WO2022156661A1 - 带副叶片的螺旋输送器与螺旋卸料沉降离心机 - Google Patents

带副叶片的螺旋输送器与螺旋卸料沉降离心机 Download PDF

Info

Publication number
WO2022156661A1
WO2022156661A1 PCT/CN2022/072492 CN2022072492W WO2022156661A1 WO 2022156661 A1 WO2022156661 A1 WO 2022156661A1 CN 2022072492 W CN2022072492 W CN 2022072492W WO 2022156661 A1 WO2022156661 A1 WO 2022156661A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary
blades
screw conveyor
screw
spiral
Prior art date
Application number
PCT/CN2022/072492
Other languages
English (en)
French (fr)
Inventor
牟宇慧
牟富君
张后生
王斌
Original Assignee
江苏巨能机械有限公司
巨能机械(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏巨能机械有限公司, 巨能机械(中国)有限公司 filed Critical 江苏巨能机械有限公司
Priority to US18/272,530 priority Critical patent/US20240075483A1/en
Priority to DE112022000677.3T priority patent/DE112022000677T5/de
Publication of WO2022156661A1 publication Critical patent/WO2022156661A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • B04B2001/2041Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl with baffles, plates, vanes or discs attached to the conveying screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • B04B2001/205Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl with special construction of screw thread, e.g. segments, height

