WO2022156353A1 - 基于场效应晶体管的气体传感器及其制备方法 - Google Patents

基于场效应晶体管的气体传感器及其制备方法 Download PDF

Info

Publication number
WO2022156353A1
WO2022156353A1 PCT/CN2021/132767 CN2021132767W WO2022156353A1 WO 2022156353 A1 WO2022156353 A1 WO 2022156353A1 CN 2021132767 W CN2021132767 W CN 2021132767W WO 2022156353 A1 WO2022156353 A1 WO 2022156353A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
active layer
insulating layer
substrate
effect transistor
Prior art date
Application number
PCT/CN2021/132767
Other languages
English (en)
French (fr)
Inventor
王超
李向光
田峻瑜
方华斌
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2022156353A1 publication Critical patent/WO2022156353A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Definitions

  • the present application relates to the field of gas sensors, in particular to a gas sensor based on field effect transistors and a preparation method thereof.
  • VOC volatile Organic compounds, volatile organic compounds
  • the area of the thin film needs to be increased to improve the detection accuracy and speed, but this undoubtedly results in an increase in the area of the device, which is more and more important for the integration of higher and higher size.
  • the application of smaller and smaller consumer electronic products is disadvantageous.
  • Some gas sensors also use an etching method to increase the contact area between the sensing part and the detection gas, but this increases the complexity of the process and the manufacturing cost, which is not conducive to the application of the product in consumer electronics. Therefore, low detection accuracy, slow response speed, large device size and complex process are the fatal shortcomings of traditional gas sensors.
  • the main purpose of the present application is to provide a gas sensor based on field effect transistors and a preparation method thereof, aiming to solve the problems of low detection accuracy, slow response speed, large device size and complex process of existing gas sensors for detecting VOCs.
  • a gas sensor based on field effect transistors proposed in this application includes a substrate, an insulating layer, an active layer, a source electrode and a drain electrode, and the insulating layer is arranged on the substrate and the active layer.
  • the source electrode and the drain electrode are respectively arranged on the side of the active layer away from the insulating layer, and the material of the active layer is titanium dioxide nanofibers or zinc oxide nanofibers.
  • the material of the substrate is heavily doped p-type silicon.
  • the material of the insulating layer is any one of silicon dioxide, zirconia, hafnium oxide, aluminum oxide or yttrium oxide, and the material of the drain electrode and the source electrode is gold or aluminum.
  • the thickness of the substrate is 0.2-1 mm, and the thickness of the insulating layer is 60-300 mm. nm, the thickness of the active layer is 20-80 nm, and the thicknesses of the source and drain electrodes are respectively 70-500 nm nm.
  • the diameter of the titanium dioxide nanofibers or the zinc oxide nanofibers is 30-150 nm, and the specific surface area is 10 7 -10 8 m 2 /m 3 .
  • the gas sensor is a bottom-gate top-contact structure.
  • the present application also provides a preparation method for preparing the above-mentioned field effect transistor-based gas sensor, comprising the following steps:
  • the source and drain electrodes are deposited on the active layer.
  • the titanium salt is titanium tetrachloride
  • the zinc salt is zinc chloride
  • the solvent is dimethylformamide or ethylene glycol methyl ether
  • the polymer is polymethacrylic acid Methyl ester or polyvinylpyrrolidone
  • the mol ratio of the titanium salt or zinc salt and the solvent is 1:100 ⁇ 16:100
  • the mol ratio of the polymer and the metal salt solution is 1:20 ⁇ 1: 3.
  • the distance between the collecting substrate and the needle of the electrospinning device is 1-20 cm
  • the applied DC voltage is 1-20 KV
  • the temperature of the electrospinning is 10-40°C.
  • the temperature of the annealing treatment is 330-500° C., and the time is 0.1-2 h.
  • the gas sensor based on the field effect transistor includes a substrate, an insulating layer, an active layer, a source electrode and a drain electrode, the insulating layer is arranged between the substrate and the active layer, and the source electrode and the drain electrode are separated from each other. It is arranged on the side of the active layer away from the insulating layer, wherein the material of the active layer is titanium dioxide nanofiber or zinc oxide nanofiber, which is easy to chemically react with VOC gas, enhances the reaction speed and sensitivity of gas detection, and has a large specific surface area.
  • titanium dioxide nanofibers or zinc oxide nanofibers are prepared by electrospinning technology, the preparation method is simple, the electrospinning device has simple process and high production efficiency, which is beneficial to the application of gas sensors in consumer electronics and more application scenarios. universal.
  • FIG. 1 is a schematic diagram of a gas sensor based on a field effect transistor according to an embodiment of the present application
  • FIG. 2 is an electron microscope (SEM) image of the active layer of the gas sensor according to Embodiment 1 of the present application;
  • FIG. 3 is a graph showing the transfer characteristic of the gas sensor according to Embodiment 1 of the present application.
  • the present application proposes a gas sensor based on field effect transistors, as shown in FIG. 1 , comprising a substrate 1, an insulating layer 2, an active layer 3, a source electrode 4 and a drain electrode 5, and the insulating layer 2 is arranged on the substrate 1 and the drain electrode 5. Between the active layers 3, the source electrode 4 and the drain electrode 5 are respectively arranged on the side of the active layer 3 away from the insulating layer 2, and the material of the active layer 3 is titanium dioxide nanofiber or zinc oxide nanofiber.
