WO2022153660A1 - レーダの設置角度調整方法 - Google Patents

レーダの設置角度調整方法 Download PDF

Info

Publication number
WO2022153660A1
WO2022153660A1 PCT/JP2021/042109 JP2021042109W WO2022153660A1 WO 2022153660 A1 WO2022153660 A1 WO 2022153660A1 JP 2021042109 W JP2021042109 W JP 2021042109W WO 2022153660 A1 WO2022153660 A1 WO 2022153660A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
angle
adjustment step
installation
condition
Prior art date
Application number
PCT/JP2021/042109
Other languages
English (en)
French (fr)
Inventor
英晃 白永
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US18/272,098 priority Critical patent/US20240069159A1/en
Priority to CN202180078006.9A priority patent/CN116490795A/zh
Priority to JP2022575093A priority patent/JPWO2022153660A1/ja
Publication of WO2022153660A1 publication Critical patent/WO2022153660A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/92Radar or analogous systems specially adapted for specific applications for traffic control for velocity measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/4034Antenna boresight in elevation, i.e. in the vertical plane

Definitions

  • This disclosure relates to a radar installation angle adjustment method.
  • This application claims priority based on Japanese Application No. 2021-004844 filed on January 15, 2021, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses an axis adjusting device that adjusts the axis of an in-vehicle radar mounted on a vehicle.
  • the radar installation angle adjustment method is a radar installation angle adjustment method for adjusting the radar installation angle for detecting an object in the target area, and operates the radar installed in the installation target.
  • the first adjustment step for adjusting the angle of the radar and the radar whose angle is adjusted in the first adjustment step are operated without causing the radar to be operated, and the angle of the radar is adjusted based on the detection result by the radar. Includes 2 adjustment steps.
  • the present disclosure can be realized not only as a radar installation angle adjustment method having the above-mentioned characteristic steps, but also as a radar used in the radar installation angle adjustment method, or in a computer using the above method. It can be realized as a computer program that executes a part.
  • Radar is also used for traffic monitoring at intersections and roads.
  • Radars for traffic monitoring (hereinafter, also referred to as "infrastructure radars") are installed at intersections or roads by construction personnel, and the angle of the installed radars is adjusted by the coordinating personnel.
  • the power supply is not connected to the radar, and the construction technician does not have knowledge about the angle adjustment of the radar, so the adjustment by the construction technician is difficult.
  • the installed radar is turned on at the adjustment stage, and the adjuster adjusts the angle so that the irradiation axis faces in an appropriate direction while checking the output.
  • the radar installed by the construction staff has different angles, and the optimum angle differs depending on the installation location, so it may be necessary to remove the radar and install it again in order to make correct adjustments. Was complicated.
  • the installation angle of the radar for traffic monitoring can be easily adjusted.
  • the radar installation method is a radar installation angle adjustment method for adjusting the installation angle of the infrastructure radio wave radar that detects an object in the target area, and is a radar installed in the installation target.
  • the first adjustment step for adjusting the angle of the radar and the radar whose angle was adjusted in the first adjustment step are operated without operating the radar, and the angle of the radar is adjusted based on the detection result by the radar.
  • the angle of the radar can be adjusted even when the power is not turned on to the radar. Therefore, since the person in charge of the construction of the radar installation work can execute the first adjustment step, the radar installation angle can be easily adjusted.
  • operation as used herein means that the radar detects an object. That is, even if the accessory portion attached to the radar, for example, the angle confirmation unit described later, is in an operable state, the radar is in a non-operating state unless the radar can exert the object detection function.
  • the first adjustment step includes determining whether or not the confirmation result in the angle confirmation unit attached to the radar satisfies the preset first condition, and the confirmation result is the first condition.
  • the first adjustment step may be completed when the above conditions are satisfied. As a result, the executing subject of the first adjustment step can easily determine the completion of the first adjustment step. Therefore, even a construction technician who does not have knowledge about radar adjustment can easily perform the first adjustment step.
  • the angle confirmation unit may be a sighting device, and the first condition may be that the field of view of the sighting device is included in the target area. The completion of the first adjustment step can be easily determined by using the sighting device.
  • the angle confirmation unit is an angle sensor that detects at least one of the horizontal angle and the depression angle of the radar, and the first condition includes the angle detected by the angle sensor within a predetermined setting range. It may be. Thereby, by comparing the angle detected by the angle sensor with the set range, it is possible to clearly determine whether or not the first condition is satisfied. Therefore, the completion of the first adjustment step can be easily determined.
  • the first adjustment step may include determining the set range based on the angle detected by the angle sensor and the installation height of the radar. Thereby, an appropriate setting range can be determined according to the angle detected by the angle sensor and the installation height of the radar.
  • the setting range may be determined by an information terminal that receives angle information indicating the angle and height information indicating the installation height detected by the angle sensor. Thereby, the setting range can be easily determined by the information terminal.
  • the angle confirmation unit can be attached to and detached from the radar, and the angle confirmation unit may be attached to the radar in the first adjustment step. As a result, the angle confirmation unit can be attached to the radar only when the first adjustment step is executed.
  • the second adjustment step includes determining whether or not the detection result by the radar satisfies the preset second condition, and when the detection result satisfies the second condition, the second adjustment step is performed.
  • the adjustment step may be completed. As a result, the executing subject of the second adjustment step can easily determine the completion of the second adjustment step.
  • the second condition may be that the position of the object detected by the radar is included in a predetermined range. Thereby, it is possible to clearly determine whether or not the second condition is satisfied based on the position of the object detected by the radar.
