WO2022157450A1 - Protection des bobines d'une machine électrique - Google Patents

Protection des bobines d'une machine électrique Download PDF

Info

Publication number
WO2022157450A1
WO2022157450A1 PCT/FR2022/050099 FR2022050099W WO2022157450A1 WO 2022157450 A1 WO2022157450 A1 WO 2022157450A1 FR 2022050099 W FR2022050099 W FR 2022050099W WO 2022157450 A1 WO2022157450 A1 WO 2022157450A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
flux barrier
flux
axis
electrical machine
Prior art date
Application number
PCT/FR2022/050099
Other languages
English (en)
Inventor
Sabrina Siham AYAT
Rémi Luc Stéphane DORGET
Benjamin DAGUSE
Original Assignee
Safran
Universite De Lorraine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran, Universite De Lorraine filed Critical Safran
Priority to CN202280016148.7A priority Critical patent/CN117280583A/zh
Priority to US18/273,428 priority patent/US20240097548A1/en
Priority to EP22704930.1A priority patent/EP4282059A1/fr
Publication of WO2022157450A1 publication Critical patent/WO2022157450A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to the field of electrical machines comprising superconducting pads which can in particular be used in aircraft.
  • the invention applies to electrical machines comprising magnetized or non-magnetized pads, to electrical machines with superconducting magnets or superconducting flux barriers, to entirely superconducting machines (superconducting armature and inductor) or partially superconducting (armature or superconducting inductor) as well as radial or axial flux superconducting machines.
  • a superconducting material is a material which, when cooled to a temperature below its critical temperature, has zero resistivity, thus offering the possibility of circulating direct currents without losses. From this, several phenomena ensue, such as the diamagnetic response for any variation of the magnetic field, making it possible to produce excellent magnetic shielding.
  • an electric machine comprises an inductor and an armature.
  • the inductor comprises an HTC coil made with HTC wires which generates a magnetic field modulated by superconducting pads, which act as magnetic screens.
  • the armature comprises a three-phase copper winding system comprising an arrangement of coils which rest on a ferromagnetic or non-magnetic support. The rotation of the screens varies the magnetic field and induces, by Lenz's law, an electromotive force in the coils.
  • the dimensioning of such a machine leads to an axial flow structure without a rotating supply system (ring/brush type). Maintenance and safety problems, brought about by a ring/rotating brush system, are therefore avoided.
  • This electric machine is partially superconductive insofar as only the inductor is made of a superconductive material, as opposed to a totally superconductive machine in which all the active parts are designed with superconductive materials.
  • the term “inductor” will denote the HTC coil and the superconducting pads configured to modulate the magnetic flux created by the HTC coil. It will be noted that, in a superconducting electric machine with flux barriers, the diamagnetic behavior of the superconducting pellets when they are cooled out of the field is used.
  • the superconducting pads are in this case non-magnetized and form a screen (screening) which deflects the field lines when they are immersed in a magnetic field. The magnetic field is then concentrated and of high amplitude between the non-magnetized superconducting pads and low downstream of them.
  • the superconducting pads can be magnetized and form superconducting magnets. We then speak of a machine with superconducting magnets.
  • the pellets are made of at least one of the following materials which have in particular very good screening characteristics: in YBCO (English acronym for Yttrium Barium Copper Oxide for mixed oxides of Barium, Copper and Yttrium), in GdBCO (acronym for Gadolinium-Barium-Copper-Oxygen), NbTi (for niobium-titanium), MgB2 (magnesium diboride) or any RE-Ba-Cu-0 or RE material can be any rare earth.
  • YBCO English acronym for Yttrium Barium Copper Oxide for mixed oxides of Barium, Copper and Yttrium
  • GdBCO acronym for Gadolinium-Barium-Copper-Oxygen
  • NbTi for niobium-titanium
  • MgB2 manganesium diboride
  • any RE-Ba-Cu-0 or RE material can be any rare earth.
  • Pellets are generally obtained through the germ growth process. Reference may in particular be made to the article by M. Morita, H. Teshima, and H. Hirano, “Development of oxide superconductors”, Nippon Steel Technical Report, vol. 93, p. 18-23, 2006 for more details on this method.
  • this type of process consists in forming a crystal by progressive solidification of material on the surface of a pre-existing seed.
  • the pellets thus obtained are therefore generally of circular or rectangular shapes.
  • the inter-grain connection associated with this manufacturing process tends to decrease pellet performance.
  • the concentration of the magnetic flux on the coils of the armature was not optimal, which not only reduces the power density of electrical machines but also risks saturating the parts made of ferromagnetic material and causing the electrical machine to fail.
  • An object of the invention is to increase, in a simple and effective manner, the power density of superconducting machines.
  • Another object of the invention is to reduce the risks of failure of superconducting machines.
  • the invention applies to any type of superconducting machine, which include in particular partially superconducting or totally superconducting machines, with flux barriers or superconducting magnets, with axial or radial flux.
  • a superconducting electrical machine for example with axial flux or radial flux, comprising an inductor comprising superconducting pads distributed circumferentially around an axis of the electrical machine.
  • the electric machine further comprises a flux barrier comprising a superconducting material, said flux barrier being centered on the axis of rotation and extending radially inside the superconducting pads.
  • the flux barrier comprises an annular band extending in a plane radial to the axis, said annular band being coaxial with the axis;
  • the flux barrier includes an annular band extending circumferentially around the axis;
  • the electric machine further comprises at least one face extending radially towards the axis from the annular band, preferably two opposite faces axially offset from each other;
  • the electrical machine further includes a drive shaft configured to rotate the superconducting pads about the axis, the face of the flux barrier including a through hole and the drive shaft passing through the through hole whereby the flux barrier is mounted around the drive shaft;
  • the electric machine further comprises a cooling assembly for the superconducting pads and/or ferrofluid seals mounted near the drive shaft through the through hole, so that the flux barrier is mounted around the cooling assembly and/or ferrofluid seals;
  • the electrical machine further comprises an armature comprising distributed coils circumferentially around the axis
  • the invention proposes an aircraft comprising an electric machine according to the first aspect.
  • Figure 1 is a simplified sectional view of an electrical axial flux machine according to a first embodiment of the invention in which the flux barrier is attached to the superconducting pads;
  • Figure 2 is a simplified, exploded and perspective view of an axial flux electric machine according to a second embodiment of the invention in which the flux barrier is fixed to the coils of the armature;
  • Figure 3 is a simplified, exploded and perspective view of a radial flux electrical machine according to a third embodiment of the invention in which the flux barrier is fixed to the support structure of the superconducting pellets, the adiabatic enclosure having been omitted;
  • Figure 4 is a simplified, exploded and perspective view of an alternative embodiment of the radial flux electric machine of Figure 4, the adiabatic enclosure having been omitted;
  • Figure 5 is a partial perspective view of an embodiment of a flow barrier
  • Figure 6 is a schematic view of an aircraft comprising an electric machine according to the invention.
  • FIG. 1 is shown schematically a superconducting axial flux electric machine 1 with flux barriers according to one embodiment of the invention conventionally comprising a rotating part, or rotor, and a fixed part, or stator.
  • the axis X of the rotor is referred to as its axis of rotation.
  • the axial direction corresponds to the direction of the X axis and a radial direction is a direction perpendicular to this axis and passing through it.
  • the circumferential (or lateral) direction corresponds to a direction perpendicular to the axis X and not passing through it.
  • internal (respectively, interior) and external (respectively, exterior), respectively, are used with reference to a radial direction such that the internal part or face of an element is closer to the X axis than the external part or face of the same element.
