WO2022156030A1 - 一种便携式仪器化冲击压入仪 - Google Patents

一种便携式仪器化冲击压入仪 Download PDF

Info

Publication number
WO2022156030A1
WO2022156030A1 PCT/CN2021/077204 CN2021077204W WO2022156030A1 WO 2022156030 A1 WO2022156030 A1 WO 2022156030A1 CN 2021077204 W CN2021077204 W CN 2021077204W WO 2022156030 A1 WO2022156030 A1 WO 2022156030A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer sleeve
displacement
indenter
portable
unit
Prior art date
Application number
PCT/CN2021/077204
Other languages
English (en)
French (fr)
Inventor
侯晓东
黄照文
桑竹
饶德林
叶晋
莫家豪
郭水
张腾飞
张书彦
张鹏
Original Assignee
东莞材料基因高等理工研究院
广东书彦材料基因创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞材料基因高等理工研究院, 广东书彦材料基因创新科技有限公司 filed Critical 东莞材料基因高等理工研究院
Publication of WO2022156030A1 publication Critical patent/WO2022156030A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/307Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/48Investigating hardness or rebound hardness by performing impressions under impulsive load by indentors, e.g. falling ball

Definitions

  • the invention relates to the technical field of material mechanical property testing, in particular to a portable instrumented impact indenter.
  • the mechanical properties of materials have always been the focus of attention in the field of basic research, and are also an important basis for structural design and safety performance evaluation of various materials.
  • the traditional uniaxial tensile, compression and torsion related testing of mechanical properties is an important method to obtain the mechanical parameters of materials and study the mechanical characteristics of materials.
  • the above tests often require a certain size and shape to be cut from the test piece for measurement, which is destructive to the test piece, and has relatively strict requirements on the size, preparation, and shape of the sample, which is difficult to meet the engineering site measurement.
  • traditional mechanical property measurement methods have limitations in the characterization of mechanical properties of materials such as small scales and surface films.
  • Instrumented indentation measurement mainly obtains the load-indentation depth relationship curve by recording the load and indentation depth, and obtains parameters such as hardness and elastic modulus of the tested material by analyzing the curve. This method greatly reduces the error of the test by avoiding finding the indentation position and measuring the residual area of the indentation. Combined with the appropriate mechanical model and derivation, abundant mechanical parameter information can be obtained from the curve analysis. At present, the hardness, elastic modulus, stress-strain curve, fracture toughness, creep properties, fatigue properties, adhesion and other parameters of the material can be obtained from the indentation test. After more than 20 years of development, the instrumented indentation method has become an important means of testing the mechanical properties of surface engineering.
  • the measurement principle of the existing portable instrumented indenter belongs to the frame reference type indenter.
  • the working principle of this type of indenter testing machine is mostly driven by a motor.
  • the load is calculated by a series load sensor, and the action axis is measured by a displacement sensor. displacement.
  • This structural design determines that the measured displacement is the overall displacement of the measurement loop (including frame deformation, etc.), which often has a relatively large impact on the measurement of the indentation depth; in order to achieve a larger indentation load, a larger
  • the load applying device causes an increase in manufacturing cost and limits the development of further miniaturized portable devices.
  • the purpose of the present invention is to provide a portable instrumented impact indenter with small volume and high measurement accuracy.
  • a portable instrumented impact indenter comprising an instrument frame, an indenter unit, a firing unit and a displacement transfer unit;
  • the instrument frame includes an instrument chassis, a spirit level and an outer sleeve, and the spirit level and the outer sleeve are both mounted on the instrument chassis;
  • the indenter unit includes an impact head and a transmission rod arranged in the outer sleeve, the impact head is mounted on the bottom end of the transmission rod, the bottom end of the outer sleeve is provided with a first opening, the The instrument chassis is provided with a second opening, the outer sleeve is inserted into the second opening, and the impact head is adapted to pass through the first opening to contact the measured object;
  • the firing unit includes a firing seat, an adjusting spring, a spring block, a chute and a trigger
  • the chute is a through hole opened on both sides of the outer sleeve, and the through hole is along the length direction of the outer sleeve Extend and form the chute
  • the spring blocking, the adjusting spring and the firing seat are arranged in the outer sleeve, and are sequentially arranged downward along the axial direction of the outer sleeve, and the top end of the transmission rod is connected to the outer sleeve.
  • the bottom end of the firing seat is fixedly connected, the firing seat is slidably connected with the outer sleeve, and two ends of the firing seat are formed with sliding parts corresponding to the sliding grooves, and the sliding parts are slidably matched with the sliding grooves , the spring plug is fixedly connected with the outer sleeve, and one end of the trigger is adapted to protrude into the outer sleeve through the chute to limit the displacement of the transmission rod;
  • the displacement transfer unit is installed in the outer sleeve, and the displacement transfer unit includes a laser, a displacement unit, a moving grating, a fixed grating, a photoelectric receiver, a signal processing circuit and a displacement rod; the bottom end of the displacement rod passes through
