WO2022155917A1 - 发射模组、取像模组及电子设备 - Google Patents

发射模组、取像模组及电子设备 Download PDF

Info

Publication number
WO2022155917A1
WO2022155917A1 PCT/CN2021/073384 CN2021073384W WO2022155917A1 WO 2022155917 A1 WO2022155917 A1 WO 2022155917A1 CN 2021073384 W CN2021073384 W CN 2021073384W WO 2022155917 A1 WO2022155917 A1 WO 2022155917A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
lens group
light source
module
Prior art date
Application number
PCT/CN2021/073384
Other languages
English (en)
French (fr)
Inventor
严康伟
Original Assignee
欧菲光集团股份有限公司
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲光电技术有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/073384 priority Critical patent/WO2022155917A1/zh
Publication of WO2022155917A1 publication Critical patent/WO2022155917A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for

Definitions

  • the present application relates to the technical field of optical imaging, and in particular, to an emission module, an imaging module and an electronic device.
  • the existing TOF (Time of Flight) module emits a light beam through the transmitting module to irradiate the object, and the light beam is reflected by the surface of the object to the receiving module for imaging or ranging.
  • An embodiment of the present application provides a launch module, including:
  • a lens group with optical power arranged in the path of the array beam emitted by the light source
  • a diffusing sheet arranged on the side of the lens group away from the light source, is used for diffusing the array light beams emitted by the light source emitted by the lens group, and the lens group can be selectively moved closer to or away from the The direction of the diffusing sheet is moved, so as to change the area of the diffusing sheet that is irradiated by the array light beams emitted by the light source from the lens group.
  • the above-mentioned emission module can be selectively moved toward or away from the diffuser through the lens group, so as to change the array beam emitted by the light source emitted by the lens group to irradiate the area of the diffuser, and the beams of different areas pass through the diffuser.
  • the light beam emitted by the emission module can expand or reduce the area when it irradiates the target object.
  • the light beam can cover the surface of the target object in a larger area and obtain visual
  • the larger area of the target object within the field angle is conducive to obtaining the details of the edge of the target object; when the area irradiated to the target object is reduced, the energy of the local beam is enhanced, which is conducive to obtaining clearer information of the target object.
  • An embodiment of the present application also provides an imaging module, including:
  • a launch module as aforesaid.
  • the receiving module is arranged on one side of the transmitting module and is used for receiving the incident light beam.
  • the above-mentioned imaging module can be selectively moved toward or away from the diffuser through the lens group, so as to change the array beam emitted by the light source emitted by the lens group to irradiate the area of the diffuser, and the beams of different areas are diffused.
  • the diffusion effect of the film is emitted, thereby expanding or reducing the area of the light beam emitted by the imaging module when it irradiates the target object.
  • the beam can cover the surface of the target object in a larger area.
  • Obtaining a larger area of the target object within the field of view is beneficial to the imaging module to obtain the details of the edge of the target object; when the area irradiated to the target object is reduced, the energy of the local beam is enhanced, which is beneficial to the imaging module Get clearer information about the target object.
  • An embodiment of the present application also provides an electronic device, including the image capturing module as described above.
  • the above-mentioned electronic equipment can be selectively moved toward or away from the diffuser through the lens group, so as to change the array beam emitted by the light source emitted by the lens group to irradiate the area of the diffuser, and the beams of different areas pass through the diffuser. It is emitted by diffusion, thereby expanding or reducing the area of the light beam emitted by the electronic device when it irradiates the target object. When the area irradiated to the target object is enlarged, the light beam can cover the surface of the target object with a larger area and obtain the angle of view.
  • the larger area of the target object inside is conducive to the electronic device to obtain the details of the edge of the target object; when the area irradiated to the target object is reduced, the energy of the local beam is enhanced, which is conducive to the electronic device to obtain clearer information of the target object.
  • FIG. 1 is a schematic structural diagram of an imaging module provided by a first embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an imaging module provided by a second embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an imaging module provided by a third embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an imaging module provided by a fourth embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an imaging module provided by a fifth embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by a sixth embodiment of the present application.
  • Image acquisition module 100 100, 200, 300, 400, 500
  • the second power unit 414 The second power unit 414
  • the third power unit 515 The third power unit 515
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first embodiment of the present application provides an imaging module 100 , and the imaging module 100 at least includes a transmitting module 10 and a receiving module 20 .
  • the emission module 10 at least includes a light source 11, a lens group 12 and a diffuser 16, and the lens group 12 has optical power.
  • the light source 11 is used for emitting array beams; the lens group 12 with optical power is arranged on the path of the array beams emitted by the light source 11 ; the diffuser 16 is arranged on the side of the lens group 12 away from the light source 11 for diffusing the output through the lens group 12
  • the lens group 12 can be selectively moved toward or away from the diffuser 16, so as to change the area where the array beam emitted by the light source 11 emitted by the lens group 12 is irradiated to the diffuser 16. .
  • the above-mentioned emission module 10 can be selectively moved toward or away from the diffuser 16 through the lens group 12, so as to change the area of the diffuser 16 where the array beam emitted by the light source 11 emitted by the lens group 12 is irradiated.
  • the light beam in the area is emitted by the diffusing effect of the diffusing sheet 16, thereby expanding or reducing the area of the light beam emitted by the emission module 10 when it irradiates the target object 70.
  • the light beam can be larger.
  • Covering the surface of the target object 70 area, obtaining a larger area of the target object 70 within the field of view is beneficial to the image capturing module 100 to obtain the details of the edge of the target object 70; when the area irradiated to the target object 70 is reduced, The energy of the local beam is enhanced, which is beneficial for the imaging module 100 to obtain clearer information of the target object 70 .
  • the optional movement of the lens group 12 toward or away from the diffuser 16 means that the lens group 12 moves as a whole or partially in the emission module 10 .
  • All or part of the position of the light source 11 in the emitting module 10 can be changed to change the area of the diffuser 16 irradiated by the array beam emitted by the light source 11 emitted by the lens group 12 .
  • the area refers to the size of the area of the light beam irradiated on the diffusion sheet 16 by the light beam.
  • the diffusing sheet 16 is made of a material with high light transmittance.
  • the diffusing sheet 16 mainly includes a base material and a plurality of scattering particles arranged in the base material.
  • the array beam emitted by the light source 10 is emitted through the lens group 12, and the angle and range of the emitted beam are also fixed accordingly.
  • the array beam emitted by the light source 10 is emitted through the lens.
  • the diffuser emits. The farther the distance between the lens group 12 and the diffuser 16 is, the larger the area of the emitted light beam irradiating the diffuser 16; The area of the sheet 16 is smaller.
  • the light source 10 emits parallel array beams toward the target object 70 , and the array beam emitted by the light source 10 is irradiated to the target object 70 through the lens group 12 , and reflected by the target object 70 to be incident on the receiving module 20 .
  • the emitting module 10 is moved by the lens group 12 to change the area of the target object 70 when the light beam emitted by the emitting module 10 is irradiated.
  • the light source 10 is a vertical cavity surface emitting laser (VCSEL), and the light beam emitted by the light source 10 is infrared light.
  • VCSELs are more suitable for use in emission modules due to their advantages of small size, small divergence angle, and stability.
  • a VCSEL array is selected as the light source 10, that is, the VCSEL array light source includes N*N laser emission Each laser transmitter can emit a beam, N is greater than 1, and N is a natural number.
  • the light source 10 may also be an edge-emitting laser (EEL), or an array light source composed of multiple light-emitting elements.
  • EEL edge-emitting laser
  • the light beam emitted by the light source 10 may also be visible light, ultraviolet light, or the like.
  • the focal length of the lens group 12 can be selectively changed, and the lens group 12 includes a liquid lens 122 .