  • FET Field Effect Transistor
  • Field effect transistors include junction field effect transistors and metal-oxide semiconductor field effect transistors.
  • Field effect transistors are conducted by majority carriers, also known as unipolar transistors. It is a voltage-controlled semiconductor device. It has the advantages of high input resistance (10 7 ⁇ 10 15 ⁇ ), low noise, low power consumption, large dynamic range, easy integration, no secondary breakdown phenomenon, wide safe operating area, etc., and has now become a bipolar transistor and power A strong contender for transistors.
  • the gas sensor of the present application uses titanium dioxide nanofibers or zinc oxide nanofibers as the active layer 3. Compared with the traditional thin film, its specific surface area is large, which can increase the contact area between the sensing material and the detected gas, and its nano-scale size, transmission Good performance and mechanical flexibility. Moreover, titanium dioxide or zinc oxide is prone to chemical reaction after encountering VOC gas, which changes the conductivity of titanium dioxide or zinc oxide, which is reflected in the transistor. VOC gas is present. In this application, one-dimensional titanium dioxide or zinc oxide is used as the gas sensing material instead of the thin film, which increases the sensing area and greatly enhances the reaction speed and sensitivity of gas detection; the product size can be made smaller under the same reaction speed level and sensitivity accuracy.
  • the diameter of the titanium dioxide nanofibers or the zinc oxide nanofibers is 30-150 nm, the length is relatively long, the grain size is 4-18 nm, the specific surface area is 10 7 -10 8 m 2 /m 3 , and the contact area with the detection gas is Large, and small grain size, good transmission performance and mechanical flexibility.
  • the material of the substrate 1 is heavily doped p-type silicon, and "p-type silicon” is a silicon crystal doped with trivalent impurities, such as boron element, so that the silicon material exhibits p-type semiconductor characteristics. "Refers to the amount of impurities doped into the semiconductor material is relatively large, so “heavy doped p-type silicon” is a silicon crystal doped with more trivalent impurities, which not only can withstand high temperature, but also makes the substrate 1 have good conductivity.
  • the gas sensor of this embodiment is preferably a bottom-gate top-contact structure, which is simpler in fabrication process than a top-gate bottom-contact structure.
  • the material of the insulating layer 2 is any one of silicon dioxide, zirconia, hafnium oxide, aluminum oxide or yttrium oxide, and the material of the drain electrode 5 and the source electrode 4 is gold or aluminum.
  • silicon dioxide is preferably used as the insulating layer 2, and a layer of silicon dioxide can be grown directly on the substrate 1 at a high temperature and in an oxygen atmosphere. The technology is mature and the performance of silicon dioxide is stable.
  • the drain electrode 5 and the source electrode 4 are located in the same layer, and the source electrode 4 and the drain electrode 5 may be deposited simultaneously on the active layer 3 by magnetron sputtering, or may be deposited separately.
  • the thickness of substrate 1 is 0.2 ⁇ 1 mm
  • the thickness of insulating layer 2 is 60 ⁇ 300 nm
  • the thickness of active layer 3 is 20 ⁇ 80 nm
  • the thickness of source electrode 4 and drain electrode 5 are 70 ⁇ 500 nm respectively
  • the thickness of each layer is very thin, and there is no need to prepare a separate layer of gate electrode, which reduces the overall thickness and reduces the size of the gas sensor.
  • the present application also provides a preparation method for preparing the above-mentioned field effect transistor-based gas sensor, comprising the following steps: preparing an insulating layer 2 on a substrate 1; dissolving a titanium salt or a zinc salt in a solvent to obtain a metal
  • the salt solution, the metal salt solution is mixed with the polymer to form an electrospinning precursor solution, and the composite nanofibers are prepared on the insulating layer 2 by the electrospinning device.
  • titanium dioxide nanofibers or zinc oxide nanofibers are formed.
  • the active layer 3 ; the source electrode 4 and the drain electrode 5 are deposited on the active layer 3 .
  • the above-mentioned titanium salt is titanium tetrachloride (TiCl 4 ), the zinc salt is zinc chloride (ZnCl 2 ), the solvent is dimethylformamide (DMF) or ethylene glycol methyl ether, and the polymer is polymethyl methacrylate (PMMA) or polyvinylpyrrolidone (PVP), polymethyl methacrylate is cheap and easy to obtain, polyvinylpyrrolidone requires a high calcination temperature, and the prepared nanofibers have more stable performance.
  • the substrate 1 of the gas sensor in this embodiment is silicon. , can withstand high temperature, so the nanofibers prepared with polyvinylpyrrolidone have the best performance.
  • the molar ratio of titanium salt or zinc salt to solvent is 1:100 ⁇ 16:100, and the molar ratio of polymer to metal salt solution is 1:3 ⁇ 1:20.
  • the distance between the collecting substrate (ie the receiving end) of the electrospinning device and the needle is 1 ⁇ 20cm, the DC voltage is 1 ⁇ 20 KV, the temperature of the electrospinning is 10 ⁇ 40°C; the temperature of the annealing treatment is 330 ⁇ 500°C, the time is 0.1 ⁇ 2h.