  • the spring plug is fixedly connected to the firing seat, the displacement unit is installed on the top of the displacement rod, the laser and the photoelectric receiver are arranged on the inner wall of the outer sleeve and are arranged opposite to each other, and the moving grating and the fixed grating are parallel to each other and extend downward along the axial direction of the outer sleeve, the displacement unit is arranged between the laser and the photoelectric receiver, and the moving grating and the fixed grating are arranged at the Between the displacement unit and the photoelectric receiver, the moving grating is fixedly connected to the displacement unit, and the laser, the moving grating, the fixed grating and the photoelectric receiver are connected in communication with the signal processing circuit.
  • the instrument frame further includes a leveling screw mounted on the corner of the instrument chassis and a base mounted on one end of the leveling screw away from the instrument chassis.
  • the base is made of permanent magnets.
  • the indenter unit further includes a return spring washer and a return spring, the return spring washer is fixedly mounted on the transmission rod, the return spring is sleeved on the transmission rod, and One end of the return spring is fixedly connected with the return spring washer, and the other end is in contact with the bottom wall of the outer sleeve.
  • the pressure head unit further includes an inner sleeve disposed in the outer sleeve and a buffer block block disposed in the inner sleeve, and the bottom end of the transmission rod passes through the buffer block to block and block.
  • the return spring washer is installed, and the bottom end of the inner sleeve is provided with a third opening corresponding to the first opening.
  • a first buffer block and a second buffer block are installed on the inner wall of the inner sleeve, the first buffer block is suitable for abutting with the top end of the return spring washer, and the second buffer block is suitable for in contact with the bottom end of the return spring washer.
  • the spirit level is detachably connected to the instrument chassis.
  • a plurality of positioning holes are formed on the side of the displacement rod, and the trigger is suitable for inserting and matching with any of the positioning holes.
  • the application adopts the loading method of impact load instead of the original loading method of applying load through motor drive, so that the user does not need a large firing mechanism.
  • the large load applied to the measuring object is conducive to the miniaturization of the whole device; at the same time, the laser, moving grating, fixed grating and photoelectric receiver are used to measure the indentation of the impact head, with high measurement accuracy, avoiding the traditional indentation
  • the measurement accuracy is insufficient; in the measurement process, non-contact measurement of displacement is used, and the firing unit, indenter unit and displacement transfer unit are designed separately.
  • the sample contact greatly reduces the displacement measurement loop and reduces the requirement for system stiffness.
  • FIG. 1 is a schematic structural diagram of a portable instrumented impact indenter of the present invention
  • FIG. 2 is a cross-sectional view of a portable instrumented impact indenter of the present invention
  • a portable instrumented impact indenter invented by the present application includes an instrument frame 1 , an indenter unit 2 , a firing unit 3 and a displacement transfer unit 4 ,
  • the instrument frame 1 includes an instrument chassis 11, a spirit level and an outer sleeve 13.
  • the spirit level and the outer sleeve 13 are both mounted on the instrument chassis 11.
  • the spirit level and the instrument chassis 11 are detachably connected to facilitate users to maintain and maintain the spirit level. replace.
  • the indenter unit 2 includes an impact head 21 and a transmission rod 22 arranged in the outer sleeve 13.
  • the impact head 21 is installed at the bottom end of the transmission rod 22.
  • the bottom end of the outer sleeve 13 is provided with a first opening 131, and the instrument chassis 11 is provided with a The second opening 111, the outer sleeve 13 is inserted into the second opening 111, and the impact head 21 is adapted to pass through the first opening 131 to contact the object to be measured;
  • the firing unit 3 includes a firing seat 31, an adjusting spring 32, a spring plug 33, a chute 34 and a trigger 35.
  • the chute 34 is a through hole opened on both sides of the outer sleeve 13, and the through hole extends along the length of the outer sleeve 13.
  • a chute 34 is formed, the spring block 33, the adjusting spring 32 and the firing seat 31 are arranged in the outer sleeve 13, and are arranged downward in the axial direction of the outer sleeve 13, the top end of the transmission rod 22 and the bottom end of the firing seat 31 Fixed connection, the firing seat 31 is slidably connected with the outer sleeve 13, and the two ends of the firing seat 31 are formed with sliding parts corresponding to the sliding grooves 34, the sliding parts are slidingly matched with the sliding grooves 34, the spring plug 33 is fixedly connected with the outer sleeve 13, the trigger One end of 35 is adapted to extend into the outer sleeve 13 through the chute 34 to limit the displacement of the transmission rod 22;
  • the displacement transfer unit 4 is installed in the outer sleeve 13, and the displacement transfer unit 4 includes a laser 41, a displacement unit 42, a moving grating 43, a fixed grating 44, a photoelectric receiver 45, a signal processing circuit 46 and a displacement rod 47; the bottom of the displacement rod 47
  • the displacement unit 42 is installed on the top of the displacement rod 47
  • the laser 41 and the photoelectric receiver 45 are arranged on the inner wall of the outer sleeve 13 and are opposite to each other
  • the moving grating 43 and the fixed grating 44 are parallel to each other.
  • the displacement rod 47 is arranged between the laser 41 and the photoelectric receiver 45, the moving grating 43 and the fixed grating 44 are arranged between the displacement unit 42 and the photoelectric receiver 45, and the moving grating 43 It is fixedly connected with the displacement unit 42.
  • the laser light emitted by the laser 41 passes through the moving grating 43 and the fixed grating 44 in turn to form interference fringes, and is received by the photoelectric receiver 45.