  • the lens group 12 includes a liquid lens 122 .
  • the liquid lens 122 After the liquid lens 122 is powered on, its own focal length changes, and the focus of the array beam emitted by the light source 11 after passing through the liquid lens 122 also changes.
  • the area of the light beam irradiated to the diffusion sheet 16 through the liquid lens 122 is also different, and the area of the surface finally irradiated to the target object 70 is also different.
  • zooming means that after the array beam emitted by the light source 11 of the transmitting module 10 passes through the lens group 12, the focus of the convergence of the array beam changes. As a result, the focus of the emission module 10 changes.
  • the focal point of the lens group 12 changes, the focus of the array beam emitted by the light source 11 after passing through the lens group 12 changes, so that the area of the light beam irradiated on the diffuser 16 changes accordingly.
  • the zooming principle of the liquid lens 122 includes an insulating liquid and a conductive liquid, and the junction of the insulating liquid and the conductive liquid forms a contact surface.
  • the wettability of the conductive liquid and the contact surface can be changed, so that the contact angle of the contact surface changes, that is, the curvature radius of the contact surface changes, thereby changing the optical path and realizing zooming.
  • liquid lens 122 in this embodiment is arranged on the path of the array beam emitted by the light source 11 through the lens barrel 18 and other electrical connecting elements (not shown), and one end of the lens barrel 18 is connected to the light source 11, and the mirror The other end of the barrel 18 extends away from the light source 11 and is connected to the diffusion sheet 16 .
  • the emission module 10 further includes a first lens 17 .
  • the first lens 17 is disposed on the side of the diffusing sheet 16 away from the liquid lens 122 for converging the array beams emitted by the light source 11 diffused by the diffusing sheet 16 .
  • the first lens 17 has the protection light source 11 , the lens group 12 and the diffusing sheet 16 Functions that are not damaged and polluted.
  • the array beam emitted by the light source 11 is irradiated to the diffuser 16 through the liquid lens 122 , and the array beam emitted by the light source 11 is diffused by the diffusion effect of the diffuser 16 , and the array beam emitted by the diffused light source 11 is irradiated to the first lens 17 , Through the converging action of the first lens 17 , the array light beams emitted by the light source diffused by the diffusing sheet 16 are condensed and irradiated to the target object 70 .
  • the receiving module 20 is disposed on one side of the transmitting module 10 for receiving the incident light beam.
  • the receiving module 20 and the transmitting module 10 are arranged approximately in parallel and are located in the same plane, so that the receiving module 20 can receive the incident light beam conveniently.
  • the incident light beam refers to the array light beam reflected by the target object 70 when the array light beam emitted by the light source 11 is irradiated to the target object 70 .
  • the above-mentioned image capturing module 100 can be selectively moved toward or away from the diffuser 16 through the lens group 12 to change the area of the diffuser 16 irradiated by the array beam emitted by the light source 11 emitted by the lens group 12 .
  • the light beam in the area is emitted by the diffusing effect of the diffusing sheet 16, thereby expanding or reducing the area of the light beam emitted by the imaging module 100 when it irradiates the target object 70.
  • the light beam can Covering the surface of the target object 70 with a larger area, and obtaining a larger area of the target object 70 within the field of view, it is beneficial for the imaging module 100 to obtain the details of the edge of the target object 70; when the area irradiated to the target object 70 is reduced , the energy of the local beam is enhanced, which is beneficial for the imaging module 100 to obtain clearer information of the target object 70 .
  • the receiving module 20 includes a photosensitive element 22 and a second lens 24 .
  • the second lens 24 is used for condensing the incident light beam, and at the same time, the second lens 24 has the function of protecting the photosensitive element 22 from being damaged and polluted;
  • the incident light beam that is, the photosensitive element 22 receives the light information of the incident light beam, and processes the light information accordingly.
  • the imaging module 100 further includes a main board 30 , a cover sheet 40 and a light shielding member 50 .
  • the main board 30 is electrically connected to the transmitting module 10 and the receiving module 20, that is, the main board 30 is electrically connected to the light source 11 of the transmitting module 10 and the photosensitive element 22 of the receiving module 20.
  • the light source 11 emits an array of fixed wavelength bands.
  • the light beam at the same time, the photosensitive element 22 is turned on to receive and process the light information of the received incident light beam; the cover sheet 40 is arranged opposite to the main board 30, and the transmitting module 10 and the receiving module 20 are arranged between the cover sheet 40 and the main board 30, The cover sheet 40 is used to protect the transmitting module 10 and the receiving module 20 from being damaged and polluted.
  • the cover sheet 40 can be made of a sapphire filter, which has the characteristics of high temperature resistance and not easy to break;
  • the light shielding member 50 is arranged on the transmitting module 10 and the receiving module 20 are used to connect the transmitting module 10 and the receiving module 20.
  • the shading member 50 can prevent interference between the light beam emitted by the transmitting module 10 and the light beam received by the receiving module 20, shading the light.
  • the member 50 may use light-shielding glue.
  • the cover sheet 40 can also be a filter protection element made of other materials, and the light shielding member 50 can also be other light shielding elements or light absorbing elements.
  • a certain voltage is applied to the liquid lens 122 in the imaging module 100, and the curvature of the contact surface in the liquid lens 122 changes.
  • the side of the liquid lens 122 close to the light source 11 is approximately Convex, the side of the liquid lens 122 facing away from the light source 11 is substantially convex.
  • the array light beams emitted by the light source 11 enter the liquid lens 122 in parallel and are redirected in the liquid lens 122. The array beams are changed and then irradiated to the diffuser 16.
  • the photosensitive element 22 in the receiving module 20 can obtain light information with higher energy, so that the distance from the imaging module 100 to the target object 70 can be accurately obtained, and at the same time, the target object 70 can be obtained. clearer information.
  • the lens set 12 may further include a plurality of liquid lenses 122, and the adjacent liquid lenses 122 are arranged at intervals, and different voltages are applied to different liquid lenses 122, so that each liquid lens 122 is formed.
  • 122 has different focal lengths to adapt to different needs of zoom, and has the function of adjusting the path of the array beam.
  • the image capturing module 200 provided by the second embodiment of the present application has substantially the same structure as the image capturing module 100 provided by the first embodiment, the difference is that in this embodiment, the lens group 212 includes a A liquid lens 2122 applies a certain voltage to the liquid lens 2122 in the imaging module 200, and the curvature of the contact surface in the liquid lens 2122 changes.
  • One side of the light source 211 is substantially concave.
  • the array light beams emitted by the light source 211 enter the liquid lens 2122 in parallel and are redirected in the liquid lens 2122. The path of the array beams is changed and then irradiated to the diffuser 216.
  • the area where the array beam emitted by the light source 211 irradiates the diffuser 216 is also enlarged accordingly, and the area where the array beam emitted by the light source 211 after being diffused by the diffuser 216 irradiates the first mirror 217 is also enlarged accordingly.
  • the area of the array beam emitted by the converged light source 211 irradiating the target object 270 is also enlarged accordingly, so that the area of the beam irradiated by the emission module 210 to the target object 270 is enlarged, and the beam can cover the surface of the target object 270 in a larger area.
  • the light beam reflected by the target object 270 is incident on the receiving module 220, and the photosensitive element 222 in the receiving module 220 can obtain information on the target object 270 with a larger area within the field of view, At the same time, the details of the edge of the target object 270 can be obtained.
  • the image capturing module 300 provided by the third embodiment of the present application has substantially the same structure as the image capturing module 100 provided by the first embodiment, the difference is that in this embodiment, the lens group 312 includes a A liquid lens 3122 is provided, and the launch module 310 further includes a first power member 313 .