  • the specific steps include: wiping the heavily doped p-type silicon with alcohol, acetone and deionized water respectively as the substrate 1, and then growing a layer of silicon dioxide on the substrate 1 at high temperature and in an oxygen atmosphere, or depositing a layer of silicon dioxide such as oxide Zirconium, hafnium oxide, aluminum oxide, yttrium oxide, etc.
  • the insulating layer 2 of the field effect transistor are used as the insulating layer 2 of the field effect transistor, and the molar ratio of titanium tetrachloride or zinc chloride to dimethylformamide or ethylene glycol methyl ether is 1:100 ⁇ 16
  • polymethyl methacrylate or polyvinyl pyrrolidone was added as a spinning polymer, and mixed and stirred for 3 to 24 hours to obtain a viscous electrospinning precursor solution, and the electrospinning precursor solution was installed in the electrospinning
  • the needle head of the spinning device, and the substrate 1 with the insulating layer 2 on the surface is placed on the collecting substrate of the electrospinning device, and the propelling pump pushes out the spinning solution at a constant speed (0.1 ml/h ⁇ 0.8 ml/h), The temperature of the whole process is controlled at 10-40 °C.
  • composite nanofibers of titanium tetrachloride or zinc chloride and polymer are finally obtained at the receiving end.
  • the composite nanofibers After high temperature calcination at 330 ⁇ 500°C for 0.1 ⁇ 2h and annealing treatment, the composite nanofibers are oxidized into titanium dioxide nanofibers or zinc oxide nanofibers.
  • a layer of gold or aluminum is deposited on the nanofibers by magnetron sputtering as the source electrode 4 and the drain electrode 5, so as to prepare a field effect transistor gas sensor with a bottom-gate top-contact structure.
  • the conductivity of the nanofiber increases after the reaction.
  • the same gate voltage is applied, the gas change is judged by the change of the source-drain current, so as to realize the gas detection.
  • the field effect transistor-based gas sensor in this embodiment includes a substrate 1, an insulating layer 2, and an active layer 3 that are stacked in sequence, and a source electrode 4 and a drain electrode 5 are provided at intervals on the side of the active layer 3 away from the insulating layer 2.
  • the substrate 1 is heavily doped p-type silicon
  • the insulating layer 2 is made of silicon dioxide
  • the active layer 3 is made of titanium dioxide nanofibers
  • the source electrode 4 and the drain electrode 5 are made of gold.
  • the active layer 3 of this embodiment is a nanofiber structure with a large specific surface area, which can increase the contact area between the sensing material and the detection gas, and has a nanoscale size with good transmission performance and mechanical flexibility.
  • the preparation method of the gas sensor in this embodiment includes the following steps: wiping the heavily doped p-type silicon with alcohol, acetone and deionized water respectively as a substrate 1, and then growing a layer on the substrate 1 under high temperature and an oxygen atmosphere Silica, as the insulating layer 2 of the field effect transistor, 5mol titanium tetrachloride and 100mol dimethylhexanamide were mixed and stirred uniformly, then 10mol polyvinylpyrrolidone was added as a spinning polymer, and after mixing and stirring for 10h, the obtained Viscous electrospinning precursor solution, put the electrospinning precursor solution in the needle of the electrospinning device, and put the substrate 1 with the insulating layer 2 on the surface on the receiving end of the electrospinning device, and push the pump to press 0.4
  • the spinning solution was pushed out at the speed of ml/h, the distance between the receiving end of the electrospinning device and the needle was 5 cm, the DC voltage was 10 KV, and the temperature of the electros
  • composite nanofibers of titanium tetrachloride and polyvinylpyrrolidone are finally obtained at the receiving end.
  • the composite nanofibers were oxidized to titania nanofibers.
  • a layer of gold is deposited on the titania nanofibers by magnetron sputtering to serve as the source electrode 4 and the drain electrode 5 .
  • the working temperature of the titanium dioxide nanofiber gas sensor in this embodiment is relatively low, and the resistance variation range is large when detecting gas.
  • the titanium dioxide nanofiber gas sensor exhibits the response of an n-type semiconductor. When the sensor is exposed to VOC gas When the resistance value decreases rapidly, the source-drain current increases sharply, and the device shows a faster response speed and a larger response range.
  • the field effect transistor-based gas sensor in this embodiment includes a substrate 1, an insulating layer 2, and an active layer 3 that are stacked in sequence, and a source electrode 4 and a drain electrode 5 are provided at intervals on the side of the active layer 3 away from the insulating layer 2.
  • the substrate 1 is heavily doped p-type silicon
  • the insulating layer 2 is made of silicon dioxide
  • the active layer 3 is made of zinc oxide nanofibers
  • the source electrode 4 and the drain electrode 5 are made of aluminum.
  • the preparation method of the gas sensor in this embodiment includes the following steps: wiping the heavily doped p-type silicon with alcohol, acetone and deionized water respectively as a substrate 1, and then growing a layer on the substrate 1 under high temperature and an oxygen atmosphere Silicon dioxide, as the insulating layer 2 of the field effect transistor, 10 mol of zinc chloride and 100 mol of ethylene glycol methyl ether were mixed and stirred uniformly, and 15 mol of polyvinylpyrrolidone was added as a spinning polymer, and the viscosity was obtained after mixing and stirring for 10 hours.
