WO2022156262A1 - 低压进液管汇和压裂设备 - Google Patents

低压进液管汇和压裂设备 Download PDF

Info

Publication number
WO2022156262A1
WO2022156262A1 PCT/CN2021/120713 CN2021120713W WO2022156262A1 WO 2022156262 A1 WO2022156262 A1 WO 2022156262A1 CN 2021120713 W CN2021120713 W CN 2021120713W WO 2022156262 A1 WO2022156262 A1 WO 2022156262A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid inlet
pressure
low
pipe
main
Prior art date
Application number
PCT/CN2021/120713
Other languages
English (en)
French (fr)
Inventor
张日奎
崔海萍
邸天强
张鹏
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2022156262A1 publication Critical patent/WO2022156262A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/053Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
    • F04B1/0536Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders with two or more serially arranged radial piston-cylinder units
    • F04B1/0538Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders with two or more serially arranged radial piston-cylinder units located side-by-side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0008Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators
    • F04B11/0016Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators with a fluid spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0008Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for

Definitions

  • Embodiments of the present disclosure relate to a low pressure inlet manifold and a fracturing apparatus.
  • fracturing technology is a method of using high-pressure fracturing fluids to form fractures in oil and gas formations.
  • Fracturing technology is widely used in conventional and unconventional oil and gas exploration, offshore and onshore oil and gas resources development by creating fractures in oil and gas layers and improving the flow environment of oil and gas in the underground, thereby increasing the production of oil wells.
  • the fracturing equipment usually includes a plunger pump, a low-pressure liquid inlet manifold and a high-pressure discharge manifold; the low-pressure liquid inlet manifold provides low-pressure fluid to the plunger pump, and the plunger pump utilizes the reciprocating motion of the plunger in the cylinder to remove the low-pressure fluid. Pressurization is carried out, and the pressurized high-pressure fluid is discharged through the high-pressure discharge manifold, so that it can be used for fracturing of oil and gas layers.
  • Embodiments of the present disclosure provide a low-pressure liquid inlet manifold and fracturing equipment.
  • the low-pressure liquid inlet pipeline can be used for liquid inlet by disposing an auxiliary accumulator corresponding to at least one of the N liquid feed pipelines on the main liquid inlet pipeline.
  • the auxiliary accumulator can prevent sand settling to a certain extent. Therefore, the low pressure liquid inlet manifold can also alleviate or even eliminate the problem of sand settling.
  • At least one embodiment of the present disclosure provides a low-pressure liquid inlet manifold, which includes: a main liquid inlet pipe, including a first end portion and a second end portion oppositely disposed in the extending direction of the liquid inlet main pipe; and a N
  • Each liquid supply pipeline is arranged in sequence along the direction from the first end portion to the second end portion; each of the liquid supply pipelines includes a third end oppositely arranged in the extending direction of the liquid supply pipeline and a fourth end, the third end communicates with the main liquid inlet pipe, the fourth end is configured to provide low-pressure liquid to the plunger pump;
  • the low-pressure liquid inlet manifold also includes at least An auxiliary accumulator, connected to the main liquid inlet pipeline and corresponding to at least one of the N upper liquid pipelines, the orthographic projection of the auxiliary accumulator on the axis of the main liquid inlet pipeline It overlaps with the orthographic projection of the corresponding liquid upper pipeline on the axis, and N is a positive integer greater than or equal to
  • the low-pressure liquid inlet manifold includes N ⁇ 1 auxiliary accumulators, along the direction from the first end to the second end
  • the directions of the parts are arranged in sequence; in the direction from the first end to the second end, the first upper liquid pipeline is arranged corresponding to the first auxiliary accumulator, and the i th
  • the upper liquid pipeline is set corresponding to the i-th auxiliary accumulator
  • the N-1-th upper liquid pipeline is set corresponding to the N-1-th auxiliary accumulator
  • i is greater than 1 and less than N- A positive integer of 1.
  • the low-pressure liquid inlet manifold provided by an embodiment of the present disclosure further includes: an end auxiliary accumulator, connected to the main liquid inlet pipe and corresponding to the Nth upper liquid pipe, and the end auxiliary accumulator
  • the orthographic projection of the energy generator on the axis of the liquid inlet main pipeline overlaps with the orthographic projection of the Nth upper liquid pipeline on the axis.
  • the low-pressure liquid inlet manifold provided by an embodiment of the present disclosure further includes: a deflector inclined plate, located at the second end and at least partially inside the main liquid inlet pipe, the deflector inclined plate at the
  • the orthographic projection on the axis of the liquid inlet main pipeline overlaps with the orthographic projection of the Nth upper liquid pipeline on the axis, and the distance between the guide swash plate and the axis of the liquid inlet main pipeline is overlapped.
  • the included angle is less than 90 degrees, and the distance between the portion of the inclined deflector near the first end and the Nth upper liquid pipeline is greater than the distance between the portion of the inclined deflector near the second end and the Nth upper liquid pipeline. The distance of the N above liquid pipelines.
  • the angle between the swash plate and the axis of the main liquid inlet pipe ranges from 30 degrees to 60 degrees.
  • the low-pressure liquid inlet manifold provided by an embodiment of the present disclosure further includes: an oblique plug located at the second end, and the diverting oblique plate is located on the oblique plug.
  • the storage pressures of the N-1 auxiliary accumulators are different.
  • the accumulating pressures of N ⁇ 1 auxiliary accumulators are slowing shrieking.
  • the accumulating pressures of N ⁇ 1 auxiliary accumulators are gradually decreasing, the accumulating pressure of the auxiliary accumulator at the end is lower than the accumulating pressure of the N-1th auxiliary accumulator.
  • the auxiliary accumulator includes: a top plate, which is in contact with the fluid in the main liquid inlet pipe and is configured to move along a movement direction; and a pressure The applying part is located on the side of the top plate away from the main liquid inlet pipe, and is configured to apply the accumulating pressure to the top plate.
  • the included angle between the movement direction of the top plate and the extension direction of the corresponding upper liquid pipeline is less than 180 degrees.
  • the included angle between the movement direction of the top plate and the extension direction of the corresponding upper liquid pipeline is less than 150 degrees.
  • the minimum distance between the surface of the top plate of the auxiliary accumulator close to the liquid inlet main pipe and the axis of the liquid inlet main pipe is greater than that of the liquid inlet main pipe.
  • the radius of the pipe is greater than that of the liquid inlet main pipe.
  • the surface of the top plate of the auxiliary accumulator close to the main liquid inlet pipe is an arc surface, and the radius of curvature of the arc surface is the same as the The radius of curvature of the inner wall of the main liquid inlet pipe is approximately equal.
  • the surface of the top plate of the auxiliary accumulator close to the main liquid inlet pipe includes a flat surface.
  • the low-pressure liquid inlet manifold includes one of the auxiliary accumulators, and the auxiliary accumulator extends from the second end into the into the low-pressure liquid inlet manifold and extend toward the first end.
  • the first liquid upper pipeline in the direction from the first end portion to the second end portion, is in the liquid inlet main portion.
  • the orthographic projection on the axis of the pipe overlaps the orthographic projection of the auxiliary accumulator on the axis.
  • the auxiliary accumulator further includes: a fixed pipe, including a hollow cavity; a pipe plug; and a pipe joint, one end of the fixed pipe is connected to the The main liquid inlet pipe is fixedly connected, the pressure application part is located in the hollow cavity, the pipe plug is located on the side of the pressure application part away from the top plate, and is connected to the fixed pipe through the pipe joint connected.
  • the pressure applying part is an air bag
  • the auxiliary accumulator further includes an air intake pipe
  • the pipe plug includes a through hole
  • the air intake The pipeline is connected with the air bag through the through hole.
  • the auxiliary accumulator further includes a pressure gauge configured to detect the gas pressure in the air bag.
  • the low-pressure liquid inlet manifold provided by an embodiment of the present disclosure further includes: a liquid supply pipe, which is communicated with the first end of the main liquid inlet pipe, and is configured to provide the main liquid inlet pipe with Low pressure fluid; main accumulator, connected with the liquid supply pipeline.
  • the low-pressure liquid inlet manifold provided by an embodiment of the present disclosure further includes: a purging pipe, located at the second end of the main liquid inlet pipe, and communicated with the main liquid inlet pipe.
  • the pipe diameter of the first end of the main liquid inlet pipe is larger than the pipe diameter of the second end of the main liquid inlet pipe , in the direction from the first end to the second end, the lengths of the N upper liquid pipelines gradually decrease.
  • At least one embodiment of the present disclosure further provides a fracturing device, comprising: a plunger pump, including a power end and a hydraulic end; and the low-pressure liquid inlet manifold described in any one of the above; the low-pressure liquid inlet manifold , connected to the hydraulic end and configured to provide low pressure fluid to the plunger pump.
  • the hydraulic end includes N cylinders, and the N fluid supply pipelines are provided in a one-to-one correspondence with the N cylinder bodies, and each fluid fluid supply is provided in a one-to-one correspondence.
  • a conduit is configured to provide the low pressure fluid to the corresponding cylinder.
  • the value of N is 5, 7, or 9.
  • FIG. 1 is a schematic structural diagram of a low-pressure liquid inlet manifold provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an oblique plug provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another auxiliary energy accumulator according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a fracturing apparatus provided by an embodiment of the present disclosure.
  • the plunger pump faces the problems of fracturing air suction and low-pressure liquid inlet manifold sand settling under the working state of high pressure and large displacement;
  • the problem can lead to a reduction in the life of the hydraulic end of the plunger pump, and the problem of sand settling in the low pressure inlet manifold can lead to reduced maintenance efficiency and increased maintenance costs.
  • the plunger pump may suck in air, resulting in the problem of fracturing suction.
  • the embodiments of the present disclosure provide a low-pressure liquid inlet manifold and fracturing equipment.
  • the low-pressure liquid inlet manifold includes a liquid inlet main pipeline and N liquid supply pipelines; the liquid inlet main pipeline includes an extension of the liquid inlet main pipeline.
  • the first end and the second end are oppositely arranged in the direction; the N liquid supply pipelines are arranged in sequence along the direction from the first end to the second end; the liquid supply pipelines are included in the extension direction of the liquid supply pipeline.
  • the third end and the fourth end are oppositely arranged, the third end is communicated with the main liquid inlet pipeline, and the fourth end is configured to provide low-pressure liquid to the plunger pump; the low-pressure liquid inlet manifold also includes at least one
  • the auxiliary accumulator is connected to the main liquid inlet pipeline and is arranged corresponding to at least one of the N liquid supply pipelines.
  • the orthographic projection of the auxiliary accumulator on the axis of the liquid inlet main pipeline is on the axis of the corresponding liquid supply pipeline.
  • the low-pressure liquid inlet pipeline is provided with an auxiliary accumulator corresponding to at least one of the N liquid supply pipelines on the liquid inlet main pipeline, so that the corresponding liquid supply can be ensured when the pressure of the fluid in the liquid inlet main pipeline is insufficient or fluctuated.
  • the hydraulic supply pressure of the pipeline is stable, so as to avoid the problem of fracturing and suction, thereby improving the service life and performance of the plunger pump.
  • the auxiliary accumulator can prevent sand settling to a certain extent. Therefore, the low pressure liquid inlet manifold can also alleviate or even eliminate the problem of sand settling.
  • FIG. 1 is a schematic structural diagram of a low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • the low-pressure liquid inlet manifold 100 includes a main liquid inlet pipe 110 and N upper liquid pipes 120 ; 110A and the second end 110B; the N liquid supply pipes 120 are arranged in sequence along the direction from the first end 110A to the second end 110B; The third end 120A and the fourth end 120B are provided, the third end 120A is communicated with the main liquid inlet pipe 110, and the fourth end 120B is configured to provide low-pressure liquid to the plunger pump 200;
  • the low-pressure liquid inlet manifold 110 also includes at least one auxiliary accumulator 130, which is connected to the main liquid inlet pipe 110 and is arranged corresponding to at least one of the N upper liquid pipes 120.
  • N is a positive integer greater than or equal to 2. That is to say, when the main liquid inlet pipe 110 is divided into multiple sections in the axial direction of the main liquid inlet pipe 110 , the auxiliary accumulator 130 and the corresponding upper liquid pipe 120 are located in the same or adjacent sections of the main liquid inlet pipe 110 . , so that the auxiliary accumulator 130 can correspondingly supplement the fluid for the upper liquid pipeline 120 .
