WO2022156463A1 - 静电卡盘及半导体加工设备 - Google Patents
静电卡盘及半导体加工设备 Download PDFInfo
- Publication number
- WO2022156463A1 WO2022156463A1 PCT/CN2021/139936 CN2021139936W WO2022156463A1 WO 2022156463 A1 WO2022156463 A1 WO 2022156463A1 CN 2021139936 W CN2021139936 W CN 2021139936W WO 2022156463 A1 WO2022156463 A1 WO 2022156463A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchange
- electrostatic chuck
- channel
- insulating base
- ground
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 19
- 238000007654 immersion Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 19
- 238000005468 ion implantation Methods 0.000 claims description 18
- 239000000853 adhesive Substances 0.000 claims description 14
- 230000001070 adhesive effect Effects 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 239000004519 grease Substances 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 24
- 230000008569 process Effects 0.000 abstract description 23
- 238000001179 sorption measurement Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32412—Plasma immersion ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
- H01J37/32724—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
Definitions
- the invention relates to the field of semiconductor manufacturing, in particular to an electrostatic chuck and semiconductor processing equipment.
- the plasma immersion ion implantation technology is widely used in the fabrication of integrated circuits or MEMS devices.
- the plasma immersion ion implantation technology is a surface modification method of injecting accelerated ions in the plasma as dopants into a suitable substrate or a target of a semiconductor chip provided with electrodes by applying a high-voltage pulsed DC power supply or a DC power supply.
- Sexual Technology Since the plasma contains a large number of active particles such as electrons, ions, excited atoms, molecules and free radicals, these active particles reach the surface of the wafer under the action of the lower bias voltage, and interact with the wafer to cause various physical occurrences on the surface of the material. and chemical reactions, thereby changing the surface properties of materials.
- the wafer is typically carried and held by an electrostatic chuck.
- an electrostatic chuck For the existing electrostatic chuck structure, it usually includes a DC electrode layer, a heater and an aluminum base that are arranged in sequence from top to bottom.
- the aluminum base is grounded through the chamber wall, and the distance between the DC electrode and the aluminum base is relatively close , resulting in a relatively large capacitance to ground of the existing electrostatic chuck, thus failing to meet the requirements of the capacitance to ground of the electrostatic chuck for the plasma immersion ion implantation technology.
- the embodiment of the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes an electrostatic chuck and semiconductor processing equipment, which can reduce the capacitance to ground, so as to meet the requirements of the plasma immersion ion implantation technology for electrostatic discharge. Requirements for the chuck's capacitance to ground.
- an electrostatic chuck which is characterized in that it includes an insulating layer and a temperature adjusting structure; wherein, the insulating layer is provided with a DC electrode for electrostatically adsorbing an electrostatic chuck placed on the insulating layer. wafer;
- the temperature adjustment structure includes an insulating base disposed at the bottom of the insulating layer, and a heat exchange member suspended to the ground is disposed in the insulating base, and the heat exchange member includes contacts exposed from the upper surface of the insulating base The contact surface is in contact with the lower surface of the insulating layer, and is used to control the temperature of the wafer through thermal conduction.
- the insulating base is provided with a groove, and the opening of the groove is located on the upper surface of the insulating base; the heat exchange component is arranged in the groove, and the upper part of the heat exchange component a surface serving as the contact surface in contact with the lower surface of the insulating layer;
- the width of the preset gap is greater than or equal to the change amount of the thermal expansion of the insulating base.
- a compressible adhesive material is filled in the preset gap and between the bottom surfaces of the heat exchange component and the grooves that are opposite to each other; and, on the upper surface of the heat exchange component covered with the compressible adhesive material.
- the adhesive material includes silicone grease or polytetrafluoroethylene.
- the heat exchange component includes a heat exchange body and a heat exchange channel provided in the heat exchange body, wherein,
- the heat exchanging channel is used for exchanging heat with the heat exchanging body by conveying a heat exchanging medium.
- the electrostatic chuck further includes an input pipeline, an output pipeline and a temperature control device, wherein,
- Both ends of the input pipe are respectively connected with the input end of the heat exchange channel and the output end of the temperature control device;
- Both ends of the output pipe are respectively connected with the output end of the heat exchange channel and the input end of the temperature control device;
- the temperature control device is used to adjust the temperature of the heat exchange medium.
- both the input pipeline and the output pipeline are insulated hoses.
- the heat exchange body is provided with two first through holes that respectively penetrate from the lower surface of the heat exchange body to the input end and the output end of the heat exchange channel from bottom to top;
- the insulating base is provided with two second through holes penetrating from bottom to top from the lower surface of the insulating base to the surface of the insulating base that is opposite to the lower surface of the heat exchange body;
- One end of the first through hole is respectively connected with the input end and the output end of the heat exchange channel, the other ends of the two first through holes are respectively connected with one end of the two second through holes, and the two The other ends of the second through holes are respectively connected with one end of the input pipe and the output pipe.
- the heat exchange channels are evenly distributed with respect to the contact surface.
- the heat exchange channel includes a plurality of annular sub-channels, and the plurality of annular sub-channels are equally spaced on a plurality of circles with the center of the contact surface as the center and with different radii; wherein the radius is the smallest.
- the annular sub-channel is an arc-shaped channel segment, and the remaining annular sub-channels are composed of two semi-annular channel segments that are radially symmetrically distributed with respect to the contact surface and are spaced apart from each other; the two semi-annular channel segments with the largest radius
- the opposite ends of the annular channel segments are used as the input end and the output end of the heat exchange channel, respectively;
- all the semi-annular channel segments and the arc-shaped channel segments are connected in series through a plurality of sub-connecting channels to form a continuous channel .
- an embodiment of the present invention also provides a semiconductor processing equipment, including a reaction chamber and an electrostatic chuck disposed in the reaction chamber, wherein the electrostatic chuck adopts the above-mentioned electrostatic chuck. chuck.
- the semiconductor processing equipment is plasma immersion ion implantation equipment.
- the temperature adjustment structure of the temperature adjustment structure can be insulated from the ground as a whole by adopting an insulating base and at the same time suspending the heat exchange component provided in the insulating base to the ground, which is different from the prior art.
- the distance between the DC electrode arranged above the temperature adjustment structure and the ground can be increased, so that the capacitance to ground of the electrostatic chuck can be reduced, and the power lost in the capacitance to ground can be reduced, so that more The power is used in the machining process to obtain high machining efficiency, which can meet the requirements of the electrostatic chuck's capacitance to ground for the plasma immersion ion implantation technology.
- the semiconductor processing equipment provided by the embodiment of the present invention adopts the electrostatic chuck provided in the embodiment of the present invention to fix the wafer. Since the capacitance to ground of the electrostatic chuck is small, the power lost on the capacitance to the ground can be reduced, More power is used for the processing process, so the semiconductor processing equipment provided by the embodiments of the present invention can obtain higher processing efficiency, thereby meeting the requirements of the plasma immersion ion implantation technology for the capacitance to ground of the electrostatic chuck.