  • Electrospinning precursor solution put the electrospinning precursor solution in the needle of the electrospinning device, put the substrate 1 with the insulating layer 2 on the surface on the receiving end of the electrospinning device, and push the pump to press 0.8ml
  • the spinning solution was pushed out at a speed of /h, the distance between the receiving end of the electrospinning device and the needle was 10 cm, the DC voltage was 15 KV, and the temperature of electrospinning was 25 °C.
  • the composite nanofibers of zinc chloride and polyvinylpyrrolidone are finally obtained at the receiving end. After annealing at 500 °C for 2 h, the composite nanofibers were oxidized to ZnO nanofibers.
  • Example 2 and Example 1 are not significantly different, the electron microscope images of the zinc oxide nanofibers of Example 2 and the transfer characteristic curves of the gas sensor are omitted here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种基于场效应晶体管的气体传感器及其制备方法,气体传感器包括衬底(1)、绝缘层(2)、有源层(3)、源极(4)和漏极(5),绝缘层(2)设置在衬底(1)和有源层(3)之间,源极(4)和漏极(5)分别间隔设置在有源层(3)远离绝缘层(2)的一侧,有源层(3)的材料为二氧化钛纳米纤维或氧化锌纳米纤维,易于和VOC气体发生化学反应,增强了气体检测反应速度和灵敏度,且比表面积大,增加了感应面积,可在相同的反应速度级别和灵敏度精度下将传感器尺寸做的更小,二氧化钛纳米纤维或氧化锌纳米纤维通过静电纺丝技术制备,制备方法简单,静电纺丝装置工艺简单、生产效率高,有利于气体传感器在消费电子中的应用,以及在更多应用场景中的普及。

Description

基于场效应晶体管的气体传感器及其制备方法
本申请要求于2021年1月19日申请的、申请号为202110073304.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及气体传感器领域,具体涉及一种基于场效应晶体管的气体传感器及其制备方法。
背景技术
工业革命推动了社会的快速发展,但同时也造成了大气环境的污染。随着人们生活水平的提高,对空气质量要求也越来越高,并且气体检测也关乎着人们在特殊工作环境中的安全,而VOC(volatile organic compounds,挥发性有机化合物)是影响人们健康的主要污染气体,因此迫切需要相关的VOC检测气体传感器。目前大多数用于检测VOC的气体传感器采用薄膜作为检测的感应部分,但是薄膜的比表面积小,造成了产品检测精度低,反应速度慢。同时,用薄膜作为感应部分,为了提高反应灵敏度和准确度,需增大薄膜的面积,以提高检测精度和速度,但这无疑造成了器件面积的增加,对于集成度越来越高、尺寸越来越小的消费电子产品的应用是不利的。还有一些气体传感器采用刻蚀法增加感应部分与检测气体的接触面积,但这就增加了工艺的复杂性和制造成本,不利于产品在消费电子中的应用。因此,检测精度低、反应速度慢、器件尺寸大和工艺复杂是传统的气体传感器存在的致命缺点。
技术问题
本申请的主要目的是提供一种基于场效应晶体管的气体传感器及其制备方法,旨在解决现有用于检测VOC的气体传感器存在检测精度低、反应速度慢、器件尺寸大以及工艺复杂的问题。
技术解决方案
为实现上述目的,本申请提出的一种基于场效应晶体管的气体传感器,包括衬底、绝缘层、有源层、源极和漏极,所述绝缘层设置在所述衬底和有源层之间,所述源极和漏极分别间隔设置在所述有源层远离所述绝缘层的一侧,所述有源层的材料为二氧化钛纳米纤维或氧化锌纳米纤维。
在一实施例中,所述衬底的材料为重掺杂p型硅。
在一实施例中,所述绝缘层的材料为二氧化硅、氧化锆、氧化铪、氧化铝或氧化钇中的任意一种,所述漏极和源极的材料为金或铝。
在一实施例中,所述衬底的厚度为0.2~1 mm,所述绝缘层的厚度为60~300 nm,所述有源层的厚度为20~80 nm,所述源极和漏极的厚度分别为70~500 nm。
在一实施例中,所述二氧化钛纳米纤维或氧化锌纳米纤维的直径为30~150nm,比表面积为10 7~10 8m 2/m 3
在一实施例中,所述气体传感器为底栅顶接触式结构。
此外,本申请还提供了一种用于制备上述所述基于场效应晶体管的气体传感器的制备方法,包括以下步骤:
在所述衬底上制备得到所述绝缘层;
将钛盐或锌盐用溶剂溶解得到金属盐溶液,将金属盐溶液与聚合物混合形成静电纺丝前驱体溶液,通过静电纺丝装置在所述绝缘层上制备得到复合纳米纤维,经退火处理后,得到二氧化钛纳米纤维或氧化锌纳米纤维形成的所述有源层;
在所述有源层上沉积所述源极和漏极。