Definitions

  • the invention relates to the technical field of solid-liquid separation, in particular to a screw conveyor with auxiliary blades and a screw discharge sedimentation centrifuge.
  • the spiral discharge decanter centrifuge includes vertical and horizontal spiral discharge decanter centrifuges. It is a high-efficiency centrifugal equipment for solid-liquid separation.
  • the horizontal screw discharge sedimentation centrifuge is referred to as the decanter centrifuge.
  • the decanter centrifuge Compared with the belt filter press and the plate and frame filter press, the decanter centrifuge has the characteristics of large processing capacity, automatic operation and good dehydration effect. , has been widely used in the industrial field.
  • Fig. 1 is the structure of the existing conventional decanter centrifuge.
  • the rotating drum includes the small end of the conical section 11 and the large end of the straight cylinder section 7. The small end and the large end are fixedly connected by the small end cover 2 and the large end cover 8 respectively.
  • the feeding tube 1 passes through the small end cover 2 and communicates with the inside of the hollow inner cylinder 4 of the screw conveyor or enters from the big end of the drum.
  • the outer circumference of the inner cylinder 4 is fixed with a helical blade 6, and the inner cylinder 4 close to the feeding tube 1 is provided with
  • the discharge hole 3, the lower part of the small end of the outer cylinder 5 is provided with a solid phase outlet 12, the large end cover 8 is provided with an overflow port 9, the large end cover 8 is fixedly connected with the outer cylinder 5, the drum and the screw conveyor are driven by differential speed. control the differential rotation.
  • the suspension to be separated is continuously transported into the hollow inner cylinder 4 of the screw conveyor through the feeding pipe 1, and enters between the high-speed rotating outer cylinder 5 and the inner cylinder 4 through the discharge hole 3 of the screw conveyor.
  • the solid phase particles quickly settle on the inner wall of the outer cylinder, the drum and the screw conveyor rotate in the same direction and differential speed, the screw conveyor pushes the solid phase particle sediment to the drying area at the small end of the drum, and passes through the screw conveyor.
  • the two-way extrusion of the thrust and the centrifugal force of the sediment causes the sediment to be further squeezed and dehydrated, and then discharged from the solid phase outlet 12 at the small end of the drum, and the separated clear liquid moves to the large end of the drum, and finally drains from the large end of the drum.
  • the overflow port 9 is discharged.
  • the screw conveyor can continuously send the sediment to the slag discharge outlet 12 and discharge it out of the machine. Its structure, material and parameters not only relate to the production capacity and service life of the decanter centrifuge, but also directly affect the slag discharge efficiency and separation effect.
  • the existing decanter separator has poor treatment effect when dealing with suspensions that are difficult to separate solid-liquid, and the tiny solid particles are difficult to be separated, and will be discharged together with the light phase, resulting in the light phase.
  • the solid content is high, and a more precise centrifuge must be set up to centrifuge the light liquid again in the subsequent treatment process.
  • Chinese invention patent 2018210710072 discloses a horizontal three-phase combined centrifugal separator, by welding a spiral inclined plate separator on the outer wall of the screw pusher; the spiral inclined plate separator and the outer wall of the screw pusher are fully integrated It is equipped with a screw pusher, which overcomes the defects of the disc centrifuge and the decanter centrifuge, and can perform three-phase or two-phase separation, reducing the embarrassment of multiple centrifugal equipment being used in the same process at the same time.
  • the effect of the disc centrifuge for separating liquid clarity is completely equivalent to the effect of the decanter centrifuge in processing solids, and the adjustment operation of the separation effect is simpler.
  • the applicant has the disadvantages of poor separation effect and high solid content in the light phase when the existing equipment group in the above-mentioned existing production processes the suspension that is difficult to separate from solid and liquid, and requires post-processing steps to be filtered or separated. , to provide a screw conveyor with a secondary blade and a screw discharge sedimentation centrifuge with a reasonable structure, by increasing the equivalent sedimentation area, separation length and speed, etc., to enhance the equipment's ability to handle suspensions that are difficult to separate from solids and liquids And the separation efficiency, the light phase finally obtained has low solid content, and can save the space required for equipment, reduce investment and operating costs.
  • a screw conveyor with auxiliary blades a hollow inner cylinder is provided with a cone section and a straight cylinder section, a feeding hole is opened on the pipe wall near the cone section, the outer circumference of the inner cylinder is provided with a spiral blade, and between the spiral blades is provided with a feeding hole.
  • auxiliary blades are added between the helical blades, and the auxiliary blades rotate together with the inner cylinder.
  • the solid particles of the suspension entering the screw conveyor are separated from the liquid phase.
