shown in FIG. 15, the magnetic resistance hole 27 is provided at a position facing the elongated hole 13 of the armature 10. As shown in FIG. Further, as shown in FIG. 16 , the magnetic resistance hole 27 is formed in an arcuate shape around the rotation axis Ax at a position including the outer plate concave portion 25 in the facing wall 21 of the outer plate 20 .
 第5実施形態では、アウタープレート20の対向壁21にアウタープレート凹部25と磁気抵抗穴27とを設けている。そのため、図15の破線M6で示したように「アーマチャ10の内輪部12-アウタープレート20の対向壁21-アーマチャ10の外輪部11」を流れる磁束量を極めて小さくすることが可能となる。すなわち、アーマチャ10とアウタープレート20との間の磁束漏れをより低減することが可能となる。したがって、実線M1で示したように「ステータ57-ロータ内径部503-アーマチャ10の内輪部12-ロータ中央部502-アーマチャ10の外輪部11-ロータ外径部501-ステータ57」による磁気回路を流れる磁束量をより増加できる。そのため、ロータ50とアーマチャ10との磁気吸引力をより大きくできる。その結果、第5実施形態の電磁クラッチ1は、磁気性能をより向上し、ロータ50からコンプレッサ70へのトルク伝達性を高めることができる。 In the fifth embodiment, the facing wall 21 of the outer plate 20 is provided with the outer plate recessed portion 25 and the magnetic resistance hole 27 . Therefore, as indicated by the dashed line M6 in FIG. 15, the amount of magnetic flux flowing through "the inner ring portion 12 of the armature 10--the opposing wall 21 of the outer plate 20--the outer ring portion 11 of the armature 10" can be made extremely small. That is, magnetic flux leakage between the armature 10 and the outer plate 20 can be further reduced. Therefore, as indicated by the solid line M1, a magnetic circuit consisting of "stator 57--rotor inner diameter portion 503--inner ring portion 12 of armature 10--rotor central portion 502--armature 10 outer ring portion 11--rotor outer diameter portion 501--stator 57" is formed. The amount of magnetic flux that flows can be further increased. Therefore, the magnetic attraction force between the rotor 50 and the armature 10 can be increased. As a result, the electromagnetic clutch 1 of the fifth embodiment can further improve the magnetic performance and improve torque transmissibility from the rotor 50 to the compressor 70 .
 (他の実施形態)
 (1)上記各実施形態では、電磁クラッチ1がトルクを伝達する従動体としてコンプレッサ70を例示したが、これに限らず、電磁クラッチ1がトルクを伝達する従動体として種々の装置を適用することが可能である。
(Other embodiments)
(1) In each of the above embodiments, the compressor 70 was exemplified as the driven body to which the electromagnetic clutch 1 transmits torque. is possible.
 (2)上記各実施形態では、電磁クラッチ1の備えるアウタープレート20に+記号状の開口26を設けたが、これに限らず、アウタープレート20に設ける開口26の形状は、例えばI形状、Y形状、*形状など任意の形状とすることが可能である。その場合、インナーハブ30および弾性部材40の形状も、その開口26の形状に合わせて種々の形状とすることが可能である。 (2) In each of the above-described embodiments, the outer plate 20 of the electromagnetic clutch 1 is provided with the + sign-shaped opening 26. However, the shape of the opening 26 provided in the outer plate 20 is not limited to this. Any shape such as a shape, * shape, or the like can be used. In that case, the shape of the inner hub 30 and the elastic member 40 can also be made into various shapes according to the shape of the opening 26 .
 (3)上記第1、第2、第5実施形態では、電磁クラッチ1は凹み形状部としてアウタープレート凹部25を備える構成とし、第3実施形態では、電磁クラッチ1は凹み形状部としてアーマチャ凹部16を備える構成としたが、それに限らない。例えば、電磁クラッチ1は、凹み形状部としてアウタープレート凹部25とアーマチャ凹部16の両方を備える構成としてもよく、さらに磁気抵抗穴27を備える構成としてもよい。 (3) In the first, second, and fifth embodiments, the electromagnetic clutch 1 has the outer plate concave portion 25 as the concave portion. Although it was set as the structure provided with, it is not restricted to it. For example, the electromagnetic clutch 1 may be configured to include both the outer plate recess 25 and the armature recess 16 as recessed portions, and may further be configured to include the magnetic resistance hole 27 .
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 The present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is explicitly stated that they are particularly essential, and when they are clearly limited to a specific number in principle It is not limited to that specific number, except when In addition, in each of the above-described embodiments, when referring to the shape, positional relationship, etc. of the constituent elements, the shape, It is not limited to the positional relationship or the like.