  • the second condition may be that the difference between the number of objects detected by the radar and the number of objects in the target area is included in the predetermined setting range. Thereby, it is possible to clearly determine whether or not the second condition is satisfied based on the number of objects detected by the radar.
  • FIG. 1 is a diagram showing an example of using the radar according to the present embodiment.
  • the radar 100 according to this embodiment is a radio wave radar for traffic monitoring (radio wave radar for infrastructure).
  • the radar 100 is attached to an arm 200 (see FIG. 2) or the like provided at an intersection or a road.
  • the radar 100 is a millimeter-wave radar and a radio wave sensor.
  • the radar 100 irradiates the target area 300 on the road with radio waves (millimeter waves) and receives the reflected waves to detect an object (for example, vehicle V) in the target area 300. More specifically, the radar 100 can detect the distance to the vehicle V traveling on the road, the speed of the vehicle V, and the horizontal angle of the position where the vehicle V exists with respect to the radio wave irradiation axis of the radar.
  • the radar 100 is installed so that the direction of the radio wave irradiation axis (the method shown by the broken line in FIG. 1; hereinafter referred to as the "reference direction") faces the target area 300. If the reference direction does not correctly face the target area 300, the radar 100 cannot accurately detect an object in the target area 300. Therefore, in the present embodiment, the angle of the radar 100 is adjusted so that the reference direction faces the target area 300 by the radar installation angle adjusting method as described below.
  • FIG. 2 is a perspective view showing an example of the external configuration of the radar 100 according to the present embodiment.
  • the radar 100 has a transmission / reception surface 101 for transmitting / receiving millimeter waves.
  • the reference direction is the normal direction of the transmission / reception surface 101.
  • the radar 100 includes at least one transmitting antenna (not shown) and a plurality of (for example, two) receiving antennas.
  • the radar 100 transmits a modulated wave, which is a millimeter wave, from the transmitting antenna through the transmission / reception surface 101.
  • the modulated wave hits the object and is reflected, and the receiving antenna receives the reflected wave.
  • the radar 100 performs signal processing on the transmitted wave signal and the received wave signal by a signal processing circuit (not shown), and determines the distance to the object, the angle at which the object exists (hereinafter referred to as "the position of the object"), and the speed of the object. To detect.
  • the radar 100 is configured so that the installation angle can be adjusted.
  • the radar 100 includes a radar main body 102, a depression angle adjusting unit 103, and a horizontal angle adjusting unit 104.
  • the radar main body 102 is formed in a box shape, and the depression angle adjusting portion 103 is attached to the side surface of the radar main body 102.
  • the depression angle adjusting unit 103 includes a pair of arms 103a and a connecting unit 103b that connects the pair of arms 103a.
  • Each of the pair of arms 103a is rotatable about a horizontal axis parallel to the transmission / reception surface 101 on both side surfaces of the radar body 102.
  • the radar main body 102 can be rotated about a horizontal axis by the depression angle adjusting unit 103, whereby the depression angle of the radar main body 102 is adjusted.
  • the connecting portion 103b is connected to the horizontal angle adjusting portion 104.
  • the horizontal angle adjusting unit 104 is fixed to the pole to be installed.
  • the horizontal angle adjusting portion 104 is rotatable about the vertical axis on the upper surface of the connecting portion 103b.
  • the radar body 102 connected to the horizontal angle adjusting unit 104 via the depression angle adjusting unit 103 can rotate about the vertical axis by the horizontal angle adjusting unit 104, whereby the horizontal angle of the radar body 102 is adjusted.
  • FIG. 3 is a flowchart showing an example of a radar installation angle adjusting method according to the present embodiment.
  • the person in charge of construction installs the radar 100 on the installation target (pole) (step S0). At this point, the radar 100 is not connected to the power supply.
  • step S11 the first adjustment step is executed (step S11).
  • the angle of the radar 100 is adjusted without operating the radar 100.
  • the radar 100 is provided with an angle confirmation unit 400.
  • the angle confirmation unit 400 may be used.
  • 4A to 4C are examples of the angle confirmation unit 400 according to the present embodiment.
  • the angle confirmation unit 400 is the sighting device 400A.
  • the sighting device 400A is fixed to the radar main body 102 so that the optical axis (central axis of the sighting device) is parallel to the reference direction of the radar 100.
  • the user (for example, a person in charge of construction) executes the first adjustment step while checking the field of view of the sighting device 400A.
  • FIG. 5 is an example of the field of view of the sighting device 400A.
  • the sighting device 400A is provided with a slit 410, and this slit 410 is the field of view of the sighting device 400A.
  • FIG. 6 is a block diagram showing a connection relationship between the devices when the information terminal is used in the first adjustment step.
  • the angle confirmation unit 400 is connected to the information terminal 500 by wire or wirelessly, and transmits the confirmation result data to the information terminal 500.
  • the information terminal 500 is, for example, a smartphone, a tablet, or a laptop computer.
  • the sighting device 400A may include an image sensor and can output a field image of the sighting device 400A.
  • the field image of the sighting device 400A is displayed on the display of the information terminal 500.
  • the user can adjust the angle of the radar 100 while checking the field of view image displayed on the display of the information terminal 500.
  • the installation position of the radar 100 is a position where the user cannot look into the sighting device 400A
  • the user can confirm the field of view of the sighting device 400A on the display of the information terminal 500.
  • the angle confirmation unit 400 is the angle sensor 400B.