  • the laser 41, the moving grating 43, the fixed grating 44 and the photoelectric The receiver 45 is connected in communication with the signal processing circuit 46 , so that the signal received by the photoelectric receiver 45 can be transmitted to the user's use terminal through the signal processing circuit 46 .
  • the instrument frame 1 further includes a horizontal adjustment screw 14 installed at the corner of the instrument chassis 11 and a base 15 installed at one end of the horizontal adjustment screw 14 away from the instrument chassis 11 .
  • the base 15 is made of permanent magnets.
  • a suitable position to place the portable instrumented impact indenter on the test piece for example, place it on the side wall or plane of the pipeline to be tested, and adjust the main body of the instrument to the level through the leveling screw 14 and the level, preferably , in this application, there are two levels, and the connection line between the two levels and the center of the outer sleeve 13 is 90 degrees, so as to be able to measure the levelness of the device body along the axis of the instrument chassis 11 and perpendicular to the axis, and the base 15 will Adsorbed on the side wall or plane of the pipeline to be measured, so that the indenter is firmly fixed on the surface of the pipeline to be measured. If the surface to be measured is a non-magnetic material, the base 15 can be glued and fixed on the on the side wall or flat surface of the measuring pipe.
  • the firing seat 31 will squeeze the adjustment spring 32 to compress the adjustment spring 32; insert the trigger 35, the displacement rod
  • the compression amount of the spring 32 can be adjusted through different adjustment of the positioning holes, so as to adjust the impact load. size; then, turn on the laser 41, the photoelectric receiver 45 and the signal processing circuit 46 to zero the displacement.
  • the adjusting spring 32 pushes the firing seat 31 to move downward along the axial direction of the outer sleeve 13, and simultaneously drives the transmission rod 22 and the impact head 21 along the outer sleeve 13 moves linearly downward in the axial direction, so that the impact head 21 can act the impact load on the surface of the test piece to be tested.
  • the displacement signal of the impact head 21 during the movement is collected by the signal processing circuit 46 in the displacement transfer unit 4.
  • the moving grating 43 moves with the displacement rod 47 and the transmission rod 22, and moves relative to the fixed grating 44.
  • the interference fringes generated after the laser passes through the fixed grating 44 and the moving grating 43 should also move accordingly, and the photoelectric receiver 45 will receive the interference fringe signal.
  • the interference fringes move relatively for one cycle, and the electrical signal generated by the photoelectric receiver 45 changes for one cycle.
  • the signal processor converts the electrical signal into a displacement signal and transmits it to the user's terminal. Carry out processing to obtain the real displacement and time signals, take the second derivative of the displacement to time, and obtain the acceleration and time signals.
  • the loading method of impact load is used to replace the original loading method of applying load through motor drive, so that the user does not need a large firing mechanism.
  • the measured object exerts a large load, which is beneficial to the miniaturization of the whole device; at the same time, the laser 41, the moving grating 43, the fixed grating 44 and the photoelectric receiver 45 are used to measure the pressing amount of the impact head 21, and the measurement accuracy is high.
  • the indenter unit 2 and the displacement transfer unit 4 are designed separately. During the process, only the punching head part is in contact with the sample to be tested, which greatly reduces the displacement measurement loop and reduces the requirements for system stiffness.
  • the indenter unit 2 of the present application further includes a return spring washer 23 and a return spring 24, the return spring washer 23 is fixedly installed on the transmission rod 22, and the return spring 24 sets It is arranged on the transmission rod 22 , and one end of the return spring 24 is fixedly connected with the return spring washer 23 , and the other end is in contact with the bottom wall of the outer sleeve 13 .
  • the return spring washer 23 will move downward together with the transmission rod 22, thereby squeezing the return spring 24 until the impact head 21 and the test piece are to be tested. At this time, the return spring 24 will return to its original state and push the return spring washer 23 to reset, so that the impact head 21 can return to its original position. , to provide a buffer for the return spring washer 23 to prevent it from directly hitting the bottom wall of the outer sleeve 13 .
  • the indenter unit 2 further includes an inner sleeve 25 disposed in the outer sleeve 13 and a buffer block plug 26 disposed in the inner sleeve 25.
  • the bottom end of the transmission rod 22 passes through the buffer block plug 26 and is installed with a return
  • the bottom end of the spring washer 23 and the inner sleeve 25 is provided with a third opening 251 corresponding to the first opening 131 .
  • a first buffer block 27 and a second buffer block 28 are installed on the inner wall of the inner sleeve 25 , the first buffer block 27 is suitable for abutting with the top of the return spring washer 23 , and the second buffer block 28 is suitable for contact with the return spring
  • the bottom end of the washer 23 abuts, and when the impact head 21 exerts an impact load, the second buffer block 28 can abut against the return spring washer 23 to prevent the return spring washer 23 from directly contacting the inner wall of the inner sleeve 25
  • the provided first buffer block 27 can abut against the return spring washer 23 when the return spring washer 23 is reset, so as to avoid damage due to collision with the buffer block block 26 .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种便携式仪器化冲击压入仪,包括仪器框架(1)、压头单元(2)、击发单元(3)以及位移转移单元(4),仪器框架(1)包括仪器底盘(11)、水平仪与外套筒(13),水平仪及外套筒(13)均安装于仪器底盘(11)上;压头单元(2)包括设置在外套筒(13)内的冲击头(21)与传动杆(22),冲击头(21)安装于传动杆(22)的底端,外套筒(13)底端开设有第一开口(131),仪器底盘(11)对应第一开口(131)开设有第二开口(111),冲击头(21)适于穿过第一开口(131)及第二开口(111)与被测物体接触,该便携式仪器化冲击压入仪体积小,且测量精度高。