Claims (9)

  1.  電磁コイル(58)を有し所定の回転軸(Ax)を中心に回転するロータ(50)から従動体(70)にトルクを伝達する状態と遮断する状態とを切り替える電磁クラッチにおいて、
     前記ロータの回転軸方向の一方側で前記ロータに対向して設けられ、外周側に設けられる外輪部(11)、前記外輪部に対して回転軸側に設けられる内輪部(12)、および、前記外輪部と前記内輪部との間で周方向に円弧状に延びる長穴(13)を有し、前記電磁コイルの発生する磁気吸引力により前記ロータに当接可能なアーマチャ(10)と、
     前記アーマチャに固定され、前記アーマチャのうち前記ロータとは反対側の面に向き合う対向壁(21)、前記対向壁から前記ロータの回転軸方向に延びる立壁(22)、および、前記立壁のうち前記対向壁とは反対側の部位から前記ロータの回転軸に垂直に延びるフランジ(23)を有し、前記アーマチャと共に回転するアウタープレート(20)と、
     前記アーマチャと前記アウタープレートとの間に設けられ、前記立壁に向き合う内側立壁(34)、および、前記フランジに向き合う内側フランジ(35)を有し、前記従動体にトルクを伝えるインナーハブ(30)と、
     前記内側フランジと前記フランジとの間に設けられる付勢部(41)、前記立壁のうち回転方向に向く面と前記内側立壁のうち回転方向に向く面との間に設けられる緩衝部(42)、および、前記対向壁と前記アーマチャとの間に設けられる制振部(43)を有する弾性部材(40)と、を備え、
     前記対向壁および前記アーマチャの少なくとも一方には、前記対向壁と前記立壁とが接続する部位(21a)と前記アーマチャとの距離(D1)に比べて、前記アーマチャと前記対向壁との距離(D2、D3)を遠くする凹み形状部(16、25)が設けられている、電磁クラッチ。
    An electromagnetic clutch that switches between a state of transmitting torque from a rotor (50) having an electromagnetic coil (58) and rotating about a predetermined rotation axis (Ax) to a driven body (70) and a state of not transmitting it,
    An outer ring portion (11) provided on one side of the rotor in the rotation axis direction and facing the rotor and provided on the outer peripheral side, an inner ring portion (12) provided on the rotation shaft side of the outer ring portion, and an armature (10) having an elongated hole (13) extending in an arc shape in the circumferential direction between the outer ring portion and the inner ring portion and capable of coming into contact with the rotor by magnetic attraction force generated by the electromagnetic coil;
    A facing wall (21) fixed to the armature and facing a surface of the armature opposite to the rotor, an upright wall (22) extending from the facing wall in the rotation axis direction of the rotor, and an outer plate (20) having a flange (23) extending perpendicularly to the rotation axis of the rotor from a portion on the opposite side of the opposing wall and rotating together with the armature;
    An inner hub (30) provided between the armature and the outer plate, having an inner standing wall (34) facing the standing wall and an inner flange (35) facing the flange, and transmitting torque to the driven body. When,
    A biasing portion (41) provided between the inner flanges and a cushioning portion (42) provided between a surface of the vertical wall facing the rotational direction and a surface of the internal vertical wall facing the rotational direction. and an elastic member (40) having a damping portion (43) provided between the opposing wall and the armature,
    At least one of the opposing wall and the armature has a distance (D2 , D3) are provided with recessed features (16, 25).
  2.  前記凹み形状部は、前記対向壁のうち前記アーマチャの前記長穴と対向する部位で前記アーマチャの前記内輪部と前記外輪部とを跨ぐ位置に設けられ、前記アーマチャからの距離(D2)が遠くなるように凹むアウタープレート凹部(25)である、請求項1に記載の電磁クラッチ。 The recessed portion is provided at a portion of the opposing wall that faces the elongated hole of the armature and straddles the inner ring portion and the outer ring portion of the armature, and the distance (D2) from the armature is large. 2. An electromagnetic clutch according to claim 1, wherein the outer plate recess (25) is recessed to form a .