  • the angle sensor 400B can detect, for example, a horizontal angle and a vertical angle (depression angle).
  • the angle sensor 400B is connected to the information terminal 500.
  • the data of the detected value (angle) of the angle sensor 400B is transmitted to the information terminal 500.
  • the information terminal 500 can display the horizontal angle and the depression angle detected by the angle sensor 400B on the display.
  • the display of the information terminal 500 may display an appropriate horizontal angle and depression angle of the radar 100 or an appropriate range of the horizontal angle and an appropriate range of the depression angle.
  • the user can adjust the angle of the radar 100 while checking the horizontal angle and the depression angle detected by the angle sensor 400B displayed on the display of the information terminal 500.
  • the user can easily adjust the angle of the radar 100 while comparing the horizontal angle and depression angle detected by the angle sensor 400B with the appropriate horizontal angle and depression angle or the appropriate range of horizontal angle and the appropriate range of depression angle. It can be adjusted to an appropriate horizontal angle and depression angle.
  • the installation height (height from the ground) of the radar 100 may be input to the information terminal 500, and the information terminal 500 may determine an appropriate range of depression angle based on the installation height.
  • the appropriate depression angle of the radar 100 varies depending on the installation height of the radar. Therefore, the appropriate range of the depression angle according to the installation height of the radar 100 is appropriately set.
  • the angle confirmation unit 400 may be attached to and detached from the radar body 102.
  • the radar main body 102 is provided with a mounting portion for attaching / detaching the angle confirmation portion 400, and by mounting the angle confirmation portion 400 on the mounting portion, the angle confirmation portion 400 is mounted at an appropriate angle with respect to the radar main body 102. Will be done.
  • the angle confirmation unit 400 may be attached to the radar 100 when the first adjustment step is executed, and may be removed from the radar 100 when the first adjustment step is completed.
  • a smartphone 400C having a function as an angle confirmation unit 400 is attached to the radar main body 102.
  • the radar main body 102 is provided with a fixing portion 420 for fixing the smartphone 400C.
  • a smartphone 400C can be attached to and detached from the fixed portion 420.
  • the built-in camera of the smartphone 400C can be used as a sighting device. Further, the angle sensor (direction sensor and gyro sensor) built in the smartphone 400C can be used.
  • step S12 The user determines whether or not the confirmation result by the angle confirmation unit 400 satisfies a predetermined first condition.
  • the first condition is that the field of view of the sighting device 400A is included in (at least a part of) the target area 300.
  • the first condition can be that the visual field includes the adjustment point. If the field of view of the sight 400A includes an adjustment point, the user determines that the first condition is met. If the field of view of the sight 400A does not include the adjustment point, the user determines that the first condition is not met.
  • the first condition is that the value detected by the angle sensor 400B falls within a predetermined setting range.
  • the setting range can be the above-mentioned appropriate range.
  • the user determines that the first condition is satisfied.
  • the value detected by the angle sensor 400B is out of the set range, the user determines that the first condition is not satisfied.
  • step S12 If the confirmation result by the angle confirmation unit 400 does not satisfy the first condition (NO in step S12), it is determined that the first adjustment step has not been completed. In this case, the process returns to step S11 and the first adjustment step is continued.
  • step S12 If the confirmation result by the angle confirmation unit 400 satisfies the first condition (YES in step S12), it is determined that the first adjustment step has been completed. In this case, the process proceeds to the next step S21.
  • the first adjustment step S11 and step S12 described above may be executed by a construction person when the radar 100 is installed on the installation target.
  • the first adjustment step as described above even a construction technician who does not have knowledge about the angle adjustment of the radar can easily adjust the angle of the radar 100. Further, since the angle of the radar 100 is adjusted substantially appropriately in the first adjustment step, the person in charge of adjustment only needs to fine-tune the angle of the radar 100 in the second adjustment step later, which imposes a burden on the adjustment work. It will be reduced.
  • the second adjustment step is executed (step S21).
  • the second adjustment step is executed in the angle adjustment work of the radar 100 by the adjustment person.
  • the power is turned on to the radar 100.
  • the radar 100 is operated, and the angle of the radar 100 is adjusted based on the detection result of the radar 100.
  • FIG. 7 is a block diagram showing a connection relationship between the devices when the information terminal is used in the second adjustment step.
  • the radar 100 is connected to the information terminal 600 by wire or wirelessly, and transmits the detection result data to the information terminal 600.
  • the information terminal 600 is, for example, a smartphone, a tablet, or a laptop computer.
  • the detection result of the radar 100 is displayed on the display of the information terminal 600.
  • the information terminal 600 may process the detection data of the radar 100 and display the detected travel locus of the vehicle on the screen.
  • 8A and 8B are diagrams showing a display example of the traveling locus of the vehicle.
  • the screen includes a lane boundary line L to represent a lane.
  • the travel locus of the detected vehicle V is displayed on the screen.
  • the broken line vehicle figure V1 shows the position of the vehicle detected in the past
  • the solid line vehicle figure V2 shows the latest position of the vehicle. Since the position of the vehicle in chronological order is displayed, the traveling locus of the vehicle is shown.
  • the user can determine whether or not the detected vehicle position is within a predetermined range. In a specific example, the user can determine whether or not the detected vehicle trajectory is included in the lane.
  • FIG. 8A shows a case where the detected vehicle trajectory is included in the lane. In this case, it can be determined that the radar 100 is adjusted to an appropriate angle.