Description

一种便携式仪器化冲击压入仪 技术领域
本发明涉及材料力学性能测试技术领域,尤其涉及一种便携式仪器化冲击压入仪。
背景技术
材料的力学性能参数一直是基础研究领域关注的热点,也是各种材料结构设计及安全性能评估的重要依据。传统的单轴拉伸、压缩和扭转等力学性能相关测试是获取材料力学参数、研究材料力学特征的重要方法。上述试验往往需要在试件上切取一定大小形状的试样进行测量,对试件有一定破坏性,且对试样的尺度、制备、形状等有比较苛刻的要求,难以满足工程现场测量。此外,传统的力学性能测量方法在小尺度、表面膜层等材料的力学性能表征方面具有局限性。随着表面改性材料、薄膜、涂层材料、复合材料、纳米材料等领域快速发展,压入技术作为一种微区、微损测试方式,其操作相对简便,对样品制备及试件对中要求相对较低,容易达成便携式的目的,从而具备解决上述三方面问题的潜力。压入法及其在表面材料科学与工程研究领域中的独特作用越来越多地受到人们的重视。
仪器化压入测量主要是通过记录载荷和压入深度,从而获得载荷-压入深度关系曲线,通过分析曲线获得被测材料的硬度和弹性模量等参数。该方法通过避免寻找压痕位置和测量压痕残余面积,大大减小测试的误差。结合合适的力学模型及推导,可以从该曲线分析得到丰富的力学参数信息。目前压入测试已经可以获得材料的硬度、弹性模量、应力-应变曲线、断裂韧性、蠕变特性、疲劳特性、粘附性等参数。经过20多年的发展,仪器化压入法成为表面工程力学 性能检测的重要手段。目前常用的压入仪器多为实验室设备,对工作环境和样品制备有着较为严格的要求,但在实际工程应用中,往往存在很多传统实验室测试受到局限的情况,例如输油管道等待测对象位于野外或难以拆卸,要求实现现场测量;或者实验室测试程序复杂,需要对材料力学参数进行现场的初步评估。
而现有的便携式仪器化压入仪测量原理属于机架参照型压入仪,该类型的压入仪试验机的工作原理多为马达驱动,由串联载荷传感器计算载荷,由位移传感器计量作用轴位移。这种结构设计决定了测量的位移是测量回路的总体位移(包括机架变形等),往往对压入深度的测量造成比较大的影响;为了实现较大的压入载荷,往往需要较大的载荷施加装置,引起制造成本增加并且限制了进一步的小型化便携式设备的发展。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种便携式仪器化冲击压入仪,体积小,且测量精度高。
本发明的目的采用如下技术方案实现:
一种便携式仪器化冲击压入仪,包括仪器框架、压头单元、击发单元以及位移转移单元;
所述仪器框架包括仪器底盘、水平仪与外套筒,所述水平仪及所述外套筒均安装于所述仪器底盘上;
所述压头单元包括设置在所述外套筒内的冲击头与传动杆,所述冲击头安装于所述传动杆的底端,所述外套筒底端开设有第一开口,所述仪器底盘开设有第二开口,所述外套筒插装于所述第二开口,所述冲击头适于穿过所述第一开口与被测物体接触;
所述击发单元包括击发座、调节弹簧、弹簧堵塞、滑槽与扳机,所述滑槽为开设于所述外套筒两侧的通孔,所述通孔沿所述外套筒的长度方向延伸并形成所述滑槽,所述弹簧堵塞、调节弹簧与击发座设置在所述外套筒内,并沿所述外套筒的轴向方向向下依次设置,所述传动杆的顶端与所述击发座底端固接,所述击发座与所述外套筒滑动连接,且所述击发座两端对应所述滑槽形成有滑动部,所述滑动部与所述滑槽滑动配合,所述弹簧堵塞与所述外套筒固接,所述扳机一端适于通过所述滑槽伸入所述外套筒内用于限制所述传动杆的位移;
所述位移转移单元安装于所述外套筒内,所述位移转移单元包括激光器、位移单元、动光栅、定光栅、光电接收器、信号处理电路与位移杆;所述位移杆底端穿过所述弹簧堵塞与所述击发座固接,所述位移单元安装于所述位移杆顶端,所述激光器及所述光电接收器设置在所述外套筒内壁上且相向设置,所述动光栅及所述定光栅相互平行并沿所述外套筒轴向向下延伸,所述位移单元设置在所述激光器与所述光电接收器之间,所述动光栅及所述定光栅设置在所述位移单元与所述光电接收器之间,所述动光栅与所述位移单元固接,所述激光器、动光栅、定光栅及光电接收器与所述信号处理电路通信连接。
进一步地,所述仪器框架还包括安装于所述仪器底盘角部的水平调节螺钉与安装于所述水平调节螺钉远离所述仪器底盘一端的底座。
进一步地,所述底座采用永磁体制成。
进一步地,所述水平仪设置有两个,且两所述水平仪与外套筒中心连线呈90度。