  • the suspension entering the inner and outer cylinders from the discharge hole is driven by the auxiliary blade, so that the centrifugal force and rotation speed can be obtained immediately, thereby accelerating the separation of the solid-liquid two phases and improving the separation efficiency.
  • the present invention enhances the processing capacity and separation efficiency of the equipment for the suspension that is difficult to separate from solid and liquid, and has the advantages of low cost, production and operation cost savings, and the like.
  • the root of the auxiliary vane is welded to the outer peripheral surface of the inner cylinder, one side is welded with the helical blade on one side of the helical passage, and the other side is a certain distance t from the helical blade on the other side of the helical passage.
  • the distance t is 20% to 80% of the helical pitch p.
  • the auxiliary blade is a plane straight blade or a curved blade.
  • the curved and convex directions of the curved surfaces of the auxiliary vanes are consistent with the rotating direction of the drum.
  • the auxiliary blade has a certain curvature, and the convex direction of the curved surface is consistent with the rotating direction of the drum, that is, the heavy phase particles in the suspension will move outward along the convex surface of the curved blade. It can effectively increase the centrifugal force and promote the easy sedimentation of heavy phase particles.
  • the included angle ⁇ between the auxiliary vane and the central axis of the drum is 0 to 45 degrees; or the included angle ⁇ between the auxiliary vane and the radial line of the drum is 0 to 90 degrees.
  • the auxiliary vanes are arranged in the helical channel after the discharge hole. It can reduce the conveying resistance in the drying area of the drum cone section and facilitate the discharge of solid phase materials.
  • auxiliary blades are evenly distributed in each helical pitch, and two adjacent blades are arranged in parallel or staggered, and the welding positions of the two auxiliary blades on both sides of the spiral blade are staggered.
  • the staggered arrangement of two adjacent blades can improve the efficiency of solid pushing and avoid dead angle or accumulation.
  • the staggered auxiliary vanes arranged in the spiral channel of the present invention form a wave-shaped channel. When the separation liquid flows through the channel, it is blocked by the auxiliary vanes, reduces the flow rate and is constantly forced to turn, prolongs the separation path length of the suspension, and increases the waiting time.
  • the equivalent sedimentation area also increases, the particle sedimentation distance is shortened, and the flow rate of the suspension increases, making the solid particles It can be fully separated and settled from the liquid phase, and a clear liquid with higher purity can be obtained, and the subsequent process does not need to perform filtration treatment of solid particles, which effectively improves the separation effect.
  • the height of the auxiliary vanes is not higher than the height of the helical vanes, and the heights are equal or increase sequentially from the solid phase end to the liquid phase end.
  • the auxiliary blades can assist in scraping the solid phase particles on the inner wall of the outer cylinder, and the auxiliary helical blades push the solid phase particles towards the drying area at the small end of the drum.
  • the auxiliary vane can assist the helical blade to push the solid phase particles to the solid phase end.
  • a spiral discharge sedimentation centrifuge is provided with the above-mentioned screw conveyor with auxiliary blades inside the outer cylinder.
  • FIG. 1 is a schematic structural diagram of a conventional decanter centrifuge.
  • FIG. 2 is a schematic structural diagram of a decanter centrifuge using the present invention.
  • Figure 3 is a perspective view of the screw conveyor of the present invention.
  • FIG. 4 is a cross-sectional view of the screw conveyor A-A in FIG. 2 .
  • FIG. 5 is the same as FIG. 4 , which is a layout diagram of the auxiliary vanes of the screw conveyor in the second embodiment.
  • FIG. 6 is a perspective view of the screw conveyor according to the third embodiment of the present invention.
  • FIG. 7 is a front view of FIG. 6 .
  • FIG. 8 is a perspective view of the screw conveyor according to the fourth embodiment of the present invention.
  • FIG. 9 is a front view of FIG. 6 .
  • FIG. 10 is the same as FIG. 4 , which is a layout diagram of the auxiliary vanes of the screw conveyor in the fourth embodiment.
  • the screw conveyor with auxiliary vanes according to the present invention is to add several auxiliary blades 10 between the screw blades 6 of the existing conventional screw conveyor.
  • the width of the auxiliary blades 10 Less than the pitch of the helical blades 6, the adjacent two auxiliary blades 10 are staggered, and the originally continuous and complete helical passage space between the helical blades 6 is further divided into tortuous flow passages 15, thereby extending the separation path length of the suspension, Effectively improve the separation effect.
  • the auxiliary blade 10 added in this embodiment is a flat straight plate blade, which is arranged along the radial direction of the screw conveyor.
  • the left edge of a part of the sub-blade 10 in each helical space is fixed with the helical blade 6 near the left, leaving a first gap 13 on the right side, the width is t, and the distance t is 20% to 80% of the helical pitch p,
  • the right edge of the other part of the auxiliary vanes 10 is fixed with the right helical vane 6 away from the feed pipe 1, so as to leave a second gap 14 on the left side; that is, two adjacent auxiliary vanes 10 in each circumferential space are staggered and