  • the main liquid inlet pipe is provided with an auxiliary accumulator corresponding to at least one of the N liquid inlet pipes; when the pressure of the fluid in the main liquid inlet pipe is insufficient or fluctuated, the auxiliary accumulator can ensure the stability of the liquid supply pressure of the corresponding upper liquid pipeline, so as to avoid the problem of fracturing and suction, thereby improving the service life and performance of the plunger pump.
  • the compression and expansion actions of the auxiliary accumulator can prevent sand settling; in addition, the auxiliary accumulator can ensure the stability of the pressure in the main liquid inlet pipeline , so that the fluid in the main liquid inlet pipeline can flow fully, and it can also prevent sand settling to a certain extent. Therefore, the low pressure liquid inlet manifold can also alleviate or even eliminate the problem of sand settling.
  • the low pressure liquid inlet manifold 100 includes N-1 auxiliary accumulators 130 arranged in sequence from the first end 110A to the second end 110B;
  • the pipes 120 are also arranged in sequence along the direction from the first end 110A to the second end 110B.
  • the first liquid supply pipeline 120 is disposed corresponding to the first auxiliary accumulator 130
  • the i-th liquid-up pipeline 120 corresponds to the i-th liquid supply pipeline 120 .
  • the auxiliary accumulators 130 are correspondingly arranged, the N-1 th liquid supply pipeline 120 is arranged correspondingly to the N-1 th auxiliary energy accumulator 130 , and i is a positive integer greater than 1 and less than N-1. That is to say, the first liquid supply pipeline 120 to the N-1th liquid supply pipeline 120 are arranged in a one-to-one correspondence with the N-1 auxiliary accumulators 130 . Therefore, when the pressure of the fluid in the main liquid inlet pipeline is insufficient or fluctuated, N-1 auxiliary accumulators can supplement the fluid for the first liquid supply pipeline to the N-1th liquid supply pipeline respectively, so as to ensure that these liquid supply pipelines are filled with fluid.
  • the hydraulic supply pressure of the pipeline is stable, so that the problem of fracturing suction can be better avoided.
  • the N-1 auxiliary accumulators are sequentially arranged in the direction from the first end to the second end, and are arranged corresponding to the first liquid supply pipeline to the N-1th liquid supply pipeline, thus The problem of sand settling can be reduced in a wide range.
  • the low-pressure liquid inlet manifold 100 further includes: a terminal auxiliary accumulator 139 , which is connected to the main liquid inlet pipe 110 and is arranged corresponding to the Nth liquid upper pipe 120 , and the terminal auxiliary accumulator 139 is
  • the orthographic projection of the accumulator 139 on the axis of the main liquid inlet pipe 110 overlaps with the orthographic projection of the Nth liquid supply pipe 120 on the axis. Therefore, when the pressure of the fluid in the main liquid inlet pipeline is insufficient or fluctuated, the end auxiliary accumulator can correspondingly supplement the fluid for the Nth liquid upper pipeline.
  • the above-mentioned end auxiliary accumulator 139 and auxiliary accumulator 130 may adopt the same structure; in this case, the end auxiliary accumulator 139 may be regarded as the auxiliary accumulator 130 .
  • the low-pressure liquid inlet manifold 100 includes N auxiliary accumulators 130, which are arranged in sequence along the direction from the first end 110A to the second end 110B; In the direction, the N auxiliary accumulators 130 are arranged in a one-to-one correspondence with the N liquid supply pipes 120 .
  • the embodiments of the present disclosure include, but are not limited to, the terminal auxiliary accumulator 139 and the auxiliary accumulator 130 may also adopt different structures.
  • the accumulating pressures of the N-1 auxiliary accumulators 139 are different. In the direction from the first end portion 110A to the second end portion 110B, as the distance from the first end portion 110A increases, the liquid supply pressure of the upper liquid pipeline also changes accordingly. Therefore, by setting the N-1 auxiliary accumulators 139 to have different accumulating pressures, the low-pressure liquid inlet manifold can better ensure the liquid supply pressure of the upper liquid pipeline.
  • the accumulating pressure of the N-1 auxiliary accumulators can be detected by detecting the actual liquid supply pressure of the N upper liquid pipelines (that is, the auxiliary accumulators) when the pressure of the fluid in the main liquid inlet pipeline is insufficient or fluctuating. Actual effect) to adjust and set.
  • the accumulating pressures of the N-1 auxiliary accumulators 130 gradually decrease in the direction from the first end 110A to the second end 110B. Therefore, by setting the accumulating pressures of the N-1 auxiliary accumulators to gradually decrease, the low-pressure liquid inlet manifold can better ensure the liquid supply pressure of the upper liquid pipeline.
  • the low pressure inlet manifold 100 includes the end auxiliary accumulator 139
  • N ⁇ 1 The accumulating pressure of each auxiliary accumulator 130 gradually decreases, and the accumulating pressure of the terminal auxiliary accumulator 139 is lower than the accumulating pressure of the N-1th auxiliary accumulator 130 . That is, in the direction from the first end portion 110A to the second end portion 110B, the accumulating pressures of the N ⁇ 1 auxiliary accumulators 130 and the terminal auxiliary accumulators 139 gradually decrease.
  • the low-pressure liquid inlet manifold 100 includes a main liquid inlet pipe 110 and five upper liquid pipes 120;
  • the five upper liquid pipelines 120 can be respectively connected to the five cylinders 2205 of the hydraulic end 220 of the plunger pump 200 . That is to say, in the direction from the first end portion 110A to the second end portion 110B, one end of the first liquid upper pipe 120 is connected to the liquid inlet main pipe 110 , and the other end is connected to the first cylinder of the liquid end 220 .
  • the fifth cylinder 2205 of the hydraulic end 220 is connected, one end of the second liquid supply pipeline 120 is connected to the liquid inlet main pipeline 110, the other end is connected to the second cylinder 2205 of the hydraulic end 220, and one end of the third liquid supply pipeline 120 is connected to the liquid inlet main pipeline 110. , the other end is connected to the third cylinder 2205 of the hydraulic end 220, one end of the fourth liquid supply pipe 120 is connected to the main liquid inlet pipe 110, and the other end is connected to the fourth cylinder 2205 of the hydraulic end 220.
  • One end of the five liquid supply pipes 120 is connected to the main liquid inlet pipe 110 , and the other end is connected to the fifth cylinder 2205 of the hydraulic end 220 . Therefore, the five upper liquid pipelines 120 can respectively provide low-pressure fluid to the five cylinders 2205 of the liquid end 220 .
  • the low-pressure liquid inlet manifold 110 further includes five auxiliary accumulators 130 (the end auxiliary accumulator 139 is also regarded as the auxiliary accumulator 130 ), which are connected to the main liquid inlet pipeline 110 and are connected to the above-mentioned
  • the five liquid supply pipelines 120 are arranged in one-to-one correspondence, and the orthographic projection of each auxiliary accumulator 130 on the axis of the liquid inlet main pipeline 110 overlaps with the orthographic projection of the corresponding liquid supply pipeline 120 on the axis.
  • the five auxiliary accumulators 130 can respectively supplement the fluid or the fluid pressure to the five upper fluid pipelines 120, so as to ensure the stability of the fluid supply pressure of these fluid supply pipelines, so as to better avoid the occurrence of fracturing suction. Empty question.
  • the above-mentioned auxiliary accumulator 130 is detachably connected to the main liquid inlet pipeline 110 .
  • the above-mentioned terminal auxiliary accumulator 139 is also detachably connected to the main liquid inlet pipeline 110 .
  • the auxiliary accumulator or the terminal auxiliary accumulator can also be removed when the above-mentioned auxiliary accumulator or the terminal auxiliary accumulator is not required.
  • the auxiliary accumulator can be dismantled during the transportation of the fracturing equipment using the above-mentioned low-pressure liquid inlet manifold; After the fracturing equipment of the liquid inlet manifold is transported to the designated location, the auxiliary accumulator is installed.
  • the low-pressure liquid inlet manifold 100 further includes a liquid supply pipeline 160 and a main accumulator 170 ;
  • the liquid supply pipeline 160 communicates with the first end 110A of the liquid inlet main pipeline 110 , And is configured to provide low pressure fluid to the liquid inlet main pipeline 110 ;
  • the main accumulator 170 is connected to the liquid supply pipeline 160 .
  • the first end 110 of the main liquid inlet pipe 110 is the liquid inlet end; the main accumulator 170 can ensure that the pressure of the main liquid inlet pipe 110 is stable when the pressure of the main liquid inlet pipe 110 is insufficient or fluctuated.
  • main accumulator 170 since the distance from the first end 110A increases, the main accumulator 170 cannot be effectively and sufficiently
  • the upper liquid pipeline 120 that is far away supplements the fluid or the liquid supply pressure, so there may still be problems such as insufficient liquid supply pressure.
  • the low-pressure liquid inlet manifold provided in this example through the combination and cooperation of the main accumulator and the auxiliary accumulator, stabilizes the pressure of the low-pressure fluid both in whole and in part, thus having an excellent effect.
  • FIG. 2 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • the low-pressure liquid inlet manifold 100 is not provided with the above-mentioned end auxiliary accumulator 139 , that is, the Nth upper liquid pipeline 120 is not correspondingly provided with the auxiliary accumulator 130 or the end auxiliary accumulator 139 .
  • the low-pressure liquid inlet manifold 100 further includes a deflecting swash plate 140 , and the deflecting sloping plate 140 is located at the second end 110B and at least partially inside the main liquid inlet pipe 110 .
  • the included angle is less than 90 degrees.
  • the distance between the portion of the swash plate 140 close to the first end 110A and the N th liquid upper pipe 120 is greater than the distance between the portion of the swash plate 140 close to the second end 110B and the N th liquid upper pipe 120 . Therefore, the swash plate 140 can guide the fluid in the main liquid inlet pipe 110 to the Nth liquid supply pipe 120 , so as to ensure the liquid supply pressure of the Nth liquid supply pipe 120 .
  • the swash plate 140 has the advantages of simple structure, simple maintenance and low cost, the low pressure
  • the liquid inlet manifold can improve the service life and performance of the plunger pump, alleviate or even eliminate the problem of sand settling, and at the same time, it has lower maintenance difficulty and relatively low maintenance. low cost.
  • the included angle between the swash plate 140 and the axis of the main liquid inlet pipe 110 is in the range of 30-60 degrees. Therefore, the guide swash plate 140 has a better guiding effect, and can better ensure the liquid supply pressure of the Nth upper liquid pipeline.
  • the embodiments of the present disclosure include, but are not limited to, the included angle between the swash plate and the axis of the main liquid inlet pipe can be set according to the actual situation.
  • the accumulating pressures of the N-1 auxiliary accumulators 139 are different. In the direction from the first end portion 110A to the second end portion 110B, as the distance from the first end portion 110A increases, the liquid supply pressure of the upper liquid pipeline also changes accordingly. Therefore, by setting the N-1 auxiliary accumulators 139 to have different accumulating pressures, the low-pressure liquid inlet manifold can better ensure the liquid supply pressure of the upper liquid pipeline.
  • the accumulating pressure of the N-1 auxiliary accumulators can be detected by detecting the actual liquid supply pressure of the N upper liquid pipelines (that is, the auxiliary accumulators) when the pressure of the fluid in the main liquid inlet pipeline is insufficient or fluctuating. Actual effect) to adjust and set.
  • the accumulating pressures of the N-1 auxiliary accumulators 130 gradually decrease in the direction from the first end 110A to the second end 110B. Therefore, by setting the accumulating pressures of the N-1 auxiliary accumulators to gradually decrease, the low-pressure liquid inlet manifold can better ensure the liquid supply pressure of the upper liquid pipeline.
  • the low-pressure liquid inlet manifold 100 further includes an oblique plug 150 located at the second end portion 110B and used to block the second end portion 110B. At this time, the oblique flow guide plate 140 is located on the inclined plug 150 . Therefore, the low-pressure liquid inlet manifold can reduce the installation difficulty and maintenance difficulty of the flow guide inclined plate by arranging the flow guide inclined plate on the inclined plug.
  • the low-pressure liquid inlet manifold 100 includes a main liquid inlet pipe 110 and five upper liquid pipes 120;
  • the five upper liquid pipelines 120 can be respectively connected to the five cylinders 2205 of the hydraulic end 220 of the plunger pump 200 . That is to say, in the direction from the first end portion 110A to the second end portion 110B, one end of the first liquid upper pipe 120 is connected to the liquid inlet main pipe 110 , and the other end is connected to the first cylinder of the liquid end 220 .
  • the fifth cylinder 2205 of the hydraulic end 220 is connected, one end of the second liquid supply pipeline 120 is connected to the liquid inlet main pipeline 110, the other end is connected to the second cylinder 2205 of the hydraulic end 220, and one end of the third liquid supply pipeline 120 is connected to the liquid inlet main pipeline 110. , the other end is connected to the third cylinder 2205 of the hydraulic end 220, one end of the fourth liquid supply pipe 120 is connected to the main liquid inlet pipe 110, and the other end is connected to the fourth cylinder 2205 of the hydraulic end 220.