  • the superconducting axial flux electrical machine 1 comprises an armature 2 and an inductor 3.
  • the armature 2 comprises an arrangement 4 of non-superconducting electromagnetic coils 5, generally made of copper.
  • the inductor 3 comprises a superconducting coil 6 coaxial with the arrangement 4 of the electromagnetic coils 5 of the armature 2 and superconducting pads 7 mounted on a carrier structure 8 which are arranged in the same plane orthogonal to the axis X and radially inside the superconducting coil 6.
  • the inductor 3 further comprises a stator yoke comprising an iron crown 8.
  • the rotor is formed by the superconducting pads 7 which are driven in rotation around an axis of rotation extending in the axial direction.
  • the stator is formed by the arrangement 4 of electromagnetic coils 5 and the superconducting coil 6.
  • the superconducting pads 7 are made of superconducting material and are distributed equidistantly around the axis of rotation, which allows a spatial variation of the electromagnetic field in the air gap.
  • the superconducting pads 7 are non-magnetized.
  • the superconducting pads 7 could be magnetized.
  • the pellets are made of YBCO (English acronym for Yttrium Barium Copper Oxide for Mixed Oxides of Barium, Copper and Yttrium), in GdBCO (English acronym for Gadolinium-Barium-Copper-Oxygen), NbTi (for niobium-titanium), MgB2 (magnesium diboride) or any RE-Ba-Cu-0 material where RE can be any rare earth.
  • YBCO English acronym for Yttrium Barium Copper Oxide for Mixed Oxides of Barium, Copper and Yttrium
  • GdBCO English acronym for Gadolinium-Barium-Copper-Oxygen
  • NbTi for niobium-titanium
  • MgB2 manganesium diboride
  • RE-Ba-Cu-0 material where RE can be any rare earth.
  • the superconducting coil 6 of the inductor 3 is a static superconducting coil supplied with direct current. If necessary, when the electric machine 1 comprises a yoke 4, the latter ensures mechanical strength of the electromagnetic coils 5 of the armature 2. In other words, the inductor 2 is superconducting while the armature 3 is non-superconductive.
  • the superconducting pads 7 can have any suitable shape.
  • each superconducting pad 7 has, in a manner known per se, the shape of a full (solid) disk (as illustrated in FIG. 2).
  • the superconducting pad 7 can be hollow in order to adapt its shape to the penetration thickness of the magnetic field in the pad 7 (as illustrated in FIG. 1).
  • Each superconducting pad 7 comprises for this purpose a circumferential wall which has:
  • the inner face extends radially inside the outer face.
  • the superconducting pad 7 is therefore hollow in that it has a cavity which, as will be seen in what follows, can be emerging, passing through or enclosed in the superconducting pad 7.
  • the cavity is preferably empty (devoid of material) .
  • the superconducting pad 7 can comprise one or more additional walls dividing the cavity into several parts. If necessary, a through hole can be formed in all or part of the walls. Reference may be made to document FR3104804 in the name of the Applicant for more details on these different embodiments of superconducting pads 7 with cavity.
  • the shape of the superconducting pads 7 is adapted (optimized) so as to maximize the screening/mass ratio of the pads 7, that is to say that the shape of the superconducting pellets 7 is adapted so that the variation of the axial component of the induced magnetic field, and therefore the shielding of the magnetic flux, is maximum, while minimizing the mass of the superconducting pellets 7. It is thus possible to obtain an increase in the speed of rotation of the rotor and therefore of the power of the electric machine.
  • the superconducting pellets 7 may have a polygonal shape having at least five sides.
  • patch 7 has a hexagonal shape, preferably that of a regular isometric hexagon.
  • face 8 of each superconducting pad 7 has the geometry and dimensions of a ring sector.
  • ring sector we will understand here the shape delimited on the one hand by two coaxial circles, of different diameters, and on the other hand by two line segments originating from the center of the circles.
  • the ring sector thus comprises two opposite curved sides and two opposite straight sides.
  • the magnetic field is generated by the superconducting coil 6. Therefore, it is enough to turn off the superconducting coil 6 to cut off the magnetic field in the superconducting electric machine.
  • This has an advantage insofar as superconducting pads 7 which are cooled in the presence of a magnetic field are not able to screen the magnetic field.
  • the magnetic field it is necessary for the magnetic field to be screened to appear at a time after the cooling of the superconducting pads 7 to enable them to play their role as magnetic screens, which is made possible by the use of the superconducting coil 6.
  • the superconducting coil 6 can therefore be turned off when the superconducting pads 7 are hot and turned on once they have cooled.
  • the coils 5 of the armature 2 can also have any suitable shape.
  • the coils 5 may in particular have the shape of a ring sector.
  • each coil has a radially inner edge 10, a radially outer edge 9 and lateral edges 11 which connect the radially inner edge 10 and the radially outer edge 9.
  • the radially outer edge inner 10 and the radially outer edge 9 extend in a circumferential direction with respect to the axis X while the side edges 11 are substantially radial.
  • the electrical machine 1 further comprises a drive shaft, coaxial with the X axis, configured to drive the rotor in rotation, that is to say here the support structure on which the superconducting pads 7, as well as a set for cooling the superconducting pads 7 and the seals, for example magnetic seals comprising ferrofluids.
  • the part of the shaft passing through the armature 2 and the field 3, the cooling assembly and the seals are generally housed in an adiabatic enclosure 9. In the figures, only the adiabatic enclosure 9 is visible (FIG. 2). The adiabatic enclosure 9 extends radially inside with respect to the superconducting pads 7.
  • the cooling assembly generally comprises a cryostat comprising a rotating part and a fixed part housed in an enclosure.
  • the seals are configured to ensure a seal between the rotating part and the fixed part of the cryostat.
  • the electrical machine 1 further comprises a flux barrier 12, comprising a superconducting material, which is centered on the X axis of rotation and which extends radially inside the superconducting pads 7 and radially outside the adiabatic enclosure 9.
  • the flux barrier 12 is therefore positioned at the center of the electrical machine 1 so as to mask the parts which do not not participate in the generation of the torque, such as the drive shaft, the cooling assembly or the seals.
  • the flux barrier 12 therefore forms a screen for the parts housed in the adiabatic enclosure 9, which do not participate in the generation of the torque, which makes it possible to concentrate the magnetic flux at the level of the superconducting pads 7, and therefore to increase the power density of the electric machine 1.
  • the flux barrier 12 is placed between the superconducting pads 7 and the X axis, around the parts housed in the adiabatic enclosure 9, and extends continuously along the entire internal periphery of the superconducting pads 7.
  • the flux barrier 12 is also coaxial with the axis X.
  • the magnetic flux is thus screened over 360° and the power density of the electrical machine 1 is maximized. Assuming that the magnetic field created by the superconducting coil 6 alone varies very little over its radius, half of the magnetic flux of this same coil 6 passes through the parts housed in the adiabatic enclosure 9. Therefore, the presence of the barrier of flux 12 makes it possible to recover 50% of the magnetic flux to increase the induction in the useful part, and therefore to increase the power density of the electric machine 1 by approximately 30%.
  • the parts of the electrical machine 1 which include ferromagnetic materials, such as the seals if these include ferromagnetic parts, are then protected from the magnetic field. Indeed, in the absence of a flux barrier 12, there is a risk of saturating these ferromagnetic materials and therefore of causing the cooling assembly, and therefore the electrical machine 1, to fail.
  • the flux barrier 12 can be made of any of the superconducting materials envisaged for the superconducting pads 7 listed above. If necessary, the flux barrier 12 can be made of the same superconducting material as the pellets 7. The flux barrier 12 can also be cooled analogously to the superconducting pellets 7.
  • the flux barrier 12 can be fixed on the rotor or the stator of the electric machine 1.
  • the flux barrier 12 is fixed on the rotor of the electric machine 1, for example on the superconducting pads 7 and/or on the support structure 8 on which the superconducting pads are mounted. 7.