  • the side helical blades 6 and the right helical blades 6 are fixed, thereby forming a tortuous wave or meandering path 15 in each helical space.
  • auxiliary blades 10 When the separation liquid flows through the passage, it is blocked by the auxiliary blades 10 and reduces the flow rate. And it is constantly forced to turn, which increases the residence time of the liquid to be separated in the drum during the centrifugal separation process.
  • several auxiliary vanes 10 are arranged at equal angles in the radial direction within several pitches of the screw conveyor.
  • the suspended material to be separated enters the inner cylinder 4 of the screw conveyor from the feeding pipe 1, and then enters between the outer cylinder 5 and the inner cylinder 4 rotating at a high speed from the discharge hole 3 of the screw conveyor,
  • the solid phase particles settle on the inner wall of the outer cylinder, and the screw conveyor pushes the solid phase particle sediment to the small end of the drum, that is, the drying area of the solid phase end.
  • the solid phase outlet 12 At the small end of the drum; while the separated clear liquid with lighter density moves and settles along the inner cylinder 4 to the liquid phase end on the other side, and is finally discharged from the overflow port 9 .
  • the auxiliary blades 10 are added between the helical blades 6, and the auxiliary blades 10 rotate together with the inner cylinder 4.
  • the suspension entering the screw conveyor is under the action of the huge centrifugal force field, and the solid particles are separated from the liquid phase.
  • the existence of 10 has changed the original way that only the screw blade 6 drives the liquid to rotate, but drives the suspension from the discharge hole 3 into the inner and outer cylinders through the auxiliary blade 10, so that it can immediately obtain centrifugal force and rotation speed, thereby accelerating Separation of solid-liquid two phases to improve separation efficiency.
  • the staggered auxiliary blades 10 arranged in the spiral channel of the present invention form a wave-shaped channel, which increases the settling distance and residence time of the suspension to be separated in the drum.
  • the sedimentation area also increases, the particle sedimentation distance is shortened, and the flow rate of the suspension increases, so that the solid particles can be fully separated from the liquid phase and sedimented, and a clear liquid with higher purity can be obtained.
  • the subsequent process does not need to filter the solid particles. .
  • the present invention enhances the processing capacity and separation efficiency of the equipment for the suspension that is difficult to separate from solid and liquid, and has the advantages of low cost, production and operation cost savings, and the like.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the flat straight plate blade in the first embodiment is changed to a curved blade
  • the auxiliary blade 10 has a certain curvature, and the curved convex direction of the curved surface is consistent with the rotating direction of the drum, that is, the The heavy phase particles will move outward along the convex surface of the curved blade, and this setting can effectively increase the centrifugal force and promote the easy sedimentation of the heavy phase particles.
  • the auxiliary vanes 10 arranged in the axial direction of the rotating drum in the first embodiment are deflected to a certain angle, and the angle ⁇ between the auxiliary vanes 10 and the central axis of the rotating drum in FIG. 7 is 45 Within degrees, preferably 5 to 30 degrees, adjacent blades are arranged in parallel, and the deflection directions are the same.
  • the auxiliary vanes 10 are arranged in the rear spiral channel of the discharge hole 3, which can reduce the conveying resistance in the drying area of the drum cone section 11 and facilitate the discharge of solid-phase materials.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the deflection directions of the auxiliary vanes 10 with the same deflection directions in the fourth embodiment are staggered.
  • the direction of rotation is opposite, and the direction of deflection of the sub-blade 1 welded on the back side corresponds to the direction of rotation.
  • This embodiment can improve the efficiency of solid pushing, and avoid dead angle or accumulation.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the auxiliary vanes 10 arranged in the radial direction of the drum in the first embodiment are deflected to a certain angle.
  • the angle ⁇ between the auxiliary vanes 10 and the radial line is within 90 degrees, preferably 5 to 45 degrees.
  • four auxiliary vanes 10 are arranged in one helical pitch.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the height of the auxiliary blades 10 in the above embodiments is the same as the height of the helical blades 6.
  • the auxiliary blades 10 can assist in scraping the solid particles on the inner wall of the outer cylinder, and the auxiliary helical blades 6 push the solid particles toward the drying area at the small end of the drum.
  • the height of the auxiliary vane 10 can also be lower than the helical vane 6, or the height increases from the solid phase end to the liquid phase end, thereby assisting the helical vane to push the solid phase particles to the solid phase end.
  • the suspension is a kind of solid-liquid mixture, and of course it can also be a fermentation broth, a colloid, a surfactant or an emulsion.
  • the sub-blade 10 can also be a circular, conical, curved or other special-shaped plate with a height not exceeding the spiral blade 6, and it is only necessary to ensure that the flow channel 15 is formed in each spiral circumferential space.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