  • One end of the five liquid supply pipes 120 is connected to the main liquid inlet pipe 110 , and the other end is connected to the fifth cylinder 2205 of the hydraulic end 220 . Therefore, the five upper liquid pipelines 120 can respectively provide low-pressure fluid to the five cylinders 2205 of the liquid end 220 .
  • the low-pressure liquid inlet manifold 110 further includes four auxiliary accumulators 130, which are respectively connected to the main liquid inlet pipe 110; in the direction from the first end 110A to the second end 110B, four auxiliary accumulators 130 are The auxiliary accumulators 130 are arranged in a one-to-one correspondence with the first four liquid supply pipelines 120 , and the orthographic projection of each auxiliary accumulator 130 on the axis of the liquid inlet main pipeline 110 is orthogonal to the orthographic projection of the corresponding liquid supply pipeline 120 on the axis. stack.
  • the four auxiliary accumulators 130 can respectively supplement the fluid or the fluid pressure to the four upper liquid pipelines 120 , and the liquid supply pressure of the fifth upper liquid pipeline 120 can be guaranteed by the deflector swash plate 140 . Therefore, the combination of four auxiliary accumulators 130 and one swash plate 140 can improve the service life and performance of the plunger pump, and alleviate or even eliminate the problem of sand settling. It has lower maintenance difficulty and lower cost.
  • the embodiments of the present disclosure include but are not limited to this.
  • one auxiliary accumulator can also correspond to multiple upper liquid pipelines, so as to supplement fluid for the multiple upper liquid pipelines or ensure the stability of the liquid supply pressure.
  • the embodiments of the present disclosure include but are not limited thereto.
  • FIG. 3 is a schematic structural diagram of an oblique plug according to an embodiment of the present disclosure.
  • the inclined plug 150 includes a straight pipe 151 and an inclined pipe 152 located inside the straight pipe 151 , and the inclined guide plate 140 is arranged on the inclined pipe 152 .
  • the plane shape of the inclined guide plate 140 can be It is an oval shape, that is, the shape of the oblique section of the inclined tube 152, so that the flow can be better conducted.
  • the oblique plug 150 further includes a plug 153 located at one end of the straight pipe 151 .
  • a handle 1530 can be provided on the plug 153 to facilitate disassembly and assembly.
  • FIG. 4 is a schematic structural diagram of an auxiliary energy accumulator according to an embodiment of the present disclosure.
  • the auxiliary accumulator 130 includes a top plate 131 and a pressure applying part 132; the top plate 131 is in contact with the fluid in the main liquid inlet pipe 110 and can move in a moving direction; the pressure applying part 132 is located on the top plate 131 away from the inlet One side of the liquid main pipe 110 , and is configured to apply accumulating pressure to the top plate 131 .
  • the top plate 131 can be pushed to move away from the main liquid inlet pipe 110, thereby reducing the fluid pressure in the main liquid inlet pipe 110;
  • the pressure applying portion 132 can push the top plate 131 to move toward the center of the liquid inlet main pipe 110 to replenish fluid to the corresponding upper liquid pipe 120 to ensure the liquid supply pressure of the corresponding upper liquid pipe 120 .
  • the auxiliary accumulator 130 further includes a fixed pipe 133 , a pipe plug 134 and a pipe joint 135 ;
  • the fixed pipe 133 includes a hollow cavity 1330 ; one end of the fixed pipe 133 is connected to the main liquid inlet pipe 110 is fixedly connected, the pressure application part 132 is located in the hollow cavity 1330 , the pipe plug 134 is located on the side of the pressure application part 132 away from the top plate 131 , and is connected to the fixed pipe 133 through the pipe joint 135 .
  • the pressure applying part 132 is an air bag, and the gas in the air bag can be nitrogen;
  • the auxiliary accumulator 130 further includes an intake pipe 136 , the pipe plug 134 includes a through hole 1340 , and the intake pipe
  • the air bag 136 is connected to the air bag 132 through the through hole 1340 , so that the air bag can be inflated or deflated through the air inlet duct 136 to adjust the pressure generated by the air bag 132 .
  • the auxiliary accumulator 130 further includes a buffer layer 137 located between the pressure applying portion 132 and the plug 134 to protect the airbag.
  • the auxiliary accumulator 130 also includes a pressure gauge 138 configured to detect the gas pressure in the bladder 132 .
  • the surface of the top plate 131 of the auxiliary accumulator 130 close to the main liquid inlet pipe 110 is a circular arc surface, and the curvature radius of the circular arc surface is approximately the same as that of the inner wall of the liquid inlet main pipe. are equal, thereby reducing the influence of the setting of the auxiliary accumulator on the fluid in the liquid inlet main pipeline.
  • FIG. 5 is a schematic structural diagram of another auxiliary energy accumulator according to an embodiment of the present disclosure. As shown in FIG. 5 , the surface of the top plate 131 of the auxiliary accumulator 130 close to the main liquid inlet pipe 110 also includes a plane.
  • the minimum distance from the surface of the top plate 131 of the auxiliary accumulator 130 close to the inlet main pipe and the axis of the inlet main pipe 110 is greater than the radius of the inlet main pipe 110 . That is, the part of the auxiliary accumulator 130 located inside the liquid inlet main pipe 110 cannot exceed the inner surface of the liquid inlet main pipe 110 . Therefore, the top plate 131 of the auxiliary accumulator 130 will not protrude into the main liquid inlet pipe 110 to avoid obstruction to the flow of the fluid.
  • the upper liquid pipeline 120 in the direction of gravity, is arranged at the top of the liquid inlet main pipeline 110 , and the auxiliary accumulator 130 is arranged at the bottom of the liquid inlet main pipeline 110 ; , the included angle between the movement direction of the top plate 131 and the extension direction of the corresponding upper liquid pipeline 120 is approximately 180 degrees.
  • FIG. 6 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • the included angle between the moving direction of the top plate 131 and the extending direction of the corresponding liquid upper pipe 120 is less than 180 degrees. That is, the auxiliary accumulator 130 is not disposed at the bottom of the main liquid inlet pipe 110, but on the side of the main liquid inlet pipe 110, so that the erosion and wear of the auxiliary accumulator by the sand can be reduced.
  • the included angle between the movement direction of the top plate and the extension direction of the corresponding upper liquid pipe is less than 150 degrees; for another example, the difference between the movement direction of the top plate and the extension direction of the corresponding upper liquid pipe is less than 150 degrees. The included angle between them is less than 90 degrees.
  • FIG. 7 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • the low-pressure liquid inlet manifold 100 further includes a liquid supply pipeline 160 and a main accumulator 170; the liquid supply pipeline 160 communicates with the first end 110A of the liquid inlet main pipeline 110 and is configured to The main liquid inlet pipe 110 provides low pressure fluid; the main accumulator 170 is connected to the liquid supply pipe 160 .
  • the first end 110 of the main liquid inlet pipe 110 is the liquid inlet end; the main accumulator 170 can ensure that the pressure of the main liquid inlet pipe 110 is stable when the pressure of the main liquid inlet pipe 110 is insufficient or fluctuated.
  • the low-pressure liquid inlet manifold shown in FIG. 6 does not show the auxiliary accumulator, the low-pressure liquid inlet manifold can also be provided with the above-mentioned auxiliary accumulator and terminal auxiliary accumulator.
  • the low-pressure liquid inlet manifold 100 further includes a purge pipe 180 , which is located at the second end 110B of the liquid inlet main pipe 110 and communicated with the liquid inlet main pipe 110 .
  • the purging gas can be passed into the purge pipeline 180 to sweep out the grit or residual moisture in the low-pressure liquid inlet manifold.
  • the pipe diameter of the first end portion 110A of the liquid inlet main pipe 110 is larger than the pipe diameter of the second end portion 110B of the liquid inlet main pipe 110 .
  • the lengths of the N liquid supply pipes gradually decrease.
  • the flow rate of the main liquid inlet pipe gradually decreases.
  • the main liquid inlet pipe in the low-pressure liquid inlet manifold provided in this example is a variable diameter pipe, which can It ensures the stability of flow and pressure at the connection positions of each liquid supply pipeline and the curved liquid supply pipeline and the main liquid inlet pipeline, and reduces the generation of air pockets, thereby avoiding the problem of fracturing air suction and suppressing the generation of vibration.
  • the length of the upper liquid pipe gradually decreases in the direction from the first end of the liquid inlet main pipe to the second end of the liquid inlet main pipe, the liquid inlet main pipe has an upward inclination angle with respect to the horizontal direction , thereby reducing the settling caused by horizontal conveying.
  • FIG. 8 is a schematic structural diagram of another low-pressure liquid inlet manifold provided by an embodiment of the present disclosure.
  • the low-pressure liquid inlet manifold 100 includes an auxiliary accumulator 130 .
  • the auxiliary accumulator 130 extends into the low-pressure liquid inlet manifold 110 from the second end 110B, and extends toward the first end 110A. extend.
  • the orthographic projection of the first upper liquid pipe 120 on the axis of the liquid inlet main pipe 110 is related to the auxiliary storage
  • the orthographic projections of the transducer 130 on the axis overlap. Therefore, during the working process, after the fluid enters the main liquid inlet pipe, it will contact the auxiliary accumulator, so that the fluid in the entire liquid inlet main pipe is buffered by the auxiliary accumulator.
  • the end of the auxiliary accumulator 130 away from the second end 110B includes a slope, so as to better buffer the fluid and avoid obstruction to the flow of the fluid.
  • FIG. 9 is a schematic diagram of a fracturing apparatus provided by an embodiment of the present disclosure.
  • the fracturing equipment 500 includes a plunger pump 200 and the above-mentioned low-pressure liquid inlet manifold 100 ;
  • the plunger pump 200 includes a power end 210 and a hydraulic end 220 ;
  • the low-pressure liquid inlet manifold 100 and the hydraulic end 220 is connected and configured to provide low pressure fluid to the plunger pump 200 .
  • the main liquid inlet pipeline is provided with an auxiliary accumulator corresponding to at least one of the N liquid supply pipelines; when the pressure of the fluid in the liquid inlet main pipeline is insufficient or fluctuated, the auxiliary accumulator can ensure the corresponding liquid supply.
  • the hydraulic supply pressure of the pipeline is stable, so as to avoid the problem of fracturing and suction, thereby improving the service life and performance of the plunger pump.
  • the compression and expansion actions of the auxiliary accumulator can prevent sand settling; in addition, the auxiliary accumulator can ensure the stability of the pressure in the main liquid inlet pipeline , so that the fluid in the main liquid inlet pipeline can flow fully, and it can also prevent sand settling to a certain extent. Therefore, the low pressure liquid inlet manifold can also alleviate or even eliminate the problem of sand settling.
  • the casing of the power end and the casing of the liquid end may be fixedly connected by means of bolts or the like.
  • the embodiments of the present disclosure include but are not limited to this, and other connection manners may also be used to implement the fixed connection of the above components.
  • the power end may include a crankshaft linkage and a plunger
  • the crankshaft linkage may convert rotational motion to reciprocating motion of the plunger
  • at least a portion of the plunger may extend into the fluid end to allow the connection between the fluid end and the hydraulic end.
  • Medium and low pressure fluids are pressurized.
  • the hydraulic end 220 includes N cylinders 2205 , the N liquid supply pipes 120 are arranged in a one-to-one correspondence with the N cylinder blocks 2205 , and each liquid supply pipe 120 is configured to be directed toward the corresponding one.
  • Cylinder 2205 provides low pressure fluid.
  • N can take the value 5, 7, or 9. That is, the plunger pump 200 may be a five-cylinder plunger pump, a seven-cylinder plunger pump, and a nine-cylinder plunger pump. Certainly, the embodiments of the present disclosure include, but are not limited to, the plunger pump, and the plunger pump may also be a plunger pump with other cylinders.
  • the fracturing apparatus 500 also includes a high pressure discharge manifold 300 , a gearbox 410 , a coupling 410 and a prime mover 430 .
  • the prime mover 430 is connected with the gear box 410 through the coupling 410, and the gear box 410 is connected with the power end 210 of the plunger pump 200. Therefore, the power output by the prime mover 430 is decelerated by the gear box 410 and then transmitted to the plunger pump. Power end 210 of 200.
  • the power end 210 of the plunger pump 200 converts the power provided by the prime mover 430 into the reciprocating motion of the plunger;
  • the low-pressure liquid inlet manifold 100 is connected to the hydraulic end 220 of the plunger pump 200 and provides low-pressure fluid to the hydraulic end 220 , such as fracturing fluid;
  • the hydraulic end 220 can use the reciprocating motion of the plunger to pressurize the low-pressure fluid to form high-pressure fracturing fluid;
  • the high-pressure discharge manifold 300 is connected to the hydraulic end 220 of the plunger pump 200 and used for The high pressure fracturing fluid is discharged.
  • the fracturing equipment can provide high-pressure fracturing fluid for fracturing operations.
  • the aforementioned prime mover may be a device powered by a diesel engine, an electric motor, or a turbine engine.
  • the prime mover especially the electric motor and turbine engine
  • the fracturing equipment may be a fracturing truck, a fracturing skid, or other equipment for generating high pressure fracturing fluids.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