  • FIG. 8B shows a case where the detected vehicle trajectory deviates from the lane. If the vehicle's trajectory deviates from the lane even though the vehicle has not changed lanes, it can be determined that the radar 100 is not adjusted to an appropriate angle. The user can adjust the angle of the radar 100 while checking the trajectory of the vehicle displayed on the display of the information terminal 600.
  • the information terminal 600 may process the detection data of the radar 100 and display the number of detected vehicles for each lane on the screen.
  • FIG. 9 is a diagram showing a display example of the number of vehicles in each lane.
  • the number of vehicles (10, 15, 7, 20) is displayed in association with the lane numbers (# 1, # 2, # 3, # 4).
  • the user visually counts the number of vehicles in each lane and compares it with the number of vehicles in each lane displayed on the screen. If the number of vehicles in each lane visually confirmed matches the number of vehicles in each lane displayed on the screen, it can be determined that the radar 100 is adjusted to an appropriate angle.
  • the radar 100 is not adjusted to an appropriate angle.
  • the user can adjust the angle of the radar 100 while checking the number of vehicles displayed on the display of the information terminal 600.
  • the user determines whether or not the detection result by the radar 100 satisfies a predetermined second condition (step S22).
  • the second condition is that the position of the detected object (vehicle) is included within a predetermined range.
  • the second condition is that the detected vehicle trajectory is included in the lane.
  • the user determines that the second condition is satisfied. If the detected vehicle trajectory deviates from the lane even though the vehicle has not changed lanes, the user determines that the second condition is not satisfied.
  • the second condition is that the difference between the number of detected objects (vehicles) and the number of objects (vehicles) in the target area 300 is included in the predetermined setting range.
  • the second condition is that the difference between the detected number of vehicles in each lane and the number of vehicles in each lane visually confirmed by the user is included in the setting range.
  • the user determines that the second condition is satisfied. If the difference between the detected number of vehicles per lane and the visually confirmed number of vehicles per lane is not included in the set range, the user determines that the second condition is not satisfied.
  • the setting range is preferably a range having a certain width, such as 5 or less and 0 or more. This makes it possible to determine whether or not the radar angle has been adjusted accurately by allowing a counting error when it is difficult to visually count the number of vehicles accurately, for example, when the contrast of the camera is low. ..
  • step S22 If the detection result by the radar 100 does not satisfy the second condition (NO in step S22), it is determined that the second adjustment step has not been completed. In this case, the process returns to step S21, and the second adjustment step is continued.
  • step S22 If the detection result by the radar 100 satisfies the second condition (YES in step S22), it is determined that the second adjustment step is completed. In this case, the adjustment of the installation angle of the radar 100 is completed.
  • Step S12 for determining whether or not the confirmation result by the angle confirmation unit 400 satisfies the first condition, but the present invention is not limited to this.
  • Step S12 may be executed by the information terminal 500.
  • the angle confirmation unit 400 is the sighting device 400A
  • an image of a landscape that enters the field of view of the sighting device 400A when the radar 100 is adjusted to an appropriate angle is stored in advance in the information terminal 500 as a standard image.
  • the information terminal 500 matches the visual field image output from the sighting device 400A with the standard image, determines that the first condition is satisfied if the similarity between the two images is equal to or higher than a predetermined value, and the similarity is a predetermined value. If it is less than, it can be determined that the first condition is not satisfied.
  • the appropriate range of the horizontal angle and the appropriate range of the depression angle of the radar 100 are stored in advance in the information terminal 500 as the setting range.
  • the information terminal 500 compares the detected values of the horizontal angle and the depression angle by the angle sensor 400B with the set range, determines that the first condition is satisfied if the detected value falls within the set range, and the detected value deviates from the set range. For example, it can be determined that the first condition is not satisfied.
  • step S12 may be executed by the smartphone 400C.
  • step S12 may be executed by the server instead of the information terminal 500.
  • Step S22 for determining whether or not the detection result by the radar 100 satisfies the second condition, but the present invention is not limited to this.
  • Step S22 may be executed by the information terminal 600.
  • the information terminal 600 calculates the trajectory of the vehicle for each lane based on the detection data of the radar 100, and determines whether or not the trajectory of the vehicle is included in the lane. If the locus of the vehicle is in the lane, it can be determined that the second condition is satisfied, and if the locus of the vehicle deviates from the lane, it can be determined that the second condition is not satisfied.
  • the information terminal 600 detects the number of vehicles in each lane based on the detection data of the radar 100, and detects the number of vehicles in each lane by processing an image by another detection means, for example, a camera. Determine if they match. If the number of vehicles obtained from the detection data of the radar 100 and the number of vehicles detected by another detection means match, it is determined that the second condition is satisfied, and if they do not match, the second condition is satisfied. It can be determined that the condition is not satisfied.
  • step S22 may be executed by the server instead of the information terminal 600.
  • the method of adjusting the installation angle of the radar 100 adjusts the installation angle of the radar 100, which is a radio wave radar for infrastructure that detects the vehicle V in the target area 300.
  • the method of adjusting the installation angle of the radar 100 includes a first adjustment step S11 and a second adjustment step S21.
  • the first adjustment step S11 the angle of the radar 100 is adjusted without operating the radar 100 installed on the installation target.
  • the second adjustment step S21 the radar 100 whose angle is adjusted in the first step is operated, and the angle of the radar 100 is adjusted based on the detection result by the radar 100.
  • the first adjustment step S11 the angle of the radar 100 can be adjusted even when the power is not turned on to the radar 100. Therefore, since the person in charge of the construction of the radar 100 can execute the first adjustment step S11, the installation angle of the radar 100 can be easily adjusted.