带副叶片(10)的螺旋输送器与螺旋卸料沉降离心机,螺旋输送器的中空内筒(4)设置有锥段(11)与直筒段(7),内筒(4)的外周设置有螺旋叶片(6),在螺旋叶片(6)之间设置有若干副叶片(10),副叶片(10)的宽度小于螺旋叶片(6)的节距,相邻的两片副叶片(10)交错设置在螺旋通道空间内形成曲折流道(15)。

Description

带副叶片的螺旋输送器与螺旋卸料沉降离心机 技术领域
本发明涉及固液分离技术领域,尤其是一种带副叶片的螺旋输送器与螺旋卸料沉降离心机。
背景技术
螺旋卸料沉降离心机包括立式与卧式螺旋卸料沉降离心机,是一种用于固液分离的高效离心设备,可以用于工业和民用固液分离的离心处理工序。卧式螺旋卸料沉降离心机简称为卧螺离心机,相比带式压滤机和板框压滤机等,卧螺离心机由于其本身具有处理量大、自动化操作、脱水效果好等特点,在工业领域得到了广泛的使用。图1为现有的常规卧螺离心机结构,转鼓包括锥段11的小端和直筒段7的大端,小端和大端分别利用小端盖2和大端盖8固定连接,进料管1穿过小端盖2与螺旋输送器的中空内筒4内部连通或从转鼓大端进入,内筒4外周固定有螺旋叶片6,靠近进料管1的内筒4上开设有出料孔3,外筒5小端下部开设有固相出口12,大端盖8上开设有溢流口9,大端盖8与外筒5固定连接,转鼓和螺旋输送器由差速器控制差速旋转。工作时,待分离的悬浮液经进料管1连续输送到螺旋输送器的中空内筒4内,经螺旋输送器的出料孔3,进入高速旋转的外筒5与内筒4之间,在离心力的作用下,固相颗粒快速沉降到外筒内壁上,转鼓和螺旋输送器同向差速旋转,螺旋输送器将固相颗粒沉渣推送到转鼓小端的干燥区,经过螺旋输送器推力和沉渣离心分力的双向挤压,使沉渣得到进一步挤压脱水后,从转鼓小端的固相出口12排出,而分离后的清液向转鼓大端移动,最终从转鼓大端的溢流口9排出。螺旋输送器能连续地把沉渣送至排渣出口12排出机外,其结构、材料和参数不仅关系到卧螺离心机的生产能力、使用寿命,而且直接影响到排渣的效率和分离效果。实际工作时,现有的卧螺分离机在处理较难进行固液分离的悬浮液时,处理效果比较差,微小的固体颗粒很难被分离出来,会随着轻相一起排出,导致轻相含固量较高,在后道处理工序中还必须设置更精密的离心机对轻液再次进行离心分离。
中国发明专利2018210710072公开了一种卧式三相组合离心分离机,通过在螺旋推料器的外壁上焊接有螺旋斜板分离器;所述螺旋斜板分离器及螺旋推料器的外壁上通体设置有螺旋推料片,同时克服碟片离心机与卧螺离心机的缺陷,可以进行三相或两相的分离,减少了多种离心设备同时连用于同一工序的尴尬,几乎接近于专门的碟片式离心分离机分离液体清晰度的效果,又完全等同于卧螺离心机处理固形物的效果,分离效果 的调整操作更为简单。但是这种设计内部密集众多的斜板严重增加了转子的重量,同时将螺旋叶片设置在螺旋斜板外周,故只能采用在相交处点焊的方式,因而叶片的连接强度较差,难以承载卧螺离心机高速旋转的离心载荷,此结构中物料可沿螺旋斜板从进料端直接通过螺旋斜板至轻液出口,形成短路,严重影响物料的分离效果。
发明内容
本申请人针对上述现有生产中现有的设备组处理固液较难分离的悬浮液时,分离效果差、轻相中含固量较高固体还需要后处理工序再行过滤或分离等缺点,提供一种结构合理的带副叶片的螺旋输送器与螺旋卸料沉降离心机,通过增加当量沉降面积、分离长度与提高速度等方式,增强设备对固液较难分离的悬浮液的处理能力及分离效率,最终获得的轻相含固量低,并能节省设备所需空间、降低投资和运行成本。
本发明所采用的技术方案及有益效果如下:
一种带副叶片的螺旋输送器,中空内筒设置有锥段与直筒段,靠近锥段的管壁上开设有进料孔,内筒的外周设置有螺旋叶片,在螺旋叶片之间设置有若干副叶片,所述副叶片的宽度小于螺旋叶片的节距,相邻的两片副叶片交错设置在螺旋通道空间内形成曲折流道。本发明通过在螺旋叶片之间增加副叶片,副叶片随内筒一起旋转,进入螺旋输送器的悬浮液在巨大离心力场作用下,固体颗粒从液相中分离出来,由于副叶片的存在,改变了原来仅以螺旋叶片驱动液体旋转的方式,而是通过副叶片驱动从出料孔进入内外筒之间的悬浮液,使之能立即获得离心力和转速,从而加速固液两相的分离,提高分离效率。同时副叶片也增加了当量沉降面积,根据分离因数F r=rω2/g的公式,上述速度提高与面积增加,可以显著提高分离因数F r,取得更好的分离效果。本发明通过对现有的卧螺离心机的改造,增强设备对固液较难分离的悬浮液的处理能力及分离效率,具有造价低、节省生产运行费用等优点。
作为上述技术方案的进一步改进:
所述副叶片的根部焊接在内筒的外周面上,一侧边与螺旋通道一侧螺旋叶片焊接,另一边距离螺旋通道另一侧螺旋叶片一定距离t。
所述距离t为螺旋节距p的20%~80%。
所述副叶片为平面直板叶片或者曲面叶片。
所述曲面副叶片的曲面弯曲外凸方向与转鼓旋转方向一致。当选用曲面叶片时,副叶片具有一定弯曲弧度,其曲面弯曲外凸方向与转鼓旋转方向一致,也即悬浮液中的重 相颗粒会沿着曲面叶片的外凸表面向外移动,如此设置可以有效增加离心力,促使重相颗粒容易沉降。
所述副叶片与转鼓中轴线之间的夹角α为0~45度;或者所述副叶片与转鼓径线之间的夹角β为0~90度。
所述副叶片设置在出料孔以后的螺旋通道中。可以减小转鼓锥段干燥区的输送阻力,便于固相物料的排出。
所述副叶片在每个螺旋节距内均布若干片,相邻两叶片之间平行或者交错设置,螺旋叶片两侧的两片副叶片的侧边焊接位置错开。相邻两叶片交错设置可以提高固体推料的效率,避免产生死角或者堆积。本发明设置在螺旋通道中的交错副叶片形成波浪形通道,当分离液流经该通道时,受到副叶片的阻挡,降低流速并不断被迫转向,延长悬浮液的分离路径长度,增加了待分离悬浮液在转鼓内的沉降距离与停留时间,在转鼓直径、转速和长径比相同的情况下,当量沉降面积也同时增加,颗粒沉降距离缩短,悬浮液的流速增加,使固体颗粒可以充分从液相中分离出来沉降,可以获得纯度更高的清液,后道工序无须再进行固体颗粒的过滤处理,有效提高分离效果。