在一实施例中,所述钛盐为四氯化钛,所述锌盐为氯化锌,所述溶剂为二甲基甲酰胺或乙二醇甲醚,所述聚合物为聚甲基丙烯酸甲酯或聚乙烯吡咯烷酮,所述钛盐或锌盐与所述溶剂的摩尔比为1:100~16:100,所述聚合物与所述金属盐溶液的摩尔比为1:20~1:3。
在一实施例中,所述静电纺丝装置的收集基板与针头之间的距离为1~20cm,加直流电压为1~20 KV,静电纺丝的温度为10~40℃。
在一实施例中,所述退火处理的温度为330~500℃,时间为0.1~2h。
有益效果
本申请技术方案中,基于场效应晶体管的气体传感器包括衬底、绝缘层、有源层、源极和漏极,绝缘层设置在衬底和有源层之间,源极和漏极分别间隔设置在有源层远离绝缘层的一侧,其中,有源层的材料为二氧化钛纳米纤维或氧化锌纳米纤维,易于和VOC气体发生化学反应,增强了气体检测反应速度和灵敏度,且比表面积大,增加了感应面积,可在相同的反应速度级别和灵敏度精度下将传感器尺寸做的更小,更有利于器件的集成,与当今小尺寸、高度集成的电子器件发展方向相吻合。而且二氧化钛纳米纤维或氧化锌纳米纤维通过静电纺丝技术制备,制备方法简单,静电纺丝装置工艺简单、生产效率高,有利于气体传感器在消费电子中的应用,以及在更多应用场景中的普及。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请一实施例的基于场效应晶体管的气体传感器的示意图;
图2为本申请实施例1的气体传感器有源层的电镜(SEM)图;
图3为本申请实施例1的气体传感器转移特性曲线图。
附图标号说明:
1 衬底 2 绝缘层
3 有源层 4 源极
5 漏极    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提出一种基于场效应晶体管的气体传感器,如图1所示,包括衬底1、绝缘层2、有源层3、源极4和漏极5,绝缘层2设置在衬底1和有源层3之间,源极4和漏极5分别间隔设置在有源层3远离绝缘层2的一侧,有源层3的材料为二氧化钛纳米纤维或氧化锌纳米纤维。
场效应晶体管(Field Effect Transistor,FET),简称场效应管,是通过控制输入回路的电场效应来控制输出回路电流的一种半导体器件。场效应晶体管包括结型场效应管和金属-氧化物半导体场效应管。场效应晶体管由多数载流子参与导电,也称为单极型晶体管。属于电压控制型半导体器件。具有输入电阻高(10 7~10 15Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
本申请的气体传感器采用二氧化钛纳米纤维或氧化锌纳米纤维作为有源层3,相比传统的薄膜,其比表面积大,可以增加感应材料与检测气体的接触面积,并且其纳米级的尺寸,传输性能和机械柔性好。而且二氧化钛或氧化锌遇到VOC气体后易于发生化学反应,使二氧化钛或氧化锌导电性发生变化,在晶体管中体现出来,当遇到VOC气体后相同电压下源漏电流发生变化,则说明空气中存在VOC气体。本申请用一维二氧化钛或氧化锌代替薄膜作为气体感应材料,增大了感应面积,极大增强了气体检测反应速度和灵敏度;可以在相同的反应速度级别和灵敏度精度下将产品尺寸做的更小,更有利器件集成,与现今小尺寸、高度集成的电子器件发展方向相吻合;整个产品的制备过程非常简单,静电纺丝设备工艺简单、生产效率高,有利于气体传感器在消费电子中的应用,以及在更多应用场景中的普及。
具体地,二氧化钛纳米纤维或氧化锌纳米纤维的直径为30~150nm,长度较长,晶粒尺寸为4~18nm,比表面积为10 7~10 8m 2/m 3,与检测气体的接触面积大,且晶粒尺寸小,传输性能和机械柔性好。
其中,衬底1的材料为重掺杂p型硅,“p型硅”是在硅晶体中掺杂了三价杂质,例如硼元素,使硅材料呈现出p型半导体特性,“重掺杂”指的是掺入半导体材料中的杂质量比较多,因此“重掺杂p型硅”即为掺入三价杂质比较多的硅晶体,不仅能耐高温,且使得衬底1具有良好的导电性能,能够直接作为栅极,即本实施例的衬底1、绝缘层2和有源层3依次层叠,避免在衬底1上再制备一层栅极,不仅使得气体传感器的制备更简单,提高生产效率,而且减小了气体传感器的尺寸。本实施例的气体传感器优选为底栅顶接触式结构,相对于顶栅底接触式的结构制备工艺更简单。
绝缘层2的材料为二氧化硅、氧化锆、氧化铪、氧化铝或氧化钇中的任意一种,漏极5和源极4的材料为金或铝。其中,优选二氧化硅作为绝缘层2,可直接在衬底1上高温、氧气氛围下生长一层二氧化硅,工艺成熟且二氧化硅的性能稳定。漏极5和源极4位于同一层,可同时在有源层3上通过磁控溅射沉积源极4和漏极5,也可以分开沉积。
衬底1的厚度为0.2~1 mm,绝缘层2的厚度为60~300 nm,有源层3的厚度为20~80 nm,源极4和漏极5的厚度分别为70~500 nm,每一层的厚度都很薄,且无需再单独制备一层栅极,降低了整体厚度,缩小了气体传感器的尺寸。
此外,本申请还提供了一种用于制备上述基于场效应晶体管的气体传感器的制备方法,包括以下步骤:在衬底1上制备得到绝缘层2;将钛盐或锌盐用溶剂溶解得到金属盐溶液,将金属盐溶液与聚合物混合形成静电纺丝前驱体溶液,通过静电纺丝装置在绝缘层2上制备得到复合纳米纤维,经退火处理后,得到二氧化钛纳米纤维或氧化锌纳米纤维形成的有源层3;在有源层3上沉积源极4和漏极5。
上述钛盐为四氯化钛(TiCl 4),锌盐为氯化锌(ZnCl 2),溶剂为二甲基甲酰胺(DMF)或乙二醇甲醚,聚合物为聚甲基丙烯酸甲酯(PMMA)或聚乙烯吡咯烷酮(PVP),聚甲基丙烯酸甲酯便宜易得,聚乙烯吡咯烷酮所需煅烧温度高,制备得到的纳米纤维性能更稳定,本实施例气体传感器的衬底1是硅,可以耐高温,所以采用聚乙烯吡咯烷酮制备得到的纳米纤维性能最好。钛盐或锌盐与溶剂的摩尔比为1:100~16:100,聚合物与金属盐溶液的摩尔比为1:3~1:20。静电纺丝装置的收集基板(即接收端)与针头之间的距离为1~20cm,加直流电压为1~20 KV,静电纺丝的温度为10~40℃;退火处理的温度为330~500℃,时间为0.1~2h。