  • the first adjustment step S11 may include a step S12 of determining whether or not the confirmation result in the angle confirmation unit 400 attached to the radar 100 satisfies the preset first condition.
  • the first adjustment step S11 may be completed when the confirmation result by the angle confirmation unit 400 satisfies the first condition.
  • the executing body of the first adjustment step S11 (for example, the person in charge of construction) can easily determine the completion of the first adjustment step S11. Therefore, even a construction technician who does not have knowledge about radar adjustment can easily execute the first adjustment step S11.
  • the angle confirmation unit 400 may be a sighting device 400A.
  • the first condition may be that the field of view of the sight 400A is included in the target area 300. By using the sighting device 400A, the completion of the first adjustment step S11 can be easily determined.
  • the angle confirmation unit 400 may be an angle sensor 400B that detects at least one of the horizontal angle and the depression angle of the radar 100.
  • the first condition may be that the angle detected by the angle sensor 400B is included in the predetermined setting range. Thereby, by comparing the angle detected by the angle sensor 400B with the set range, it is possible to clearly determine whether or not the second condition is satisfied. Therefore, the completion of the first adjustment step S11 can be easily determined.
  • the first adjustment step S11 may include determining the set range based on the angle detected by the angle sensor 400B and the installation height of the radar 100. Thereby, an appropriate setting range can be determined according to the angle detected by the angle sensor 400B and the installation height of the radar 100.
  • the setting range may be determined by the information terminal 500 that receives the angle information indicating the angle detected by the angle sensor 400B and the height information indicating the installation height. As a result, the setting range can be easily determined by the information terminal 500.
  • the angle confirmation unit 400 may be attached to and detached from the radar.
  • the angle confirmation unit 400 may be mounted on the radar.
  • the angle confirmation unit 400 can be attached to the radar 100 only when the first adjustment step is executed.
  • the second adjustment step S21 may include determining whether or not the detection result by the radar 100 satisfies the preset second condition.
  • the second adjustment step S21 may be completed when the detection result by the radar 100 satisfies the second condition.
  • the executing entity of the second adjustment step S21 (for example, the person in charge of adjustment) can easily determine the completion of the second adjustment step S21.
  • the second condition may be that the trajectory of the vehicle detected by the radar 100 is included in the lane. Thereby, it is possible to clearly determine whether or not the second condition is satisfied based on the trajectory of the vehicle detected by the radar 100.
