WO2022156509A1 - 一种叶片混频排序的工艺处理方法 - Google Patents

一种叶片混频排序的工艺处理方法 Download PDF

Info

Publication number
WO2022156509A1
WO2022156509A1 PCT/CN2021/143083 CN2021143083W WO2022156509A1 WO 2022156509 A1 WO2022156509 A1 WO 2022156509A1 CN 2021143083 W CN2021143083 W CN 2021143083W WO 2022156509 A1 WO2022156509 A1 WO 2022156509A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
blades
blade
group
low
Prior art date
Application number
PCT/CN2021/143083
Other languages
English (en)
French (fr)
Inventor
邹维平
Original Assignee
无锡透平叶片有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡透平叶片有限公司 filed Critical 无锡透平叶片有限公司
Priority to DE112021006098.8T priority Critical patent/DE112021006098T5/de
Publication of WO2022156509A1 publication Critical patent/WO2022156509A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/961Preventing, counteracting or reducing vibration or noise by mistuning rotor blades or stator vanes with irregular interblade spacing, airfoil shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention relates to the technical field of blade manufacturing and processing, in particular to a process method for blade mixing and sorting.
  • a group of blades is assembled in the unit for high-speed rotation, which often causes cracks or even breaks due to vibration. This is because the frequencies of the two objects are the same or close to each other, which is prone to resonance phenomenon and lead to breakage. The blade resonance will greatly shorten the service life of the entire unit.
  • the first method was to increase or decrease the frequency value of a single blade by locally reducing the frequency and trimming the frequency.
  • the size of the blade was re-measured out of tolerance and had to be scrapped.
  • the local removal also changed the weight and moment data that needs to be used for the blade sorting, and the unbalanced data of the blade group also changed, which made the blade production fall into a repeated cycle. in labor.
  • the number of scrapped blades is too large, the number of blades in a set of sorted sets will be insufficient, and the phenomenon of replenishment and reproduction will be required, so that the production and delivery of blades will become uncontrollable.
  • the second method is to expand the production quantity of blades at the beginning of blade production. Originally, only one set of blades needs to be delivered.
  • the production quantity may be 1.5 sets or 2 sets of blades to meet the requirements of mixing and sorting.
  • the processing method will lead to an excessive backlog of blades in stock, which will increase the cost of blade manufacturing. seems very passive.
  • the present invention provides a process method for blade mixing and sorting, which can solve the problem of mixing and sorting in the blade manufacturing process, and avoid the scrapping phenomenon that the blade size is out of tolerance due to the frequency modification of the blade due to the mixing requirement. In production, it is no longer necessary to expand the number of blade inputs to meet the needs of mixing and sorting.
  • a process method for blade mixing and sorting which is characterized in that it includes the following steps: grouping, dividing a group of blades to be processed into two parts, one part of which is marked as a group of high-frequency blades , the other part is marked as a group of low-frequency blades; for blade body processing, when processing the part that affects the frequency of the blade, the high-frequency group of blades is processed according to the limit size that can increase the frequency, and the low-frequency group of blades can reduce the frequency according to the processing.
  • the total length is pre-processed, so that the total length of the high-frequency group of blades and the low-frequency group of blades are consistent; the frequency prediction, the blades are sorted from high to low according to the frequency measurement data, and the blades are re-divided into two groups of high frequency and low frequency.
  • Low-frequency two groups overall length processing and blade tip thinning processing, when processing the parts that affect the blade frequency, the high-frequency two-group blades are processed according to the limit size that can increase the frequency, and the low-frequency two-group blades are processed according to the limit size that can reduce the frequency.