- Embodiment 1 is a schematic structural diagram of an electrostatic chuck provided in Embodiment 1 of the present invention.
- Embodiment 2 is an equivalent circuit diagram of the electrostatic chuck provided in Embodiment 1 of the present invention.
- Embodiment 3 is a partial cross-sectional view of the electrostatic chuck provided in Embodiment 1 of the present invention.
- Embodiment 4 is a schematic structural diagram of an electrostatic chuck provided in Embodiment 2 of the present invention.
- FIG. 5 is a schematic structural diagram of a heat exchange channel provided in Embodiment 2 of the present invention.
- this embodiment provides an electrostatic chuck for fixing a wafer, which includes an insulating layer 1 and a temperature adjusting structure 2 .
- the insulating layer 1 is provided with a DC electrode 11, which can adsorb the wafer placed on the insulating layer 1 by using the principle of electrostatic adsorption, so as to realize the fixation of the wafer.
- the DC electrode 11 is also supplied with a DC pulse to provide energy for attracting ions to the wafer.
- the insulating layer 1 may be made of insulating materials such as ceramics.
- the temperature adjustment structure 2 includes an insulating base 21 disposed at the bottom of the insulating layer 1 . Since the insulating base 21 is made of insulating material, it is electrically insulated from the ground. In some application scenarios, there may be a ground wire (eg, the bottom wall of the chamber) that is electrically conductive with the ground in the process chamber. In this case, the insulating base 21 can also be insulated from the ground wire to be insulated from the ground.
- the insulating base 21 is provided with a heat exchange member 22 suspended to the ground, that is, the heat exchange member 22 is also insulated from the ground.
- the capacitor is composed of two conductive electrode plates and an insulator between them.
- the DC electrode 11 can be used as one conductive electrode plate, and the ground can be used as another conductive electrode plate.
- electrostatic chucks are often used in process chambers.
- the DC electrode 11 after the DC electrode 11 is energized, it will form a capacitor with the conductive bottom wall of the chamber, and the bottom wall of the chamber usually acts as a ground.
- the line is electrically connected to the ground. Under this condition, the capacitance formed by the DC electrode 11 and the bottom wall of the chamber can also be regarded as the capacitance of the DC electrode 11 to ground.
- the distance between the DC electrode 11 and the ground or the ground wire can be increased by electrically insulating the insulating base 21 from the ground and suspending the heat exchange member 22 to the ground.
- the distance between the DC electrode and the ground or the ground wire is the distance between the DC electrode and the aluminum substrate.
- the distance between the DC electrode 11 and the ground or the ground wire is the distance between the DC electrode 11 and the bottom wall of the chamber. In the prior art, the distance between the DC electrode 11 and the ground or the ground wire is effectively increased.
- the capacitance to ground of the DC electrode 11 can be reduced, which is equivalent to the capacitance to ground of the electrostatic chuck, so that the power lost in the capacitance to ground can be reduced, so that more power can be used for the processing process, and then the plasma immersion ion can be satisfied.
- FIG. 2 is a working equivalent circuit diagram of the electrostatic chuck under this condition, as shown in FIG. 2 , during the plasma immersion ion implantation process
- the plasma can be equivalent to a plasma equivalent inductance L and a plasma equivalent capacitance R2
- the electrostatic chuck can be equivalent to an electrostatic chuck equivalent capacitance C2, an electrostatic chuck-to-ground capacitance C1 and a Equivalent resistance R1 of electrostatic chuck to ground.
- the above-mentioned plasma equivalent inductance L, plasma equivalent capacitance R2 and electrostatic chuck equivalent capacitance C2 can be equivalent to a plasma branch, which is used to perform a plasma immersion ion implantation process on the wafer;
- the disk-to-ground capacitance C1 and the electrostatic chuck-to-ground equivalent resistance R1 can be equivalent to a ground-to-ground branch.
- the DC electrode 11 is electrically connected to the plasma branch and the ground branch at the same time. As shown in FIG. 2 , the position of the DC electrode 11 in the above-mentioned equivalent circuit may correspond to the intersection A of the plasma branch and the ground branch.
- the DC pulse power output by the DC pulse source is also connected from this intersection A, the DC pulse power will be distributed to the plasma branch and the ground branch.
- the DC pulse power allocated to the plasma branch should be much higher than the DC pulse power allocated to the ground branch, that is, the less DC pulse power allocated to the ground branch for the processing process The greater the power, the higher the processing efficiency can be obtained.
- the insulating base 21 may be made of insulating materials such as ceramics.
- the above only takes the plasma immersion ion implantation process as an example to analyze the relationship between the ground capacitance and process efficiency, but the embodiment of the present invention is not limited to this. In practical applications, the above electrostatic chuck can also be applied to other processes. , such as a physical vapor deposition process or an etching process.
- the above-mentioned heat exchange component 22 can be suspended to the ground through the insulating base 21, that is, the insulating base 21 is used to electrically insulate the heat exchange component 22 from the external ground wire (eg, the chamber wall), so as to realize the grounding Suspended.
- the heat exchange component 22 suspended to the ground includes a contact surface 221 exposed from the upper surface of the insulating base 21 , and the contact surface 221 is in contact with the lower surface of the insulating layer 1 for controlling heat conduction through heat conduction.
- the temperature of the wafer that is, the heat exchange member 22 can exchange heat with the wafer through the insulating layer 1 in contact therewith, so as to realize the temperature control of the wafer. Because the thermal conductivity of the insulating material used in the insulating base 21 is poorer than that of metal and other materials, and if deionized water is directly introduced into the insulating base 21, the insulating base 21 will easily burst. The contact surface is exposed from the upper surface of the insulating base 21, so that the heat exchange component 22 can be in direct contact with the insulating layer 1, thereby ensuring good thermal conductivity and improving heat conduction efficiency. At the same time, by having the portion of the heat exchange member 22 other than the contact surface located in the insulating base 21, the heat exchange member 22 can be guaranteed to be suspended with respect to the ground.
- the heat exchange member 22 may be made of metal material. Since metal materials generally have good thermal conductivity, the heat exchange component 22 can quickly exchange heat with the insulating layer 1, thereby obtaining a better heat exchange effect.
- the heat exchange component 22 includes, for example, a metal body and a heating element (eg, a resistance wire) disposed in the metal body, and the heat generated by the heating element is conducted to the insulating layer 1 through the metal body.
- a heating element eg, a resistance wire
- the power wiring of the heating element can be led out through the metal body and the insulating base 21 to the outside of the insulating base 21, and the power wiring of the heating element needs to be insulated to ensure that the heat exchange component 22 is suspended to the ground.
- the above-mentioned insulating layer 1 and the insulating base 21 may be bonded by an adhesive having thermal conductivity, so as to realize the fixing of the two.