  • the first power member 313 is connected to the liquid lens 3122, and the first power member 313 drives the liquid lens 3122 to approach or move away from the diffuser 316, so as to change the angle and area of the array beam emitted by the light source 311 emitted by the lens group 312, thereby changing the The array light beams emitted by the light source 311 emitted from the lens group 312 are irradiated to the area of the diffusion sheet 316 .
  • the liquid lens 3122 is driven to move by the first power member 313 to change the position of the liquid lens 3122 relative to the diffuser 316 , thereby changing the area of the target object 370 irradiated by the beam emitted by the emission module 310 .
  • the first power member 313 is roughly a voice coil motor structure, and the first power member 313 includes a body 3131 , a moving member 3132 , a coil 3134 and a yoke 3135 .
  • the main body 3131 is arranged between the light source 311 and the diffuser 316, the moving part 3132 is arranged in the main body 3131, the moving part 3132 includes a light-passing hole 3133, and the light-passing hole 3133 is located on the path of the array beam emitted by the light source 311, and the liquid lens 3122 is provided.
  • the array beam emitted by the light source 311 can be injected into the liquid lens 3122, so as to prevent the array beam emitted by the light source 311 from interfering with the first power member 313;
  • the yoke 3135 is arranged on the inner side of the main body 3131, and the magnetic yoke 3135 is arranged opposite to the coil 3134.
  • the magnetic field generated by the coil 3134 and the magnetic field generated by the magnetic yoke 3135 have a magnetic force. Since the magnetic yoke 3135 is fixed on the inner side of the main body 3131, The body 3131 is fixedly arranged, so that the coil 3134 drives the moving member 3132 and the liquid lens 3122 to move toward or away from the diffusion sheet 316 .
  • the first power component 313 may also be a micro-electromechanical system (MEMS, Micro Electro Mechanical System), a surface mount assembly (SMA, Surface Moune Assemblies) and the like.
  • MEMS Micro-electromechanical system
  • SMA Surface Moune Assemblies
  • the side of the liquid lens 3122 close to the light source 311 is roughly convex, and the side of the liquid lens 3122 away from the light source 311 is roughly convex.
  • the position of the liquid lens 3122 relative to the diffuser 316 changes, and the area of the array beam emitted by the light source 311 to the diffuser 316 through the lens group 312 also changes.
  • the focus of the emission module 310 changes to the direction close to the light source 311 accordingly, and the array beam emitted by the light source 311 is irradiated by the liquid lens 3122 to diffuse
  • the area of the sheet 316 is also reduced accordingly, and the area of the light beam irradiated to the target object 370 through the diffusing sheet 316 and the first lens 317 is also reduced accordingly; when the coil 3134 drives the moving member 3132 and the liquid lens 3122 to approach the diffusing sheet
  • the focal point of the emission module 310 changes accordingly to the direction away from the light source 311, and the array beam emitted by the light source 311 is irradiated by the liquid lens 3122 to the area of the diffuser 316 correspondingly enlarged, and then the diffuser 316 is irradiated accordingly.
  • the side of the liquid lens 3122 close to the light source 311 is substantially concave, and the side of the liquid lens 3122 away from the light source 311 is substantially concave.
  • the coil 3134 is powered on and drives the moving member 3132 and the liquid lens 3122 to move away from the diffuser 316, the focus of the transmitting module 310 changes in the same direction as the liquid lens 3122 moves.
  • the area of the light beam irradiated to the diffuser 316 is correspondingly enlarged, and the area of the light beam irradiated to the target object 370 through the diffuser 316 and the first mirror 317 is also correspondingly enlarged; when the coil 3134 is energized, the moving member 3132 and the liquid mirror are driven.
  • the focus of the emission module 310 changes in the same direction as the liquid lens 3122 moves, and the array beam emitted by the light source of the liquid lens 3122 irradiates the diffuser 316.
  • the area of the diffuser 316 is correspondingly reduced.
  • the area of the light beam irradiated to the target object 370 via the diffusing sheet 316 and the first mirror 317 is correspondingly reduced.
  • the lens group 312 may further include a plurality of liquid lenses 3122, which are arranged at intervals between adjacent liquid lenses 3122, and the plurality of liquid lenses 3122 are all arranged in the light-passing holes 3133, and the coil 3134 is energized
  • the rear drives the moving part 3132 and all the liquid lenses 3122 to move together, so as to adapt to the zoom of different needs, and at the same time, it has the function of adjusting the path of the light beam.
  • the lens group 312 may also include a plurality of liquid lenses 3122, any one liquid lens 3122 or any plurality of liquid lenses 3122 is connected to the first power member 313, and the rest of the liquid lenses 3122 are provided in the In the lens barrel, the first power element 313 and the lens barrel are arranged along the path of the light path emitted by the light source 311, and their relative positions may not be limited.
  • the first power element 313 drives any liquid lens 3122 or any plurality of liquid lenses 3122 to approach or move away from the diffuser 316; the remaining liquid lenses 3122 do not move relative to each other, and can also be powered on to change their focal lengths, so as to adapt to different zooming requirements, At the same time, it has the function of adjusting the path of the array beam.
  • the image capturing module 400 provided by the fourth embodiment of the present application has substantially the same structure as the image capturing module 100 provided by the first embodiment, the difference is that in this embodiment, the lens group 412 includes a A light-transmitting lens 4124 with optical power is provided; the emission module 410 further includes a second power member 414 .
  • the second power member 414 is connected to the light-transmitting lens 4124 , the second power member 414 drives the light-transmitting lens 4124 to approach or move away from the diffuser 416 , and the area of the array beam emitted by the light source 411 to the diffuser 416 through the lens group 412 also changes.
  • the light-transmitting lens 4124 is driven to move by the second power member 414 to change the position of the light-transmitting lens 4124 relative to the diffusing sheet 416 .
  • the structure of the second power member 414 in the present embodiment is the same as that of the first power member 313 in the third embodiment, and the second power member 414 is substantially in the structure of a voice coil motor.
  • the light-transmitting lens 4124 is a lens with a fixed curvature, and the focal length of the light-transmitting lens 4124 is a fixed value.
  • the side of the translucent lens 4124 close to the light source 411 is substantially concave, and the side of the translucent lens 4124 away from the light source 411 is substantially concave.
  • the focus of the transmitting module 410 changes in the same direction as the light-transmitting lens 4124 moves, and the light source passing through the light-transmitting lens 4124
  • the area of the array beam irradiated by the array beam 411 to the diffuser 416 expands accordingly, and the area of the beam irradiated to the target object 470 through the diffuser 416 and the first mirror 417 also expands accordingly; when the coil 4134 is energized, the moving part is driven
  • the focus of the transmitting module 410 changes in the same direction as the light-transmitting lens 4124 moves.
  • the lens group 412 may further include a plurality of light-transmitting lenses 4124 with optical power, and the adjacent light-transmitting lenses 4124 are arranged at intervals, and the plurality of light-transmitting lenses 4124 are all connected to the second light-transmitting lens 4124.
  • the power member 414 is connected, and the coil 4134 is energized to drive the moving member 4132 and all the light-transmitting lenses 4124 to move together, so as to adapt to different zooming requirements, and at the same time, it has the function of adjusting the path of the array beam.
  • the lens group 412 may further include a plurality of light-transmitting lenses 4124, any one or any plurality of light-transmitting lenses 4124 are connected to the second power member 414, and the rest are light-transmitting The lenses 4124 are all fixedly arranged.
  • the second power member 414 drives any one of the translucent lenses 4124 or any number of translucent lenses 4124 to approach or move away from the diffuser 416 ; the remaining translucent lenses 4124 do not move relative to each other, so as to adapt to zooming for different needs, and at the same time have the ability to adjust the light beam. function of the path.