  • the dimensions that affect the frequency of the blade when the blade body is processed include: the R dimension of the blade root transition and the maximum thickness dimension of each section of the blade profile; when the blade body is processed, for the blade root transition R dimension, the The high-frequency group of blades is processed according to the upper deviation of the size, and the low-frequency group of blades is processed according to the lower deviation of the size. For the maximum thickness dimension of each section of the blade profile, the high-frequency group of blades is processed according to the size.
  • the upper deviation is processed, and the low-frequency group of blades is processed according to the lower deviation of the size; when the total length is pre-processed, a certain margin is left for the total length of the blade; when the total length is processed, the high-frequency second group is processed according to the lower deviation of the overall length dimension; When the top is thinned, the second group of high frequency is processed according to the upper deviation of the size, and the second group of low frequency is processed according to the lower deviation of the size; the blade frequencies of the third group of high frequency and the third group of low frequency in the installation step are within the specified blade frequency range Inside.
  • Figure 1 is a schematic front view of the blade;
  • Figure 2 is a schematic left side view of the blade;
  • Figure 3 is a cross-sectional view of Figure 2;
  • Figure 4 is a schematic top view of the blade;
  • Figure 5 is a cross-sectional view of Figure 4.
  • a process method for blade mixing and sorting comprising the following steps: grouping, dividing a group of blades to be processed into two parts, one part is marked as a high frequency group of blades, and the other part is marked as a low frequency group of blades.
  • Blade body processing when processing the part that affects the frequency of the blade, the high-frequency group of blades is processed according to the limit size that can increase the frequency, and the low-frequency group of blades is processed according to the limit size that can reduce the frequency; specifically, processing In the process, according to the blade root transfer R dimension (the dimension R in Fig. 1), the maximum thickness dimension of each section of the blade profile (combined with Fig. 2 and Fig. 3, it is the dimension D in Fig. 3) for a group of high-frequency Blades and a group of low-frequency blades are processed.
  • the blade root transfer R dimension the dimension R in Fig. 1
  • the maximum thickness dimension of each section of the blade profile combined with Fig. 2 and Fig. 3, it is the dimension D in Fig. 3 for a group of high-frequency Blades and a group of low-frequency blades are processed.
  • blade root transfer R size a group of high-frequency blades is processed according to the upper deviation of the size, and a group of low-frequency blades is processed according to the lower size deviation, for example: blade root transfer R19 size , the tolerance range is -1.9 ⁇ +1.9.
  • a group of high-frequency blades is processed according to size R20.9, and the error can be -0.5 ⁇ 0;
  • the unit of value is millimeters (because the larger the value of this size is, the higher the frequency of the blade is, so the high frequency group is processed according to the maximum limit size, and the low frequency group is processed according to the minimum limit size.
  • the actual processing size of the high-frequency group is less than or equal to the limit size, and the actual processing size of the low-frequency group is greater than or equal to the minimum limit size, so as not to exceed the dimensional tolerance range and make the product unqualified).
  • the high-frequency group of blades is processed according to the upper deviation of the size, and the low-frequency group of blades is processed according to the lower deviation of the size.
  • the high frequency group blades are processed according to the upper tolerance deviation; the low frequency group blades are processed according to the lower tolerance difference.
  • the maximum thickness dimension Dmax the tolerance range is -0.25 ⁇ +0.51
  • the high-frequency group blades are executed according to the upper difference +0.31 ⁇ +0.51
  • the low-frequency group blades are executed according to the difference -0.25 ⁇ -0.05
  • the above value unit is millimeters.
  • the total length is pre-processed, so that the total length of the high-frequency group of blades and the low-frequency group of blades is the same, and a certain margin is left for subsequent processing (generally, a margin of about 2mm is left from the final total length dimension).
  • This process is to prepare for the frequency prediction. Make the total blade length consistent to improve the accuracy of predicted frequency data.