所述副叶片的高度不高于螺旋叶片高度,高度相等或者从固相端到液相端高度依次递增。当副叶片的高度与螺旋叶片高度平齐时,副叶片可辅助刮除外筒内壁上的固相颗粒,辅助螺旋叶片朝着转鼓小端的干燥区推送固相颗粒。当副叶片的高度从固相端到液相端高度依次递增时,副叶片可以辅助螺旋叶片向固相端推送固相颗粒。
一种螺旋卸料沉降离心机,在外筒内部设置有如上述带副叶片的螺旋输送器。
附图说明
图1为现有的卧螺离心机的结构示意图。
图2为使用本发明的卧螺离心机的结构示意图。
图3为本发明螺旋输送器的立体图。
图4为图2中螺旋输送器A-A截面的剖视图。
图5同图4,为实施例二中的螺旋输送器副叶片布局图。
图6为本发明实施例三的螺旋输送器立体图。
图7为图6的主视图。
图8为本发明实施例四的螺旋输送器立体图。
图9为图6的主视图。
图10同图4,为实施例四中的螺旋输送器副叶片布局图。
图中:1、进料管;2、小端盖;3、出料孔;4、内筒;5、外筒;6、螺旋叶片;7、直筒段;8、大端盖;9、溢流口;10、副叶片;11、锥段;12、固相出口;13、第一缺口;14、第二缺口;15、流道。
具体实施方式
下面结合附图,说明本发明的具体实施方式。
实施例一:
如图3、图4所示,本发明所述的带副叶片的螺旋输送器是在现有的常规的螺旋输送器的螺旋叶片6之间,增设有若干副叶片10,副叶片10的宽度小于螺旋叶片6的节距,相邻的两片副叶片10交错设置,将螺旋叶片6之间的原本连续完整的螺旋通道空间进一步分隔为曲折流道15,从而延长悬浮液的分离路径长度,有效提高分离效果。
本实施例中所增设的副叶片10为平面直板叶片,沿着螺旋输送器的径向设置,其根部的底侧边焊接于内筒4外周,其一侧边焊接在螺旋叶片6上,即每一个螺旋空间内的一部分副叶片10的左边缘与靠近左侧螺旋叶片6固定,在右侧留出第一缺口13,宽度为t,距离t为螺旋节距p的20%~80%,另一部分副叶片10的右边缘与远离进料管1的右侧螺旋叶片6固定,从而在左侧留出第二缺口14;即每一个圆周空间内相邻的两片副叶片10交错与左侧螺旋叶片6、右侧螺旋叶片6固定,从而在每一个螺旋空间内形成曲折的波浪形或蛇行路径的流道15,当分离液流经该通道时,受到副叶片10的阻挡,降低流速并不断被迫转向,增加了离心分离过程中待分离液在转鼓内的停留时间。本实施例在螺旋输送器的若干段节距内,径向等角度均布设置有若干片副叶片10。
本发明在工作时,待分离的悬浮料从进料管1进入螺旋输送器的内筒4内,随后从螺旋输送器的出料孔3进入高速旋转的外筒5与内筒4之间,固相颗粒沉降到外筒内壁上,螺旋输送器将固相颗粒沉渣推送到转鼓小端即固相端的干燥区,经过螺旋输送器推力和沉渣离心分力的双向挤压,使沉渣得到进一步挤压脱水后,从转鼓小端的固相出口12排出;而密度较轻的分离后的清液则沿着内筒4向另一侧液相端移动并沉淀,最终从溢流口9排出。
本发明通过在螺旋叶片6之间增加副叶片10,副叶片10随内筒4一起旋转,进入螺旋输送器的悬浮液在巨大离心力场作用下,固体颗粒从液相中分离出来,由于副叶片10的存在,改变了原来仅以螺旋叶片6驱动液体旋转的方式,而是通过副叶片10驱动从出料孔3进入内外筒之间的悬浮液,使之能立即获得离心力和转速,从而加速固液两相的分离,提高分离效率。同时副叶片10也增加了当量沉降面积,根据分离因数F r=rω 2/g的公式,上述速度提高与面积增加,可以显著提高分离因数F r,取得更好的分离效果。
本发明设置在螺旋通道中的交错副叶片10形成波浪形通道,增加了待分离悬浮液在转鼓内的沉降距离与停留时间,在转鼓直径、转速和长径比相同的情况下,当量沉降面积也同时增加,颗粒沉降距离缩短,悬浮液的流速增加,使固体颗粒可以充分从液相中分离出来沉降,可以获得纯度更高的清液,后道工序无须再进行固体颗粒的过滤处理。本发明通过对现有的卧螺离心机的改造,增强设备对固液较难分离的悬浮液的处理能力及分离效率,具有造价低、节省生产运行费用等优点。
实施例二:
如图5所示,本实施例将实施例一中的平面直板叶片改为曲面叶片,副叶片10具有一定弯曲弧度,其曲面弯曲外凸方向与转鼓旋转方向一致,也即悬浮液中的重相颗粒会沿着曲面叶片的外凸表面向外移动,如此设置可以有效增加离心力,促使重相颗粒容易沉降。
实施例三:
如图6、图7所示,本实施例将实施例一中的沿转鼓轴向设置的副叶片10偏转一定角度设置,图7中副叶片10与转鼓中轴线的夹角α为45度以内,优选为5~30度,相邻叶片平行设置,偏转方向一致。本实施例将副叶片10设置在出料孔3的后部螺旋通道中,可以减小转鼓锥段11干燥区的输送阻力,便于固相物料的排出。
实施例四:
如图9、图10所示,本实施例将实施例四中的偏转方向一致的副叶片10的偏转方向交错设置,即螺旋叶片6推料面一侧所焊接的副叶片10的偏转方向与旋转方向相反,背面一侧所焊接的副叶片1的偏转方向与旋转方向一致。本实施例可以提高固体推料的效率,避免产生死角或者堆积。
实施例五:
如图10所示,本实施例将实施例一中的沿转鼓径向设置的副叶片10偏转一定角度设置,图10中副叶片10与径线的夹角β为90度以内,优选为5~45度。本实施例中在一个螺旋节距中设置四片副叶片10。
实施例六:
以上各实施例的副叶片10的高度与螺旋叶片6高度平齐,副叶片10可辅助刮除外筒内壁上的固相颗粒,辅助螺旋叶片6朝着转鼓小端的干燥区推送固相颗粒。当然副叶 片10的高度也可以低于螺旋叶片6,或者从固相端到液相端高度递增,从而辅助螺旋叶片向固相端推送固相颗粒。
以上描述是对本发明的解释,不是对发明的限定,在不违背本发明精神的情况下,本发明可以作任何形式的修改。例如悬浮液是固液混合物的一种,当然也可以是发酵液、胶体、表面活性剂或乳浊液等。比如副叶片10也可以是高度不超过螺旋叶片6的圆形、锥形、曲线形或其他异形板,只需要确保在每一个螺旋圆周空间内形成流道15即可。