- the insulating base 21 is provided with a groove 211 , and the opening of the groove 211 is located on the upper surface of the insulating base 21 .
- the heat exchange member 22 is disposed in the groove 211 , and its upper surface is exposed from the opening of the groove 211 to serve as the contact surface 221 to contact the lower surface of the insulating layer 1 .
- the size of the groove 211 should be designed according to the size of the heat exchange component 22 and the insulating layer 1 .
- the size of the opening of the groove 211 should be less than or equal to the size of the bottom area of the insulating layer 1, so that the contact surface 221 can be completely covered by the insulating layer 1, so as to prevent the heat exchange component 22 from being exposed in the process chamber, for example, the insulating layer
- the diameter of 1 is 295mm, and correspondingly, the diameter of the opening of the groove 211 may be 282mm to 285mm.
- the width of the above-mentioned preset gap should be greater than or equal to the dimensional change of the inner peripheral surface of the groove 211 when the insulating base 21 is thermally expanded, so as to prevent the heat exchange component 22 and the insulating base 21 from being squeezed, causing damage to both.
- the preset gap should be selected according to the amount of expansion of the insulating base 21 after being heated.
- the thickness of the heat exchange component 22 is 10mm to 15mm
- the outer peripheral surface of the heat exchange component 22 is circular
- the diameter is 280mm
- the inner volume of the groove 211 should be slightly larger than the volume of the heat exchange component 22, for example, the depth of the groove 211 is 12mm to 17mm, the inner peripheral surface of the groove 211 is circular, and the diameter is 282mm to 285mm.
- the above-mentioned heat exchange component 22 may be completely covered by compressible adhesive material 224 , that is, in the above-mentioned predetermined gap, and between the heat exchange component 22 and the heat exchange component 22
- the bottom surfaces of the grooves 211 opposite to each other are filled with a compressible adhesive material 224, and the contact surface 221 of the heat exchange member 22 is covered with the above-mentioned adhesive material 224.
- the adhesive material 224 not only the heat exchange member 22 can be It is fixed in the groove 211, and since the adhesive material 224 is compressible, it can produce adaptive deformation when the insulating base 21 is heated and expands.
- the above-mentioned adhesive material 224 covering the contact surface 221 can fill the The small dimples on the contact surface 221 make the heat exchange component 22 fully contact with the insulating layer 1, so as to obtain a better heat conduction effect.
- the adhesive material 224 includes a material with good thermal conductivity such as silicone grease or polytetrafluoroethylene, so as to improve the thermal conductivity of the heat exchange component 22 .
- the electrostatic chuck provided in this embodiment also includes an insulating layer 1 and a temperature adjustment structure 2, and the difference is only that the structure of the heat exchange member 22 is different.
- the heat exchange part 22 includes a heat exchange body 222 and a heat exchange channel 223 provided in the heat exchange body 222 .
- the heat exchange channel 223 is used to exchange heat with the heat exchange body 222 by transporting the heat exchange medium, so as to adjust the overall temperature of the heat exchange component 22 , thereby adjusting the temperature of the insulating layer 1 .
- FIG. 4 only schematically shows the position of the heat exchange channel 223 with a block frame, but does not show the specific structure of the heat exchange channel 223 .
- deionized water can be used as the heat exchange medium, which has good insulation to prevent the heat exchange component 22 from conducting conduction with the ground wire or a conductor closer to the ground wire through the heat exchange medium, thereby Make sure that the capacitance to ground of the electrostatic chuck is small.
- the heat exchange medium may be a fluid material having both good insulation and heat transfer properties.
- the heat exchange channels 223 are evenly distributed relative to the contact surface 221 , so that the insulating layer 1 is heated evenly, so that the temperature uniformity of the wafer can be improved.
- the above-mentioned heat exchange channel includes a plurality of annular sub-channels, and the plurality of annular sub-channels are distributed at equal intervals in a circle with the center of the above-mentioned contact surface 221 as the center and with different radii.
- the annular sub-channel 2235 with the smallest radius is an arc-shaped channel segment, and the rest of the annular sub-channels are composed of two semi-annular channel segments that are symmetrically distributed in the radial direction relative to the contact surface 221 and are spaced apart from each other,
- FIG. 5 shows four annular sub-channels.
- the annular sub-channel with the largest radius is composed of two semi-annular channel segments (2231a, 2231b).
- the middle annular sub-channel is composed of two semi-annular channel segments (2237a, 2237b)
- the annular sub-channel with the smallest radius is composed of two semi-annular channel segments (2236a, 2236b).
- the opposite ends of the two semi-annular channel segments (2231a, 2231b) with the largest radius are used as the input end 2233 and the output end 2234 of the heat exchange channel, respectively.
- all the semi-annular channel segments and the arcuate channel segments 2235 are connected in series through a plurality of sub-connecting channels 2232 to form a continuous channel. For example, as shown in FIG.
- the semi-annular channel segment 2231a, the semi-annular channel segment 2237a and the semi-annular channel segment 2236a are connected in series through two sub-connecting channels 2232, and then the semi-annular channel segment 2236a is connected to the circular channel through a sub-connecting channel 2232.
- One end of the arc-shaped channel segment 2235 is connected in series, and the other end of the arc-shaped channel segment 2235 is connected in series with the semi-annular channel segment 2236b through a sub-connection channel 2232;
- the semi-annular channel segment 2231b is connected in series through the two sub-connecting channels 2232, so that a continuous channel is formed between the input end 2233 and the output end 2234, so that the heat exchange medium can flow in from the input end 2233 of the heat exchange channel, And flow in the aforementioned continuous channel, and then flow out from the output end 2234 of the heat exchange channel, so that the heat exchange medium can fully conduct heat exchange in the heat exchange channel.
- this embodiment is not limited to this, and the heat exchange channels can be set according to actual production needs, so that they can be evenly distributed and the flow path of the heat exchange medium is long enough to make the insulating layer 1 heat evenly and sufficiently.
- the electrostatic chuck further includes an input pipe 31 , an output pipe 32 and a temperature control device 3 .
- the two ends of the input pipe 31 are respectively connected with the input end 2233 of the heat exchange channel 223 and the output end of the temperature control device 3; the two ends of the output pipe 32 are respectively connected with the output end 2234 of the heat exchange channel 223 and the output end of the temperature control device 3.
- the input end is connected; the temperature control device 3 is used to adjust the temperature of the heat exchange medium, so that the heat exchange medium can be adjusted to a preset temperature after heat exchange and then flows into the heat exchange channel 223, thereby adjusting the heat exchange component 22 the overall temperature.
- the heat exchange body 222 is provided with two first through holes 225 penetrating from the lower surface of the heat exchange body 222 to the input end and the output end of the heat exchange channel 223 from bottom to top, respectively;
- the insulating base 22 is provided with two second through holes 226 penetrating from bottom to top from the lower surface of the insulating base 22 to the surface of the insulating base 22 opposite to the lower surface of the heat exchange body 222 ;
- One end of the through hole 225 is respectively connected with the input end and the output end of the heat exchange channel 223, the other ends of the two first through holes 225 are respectively connected with one end of the two second through holes 226, and the two second through holes 226 The other ends are respectively connected to one end of the input pipe 31 and the output pipe 32 .