具体的步骤包括:将重掺杂p型硅分别用酒精、丙酮和去离子水擦拭干净作为衬底1,然后在衬底1上高温、氧气氛围下生长一层二氧化硅,或者沉积如氧化锆、氧化铪、氧化铝、氧化钇等作为场效应晶体管的绝缘层2,用四氯化钛或氯化锌与二甲基甲酰胺或乙二醇甲醚按摩尔比为1:100~16:100混合搅拌均匀后,加入聚甲基丙烯酸甲酯或聚乙烯吡咯烷酮作为纺丝聚合物,混合搅拌3~24h,得到粘性静电纺丝前驱体溶液,将静电纺丝前驱体溶液装在静电纺丝装置的针头中,并将表面有绝缘层2的衬底1放在静电纺丝装置的收集基板上,推进泵按恒定的速度(0.1 ml/h ~ 0.8 ml/h)推出纺丝溶液,整个过程温度控制为10~40℃,在表面张力、库伦力以及电场力的共同作用下,最终在接收端得到四氯化钛或氯化锌与聚合物的复合纳米纤维。经过330~500℃,时间为0.1~2h的高温煅烧,退火处理,将复合纳米纤维氧化为二氧化钛纳米纤维或氧化锌纳米纤维。最后在纳米纤维上用磁控溅射沉积一层金或铝,作为源极4和漏极5,从而制备得到底栅顶接触式结构的场效应晶体管气体传感器,此晶体管可在180~270℃与VOC反应,反应后纳米纤维电导性增加,在加相同栅压时,通过源漏电流的变化判断气体变化,从而实现气体检测。
实施例1
本实施例的基于场效应晶体管的气体传感器包括依次层叠设置的衬底1、绝缘层2和有源层3,有源层3远离绝缘层2的一侧间隔设置有源极4和漏极5,衬底1为重掺杂p型硅,绝缘层2的材料为二氧化硅,有源层3的材料为二氧化钛纳米纤维,源极4和漏极5的材料均为金。如图2所示,本实施例的有源层3为纳米纤维结构,其比表面积大,可以增加感应材料与检测气体的接触面积,并且具有纳米级的尺寸,传输性能和机械柔性好。
本实施例的气体传感器的制备方法包括以下步骤:将重掺杂p型硅分别用酒精、丙酮和去离子水擦拭干净作为衬底1,然后在衬底1上高温、氧气氛围下生长一层二氧化硅,作为场效应晶体管的绝缘层2,将5mol四氯化钛与100 mol的二甲基己酰胺按混合搅拌均匀后,加入10mol聚乙烯吡咯烷酮作为纺丝聚合物,混合搅拌10h后得到粘性静电纺丝前驱体溶液,将静电纺丝前驱体溶液装在静电纺丝装置的针头中,并将表面有绝缘层2的衬底1放在静电纺丝装置的接收端,推进泵按0.4ml/h的速度推出纺丝溶液,静电纺丝装置的接收端与针头之间的距离为5cm,加直流电压为10 KV,静电纺丝的温度为30℃,在表面张力、库伦力以及电场力的共同作用下,最终在接收端得到四氯化钛与聚乙烯吡咯烷酮的复合纳米纤维。经过400℃、1h的退火处理,将复合纳米纤维氧化为二氧化钛纳米纤维。最后在二氧化钛纳米纤维上用磁控溅射沉积一层金,作为源极4和漏极5。本实施例的二氧化钛纳米纤维气体传感器的工作温度相对较低,检测气体时电阻变化范围较大,如图3所示,二氧化钛纳米纤维气体传感器表现出了n型半导体的响应,当传感器接触VOC气体时阻值迅速减小,源漏电流急剧增大,器件表现出了较快的反应速度和较大的响应幅度。
实施例2
本实施例的基于场效应晶体管的气体传感器包括依次层叠设置的衬底1、绝缘层2和有源层3,有源层3远离绝缘层2的一侧间隔设置有源极4和漏极5,衬底1为重掺杂p型硅,绝缘层2的材料为二氧化硅,有源层3的材料为氧化锌纳米纤维,源极4和漏极5的材料均为铝。
本实施例的气体传感器的制备方法包括以下步骤:将重掺杂p型硅分别用酒精、丙酮和去离子水擦拭干净作为衬底1,然后在衬底1上高温、氧气氛围下生长一层二氧化硅,作为场效应晶体管的绝缘层2,将10 mol氯化锌与100 mol的乙二醇甲醚混合搅拌均匀后,加入15mol聚乙烯吡咯烷酮作为纺丝聚合物,混合搅拌10h后得到粘性静电纺丝前驱体溶液,将静电纺丝前驱体溶液装在静电纺丝装置的针头中,并将表面有绝缘层2的衬底1放在静电纺丝装置的接收端,推进泵按0.8ml/h的速度推出纺丝溶液,静电纺丝装置的接收端与针头之间的距离为10cm,加直流电压为15 KV,静电纺丝的温度为25℃,在表面张力、库伦力以及电场力的共同作用下,最终在接收端得到氯化锌与聚乙烯吡咯烷酮的复合纳米纤维。经过500℃、2h的退火处理,将复合纳米纤维氧化为氧化锌纳米纤维。最后在氧化锌纳米纤维上用磁控溅射沉积一层铝,作为源极4和漏极5。由于实施例2与实施例1的电镜图和转移特性曲线图差异不大,因此此处省略实施例2的氧化锌纳米纤维的电镜图,以及气体传感器的转移特性曲线图。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种基于场效应晶体管的气体传感器,其中,包括衬底、绝缘层、有源层、源极和漏极,所述绝缘层设置在所述衬底和有源层之间,所述源极和漏极分别间隔设置在所述有源层远离所述绝缘层的一侧,所述有源层的材料为二氧化钛纳米纤维或氧化锌纳米纤维。
  2. 如权利要求1所述的基于场效应晶体管的气体传感器,其中,所述衬底的材料为重掺杂p型硅。
  3. 如权利要求1所述的基于场效应晶体管的气体传感器,其中,所述绝缘层的材料为二氧化硅、氧化锆、氧化铪、氧化铝或氧化钇中的任意一种,所述漏极和源极的材料为金或铝。
  4. 如权利要求1所述的基于场效应晶体管的气体传感器,其中,所述衬底的厚度为0.2~1 mm,所述绝缘层的厚度为60~300 nm,所述有源层的厚度为20~80 nm,所述源极和漏极的厚度分别为70~500 nm。
  5. 如权利要求1所述的基于场效应晶体管的气体传感器,其中,所述二氧化钛纳米纤维或氧化锌纳米纤维的直径为30~150nm,比表面积为10 7~10 8m 2/m 3
  6. 如权利要求1~5中任一项所述的基于场效应晶体管的气体传感器,其中,所述气体传感器为底栅顶接触式结构。
  7. 一种用于制备如权利要求1~6中任一项所述基于场效应晶体管的气体传感器的制备方法,其中,包括以下步骤:
    在所述衬底上制备得到所述绝缘层;
    将钛盐或锌盐用溶剂溶解得到金属盐溶液,将金属盐溶液与聚合物混合形成静电纺丝前驱体溶液,通过静电纺丝装置在所述绝缘层上制备得到复合纳米纤维,经退火处理后,得到二氧化钛纳米纤维或氧化锌纳米纤维形成的所述有源层;