  • the second condition may be that the difference between the number of vehicles per lane detected by the radar 100 and the number of vehicles V per lane in the target area 300 is included in the predetermined setting range. Thereby, it is possible to clearly determine whether or not the second condition is satisfied based on the number of vehicles in each lane detected by the radar 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

交通監視用のレーダの設置角度の調整を容易にする。レーダの設置角度調整方法は、対象エリアにおける物体を検出するインフラ用電波レーダの設置角度を調整するためのレーダの設置角度調整方法であって、設置対象に設置されたレーダを稼働させずに、前記レーダの角度を調整する第1調整ステップと、前記第1調整ステップにおいて角度が調整されたレーダを稼働させ、前記レーダによる検出結果に基づいて、前記レーダの角度を調整する第2調整ステップと、を含む。

Description

レーダの設置角度調整方法
 本開示は、レーダの設置角度調整方法に関する。本出願は、2021年1月15日出願の日本出願第2021-004844号に基づく優先権を主張し、前記日本出願に記載された全ての内容を援用するものである。
 特許文献1には、車両に搭載された車載レーダの軸調整を行う軸調整装置が開示されている。
特開2015-68746号公報
 本開示の一態様に係るレーダの設置角度調整方法は、対象エリアにおける物体を検出するレーダの設置角度を調整するためのレーダの設置角度調整方法であって、設置対象に設置されたレーダを稼働させずに、前記レーダの角度を調整する第1調整ステップと、前記第1調整ステップにおいて角度が調整されたレーダを稼働させ、前記レーダによる検出結果に基づいて、前記レーダの角度を調整する第2調整ステップと、を含む。
 本開示は、上記のような特徴的なステップを備えるレーダの設置角度調整方法として実現することができるだけでなく、レーダの設置角度調整方法に用いられるレーダとして実現したり、コンピュータに上記の方法の一部を実行させるコンピュータプログラムとして実現したりすることができる。
実施形態に係るレーダの使用例を示す図である。 実施形態に係るレーダの外観構成の一例を示す斜視図である。 実施形態に係るレーダの設置角度調整方法の一例を示すフローチャートである。 実施形態に係るレーダの外観構成の他の一例を示す斜視図である。 実施形態に係るレーダの外観構成の他の一例を示す斜視図である。 実施形態に係るレーダの外観構成の他の一例を示す斜視図である。 照準器の視野の一例である。 第1調整ステップにおいて情報端末を使用する場合における装置間の接続関係を示すブロック図である。 第2調整ステップにおいて情報端末を使用する場合における装置間の接続関係を示すブロック図である。 車両の走行軌跡の表示例を示す図である。 車両の走行軌跡の表示例を示す図である。 車線毎の車両の数の表示例を示す図である。
 <本開示が解決しようとする課題>
 レーダは交差点、道路等での交通監視にも利用されている。交通監視用のレーダ(以下、「インフラレーダ」ともいう)は、工事担当者によって交差点又は道路に設置され、設置されたレーダの角度が調整担当者によって調整される。工事担当者による設置の時点では、レーダに電源が接続されておらず、さらに工事担当者はレーダの角度調整についての知識を有していないために、工事担当者による調整は困難である。設置されたレーダは、調整段階において電源が投入され、調整担当者が出力を確認しながら適切な方向に照射軸が向くように角度を調整する。しかし、工事担当者によって設置されたレーダは角度がまちまちであり、また設置場所毎に最適な角度が異なるため、正しく調整するためにはレーダを一旦取り外し再度設置する必要がある場合もあるなど調整が煩雑であった。
 <本開示の効果>
 本開示によれば、交通監視用のレーダの設置角度を容易に調整することができる。
 <本開示の実施形態の概要>
 以下、本開示の実施形態の概要を列記して説明する。
 (1) 本実施形態に係るレーダの設置方法は、対象エリアにおける物体を検出するインフラ用電波レーダの設置角度を調整するためのレーダの設置角度調整方法であって、設置対象に設置されたレーダを稼働させずに、前記レーダの角度を調整する第1調整ステップと、前記第1調整ステップにおいて角度が調整された前記レーダを稼働させ、前記レーダによる検出結果に基づいて、前記レーダの角度を調整する第2調整ステップと、を含む。これにより、第1調整ステップにおいて、レーダに電源が投入されていなくてもレーダの角度を調整することができる。したがって、レーダの設置工事を施工した工事担当者が第1調整ステップを実行することができるため、レーダの設置角度を容易に調整することが可能となる。なお、ここでいう「稼働」とは、レーダによる物体の検出機能を発揮させることをいう。つまり、レーダに取り付けられた付属部分、例えば後述する角度確認部等が動作可能な状態であっても、レーダによる物体の検出機能を発揮させることができなければ、レーダは非稼働状態である。
 (2) 前記第1調整ステップは、前記レーダに取り付けられた角度確認部における確認結果が予め設定された第1条件を満たすか否かを判定することを含み、前記確認結果が前記第1条件を満たす場合に前記第1調整ステップが完了してもよい。これにより、第1調整ステップの実行主体が、第1調整ステップの完了を容易に判断することができる。したがって、レーダの調整に関する知識を有しない工事担当者であっても、容易に第1調整ステップを実行することができる。
 (3) 前記角度確認部は照準器であり、前記第1条件は前記照準器における視野が前記対象エリアに含まれることであってもよい。照準器を用いることによって容易に第1調整ステップの完了を判断することができる。
 (4) 前記角度確認部は、前記レーダの水平角及び俯角のうち少なくとも1つの角度を検出する角度センサであり、前記第1条件は前記角度センサが検出した前記角度が所定の設定範囲に含まれることであってもよい。これにより、角度センサが検出した角度と設定範囲とを比較することにより、明確に第1条件が満たされたか否かを判定することができる。したがって、容易に第1調整ステップの完了を判断することができる。
 (5) 前記第1調整ステップは、前記角度センサが検出した前記角度及び前記レーダの設置高さに基づいて前記設定範囲を決定することを含んでもよい。これにより、角度センサが検出した角度及びレーダの設置高さに応じて適切な設定範囲を決定することができる。