  • the leaves are sorted from high to low according to the frequency measurement data, and the leaves are re-divided into two groups of high frequency and two groups of low frequency.
  • the second group of high-frequency blades is processed according to the limit size that can increase the frequency
  • the second group of low-frequency blades is processed according to the limit size that can reduce the frequency.
  • the second group of high frequency is processed according to the lower deviation of the overall length dimension.
  • the high-frequency second-group blades and the low-frequency second-group blades are processed according to the depth dimension of the blade tip thinning (combined with Figure 4 and Figure 5, which is the dimension B in Figure 5).
  • the high-frequency second-group blades are processed according to the upper deviation of the size, and the low-frequency second-group blades are processed according to the lower deviation of the size.
  • the blades of the high-frequency group are executed according to the difference of +3.81 ⁇ +4.06;
  • the blades of the low-frequency group are executed according to the difference of -0.25 ⁇ -0, and the unit of the above value is mm; in this way, the frequency difference range of the two groups is further expanded, and the frequency of the second group of high frequency is the lowest.
  • the frequency value of the blade must be greater than the blade with the highest frequency in the two groups of low frequency.
  • the blades are sorted from high to low according to the frequency measurement data, and three groups of high frequency and three groups of low frequency are obtained according to the sorting order.
  • the dimensions that affect the frequency of the blades are not limited to the dimensions mentioned above, and other dimensions can also be processed in a similar way;
  • the blade frequencies of the high-frequency three groups and the low-frequency three groups in the step need to be within the specified blade frequency range.
  • the blades are processed directly according to the limit size provided by the customer in most cases, the produced blades can meet the frequency requirements, but in order to avoid If the frequency exceeds the requirements, the calculation data can be adjusted and verified through calculation and trial before processing to obtain the limit size that satisfies the frequency range during processing. In subsequent batch processing, processing according to this size can make the final size.
  • the frequencies of the produced blades all meet the requirements; the blades that are close to the maximum (minimum) of the specified frequency in the pre-frequency process can also be reduced in frequency increase (decrease) in the subsequent processing process, and for the blades that exceed (insufficient) the specified frequency
  • the blade with the maximum value (minimum value) will be processed according to the size of reducing (increasing) the frequency of the blade in the subsequent processing process, but this method is more dependent on the working experience of the processing personnel than the previous one. The above two In this way, it is no longer necessary to expand the number of blades input to meet the needs of mixing and sorting in production.
  • the beneficial effect of the present invention is: firstly determine the size parts of the key factors affecting the blade frequency, divide the blades of the same type into two groups of blades of a high frequency group and a low frequency group, and classify the blades of the high frequency group according to the corresponding parameters. It is beneficial to process the tolerance method of increasing the frequency value; the low frequency group blades are processed according to the tolerance method that is conducive to reducing the frequency value. Before the total length of the blade and the thinning process of the blade tip, two processes of the total length of the blade, the pre-processing process and the prediction frequency, are added.
  • the thinning depth of the blade with high frequency is processed according to the size close to the upper difference; the thinning depth of the blade with low frequency is processed according to the size close to the lower difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供了一种叶片混频排序的工艺处理方法,其能避免叶片为了混频需求去修频导致叶片尺寸超差的报废现象,生产上也不再需要扩大叶片投入数量。其包括以下步骤:分组,将叶片分为高频一组和低频一组;叶身加工,高频一组依照能使频率增大的极限尺寸进行加工,低频一组依照能使频率减小的极限尺寸进行加工;总长预加工;预测频,根据测频数据将叶片从高到低排序并分为高频二组和低频二组;总长加工和叶顶减薄加工,高频二组依照能使频率增大的极限尺寸进行加工,低频二组依照能使频率减小的极限尺寸进行加工;终测频,根据测频数据将叶片从高到低排序,并分为高频三组和低频三组;将高频三组和低频三组按照频率高低顺序以相邻的方式进行安装。