  • the image capturing module 500 provided by the fifth embodiment of the present application has substantially the same structure as the image capturing module 100 provided by the first embodiment, the difference is that the lens group 512 includes a liquid lens 5122, and a light-transmitting lens 5124 with optical power, the emission module 510 also includes a third power member 515, the third power member 515 is connected with the light-transmitting lens 5124, and the third power member 515 drives the light-transmitting lens 5124 to approach or away from The diffuser 516; the liquid lens 5122 is set between the light source 511 and the third power member 515 through the lens barrel 518 and other electrical connection elements, or between the third power member 515 and the diffuser 516 to change the emitted light from the light source 511
  • the array light beam is irradiated to the size of the area of the diffusion sheet 516 through the lens group 512 , and at the same time, the zooming of the transmitting module 510 is realized.
  • the structure of the third power member 515 in this embodiment is the same as that of the first power member 313 in the third embodiment, and the third power member 515 is roughly in the structure of a voice coil motor.
  • the light-transmitting lens 5124 is connected to the third power member 515 , and the liquid lens 5122 is disposed between the light source 511 and the third power member 515 .
  • the side of the liquid lens 5122 close to the light source 511 is convex, and the light-transmitting lens 5124 connected to the third power member 515 is convex.
  • the focal point of the emission module 510 correspondingly changes in the direction away from the diffuser 516 , and the array beam emitted by the light source 511
  • the area of the diffuser 516 irradiated by the liquid lens 5122 and the translucent lens 5124 is correspondingly reduced, and the area of the light beam irradiated to the target object 570 by the diffuser 516 and the first lens 517 is also correspondingly reduced;
  • the coil 5134 drives
  • the moving part 5132 and the translucent lens 5124 in the moving part 5132 move toward the direction close to the diffuser 516
  • the focus of the emission module 510 changes accordingly toward the direction close to the diffuser 516
  • the array beam emitted by the light source 511 passes through the liquid lens 5122
  • the area of the light-transmitting lens 5124 irradiated to the diffuser 516 is enlarged accordingly, and the area of
  • the lens group 512 may further include a plurality of liquid lenses 5122 or a plurality of light-transmitting lenses 5124 with optical power, and the third power member 515 may be combined with two or more of these lenses.
  • the liquid lens 5122 is connected, or is connected with two or more light-transmitting lenses 5124, and the remaining liquid lenses 5122 or light-transmitting lenses 5124 are fixedly arranged;
  • Each of the third power elements 515 corresponds to one, two or more liquid lenses 5122 or translucent lenses 5124 correspondingly.
  • the sixth embodiment of the present application provides an electronic device 1000.
  • the electronic device 1000 at least includes a housing 60 and the imaging module of any one of the first to fifth embodiments.
  • the image capturing module 100 in the first embodiment is described as an example, and the image capturing module 100 is arranged in the casing 60 .
  • the above-mentioned electronic device 1000 can be selectively moved toward or away from the diffuser 16 through the lens group 12, so as to change the area of the diffuser 16 where the array beam emitted by the light source 11 emitted by the lens group 12 is irradiated.
  • the light beam is emitted through the diffusion effect of the diffusing sheet 16, thereby expanding or reducing the area of the light beam emitted by the electronic device 1000 when it irradiates the target object 70.
  • the light beam can reach a larger area.
  • Covering the surface of the target object 70 to obtain a larger area of the target object 70 within the field of view is beneficial for the electronic device 1000 to obtain the details of the edge of the target object 70; when the area irradiated to the target object 70 is reduced, the energy of the local beam