进一步地,所述压头单元还包括归位弹簧垫片与归位弹簧,所述归位弹簧垫片固定安装于所述传动杆上,所述归位弹簧套设于所述传动杆,且所述归位弹簧一端与所述归位弹簧垫片固接,另一端与所述外套筒的底壁抵接。
进一步地,所述压头单元还包括设置在所述外套筒内的内套筒以及设置在所述内套筒内的缓冲块堵塞,所述传动杆底端穿过所述缓冲块堵塞并安装有所述归位弹簧垫片,所述内套筒底端对应所述第一开口设置有第三开口。
进一步地,所述内套筒的内壁上安装有第一缓冲块与第二缓冲块,所述第一缓冲块适于与所述归位弹簧垫片顶端抵接,所述第二缓冲块适于与所述归位弹簧垫片底端抵接。
进一步地,所述水平仪与所述仪器底盘可拆卸连接。
进一步地,所述位移杆侧面开设有多个定位孔,所述扳机适于与任一所述定位孔插装配合。
相比现有技术,本发明的有益效果在于:
本申请通过设置的压头单元、击发机构和位移传感器单元配合,采用冲击载荷的加载方式替代了原有通过马达驱动来施加载荷的加载方式,使得使用者无需很大的击发机构即可为被测物体施加较大的载荷,有利于装置整体的小型化;同时,采用激光器、动光栅、定光栅及光电接收器配合,对冲击头压入量进行测量,测量精度高,避免了传统压入仪试验机测量位移时,测量精度不足的问题;在测量过程中采用非接触测量位移,击发单元及压头单元与位移转移单元采用分离式设计,在压入过程中仅仅冲压头部分和被测样品接触,大大减少位移测量回路,降低对系统刚度的要求。
附图说明
图1为本发明的一种便携式仪器化冲击压入仪的结构示意图;
图2为本发明的一种便携式仪器化冲击压入仪的剖视图;
图示:1、仪器框架;11、仪器底盘;111、第二开口;13、外套筒;131、第一开口;14、水平调节螺钉;15、底座;2、压头单元;21、冲击头;22、传 动杆;23、归位弹簧垫片;24、归位弹簧;25、内套筒;251、第三开口;26、缓冲块堵塞;27、第一缓冲块;28、第二缓冲块;3、击发单元;31、击发座;32、调节弹簧;33、弹簧堵塞;34、滑槽;35、扳机;4、位移转移单元;41、激光器;42、位移单元;43、动光栅;44、定光栅;45、光电接收器;46、信号处理电路;47、位移杆。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
如图1与图2所示,本申请发明的一种便携式仪器化冲击压入仪,包括仪器框架1、压头单元2、击发单元3以及位移转移单元4,
仪器框架1包括仪器底盘11、水平仪与外套筒13,水平仪及外套筒13均安装于仪器底盘11上,本申请中水平仪与仪器底盘11可拆卸连接,以方便使用者对水平仪进行维修和更换。
压头单元2包括设置在外套筒13内的冲击头21与传动杆22,冲击头21安装于传动杆22的底端,外套筒13底端开设有第一开口131,仪器底盘11开设有第二开口111,外套筒13插装于第二开口111,冲击头21适于穿过第一开口131与被测物体接触;
击发单元3包括击发座31、调节弹簧32、弹簧堵塞33、滑槽34与扳机35,滑槽34为开设于外套筒13两侧的通孔,通孔沿外套筒13的长度方向延伸并形成滑槽34,弹簧堵塞33、调节弹簧32与击发座31设置在外套筒13内,并沿外套筒13的轴向方向向下依次设置,传动杆22的顶端与击发座31底端固接,击发座31与外套筒13滑动连接,且击发座31两端对应滑槽34形成有滑动部, 滑动部与滑槽34滑动配合,弹簧堵塞33与外套筒13固接,扳机35一端适于通过滑槽34伸入外套筒13内用于限制传动杆22的位移;
位移转移单元4安装于外套筒13内,位移转移单元4包括激光器41、位移单元42、动光栅43、定光栅44、光电接收器45、信号处理电路46与位移杆47;位移杆47底端穿过弹簧堵塞33与击发座31固接,位移单元42安装于位移杆47顶端,激光器41及光电接收器45设置在外套筒13内壁上且相向设置,动光栅43及定光栅44相互平行并沿外套筒13轴向向下延伸,位移杆47设置在激光器41与光电接收器45之间,动光栅43及定光栅44设置在位移单元42与光电接收器45之间,动光栅43与位移单元42固接,使用时,激光器41射出的激光依次穿过动光栅43及定光栅44后形成干涉条纹,并被光电接收器45接收,激光器41、动光栅43、定光栅44及光电接收器45与信号处理电路46通信连接,以使得光电接收器45接收的信号能够通过信号处理电路46传输至使用者的使用终端。
仪器框架1还包括安装于仪器底盘11角部的水平调节螺钉14与安装于水平调节螺钉14远离仪器底盘11一端的底座15,底座15采用永磁体制成。