 (6) 前記設定範囲は、前記角度センサが検出した前記角度を示す角度情報及び前記設置高さを示す高さ情報を受け付ける情報端末によって決定されてもよい。これにより、情報端末によって容易に設定範囲を決定することができる。
 (7) 前記角度確認部は前記レーダに着脱可能であり、前記第1調整ステップにおいて、前記角度確認部が前記レーダに装着されてもよい。これにより、第1調整ステップの実行時にのみ、角度確認部をレーダに装着することができる。
 (8) 前記第2調整ステップは、前記レーダによる検出結果が予め設定された第2条件を満たすか否かを判定することを含み、前記検出結果が前記第2条件を満たす場合に前記第2調整ステップが完了してもよい。これにより、第2調整ステップの実行主体が、第2調整ステップの完了を容易に判断することができる。
 (9) 前記第2条件は、前記レーダによって検出された物体の位置が所定の範囲内に含まれることであってもよい。これにより、レーダによって検出される物体の位置によって、第2条件が満たされたか否かを明確に判定することができる。
 (10) 前記第2条件は、前記レーダによって検出される物体の数と前記対象エリア内における物体の数との差が所定の設定範囲に含まれることであってもよい。これにより、レーダによって検出される物体の数によって、第2条件が満たされたか否かを明確に判定することができる。
 <本開示の実施形態の詳細>
 以下、図面を参照しつつ、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 [1.レーダ]
 図1は、本実施形態に係るレーダの使用例を示す図である。本実施形態に係るレーダ100は、交通監視用の電波レーダ(インフラ用電波レーダ)である。レーダ100は、交差点又は道路に設けられたアーム200(図2参照)等に取り付けられる。レーダ100は、ミリ波レーダであり、電波センサである。レーダ100は、道路上の対象エリア300に電波(ミリ波)を照射し、その反射波を受信することで対象エリア300内の物体(例えば車両V)を検出する。さらに具体的には、レーダ100は道路を走行する車両Vまでの距離、車両Vの速度、及びレーダの電波照射軸に対する車両Vが存在する位置の水平角度を検出することができる。
 レーダ100は、電波照射軸の方向(図1において破線で示す方法。以下、「基準方向」という。)が対象エリア300を向くように設置される。基準方向が正しく対象エリア300を向いていなければ、レーダ100によって対象エリア300内の物体を正確に検出することができない。このため、本実施形態では、以下に説明するようなレーダの設置角度調整方法によって、基準方向が対象エリア300を向くようにレーダ100の角度が調整される。
 図2は、本実施形態に係るレーダ100の外観構成の一例を示す斜視図である。図2に示すように、レーダ100は、ミリ波を送受信する送受信面101を有している。基準方向は、送受信面101の法線方向である。レーダ100は、図示しない少なくとも1つの送信アンテナ及び複数(例えば2つ)の受信アンテナを内蔵する。レーダ100は、送信アンテナから送受信面101を通じてミリ波である変調波を送信する。変調波は物体に当たり反射し、受信アンテナが反射波を受信する。レーダ100は、図示しない信号処理回路によって送信波信号及び受信波信号に対して信号処理を施し、物体までの距離及び物体の存在する角度(以下、「物体の位置」という)並びに物体の速度を検出する。
 レーダ100は、設置角度を調整可能に構成されている。レーダ100は、レーダ本体102と、俯角調整部103と、水平角調整部104とを含む。レーダ本体102は箱状に形成されており、俯角調整部103がレーダ本体102の側面に取り付けられている。俯角調整部103は、一対のアーム103aと、一対のアーム103aを連結する連結部103bとを含む。一対のアーム103aのそれぞれは、レーダ本体102の両側の側面において、送受信面101に平行な水平軸を中心として回転可能である。レーダ本体102は、俯角調整部103によって水平軸を中心に回転可能であり、これによってレーダ本体102の俯角が調整される。
 連結部103bは、水平角調整部104に接続されている。水平角調整部104は、設置対象であるポールに固定される。水平角調整部104は、連結部103bの上面において、鉛直軸を中心として回転可能である。俯角調整部103を介して水平角調整部104に接続されたレーダ本体102は、水平角調整部104によって鉛直軸を中心に回転可能であり、これによってレーダ本体102の水平角が調整される。
 [2.レーダの設置角度調整方法]
 図3は、本実施形態に係るレーダの設置角度調整方法の一例を示すフローチャートである。
 まず工事担当者がレーダ100を設置対象(ポール)に設置する(ステップS0)。この時点では、レーダ100は電源に接続されていない。
 次に、第1調整ステップが実行される(ステップS11)。第1調整ステップでは、レーダ100が稼働されずに、レーダ100の角度調整が行われる。
 例えば、レーダ100には角度確認部400が設けられる。第1調整ステップでは、角度確認部400が用いられてもよい。図4A~図4Cは、本実施形態に係る角度確認部400の例である。
 図4Aの例では、角度確認部400が照準器400Aである。照準器400Aは、光軸(照準器の中心軸)がレーダ100の基準方向と平行となるようにレーダ本体102に固定される。ユーザ(例えば工事担当者)は、照準器400Aの視野を確認しながら第1調整ステップを実行する。図5は、照準器400Aの視野の一例である。図5の例では、照準器400Aにはスリット410が設けられており、このスリット410が照準器400Aの視野である。
 第1調整ステップにおいて、情報端末が使用されてもよい。図6は、第1調整ステップにおいて情報端末を使用する場合における装置間の接続関係を示すブロック図である。角度確認部400は、情報端末500に有線又は無線によって接続され、情報端末500に確認結果のデータを送信する。情報端末500は、例えばスマートフォン、タブレット、ラップトップコンピュータである。角度確認部400が照準器400Aである場合、照準器400Aは撮像素子を含み、照準器400Aの視野画像を出力可能であってもよい。例えば、照準器400Aの視野画像は、情報端末500のディスプレイに表示される。ユーザは情報端末500のディスプレイに表示された視野画像を確認しつつ、レーダ100の角度を調整することができる。これにより、レーダ100の設置位置が、ユーザが照準器400Aを覗き込むことができない位置である場合には、ユーザは情報端末500のディスプレイによって照準器400Aの視野を確認することができる。