    在所述有源层上沉积所述源极和漏极。
  8. 如权利要求7所述的制备方法,其中,所述钛盐为四氯化钛,所述锌盐为氯化锌,所述溶剂为二甲基甲酰胺或乙二醇甲醚,所述聚合物为聚甲基丙烯酸甲酯或聚乙烯吡咯烷酮,所述钛盐或锌盐与所述溶剂的摩尔比为1:100~16:100,所述聚合物与所述金属盐溶液的摩尔比为1:20~1:3。
  9. 如权利要求7所述的制备方法,其中,所述静电纺丝装置的收集基板与针头之间的距离为1~20cm,加直流电压为1~20 KV,静电纺丝的温度为10~40℃。
  10. 如权利要求7~9中任一项所述的制备方法,其中,所述退火处理的温度为330~500℃,时间为0.1~2h。
PCT/CN2021/132767 2021-01-19 2021-11-24 基于场效应晶体管的气体传感器及其制备方法 WO2022156353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110073304.0 2021-01-19
CN202110073304.0A CN112881477A (zh) 2021-01-19 2021-01-19 基于场效应晶体管的气体传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2022156353A1 true WO2022156353A1 (zh) 2022-07-28

Family

ID=76050239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132767 WO2022156353A1 (zh) 2021-01-19 2021-11-24 基于场效应晶体管的气体传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN112881477A (zh)
WO (1) WO2022156353A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881477A (zh) * 2021-01-19 2021-06-01 潍坊歌尔微电子有限公司 基于场效应晶体管的气体传感器及其制备方法
CN113390930B (zh) * 2021-06-10 2024-02-02 西安电子科技大学芜湖研究院 基于双脉冲驱动SnO2-Pd敏感材料的CO气体传感器及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155691A1 (en) * 2008-12-19 2010-06-24 Electronics And Telecommunications Research Institute Method of fabricating semiconductor oxide nanofibers for sensor and gas sensor using the same
CN102867756A (zh) * 2012-09-27 2013-01-09 中国科学院苏州纳米技术与纳米仿生研究所 一种金属氧化物薄膜场效应晶体管有源层的制备方法
CN106486541A (zh) * 2016-10-24 2017-03-08 青岛大学 一种氧化铟纳米纤维场效应晶体管电学性能的调控方法
CN106567154A (zh) * 2016-11-10 2017-04-19 合肥铭志环境技术有限责任公司 一种含有铈掺杂纳米二氧化钛的复合纤维气敏材料及其制备方法
CN106847701A (zh) * 2017-03-20 2017-06-13 青岛大学 一种金属掺杂氧化锌纳米纤维场效应晶体管的制备方法
EP3730933A1 (en) * 2019-04-24 2020-10-28 Consejo Superior De Investigaciones Científicas An electrolyte-gated field-effect transistor with surfactant layer
CN112881477A (zh) * 2021-01-19 2021-06-01 潍坊歌尔微电子有限公司 基于场效应晶体管的气体传感器及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692430A (zh) * 2012-06-07 2012-09-26 青岛大学 一种室温环境工作的一氧化碳气敏传感器的制备方法
CN103011257B (zh) * 2013-01-05 2014-06-11 青岛大学 一种p型氧化锌微纳米纤维的制备方法
CN104132989A (zh) * 2014-08-01 2014-11-05 电子科技大学 基于混合绝缘层的有机场效应管气体传感器及其制备方法
US10115895B1 (en) * 2017-09-26 2018-10-30 Sandisk Technologies Llc Vertical field effect transisitors having a rectangular surround gate and method of making the same
CN108447915B (zh) * 2018-03-02 2020-11-24 华中科技大学 一种薄膜场效应晶体管型气体传感器及其制备方法
CN111162118A (zh) * 2020-01-02 2020-05-15 歌尔股份有限公司 场效应晶体管及其制备方法