使用时,在试件上选择合适的位置安放便携式仪器化冲击压入仪,例如放置在待测管道的侧壁或平面之上,通过水平调节螺钉14与水平仪将仪器主体调至水平,优选地,本申请中水平仪设置有两个,且两水平仪与外套筒13中心连线呈90度,以能够分别测量装置本体沿着仪器底盘11轴向以及垂直于轴向的水平度,底座15将吸附在待测管道的侧壁或平面上,使压入仪牢固地固定在上述待测管道表面之上,若待测表面为非磁性材料,可使用胶水等方式将底座15粘接固定在待测管道的侧壁或平面上。
然后,松开外套筒13上的扳机35,将击发座31提升至预设最高位置,此 时,击发座31将挤压调节弹簧32,以使得调节弹簧32压缩;插入扳机35,位移杆47侧面开设有多个定位孔,扳机35能够与任一定位孔插装配合,以对传动杆22进行紧固,同时能够通过定位孔的不同调节调节弹簧32压缩量,从而调节施加冲击载荷的大小;然后,打开激光器41、光电接收器45及信号处理电路46,对位移进行调零。
调零后,将扳机35拔出以松开传动杆22,调节弹簧32推动击发座31沿外套筒13轴向方向向下运动,并同步带动传动杆22及冲击头21沿着外套筒13轴向方向向下作直线运动,从而使得冲击头21能够将冲击载荷作用于试件待测表面。
冲击头21在运动过程中的位移信号由位移转移单元4中信号处理电路46采集,具体地,动光栅43随着位移杆47与传动杆22移动,并与定光栅44产生相对移动,此时,激光穿过定光栅44以及动光栅43后产生的干涉条纹也应相应的移动,光电接收器45将接受该干涉条纹信号,具体地,当动光栅43相对定光栅44移动一个栅距时,干涉条纹相对移动一个周期,光电接收器45产生的电信号变化一个周期,信号处理器将电信号转换为位移信号并传输至使用者的使用终端,使用者对采集到的位移和时间的原始信号进行处理,获得真实的位移和时间信号,将位移对时间求二次导数,获得加速度和时间信号,由于冲击头21、传动杆22、击发座31、位移杆47及位移单元42的质量已知,结合加速度信号计算可获得运动过程中的载荷信号,通过计算得到冲击加载过程中的真实位移和载荷信号,将真实位移和载荷带入接触力学模型进行数据处理,得到并输出材料的如硬度、模量等力学参数结果。
本申请通过设置的压头单元2、击发机构和位移传感器单元配合,采用冲击载荷的加载方式替代了原有通过马达驱动来施加载荷的加载方式,使得使用者 无需很大的击发机构即可为被测物体施加较大的载荷,有利于装置整体的小型化;同时,采用激光器41、动光栅43、定光栅44及光电接收器45配合,对冲击头21压入量进行测量,测量精度高,避免了传统压入仪试验机测量位移时,测量精度不足的问题;在测量过程中采用非接触测量位移,击发单元3及压头单元2与位移转移单元4采用分离式设计,在压入过程中仅仅冲压头部分和被测样品接触,大大减少位移测量回路,降低对系统刚度的要求。
具体地,为方便使用后冲压头复位,本申请压头单元2还包括归位弹簧垫片23与归位弹簧24,归位弹簧垫片23固定安装于传动杆22上,归位弹簧24套设于传动杆22,且归位弹簧24一端与归位弹簧垫片23固接,另一端与外套筒13的底壁抵接。
在冲击头21将冲击载荷作用于试件待测表面的过程中,归位弹簧垫片23将随传动杆22一同向下运动,从而挤压归位弹簧24,直至冲击头21与试件待测表面接触,此时,归位弹簧24将恢复原状并推动归位弹簧垫片23复位,以使得冲击头21恢复原位置,同时,设置的归位弹簧24能够在冲击头21施加冲击载荷时,为归位弹簧垫片23提供缓冲,避免其直接撞击外套筒13底壁。
优选地,压头单元2还包括设置在外套筒13内的内套筒25以及设置在内套筒25内的缓冲块堵塞26,传动杆22底端穿过缓冲块堵塞26并安装有归位弹簧垫片23,内套筒25底端对应第一开口131设置有第三开口251。
内套筒25的内壁上安装有第一缓冲块27与第二缓冲块28,第一缓冲块27适于与归位弹簧垫片23顶端抵接,第二缓冲块28适于与归位弹簧垫片23底端抵接,在冲击头21施加冲击载荷时,第二缓冲块28能够与归位弹簧垫片23抵接,以避免归位弹簧垫片23直接与内套筒25的内壁发生撞击,而设置的第一缓冲块27能够在归位弹簧垫片23复位时与归位弹簧垫片23抵接,避免其与缓 冲块堵塞26发生撞击导致损坏。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (9)