  • This configuration makes it possible to use a flux barrier 12 having a greater thickness (of the order of ten to twenty millimeters in thickness) and therefore to improve the shielding of the magnetic field.
  • the flux barrier 12 when the flux barrier 12 is fixed at the level of the rotor, it can be made in one piece with the superconducting pads 7 used for the modulation of the flux. These pads 7 are typically thicker than the flux barrier 12 used for protection (a good quality of screening being required for the modulation of the field).
  • the flux barrier 12 and the pellets 7 may have the same thickness. A consequence is then the improved screening for the ‘protective’ flux barrier 12.
  • the flux barrier 12 can for example be fixed on a radially internal edge of the superconducting pads 7 (that is to say the edge of the superconducting pads 7 which is closest to the axis X).
  • the flux barrier 12 can be mounted on the stator of the electric machine 1, for example on the coils 5 of the armature 2.
  • the thickness of the barrier of flux 12 can be less than one millimeter so as not to interfere with the operation of the electric machine 1.
  • the flux barrier 12 is mounted on the coils 5 of the armature 2, it is then at the level of the air gap of the electric machine 1.
  • this air gap must be as small as possible because it is directly proportional to the torque of the electric machine 1 (and therefore to its power). This is why in this configuration, it is preferable to limit the thickness of the flux barrier 12.
  • an external radius of the flux barrier 12 is less than or equal to an internal radius of the superconducting pads 7 so as not to disturb the screening of the magnetic field by the superconducting pads 7.
  • external radius of the flux barrier 12 we understand here the maximum radius of the flux barrier 12, measured from the X axis of rotation.
  • flux barrier 12 when flux barrier 12 is attached to superconducting pads 7 and/or to their supporting structure, said flux barrier 12 does not extend radially beyond superconducting pads 7.
  • a radial length (that is to say along an axis radial to the X axis) of the flux barrier 12 is less than the air gap between the adiabatic enclosure 9 and the internal radius of the superconducting pads 7.
  • the flux barrier 12 extends substantially continuously around the X axis to ensure the development of current loops in the flux barrier 12 which channel the magnetic flux and thus improve the redirection of the flux towards the active parts. of the electrical machine 1.
  • the flux barrier 12 does not comprise several sections glued to each other in the circumferential direction, but a single piece continues around its circumference.
  • the height of the flux barrier 12 is such that said barrier 12 extends in front of a radially inner edge 10 of all or part of the coils 5 of the armature, preferably all the coils 5, so as to at least partially cover their edge 10.
  • the flux barrier covers the entire radially internal edge 10 of the coils 5, covering between 0% and 10% of the side edges 11 .
  • the flux barrier 12 does not cover the side edges 11. This configuration then makes it possible to reduce the risks of deformation of the coils 5 of the armature 2 while improving the power density of the electric machine 1 Indeed, the forces at the level of the radially inner edge 10 of the coils 5 do not produce torque but are liable to deform the coils 5.
  • the magnetic field is then screened at the level of the edge. radially internal 10 of the coils 5 and redirected from the armature 2 towards the active regions of the electric machine 1, that is to say radially in the direction of the lateral edges 11 and of the radially external edge 9 of the coils 5, which makes it possible to increase the power density of the electric machine 1 .
  • the flux barrier 12 can be generally annular in shape and centered on the X axis.
  • the flow barrier 12 may have the shape of a disk in which a through hole is made so as to obtain an annular strip 13 extending in a plane radial to the X axis.
  • the adiabatic enclosure 9 (which houses the drive shaft, the cooling assembly and the ferrofluid seals) is thus placed with respect to the flux barrier 12 so as to extend to through the through hole of the annular strip 13.
  • the flux barrier 12 is therefore mounted around these parts of the electrical machine.
  • the flux barrier 12 comprises an annular strip 13 extending circumferentially around the axis X so as to to form a cylinder of revolution centered on the X axis.
  • the drive shaft, the cooling assembly and the ferrofluid seals are thus placed relative to the flux barrier 12 so as to through the internal space delimited by the annular strip 13.
  • the flux barrier 12 further comprises at least one face 14 extending radially towards the axis X from the annular edge, preferably two opposite faces 14 axially offset l each other.
  • Each face 14 then comprises a through hole 15 allowing passage in particular of the drive shaft, so that the drive shaft, the cooling assembly and the seals are housed at least partially within the annular strip 13 of flux barrier 12.
  • annular band 13 is preferably substantially continuous in the circumferential direction.
  • the thickness of the annular strip 13 can be substantially equal to that of the pads 7 to simplify the manufacture of this part of the rotor.
  • the flux barrier 12 can be obtained by growth of germs or by stacking of ribbons.
  • the manufacturing process comprises the following steps:
  • the part obtained by seed growth preferably has the shape of a disk and the machining step consists in making a central orifice 15 crossing in the disc so as to obtain the annular band 13.
  • the manufacturing process comprises the following steps: precutting the tapes so as to obtain the annular strip 13 of the flow barrier 12; stacking of the ribbons thus precut in a conventional manner to obtain the flow barrier 12; and optionally, machining the superconducting pad 7 thus obtained. If necessary, when the flux barrier 12 is attached to the superconducting pads 7, the flux barrier 12 and the superconducting pads 7 can be formed integrally and in one piece. In other words, the flux barrier 12 and the superconducting pads 7 can be fabricated simultaneously by seed growth or by stacking ribbons.
  • the superconducting pellets 7 and the flux barrier 12 can be obtained by producing a disk-shaped pellet 7 whose external radius is equal to that of the superconducting pellets 7, then by machining this pellet 7 in order to form the orifice central 15 of the flux barrier 12 as well as the spaces between the pads 7.
  • the thickness of the flux barrier 12 is then equal to the thickness of the superconducting pads 7 (generally, of the order of ten to twenty millimeters) .
  • the flux barrier 12 when the flux barrier 12 is fixed on the stator, the flux barrier 12 is preferably produced by stacking tapes in order to be able to obtain thicknesses of less than one millimeter.
  • the inductor 3 comprises a front superconducting coil 6 and a rear superconducting coil 6' which are annular and coaxial with the axis X of rotation and superconducting pads 7 mounted on a support structure which are arranged circumferentially with respect to the axis X.
  • the superconducting coils 6 generate the magnetic field.
  • the pellets 7 are for example of rectangular shape.
  • the armature 2 for its part comprises an arrangement of coils 5 arranged circumferentially with respect to the axis X, radially outside the superconducting pads 7.
  • the coils 5 of the armature 2 can each have a substantially rectangular shape, one larger side of which extends parallel to the axis X of the rotor.
  • the coils 5 are assembled edge to edge along their longest side so as to define a substantially cylindrical assembly around the axis X of rotation.
  • the flux barrier 12 comprises an annular band 13 extending circumferentially around the axis X so as to form a cylinder of revolution centered on the axis X (see FIGS. 3 and 4).
  • An axial length of the annular strip 13 is substantially equal, to within 10%, to an axial length of the superconducting pads 7 in order to ensure effective screening of the magnetic flux.
  • the flux barrier 12 may further comprise at least one face 14, typically two opposite faces 14 extending from the annular band 13 (FIG. 4) to an area adjacent to the drive shaft.
  • the flux barrier 12 can be placed radially inside the superconducting pads 7 so as to at least partially mask the drive shaft, the cooling assembly and/or the ferrofluid seals.
  • the flux barrier 12 can be fixed on the armature 2 or on the rotor, that is to say mounted radially inside the coils 5 of the armature 2 or on their support structure 8.
  • the flux barrier 12 is mounted on the support structure 8 (and not on the superconducting pads 7 or the armature 2 since they extend radially with respect to the axis X).
  • the electric machine 1 can in particular be used in an aircraft 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