- connection of the input pipe 31 and the output pipe 32 to the input end and the output end of the heat exchange channel 223 can be realized, respectively.
- connection manners of the input pipe 31 and the output pipe 32 to the input end and the output end of the heat exchange channel 223 respectively are not limited to this, and there is no particular limitation on this in the embodiment of the present invention.
- FIG. 4 only schematically shows the connection positions of the input pipe 31 and the output pipe 32 with the input end and the output end of the heat exchange channel 223 respectively, and the connection position can be determined according to the input end and the output end of the heat exchange channel 223 The specific position of the end can be adjusted adaptively.
- both the input pipe 31 and the output pipe 32 are insulated hoses, so as to prevent the heat exchange component 22 from conducting conduction with the ground wire or a conductor closer to the ground wire through the pipes, so as to realize the suspension to the ground. The effect is to ensure that the capacitance to ground of the electrostatic chuck is small.
- the temperature adjustment structure of the electrostatic chuck adopts an insulating base and at the same time suspends the heat exchange components arranged in the insulating base to the ground, so that the temperature adjustment structure as a whole can be connected to the ground.
- Insulation compared with the prior art, the distance between the DC electrode disposed above the temperature adjustment structure and the ground can be increased, thereby reducing the capacitance to ground of the electrostatic chuck, thereby reducing the loss in capacitance to ground Therefore, more power can be used in the processing process to obtain higher processing efficiency, so as to meet the requirements of the plasma immersion ion implantation technology for the capacitance to ground of the electrostatic chuck.
- This embodiment provides a semiconductor processing apparatus including a reaction chamber and an electrostatic chuck disposed in the reaction chamber.
- the electrostatic chuck the electrostatic chuck described in Examples 1 and 2 is used to fix the wafer.
- the semiconductor processing equipment provided in this embodiment may be a plasma immersion ion implantation equipment for performing a plasma immersion ion implantation process on a wafer.
- the semiconductor processing equipment provided by the embodiment of the present invention adopts the electrostatic chuck provided in the embodiment of the present invention to fix the wafer. Since the capacitance to ground of the electrostatic chuck is small, the power lost on the capacitance to the ground can be reduced, More power is used for the processing process, so the semiconductor processing equipment provided by the embodiments of the present invention can obtain higher processing efficiency, thereby meeting the requirements of the plasma immersion ion implantation technology for the capacitance to ground of the electrostatic chuck.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Jigs For Machine Tools (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种静电卡盘以及半导体加工设备,静电卡盘包括绝缘层(1)和温度调节结构(2);其中,绝缘层(1)中设置有直流电极(11),用于静电吸附置于绝缘层(1)上的晶圆;温度调节结构(2)包括设置在绝缘层(1)底部的绝缘基体(21),绝缘基体(21)中设置有对地悬浮的热交换部件(22),热交换部件(22)包括自绝缘基体(21)的上表面暴露出来的接触面(221),接触面(221)与绝缘层(1)的下表面相接触,用以通过热传导控制晶圆的温度。该静电卡盘及半导体加工设备能够减小直流电极(11)的对地电容,以减小在对地电容上的功率损耗,提高工艺效率。
Description
本发明涉及半导体制造领域,具体地,涉及一种静电卡盘及半导体加工设备。