一种低压进液管汇和压裂设备,该低压进液管汇(100)包括进液主管道(110)和N个上液管道(120);进液主管道(110)包括在进液主管道(110)的延伸方向上相对设置的第一端部(110A)和第二端部(110B);N个上液管道(120)沿着从第一端部(110A)到第二端部(110B)的方向上依次设置;各上液管道(120)包括在上液管道(120)的延伸方向上相对设置的第三端部(120A)和第四端部(120B),第三端部(120A)与进液主管道(110)相连通,第四端部(120B)被配置为向柱塞泵(200)提供低压液体;低压进液管汇(110)还包括至少一个辅助蓄能器(130),与进液主管道(110)相连,且与N个上液管道(120)中的至少一个对应设置,辅助蓄能器(130)在进液主管道(110)的轴线上的正投影与对应的上液管道(120)在轴线上的正投影交叠,N为大于等于2的正整数。由此,该低压进液管道可避免产生压裂吸空问题,从而可提高柱塞泵的使用寿命和性能。

Description

低压进液管汇和压裂设备
本申请要求于2021年01月21日递交的中国专利申请202110080048.8号的优先权和于2021年07月28日递交的中国专利申请202110859620.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种低压进液管汇和一种压裂设备。
背景技术
在石油和天然气开采领域,压裂技术是利用高压的压裂液体,使油气层形成裂缝的一种方法。压裂技术通过使油气层产生裂缝,改善油气在地下的流动环境,从而可使油井产量增加,因此被广泛地应用在常规和非常规的油气开采、海上和陆地的油气资源的开发中。
压裂设备通常包括柱塞泵、低压进液管汇和高压排出管汇;低压进液管汇向柱塞泵提供低压流体,柱塞泵利用柱塞在缸体中的往复运动来对低压流体进行增压,增压后的高压流体通过高压排出管汇排出,从而可用于油气层的压裂。
发明内容
本公开实施例提供一种低压进液管汇和压裂设备,该低压进液管道通过在进液主管道上设置与N个上液管道中的至少一个对应的辅助蓄能器,可在进液主管道中流体的压力不足或者波动时保证对应的上液管道的供液压力的稳定,从而避免产生压裂吸空问题,从而可提高柱塞泵的使用寿命和性能。另一方面,该辅助蓄能器可在一定程度上起到防止沉砂的作用。因此,该低压进液管汇还可缓解甚至消除沉砂问题。
本公开至少一个实施例提供一种低压进液管汇,其包括:进液主管道,包括在所述进液主管道的延伸方向上相对设置的第一端部和第二端部;以及N个上液管道,沿着从所述第一端部到所述第二端部的方向上依次设置;各所述上液管道包括在所述上液管道的延伸方向上相对设置的第三端部和第四端部,所述第三端部与所述进液主管道相连通,所述第四端部被配置为向柱塞泵提供低压液体;所述低压进液管汇还包括至少一个辅助蓄能器,与所述进液主管道相 连,且与所述N个上液管道中的至少一个对应设置,所述辅助蓄能器在所述进液主管道的轴线上的正投影与对应的所述上液管道在所述轴线上的正投影交叠,N为大于等于2的正整数。
例如,在本公开一实施例提供的低压进液管汇中,所述低压进液管汇包括N-1个所述辅助蓄能器,沿从所述第一端部到所述第二端部的方向依次设置;在从所述第一端部到所述第二端部的方向上,第一个所述上液管道与第一个所述辅助蓄能器对应设置,第i个所述上液管道与第i个所述辅助蓄能器对应设置,第N-1个所述上液管道与第N-1个所述辅助蓄能器对应设置,i为大于1且小于N-1的正整数。
例如,本公开一实施例提供的低压进液管汇还包括:末端辅助蓄能器,与所述进液主管道相连,且与第N个所述上液管道对应设置,所述末端辅助蓄能器在所述进液主管道的轴线上的正投影与第N个所述上液管道在所述轴线上的正投影交叠。
例如,本公开一实施例提供的低压进液管汇还包括:导流斜板,位于所述第二端部,并至少部分位于所述进液主管道之内,所述导流斜板在所述进液主管道的轴线上的正投影与第N个所述上液管道在所述轴线上的正投影交叠,所述导流斜板与所述进液主管道的轴线之间的夹角小于90度,所述导流斜板靠近所述第一端部的部分与第N个所述上液管道的距离大于所述导流斜板靠近所述第二端部的部分与第N个所述上液管道的距离。
例如,在本公开一实施例提供的低压进液管汇中,所述导流斜板与所述进液主管道的轴线之间的夹角的范围在30度-60度之间。
例如,本公开一实施例提供的低压进液管汇还包括:斜堵头,位于所述第二端部,所述导流斜板位于所述斜堵头上。
例如,在本公开一实施例提供的低压进液管汇中,N-1个所述辅助蓄能器的蓄能压力不同。
例如,在本公开一实施例提供的低压进液管汇中,在从所述第一端部到所述第二端部的方向上,N-1个所述辅助蓄能器的蓄能压力逐渐减小。
例如,在本公开一实施例提供的低压进液管汇中,在从所述第一端部到所述第二端部的方向上,N-1个所述辅助蓄能器的蓄能压力逐渐减小,所述末端辅助蓄能器的蓄能压力小于第N-1个所述辅助蓄能器的蓄能压力。
例如,在本公开一实施例提供的低压进液管汇中,所述辅助蓄能器包括: 顶板,与所述进液主管道中的流体接触,并被配置为沿一运动方向移动;以及压力施加部,位于所述顶板远离所述进液主管道的一侧,且被配置为向所述顶板施加蓄能压力。
例如,在本公开一实施例提供的低压进液管汇中,所述顶板的所述运动方向与对应的所述上液管道的延伸方向之间的夹角小于180度。
例如,在本公开一实施例提供的低压进液管汇中,所述顶板的所述运动方向与对应的所述上液管道的延伸方向之间的夹角小于150度。
例如,在本公开一实施例提供的低压进液管汇中,所述辅助蓄能器的顶板靠近所述进液主管道的表面与进液主管道的轴线的最小距离大于所述进液主管道的半径。
例如,在本公开一实施例提供的低压进液管汇中,所述辅助蓄能器的顶板靠近所述进液主管道的表面为圆弧面,并且所述圆弧面的曲率半径与所述进液主管道的内壁的曲率半径大致相等。
例如,在本公开一实施例提供的低压进液管汇中,所述辅助蓄能器的顶板靠近所述进液主管道的表面包括平面。
例如,在本公开一实施例提供的低压进液管汇中,所述低压进液管汇包括1个所述辅助蓄能器,所述辅助蓄能器从所述第二端部伸入所述低压进液管汇之中,并向所述第一端部延伸。
例如,在本公开一实施例提供的低压进液管汇中,在从所述第一端部到所述第二端部的方向上,第一个所述上液管道在所述进液主管道的轴线上的正投影与所述辅助蓄能器在所述轴线上的正投影交叠。
例如,在本公开一实施例提供的低压进液管汇中,所述辅助蓄能器还包括:固定管,包括中空腔体;管堵头;以及管接头,所述固定管的一端与所述进液主管道固定连接,压力施加部位于所述中空腔体之中,所述管堵头位于所述压力施加部远离所述顶板的一侧,并通过所述管接头与所述固定管相连。
例如,在本公开一实施例提供的低压进液管汇中,所述压力施加部为气囊,所述辅助蓄能器还包括进气管道,所述管堵头包括通孔,所述进气管道通过所述通孔与所述气囊相连。
例如,在本公开一实施例提供的低压进液管汇中,所述辅助蓄能器还包括压力表,被配置为检测所述气囊中的气体压力。
例如,本公开一实施例提供的低压进液管汇还包括:供液管道,与所述进 液主管道的所述第一端部相连通,并被配置为向所述进液主管道提供低压流体;主蓄能器,与所述供液管道相连。
例如,本公开一实施例提供的低压进液管汇还包括:吹扫管道,位于所述进液主管道的所述第二端部,且与所述进液主管道相连通。
例如,在本公开一实施例提供的低压进液管汇中,所述进液主管道的所述第一端部的管径大于所述进液主管道的所述第二端部的管径,在从所述第一端部到所述第二端部的方向上,N个所述上液管道的长度逐渐减小。
本公开至少一个实施例还提供一种压裂设备,其包括:柱塞泵,包括动力端和液力端;以及上述任一项所述的低压进液管汇;所述低压进液管汇,与所述液力端相连并被配置为向所述柱塞泵提供低压流体。
例如,在本公开一实施例提供的压裂设备中,所述液力端包括N个缸体,N个所述上液管道与N个所述缸体一一对应设置,各所述上液管道被配置为向对应的所述缸体提供所述低压流体。
例如,在本公开一实施例提供的压裂设备中,N的取值为5、7或9。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种低压进液管汇的结构示意图;
图2为本公开一实施例提供的另一种低压进液管汇的结构示意图;
图3为本公开一实施例提供的一种斜堵头的结构示意图;
图4为本公开一实施例提供的另一种低压进液管汇的结构示意图;
图5为本公开一实施例提供的另一种辅助蓄能器的结构示意图;
图6为本公开一实施例提供的另一种低压进液管汇的结构示意图;
图7为本公开一实施例提供的另一种低压进液管汇的结构示意图;
图8为本公开一实施例提供的另一种低压进液管汇的结构示意图;以及
图9为本公开一实施例提供的一种压裂设备的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开 实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
随着技术的不断发展,压裂作业对压裂的流量和压力提出了更高的要求;为了降低设备投资成本、使用成本和维护保养成本,油气服务公司在减少压裂车组中压裂车的数量,并提高单个压裂车的排量和排出压力的同时,对单个压裂车的性能和使用寿命和性能提出了更高的要求。
本申请的发明人注意到,对于单个压裂车而言,柱塞泵在高压力和大排量的工作状态下面临压裂吸空和低压进液管汇沉砂的问题;压裂吸空问题会导致柱塞泵的液力端的寿命降低,而低压进液管汇沉砂问题会导致维护效率降低、维护成本增加。需要说明的是,当低压进液管汇为柱塞泵提供的低压流体的压力不足或者波动时,柱塞泵可能会吸入空气,从而导致压裂吸空问题。