La présente invention concerne une machine électrique (1) supraconductrice, par exemple à flux axial ou à flux radial, comprenant un inducteur (3) comprenant des pastilles supraconductrices (7) réparties circonférentiellement autour d'un axe (X) de la machine électrique (1) et une barrière de flux (12) comprenant un matériau supraconducteur, ladite barrière de flux (12) étant centrée sur l'axe (X) de rotation et s'étendant radialement à l'intérieur des pastilles supraconductrices (7).

Description

DESCRIPTION
TITRE : Protection des bobines d’une machine électrique
DOMAINE DE L'INVENTION
La présente invention concerne le domaine des machines électriques comprenant des pastilles supraconductrices pouvant notamment être utilisées dans des aéronefs. En particulier, l’invention s’applique aux machines électriques comprenant des pastilles magnétisées ou non-magnétisées, aux machines électriques à aimants supraconducteurs ou à barrières de flux supraconductrices, aux machines entièrement supraconductrices (induit et inducteur supraconducteurs) ou partiellement supraconductrices (induit ou inducteur supraconducteur) ainsi qu’aux machines supraconductrices à flux radial ou axial.
ETAT DE LA TECHNIQUE
Une partie de l’ingénierie se préoccupe des futurs moyens de transport en cherchant à rendre les systèmes plus écologiques. Dans le domaine du transport aérien, différents projets et prototypes ont déjà vu le jour, comme SOLAR IMPULSE ou l’E-FAN d’Airbus. Les préoccupations environnementales, la réduction de la consommation de carburant et de bruit sont tant de critères qui encouragent l’utilisation de machines électriques. Pour pouvoir supplanter les technologies actuelles, les constructeurs aéronautiques travaillent sur l’augmentation de la puissance massique de ces machines électriques. Ainsi, une étude est conduite sur le gain qu’apporterait les matériaux supraconducteurs HTC (acronyme de haute température critique) pour les actionneurs embarqués.
Un matériau supraconducteur est un matériau qui, lorsqu’il est refroidi à une température inférieure à sa température critique, présente une résistivité nulle offrant ainsi la possibilité de faire circuler des courants continus sans pertes. De cela, plusieurs phénomènes en découlent comme la réponse diamagnétique pour toute variation du champ magnétique, permettant de réaliser d’excellents blindages magnétiques.
De manière connue en soi, une machine électrique comprend un inducteur et un induit. L’inducteur comprend une bobine HTC réalisé avec des fils HTC qui génère un champ magnétique modulé par des pastilles supraconductrices, qui font office d’écrans magnétiques. L’induit, quant à lui, comprend un système de bobinage triphasé en cuivre comprenant un agencement de bobines qui reposent sur un support ferromagnétique ou amagnétique. La rotation des écrans fait varier le champ magnétique et induit, par la loi de Lenz, une force électromotrice dans les bobines. Le dimensionnement d’une telle machine conduit à une structure à flux axial sans système d’alimentation tournant (type bague/balais). La maintenance et les problèmes de sécurité, apportés par un système bague/balais tournant, sont donc évités. Cette machine électrique est partiellement supraconductrice dans la mesure où seul l’inducteur est réalisé dans un matériau supraconducteur, par opposition à une machine totalement supraconductrice dont toutes les parties actives sont conçues avec des matériaux supraconducteurs.
Dans ce qui suit, on désignera par « inducteur » la bobine HTC et les pastilles supraconductrices configurées pour moduler le flux magnétique crée par la bobine HTC. On notera que, dans une machine électrique supraconductrice à barrières de flux, on utilise le comportement diamagnétique des pastilles supraconductrices quand elles sont refroidies hors champ. Les pastilles supraconductrices sont dans ce cas non-magnétisées et forment un écran (écrantage) qui dévie les lignes de champ, lorsqu’elles sont plongées dans un champ magnétique. Le champ magnétique est alors concentré et de forte amplitude entre les pastilles supraconductrices non-magnétisées et faible en aval de celles-ci. En variante, les pastilles supraconductrices peuvent être magnétisées et former des aimants supraconducteurs. On parle alors de machine à aimants supraconducteurs.
Généralement, les pastilles sont réalisées dans l’un au moins des matériaux suivants qui possèdent notamment de très bonnes caractéristiques d’écrantage : en YBCO (acronyme anglais de Yttrium Barium Copper Oxide pour Oxydes mixtes de Baryum, de Cuivre et dYttrium), en GdBCO (acronyme anglais de Gadolinium-Barium-Copper-Oxygen), en NbTi (pour niobium-titane), en MgB2 (diborure de magnésium) ou tout matériau RE-Ba-Cu-0 ou RE peut être n’importe quelle terre rare.
Les pastilles sont généralement obtenues grâce au procédé de croissance de germe. On pourra notamment se référer à l’article de M. Morita, H. Teshima, et H. Hirano, «Development of oxide superconductors », Nippon Steel Technical Report, vol. 93, p. 18-23, 2006 pour plus de détails sur ce procédé. En particulier, ce type de procédé consiste à former un cristal par solidification progressive de matière sur la surface d’un germe préexistant. Les pastilles ainsi obtenues sont donc généralement de formes circulaires ou rectangulaires. En variante, il a également été proposé de réaliser les pastilles par frittage. Cependant, la connexion inter-grain associée à ce procédé de fabrication a tendance à diminuer les performances des pastilles. Un autre procédé consiste à utiliser des rubans supraconducteurs (ou « tapes » en anglais) pour la fabrication des pastilles supraconductrices. On parle dans ce cas d’empilements de rubans (ou « stack of tapes » en anglais). Ces pastilles, dont le noyau supraconducteur est renforcé par la matrice des rubans les constituant, présentent une bonne tenue mécanique. Cette bonne tenue mécanique est particulièrement avantageuse lorsque les pastilles sont magnétisées (machine à aimants supraconducteurs).
Toutefois, la Demanderesse s’est aperçue du fait que la concentration du flux magnétique sur les bobines de l’induit n’était pas optimale, ce qui non seulement réduit la densité de puissance des machines électriques mais en outre risque de saturer les pièces en matériau ferromagnétique et de mettre la machine électrique en défaut.
EXPOSE DE L'INVENTION
Un but de l’invention est d’augmenter, de manière simple et efficace, la densité de puissance des machines supraconductrices.
Un autre but de l’invention est de réduire les risques de mise en défaut des machines supraconductrices.
L’invention s’applique à tout type de machine supraconductrice, qui comprennent notamment les machines partiellement supraconductrices ou totalement supraconductrices, à barrières de flux ou à aimants supraconducteurs, à flux axial ou radial.
Il est à cet effet proposé, selon un premier aspect de l’invention, une machine électrique supraconductrice, par exemple à flux axial ou à flux radial, comprenant un inducteur comprenant des pastilles supraconductrices réparties circonférentiellement autour d’un axe de la machine électrique. La machine électrique comprend en outre une barrière de flux comprenant un matériau supraconducteur, ladite barrière de flux étant centrée sur l’axe de rotation et s’étendant radialement à l’intérieur des pastilles supraconductrices.
Certaines caractéristiques préférées mais non limitatives de la machine électrique selon le premier aspect sont les suivantes, prises individuellement ou en combinaison la barrière de flux comprend une bande annulaire s’étendant dans un plan radial à l’axe, ladite bande annulaire étant coaxiale à l’axe ; la barrière de flux comprend une bande annulaire s’étendant circonférentiellement autour de l’axe ; la machine électrique comprend en outre au moins une face s’étendant radialement vers l’axe depuis la bande annulaire, de préférence deux faces opposées décalées axialement l’une de l’autre ; la machine électrique comprend en outre un arbre d’entrainement configuré pour entrainer en rotation les pastilles supraconductrices autour de l’axe, la face de la barrière de flux comprenant un orifice traversant et l’arbre d’entrainement passant à travers l’orifice traversant de sorte que la barrière de flux est montée autour de l’arbre d’entrainement ; la machine électrique comprend en outre en outre un ensemble de refroidissement des pastilles supraconductrices et/ou des joints ferrofluides montés à proximité de l’arbre d’entrainement à travers l’orifice traversant, de sorte que la barrière de flux est montée autour de l’ensemble de refroidissement et/ou des joints ferrofluides ; la machine électrique comprend en outre un induit comprenant des bobines réparties circonférentiellement autour de l’axe, la barrière de flux étant solidaire en mouvement de l’induit ; la barrière de flux est solidaire en mouvement des pastilles supraconductrices ; la barrière de flux est continue sur toute sa périphérie ; la machine électrique est à flux axial, la barrière de flux s’étendant entre les pastilles supraconductrices et l’induit de sorte à recouvrir au moins partiellement la bordure radialement interne de tout ou partie des bobines de l’induit ; et/ou chaque bobine présente en outre des bordures latérales s’étendant radialement depuis la bordure radialement interne, la barrière de flux recouvrant au plus 10% de des bordures latérales.