Description

一种叶片混频排序的工艺处理方法 技术领域
本发明涉及叶片制造加工技术领域,具体为一种叶片混频排序的工艺处理方法。
背景技术
一组叶片装配在机组里做高速旋转运动,常因振动而产生裂纹甚至断裂。这是因为两个物体的频率相同或接近,易产生共振现象而导致断裂,叶片共振会大大缩短整个机组的使用寿命。
技术问题
为了解决这个问题,产品工程师们设计出同一型号排列一圈的叶片,安装时要求相邻2个叶片的频率差≥某个定值,即有频率差排序。这样叶片排序需要满足2个条件,既要保证传统意义上用户要求的整圈叶片的不平衡率,以实现最小不平衡量,还要保证相邻2个叶片的频率差≥某个数值。由于同一型号的叶片制造执行相同的尺寸公差图纸要求,要求实现频率差排序有着不小的难度。
过去实现频率差排序的方法有两种,方法一是通过局部去量修频来增大或减小单个叶片的频率值,这样做的后果是,改变了已经完工检测合格的叶片尺寸,易导致该叶片尺寸复测超差而不得已报废,同时局部去量也改变了该叶片排序时需要用到的重量力矩数据,叶片组的不平衡量数据也随之改变,这样做使叶片生产陷入一个反复循环劳动中。一旦叶片报废数量多了,还会导致排序的一台套叶片数量不够,需要补料再生产现象,这样叶片的生产交付变得不可控。
方法二是在叶片排产初始时就扩大叶片的生产数量,本来只需交付一台套的叶片,投产数量可能是1.5台套或2台套的叶片数量来满足混频排序的要求,这种处理方法会导致库存叶片过多积压,这无形中增加了叶片制造成本,随着客户这一设计要求的越来越多,传统的工艺制造方法将这一矛盾变得越来越突出,工艺处理显得非常被动。
技术解决方案
针对上述问题,本发明提供了一种叶片混频排序的工艺处理方法,其能解决叶片制造过程中的混频排序问题,避免叶片为了混频需求去修频导致叶片尺寸超差的报废现象,生产上也不再需要过多扩大叶片投入数量来满足混频排序需求。
其技术方案是这样的:一种叶片混频排序的工艺处理方法,其特征在于,其包括以下步骤:分组,将待加工的一组叶片分为两部分,其中一部分标记为高频一组叶片,另一部分标记为低频一组叶片;叶身加工,在加工影响叶片频率的部位时,高频一组叶片依照能使频率增大的极限尺寸进行加工,低频一组叶片依照能使频率减小的极限尺寸进行加工;总长预加工,使高频一组叶片和低频一组叶片总长一致;预测频,根据测频数据将叶片从高到低排序,并重新将叶片分为高频二组和低频二组;总长加工和叶顶减薄加工,在加工影响叶片频率的部位时,高频二组叶片依照能使频率增大的极限尺寸进行加工,低频二组叶片依照能使频率减小的极限尺寸进行加工;终测频,根据测频数据将叶片从高到低排序,依据排序的顺序得到高频三组和低频三组;安装,将高频三组和低频三组的叶片按照频率高低顺序以相邻的方式进行安装。
其进一步特征在于:叶身加工时影响叶片频率的尺寸包括:叶根转接R尺寸、叶片型面的每档截面的最大厚度尺寸;叶身加工时,对于叶根转接R尺寸,所述高频一组叶片按照尺寸的上偏差进行加工,所述低频一组叶片按照尺寸的下偏差进行加工,对于叶片型面的每档截面的最大厚度尺寸,所述高频一组叶片按照尺寸的上偏差进行加工,所述低频一组叶片按照尺寸的下偏差进行加工;总长预加工时,叶片总长留有一定余量;总长加工时,高频二组按照总长尺寸的下偏差进行加工;叶顶减薄加工时,高频二组按照尺寸的上偏差进行加工,低频二组按照尺寸的下偏差进行加工;安装步骤中的高频三组和低频三组的叶片频率在规定的叶片频率范围内。
有益效果
有益效果:采用了这样的工艺后,有效避免了叶片为了混频需求去修频导致叶片尺寸超差的报废现象,生产上也不再需要过多扩大叶片投入数量来满足混频排序需求,大大降低了混频排序叶片的生产制造成本,使得混频排序叶片生产变得可控,整体上缩短了叶片生产交付周期。
附图说明
图1为叶片主视示意图;图2为叶片左视示意图;图3为图2的剖视图;图4为叶片俯视示意图;图5为图4的剖视图。
本发明的实施方式
一种叶片混频排序的工艺处理方法,其包括以下步骤:分组,将待加工的一组叶片分为两部分,其中一部分标记为高频一组叶片,另一部分标记为低频一组叶片。
叶身加工,在加工影响叶片频率的部位时,高频一组叶片依照能使频率增大的极限尺寸进行加工,低频一组叶片依照能使频率减小的极限尺寸进行加工;具体的,加工过程中分别依照叶根转接R尺寸(图1中尺寸R)、叶片型面的每档截面的最大厚度尺寸(结合图2、图3,其为图3中尺寸D)对高频一组叶片和低频一组叶片进行加工,对于叶根转接R尺寸,高频一组叶片按照尺寸的上偏差进行加工,低频一组叶片按照尺寸的下偏差进行加工,例如∶叶根转接R19尺寸,公差范围-1.9~+1.9,高频一组叶片按尺寸R20.9加工,误差可以为-0.5~0;低频一组叶片按尺寸R17.1加工,误差可以为0~+0.5加工,上述数值单位为毫米(由于这个尺寸数值越大加工得到的叶片频率越大,所以高频一组按照最大极限尺寸加工,低频一组按照最小极限尺寸加工,此处按照指的是接近该极限尺寸,同时要确保高频一组实际加工尺寸小于等于极限尺寸,低频一组实际加工尺寸大于等于最小极限尺寸,以免导致超出尺寸公差范围使产品不合格)。