对此,本公开实施例提供一种低压进液管汇和压裂设备,该低压进液管汇包括进液主管道和N个上液管道;进液主管道包括在进液主管道的延伸方向上相对设置的第一端部和第二端部;N个上液管道沿着从第一端部到第二端部的方向上依次设置;各上液管道包括在上液管道的延伸方向上相对设置的第三端部和第四端部,第三端部与进液主管道相连通,第四端部被配置为向柱塞泵提供低压液体;低压进液管汇还包括至少一个辅助蓄能器,与进液主管道相连,且与N个上液管道中的至少一个对应设置,辅助蓄能器在进液主管道的轴线上的正投影与对应的上液管道在轴线上的正投影交叠,N为大于等于2的正整数。由此,该低压进液管道通过在进液主管道上设置与N个上液管道中的至少一个对应的辅助蓄能器,可在进液主管道中流体的压力不足或者波动时保证对应的上液管道的供液压力的稳定,从而避免产生压裂吸空问题,从而可提高柱塞泵 的使用寿命和性能。另一方面,该辅助蓄能器可在一定程度上起到防止沉砂的作用。因此,该低压进液管汇还可缓解甚至消除沉砂问题。
下面,结合附图对本公开实施例提供的低压进液管汇和压裂设备进行详细的说明。
本公开一实施例提供一种低压进液管汇。图1为本公开一实施例提供的一种低压进液管汇的结构示意图。如图1所示,该低压进液管汇100包括进液主管道110和N个上液管道120;进液主管道110包括在进液主管道110的延伸方向上相对设置的第一端部110A和第二端部110B;N个上液管道120沿着从第一端部110A到第二端部110B的方向上依次设置;各上液管道120包括在上液管道120的延伸方向上相对设置的第三端部120A和第四端部120B,第三端部120A与进液主管道110相连通,第四端部120B被配置为向柱塞泵200提供低压液体;低压进液管汇110还包括至少一个辅助蓄能器130,与进液主管道110相连,且与N个上液管道120中的至少一个对应设置,辅助蓄能器130在进液主管道110的轴线上的正投影与对应的上液管道120在轴线上的正投影交叠,N为大于等于2的正整数。也就是说,在进液主管道110的轴线方向上将进液主管道110划分为多段时,辅助蓄能器130与对应的上液管道120处于进液主管道110的相同段或者相邻段,从而使得辅助蓄能器130可对应地为上液管道120补充流体。
在本公开实施例提供的低压进液管汇中,进液主管道上设置有与N个上液管道中的至少一个对应的辅助蓄能器;在进液主管道中流体的压力不足或者波动时,该辅助蓄能器可保证对应的上液管道的供液压力的稳定,从而避免产生压裂吸空问题,从而可提高柱塞泵的使用寿命和性能。另一方面,在上述辅助蓄能器补充供液压力时,辅助蓄能器的压缩和扩张动作可以起到防止沉砂的作用;另外,该辅助蓄能器可保证进液主管道中的压力稳定,使得进液主管道中的流体可充分流动,也可在一定程度上起到防止沉砂的作用。因此,该低压进液管汇还可缓解甚至消除沉砂问题。
在一些示例中,如图1所示,低压进液管汇100包括N-1个辅助蓄能器130,沿从第一端部110A到第二端部110B的方向依次设置;N个上液管道120也是沿着从第一端部110A到第二端部110B的方向上依次设置。此时,在从第一端部110A到第二端部110B的方向上,第一个上液管道120与第一个辅助蓄能器130对应设置,第i个上液管道120与第i个辅助蓄能器130对应设置, 第N-1个上液管道120与第N-1个辅助蓄能器130对应设置,i为大于1且小于N-1的正整数。也就是说,第一个上液管道120到第N-1个上液管道120与N-1个辅助蓄能器130一一对应设置。由此,在进液主管道中流体的压力不足或者波动时,N-1个辅助蓄能器可分别为第一个上液管道到第N-1个上液管道补充流体,从而保证这些上液管道的供液压力的稳定,从而可更好地避免产生压裂吸空问题。另一方面,由于N-1个辅助蓄能器沿从第一端部到第二端部的方向依次设置,并且与第一个上液管道到第N-1个上液管道对应设置,从而可在较大范围之内降低沉砂问题。
在一些示例中,如图1所示,该低压进液管汇100还包括:末端辅助蓄能器139,与进液主管道110相连,且与第N个上液管道120对应设置,末端辅助蓄能器139在进液主管道110的轴线上的正投影与第N个上液管道120在轴线上的正投影交叠。由此,在进液主管道中流体的压力不足或者波动时,末端辅助蓄能器可对应地为第N个上液管道补充流体。
在一些示例中,上述的末端辅助蓄能器139和辅助蓄能器130可采用相同的结构;此时,末端辅助蓄能器139可视为辅助蓄能器130。此时,低压进液管汇100包括N个辅助蓄能器130,沿从第一端部110A到第二端部110B的方向依次设置;在从第一端部110A到第二端部110B的方向上,N个辅助蓄能器130与N个上液管道120一一对应设置。当然,本公开实施例包括但不限于此,末端辅助蓄能器139和辅助蓄能器130也可采用不同的结构。
在一些示例中,如图1所示,N-1个辅助蓄能器139的蓄能压力不同。在从第一端部110A到第二端部110B的方向上,随着与第一端部110A的距离的增加,上液管道的供液压力也会随之改变。因此,通过将N-1个辅助蓄能器139设置为具有不同的蓄能压力,该低压进液管汇会更好地保证上液管道的供液压力。
需要说明的是,这N-1个辅助蓄能器的蓄能压力可在进液主管道中流体的压力不足或者波动时,通过检测N个上液管道的实际供液压力(即辅助蓄能器起到的实际效果)进行调节和设置。
在一些示例中,如图1所示,在从第一端部110A到第二端部110B的方向上,N-1个辅助蓄能器130的蓄能压力逐渐减小。由此,通过将N-1个辅助蓄能器的蓄能压力设置为逐渐减小,该低压进液管汇会更好地保证上液管道的供液压力。
在一些示例中,如图1所示,当该低压进液管汇100包括末端辅助蓄能器139的情况下,在从第一端部110A到第二端部110B的方向上,N-1个辅助蓄能器130的蓄能压力逐渐减小,末端辅助蓄能器139的蓄能压力小于第N-1个辅助蓄能器130的蓄能压力。也就是说,在从第一端部110A到第二端部110B的方向上,N-1个辅助蓄能器130和末端辅助蓄能器139的蓄能压力逐渐减小。
例如,如图1所示,该低压进液管汇100包括进液主管道110和五个上液管道120;五个上液管道120沿着从第一端部110A到第二端部110B的方向上依次设置;五个上液管道120可分别连接柱塞泵200的液力端220的五个缸体2205。也就是说,在从第一端部110A到第二端部110B的方向上,第一个上液管道120的一端连接进液主管道110,另一端与液力端220的第一个缸体2205相连,第二个上液管道120的一端连接进液主管道110,另一端与液力端220的第二个缸体2205相连,第三个上液管道120的一端连接进液主管道110,另一端与液力端220的第三个缸体2205相连,第四个上液管道120的一端连接进液主管道110,另一端与液力端220的第四个缸体2205相连,第五个上液管道120的一端连接进液主管道110,另一端与液力端220的第五个缸体2205相连。由此,这五个上液管道120可分别向液力端220的五个缸体2205提供低压流体。
如图1所示,低压进液管汇110还包括五个辅助蓄能器130(将末端辅助蓄能器139也视为辅助蓄能器130),与进液主管道110相连,且与上述的五个上液管道120一一对应设置,各个辅助蓄能器130在进液主管道110的轴线上的正投影与对应的上液管道120在轴线上的正投影交叠。由此,这五个辅助蓄能器130可分别向五个上液管道120补充流体或者补充流体压力,从而保证这些上液管道的供液压力的稳定,从而可更好地避免产生压裂吸空问题。
在一些示例中,如图1所示,上述的辅助蓄能器130是可拆装地连接在进液主管道110上的。另外,上述的末端辅助蓄能器139也是可拆装地连接在进液主管道110上的。由此,可在辅助蓄能器或者末端辅助蓄能器损坏的情况下,即时对低压进液管汇进行维护,保证设备的长期稳定运行。另一方面,也可在不需要上述辅助蓄能器或者末端辅助蓄能器的情况下,将辅助蓄能器或者末端辅助蓄能器拆除。或者,在上述的辅助蓄能器的体积较大的情况下,在采用上述低压进液管汇的压裂设备的运输过程中,可将辅助蓄能器拆除,以方面运输;在采用上述低压进液管汇的压裂设备运输到指定的位置后,再将辅助蓄能器安 装上。
在一些示例中,如图1所示,该低压进液管汇100还包括供液管道160和主蓄能器170;供液管道160与进液主管道110的第一端部110A相连通,并被配置为向进液主管道110提供低压流体;主蓄能器170与供液管道160相连。此时,进液主管道110的第一端部110为进液端;主蓄能器170可在进液主管道110的压力不足或者压力波动时,保证进液主管道110的压力稳定。需要说明的是,如果只设置上述的主蓄能器170而不设置辅助蓄能器130,由于随着与第一端部110A的距离的增加,主蓄能器170无法有效地、充分地为距离较远的上液管道120补充流体或者供液压力,因此仍然可能存在供液压力不足等问题。本示例提供的低压进液管汇通过主蓄能器和辅助蓄能器的组合和配合,更在整体和局部上对低压流体的压力进行稳定,从而具有优异的效果。
图2为本公开一实施例提供的另一种低压进液管汇的结构示意图。如图2所示,该低压进液管汇100不设置上述的末端辅助蓄能器139,也就是说,第N个上液管道120不对应设置辅助蓄能器130或者末端辅助蓄能器139。如图1所示,该低压进液管汇100还包括导流斜板140,导流斜板140位于第二端部110B,并至少部分位于进液主管道110之内。导流斜板140在进液主管道110的轴线上的正投影与第N个上液管道120在轴线上的正投影交叠,导流斜板140与进液主管道110的轴线之间的夹角小于90度。导流斜板140靠近第一端部110A的部分与第N个上液管道120的距离大于导流斜板140靠近第二端部110B的部分与第N个上液管道120的距离。由此,导流斜板140可将进液主管道110中的流体引导至第N个上液管道120,从而可起到保证第N个上液管道120的供液压力的效果。另外,相对于第N个上液管道120也设置辅助蓄能器130或者末端辅助蓄能器139的情况,由于导流斜板140具有结构简单、维护简单、成本较低等优点,因此该低压进液管汇通过辅助蓄能器130和导流斜板140的组合可在起到提高柱塞泵的使用寿命和性能,并缓解甚至消除沉砂问题的同时,具有较低的维护难度和较低的成本。