Selon un deuxième aspect, l’invention propose un aéronef comprenant une machine électrique selon le premier aspect.
DESCRIPTION DES FIGURES
D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
[Fig. 1] La figure 1 est une vue en coupe simplifiée d’une machine électrique à flux axial selon un premier mode de réalisation de l’invention dans lequel la barrière de flux est fixée sur les pastilles supraconductrices ;
[Fig. 2] La figure 2 est une vue simplifiée, éclatée et en perspective d’une machine électrique à flux axial selon un deuxième mode de réalisation de l’invention dans lequel la barrière de flux est fixée sur les bobines de l’induit ;
[Fig. 3] La figure 3 est une vue simplifiée, éclatée et en perspective d’une machine électrique à flux radial selon un troisième mode de réalisation de l’invention dans lequel la barrière de flux est fixée sur la structure support des pastilles supraconductrices, l’enceinte adiabatique ayant été omise ;
[Fig. 4] La figure 4 est une vue simplifiée, éclatée et en perspective d’une variante de réalisation de la machine électrique à flux radial de la figure 4, l’enceinte adiabatique ayant été omise ;
[Fig. 5] La figure 5 est une vue partielle en perspective d’un exemple de réalisation d’une barrière de flux ; et
[Fig. 6] La figure 6 est une vue schématique d’un aéronef comprenant une machine électrique conforme à l’invention.
Sur l’ensemble des figures, les éléments similaires portent des références identiques. DESCRIPTION DETAILLEE DE L'INVENTION
Dans ce qui suit, l’invention va être décrite et illustrée dans le cas d’une machine électrique 1 à flux axial partiellement supraconductrice à barrières de flux avec des pastilles non-magnétisées. Comme cela a déjà été indiqué plus haut, ceci n’est cependant pas limitatif, l’invention s’appliquant mutatis mutandis à des machines électriques comprenant des pastilles magnétisées, à des machines électriques à aimants supraconducteurs, à des machines électriques entièrement supraconductrices (induit et inducteur supraconducteurs) ainsi qu’à des machines électriques à flux radial.
Sur la figure 1 est représentée schématiquement une machine électrique 1 à flux axial supraconductrice à barrières de flux selon un mode de réalisation de l’invention comprenant de manière conventionnelle une partie tournante, ou rotor, et une partie fixe, ou stator.
Dans la présente demande, on appelle axe X du rotor, son axe de rotation. La direction axiale correspond à la direction de l'axe X et une direction radiale est une direction perpendiculaire à cet axe et passant par lui. Par ailleurs, la direction circonférentielle (ou latérale) correspond à une direction perpendiculaire à l'axe X et ne passant pas par lui. Sauf précision contraire, interne (respectivement, intérieur) et externe (respectivement, extérieur), respectivement, sont utilisés en référence à une direction radiale de sorte que la partie ou la face interne d'un élément est plus proche de l'axe X que la partie ou la face externe du même élément.
De manière connue en soi, la machine électrique 1 à flux axial supraconductrice comprend un induit 2 et un inducteur 3. L’induit 2 comporte un agencement 4 de bobines électromagnétiques 5 non supraconductrices, généralement en cuivre. L’inducteur 3 comporte une bobine supraconductrice 6 coaxiale à l’agencement 4 des bobines électromagnétiques 5 de l’induit 2 et des pastilles supraconductrices 7 montées sur une structure porteuse 8 qui sont disposées dans un même plan orthogonal à l’axe X et radialement à l’intérieur de la bobine supraconductrice 6. Optionnellement, l’inducteur 3 comprend en outre une culasse statorique comportant une couronne de fer 8. Ici, le rotor est formé par les pastilles supraconductrices 7 qui sont entraînées en rotation autour d’un axe de rotation s’étendant selon la direction axiale. Le stator est formé par l’agencement 4 de bobines électromagnétiques 5 et la bobine supraconductrice 6.
Les pastilles supraconductrices 7 sont en matériau supraconducteur et sont réparties de manière équidistante autour de l’axe de rotation, ce qui permet une variation spatiale du champ électromagnétique dans l’entrefer. Ici, les pastilles supraconductrice 7 sont non-magnétisées. En variante, les pastilles supraconductrices 7 pourraient être magnétisées. Par exemple, les pastilles sont réalisées en YBCO (acronyme anglais de Yttrium Barium Copper Oxide pour Oxydes mixtes de Baryum, de Cuivre et d'Yttrium), en GdBCO (acronyme anglais de Gadolinium-Barium-Copper-Oxygen), en NbTi (pour niobium-titane), en MgB2 (diborure de magnésium) ou tout matériau RE-Ba-Cu-0 où RE peut être n’importe quelle terre rare.
La bobine supraconductrice 6 de l’inducteur 3 est une bobine supraconductrice statique alimentée en courant continu. Le cas échéant, lorsque la machine électrique 1 comprend une culasse 4, celle-ci assure une tenue mécanique des bobines électromagnétiques 5 de l’induit 2. En d’autres termes, l’inducteur 2 est supraconducteur tandis que l’induit 3 est non- supraconducteur.
Les pastilles supraconductrices 7 peuvent présenter toute forme adaptée.
Dans un premier mode de réalisation, chaque pastille supraconductrice 7 présente, de manière connue en soi, la forme d’un disque plein (solide) (comme illustré sur la figure 2).
Dans un deuxième mode de réalisation, la pastille supraconductrice 7 peut être creuse afin d’adapter sa forme à l’épaisseur de pénétration du champ magnétique dans la pastille 7 (comme illustré sur la figure 1 ). Chaque pastille supraconductrice 7 comprend à cet effet une paroi circonférentielle qui présente :
- une première bordure,
- une deuxième bordure opposée à la première bordure
- une face interne reliant la première bordure et la deuxième bordure
- une face externe opposée à la face interne et
- une cavité formée entre la première bordure, la deuxième bordure et délimitée par la face interne de la paroi circonférentielle.
La face interne s’étend radialement à l’intérieur de la face externe. La pastille supraconductrice 7 est donc creuse en ce qu’elle présente une cavité qui, comme on le verra dans ce qui suit, peut être débouchante, traversante ou enfermée dans la pastille supraconductrice 7. La cavité est de préférence vide (dépourvue de matériau).
Optionnellement, la pastille supraconductrice 7 peut comprendre une ou plusieurs parois supplémentaires divisant la cavité en plusieurs parties. Le cas échéant, un orifice traversant peut être formé dans tout ou partie des parois. On pourra se référer au document FR3104804 au nom de la Demanderesse pour plus de détails sur ces différentes formes de réalisation de pastilles supraconductrices 7 avec cavité.
Dans un troisième mode de réalisation illustré sur les figures 2, 4a et 5a, la forme des pastilles supraconductrices 7 est adaptée (optimisée) de sorte à maximiser le rapport écrantage/masse des pastilles 7, c’est-à-dire que la forme des pastilles supraconductrices 7 est adaptée afin que la variation de la composante axiale du champ magnétique induit, et donc l’écrantage du flux magnétique, soit maximal, tout en minimisant la masse des pastilles supraconductrices 7. On peut ainsi obtenir une augmentation de la vitesse de rotation du rotor et donc de la puissance de la machine électrique. A cet effet, les pastilles supraconductrices 7 peuvent avoir une forme polygonale présentant au moins cinq côtés. Par exemple, la pastille 7 présente une forme hexagonale, de préférence celle d’un hexagone régulier isométrique. En variante, la face 8 de chaque pastille supraconductrice 7 présente la géométrie et les dimensions d’un secteur d’anneau. Par secteur d’anneau, on comprendra ici la forme délimitée d’une part par deux cercles coaxiaux, de diamètre différent, et d’autre part par deux segments de droite issus du centre des cercles. Le secteur d’anneau comprend ainsi deux côtés opposés courbes et deux côtés opposés droits.