  • the enhancement is beneficial for the electronic device 1000 to obtain clearer information of the target object 70 .
  • the above structure of the electronic device 1000 does not constitute a limitation on the electronic device 1000, and may include more or less components than the above, or combine some components, or separate some components, or set different components .
  • the electronic device 1000 in this embodiment is a mobile phone, and the imaging module 100 is a rear camera.
  • the electronic device 1000 can also be a tablet computer, a notebook computer, a camera, a smart watch with a camera device, etc.; the imaging module 100 can also be a front camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

一种发射模组(10)、取像模组(100)及电子设备(1000)。发射模组(10)包括光源(11),用于发出阵列光束;具有光焦度的镜片组(12),设于光源(11)所发出阵列光束的路径;扩散片(16),设于镜片组(12)背离光源(11)的一侧,镜片组(12)可选择性地朝靠近或远离扩散片(16)的方向运动,以改变经镜片组(12)所出射的光源(11)所发出阵列光束照射至扩散片(16)的面域。发射模组(10)通过镜片组(12)可选择性地朝靠近或远离扩散片(16)的方向运动,以改变经镜片组(12)所出射的光源(11)所发出阵列光束照射至扩散片(16)的面域,不同面域的光束经扩散片(16)的扩散作用而发射出去,从而扩大或缩小发射模组(10)发出的光束照射至目标物体(70)时的面积,有利于获取目标物体(70)边缘的细节或获取目标物体(70)更清晰的信息。

Description

发射模组、取像模组及电子设备 技术领域
本申请涉及光学成像技术领域,具体涉及一种发射模组、取像模组及电子设备。
背景技术
现有TOF(Time of Flight)模组通过发射模组发出光束以照射在物体上,光束被物体的表面反射到接收模组,进而成像或测距。
在实现本申请的过程中,申请人发现现有技术中至少存在如下问题:由于发射模组及接收模组均为固定结构,发射模组发出的光束的角度和面积是固定的,接收模组接收的物体表面反射的光束的面积也是固定的,因此会造成物体周边的细节丢失;另外,由于发射模组中的光源无法调节亮度,光源受外界干扰,影像噪点大,测距效果差。
发明内容
鉴于以上内容,有必要提出一种发射模组、取像模组及电子设备,以解决上述问题。
本申请一实施例提供一种发射模组,包括:
光源,用于发出阵列光束;
具有光焦度的镜片组,设于所述光源所发出阵列光束的路径;及
扩散片,设于所述镜片组背离所述光源的一侧,用于扩散经所述镜片组出射的所述光源所发出的阵列光束,所述镜片组可选择性地朝靠近或远离所述扩散片的方向运动,以改变经所述镜片组所出射的所述光源所发出阵列光束照射至所述扩散片的面域。
上述发射模组通过镜片组可选择性地朝靠近或远离扩散片的方向运动,以改变经镜片组所出射的光源所发出阵列光束照射至扩散片的面域,不同面域的光束经扩散片的扩散作用而发射出去,从而扩大或缩小发射模组发出的光束照射至目标物体时的面积,当照射至目标物体的面积被扩大时,光束能够更大面积地覆盖目标物体的表面,获取视场角内更大的目标物体的面积,有利于获取目标物体边缘的细节;当照射至目标物体的面积被缩小时,局部光束的能量被增强,有利于获取目标物体更清晰的信息。
本申请一实施例还提供了一种取像模组,包括:
如上所述的发射模组;及
接收模组,设于所述发射模组的一侧,用于接收入射的光束。
上述取像模组通过镜片组可选择性地朝靠近或远离扩散片的方向运动,以改变经镜片组所出射的光源所发出阵列光束照射至扩散片的面域,不同面域的 光束经扩散片的扩散作用而发射出去,从而扩大或缩小取像模组发出的光束照射至目标物体时的面积,当照射至目标物体的面积被扩大时,光束能够更大面积地覆盖目标物体的表面,获取视场角内更大的目标物体的面积,有利于取像模组获取目标物体边缘的细节;当照射至目标物体的面积被缩小时,局部光束的能量被增强,有利于取像模组获取目标物体更清晰的信息。
本申请一实施例还提供了一种电子设备,包括如上所述的取像模组。
上述电子设备通过镜片组可选择性地朝靠近或远离扩散片的方向运动,以改变经镜片组所出射的光源所发出阵列光束照射至扩散片的面域,不同面域的光束经扩散片的扩散作用而发射出去,从而扩大或缩小电子设备发出的光束照射至目标物体时的面积,当照射至目标物体的面积被扩大时,光束能够更大面积地覆盖目标物体的表面,获取视场角内更大的目标物体的面积,有利于电子设备获取目标物体边缘的细节;当照射至目标物体的面积被缩小时,局部光束的能量被增强,有利于电子设备获取目标物体更清晰的信息。
附图说明
图1是本申请第一实施例提供的取像模组的结构示意图。
图2是本申请第二实施例提供的取像模组的结构示意图。
图3是本申请第三实施例提供的取像模组的结构示意图。
图4是本申请第四实施例提供的取像模组的结构示意图。
图5是本申请第五实施例提供的取像模组的结构示意图。
图6是本申请第六实施例提供的电子设备的结构示意图。
主要元件符号说明
电子设备                   1000
取像模组                   100、200、300、400、500
发射模组                   10、210、310、410、510
光源                       11、211、311、411、511
镜片组                     12、212、312、412、512
液体镜片                   122、2122、3122、5122
透光镜片                   4124、5124
第一动力件                 313
本体                       3131
移动件                     3132、4132、5132
通光孔                     3133
线圈                       3134、4134、5134
磁轭                       3135
第二动力件                 414
第三动力件                 515
扩散片                     16、216、316、416、516
第一镜片                   17、217、317、417、517
镜筒                        18、518
接收模组                    20、220
感光元件                    22、222
第二镜片                    24
主板                        30
盖片                        40
遮光件                      50
壳体                        60
目标物体                    70、270、370、470、570
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所实用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互结合。
请参见图1,本申请第一实施例提供了一种取像模组100,取像模组100至少包括发射模组10及接收模组20。
发射模组10至少包括光源11、镜片组12及扩散片16,镜片组12具有光 焦度。光源11用于发出阵列光束;具有光焦度的镜片组12设于光源11所发出阵列光束的路径;扩散片16设于镜片组12背离光源11的一侧,用于扩散经镜片组12出射的光源11所发出的阵列光束,镜片组12可选择性地朝靠近或远离扩散片16的方向运动,以改变经镜片组12所出射的光源11所发出阵列光束照射至扩散片16的面域。
上述发射模组10通过镜片组12可选择性地朝靠近或远离扩散片16的方向运动,以改变经镜片组12所出射的光源11所发出阵列光束照射至扩散片16的面域,不同面域的光束经扩散片16的扩散作用而发射出去,从而扩大或缩小发射模组10发出的光束照射至目标物体70时的面积,当照射至目标物体70的面积被扩大时,光束能够更大面积地覆盖目标物体70的表面,获取视场角内更大的目标物体70的面积,有利于取像模组100获取目标物体70边缘的细节;当照射至目标物体70的面积被缩小时,局部光束的能量被增强,有利于取像模组100获取目标物体70更清晰的信息。
需要说明的是,镜片组12可选择性地朝靠近或远离扩散片16的方向运动是指镜片组12在发射模组10中是整体运动的,也可以是部分运动的,通过改变镜片组12的全部或部分在发射模组10中的位置,以改变经镜片组12所出射的光源11所发出阵列光束照射至扩散片16的面域。面域是指光束照射在扩散片16上的光束的面积的大小。扩散片16由透光率高的材料制成,扩散片16主要包括基材以及设于基材中的多个散射粒子,光束/光线在经过扩散片16时会不断的在两个折射率相异的介质中穿过,在此光线就会发生许多折射、反射与散射的现象,如此产生光学扩散的效果;光线在扩散片16中发生折射、反射与散射的现象时,光线的传播路径得以改变,即光线的传播角度发生改变,扩散片16上用于出射光线的面积也得以改变。