目前,等离子体浸没离子注入技术广泛地应用于集成电路或微机电系统器件的制造工艺中。具体的,等离子体浸没离子注入技术是通过应用高电压脉冲直流电源或直流电源,将等离子体中的加速离子作为掺杂物注入合适的基体或设置有电极的半导体芯片的靶的一种表面改性技术。由于等离子体中含有大量的电子、离子、激发态的原子、分子和自由基等活性粒子,这些活性粒子在下偏压的作用下到达晶圆表面,和晶圆相互作用使材料表面发生各种物理和化学反应,从而使材料表面性能获得变化。
在进行等离子体浸没离子注入工艺时,晶圆一般由静电卡盘承载和固定。对于现有的静电卡盘结构,其通常包括由上而下依次设置的直流电极层、加热器和铝基体,但是,由于铝基体通过腔室壁接地,同时直流电极与铝基体的距离较近,导致现有的静电卡盘的对地电容较大,从而无法满足等离子体浸没离子注入技术对静电卡盘的对地电容的要求。
发明内容
本发明实施例旨在至少解决现有技术中存在的技术问题之一,提出了一种静电卡盘及半导体加工设备,其能够减小对地电容,从而可以满足等离子体浸没离子注入技术对静电卡盘的对地电容的要求。
为实现本发明的目的而提供一种静电卡盘,其特征在于,包括绝缘层和 温度调节结构;其中,所述绝缘层中设置有直流电极,用于静电吸附置于所述绝缘层上的晶圆;
所述温度调节结构包括设置在所述绝缘层底部的绝缘基体,所述绝缘基体中设置有对地悬浮的热交换部件,所述热交换部件包括自所述绝缘基体的上表面暴露出来的接触面,所述接触面与所述绝缘层的下表面相接触,用以通过热传导控制所述晶圆的温度。
可选的,所述绝缘基体上设置有凹槽,且所述凹槽的开口位于所述绝缘基体的上表面;所述热交换部件设置在所述凹槽中,所述热交换部件的上表面用作所述接触面与所述绝缘层的下表面接触;
并且,所述热交换部件与所述凹槽彼此相对的侧面之间具有预设间隙,所述预设间隙的宽度大于等于所述绝缘基体受热膨胀的变化量。
可选的,在所述预设间隙中,以及在所述热交换部件与所述凹槽彼此相对的底面之间填充有可压缩的粘接材料;并且,在所述热交换部件的上表面覆盖有所述可压缩的粘接材料。
可选的,所述粘接材料包括硅脂或聚四氟乙烯。
可选的,所述热交换部件包括热交换本体和设置在所述热交换本体中的热交换通道,其中,
所述热交换通道用于通过输送热交换介质来与所述热交换本体进行热交换。
可选的,所述静电卡盘还包括输入管道、输出管道和温控装置,其中,
所述输入管道的两端分别与所述热交换通道的输入端和所述温控装置的输出端连接;
所述输出管道的两端分别与所述热交换通道的输出端和所述温控装置的输入端连接;
所述温控装置用于调节所述热交换介质的温度。
可选的,所述输入管道和所述输出管道均为绝缘软管。
可选的,在所述热交换本体上设置有自所述热交换本体的下表面由下而上分别贯通至所述热交换通道的输入端和输出端的两个第一通孔;在所述绝缘基体上设置有自所述绝缘基体的下表面由下而上贯通至所述绝缘基体的与所述热交换本体的下表面相对的表面的两个第二通孔;其中,两个所述第一通孔的一端分别与所述热交换通道的输入端和输出端连接,两个所述第一通孔的另一端分别与两个所述第二通孔的一端连接,两个所述第二通孔的另一端分别与所述输入管道和所述输出管道的一端连接。
可选的,所述热交换通道相对于所述接触面均匀分布。
可选的,所述热交换通道包括多个环形子通道,多个所述环形子通道等间距分布在以所述接触面的中心为圆心,且半径不同的多个圆周上;其中,半径最小的环形子通道为圆弧形通道段,其余的环形子通道均由相对于所述接触面的径向对称分布,且相互间隔的两个半环形通道段组成;半径最大的两个所述半环形通道段彼此相对的一端分别用作所述热交换通道的输入端和输出端;
沿由所述热交换通道的所述输入端至所述输出端的方向,所有的所述半环形通道段和所述圆弧形通道段通过多个子连接通道首尾串接连通,以形成一条连续通道。
作用为另一种方案,本发明实施例还提供一种半导体加工设备,包括反应腔室和设置在所述反应腔室中的静电卡盘,其特征在于,所述静电卡盘采用上述的静电卡盘。
可选的,所述半导体加工设备为等离子体浸没离子注入设备。
本发明实施例具有以下有益效果:
本发明实施例提供的静电卡盘,其温度调节结构通过采用绝缘基体,同时使设置在该绝缘基体中的热交换部件对地悬浮,可以使温度调节结构整体 对地绝缘,这与现有技术相比,可以增大设置在温度调节结构上方的直流电极与大地之间的距离,从而可以减小静电卡盘的对地电容,进而可以减少在对地电容上损耗的功率,使更多的功率用于加工过程,以获得较高的加工效率,从而可以满足等离子体浸没离子注入技术对静电卡盘的对地电容的要求。
本发明实施例提供的半导体加工设备,采用了本发明实施例提供的上述静电卡盘固定晶圆,由于该静电卡盘的对地电容较小,可以减少在对地电容上的损耗的功率,使更多的功率用于加工过程,因此本发明实施例提供的半导体加工设备可以获得较高的加工效率,从而可以满足等离子体浸没离子注入技术对静电卡盘的对地电容的要求。
图1为本发明实施例1提供的静电卡盘的结构示意图;
图2为本发明实施例1提供的静电卡盘的等效电路图;
图3为本发明实施例1提供的静电卡盘的局部剖视图;
图4为本发明实施例2提供的静电卡盘的结构示意图;
图5为本发明实施例2提供的热交换通道的结构示意图。
下面详细描述本发明,本发明的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本发明的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非另外定义,本实施例中使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语, 应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明实施例提供的静电卡盘及半导体加工设备进行详细描述。
实施例1
请参考图1,本实施例提供一种静电卡盘,用于固定晶圆,其包括绝缘层1和温度调节结构2。其中,绝缘层1中设置有直流电极11,其能够利用静电吸附原理吸附置于绝缘层1上的晶圆,从而实现对晶圆的固定。当上述静电卡盘应用于等离子体浸没离子注入工艺中时,直流电极11还会被通入直流脉冲,用于向晶圆提供吸引离子的能量。在一些可选的实施例中,绝缘层1可以采用陶瓷等绝缘材料制成。
温度调节结构2包括设置在绝缘层1底部的绝缘基体21,由于绝缘基体21采用绝缘材料制作,其与大地电绝缘。在一些应用场景中,可能在工艺腔室中存在与大地电导通的地线(例如腔室底壁),在这种情况下,绝缘基体21还能够通过与地线绝缘,从而与大地绝缘。绝缘基体21中设置有对地悬浮的热交换部件22,即热交换部件22与大地也是绝缘的。
根据电容的基本结构可知,电容由两个导电极板和位于二者之间的绝缘体构成,在直流电极11被通电后,直流电极11可作为一个导电极板,大地则作为另一个导电极板,这两个导电极板中间存在着作为绝缘体的空气,这就构成了电容,而这一电容就是直流电极11的对地电容(相当于静电卡盘的对地电容)。在实际应用中,静电卡盘常常应用于工艺腔室中,在这种情况下,在直流电极11被通电后,其会和导电的腔室底壁构成电容,而腔室底壁通常作为地线与大地电导通,在此条件下,直流电极11与腔室底壁构成的电容,也可以视作直流电极11的对地电容。
为了减小直流电极11的对地电容,通过使绝缘基体21与大地电绝缘, 并使热交换部件22对地悬浮,可以增大直流电极11到大地或地线之间的距离,具体来说,现有技术中由于静电卡盘的铝基体通过腔室壁接地,这使得直流电极到大地或地线之间的距离即为直流电极与铝基体之间的距离,与之相比,本发明实施例提供的静电卡盘,其直流电极11到大地或地线之间的距离为直流电极11与腔室底壁之间的距离,因此,本发明实施例提供的静电卡盘相比于现有技术,有效增大了直流电极11到大地或地线之间的距离。
根据对地电容公式C=εs/d(其中,C为直流电极的对地电容,ε为直流电极与大地之间的物质的介电常数,s为电极面积,d为直流电极到大地或地线之间的距离)可知,直流电极11与大地或地线之间的距离越大,其对地电容就越小,基于此,通过增大直流电极11到大地或地线之间的距离,可以减小直流电极11的对地电容,相当于静电卡盘的对地电容,从而可以减少在对地电容上损耗的功率,使更多的功率用于加工过程,进而可以满足等离子体浸没离子注入技术对静电卡盘的对地电容的要求。