对于叶片型面的每档截面的最大厚度尺寸,高频一组叶片按照尺寸的上偏差进行加工,低频一组叶片按照尺寸的下偏差进行加工,对于叶片型面每档截面的最大厚度尺寸,高频组叶片按公差上偏差加工;低频组叶片按公差下差加工。例如:最大厚度尺寸Dmax,公差范围-0.25~+0.51,高频组叶片按上差+0.31~+0.51执行;低频组叶片按下差-0.25~-0.05执行,上述数值单位为毫米。
总长预加工,使高频一组叶片和低频一组叶片总长一致,并且留有一定余量便于后续加工(一般离最终总长尺寸留2mm左右余量),此过程是为预测频作准备,通过使叶片总长一致来提高预测频数据的准确性。
预测频,根据测频数据将叶片从高到低排序,并重新将叶片分为高频二组和低频二组。
总长加工和叶顶减薄加工,在加工影响叶片频率的部位时,高频二组叶片依照能使频率增大的极限尺寸进行加工,低频二组叶片依照能使频率减小的极限尺寸进行加工;具体的,总长加工时,高频二组按照总长尺寸的下偏差进行加工。叶顶减薄加工时,加工过程中依照叶顶减薄处的深度尺寸(结合图4、图5,其为图5中尺寸B)对高频二组叶片和低频二组叶片进行加工,对于叶顶减薄处的深度尺寸,高频二组叶片按照尺寸的上偏差进行加工,低频二组叶片按照尺寸的下偏差进行加工,例如:减薄深度尺寸3.3,其公差范围-0.25~+4.06,高频组叶片按上差+3.81~+4.06执行;低频组叶片按下差-0.25~-0执行,上述数值单位为毫米;这样两组的频差范围进一步扩大,高频二组频率最低的叶片频率值一定大于低频二组频率最高的叶片。
终测频,根据测频数据将叶片从高到低排序,依据排序的顺序得到高频三组和低频三组,两组叶片的频差值就达到客户图纸要求的频差值需求。
安装,将高频三组和低频三组的叶片按照频率高低顺序以相邻的方式进行安装,例如,将高频三组和低频三组按照频率分别单独进行排序,得到两组叶片的顺序号,相同的顺序号的叶片相邻安装,合并成一台套叶片,这样就得到了该台套一圈叶片符合混频排列的顺序号,最后计算出这一台套叶片最终形成的最小不平衡量,以判断是否满足安装要求。
值得一提的是,影响叶片频率的尺寸并不仅限于上述提到的尺寸,其它尺寸也可以采用类似的方式进行加工;另外,由于一般情况下对最终生产出的叶片的频率也有要求,即安装步骤中的高频三组和低频三组的叶片频率需要在规定的叶片频率范围内,虽然直接按照客户提供的极限尺寸进行加工大部分情况下生产出的叶片都能满足频率要求,但是为了避免超出频率要求的情况发生,可以在进行加工前先通过计算并可以进行试做对计算数据进行调整和核验得到加工过程中满足频率范围的极限尺寸,后续批量加工时按照这个尺寸进行加工可以使最终生产出的叶片频率均满足要求;也可以将预测频工序中接近规定频率的最大值(最小值)的叶片在接下来的加工过程中减少频率的增加(降低),对于超出(不足)规定频率的最大值(最小值)的叶片,在接下来的加工过程中按照减小(增加)叶片频率的尺寸进行加工,但是这一种方法相对于前一种更加依靠加工人员的工作经验,上述两种方式使得生产上不再需要扩大叶片投入数量来满足混频排序需求。
与传统的叶片制造工艺相比,本发明的有益效果在于:首先确定影响叶片频率关键因素的尺寸部位,将同一型号的叶片分成高频组和低频组2组叶片,对高频组叶片按照有利于增大频率值的公差方式加工;对低频组叶片按照有利于降低频率值的公差方式加工。在叶片总长和叶顶减薄工序之前增加叶片的总长预加工工序和预测频两道工序。对频率高的叶片减薄深度按接近上差的尺寸加工;对频率低的叶片减薄深度按接近下差的尺寸加工,继续扩大两组叶片的频率差范围最终能使相邻两叶片频率差≥图纸规定的定值。
分别对两组叶片单独进行各自的排序,再将两组叶片的排序号以相邻的方式插入,组成一整圈叶片,得到混频排序的装配顺序号,最终满足客户排序需求。
这种新工艺流程处理方案有效避免了叶片为了混频需求去修频导致叶片尺寸超差的报废现象,生产上也不再需要过多扩大叶片投入数量来满足混频排序需求,大大降低了混频排序叶片的生产制造成本,使得混频排序叶片生产变得可控,整体上缩短了叶片生产交付周期。
以上,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