Claims (10)

  1. 一种带副叶片的螺旋输送器,中空内筒4设置有锥段11与直筒段7,靠近锥段11的管壁上开设有进料孔3,内筒4的外周设置有螺旋叶片6,其特征在于:在螺旋叶片6之间设置有若干副叶片10,所述副叶片10的宽度小于螺旋叶片6的节距,相邻的两片副叶片10交错设置在螺旋通道空间内形成曲折流道15。
  2. 按照权利要求1所述带副叶片的螺旋输送器,其特征在于:所述副叶片10的根部焊接在内筒4的外周面上,一侧边与螺旋通道一侧螺旋叶片6焊接,另一边距离螺旋通道另一侧螺旋叶片6一定距离t。
  3. 按照权利要求2所述带副叶片的螺旋输送器,其特征在于:所述距离t为螺旋节距p的20%~80%。
  4. 按照权利要求1所述带副叶片的螺旋输送器,其特征在于:所述副叶片10为平面直板叶片或者曲面叶片。
  5. 按照权利要求4所述带副叶片的螺旋输送器,其特征在于:所述曲面副叶片10的曲面弯曲外凸方向与转鼓旋转方向一致。
  6. 按照权利要求1所述带副叶片的螺旋输送器,其特征在于:所述副叶片10与转鼓中轴线之间的夹角α为0~45度;或者所述副叶片10与转鼓径线之间的夹角β为0~90度。
  7. 按照权利要求1所述带副叶片的螺旋输送器,其特征在于:所述副叶片10设置在出料孔3以后的螺旋通道中。
  8. 按照权利要求1所述带副叶片的螺旋输送器,其特征在于:所述副叶片10在每个螺旋节距内均布若干片,相邻两叶片之间平行或者交错设置,螺旋叶片6两侧的两片副叶片10的侧边焊接位置错开。
  9. 按照权利要求1所述带副叶片的螺旋输送器,其特征在于:所述副叶片10的高度不高于螺旋叶片6高度,高度相等或者从固相端到液相端高度依次递增。
  10. 一种螺旋卸料沉降离心机,其特征在于:在外筒5内部设置有如权利要求1所述带副叶片的螺旋输送器。
PCT/CN2022/072492 2021-01-21 2022-01-18 带副叶片的螺旋输送器与螺旋卸料沉降离心机 WO2022156661A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/272,530 US20240075483A1 (en) 2021-01-21 2022-01-18 Screw Conveyor Having Auxiliary Blades And Screw Discharge Decanter Centrifuge
DE112022000677.3T DE112022000677T5 (de) 2021-01-21 2022-01-18 Schneckenförderer mit hilfsschaufeln und schneckenaustragsdekanterzentrifuge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110078384.9A CN112827665A (zh) 2021-01-21 2021-01-21 带副叶片的螺旋输送器与螺旋卸料沉降离心机
CN202110078384.9 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022156661A1 true WO2022156661A1 (zh) 2022-07-28

Family

ID=75929151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072492 WO2022156661A1 (zh) 2021-01-21 2022-01-18 带副叶片的螺旋输送器与螺旋卸料沉降离心机

Country Status (4)