  3.  前記アウタープレートの前記対向壁と前記アーマチャとを固定するリベット(15)をさらに備え、
     前記アウタープレート凹部は、前記アウタープレートにおいて前記立壁と前記対向壁とが接続する箇所と前記リベットが設けられる箇所との間の部位に設けられている、請求項2に記載の電磁クラッチ。
    further comprising a rivet (15) fixing the opposing wall of the outer plate and the armature;
    3. The electromagnetic clutch according to claim 2, wherein said outer plate recess is provided at a portion of said outer plate between a portion where said standing wall and said opposing wall are connected and a portion where said rivet is provided.
  4.  前記アウタープレートの前記対向壁と前記アーマチャとを固定するリベット(15)をさらに備え、
     前記リベットは、前記アウタープレートにおいて前記立壁のうち回転方向を向く面(22a)と前記アウタープレート凹部との間の部位に設けられている、請求項2に記載の電磁クラッチ。
    further comprising a rivet (15) fixing the opposing wall of the outer plate and the armature;
    3. The electromagnetic clutch according to claim 2, wherein said rivet is provided at a portion of said outer plate between a surface (22a) of said standing wall facing the rotational direction and said outer plate recess.
  5.  前記制振部は、前記アウタープレート凹部のうち前記アーマチャ側の面と前記アーマチャのうち前記アウタープレート凹部側の面とにそれぞれ当接し、前記アウタープレート凹部と前記アーマチャとの間に圧縮された状態で設けられる厚肉部(44)を有している、請求項2ないし4のいずれか1つに記載の電磁クラッチ。 The damping portion is in contact with a surface of the outer plate recess on the side of the armature and a surface of the armature on the side of the outer plate recess, and is compressed between the outer plate recess and the armature. 5. Electromagnetic clutch according to any one of claims 2 to 4, characterized in that it has a thickened portion (44) provided with .
  6.  前記凹み形状部は、前記アーマチャのうち前記長穴を含む部位に設けられ、前記対向壁からの距離(D3)が遠くなるように凹むアーマチャ凹部(16)である、請求項1に記載の電磁クラッチ。 2. The electromagnetic wave according to claim 1, wherein said recessed portion is an armature recessed portion (16) provided in a portion of said armature including said elongated hole and recessed so as to increase a distance (D3) from said opposing wall. clutch.
  7.  前記制振部は、前記アーマチャ凹部の前記対向壁側の面と前記対向壁のうち前記アーマチャ凹部側の面とにそれぞれ当接し、前記アーマチャ凹部と前記対向壁との間に圧縮された状態で設けられる厚肉部(46)を有している、請求項6に記載の電磁クラッチ。 The damping portion is in contact with a surface of the recessed armature on the side of the opposing wall and a surface of the recessed portion of the armature on the side of the recessed armature, and is compressed between the recessed armature and the opposing wall. 7. Electromagnetic clutch according to claim 6, having a thickened portion (46) provided.
  8.  電磁コイル(58)を有し所定の回転軸(Ax)を中心に回転するロータ(50)から従動体(70)にトルクを伝達する状態と遮断する状態とを切り替える電磁クラッチにおいて、
     前記ロータの回転軸方向の一方側で前記ロータに対向して設けられ、外周側に設けられる外輪部(11)、前記外輪部に対して回転軸側に設けられる内輪部(12)、および、前記外輪部と前記内輪部との間で周方向に円弧状に延びる長穴(13)を有し、前記電磁コイルの発生する磁気吸引力により前記ロータに当接可能なアーマチャ(10)と、
     前記アーマチャに固定され、前記アーマチャのうち前記ロータとは反対側の面に向き合う対向壁(21)、前記対向壁から前記ロータの回転軸方向に延びる立壁(22)、および、前記立壁のうち前記対向壁とは反対側の部位から前記ロータの回転軸に垂直に延びるフランジ(23)を有し、前記アーマチャと共に回転するアウタープレート(20)と、
     前記アーマチャと前記アウタープレートとの間に設けられ、前記立壁に向き合う内側立壁(34)、および、前記フランジに向き合う内側フランジ(35)を有し、前記従動体にトルクを伝えるインナーハブ(30)と、
     前記フランジと前記内側フランジとの間に設けられる付勢部(41)、前記立壁のうち回転方向に向く面と前記内側立壁のうち回転方向に向く面との間に設けられる緩衝部(42)、および、前記対向壁と前記アーマチャとの間に設けられる制振部(43)を有する弾性部材(40)と、を備え、
     前記対向壁には、前記対向壁を径方向内側の部位(21c)と径方向外側の部位(21d)とに分断し、前記対向壁のうち前記径方向内側の部位と前記対向壁のうち前記径方向外側の部位との磁気抵抗を大きくする磁気抵抗穴(27)が前記アーマチャの前記長穴と向き合う位置に設けられている、電磁クラッチ。