CN111610234B (zh) * 2020-07-07 2021-09-07 上海大学 一种场效应晶体管丙酮气体传感器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155691A1 (en) * 2008-12-19 2010-06-24 Electronics And Telecommunications Research Institute Method of fabricating semiconductor oxide nanofibers for sensor and gas sensor using the same
CN102867756A (zh) * 2012-09-27 2013-01-09 中国科学院苏州纳米技术与纳米仿生研究所 一种金属氧化物薄膜场效应晶体管有源层的制备方法
CN106486541A (zh) * 2016-10-24 2017-03-08 青岛大学 一种氧化铟纳米纤维场效应晶体管电学性能的调控方法
CN106567154A (zh) * 2016-11-10 2017-04-19 合肥铭志环境技术有限责任公司 一种含有铈掺杂纳米二氧化钛的复合纤维气敏材料及其制备方法
CN106847701A (zh) * 2017-03-20 2017-06-13 青岛大学 一种金属掺杂氧化锌纳米纤维场效应晶体管的制备方法
EP3730933A1 (en) * 2019-04-24 2020-10-28 Consejo Superior De Investigaciones Científicas An electrolyte-gated field-effect transistor with surfactant layer
CN112881477A (zh) * 2021-01-19 2021-06-01 潍坊歌尔微电子有限公司 基于场效应晶体管的气体传感器及其制备方法

Also Published As

Publication number Publication date
CN112881477A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022156353A1 (zh) 基于场效应晶体管的气体传感器及其制备方法
Chen et al. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays
WO2011143887A1 (zh) 金属氧化物薄膜晶体管及其制备方法
Jiang et al. High carrier mobility low-voltage ZnO thin film transistors fabricated at a low temperature via solution processing
CN111060233A (zh) 一种压电式集成化柔性触觉传感器及其制备方法
CN105428247B (zh) 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN105810820A (zh) 一种多孔结构有机场效应晶体管光敏存储器及其制备方法
CN108258116A (zh) 一种半导体纳米阵列有机场效应晶体管多位存储器及其制备方法
CN106847701B (zh) 一种金属掺杂氧化锌纳米纤维场效应晶体管的制备方法
Bukke et al. Nano-scale Ga2O3 interface engineering for high-performance of ZnO-based thin-film transistors
CN109244239A (zh) 一种锆掺杂有机薄膜晶体管及其制备方法
Mucur et al. Triangular-shaped zinc oxide nanoparticles enhance the device performances of inverted OLEDs
CN111610234A (zh) 一种场效应晶体管丙酮气体传感器及其制备方法
CN110010710A (zh) 一种用于光检测应用的a-IGZO薄膜传感器及其制作方法
CN103280454B (zh) 基于导电纳米带电极的微纳单晶场效应晶体管及制备方法
Nketia-Yawson et al. High-mobility electrolyte-gated perovskite transistors on flexible plastic substrate via interface and composition engineering
JP5235215B2 (ja) ガスセンサー
KR102093415B1 (ko) 금속산화물 박막을 포함하는 트랜지스터 제조 방법
Wang et al. Low temperature solution processed high-κ zirconium oxide gate insulator by Broadband-UV annealing
Sultan et al. Top-down fabricated ZnO nanowire transistors for application in biosensors
CN101852763B (zh) 一种基于场效应晶体管的手性传感器及其制备方法
CN110646473A (zh) 一种无机纳米粒子修饰pvp绝缘层气体传感器制备方法
Yoo et al. Field effect transistors based on one-dimensional, metal-oxide semiconducting nanofiber mats
CN111081639B (zh) Cmos薄膜晶体管及其制备方法、显示面板
WO2017143626A1 (zh) 氧化物薄膜的制备方法及其薄膜晶体管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920729

Country of ref document: EP

Kind code of ref document: A1