On pourra se référer au document FR3104803 au nom de la Demanderesse pour plus de détails sur ces différentes formes de réalisation de pastilles supraconductrices 7.
Le champ magnétique est généré par la bobine supraconductrice 6. Par conséquent, il suffit d’éteindre la bobine supraconductrice 6 pour couper le champ magnétique dans la machine électrique supraconductrice. Cela présente un avantage dans la mesure où des pastilles supraconductrices 7 qui sont refroidies en présence d’un champ magnétique ne sont pas capables d’écranter le champ magnétique. Ainsi, il est nécessaire que le champ magnétique à écranter apparaisse à un instant postérieur au refroidissement des pastilles supraconductrices 7 pour leur permettre de jouer leur rôle d’écrans magnétiques, ce qui est rendu possible par l’utilisation de la bobine supraconductrice 6. Dans l’invention, la bobine supraconductrice 6 peut donc être éteinte lorsque les pastilles supraconductrices 7 sont chaudes et allumée une fois qu’elles sont refroidies.
Les bobines 5 de l’induit 2 peuvent également présenter toute forme adaptée. De manière connue en soi, les bobines 5 peuvent notamment présenter une forme de secteur d’anneau.
Quelle que soit la forme des bobines 5 de l’induit 2, chaque bobine présente une bordure radialement interne 10, une bordure radialement externe 9 et des bordures latérales 11 qui relient la bordure radialement interne 10 et la bordure radialement externe 9. La bordure radialement interne 10 et la bordure radialement externe 9 s’étendent suivant une direction circonférentielle par rapport à l’axe X tandis que les bordures latérales 11 sont sensiblement radiales.
De manière connue en soi, la machine électrique 1 comprend en outre un arbre d’entrainement, coaxial à l’axe X, configuré pour entrainer en rotation le rotor, c’est-à-dire ici la structure porteuse sur laquelle sont montées les pastilles supraconductrices 7, ainsi qu’un ensemble de refroidissement des pastilles supraconductrices 7 et des joints d’étanchéité, par exemple des joints magnétiques comprenant des ferrofluides. La partie de l’arbre passant à travers l’induit 2 et l’inducteur 3, l’ensemble de refroidissement et les joints d’étanchéité sont généralement logés dans une enceinte adiabatique 9. Sur les figures, seule l’enceinte adiabatique 9 est visible (figure 2). L’enceinte adiabatique 9 s’étend radialement à l’intérieur par rapport aux pastilles supraconductrices 7.
L’ensemble de refroidissement comporte généralement un cryostat comprenant une partie tournante et une partie fixe logées dans une enceinte. Les joints d’étanchéité sont configurés pour assurer une étanchéité entre la partie tournante et la partie fixe du cryostat.
Afin d’augmenter, de manière simple et efficace, la densité de puissance de la machine électrique 1 supraconductrice, la machine électrique 1 comprend en outre une barrière de flux 12, comprenant un matériau supraconducteur, qui est centrée sur l’axe X de rotation et qui s’étend radialement à l’intérieur des pastilles supraconductrices 7 et radialement à l’extérieur de l’enceinte adiabatique 9. La barrière de flux 12 est donc positionnée au centre de la machine électrique 1 de sorte à masquer les pièces qui ne participent pas à la génération du couple, telles que l’arbre d’entrainement, l’ensemble de refroidissement ou encore les joints d’étanchéité. La barrière de flux 12 forme donc un écran pour les pièces logées dans l’enceinte adiabatique 9, qui ne participent pas à la génération du couple, ce qui permet de concentrer le flux magnétique au niveau des pastilles supraconductrices 7, et donc d’augmenter la densité de puissance de la machine électrique 1.
Dans une forme de réalisation, la barrière de flux 12 est placée entre les pastilles supraconductrices 7 et l’axe X, autour des pièces logées dans l’enceinte adiabatique 9, et s’étend de manière continue le long de toute la périphérie interne des pastilles supraconductrices 7. La barrière de flux 12 est en outre coaxiale à l’axe X. Le flux magnétique est ainsi écranté sur 360° et la densité de puissance de la machine électrique 1 est maximisée. En supposant que le champ magnétique créé par la bobine supraconductrice 6 seule varie très peu sur son rayon, la moitié du flux magnétique de cette même bobine 6 traverse les pièces logées dans l’enceinte adiabatique 9. De ce fait, la présence de la barrière de flux 12 permet de récupérer 50 % du flux magnétique pour augmenter l’induction dans la partie utile, et donc d’augmenter la densité de puissance de la machine électrique 1 d’environ 30 %.
De plus, les parties de la machine électrique 1 qui comprennent des matériaux ferromagnétiques, telles que les joints d’étanchéité si ceux-ci comportent des parties ferromagnétiques, sont alors protégées du champ magnétique. En effet, en l’absence de barrière de flux 12, il existe un risque de saturer ces matériaux ferromagnétiques et donc de mettre l’ensemble de refroidissement, et donc la machine électrique 1 , en défaut.
La barrière de flux 12 peut être réalisée dans l’un quelconque des matériaux supraconducteurs envisagés pour les pastilles supraconductrices 7 listés plus haut. Le cas échéant, la barrière de flux 12 peut être réalisée dans le même matériau supraconducteur que les pastilles 7. La barrière de flux 12 peut en outre être refroidie de manière analogue aux pastilles supraconductrices 7.
La barrière de flux 12 peut être fixée sur le rotor ou le stator de la machine électrique 1.
Dans une première forme de réalisation illustrée sur la figure 1 , la barrière de flux 12 est fixée sur le rotor de la machine électrique 1 , par exemple sur les pastilles supraconductrices 7 et/ou sur la structure porteuse 8 sur laquelle sont montées les pastilles supraconductrices 7. Cette configuration permet d’utiliser une barrière de flux 12 ayant une épaisseur plus grande (de l’ordre de dix à vingt millimètres d’épaisseur) et donc d’améliorer l’écrantage du champ magnétique. En effet, lorsque la barrière de flux 12 est fixée au niveau du rotor, elle peut être monobloc avec les pastilles supraconductrices 7 utilisées pour la modulation du flux. Ces pastilles 7 sont typiquement plus épaisses que la barrière de flux 12 servant à la protection (une bonne qualité d’écrantage étant requise pour la modulation du champ). Cependant, lorsque la barrière de flux 12 et les pastilles 7 sont monobloc, par simplicité de réalisation, elles pourront avoir la même épaisseur. Une conséquence est alors l’amélioration de l’écrantage pour la barrière de flux 12 ‘protectrice’.
La barrière de flux 12 peut par exemple être fixée sur une bordure radialement interne des pastilles supraconductrice 7 (c’est-à-dire la bordure des pastilles supraconductrices 7 qui est la plus proche de l’axe X).
En variante, comme illustré sur la figure 2, la barrière de flux 12 peut être montée sur le stator de la machine électrique 1 , par exemple sur les bobines 5 de l’induit 2. Dans ce cas, l’épaisseur de la barrière de flux 12 peut être inférieure à un millimètre pour ne pas gêner le fonctionnement de la machine électrique 1. En effet, lorsque la barrière de flux 12 est montée sur les bobines 5 de l’induit 2, elle se trouve alors au niveau de l’entrefer de la machine électrique 1. Or, cet entrefer doit être aussi petit que possible car il est directement proportionnel au couple de la machine électrique 1 (et donc à sa puissance). C’est pourquoi dans cette configuration, il est préférable de limiter l’épaisseur de la barrière de flux 12.
De préférence, un rayon externe de la barrière de flux 12 est inférieur ou égal à un rayon interne des pastilles supraconductrices 7 afin de ne pas perturber l’écrantage du champ magnétique par les pastilles supraconductrices 7. Par rayon externe de la barrière de flux 12, on comprendra ici le rayon maximal de la barrière de flux 12, mesuré depuis l’axe X de rotation. Par rayon interne des pastilles supraconductrices 7, on comprendra ici le rayon minimal desdites pastilles 7, mesuré depuis l’axe X de rotation.
Ainsi, lorsque la barrière de flux 12 est fixée sur les pastilles supraconductrices 7 et/ou sur leur structure porteuse, ladite barrière de flux 12 ne s’étend pas radialement au-delà des pastilles supraconductrices 7. Une longueur radiale (c’est-à-dire suivant un axe radial à l’axe X) de la barrière de flux 12 est inférieure à l’entrefer entre l’enceinte adiabatique 9 et le rayon interne des pastilles supraconductrices 7.
La barrière de flux 12 s’étend de manière sensiblement continue autour de l’axe X afin d’assurer le développement de boucles de courant dans la barrière de flux 12 qui canalisent le flux magnétique et améliorent ainsi la redirection du flux vers les parties actives de la machine électrique 1. Ainsi, la barrière de flux 12 ne comprend pas plusieurs sections collées les unes aux autres suivant la direction circonférentielle mais une seule pièce continue sur sa circonférence.