可以理解地,在镜片组12的位置及焦距固定后,光源10所发出阵列光束经镜片组12所出射,所出射的光束的角度和范围也相应固定,例如:光源10所发出阵列光束经镜片组12后发散出射,镜片组12与扩散片16距离越远,则所出射光束照射至扩散片16的面域越大;镜片组12与扩散片16距离越近,则所出射光束照射至扩散片16的面域越小。同理,光源10所发出阵列光束经镜片组12后发散的角度越大,则所出射光束照射至扩散片16的面域越大;光源10所发出阵列光束经镜片组12后扩散的角度越小,则所出射光束照射至扩散片16的面域越小。
本实施例中,光源10朝目标物体70发出平行阵列光束,光源10发出的阵列光束经镜片组12后照射至目标物体70,并经目标物体70反射以入射至接收模组20。发射模组10通过镜片组12运动以改变发射模组10发出的光束照射至目标物体70时的面积。
本实施例中,光源10是垂直腔面发射激光器(VCSEL),光源10所发出的光束是红外光。其中,VCSEL由于体积小、发散角小、稳定性等优点更适于被应用于发射模组中,在本实施例中,选择VCSEL阵列作为光源10,即VCSEL阵列光源包括N*N个激光发射器,每个激光发射器均能够发出光束,N大于1,且N为自然数。
可以理解地,在其他的实施例中,光源10还可以是边发射激光器(EEL),也可以是多个发光元件组成的阵列光源。光源10所发出的光束还可以是可见光、紫外光等。
本实施例中,镜片组12的焦距可选择性地改变,镜片组12包括一枚液体镜片122,液体镜片122通电后液体镜片122自身的焦距可以改变,从而改变镜片组12的焦距。液体镜片122通电后其自身的焦距发生变化,光源11发出的阵列光束经液体镜片122后汇聚的焦点也发生变化,通过给液体镜片122施加大小不同的电压,使液体镜片122的焦距不同,从而经液体镜片122照射至扩散片16的光束的面域也不相同,最终照射至目标物体70的表面的面积也不相同。
其中,变焦是指发射模组10的光源11发出的阵列光束经镜片组12后,阵列光束汇聚的焦点发生变化,焦点发生变化的实现方式至少包括如下方式:镜片组12自身的焦距发生变化,从而导致发射模组10的焦点发生变化。镜片组12的焦点发生变化时,光源11发出的阵列光束经镜片组12后汇聚的焦点发生变化,从而照射至扩散片16上的光束的面域相应地发生变化。
液体镜片122的变焦原理:液体镜片122包括绝缘液体和导电液体,绝缘液体和导电液体的相接处形成接触面。通过给液体镜片122中的导电液体通电,可以改变导电液体及接触面的湿润性,使得接触面的接触角发生变化,即接触面的曲率半径发生变化,从而改变光路,实现变焦。
需要说明的是,本实施例中的液体镜片122通过镜筒18及其他电连接元件(图未示)设于光源11所发出阵列光束的路径上,镜筒18的一端与光源11连接,镜筒18的另一端朝远离光源11的方向延伸并与扩散片16连接。
请继续参见图1,本实施例中,发射模组10还包括第一镜片17。第一镜片17设于扩散片16背离液体镜片122的一侧,用于汇聚经扩散片16扩散的光源11发出的阵列光束,同时,第一镜片17具有保护光源11、镜片组12及扩散片16不被损坏及污染的功能。光源11发出的阵列光束经液体镜片122照射至扩散片16,通过扩散片16的扩散作用,光源11发出的阵列光束得以扩散,经扩散后的光源11发出的阵列光束照射至第一镜片17,通过第一镜片17的汇聚作用,经扩散片16扩散后的光源所发出的阵列光束得以汇聚并照射至目标物体70。
请继续参见图1,本实施例中,接收模组20设于发射模组10的一侧,用于接收入射的光束。接收模组20与发射模组10大致并列设置,位于同一平面内,以方便接收模组20接收入射的光束。
需要说明的是,入射的光束是指光源11发出的阵列光束照射至目标物体70时,被目标物体70反射的阵列光束。
上述取像模组100通过镜片组12可选择性地朝靠近或远离扩散片16的方向运动,以改变经镜片组12所出射的光源11所发出阵列光束照射至扩散片16的面域,不同面域的光束经扩散片16的扩散作用而发射出去,从而扩大或缩小取像模组100发出的光束照射至目标物体70时的面积,当照射至目标物体70的面积被扩大时,光束能够更大面积地覆盖目标物体70的表面,获取视场角内更大的目标物体70的面积,有利于取像模组100获取目标物体70边缘的细节; 当照射至目标物体70的面积被缩小时,局部光束的能量被增强,有利于取像模组100获取目标物体70更清晰的信息。
本实施例中,接收模组20包括感光元件22及第二镜片24。第二镜片24用于汇聚入射的光束,同时,第二镜片24具有保护感光元件22不被损坏及污染的功能;感光元件22与第二镜片24相对设置,用于接收经第二镜片24汇聚的入射的光束,即感光元件22接收入射的光束的光信息,并相应地处理光信息。
请继续参见图1,本实施例中,取像模组100还包括主板30、盖片40及遮光件50。主板30与发射模组10及接收模组20电连接,即主板30与发射模组10的光源11及接收模组20的感光元件22电连接,主板30通电时,光源11发出固定波段的阵列光束,同时,感光元件22开启,接收并处理接收的入射的光束的光信息;盖片40与主板30相对设置,发射模组10及接收模组20设于盖片40与主板30之间,盖片40用于保护发射模组10及接收模组20不被损坏及污染,盖片40可采用蓝宝石滤波片,蓝宝石滤波片具有耐高温、不易碎的特性;遮光件50设于发射模组10及接收模组20之间,用于连接发射模组10及接收模组20,同时,遮光件50能够避免发射模组10发出的光束与接收模组20接收的光束之间发生干涉,遮光件50可采用遮光胶。
可以理解地,在其他的实施例中,盖片40还可以为其他材料的滤波保护元件,遮光件50还可以为其他遮光元件或吸光元件。
请继续参见图1,本实施例中,对取像模组100中的液体镜片122施加一定的电压,液体镜片122中的接触面的曲率发生变化,液体镜片122靠近光源11的一侧大致为凸面,液体镜片122背离光源11的一侧大致为凸面。光源11发出的阵列光束平行射入液体镜片122并在液体镜片122中被改变路径,阵列光束的路径被改变后照射至扩散片16,由于液体镜片122的焦距发生了变化,经液体镜片122的光源11发出的阵列光束照射至扩散片16的面域相应地缩小,经扩散片16扩散之后的光源11发出的阵列光束照射至第一镜片17的面积也相应地缩小,经第一镜片17汇聚之后的光源11发出的阵列光束照射至目标物体70的面积也相应地缩小,从而,发射模组10照射至目标物体70的光束的面积缩小,光束的能量得以集中,经目标物体70反射的光束入射至接收模组10,接收模组20中的感光元件22能够获取到能量更高的光信息,从而能够准确地获得取像模组100至目标物体70的距离,同时,能够获取目标物体70更清晰的信息。
可以理解地,在其他的实施例中,镜片组12还可以包括多枚液体镜片122,相邻液体镜片122之间间隔设置,通过对不同的液体镜片122施加不同的电压,使得每枚液体镜片122具有不同的焦距,以适应不同需求的变焦,同时具有调整阵列光束的路径的功能。
请参见图2,本申请第二实施例提供的取像模组200与第一实施例提供的取像模组100的结构大致相同,不同之处在于:本实施例中,镜片组212包括一枚液体镜片2122,对取像模组200中的液体镜片2122施加一定的电压,液体镜片2122中的接触面的曲率发生变化,液体镜片2122靠近光源211的一侧大致为凹面,液体镜片2122背离光源211的一侧大致为凹面。光源211发出的阵列 光束平行射入液体镜片2122并在液体镜片2122中被改变路径,阵列光束的路径被改变后照射至扩散片216,由于液体镜片2122的焦距发生了变化,经液体镜片2122的光源211发出的阵列光束照射至扩散片216的面域也相应地扩大,经扩散片216扩散之后的光源211发出的阵列光束照射至第一镜片217的面积也相应地扩大,经第一镜片217汇聚之后的光源211发出的阵列光束照射至目标物体270的面积也相应地扩大,从而,发射模组210照射至目标物体270的光束的面积扩大,光束得以更大面积地覆盖目标物体270的表面,获取视场角内更大的物体面积,经目标物体270反射的光束入射至接收模组220,接收模组220中的感光元件222能够获取视场角内更大面积的目标物体270信息,同时能够获取目标物体270边缘的细节。
请参见图3,本申请第三实施例提供的取像模组300与第一实施例提供的取像模组100的结构大致相同,不同之处在于:本实施例中,镜片组312包括一枚液体镜片3122,发射模组310还包括第一动力件313。第一动力件313与液体镜片3122连接,第一动力件313驱动液体镜片3122靠近或远离扩散片316,以改变经镜片组312所出射的光源311所发出阵列光束的角度和面积,从而改变经镜片组312所出射的光源311所发出阵列光束照射至扩散片316的面域。本实施例中,通过第一动力件313驱动液体镜片3122运动,以改变液体镜片3122相对扩散片316的位置,从而改变发射模组310所发出光束照射至目标物体370的面积。
具体地,第一动力件313大致为音圈马达结构,第一动力件313包括本体3131、移动件3132、线圈3134及磁轭3135。本体3131设于光源311与扩散片316之间,移动件3132设于本体3131内,移动件3132包括一通光孔3133,通光孔3133位于光源311所发出阵列光束的路径上,液体镜片3122设于通光孔3133内,以使光源311发出的阵列光束射入液体镜片3122,避免光源311发出的阵列光束与第一动力件313产生干涉;线圈3134绕设于移动件3132的外侧面,磁轭3135设于本体3131的内侧面,磁轭3135与线圈3134相对设置,线圈3134通电后产生的磁场与磁轭3135产生的磁场发生磁力作用,由于磁轭3135固设于本体3131的内侧面,本体3131固定设置,从而线圈3134带动移动件3132及液体镜片3122朝靠近或远离扩散片316的方向移动。