以本实施例提供的静电卡盘应用于等离子体浸没离子注入工艺为例,图2为此条件下的静电卡盘的工作等效电路图,如图2所示,在进行等离子体浸没离子注入工艺时,等离子体可等效为一个等离子体等效电感L和一个等离子体等效电容R2;静电卡盘可等效为一个静电卡盘等效电容C2、一个静电卡盘对地电容C1和一个静电卡盘对地等效电阻R1。其中,上述等离子体等效电感L、等离子体等效电容R2和静电卡盘等效电容C2可以等效为等离子体支路,其用于对晶圆进行等离子体浸没离子注入工艺;上述静电卡盘对地电容C1和静电卡盘对地等效电阻R1可以等效为对地支路。直流电极11同时与等离子体支路和对地支路电连接,如图2所示,直流电极11在上述等效电路中的位置可以相当于等离子体支路和对地支路的交点A。由于直流脉冲源输出的直流脉冲功率也从此交点A接入,直流脉冲功率会被分配至等离子体支路和对地支路中。为了提高工艺效率,分配至等离子体支路中的直流 脉冲功率应该远高于分配至对地支路中的直流脉冲功率,即,分配至对地支路中的直流脉冲功率越小,用于加工过程的功率越大,从而可以获得较高的加工效率。
根据容抗计算公式:1/ωC1(其中,ω为直流脉冲功率的频率)可知,上述静电卡盘对地电容C1越小,对应的对地支路上的容抗就越大,对地支路中的电流就越小,损耗在对地支路上的直流脉冲功率就会更小,以使更多的直流脉冲功率加载到等离子体支路中,从而使更多的直流脉冲功率用于晶圆的工艺过程,提高工艺效率。
在一些可选的实施例中,绝缘基体21可以采用陶瓷等绝缘材料制成。
以上仅以等离子体浸没离子注入工艺为例,对对地电容和工艺效率关系进行分析,但是本发明实施例并不局限于此,在实际应用中,上述静电卡盘还可以应用在其他工艺中,例如物理气相沉积工艺或者刻蚀工艺。
需要说明的是,上述热交换部件22可以通过绝缘基体21来实现对地悬浮,即,利用绝缘基体21使热交换部件22与外部的地线(例如腔室壁)电绝缘,从而实现对地悬浮。具体地,如图1所示,对地悬浮的热交换部件22包括自绝缘基体21的上表面暴露出来的接触面221,接触面221与绝缘层1的下表面相接触,用以通过热传导控制晶圆的温度,即,热交换部件22可以通过与之接触的绝缘层1与晶圆进行热交换,以实现对晶圆的温度控制。由于绝缘基体21所采用的绝缘材料的导热性能相对于金属等材料较差,而且若直接向绝缘基体21通入去离子水很容易造成绝缘基体21炸裂,为此,通过使热交换部件22的接触面自绝缘基体21的上表面暴露出来,可以使热交换部件22能够与绝缘层1直接接触,从而可以保证良好的导热性能,提高热传导效率。同时,通过使热交换部件22的除接触面之外的部分位于绝缘基体21中,可以保证热交换部件22对地悬浮。
具体的,热交换部件22可由金属材料制成。由于金属材料普遍具有良 好的导热性能,热交换部件22能够快速地与绝缘层1进行热交换,从而获得较好的热交换效果。
在一些可选的实施例中,热交换部件22例如包括金属本体和设置在该金属本体中的加热元件(例如电阻丝),该加热元件产生的热量通过金属本体传导至绝缘层1。需要说明的是,加热元件的电源接线可以贯穿金属本体和绝缘基体21引出至绝缘基体21的外部,并且该加热元件的电源接线需要作绝缘处理,以保证热交换部件22对地悬浮。
在一些可选的实施例中,可通过具有导热性的粘接剂将上述绝缘层1与绝缘基体21粘接,以实现二者的固定。
在一些可选的实施例中,如图1所示,绝缘基体21上设置有凹槽211,且该凹槽211的开口位于绝缘基体21的上表面。热交换部件22设置在凹槽211中,其上表面自凹槽211的开口暴露出来,以用作接触面221与绝缘层1的下表面接触。在实际应用中,凹槽211的尺寸应根据热交换部件22和绝缘层1的尺寸进行设计。具体的,凹槽211的开口大小应小于等于绝缘层1的底面积大小,以使接触面221能够完全被绝缘层1覆盖,从而避免热交换部件22暴露在工艺腔室中,例如,绝缘层1的直径为295mm,相应的,凹槽211的开口直径可为282mm至285mm。
并且,热交换部件22与凹槽211彼此相对的侧面之间具有预设间隙,即,凹槽211的内周面的尺寸大于热交换部件22的外周面的尺寸,由于绝缘基体21受热后会发生膨胀,上述预设间隙的宽度应大于等于绝缘基体21受热膨胀时,凹槽211的内周面的尺寸变化量,从而能够防止热交换部件22与绝缘基体21发生挤压,造成二者损坏。在实际应用中,该预设间隙应根据绝缘基体21受热后的膨胀量进行选取,例如,热交换部件22的厚度为10mm至15mm,热交换部件22的外周面为圆形,且直径为280mm,相应的,凹槽211的内部体积应该略大于热交换部件22的体积,例如凹槽211的深度为 12mm至17mm,凹槽211的内周面为圆形,且直径为282mm至285mm。
在一些可选的实施例中,如图3所示,可以利用可压缩的粘接材料224将上述热交换部件22完全包覆,即,在上述预设间隙中,以及在热交换部件22与凹槽211彼此相对的底面之间填充有可压缩的粘接材料224,并且在热交换部件22的接触面221覆盖有上述粘接材料224,借助粘接材料224,不仅可以将热交换部件22固定在凹槽211中,而且由于粘接材料224是可压缩的,其能够在绝缘基体21受热发生膨胀时产生适应性形变,此外,覆盖在接触面221上的上述粘接材料224能够填充该接触面221上的细小凹坑,以使热交换部件22与绝缘层1充分接触,从而获得较好的导热效果。
在一些可选的实施例中,粘接材料224包括硅脂或聚四氟乙烯等具有良好导热性的材料,从而提高热交换部件22的导热效果。
实施例2
本实施例提供的静电卡盘与上述实施例1相比,同样包括绝缘层1和温度调节结构2,而区别仅在于:热交换部件22的结构不同。具体地,如图4所示,热交换部件22包括热交换本体222和设置在该热交换本体222中的热交换通道223。其中,热交换通道223用于通过输送热交换介质来与热交换本体222进行热交换,以调节热交换部件22的整体温度,从而调节绝缘层1的温度。需要说明的是,图4仅示意性地用方框示出了热交换通道223的位置,但并未示出热交换通道223的具体结构。
在一些可选的实施例中,热交换介质可采用去离子水,其具有良好的绝缘性,以防止热交换部件22通过热交换介质与地线或更靠近地线的导电体导通,从而保证静电卡盘的对地电容较小。但本实施例不限于此,在实际生产中,热交换介质采用兼具较好的绝缘性和传热性的流体材料即可。
在一些可选的实施例中,热交换通道223相对于接触面221均匀分布,以使绝缘层1受热均匀,从而可以提高晶圆的温度均匀性。
在一些可选的实施例中,如图5所示,上述热交换通道包括多个环形子通道,多个环形子通道等间距分布在以上述接触面221的中心为圆心,且半径不同的多个圆周上;其中,半径最小的环形子通道2235为圆弧形通道段,其余的环形子通道均由相对于接触面221的径向对称分布,且相互间隔的两个半环形通道段组成,例如图5示出了四个环形子通道,除半径最小的环形子通道2235之外,其余三个环形子通道中,半径最大的环形子通道由两个半环形通道段(2231a,2231b)组成,中间的环形子通道由两个半环形通道段(2237a,2237b)组成,半径最小的环形子通道由两个半环形通道段(2236a,2236b)组成。
其中,半径最大的两个半环形通道段(2231a,2231b)彼此相对的一端分别用作热交换通道的输入端2233和输出端2234。并且,沿由热交换通道的输入端2233至输出端2234的方向,所有的半环形通道段和圆弧形通道段2235通过多个子连接通道2232首尾串接连通,以形成一条连续通道。例如,如图5所示,半环形通道段2231a、半环形通道段2237a和半环形通道段2236a通过两个子连接通道2232首尾串接连通,然后半环形通道段2236a通过一个子连接通道2232与圆弧形通道段2235的一端串接连通,圆弧形通道段2235的另一端通过一个子连接通道2232与半环形通道段2236b串接连通;再然后半环形通道段2236b、半环形通道段2237b、半环形通道段2231b通过两个子连接通道2232首尾串接连通,这样,在输入端2233至输出端2234之间即形成一条连续通道,以使热交换介质能够从热交换通道的输入端2233流入,并在前述的连续通道中流动,然后从热交换通道的输出端2234流出,从而使热交换介质能够在热交换通道中充分进行热交换。但是,本实施例并不局限于此,热交换通道可根据实际生产需要进行设置,使其能够均匀分布并使热交换介质的流动路径足够长,以使绝缘层1受热均匀且充分。