Dans une forme de réalisation (illustrée par exemple sur la figure 2), la hauteur de la barrière de flux 12 est telle que ladite barrière 12 s’étend devant une bordure radialement interne 10 de tout ou partie des bobines 5 de l’induit, de préférence de toutes les bobines 5, de sorte à recouvrir au moins partiellement leur bordure 10. De préférence, la barrière de flux recouvre toute la bordure radialement interne 10 des bobines 5, en recouvrant entre 0 % et 10 % des bordures latérales 11 . Pour une densité de puissance maximale, la barrière de flux 12 ne recouvre pas les bordures latérales 11. Cette configuration permet alors de réduire les risques de déformation des bobines 5 de l’induit 2 tout en améliorant la densité de puissance de la machine électrique 1. En effet, les forces au niveau de la bordure radialement interne 10 des bobines 5 ne produisent pas de couple mais sont susceptibles de déformer les bobines 5. Grâce à la barrière de flux 12, le champ magnétique est alors écranté au niveau de la bordure radialement interne 10 des bobines 5 et redirigé de l’induit 2 vers les régions actives de la machine électrique 1 , c’est-à-dire radialement en direction des bordures latérales 11 et de la bordure radialement externe 9 des bobines 5, ce qui permet d’augmenter la densité de puissance de la machine électrique 1 .
La barrière de flux 12 peut être de forme globalement annulaire et centrée sur l’axe X.
Dans une première forme de réalisation, comme illustré sur les figures 1 et 2, la barrière de flux 12 peut présenter la forme d’un disque dans lequel est réalisé un orifice traversant de sorte à obtenir une bande annulaire 13 s’étendant dans un plan radial à l’axe X. L’enceinte adiabatique 9 (qui loge l’arbre d’entrainement, l’ensemble de refroidissement et les joints ferrofluides) est ainsi placée par rapport à la barrière de flux 12 de sorte à s’étendre à travers l’orifice traversant de la bande annulaire 13. La barrière de flux 12 est donc montée autour de ces pièces de la machine électrique.
Dans une deuxième forme de réalisation illustrée en figure 5, la barrière de flux 12 comprend une bande annulaire 13 s’étendant circonférentiellement autour de l’axe X de sorte à former un cylindre de révolution centré sur l’axe X. Ici encore, l’arbre d’entrainement, l’ensemble de refroidissement et les joints ferrofluides sont ainsi placé par rapport à la barrière de flux 12 de sorte à s’étendre à travers l’espace interne délimité par la bande annulaire 13. Optionnellement, la barrière de flux 12 comprend en outre au moins une face 14 s’étendant radialement vers l’axe X depuis la bordure annulaire, de préférence deux faces 14 opposées décalées axialement l’une de l’autre. Chaque face 14 comprend alors un orifice traversant 15 permettant le passage notamment de l’arbre d’entrainement, de sorte que l’arbre d’entrainement, l’ensemble de refroidissement et les joints d’étanchéité sont logés au moins partiellement au sein la bande annulaire 13 de la barrière de flux 12.
Quelle que soit la configuration (radiale ou circonférentielle) de la bande annulaire 13, ladite bande annulaire 13 est de préférence sensiblement continue suivant la direction circonférentielle. Dans le cas où la bande annulaire 13 est formée intégralement et en une seule pièce avec les pastilles supraconductrices 7, l’épaisseur de la bande annulaire 13 peut être sensiblement égale à celle des pastilles 7 pour simplifier la fabrication de cette partie du rotor.
Procédé de fabrication
La barrière de flux 12 peut être obtenue par croissance de germes ou par empilement de rubans.
Lorsque la barrière de flux 12 est obtenue par croissance de germes, le procédé de fabrication comprend les étapes suivantes :
- réalisation d’une pièce type pastille conventionnelle en forme de disque par croissance de germes ;
- usinage de la pièce ainsi obtenue de sorte à obtenir la forme finale de la barrière de flux 12.
Dans le cas d’une barrière de flux 12 du type bande annulaire 13 (radiale ou circonférentielle), la pièce obtenue par croissance de germes a de préférence la forme d’un disque et l’étape d’usinage consiste à réaliser un orifice central 15 traversant dans le disque de sorte de sorte à obtenir la bande annulaire 13.
Lorsque la barrière de flux 12 est obtenue par empilement de rubans, le procédé de fabrication comprend les étapes suivantes : prédécoupage des rubans de sorte à obtenir la bande annulaire 13 de la barrière de flux 12 ; empilement des rubans ainsi prédécoupés de manière conventionnelle pour obtenir la barrière de flux 12 ; et optionnellement, usinage de la pastille supraconductrice 7 ainsi obtenue. Le cas échéant, lorsque la barrière de flux 12 est fixée sur les pastilles supraconductrices 7, la barrière de flux 12 et les pastilles supraconductrices 7 peuvent être formées intégralement et en une seule pièce. En d’autres termes, la barrière de flux 12 et les pastilles supraconductrices 7 peuvent être fabriquées simultanément par croissance de germes ou par empilement de rubans. Pour cela, les pastilles supraconductrices 7 et la barrière de flux 12 peuvent être obtenue en réalisant une pastille 7 en forme de disque dont le rayon externe est égal à celui des pastilles supraconductrices 7, puis en usinant cette pastille 7 afin de former l’orifice central 15 de la barrière de flux 12 ainsi que les espaces entre les pastilles 7. L’épaisseur de la barrière de flux 12 est alors égale à l’épaisseur des pastilles supraconductrices 7 (généralement, de l’ordre de dix à vingt millimètres).
On notera que, lorsque la barrière de flux 12 est fixée sur le stator, la barrière de flux 12 est de préférence réalisée par empilement de rubans afin de pouvoir obtenir des épaisseurs inférieures à un millimètre.
Application aux machines électriques à flux radial
Dans le cas d’une machine supraconductrice à flux radial (voir par exemple les figures 3 et 4), l’inducteur 3 comporte une bobine supraconductrice avant 6 et une bobine supraconductrice arrière 6’ qui sont annulaires et coaxiales à l’axe X de rotation et des pastilles supraconductrices 7 montées sur une structure porteuse qui sont disposées circonférentiellement par rapport à l’axe X. Les bobines supraconductrices 6 génèrent le champ magnétique. Les pastilles 7 sont par exemple de forme rectangulaire. L’induit 2 quant à lui comprend un agencement de bobines 5 disposées circonférentiellement par rapport à l’axe X, radialement à l’extérieur des pastilles supraconductrices 7.
Les bobines 5 de l’induit 2 peuvent chacune présenter une forme sensiblement rectangulaire dont un plus grand côté s’étend parallèlement à l’axe X du rotor. Les bobines 5 sont assemblées bord à bord le long de leur plus grand côté de sorte à définir un ensemble sensiblement cylindrique autour de l’axe X de rotation.
L’invention décrite ci-avant s’applique alors mutatis mutandis à la machine électrique 1 à flux radial. De préférence, la barrière de flux 12 comprend une bande annulaire 13 s’étendant circonférentiellement autour de l’axe X de sorte à former un cylindre de révolution centré sur l’axe X (voir figures 3 et 4). Une longueur axiale de la bande annulaire 13 (mesurée le long de l’axe X) est sensiblement égale, à 10 % près, à une longueur axiale des pastilles supraconductrices 7 afin d’assurer un écrantage efficace du flux magnétique. Le cas échéant, la barrière de flux 12 peut en outre comprendre au moins une face 14, typiquement deux faces 14 opposées s’étendant depuis la bande annulaire 13 (figure 4) jusqu’à une zone adjacente à l’arbre d’entrainement. Les caractéristiques de la barrière de flux 12 décrites ci-avant en relation avec la machine électrique à flux axial se retrouvent mutatis mutandis dans la barrière de flux d’une machine électrique à flux radial. En particulier, la barrière de flux 12 peut être placée radialement à l’intérieur des pastilles supraconductrices 7 de sorte à masquer au moins partiellement l’arbre d’entrainement, l’ensemble de refroidissement et/ou les joints ferrofluides. Par ailleurs, la barrière de flux 12 peut être fixée sur l’induit 2 ou sur le rotor, c’est-à-dire montée radialement à l’intérieur des bobines 5 de l’induit 2 ou sur leur structure support 8.
En revanche, dans une machine électrique 1 à flux radial, la barrière de flux 12 est montée sur la structure porteuse 8 (et non sur les pastilles supraconductrices 7 ou l’induit 2 puisqu’ils s’étendent radialement par rapport à l’axe X).
La machine électrique 1 peut notamment être utilisée dans un aéronef 100.