Country Link
US (1) US20240075483A1 (zh)
CN (1) CN112827665A (zh)
DE (1) DE112022000677T5 (zh)
WO (1) WO2022156661A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112827665A (zh) * 2021-01-21 2021-05-25 巨能机械(中国)有限公司 带副叶片的螺旋输送器与螺旋卸料沉降离心机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129042A1 (en) * 2000-11-10 2003-07-10 Steffen Hruschka Screw for a screw-type solid bowl centrifuge and method for producing oil using such a screw-type solid bowl centrifuge
EP1364717A2 (de) * 2002-05-24 2003-11-26 Hiller GmbH Dekantierzentrifuge für die Gewinnung von Frucht- oder Gemüsesäften mit einer Förderschnecke zur diskontinuierlichen Förderung
US20080312060A1 (en) * 2005-12-22 2008-12-18 Westfalia Separator Gmbh Screw-Type Solid Bowl Centrifuge
CN101391238A (zh) * 2007-09-20 2009-03-25 北京化工大学 具有入口加速的螺旋输送器
CN204974216U (zh) * 2015-09-06 2016-01-20 广州金康源环保设备有限公司 一种卧螺离心机
CN208824745U (zh) * 2018-07-07 2019-05-07 江苏赛德力制药机械制造有限公司 一种卧式三相组合离心分离机
CN112827665A (zh) * 2021-01-21 2021-05-25 巨能机械(中国)有限公司 带副叶片的螺旋输送器与螺旋卸料沉降离心机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2113830U (zh) * 1991-07-03 1992-08-26 吕资谷 复式螺旋离心分离机
CN214382765U (zh) * 2021-01-21 2021-10-12 巨能机械(中国)有限公司 带副叶片的螺旋输送器与螺旋卸料沉降离心机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129042A1 (en) * 2000-11-10 2003-07-10 Steffen Hruschka Screw for a screw-type solid bowl centrifuge and method for producing oil using such a screw-type solid bowl centrifuge
EP1364717A2 (de) * 2002-05-24 2003-11-26 Hiller GmbH Dekantierzentrifuge für die Gewinnung von Frucht- oder Gemüsesäften mit einer Förderschnecke zur diskontinuierlichen Förderung
US20080312060A1 (en) * 2005-12-22 2008-12-18 Westfalia Separator Gmbh Screw-Type Solid Bowl Centrifuge
CN101391238A (zh) * 2007-09-20 2009-03-25 北京化工大学 具有入口加速的螺旋输送器
CN204974216U (zh) * 2015-09-06 2016-01-20 广州金康源环保设备有限公司 一种卧螺离心机
CN208824745U (zh) * 2018-07-07 2019-05-07 江苏赛德力制药机械制造有限公司 一种卧式三相组合离心分离机
CN112827665A (zh) * 2021-01-21 2021-05-25 巨能机械(中国)有限公司 带副叶片的螺旋输送器与螺旋卸料沉降离心机

Also Published As

Publication number Publication date
CN112827665A (zh) 2021-05-25
DE112022000677T5 (de) 2023-11-02
US20240075483A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
JP5191565B2 (ja) 遠心脱水方法及び遠心脱水装置
CN102225383B (zh) 一种分离器
US11103811B2 (en) Mechanical separation devices
WO2022156661A1 (zh) 带副叶片的螺旋输送器与螺旋卸料沉降离心机
CN214382765U (zh) 带副叶片的螺旋输送器与螺旋卸料沉降离心机
CN112387427A (zh) 卧螺离心机
CN100340348C (zh) 一种二相三元体系分离的离心机
CN1033008C (zh) 沉降式离心机
CN108311295B (zh) 一种复合力场梯级强化离心选矿机
CN202876959U (zh) 新型高效沉降离心机
EP0528067B1 (en) Sedimentation centrifuge
CN201516384U (zh) 微粉湿法分级设备
CN1302854C (zh) 澄清液无扰动螺旋卸料沉降离心机
CN211339242U (zh) 一种油水固三相分离高速卧式螺旋沉降离心机
US20030224920A1 (en) Rotating-machine bowl assembly with flow guide
CN217796711U (zh) 一种高干型大通过量螺旋推料器
CN213727168U (zh) 卧螺离心机
CN212418353U (zh) 一种新型高效转鼓及包括其的离心机
CN214183590U (zh) 高干度卧螺离心机
CN219003387U (zh) 一种可移动式高效碟式离心机
CN210207233U (zh) 一种卧式螺旋卸料过滤式离心机
CN117504405B (zh) 一种餐厨垃圾调浆除砂装置
CN218078442U (zh) 一种正向组合式旋风分离器
CN220214038U (zh) 一种带导叶旋流泥水分离装置
CN2526085Y (zh) 超高效可调水力旋流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742140

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18272530

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022000677

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742140

Country of ref document: EP

Kind code of ref document: A1