  1. 一种叶片混频排序的工艺处理方法,其特征在于,其包括以下步骤:分组,将待加工的一组叶片分为两部分,其中一部分标记为高频一组叶片,另一部分标记为低频一组叶片;叶身加工,在加工影响叶片频率的部位时,高频一组叶片依照能使频率增大的极限尺寸进行加工,低频一组叶片依照能使频率减小的极限尺寸进行加工;总长预加工,使高频一组叶片和低频一组叶片总长一致;预测频,根据测频数据将叶片从高到低排序,并重新将叶片分为高频二组和低频二组;总长加工和叶顶减薄加工,在加工影响叶片频率的部位时,高频二组叶片依照能使频率增大的极限尺寸进行加工,低频二组叶片依照能使频率减小的极限尺寸进行加工;终测频,根据测频数据将叶片从高到低排序,依据排序的顺序得到高频三组和低频三组;安装,将高频三组和低频三组的叶片按照频率高低顺序以相邻的方式进行安装。
  2. 根据权利要求1所述的一种叶片混频排序的工艺处理方法,其特征在于:叶身加工时影响叶片频率的尺寸包括:叶根转接R尺寸、叶片型面的每档截面的最大厚度尺寸。
  3. 根据权利要求2所述的一种叶片混频排序的工艺处理方法,其特征在于:叶身加工时,对于叶根转接R尺寸,所述高频一组叶片按照尺寸的上偏差进行加工,所述低频一组叶片按照尺寸的下偏差进行加工,对于叶片型面的每档截面的最大厚度尺寸,所述高频一组叶片按照尺寸的上偏差进行加工,所述低频一组叶片按照尺寸的下偏差进行加工。
  4. 根据权利要求1所述的一种叶片混频排序的工艺处理方法,其特征在于:总长预加工时,叶片总长留有一定余量。
  5. 根据权利要求1或4所述的一种叶片混频排序的工艺处理方法,其特征在于:总长加工时,高频二组按照总长尺寸的下偏差进行加工。
  6. 根据权利要求1所述的一种叶片混频排序的工艺处理方法,其特征在于:叶顶减薄加工时,高频二组按照尺寸的上偏差进行加工,低频二组按照尺寸的下偏差进行加工。
  7. 根据权利要求1所述的一种叶片混频排序的工艺处理方法,其特征在于:安装步骤中的高频三组和低频三组的叶片频率在规定的叶片频率范围内。
PCT/CN2021/143083 2021-01-19 2021-12-30 一种叶片混频排序的工艺处理方法 WO2022156509A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021006098.8T DE112021006098T5 (de) 2021-01-19 2021-12-30 Prozessbehandlungsverfahren zum Frequenzmischen und Sortieren von Schaufeln