在一些示例中,如图2所示,导流斜板140与进液主管道110的轴线之间的夹角的范围在30-60度之间。由此,该导流斜板140具有较好的引导效果,并且可较好地保证第N个上液管道的供液压力。当然,本公开实施例包括但不限于此,导流斜板与进液主管道的轴线之间的夹角可根据实际情况进行设置。
在一些示例中,如图2所示,N-1个辅助蓄能器139的蓄能压力不同。在 从第一端部110A到第二端部110B的方向上,随着与第一端部110A的距离的增加,上液管道的供液压力也会随之改变。因此,通过将N-1个辅助蓄能器139设置为具有不同的蓄能压力,该低压进液管汇会更好地保证上液管道的供液压力。
需要说明的是,这N-1个辅助蓄能器的蓄能压力可在进液主管道中流体的压力不足或者波动时,通过检测N个上液管道的实际供液压力(即辅助蓄能器起到的实际效果)进行调节和设置。
在一些示例中,如图2所示,在从第一端部110A到第二端部110B的方向上,N-1个辅助蓄能器130的蓄能压力逐渐减小。由此,通过将N-1个辅助蓄能器的蓄能压力设置为逐渐减小,该低压进液管汇会更好地保证上液管道的供液压力。
在一些示例中,如图2所示,该低压进液管汇100还包括斜堵头150,位于第二端部110B,并用于封堵第二端部110B。此时,导流斜板140位于斜堵头150上。由此,该低压进液管汇通过将导流斜板设置在斜堵头上可降低导流斜板的安装难度和维护难度。
例如,如图2所示,该低压进液管汇100包括进液主管道110和五个上液管道120;五个上液管道120沿着从第一端部110A到第二端部110B的方向上依次设置;五个上液管道120可分别连接柱塞泵200的液力端220的五个缸体2205。也就是说,在从第一端部110A到第二端部110B的方向上,第一个上液管道120的一端连接进液主管道110,另一端与液力端220的第一个缸体2205相连,第二个上液管道120的一端连接进液主管道110,另一端与液力端220的第二个缸体2205相连,第三个上液管道120的一端连接进液主管道110,另一端与液力端220的第三个缸体2205相连,第四个上液管道120的一端连接进液主管道110,另一端与液力端220的第四个缸体2205相连,第五个上液管道120的一端连接进液主管道110,另一端与液力端220的第五个缸体2205相连。由此,这五个上液管道120可分别向液力端220的五个缸体2205提供低压流体。
如图2所示,低压进液管汇110还包括四个辅助蓄能器130,分别与进液主管道110相连;在从第一端部110A到第二端部110B的方向上,四个辅助蓄能器130与前四个上液管道120一一对应设置,各个辅助蓄能器130在进液主管道110的轴线上的正投影与对应的上液管道120在轴线上的正投影交叠。由 此,这四个辅助蓄能器130可分别向四个上液管道120补充流体或者补充流体压力,而第五个上液管道120的供液压力可通过导流斜板140来保证。由此,该低压进液管汇通过四个辅助蓄能器130和一个导流斜板140的组合可在起到提高柱塞泵的使用寿命和性能,并缓解甚至消除沉砂问题的同时,具有较低的维护难度和较低的成本。
值得注意的是,虽然图1和图2所示的低压进液管汇均采用一个辅助蓄能器对应一个上液管道的方案,但本公开实施例包括但不限于此。当辅助蓄能器的性能较好的情况下,一个辅助蓄能器也可对应多个上液管道,以为多个上液管道补充流体或保证供液压力的稳定。另外,虽然图1和图2所示的上液管道均为五个,但本公开实施例包括但不限于此。
图3为本公开一实施例提供的一种斜堵头的结构示意图。如图3所示,该斜堵头150包括直管151和位于直管151内部的斜管152,导流斜板140设置在斜管152上,此时,导流斜板140的平面形状可为椭圆形,即斜管152的斜剖面的形状,从而可更好地进行导流。
在一些示例中,如图3所示,该斜堵头150还包括位于直管151的一端的堵头153。堵头153上可设置把手1530,从而方便进行拆装。
图4为本公开一实施例提供的一种辅助蓄能器的结构示意图。如图4所示,辅助蓄能器130包括顶板131和压力施加部132;顶板131与进液主管道110中的流体接触,并可沿一运动方向移动;压力施加部132位于顶板131远离进液主管道110的一侧,且被配置为向顶板131施加蓄能压力。由此,当进液主管道110中的流体压力较大时,可推动顶板131向远离进液主管道110的方向移动,从而降低进液主管道110中的流体压力;当进液主管道110中的流体压力不足时,压力施加部132可推动顶板131向进液主管道110的中心移动,以向对应的上液管道120补充流体,以保证对应的上液管道120的供液压力。
在一些示例中,如图4所示,辅助蓄能器130还包括固定管133、管堵头134和管接头135;固定管133包括中空腔体1330;固定管133的一端与进液主管道110固定连接,压力施加部132位于中空腔体1330之中,管堵头134位于压力施加部132远离顶板131的一侧,并通过管接头135与固定管133相连。
在一些示例中,如图4所示,压力施加部132为气囊,气囊中的气体可为氮气;辅助蓄能器130还包括进气管道136,管堵头134包括通孔1340,进气 管道136通过通孔1340与气囊132相连,从而可可通过进气管道136向气囊充气或放气,以调节气囊132产生的压力。
在一些示例中,如图4所示,辅助蓄能器130还包括缓冲层137,位于压力施加部132和堵头134之间,从而起到保护气囊的作用。
在一些示例中,如图4所示,辅助蓄能器130还包括压力表138,被配置为检测气囊132中的气体压力。
在一些示例中,如图4所示,辅助蓄能器130的顶板131靠近进液主管道110的表面为圆弧面,并且圆弧面的曲率半径与进液主管道的内壁的曲率半径大致相等,从而可降低辅助蓄能器的设置对于进液主管道中流体的影响。
当然,关于辅助蓄能器的顶板靠近进液主管道的表面的形状,本公开实施例包括但不限于圆弧面。图5为本公开一实施例提供的另一种辅助蓄能器的结构示意图。如图5所示,辅助蓄能器130的顶板131靠近进液主管道110的表面也包括平面。
值得注意的是,当上述的末端蓄能器和辅助蓄能器采用相同的结构是,末端蓄能器的结构也可参见图4的相关描述。
在一些示例中,如图1和图2所示,辅助蓄能器130的顶板131靠近进液主管道的表面与进液主管道110的轴线的最小距离大于进液主管道110的半径。也就是说,辅助蓄能器130位于进液主管道110内部的部分不能超过进液主管道110的内表面。由此,辅助蓄能器130的顶板131不会伸入进液主管道110之中,避免对流体的流动造成阻碍。
在一些示例中,如图1和图2所示,在重力方向上,上液管道120设置在进液主管道110的顶部,辅助蓄能器130设置在进液主管道110的底部;此时,顶板131的运动方向与对应的上液管道120的延伸方向之间的夹角大致为180度。
图6为本公开一实施例提供的另一种低压进液管汇的结构示意图。如图6所示,顶板131的运动方向与对应的上液管道120的延伸方向之间的夹角小于180度。也就是说,辅助蓄能器130不设置在进液主管道110的底部,而是进液主管道110的侧面,从而可减少砂砾对于辅助蓄能器冲蚀和磨损。
在一些示例中,如图6所示,顶板的运动方向与对应的上液管道的延伸方向之间的夹角小于150度;又例如,顶板的运动方向与对应的上液管道的延伸方向之间的夹角小于90度。
图7为本公开一实施例提供的另一种低压进液管汇的结构示意图。如图7所示,该低压进液管汇100还包括供液管道160和主蓄能器170;供液管道160与进液主管道110的第一端部110A相连通,并被配置为向进液主管道110提供低压流体;主蓄能器170与供液管道160相连。此时,进液主管道110的第一端部110为进液端;主蓄能器170可在进液主管道110的压力不足或者压力波动时,保证进液主管道110的压力稳定。需要说明的是,虽然图6所示的低压进液管汇没有示出辅助蓄能器,但是该低压进液管汇也可设置上述的辅助蓄能器和末端辅助蓄能器。
在一些示例中,如图7所示,低压进液管汇100还包括吹扫管道180,吹扫管道180位于进液主管道110的第二端部110B,且与进液主管道110相连通。由此,当低压进液管汇停止使用或者存在砂砾时,可通过向吹扫管道180通入吹扫气体,以将低压进液管汇中的砂砾或残留的水分吹扫出去。
在一些示例中,如图7所示,进液主管道110的第一端部110A的管径大于进液主管道110的第二端部110B的管径,在从第一端部110A到第二端部110B的方向上,N个上液管道的长度逐渐减小。随着进液主管道中的流体不断从上液管道进入柱塞泵,进液主管道的流量逐渐减小,本示例提供的低压进液管汇中的进液主管道为变径管道,从而可保证各个上液管道和弯曲上液管道与进液主管道的连接位置的流量和压力稳定,减少气穴的产生,从而可避免压裂吸空问题和抑制振动的产生。另一方面,由于从进液主管道的第一端到进液主管道的第二端的方向上,上液管道的长度逐渐减小,由此进液主管道相对于水平方向具有向上倾斜的角度,从而可减少水平输送而导致的沉降。
图8为本公开一实施例提供的另一种低压进液管汇的结构示意图。如图8所示,低压进液管汇100包括1个辅助蓄能器130,辅助蓄能器130从第二端部110B伸入低压进液管汇110之中,并向第一端部110A延伸。
在一些示例中,如图8所示,在从第一端部110A到第二端部110B的方向上,第一个上液管道120在进液主管道110的轴线上的正投影与辅助蓄能器130在轴线上的正投影交叠。由此,在工作过程中,流体进入进液主管道之后,会接触到辅助蓄能器,从而通过该辅助蓄能器对整个进液主管道中的流体进行缓冲。
在一些示例中,如图8所述,辅助蓄能器130远离第二端部110B的一端包括斜面,从而可更好地对流体进行缓冲,避免对流体的流动造成阻碍。