  1. 一种便携式仪器化冲击压入仪,其特征在于:包括仪器框架、压头单元、击发单元以及位移转移单元,
    所述仪器框架包括仪器底盘、水平仪与外套筒,所述水平仪及所述外套筒均安装于所述仪器底盘上;
    所述压头单元包括设置在所述外套筒内的冲击头与传动杆,所述冲击头安装于所述传动杆的底端,所述外套筒底端开设有第一开口,所述仪器底盘开设有第二开口,所述外套筒插装于所述第二开口,所述冲击头适于穿过所述第一开口与被测物体接触;
    所述击发单元包括击发座、调节弹簧、弹簧堵塞、滑槽与扳机,所述滑槽为开设于所述外套筒两侧的通孔,所述通孔沿所述外套筒的长度方向延伸并形成所述滑槽,所述弹簧堵塞、调节弹簧与击发座设置在所述外套筒内,并沿所述外套筒的轴向方向向下依次设置,所述传动杆的顶端与所述击发座底端固接,所述击发座与所述外套筒滑动连接,且所述击发座两端对应所述滑槽形成有滑动部,所述滑动部与所述滑槽滑动配合,所述弹簧堵塞与所述外套筒固接,所述扳机一端适于通过所述滑槽伸入所述外套筒内用于限制所述传动杆位移;
    所述位移转移单元安装于所述外套筒内,所述位移转移单元包括激光器、位移单元、动光栅、定光栅、光电接收器、信号处理电路与位移杆;所述位移杆底端穿过所述弹簧堵塞与所述击发座固接,所述位移单元安装于所述位移杆顶端,所述激光器及所述光电接收器设置在所述外套筒内壁上且相向设置,所述动光栅及所述定光栅相互平行并沿所述外套筒轴向向下延伸,所述位移单元设置在所述激光器与所述光电接收器之间,所述动光栅及所述定光栅设置在所述位移单元与所述光电接收器之间,所述动光栅与所述位移单元固接,所述激光器、动光栅、定光栅及光电接收器与所述信号处理电路通信连接。
  2. 根据权利要求1所述的便携式仪器化冲击压入仪,其特征在于:所述仪器框架还包括安装于所述仪器底盘角部的水平调节螺钉与安装于所述水平调节螺钉远离所述仪器底盘一端的底座。
  3. 根据权利要求2所述的便携式仪器化冲击压入仪,其特征在于:所述底座采用永磁体制成。
  4. 根据权利要求1所述的便携式仪器化冲击压入仪,其特征在于:所述水平仪设置有两个,且两所述水平仪与外套筒中心连线呈90度。
  5. 根据权利要求1所述的便携式仪器化冲击压入仪,其特征在于:所述压头单元还包括归位弹簧垫片与归位弹簧,所述归位弹簧垫片固定安装于所述传动杆上,所述归位弹簧套设于所述传动杆,且所述归位弹簧一端与所述归位弹簧垫片固接,另一端与所述外套筒的底壁抵接。
  6. 根据权利要求5所述的便携式仪器化冲击压入仪,其特征在于:所述压头单元还包括设置在所述外套筒内的内套筒以及设置在所述内套筒内的缓冲块堵塞,所述传动杆底端穿过所述缓冲块堵塞并安装有所述归位弹簧垫片,所述内套筒底端对应所述第一开口设置有第三开口。
  7. 根据权利要求6所述的便携式仪器化冲击压入仪,其特征在于:所述内套筒的内壁上安装有第一缓冲块与第二缓冲块,所述第一缓冲块适于与所述归位弹簧垫片顶端抵接,所述第二缓冲块适于与所述归位弹簧垫片底端抵接。
  8. 根据权利要求1所述的便携式仪器化冲击压入仪,其特征在于:所述水平仪与所述仪器底盘可拆卸连接。
  9. 根据权利要求1所述的便携式仪器化冲击压入仪,其特征在于:所述位移杆侧面开设有多个定位孔,所述扳机适于与任一所述定位孔插装配合。
PCT/CN2021/077204 2021-01-20 2021-02-22 一种便携式仪器化冲击压入仪 WO2022156030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110076931.XA CN112730034A (zh) 2021-01-20 2021-01-20 一种便携式仪器化冲击压入仪
CN202110076931.X 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022156030A1 true WO2022156030A1 (zh) 2022-07-28