可以理解地,在其他的实施例中,第一动力件313还可以为微机电系统(MEMS,Micro Electro Mechanical System)、表面组装组件(SMA,Surface Moune Assemblies)等。
本实施例中,液体镜片3122靠近光源311的一侧大致为凸面,液体镜片3122背离光源311的一侧大致为凸面,线圈3134通电后带动移动件3132及液体镜片3122朝靠近或远离扩散片316的方向运动,液体镜片3122相对扩散片316的位置发生变化,光源311所发出阵列光束经镜片组312照射至扩散片316的面域也发生变化。当线圈3134带动移动件3132及液体镜片3122朝远离扩散片316的方向运动时,发射模组310的焦点相应地朝靠近光源311的方向变化,光源311发出的阵列光束经液体镜片3122照射至扩散片316的面域也相应地缩小,随之经扩散片316及第一镜片317照射至目标物体370的光束的面积也相应地 缩小;当线圈3134带动移动件3132及液体镜片3122朝靠近扩散片316的方向运动时,发射模组310的焦点相应地朝远离光源311的方向变化,光源311发出的阵列光束经液体镜片3122照射至扩散片316的面域也相应地扩大,随之经扩散片316及第一镜片317照射至目标物体370的光束的面积也相应地扩大。
可以理解地,在其他的实施例中,通过对液体镜片3122施加一定的电压,液体镜片3122靠近光源311的一侧大致为凹面,液体镜片3122背离光源311的一侧大致为凹面。当线圈3134通电后带动移动件3132及液体镜片3122朝远离扩散片316的方向运动时,发射模组310的焦点变化的方向与液体镜片3122运动的方向相同,经液体镜片3122的光源发出的阵列光束照射至扩散片316的面域相应地扩大,随之经扩散片316及第一镜片317照射至目标物体370的光束的面积也相应地扩大;当线圈3134通电后带动移动件3132及液体镜片3122朝靠近扩散片316的方向运动时,发射模组310的焦点变化的方向与液体镜片3122运动的方向相同,经液体镜片3122的光源发出的阵列光束照射至扩散片316的面域相应地缩小,随之经扩散片316及第一镜片317照射至目标物体370的光束的面积也相应地缩小。
可以理解地,在其他的实施例中,镜片组312还可以包括多枚液体镜片3122,相邻液体镜片3122之间间隔设置,多枚液体镜片3122均设于通光孔3133内,线圈3134通电后带动移动件3132及所有的液体镜片3122一起运动,以适应不同需求的变焦,同时具有调整光束的路径的功能。
可以理解地,在其他的实施例中,镜片组312还可以包括多枚液体镜片3122,任意一枚液体镜片3122或任意多枚液体镜片3122与第一动力件313连接,其余液体镜片3122设于镜筒内,第一动力件313及镜筒沿光源311所发出光路的路径设置,其相对位置可以不设限制。第一动力件313驱动任意一枚液体镜片3122或任意多枚液体镜片3122靠近或远离扩散片316;其余液体镜片3122不发生相对运动,也可以通电以改变其焦距,以适应不同需求的变焦,同时具有调整阵列光束的路径的功能。
请参见图4,本申请第四实施例提供的取像模组400与第一实施例提供的取像模组100的结构大致相同,不同之处在于:本实施例中,镜片组412包括一枚具有光焦度的透光镜片4124;发射模组410还包括第二动力件414。第二动力件414与透光镜片4124连接,第二动力件414驱动透光镜片4124靠近或远离扩散片416,光源411所发出阵列光束经镜片组412照射至扩散片416的面域也发生变化。本实施例中,通过第二动力件414驱动透光镜片4124运动,以改变透光镜片4124相对扩散片416的位置。
本实施例中的第二动力件414与第三实施例中的第一动力件313的结构相同,第二动力件414大致为音圈马达结构。
需要说明的是,透光镜片4124为具有固定曲率的镜片,透光镜片4124的焦距为固定值。
本实施例中,透光镜片4124靠近光源411的一侧大致为凹面,透光镜片4124背离光源411的一侧大致为凹面。当线圈4134通电后带动移动件4132及透光镜片4124朝远离扩散片416的方向运动时,发射模组410的焦点变化的方向与 透光镜片4124运动的方向相同,经透光镜片4124的光源411发出的阵列光束照射至扩散片416的面域相应地扩大,随之经扩散片416及第一镜片417照射至目标物体470的光束的面积也相应地扩大;当线圈4134通电后带动移动件4132及透光镜片4124朝靠近扩散片416的方向运动时,发射模组410的焦点变化的方向与透光镜片4124运动的方向相同,经透光镜片4124的光源411发出的阵列光束照射至扩散片416的面域相应地缩小,随之经扩散片416及第一镜片417照射至目标物体470的光束的面积也相应地缩小。
可以理解地,在其他的实施例中,镜片组412还可以包括多枚具有光焦度的透光镜片4124,相邻透光镜片4124之间间隔设置,多枚透光镜片4124均与第二动力件414连接,线圈4134通电后带动移动件4132及所有的透光镜片4124一起运动,以适应不同需求的变焦,同时具有调整阵列光束的路径的功能。
可以理解地,在其他的实施例中,镜片组412还可以包括多枚透光镜片4124,任意一枚透光镜片4124或任意多枚透光镜片4124与第二动力件414连接,其余透光镜片4124均固定设置。第二动力件414驱动任意一枚透光镜片4124或任意多枚透光镜片4124靠近或远离扩散片416;其余透光镜片4124不发生相对运动,以适应不同需求的变焦,同时具有调整光束的路径的功能。
请参见图5,本申请第五实施例提供的取像模组500与第一实施例提供的取像模组100的结构大致相同,不同之处在于:镜片组512包括一枚液体镜片5122,和一枚具有光焦度的透光镜片5124,发射模组510还包括第三动力件515,第三动力件515与透光镜片5124连接,第三动力件515带动透光镜片5124靠近或远离扩散片516;液体镜片5122通过镜筒518及其他电连接元件设于光源511与第三动力件515之间,或设于第三动力件515与扩散片516之间,以改变光源511所发出阵列光束经镜片组512照射至扩散片516的面域的大小,同时实现发射模组510的变焦。
本实施例中的第三动力件515与第三实施例中的第一动力件313的结构相同,第三动力件515大致为音圈马达结构。
本实施例中,透光镜片5124与第三动力件515连接,液体镜片5122设于光源511与第三动力件515之间。通过给液体镜片5122施加一定的电压,液体镜片5122靠近光源511的一面为凸面,与第三动力件515连接的透光镜片5124靠近光源511的一面和远离光源511的一面均为凸面。当线圈5134带动移动件5132及移动件5132内的透光镜片5124朝远离扩散片516的方向运动时,发射模组510的焦点相应地朝远离扩散片516的方向变化,光源511发出的阵列光束经液体镜片5122和透光镜片5124照射至扩散片516的面域相应地缩小,随之经扩散片516及第一镜片517照射至目标物体570的光束的面积也相应地缩小;当线圈5134带动移动件5132及移动件5132内的透光镜片5124朝靠近扩散片516的方向运动时,发射模组510的焦点相应地朝靠近扩散片516的方向变化,光源511发出的阵列光束经液体镜片5122和透光镜片5124照射至扩散片516的面域相应地扩大,随之经扩散片516及第一镜片517照射至目标物体570的光束的面积也相应地扩大。
可以理解地,在其他的实施例中,镜片组512还可以包括多枚液体镜片5122 或多枚具有光焦度的透光镜片5124,第三动力件515可以与其中的两枚或更多枚液体镜片5122连接,或者与两枚或更多枚透光镜片5124连接,其余液体镜片5122或透光镜片5124固定设置;发射模组510还可以包括两个或多个第三动力件515,每个第三动力件515均相应地对应一枚、两枚或多枚液体镜片5122或透光镜片5124。
请参见图6,本申请第六实施例提供了一种电子设备1000,电子设备1000至少包括壳体60和第一实施例至第五实施例任意一项的取像模组,本实施例以第一实施例中的取像模组100为例进行说明,取像模组100设于壳体60内。
上述电子设备1000通过镜片组12可选择性地朝靠近或远离扩散片16的方向运动,以改变经镜片组12所出射的光源11所发出阵列光束照射至扩散片16的面域,不同面域的光束经扩散片16的扩散作用而发射出去,从而扩大或缩小电子设备1000发出的光束照射至目标物体70时的面积,当照射至目标物体70的面积被扩大时,光束能够更大面积地覆盖目标物体70的表面,获取视场角内更大的目标物体70的面积,有利于电子设备1000获取目标物体70边缘的细节;当照射至目标物体70的面积被缩小时,局部光束的能量被增强,有利于电子设备1000获取目标物体70更清晰的信息。
可以理解地,上述电子设备1000的结构并不构成对电子设备1000的限定,可以包括比上述更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件设置。
本实施例的电子设备1000为手机,取像模组100为后置摄像头。
可以理解地,在其他的实施例中,电子设备1000还可以为平板电脑、笔记本电脑、相机、带摄像装置的智能手表等;取像模组100还可以为前置摄像头。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (10)

  1. 一种发射模组,其特征在于,包括:
    光源,用于发出阵列光束;
    具有光焦度的镜片组,设于所述光源所发出阵列光束的路径;及
    扩散片,设于所述镜片组背离所述光源的一侧,用于扩散经所述镜片组出射的所述光源所发出的阵列光束,所述镜片组可选择性地朝靠近或远离所述扩散片的方向运动,以改变经所述镜片组所出射的所述光源所发出阵列光束照射至所述扩散片的面域。
  2. 如权利要求1所述的发射模组,其特征在于,所述镜片组的焦距可选择性地改变,所述镜片组包括至少一液体镜片,所述液体镜片用以改变所述镜片组的焦距。