本公开一实施例还提供一种压裂设备。图9为本公开一实施例提供的一种压裂设备的示意图。如图9所示,该压裂设备500包括柱塞泵200和上述的低压进液管汇100;柱塞泵200包括动力端210和液力端220;低压进液管汇100与液力端220相连并被配置为向柱塞泵200提供低压流体。由此,进液主管道上设置有与N个上液管道中的至少一个对应的辅助蓄能器;在进液主管道中流体的压力不足或者波动时,该辅助蓄能器可保证对应的上液管道的供液压力的稳定,从而避免产生压裂吸空问题,从而可提高柱塞泵的使用寿命和性能。另一方面,在上述辅助蓄能器补充供液压力时,辅助蓄能器的压缩和扩张动作可以起到防止沉砂的作用;另外,该辅助蓄能器可保证进液主管道中的压力稳定,使得进液主管道中的流体可充分流动,也可在一定程度上起到防止沉砂的作用。因此,该低压进液管汇还可缓解甚至消除沉砂问题。
例如,动力端的外壳与液力端的外壳可通过螺栓等连接方式固定连接。当然,本公开实施例包括但不限于此,也可采用其他连接方式实现上述组件的固定连接。
例如,动力端可包括曲轴连杆机构和柱塞,曲轴连杆机构可将旋转运动转换为柱塞的往复运动,柱塞的至少部分可伸入液力端之中,以在液力端之中对低压流体进行加压。需要说明的是,上面简要地对柱塞泵的结构和工作方式进行了示意性的说明,但本公开实施例的柱塞泵包括但不限于上述的结构和工作方式。
在一些示例中,如图8所示,液力端220包括N个缸体2205,N个上液管道120与N个缸体2205一一对应设置,各上液管道120被配置为向对应的缸体2205提供低压流体。
例如,N的取值为5、7或9。也就是说,柱塞泵200可为五缸柱塞泵、七缸柱塞泵和九缸柱塞泵。当然,本公开实施例包括但不限于此,柱塞泵也可为其他缸数的柱塞泵。
在一些示例中,如图8所示,该压裂设备500还包括高压排出管汇300、齿轮箱410、联轴器410和原动机430。原动机430通过联轴器410与齿轮箱410相连,齿轮箱410与柱塞泵200的动力端210相连,由此,原动机430输出的动力经过齿轮箱410的减速之后,传动到柱塞泵200的动力端210。柱塞泵200的动力端210将原动机430提供的动力转换为柱塞的往复运动;低压进液管汇100与柱塞泵200的液力端220相连,并向液力端220提供低压流体, 例如压裂液;液力端220可利用柱塞的往复运动对低压流体进行加压以形成高压的压裂液;高压排出管汇300与柱塞泵200的液力端220相连,并用于排出该高压的压裂液。由此,该压裂设备可提供高压的压裂液,从而用于压裂作业。
例如,上述的原动机可为柴油机、电动机、或涡轮发动机等提供动力的设备。另外,由于原动机(特别是电动机和涡轮发动机)的转速较高,因此需要在柱塞泵和原动机之间设置减速箱,从而采用减速箱对原动机的动力输出进行减速,以与柱塞泵匹配。
在一些示例中,压裂设备可为压裂车、压裂橇或者其他用于产生高压的压裂液的设备。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种低压进液管汇,包括:
    进液主管道,包括在所述进液主管道的延伸方向上相对设置的第一端部和第二端部;以及
    N个上液管道,沿着从所述第一端部到所述第二端部的方向上依次设置;
    其中,各所述上液管道包括在所述上液管道的延伸方向上相对设置的第三端部和第四端部,所述第三端部与所述进液主管道相连通,所述第四端部被配置为向柱塞泵提供低压液体;
    所述低压进液管汇还包括至少一个辅助蓄能器,与所述进液主管道相连,且与所述N个上液管道中的至少一个对应设置,所述辅助蓄能器在所述进液主管道的轴线上的正投影与对应的所述上液管道在所述轴线上的正投影交叠,N为大于等于2的正整数。
  2. 根据权利要求1所述的低压进液管汇,其中,所述低压进液管汇包括N-1个所述辅助蓄能器,沿从所述第一端部到所述第二端部的方向依次设置;
    在从所述第一端部到所述第二端部的方向上,第一个所述上液管道与第一个所述辅助蓄能器对应设置,第i个所述上液管道与第i个所述辅助蓄能器对应设置,第N-1个所述上液管道与第N-1个所述辅助蓄能器对应设置,i为大于1且小于N-1的正整数。
  3. 根据权利要求2所述的低压进液管汇,还包括:
    末端辅助蓄能器,与所述进液主管道相连,且与第N个所述上液管道对应设置,所述末端辅助蓄能器在所述进液主管道的轴线上的正投影与第N个所述上液管道在所述轴线上的正投影交叠。
  4. 根据权利要求2所述的低压进液管汇,还包括:
    导流斜板,位于所述第二端部,并至少部分位于所述进液主管道之内,
    其中,所述导流斜板在所述进液主管道的轴线上的正投影与第N个所述上液管道在所述轴线上的正投影交叠,所述导流斜板与所述进液主管道的轴线之间的夹角小于90度,所述导流斜板靠近所述第一端部的部分与第N个所述上液管道的距离大于所述导流斜板靠近所述第二端部的部分与第N个所述上液管道的距离。
  5. 根据权利要求4所述的低压进液管汇,其中,所述导流斜板与所述进 液主管道的轴线之间的夹角的范围在30-60度之间。
  6. 根据权利要求4所述的低压进液管汇,还包括:
    斜堵头,位于所述第二端部,
    其中,所述导流斜板位于所述斜堵头上。
  7. 根据权利要求2-6中任一项所述的低压进液管汇,其中,N-1个所述辅助蓄能器的蓄能压力不同。
  8. 根据权利要求7所述的低压进液管汇,其中,在从所述第一端部到所述第二端部的方向上,N-1个所述辅助蓄能器的蓄能压力逐渐减小。
  9. 根据权利要求3所述的低压进液管汇,其中,在从所述第一端部到所述第二端部的方向上,N-1个所述辅助蓄能器的蓄能压力逐渐减小,所述末端辅助蓄能器的蓄能压力小于第N-1个所述辅助蓄能器的蓄能压力。
  10. 根据权利要求1-9中任一项所述的低压进液管汇,其中,所述辅助蓄能器包括:
    顶板,与所述进液主管道中的流体接触,并被配置为沿一运动方向移动;以及
    压力施加部,位于所述顶板远离所述进液主管道的一侧,且被配置为向所述顶板施加蓄能压力。
  11. 根据权利要求10所述的低压进液管汇,其中,所述顶板的所述运动方向与对应的所述上液管道的延伸方向之间的夹角小于180度。
  12. 根据权利要求11所述的低压进液管汇,其中,所述顶板的所述运动方向与对应的所述上液管道的延伸方向之间的夹角小于150度。
  13. 根据权利要求10所述的低压进液管汇,其中,所述辅助蓄能器的顶板靠近所述进液主管道的表面与进液主管道的轴线的最小距离大于所述进液主管道的半径。
  14. 根据权利要求10所述的低压进液管汇,其中,所述辅助蓄能器的顶板靠近所述进液主管道的表面为圆弧面,并且所述圆弧面的曲率半径与所述进液主管道的内壁的曲率半径大致相等。
  15. 根据权利要求10所述的低压进液管汇,其中,所述辅助蓄能器的顶板靠近所述进液主管道的表面包括平面。
  16. 根据权利要求1所述的低压进液管汇,其中,所述低压进液管汇包括1个所述辅助蓄能器,所述辅助蓄能器从所述第二端部伸入所述低压进液管汇 之中,并向所述第一端部延伸。
  17. 根据权利要求16所述的低压进液管汇,其中,在从所述第一端部到所述第二端部的方向上,第一个所述上液管道在所述进液主管道的轴线上的正投影与所述辅助蓄能器在所述轴线上的正投影交叠。
  18. 根据权利要求10所述的低压进液管汇,其中,所述辅助蓄能器还包括:
    固定管,包括中空腔体;
    管堵头;以及
    管接头,
    其中,所述固定管的一端与所述进液主管道固定连接,压力施加部位于所述中空腔体之中,所述管堵头位于所述压力施加部远离所述顶板的一侧,并通过所述管接头与所述固定管相连。
  19. 根据权利要求18所述的低压进液管汇,其中,所述压力施加部为气囊,所述辅助蓄能器还包括进气管道,所述管堵头包括通孔,所述进气管道通过所述通孔与所述气囊相连。
  20. 根据权利要求19所述的低压进液管汇,其中,所述辅助蓄能器还包括压力表,被配置为检测所述气囊中的气体压力。
  21. 根据权利要求1-20中任一项所述的低压进液管汇,还包括:
    供液管道,与所述进液主管道的所述第一端部相连通,并被配置为向所述进液主管道提供低压流体;
    主蓄能器,与所述供液管道相连。
  22. 根据权利要求21所述的低压进液管汇,还包括:
    吹扫管道,位于所述进液主管道的所述第二端部,且与所述进液主管道相连通。
  23. 根据权利要求21所述的低压进液管汇,其中,所述进液主管道的所述第一端部的管径大于所述进液主管道的所述第二端部的管径,在从所述第一端部到所述第二端部的方向上,N个所述上液管道的长度逐渐减小。
  24. 一种压裂设备,包括:
    柱塞泵,包括动力端和液力端;以及
    根据权利要求1-23中任一项所述的低压进液管汇,
    其中,所述低压进液管汇,与所述液力端相连并被配置为向所述柱塞泵提 供低压流体。
  25. 根据权利要求24所述的压裂设备,其中,所述液力端包括N个缸体,N个所述上液管道与N个所述缸体一一对应设置,各所述上液管道被配置为向对应的所述缸体提供所述低压流体。
  26. 根据权利要求25所述的压裂设备,其中,N的取值为5、7或9。
PCT/CN2021/120713 2021-01-21 2021-09-26 低压进液管汇和压裂设备 WO2022156262A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110080048.8 2021-01-21
CN202110080048 2021-01-21
CN202110859620.0 2021-07-28
CN202110859620.0A CN113404476A (zh) 2021-01-21 2021-07-28 低压进液管汇和压裂设备