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110068869.X 2021-01-19
CN202110068869.XA CN112819206B (zh) 2021-01-19 2021-01-19 一种叶片混频排序的工艺处理方法

Publications (1)

Publication Number Publication Date
WO2022156509A1 true WO2022156509A1 (zh) 2022-07-28

Family

ID=75870155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143083 WO2022156509A1 (zh) 2021-01-19 2021-12-30 一种叶片混频排序的工艺处理方法

Country Status (3)

Country Link
CN (1) CN112819206B (zh)
DE (1) DE112021006098T5 (zh)
WO (1) WO2022156509A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112819206B (zh) * 2021-01-19 2023-08-22 无锡透平叶片有限公司 一种叶片混频排序的工艺处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035658A1 (ja) * 2010-09-17 2012-03-22 株式会社日立製作所 翼の配列方法
CN107977733A (zh) * 2017-11-10 2018-05-01 南京汽轮电机(集团)有限责任公司 一种透平动叶片排序方法
CN109522590A (zh) * 2018-12-07 2019-03-26 中国人民解放军第五七九工厂 一种发动机叶片频率排序方法
CN110298117A (zh) * 2019-07-02 2019-10-01 中国船舶重工集团公司第七0三研究所 一种燃气轮机压气机叶片调频设计方法
CN112819206A (zh) * 2021-01-19 2021-05-18 无锡透平叶片有限公司 一种叶片混频排序的工艺处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363327B (zh) * 2008-09-26 2011-08-24 无锡透平叶片有限公司 一种tc11材料叶片的加工方法
US7996344B1 (en) * 2010-03-08 2011-08-09 Livermore Software Technology Corporation Multi-objective evolutionary algorithm based engineering design optimization
DE102016100522A1 (de) * 2016-01-13 2017-07-13 Wobben Properties Gmbh Verfahren zum Bewerten einer Anströmung an einem Rotorblatt einer Windenergieanlage sowie Verfahren zum Steuern einer Windenergieanlage und Windenergieanlage
CN111339610B (zh) * 2020-02-04 2023-04-07 中国人民解放军空军工程大学 一种叶轮机械转子叶片装配优化排序方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035658A1 (ja) * 2010-09-17 2012-03-22 株式会社日立製作所 翼の配列方法
CN107977733A (zh) * 2017-11-10 2018-05-01 南京汽轮电机(集团)有限责任公司 一种透平动叶片排序方法
CN109522590A (zh) * 2018-12-07 2019-03-26 中国人民解放军第五七九工厂 一种发动机叶片频率排序方法
CN110298117A (zh) * 2019-07-02 2019-10-01 中国船舶重工集团公司第七0三研究所 一种燃气轮机压气机叶片调频设计方法
CN112819206A (zh) * 2021-01-19 2021-05-18 无锡透平叶片有限公司 一种叶片混频排序的工艺处理方法

Also Published As

Publication number Publication date
CN112819206B (zh) 2023-08-22
DE112021006098T5 (de) 2023-09-28
CN112819206A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022156509A1 (zh) 一种叶片混频排序的工艺处理方法
CN105107915B (zh) 一种大尺寸镁合金薄壁筒形件精密旋压成形工艺方法
CN104077439B (zh) 一种新型高强钢轮辐拉深冲孔复合工序的数值模拟方法
CN102941447A (zh) 一种螺栓的制造加工工艺
CN106202727B (zh) 异型线缆拉拔模具的设计方法及系统
US11465195B2 (en) Hot-forging die with conformal meshy structured cavity surface layer and preparation method thereof
JP2015536402A (ja) タービン翼を製造するための方法及び装置
CN112309000B (zh) 一种云平台的机床稼动率监测系统
CN115208927A (zh) 用于次品修正调控的工业物联网及其控制方法
CN102142054A (zh) 一种铝合金蒙皮拉伸成形道次划分方法
CN114082988A (zh) 一种对航空发动机冷热端叶片修复的方法
CN102489658B (zh) 一种带轮毂的皮带轮旋压加工方法
CN107829985A (zh) 一种航空发动机风扇叶片固有频率的修正方法
CN111061246B (zh) 一种机械产品装配过程故障模式、影响及危害性分析方法
CN112756463A (zh) 一种三旋轮旋压筒形件时旋轮圆角半径的确定方法
CN112474983A (zh) 一种外带环形凸台的薄壁圆筒及其旋压工艺方法
CN110933849A (zh) 小半孔电路板制作方法
CN112034786B (zh) 基于表面粗糙度控制的整体环型机匣数控加工优化方法
CN113642180B (zh) 旋压成形状态在线感知方法
KR100402963B1 (ko) 가스터빈압축기의블레이드제조방법
CN204503870U (zh) 一种用于飞机z型材的一次拉弯成形加工模具
Kim et al. Development of an integrated computer-aided process planning system for press working products
CN104690197B (zh) 提高冷辊辊颈毛坯探伤质量的锻造方法
CN112719016A (zh) 一种筒形件两旋轮旋压旋轮圆角半径的确定方法
CN106670360A (zh) 一种环件轧制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021006098

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920880

Country of ref document: EP

Kind code of ref document: A1