在一些可选的实施例中,如图4所示,静电卡盘还包括输入管道31、输 出管道32和温控装置3。其中,输入管道31的两端分别与热交换通道223的输入端2233和温控装置3的输出端连接;输出管道32的两端分别与热交换通道223的输出端2234和温控装置3的输入端连接;温控装置3用于调节热交换介质的温度,以使热交换介质在进行了热交换后能够被调节至预设温度后再流入热交换通道223中,从而调节热交换部件22的整体温度。
在一些可选的实施例中,在热交换本体222上设置有自热交换本体222的下表面由下而上分别贯通至热交换通道223的输入端和输出端的两个第一通孔225;在绝缘基体22上设置有自绝缘基体22的下表面由下而上贯通至绝缘基体22的与热交换本体222的下表面相对的表面的两个第二通孔226;其中,两个第一通孔225的一端分别与热交换通道223的输入端和输出端连接,两个第一通孔225的另一端分别与两个第二通孔226的一端连接,两个第二通孔226的另一端分别与输入管道31和输出管道32的一端连接。由此,可以实现输入管道31和输出管道32分别与热交换通道223的输入端和输出端的连接。当然,在实际应用中,输入管道31和输出管道32分别与热交换通道223的输入端和输出端的连接方式并不局限于此,本发明实施例对此没有特别的限制。需要说明的是,图4仅示意性地示出了输入管道31和输出管道32分别与热交换通道223的输入端和输出端的连接位置,该连接位置可以根据热交换通道223的输入端和输出端的具体位置进行适应性调整。
在一些可选的实施例中,输入管道31和输出管道32均为绝缘软管,以防止热交换部件22通过管道与地线或更靠近地线的导电体导通,从而实现对地悬浮地效果,保证静电卡盘的对地电容较小。
本实施例提供的静电卡盘的其他结构和功能与上述实施例1相同,在此不再赘述。
综上所述,本发明上述各个实施例提供的静电卡盘,其温度调节结构通过采用绝缘基体,同时使设置在该绝缘基体中的热交换部件对地悬浮,可以 使温度调节结构整体对地绝缘,这与现有技术相比,可以增大设置在温度调节结构上方的直流电极与大地之间的距离,从而可以减小静电卡盘的对地电容,进而可以减少在对地电容上损耗的功率,使更多的功率用于加工过程,以获得较高的加工效率,从而可以满足等离子体浸没离子注入技术对静电卡盘的对地电容的要求。
实施例3
本实施例提供一种半导体加工设备,其包括反应腔室和设置在反应腔室中的静电卡盘。静电卡盘采用实施例1、2中所述的静电卡盘,用于固定晶圆。
本实施例提供的半导体加工设备可以为等离子体浸没离子注入设备,用于对晶圆进行等离子体浸没离子注入工艺。
本发明实施例提供的半导体加工设备,采用了本发明实施例提供的上述静电卡盘固定晶圆,由于该静电卡盘的对地电容较小,可以减少在对地电容上的损耗的功率,使更多的功率用于加工过程,因此本发明实施例提供的半导体加工设备可以获得较高的加工效率,从而可以满足等离子体浸没离子注入技术对静电卡盘的对地电容的要求。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
Claims (12)
- 一种静电卡盘,其特征在于,包括绝缘层和温度调节结构;其中,所述绝缘层中设置有直流电极,用于静电吸附置于所述绝缘层上的晶圆;所述温度调节结构包括设置在所述绝缘层底部的绝缘基体,所述绝缘基体中设置有对地悬浮的热交换部件,所述热交换部件包括自所述绝缘基体的上表面暴露出来的接触面,所述接触面与所述绝缘层的下表面相接触,用以通过热传导控制所述晶圆的温度。
- 根据权利要求1所述的静电卡盘,其特征在于,所述绝缘基体上设置有凹槽,且所述凹槽的开口位于所述绝缘基体的上表面;所述热交换部件设置在所述凹槽中,所述热交换部件的上表面用作所述接触面与所述绝缘层的下表面接触;并且,所述热交换部件与所述凹槽彼此相对的侧面之间具有预设间隙,所述预设间隙的宽度大于等于所述绝缘基体受热膨胀的变化量。
- 根据权利要求2所述的静电卡盘,其特征在于,在所述预设间隙中,以及在所述热交换部件与所述凹槽彼此相对的底面之间填充有可压缩的粘接材料;并且,在所述热交换部件的上表面覆盖有所述可压缩的粘接材料。
- 根据权利要求3所述的静电卡盘,其特征在于,所述粘接材料包括硅脂或聚四氟乙烯。
- 根据权利要求1-4任意一项所述的静电卡盘,其特征在于,所述热交换部件包括热交换本体和设置在所述热交换本体中的热交换通道,其中,所述热交换通道用于通过输送热交换介质来与所述热交换本体进行热交换。
- 根据权利要求5所述的静电卡盘,其特征在于,所述静电卡盘还包括输入管道、输出管道和温控装置,其中,所述输入管道的两端分别与所述热交换通道的输入端和所述温控装置的输出端连接;所述输出管道的两端分别与所述热交换通道的输出端和所述温控装置的输入端连接;所述温控装置用于调节所述热交换介质的温度。
- 根据权利要求6所述的静电卡盘,其特征在于,所述输入管道和所述输出管道均为绝缘软管。
- 根据权利要求6所述的静电卡盘,其特征在于,在所述热交换本体上设置有自所述热交换本体的下表面由下而上分别贯通至所述热交换通道的输入端和输出端的两个第一通孔;在所述绝缘基体上设置有自所述绝缘基体的下表面由下而上贯通至所述绝缘基体的与所述热交换本体的下表面相对的表面的两个第二通孔;其中,两个所述第一通孔的一端分别与所述热交换通道的输入端和输出端连接,两个所述第一通孔的另一端分别与两个所述第二通孔的一端连接,两个所述第二通孔的另一端分别与所述输入管道和所述输出管道的一端连接。
- 根据权利要求5所述的静电卡盘,其特征在于,所述热交换通道相对于所述接触面均匀分布。
- 根据权利要求9所述的静电卡盘,其特征在于,所述热交换通道包括多个环形子通道,多个所述环形子通道等间距分布在以所述接触面的中心为圆心,且半径不同的多个圆周上;其中,半径最小的环形子通道为圆弧形 通道段,其余的环形子通道均由相对于所述接触面的径向对称分布,且相互间隔的两个半环形通道段组成;半径最大的两个所述半环形通道段彼此相对的一端分别用作所述热交换通道的输入端和输出端;沿由所述热交换通道的所述输入端至所述输出端的方向,所有的所述半环形通道段和所述圆弧形通道段通过多个子连接通道首尾串接连通,以形成一条连续通道。
- 一种半导体加工设备,包括反应腔室和设置在所述反应腔室中的静电卡盘,其特征在于,所述静电卡盘采用权利要求1-10中任意一项所述的静电卡盘。
- 根据权利要求11所述的半导体加工设备,其特征在于,所述半导体加工设备为等离子体浸没离子注入设备。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110096674.6 | 2021-01-25 | ||
CN202110096674.6A CN112864079B (zh) | 2021-01-25 | 2021-01-25 | 静电卡盘及半导体加工设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022156463A1 true WO2022156463A1 (zh) | 2022-07-28 |
Family
ID=76008632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/139936 WO2022156463A1 (zh) | 2021-01-25 | 2021-12-21 | 静电卡盘及半导体加工设备 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN112864079B (zh) |
TW (1) | TWI808576B (zh) |
WO (1) | WO2022156463A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112864079B (zh) * | 2021-01-25 | 2024-02-27 | 北京北方华创微电子装备有限公司 | 静电卡盘及半导体加工设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5452510A (en) * | 1993-12-20 | 1995-09-26 | International Business Machines Corporation | Method of making an electrostatic chuck with oxide insulator |