Claims

REVENDICATIONS
1. Machine électrique (1 ) supraconductrice, par exemple à flux axial ou à flux radial, comprenant un inducteur (3) comprenant une bobine supraconductrice (6) configurée pour générer un champ magnétique et des pastilles supraconductrices (7) réparties circonférentiellement autour d’un axe (X) de la machine électrique (1 ), la machine électrique (1 ) étant caractérisée en ce qu’elle comprend en outre une barrière de flux (12) comprenant un matériau supraconducteur, ladite barrière de flux (12) étant centrée sur l’axe (X) de rotation et s’étendant radialement à l’intérieur des pastilles supraconductrices (7).
2. Machine électrique (1 ) selon la revendication 1 , dans laquelle la barrière de flux (12) comprend une bande annulaire (13) s’étendant dans un plan radial à l’axe (X), ladite bande annulaire (13) étant coaxiale à l’axe (X).
3. Machine électrique (1 ) selon la revendication 1 , dans laquelle la barrière de flux (12) comprend une bande annulaire (13) s’étendant circonférentiellement autour de l’axe (X).
4. Machine électrique (1 ) selon la revendication 3, comprenant en outre au moins une face (14) s’étendant radialement vers l’axe (X) depuis la bande annulaire (13), de préférence deux faces (14) opposées décalées axialement l’une de l’autre.
5. Machine électrique (1 ) selon la revendication 4, comprenant en outre un arbre d’entrainement configuré pour entrainer en rotation les pastilles supraconductrices (7) autour de l’axe (X), la face (14) de la barrière de flux (12) comprenant un orifice traversant (15) et l’arbre d’entrainement passant à travers l’orifice traversant (15) de sorte que la barrière de flux (12) est montée autour de l’arbre d’entrainement.
6. Machine électrique (1 ) selon la revendication 5, comprenant en outre un ensemble de refroidissement des pastilles supraconductrices (7) et/ou des joints ferrofluides montés à proximité de l’arbre d’entrainement à travers l’orifice traversant (15), de sorte que la barrière de flux (12) est montée autour de l’ensemble de refroidissement et/ou des joints ferrofluides.
7. Machine électrique (1 ) selon l’une des revendications 1 à 6, comprenant en outre un induit (2) comprenant des bobines (5) réparties circonférentiellement autour de l’axe (X), la barrière de flux (12) étant solidaire en mouvement de l’induit (2).
8. Machine électrique (1 ) selon l’une des revendications 1 à 7, dans laquelle la barrière de flux (12) est solidaire en mouvement des pastilles supraconductrices (7).
9. Machine électrique (1 ) selon l’une des revendications 1 à 8, dans laquelle la barrière de flux (12) est continue sur toute sa périphérie.
10. Machine électrique (1 ) selon l’une des revendications 1 à 9, ladite machine électrique étant à flux axial, la barrière de flux (12) s’étendant entre les pastilles supraconductrices (7) et l’induit (2) de sorte à recouvrir au moins partiellement la bordure radialement interne (10) de tout ou partie des bobines (5) de l’induit (2).
11. Machine électrique (1 ) selon la revendication 10, dans laquelle chaque bobine (5) présente en outre des bordures latérales (11 ) s’étendant radialement depuis la bordure radialement interne (10), la barrière de flux (12) recouvrant au plus 10% de des bordures latérales (11 ).
12. Aéronef (100) comprenant une machine électrique (1 ) selon l’une des revendications
PCT/FR2022/050099 2021-01-21 2022-01-18 Protection des bobines d'une machine électrique WO2022157450A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280016148.7A CN117280583A (zh) 2021-01-21 2022-01-18 电机线圈的保护
US18/273,428 US20240097548A1 (en) 2021-01-21 2022-01-18 Protection for the coils of an electric machine
EP22704930.1A EP4282059A1 (fr) 2021-01-21 2022-01-18 Protection des bobines d'une machine électrique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2100429A FR3119042B1 (fr) 2021-01-21 2021-01-21 Protection des bobines d'une machine electrique
FRFR2100429 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022157450A1 true WO2022157450A1 (fr) 2022-07-28

Family

ID=77180054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050099 WO2022157450A1 (fr) 2021-01-21 2022-01-18 Protection des bobines d'une machine électrique

Country Status (5)

Country Link
US (1) US20240097548A1 (fr)
EP (1) EP4282059A1 (fr)
CN (1) CN117280583A (fr)
FR (1) FR3119042B1 (fr)
WO (1) WO2022157450A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242418A (en) * 1962-08-31 1966-03-22 Dynatech Corp Low temperature electromechanical transducer
JPH01303046A (ja) * 1988-05-27 1989-12-06 Kawasaki Heavy Ind Ltd 同期電動機
DE19847591A1 (de) * 1998-10-15 2000-05-11 Gutt Hans Joachim Permanentmagneterregte elektrische Maschine mit Hoch-Temperatur-Supra-Leitern zur Magnetfeldverstärkung bzw. Feldschwächung
EP3078104A1 (fr) * 2013-12-04 2016-10-12 Hyper Tech Research, Inc. Générateurs et moteurs supraconducteurs
FR3093599A1 (fr) * 2019-03-07 2020-09-11 Safran Machine électrique supraconductrice et procédé de magnétisation des pastilles supraconductrices
FR3104804A1 (fr) 2019-12-13 2021-06-18 Safran Pastille supraconductrice comprenant une cavité et machine électrique associée
FR3104803A1 (fr) 2019-12-13 2021-06-18 Safran Machine électrique comprenant des pastilles supraconductrices de forme optimisée

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242418A (en) * 1962-08-31 1966-03-22 Dynatech Corp Low temperature electromechanical transducer
JPH01303046A (ja) * 1988-05-27 1989-12-06 Kawasaki Heavy Ind Ltd 同期電動機
DE19847591A1 (de) * 1998-10-15 2000-05-11 Gutt Hans Joachim Permanentmagneterregte elektrische Maschine mit Hoch-Temperatur-Supra-Leitern zur Magnetfeldverstärkung bzw. Feldschwächung
EP3078104A1 (fr) * 2013-12-04 2016-10-12 Hyper Tech Research, Inc. Générateurs et moteurs supraconducteurs
FR3093599A1 (fr) * 2019-03-07 2020-09-11 Safran Machine électrique supraconductrice et procédé de magnétisation des pastilles supraconductrices
FR3104804A1 (fr) 2019-12-13 2021-06-18 Safran Pastille supraconductrice comprenant une cavité et machine électrique associée
FR3104803A1 (fr) 2019-12-13 2021-06-18 Safran Machine électrique comprenant des pastilles supraconductrices de forme optimisée

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CESAR A LUONGO ET AL: "Next Generation More-Electric Aircraft: A Potential Application for HTS Superconductors", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, IEEE, USA, vol. 19, no. 3, 1 June 2009 (2009-06-01), pages 1055 - 1068, XP011263653, ISSN: 1051-8223 *
M. MORITAH. TESHIMAH. HIRANO: "Development of oxide superconductors", NIPPON STEEL TECHNICAL REPORT, vol. 93, 2006, pages 18 - 23
YUFENG ZHANG ET AL: "Melt-growth bulk superconductors and application to an axial-gap-type rotating machine", SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, IOP PUBLISHING, TECHNO HOUSE, BRISTOL, GB, vol. 29, no. 4, 10 March 2016 (2016-03-10), pages 44005, XP020300288, ISSN: 0953-2048, [retrieved on 20160310], DOI: 10.1088/0953-2048/29/4/044005 *

Also Published As

Publication number Publication date
FR3119042B1 (fr) 2023-10-27
US20240097548A1 (en) 2024-03-21
FR3119042A1 (fr) 2022-07-22
CN117280583A (zh) 2023-12-22
EP4282059A1 (fr) 2023-11-29

Similar Documents

Publication Publication Date Title
EP2896114B2 (fr) Rotor de machine électrique tournante, comportant une masse rotorique dans laquelle sont ménagés des logements
FR3046888A1 (fr) Stator pour machine electromagnetique a flux axial avec des portions unitaires formant une couronne du stator
FR3019948A1 (fr) Rotor de machine electrique tournante.
EP1599930A2 (fr) Machine electrique tournante comportant un stator et deux rotors
WO2021116575A1 (fr) Pastille supraconductrice comprenant une cavité et machine électrique associée
EP3130060A2 (fr) Rotor de machine electrique tournante
EP0214896B1 (fr) Palier magnétique radial de grand diamètre
WO2013124787A1 (fr) Rotor de machine tournante a concentration de flux
FR2941105A1 (fr) Machine electrique tournante,en particulier pour un demarreur de vehicule automobile
FR3104803A1 (fr) Machine électrique comprenant des pastilles supraconductrices de forme optimisée
FR2876228A1 (fr) Rotor pour moteur electrique et moteur electrique correspondant
EP4282059A1 (fr) Protection des bobines d'une machine électrique
EP3120445B1 (fr) Machine electrique hybride
WO2022157441A1 (fr) Protection des bobines d'une machine électrique
EP2283561B1 (fr) Rotor de machine electrique tournante avec structures interpolaires a masse reduite
WO2023152448A1 (fr) Maschine comprenant pastilles supraconductrices, barriere de flux, bobine supraconductrice annulaire et un induit statorique
WO2019145831A1 (fr) Aimant unitaire à configuration ovoïde et structure d'aimant à plusieurs aimants unitaires
EP3175534A2 (fr) Stator ameliore et machine électrique comportant un tel stator
EP3457531A2 (fr) Machine électrique comprenant un stator muni d'un manchon tubulaire interne pour le passage d'un fluide de refroidissement
FR3008539A1 (fr) Actionneur electromagnetique polyentrefers a aimants permanents et elements de bobinage sans fer
FR2983007A1 (fr) Rotor de machine electrique tournante a aimants permanents.
FR3057411A1 (fr) Rotor segmente pour machine asynchrone et machine asynchrone comportant un tel rotor segmente
FR3067880A1 (fr) Machine electrique tournante
FR3131126A1 (fr) Machine électrique à écrans magnétiques supraconducteurs
FR2968481A1 (fr) Machine tournante electromagnetique a concentration de flux tridimensionnelle.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22704930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273428

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280016148.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022704930

Country of ref document: EP

Effective date: 20230821