    An electromagnetic clutch that switches between a state of transmitting torque from a rotor (50) having an electromagnetic coil (58) and rotating about a predetermined rotation axis (Ax) to a driven body (70) and a state of not transmitting it,
    An outer ring portion (11) provided on one side of the rotor in the rotation axis direction and facing the rotor and provided on the outer peripheral side, an inner ring portion (12) provided on the rotation shaft side of the outer ring portion, and an armature (10) having an elongated hole (13) extending in an arc shape in the circumferential direction between the outer ring portion and the inner ring portion and capable of coming into contact with the rotor by magnetic attraction force generated by the electromagnetic coil;
    A facing wall (21) fixed to the armature and facing a surface of the armature opposite to the rotor, an upright wall (22) extending from the facing wall in the rotation axis direction of the rotor, and an outer plate (20) having a flange (23) extending perpendicularly to the rotation axis of the rotor from a portion on the opposite side of the opposing wall and rotating together with the armature;
    An inner hub (30) provided between the armature and the outer plate, having an inner standing wall (34) facing the standing wall and an inner flange (35) facing the flange, and transmitting torque to the driven body. When,
    A biasing portion (41) provided between the flange and the inner flange, and a cushioning portion (42) provided between a surface of the vertical wall facing the rotational direction and a surface of the internal vertical wall facing the rotational direction. and an elastic member (40) having a damping portion (43) provided between the opposing wall and the armature,
    The opposing wall is divided into a radially inner portion (21c) and a radially outer portion (21d). An electromagnetic clutch, wherein a magnetic resistance hole (27) for increasing magnetic resistance with a radially outer portion is provided at a position facing the elongated hole of the armature.
  9.  前記対向壁には、前記対向壁と前記立壁とが接続する部位(21a)と前記アーマチャとの距離(D1)に比べて、前記アーマチャと前記対向壁との距離(D2)が遠くなるように凹むアウタープレート凹部(25)が設けられており、前記磁気抵抗穴は前記アウタープレートの前記対向壁において前記アウタープレート凹部を含む位置に設けられている、請求項8に記載の電磁クラッチ。 The opposing wall is arranged such that the distance (D2) between the armature and the opposing wall is greater than the distance (D1) between the armature and the portion (21a) where the opposing wall and the standing wall are connected. 9. An electromagnetic clutch according to claim 8, wherein a recessed outer plate recess (25) is provided and said magnetic resistance hole is provided in said opposing wall of said outer plate at a position including said outer plate recess.
PCT/JP2021/046832 2021-01-20 2021-12-17 Electromagnetic clutch WO2022158206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021007298A JP7415962B2 (en) 2021-01-20 2021-01-20 electromagnetic clutch
JP2021-007298 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158206A1 true WO2022158206A1 (en) 2022-07-28