Publications (1)

Publication Number Publication Date
WO2022156262A1 true WO2022156262A1 (zh) 2022-07-28

Family

ID=77687892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120713 WO2022156262A1 (zh) 2021-01-21 2021-09-26 低压进液管汇和压裂设备

Country Status (3)

Country Link
US (1) US20220228469A1 (zh)
CN (2) CN113404476A (zh)
WO (1) WO2022156262A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CA3092868A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CA3197583A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
WO2023155108A1 (zh) * 2022-02-17 2023-08-24 烟台杰瑞石油装备技术有限公司 辅助蓄能器及具有其的低压进液管汇
WO2024098206A1 (zh) * 2022-11-07 2024-05-16 烟台杰瑞石油服务集团股份有限公司 液力端更换装置及橇装设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204804795U (zh) * 2015-05-18 2015-11-25 中国石油大学(华东) 油井双作用节能注水增压设备
CN205048053U (zh) * 2015-10-20 2016-02-24 中石化石油工程机械有限公司第四机械厂 无泄漏易清理带缓冲作用的压裂泵吸入管汇
CN209100023U (zh) * 2018-10-09 2019-07-12 中国石油化工股份有限公司华东油气分公司采油气工程服务中心 页岩气压裂混配系统
CN111219326A (zh) * 2020-03-12 2020-06-02 美国杰瑞国际有限公司 一种低压吸入高压排出的管汇系统
WO2020122854A1 (en) * 2018-12-10 2020-06-18 Halliberton Energy Services, Inc. High-pressure manifold for well stimulation material delivery
CN211289140U (zh) * 2019-12-23 2020-08-18 中石化四机石油机械有限公司 一种高压进液歧管总成
CN211287581U (zh) * 2019-12-23 2020-08-18 中石化四机石油机械有限公司 一种钻井泥浆二级增压系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204804795U (zh) * 2015-05-18 2015-11-25 中国石油大学(华东) 油井双作用节能注水增压设备
CN205048053U (zh) * 2015-10-20 2016-02-24 中石化石油工程机械有限公司第四机械厂 无泄漏易清理带缓冲作用的压裂泵吸入管汇
CN209100023U (zh) * 2018-10-09 2019-07-12 中国石油化工股份有限公司华东油气分公司采油气工程服务中心 页岩气压裂混配系统
WO2020122854A1 (en) * 2018-12-10 2020-06-18 Halliberton Energy Services, Inc. High-pressure manifold for well stimulation material delivery
CN211289140U (zh) * 2019-12-23 2020-08-18 中石化四机石油机械有限公司 一种高压进液歧管总成
CN211287581U (zh) * 2019-12-23 2020-08-18 中石化四机石油机械有限公司 一种钻井泥浆二级增压系统
CN111219326A (zh) * 2020-03-12 2020-06-02 美国杰瑞国际有限公司 一种低压吸入高压排出的管汇系统

Also Published As

Publication number Publication date
CN215169933U (zh) 2021-12-14
US20220228469A1 (en) 2022-07-21
CN113404476A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2022156262A1 (zh) 低压进液管汇和压裂设备
WO2023015687A1 (zh) 压裂设备及其减振方法
US11939921B2 (en) Combustion-gas supply system and method thereof, device equipped with turbine engine, and fracturing system
US20210285311A1 (en) Manifold system of low pressure suction and high pressure discharge
CN111219326A (zh) 一种低压吸入高压排出的管汇系统
CN111503517A (zh) 一种压裂输送地面管汇系统
CN103080525B (zh) 燃气发动机
CN214330604U (zh) 新型电动压裂装置
CN215409135U (zh) 压裂设备
CN104005926A (zh) 用于低温泵系统的液压释放和转换逻辑
CN104500362B (zh) 一种气田井站增压混输的工艺及装置
CN102392808A (zh) 一种高压气泵
CN203161469U (zh) 砂浆泵的泵送系统及砂浆泵
CN202832456U (zh) 一种天然气井口减压增产装置
CN204781108U (zh) 一种配合水锤防护空气罐消能的保护管路
CN207728499U (zh) 一种对开式十缸往复泵
CN211692541U (zh) 液态二氧化碳输送专用流量泵站
CN113446209A (zh) 压裂设备及其减振方法
CN108035856A (zh) 一种对开式十缸往复泵
CN115574261A (zh) 二氧化碳增压输送装置及其在线监测系统、移动式机组
CN212898817U (zh) 一种波纹管缓冲器
CN204387674U (zh) 液氮泵车
CN208831390U (zh) 一种超高压液控注脂系统
CN102434421A (zh) 一种活塞式砂浆泵及其泵送系统
JP2003148688A (ja) 圧縮天然ガス供給装置と圧縮天然ガス供給システムと圧縮天然ガス供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920640

Country of ref document: EP

Kind code of ref document: A1