CN104701126A (zh) * | 2013-12-10 | 2015-06-10 | 东京毅力科创株式会社 | 等离子体处理装置以及聚焦环 |
JP2017199851A (ja) * | 2016-04-28 | 2017-11-02 | 株式会社ディスコ | 減圧処理装置 |
CN111261571A (zh) * | 2018-11-30 | 2020-06-09 | 新光电气工业株式会社 | 基板固定装置 |
CN112864079A (zh) * | 2021-01-25 | 2021-05-28 | 北京北方华创微电子装备有限公司 | 静电卡盘及半导体加工设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001302330A (ja) * | 2000-04-24 | 2001-10-31 | Ibiden Co Ltd | セラミック基板 |
US20030010292A1 (en) * | 2001-07-16 | 2003-01-16 | Applied Materials, Inc. | Electrostatic chuck with dielectric coating |
JP6215104B2 (ja) * | 2014-03-20 | 2017-10-18 | 新光電気工業株式会社 | 温度調整装置 |
JP6572788B2 (ja) * | 2016-01-29 | 2019-09-11 | 住友大阪セメント株式会社 | 静電チャック装置 |
CN107546168B (zh) * | 2016-06-24 | 2020-04-28 | 北京北方华创微电子装备有限公司 | 一种晶片吸附方法、下电极系统和半导体处理装置 |
CN108538744B (zh) * | 2017-03-01 | 2021-03-02 | 北京北方华创微电子装备有限公司 | 卡盘装置以及半导体加工设备 |
US20190115241A1 (en) * | 2017-10-12 | 2019-04-18 | Applied Materials, Inc. | Hydrophobic electrostatic chuck |
JP6971183B2 (ja) * | 2018-03-23 | 2021-11-24 | 新光電気工業株式会社 | 基板固定装置 |
-
2021
- 2021-01-25 CN CN202110096674.6A patent/CN112864079B/zh active Active
- 2021-12-21 WO PCT/CN2021/139936 patent/WO2022156463A1/zh active Application Filing
- 2021-12-21 TW TW110147940A patent/TWI808576B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5452510A (en) * | 1993-12-20 | 1995-09-26 | International Business Machines Corporation | Method of making an electrostatic chuck with oxide insulator |
CN104701126A (zh) * | 2013-12-10 | 2015-06-10 | 东京毅力科创株式会社 | 等离子体处理装置以及聚焦环 |
JP2017199851A (ja) * | 2016-04-28 | 2017-11-02 | 株式会社ディスコ | 減圧処理装置 |
CN111261571A (zh) * | 2018-11-30 | 2020-06-09 | 新光电气工业株式会社 | 基板固定装置 |
CN112864079A (zh) * | 2021-01-25 | 2021-05-28 | 北京北方华创微电子装备有限公司 | 静电卡盘及半导体加工设备 |
Also Published As
Publication number | Publication date |
---|---|
CN112864079B (zh) | 2024-02-27 |
TW202230601A (zh) | 2022-08-01 |
TWI808576B (zh) | 2023-07-11 |
CN112864079A (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6330087B2 (ja) | 対称給電構造を有する基板サポート | |
US10714372B2 (en) | System for coupling a voltage to portions of a substrate | |
TWI488236B (zh) | Focusing ring and plasma processing device | |
US9805963B2 (en) | Electrostatic chuck with thermal choke | |
US6490145B1 (en) | Substrate support pedestal | |
TWI721952B (zh) | 具有獨立隔離的加熱器區域的晶圓載體 | |
KR101826843B1 (ko) | B-필드 집중기를 사용하는 금속성 샤워헤드를 구비한 유도 플라즈마 소오스 | |
US20030010292A1 (en) | Electrostatic chuck with dielectric coating | |
JP2015509280A (ja) | 半導体処理のための平面熱ゾーンを伴う熱板 | |
WO2021055134A1 (en) | Cryogenic electrostatic chuck | |
US20070209933A1 (en) | Sample holding electrode and a plasma processing apparatus using the same | |
CN107546095A (zh) | 支撑组件、用于处理基底的装置和方法 | |
WO2022156463A1 (zh) | 静电卡盘及半导体加工设备 | |
WO2020123069A1 (en) | Cryogenic electrostatic chuck | |
JP4780410B2 (ja) | 抵抗層、マイクロ溝及び誘電体層を含む高機能静電クランプ | |
JP7198915B2 (ja) | 静電チャック | |
WO2021201989A1 (en) | High temperature micro-zone electrostatic chuck | |
KR100920132B1 (ko) | 분리 가능한 링을 갖는 정전척 및 그 제조 방법 | |
KR102428349B1 (ko) | 지지 유닛, 이를 포함하는 기판 처리 장치 및 지지 유닛 제조 방법 | |
KR20180078067A (ko) | 하이브리드 바이폴라 정전척 | |
JP2001217304A (ja) | 基板ステージ、それを用いた基板処理装置および基板処理方法 | |
US20230136720A1 (en) | Substrate support, plasma processing apparatus, and plasma processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21920837 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21920837 Country of ref document: EP Kind code of ref document: A1 |