Family

ID=82548194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046832 WO2022158206A1 (en) 2021-01-20 2021-12-17 Electromagnetic clutch

Country Status (2)

Country Link
JP (1) JP7415962B2 (en)
WO (1) WO2022158206A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914298A (en) * 1995-06-27 1997-01-14 Nippondenso Co Ltd Electromagnetic clutch
JP2004278778A (en) * 2002-12-10 2004-10-07 Tochigi Fuji Ind Co Ltd Electromagnetic clutch device
JP2005114104A (en) * 2003-10-09 2005-04-28 Nippon Soken Inc Lock detecting mechanism of rotary machine with electromagnetic clutch
KR20100038810A (en) * 2008-10-06 2010-04-15 한라공조주식회사 A crank-shaft clutch apparatus for hybrid vehicle
JP2015209901A (en) * 2014-04-25 2015-11-24 カルソニックカンセイ株式会社 Electro-magnetic clutch and gas compressor
WO2017182034A1 (en) * 2016-04-20 2017-10-26 Schaeffler Technologies AG & Co. KG Clutch system
JP2018538489A (en) * 2015-11-12 2018-12-27 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Clutch system and method of operating a clutch system
JP2019120368A (en) * 2018-01-10 2019-07-22 株式会社デンソー Power transmission device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914298A (en) * 1995-06-27 1997-01-14 Nippondenso Co Ltd Electromagnetic clutch
JP2004278778A (en) * 2002-12-10 2004-10-07 Tochigi Fuji Ind Co Ltd Electromagnetic clutch device
JP2005114104A (en) * 2003-10-09 2005-04-28 Nippon Soken Inc Lock detecting mechanism of rotary machine with electromagnetic clutch
KR20100038810A (en) * 2008-10-06 2010-04-15 한라공조주식회사 A crank-shaft clutch apparatus for hybrid vehicle
JP2015209901A (en) * 2014-04-25 2015-11-24 カルソニックカンセイ株式会社 Electro-magnetic clutch and gas compressor
JP2018538489A (en) * 2015-11-12 2018-12-27 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Clutch system and method of operating a clutch system
WO2017182034A1 (en) * 2016-04-20 2017-10-26 Schaeffler Technologies AG & Co. KG Clutch system
JP2019120368A (en) * 2018-01-10 2019-07-22 株式会社デンソー Power transmission device

Also Published As

Publication number Publication date
JP2022111696A (en) 2022-08-01
JP7415962B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US10465755B2 (en) Electromagnetic clutch
KR100203833B1 (en) Electromagnetic coupling device
US7311188B2 (en) Electromagnetic clutch
WO2019216070A1 (en) Electromagnetic clutch
WO2022158206A1 (en) Electromagnetic clutch
US7213695B2 (en) Electromagnetic clutch
JP7255528B2 (en) Torque transmission device
US11353068B2 (en) Power transmission device
JP6747399B2 (en) Power transmission device
JP6597746B2 (en) Power transmission device
US20190264759A1 (en) Power transmission device
JP5910472B2 (en) Clutch mechanism
WO2023053881A1 (en) Radial foil bearing, compressor, and refrigeration device
JPH06193653A (en) Electromagnetic clutch
KR20210017829A (en) Clutch and compressor including the same
WO2016103665A1 (en) Electromagnetic clutch and method for producing same
KR20050055877A (en) Fixing structure of field coil assembly
JP2014152846A (en) Clutch
KR20160107860A (en) Clutch for compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921307

Country of ref document: EP

Kind code of ref document: A1