Family

ID=75593697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077204 WO2022156030A1 (zh) 2021-01-20 2021-02-22 一种便携式仪器化冲击压入仪

Country Status (2)

Country Link
CN (1) CN112730034A (zh)
WO (1) WO2022156030A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661295A (en) * 1994-07-28 1997-08-26 Matsushita Electric Industrial Co., Ltd. Optical encoder with dual diffraction gratings
CN2469434Y (zh) * 2001-04-04 2002-01-02 中国科学院金属研究所 冲击压痕法测量残余应力压痕制造装置
CN1378075A (zh) * 2001-04-04 2002-11-06 中国科学院金属研究所 定点压痕制造装置
CN101000252A (zh) * 2006-12-01 2007-07-18 华中科技大学 一种双光栅位移传感器
CN200986441Y (zh) * 2006-12-01 2007-12-05 华中科技大学 一种双光栅位移传感器
WO2011064517A1 (fr) * 2009-11-30 2011-06-03 Universite De Rennes 1 Dispositif d'indentation continue ou instrumentee
CN110208121A (zh) * 2019-07-15 2019-09-06 沈阳天星试验仪器有限公司 一种通过冲击锤施加试验力的剪销式锤击布氏硬度计
CN112129659A (zh) * 2020-09-24 2020-12-25 华东理工大学 一种便携式动态压痕测试装置及其测试方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163656A1 (de) * 2001-12-21 2003-07-03 Agfa Ndt Gmbh Härtemessgerät mit einem Gehäuse und einem Eindringkörper, insbesondere Handgerät
CN210803166U (zh) * 2019-10-18 2020-06-19 上海天祥质量技术服务有限公司 一种鞋底用弹性材料减震性能测试装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661295A (en) * 1994-07-28 1997-08-26 Matsushita Electric Industrial Co., Ltd. Optical encoder with dual diffraction gratings
CN2469434Y (zh) * 2001-04-04 2002-01-02 中国科学院金属研究所 冲击压痕法测量残余应力压痕制造装置
CN1378075A (zh) * 2001-04-04 2002-11-06 中国科学院金属研究所 定点压痕制造装置
CN101000252A (zh) * 2006-12-01 2007-07-18 华中科技大学 一种双光栅位移传感器
CN200986441Y (zh) * 2006-12-01 2007-12-05 华中科技大学 一种双光栅位移传感器
WO2011064517A1 (fr) * 2009-11-30 2011-06-03 Universite De Rennes 1 Dispositif d'indentation continue ou instrumentee
CN110208121A (zh) * 2019-07-15 2019-09-06 沈阳天星试验仪器有限公司 一种通过冲击锤施加试验力的剪销式锤击布氏硬度计
CN112129659A (zh) * 2020-09-24 2020-12-25 华东理工大学 一种便携式动态压痕测试装置及其测试方法

Also Published As

Publication number Publication date
CN112730034A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
RU2621935C2 (ru) Индентационное устройство, автоматизированная измерительная система и способ определения механических свойств материалов индентационным методом
CN102252924A (zh) 基于双位移检测的微纳米尺度原位压痕测试装置
CN204027952U (zh) 砂浆贯入仪检定装置
US7066013B2 (en) Hardness tester
KR102210865B1 (ko) 비파괴 강도 현장측정 장치 및 방법
WO2022156030A1 (zh) 一种便携式仪器化冲击压入仪
CN114659876A (zh) 混凝土抗压强度检测装置
CN109870258A (zh) 一种平面任意残余应力的仪器化球形压入检测方法
CN109490417A (zh) 一种金属材料平面各项异性超声检测方法
CN202057559U (zh) 基于双位移检测的微纳米尺度原位压痕测试装置
CN109883867B (zh) 基于数字散斑的变温冲击压痕测试装置
KR200201924Y1 (ko) 타격기록기가구비된슈미트햄머비파괴시험기
CN116412981A (zh) 弓网接触力动态校准装置
CN113834750A (zh) 一种混凝土回弹仪校准装置及混凝土回弹仪校准方法
CN212134304U (zh) 一种轻骨料混凝土强度无损检测器
CN214097013U (zh) 一种建筑施工用墙体硬度检测装置
CN206523386U (zh) 一种测砖回弹仪
CN216560126U (zh) 一种混凝土回弹仪校准装置
Wang et al. Dynamic testing and analysis of Poisson’s ratio constants of timber
KR20020087900A (ko) 콘크리트 압축강도의 비파괴 검사를 위한 선 타격반발도시험방법
CN211904008U (zh) 一种电梯层门间隙检验钳
CN219224464U (zh) 一种回弹仪效验装置
CN112881156B (zh) 一种轻骨料混凝土强度无损检测器
KR100387978B1 (ko) 고무재료 압축시험 장치
CN218444430U (zh) 一种活门测试工装

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920142

Country of ref document: EP

Kind code of ref document: A1