  3. 如权利要求2所述的发射模组,其特征在于,所述镜片组包括一个液体镜片或多个液体镜片,所述发射模组还包括:
    第一动力件;
    所述第一动力件与所述一个液体镜片或者多个所述液体镜片中的至少一者连接,所述第一动力件用于驱动所连接的所述液体镜片靠近或远离所述扩散片。
  4. 如权利要求1所述的发射模组,其特征在于,所述镜片组包括一个具有光焦度的透光镜片或多个具有光焦度的透光镜片,所述发射模组还包括:
    第二动力件;
    所述第二动力件与所述一个透光镜片或者多个所述透光镜片中的至少一者连接,所述第二动力件用于驱动所连接的所述透光镜片靠近或远离所述扩散片。
  5. 如权利要求1所述的发射模组,其特征在于,所述镜片组的焦距可选择性地改变,所述镜片组包括至少一液体镜片和至少一具有光焦度的透光镜片,所述发射模组还包括:
    第三动力件;
    所述第三动力件与至少一所述液体镜片或者至少一所述透光镜片连接,所述第三动力件驱动所连接的所述液体镜片或所述透光镜片靠近或远离所述扩散片。
  6. 如权利要求3-5中任意一项所述的发射模组,其特征在于,所述第一动力件、所述第二动力件或所述第三动力件包括:
    本体;
    移动件,设于所述本体,所述移动件包括通光孔,所述镜片组、所述镜片组中的至少一所述液体镜片或所述镜片组中的至少一所述透光镜片设于所述通光孔内;及
    线圈,绕设于所述移动件的外侧面,所述线圈通电后带动所述移动件及所述镜片组、所述镜片组中的至少一所述液体镜片或所述镜片组中的至少一所述透光镜片靠近或远离所述扩散片。
  7. 如权利要求1所述的发射模组,其特征在于,所述发射模组还包括:
    第一镜片,设于所述扩散片背离所述镜片组的一侧,用于调制经所述扩散片所扩散的所述光源所发出的阵列光束。
  8. 一种取像模组,其特征在于,包括:
    如权利要求1-7任意一项所述的发射模组;及
    接收模组,设于所述发射模组的一侧,用于接收入射的光束。
  9. 如权利要求8所述的取像模组,其特征在于,所述接收模组包括:
    第二镜片,用于调制入射的光束;及
    感光元件,与所述第二镜片相对设置,用于接收经所述第二镜片所调制的光束。
  10. 一种电子设备,其特征在于,包括如权利要求8或9所述的取像模组。
PCT/CN2021/073384 2021-01-22 2021-01-22 发射模组、取像模组及电子设备 WO2022155917A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073384 WO2022155917A1 (zh) 2021-01-22 2021-01-22 发射模组、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073384 WO2022155917A1 (zh) 2021-01-22 2021-01-22 发射模组、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022155917A1 true WO2022155917A1 (zh) 2022-07-28

Family

ID=82548397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073384 WO2022155917A1 (zh) 2021-01-22 2021-01-22 发射模组、取像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022155917A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704796A (zh) * 2004-05-31 2005-12-07 亚洲光学股份有限公司 并列式雷射水平仪的分光装置
TWM372483U (en) * 2009-07-10 2010-01-11 Altek Corp Illumination module and portable electronic device using the same
CN104834171A (zh) * 2015-04-27 2015-08-12 杨毅 激光发光装置、光源和投影显示系统
CN104913268A (zh) * 2014-03-10 2015-09-16 波音公司 具有光均化器的光组件
CN106405565A (zh) * 2016-08-24 2017-02-15 上海兰宝传感科技股份有限公司 一种无人机避障/定高系统
CN206877018U (zh) * 2017-07-07 2018-01-12 深圳奥比中光科技有限公司 结构紧凑的光学投影模组
CN109140278A (zh) * 2017-06-26 2019-01-04 光宝科技股份有限公司 光源模块
CN210629640U (zh) * 2019-11-08 2020-05-26 南昌欧菲生物识别技术有限公司 光发射模组、深度相机和电子设备
CN111352178A (zh) * 2020-04-21 2020-06-30 武汉喻湖光电技术有限公司 一种可调发散角的3d传感照明光源
CN111999900A (zh) * 2020-05-25 2020-11-27 欧菲微电子技术有限公司 用于tof的光路改变组件以及电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704796A (zh) * 2004-05-31 2005-12-07 亚洲光学股份有限公司 并列式雷射水平仪的分光装置
TWM372483U (en) * 2009-07-10 2010-01-11 Altek Corp Illumination module and portable electronic device using the same
CN104913268A (zh) * 2014-03-10 2015-09-16 波音公司 具有光均化器的光组件
CN104834171A (zh) * 2015-04-27 2015-08-12 杨毅 激光发光装置、光源和投影显示系统
CN106405565A (zh) * 2016-08-24 2017-02-15 上海兰宝传感科技股份有限公司 一种无人机避障/定高系统
CN109140278A (zh) * 2017-06-26 2019-01-04 光宝科技股份有限公司 光源模块
CN206877018U (zh) * 2017-07-07 2018-01-12 深圳奥比中光科技有限公司 结构紧凑的光学投影模组
CN210629640U (zh) * 2019-11-08 2020-05-26 南昌欧菲生物识别技术有限公司 光发射模组、深度相机和电子设备
CN111352178A (zh) * 2020-04-21 2020-06-30 武汉喻湖光电技术有限公司 一种可调发散角的3d传感照明光源
CN111999900A (zh) * 2020-05-25 2020-11-27 欧菲微电子技术有限公司 用于tof的光路改变组件以及电子设备

Similar Documents

Publication Publication Date Title
US20200234024A1 (en) Under-screen fingerprint recognition system, liquid crystal display fingerprint recognition apparatus and electronic device
CN103765294A (zh) 用于头戴式显示器的轻质目镜
CN104048214A (zh) 光源组件和照明装置以及图像投影装置
CN112379528A (zh) 发射模组、取像模组及电子设备
WO2019174434A1 (zh) 结构光投射器、深度相机和电子设备
US12007581B2 (en) Ultra-compact, highly stable projector modules
WO2021027573A1 (zh) 激光投射器、深度相机及电子装置
CN111694161A (zh) 光发射模组、深度相机及电子设备
CN113113836A (zh) 光学传感器、电子设备
WO2022155917A1 (zh) 发射模组、取像模组及电子设备
CN111510597A (zh) 摄像模组及电子设备
KR20200113438A (ko) 카메라 모듈
CN215499365U (zh) 投影镜头、光投射器以及深度相机模组
US20210141199A1 (en) Small scale light projection device facilitating the structuring of light emitted for depth-calculating purposes
CN115407308A (zh) 一种3d传感模组、3d传感方法及电子设备
US20210389654A1 (en) Projection module, imaging device, and electronic device
TWI683138B (zh) 鐳射投射模組、深度相機和電子裝置
CN113669650A (zh) 一种反光器件和白光激光光源
CN114815120A (zh) 发射模组、取像模组及电子设备
CN109946835B (zh) 投影装置
CN109946834B (zh) 投影装置
CN110471192B (zh) 投射装置和衍射光学组件及其制造方法以及带有投射装置的电子设备
JP2006073250A (ja) 照明装置
CN109946909B (zh) 投影装置
CN214846079U (zh) 发射模组、取像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/11/2023)