 図4Bの例では、角度確認部400が角度センサ400Bである。角度センサ400Bは、例えば水平方向の角度と、垂直方向の角度(俯角)とを検出可能である。図6に示すように、角度センサ400Bは、情報端末500に接続される。角度センサ400Bの検出値(角度)のデータは、情報端末500へ送信される。例えば、情報端末500は、角度センサ400Bによって検出された水平角度及び俯角をディスプレイに表示することができる。さらに情報端末500のディスプレイには、レーダ100の適正な水平角度及び俯角又は水平角度の適正範囲及び俯角の適正範囲が表示されてもよい。ユーザは、情報端末500のディスプレイに表示された、角度センサ400Bによって検出された水平角度及び俯角を確認しつつ、レーダ100の角度を調整することができる。ユーザは、角度センサ400Bによって検出された水平角度及び俯角と、適正な水平角度及び俯角又は水平角度の適正範囲及び俯角の適正範囲とを比較しつつレーダ100の角度を調整することによって、容易に適正な水平角度及び俯角に調整することができる。
 情報端末500に、レーダ100の設置高さ(地面からの高さ)を入力し、情報端末500が設置高さに基づいて俯角の適正範囲を決定してもよい。レーダ100の適切な俯角は、レーダの設置高さに応じて変化する。したがって、レーダ100の設置高さに応じた俯角の適正範囲が適切に設定される。
 角度確認部400はレーダ本体102に着脱可能であってもよい。例えば、レーダ本体102に角度確認部400を着脱するための取付部が設けられ、角度確認部400を取付部に装着することで、レーダ本体102に対して適切な角度に角度確認部400が装着される。角度確認部400は、例えば第1調整ステップを実行するときにレーダ100に装着され、第1調整ステップが完了すればレーダ100から取り外されてもよい。
 図4Cの例では、角度確認部400としての機能を有するスマートフォン400Cがレーダ本体102に装着される。レーダ本体102には、スマートフォン400Cを固定するための固定部420が設けられている。固定部420には、スマートフォン400Cを着脱することができる。スマートフォン400Cの内蔵カメラを照準器として使用することができる。さらに、スマートフォン400Cの内蔵する角度センサ(方位センサ及びジャイロセンサ)を使用することができる。
 再び図3を参照する。ユーザは、角度確認部400による確認結果が、所定の第1条件を満たすか否かを判定する(ステップS12)。
 角度確認部400が照準器400Aである場合、第1条件は、照準器400Aにおける視野が対象エリア300(の少なくとも一部)に含まれることである。例えば、対象エリア300内の一点が調整ポイントに設定され、第1条件は、視野に調整ポイントが含まれることとすることができる。照準器400Aの視野に調整ポイントが含まれる場合、ユーザは、第1条件が満たされると判断する。照準器400Aの視野に調整ポイントが含まれない場合、ユーザは、第1条件が満たされないと判断する。
 角度確認部400が角度センサ400Bである場合、第1条件は、角度センサ400Bによる検出値が所定の設定範囲に入ることである。設定範囲は、上述した適正範囲とすることができる。角度センサ400Bによる検出値が設定範囲に入る場合、ユーザは、第1条件が満たされると判断する。角度センサ400Bによる検出値が設定範囲を外れる場合、ユーザは、第1条件が満たされないと判断する。
 角度確認部400による確認結果が、第1条件を満たしていない場合(ステップS12においてNO)、第1調整ステップが完了していないと判定される。この場合、ステップS11へ戻り、第1調整ステップが継続される。
 角度確認部400による確認結果が、第1条件を満たしている場合(ステップS12においてYES)、第1調整ステップが完了していると判定される。この場合、次のステップS21へ進む。
 上述した第1調整ステップS11及びステップS12は、レーダ100の設置対象への設置の際に、工事担当者によって実行されてもよい。上記のような第1調整ステップにより、レーダの角度調整に関する知識を有しない工事担当者であっても容易にレーダ100の角度を調整することができる。さらに、第1調整ステップにおいてレーダ100の角度が概ね適切に調節されているので、後の第2調整ステップにおいて、調整担当者がレーダ100の角度を微調整するだけでよく、調整作業の負担が軽減される。
 次に、第2調整ステップが実行される(ステップS21)。第2調整ステップは、調整担当者によるレーダ100の角度調整作業において実行される。角度調整作業では、レーダ100に電源が投入される。第2調整ステップでは、レーダ100が稼働され、レーダ100の検出結果に基づいて、レーダ100の角度調整が行われる。
 第2調整ステップにおいて、情報端末が使用されてもよい。図7は、第2調整ステップにおいて情報端末を使用する場合における装置間の接続関係を示すブロック図である。レーダ100は、情報端末600に有線又は無線によって接続され、情報端末600に検出結果のデータを送信する。情報端末600は、例えばスマートフォン、タブレット、ラップトップコンピュータである。
 レーダ100の検出結果は、情報端末600のディスプレイに表示される。例えば情報端末600は、レーダ100の検出データを処理し、検出された車両の走行軌跡を画面に表示してもよい。図8A及び図8Bは、車両の走行軌跡の表示例を示す図である。図8A及び図8Bに示すように、画面には、車線境界線Lが含まれ、車線が表現される。さらに、画面には、検出された車両Vの走行軌跡が表示される。図において、破線の車両の図形V1は過去に検出された車両の位置を示し、実線の車両の図形V2は車両の最新の位置を示す。時系列の車両の位置が表示されるため、車両の走行軌跡が示される。
 ユーザは、画面を確認することによって、検出された車両の位置が所定の範囲内に含まれるか否かを判定することができる。具体的な一例では、ユーザは、検出された車両の軌跡が車線内に含まれるか否かを判定することができる。図8Aは、検出された車両の軌跡が車線内に含まれる場合を示す。この場合、レーダ100が適切な角度に調整されていると判断することができる。図8Bは、検出された車両の軌跡が車線から逸脱している場合を示す。車両が車線変更をしていないのに車両の軌跡が車線から逸脱する場合、レーダ100が適切な角度に調整されていないと判断することができる。ユーザは情報端末600のディスプレイに表示された車両の軌跡を確認しつつ、レーダ100の角度を調整することができる。
 例えば情報端末600は、レーダ100の検出データを処理し、検出された車両の車線毎の数を画面に表示してもよい。図9は、車線毎の車両の数の表示例を示す図である。図9の例では、車線の番号(#1,#2,#3,#4)に対応づけて、車両台数(10,15,7,20)が表示されている。ユーザは目視によって各車線の車両の数を数え、画面に表示された車線毎の車両の数と比較する。目視によって確認した車線毎の車両の数と、画面に表示された車線毎の車両の数とが一致すれば、レーダ100が適切な角度に調整されていると判断することができる。目視によって確認した車線毎の車両の数と、画面に表示された車線毎の車両の数とが一致しなければ、レーダ100が適切な角度に調整されていないと判断することができる。ユーザは情報端末600のディスプレイに表示された車両の数を確認しつつ、レーダ100の角度を調整することができる。
 再び図3を参照する。ユーザは、レーダ100による検出結果が、所定の第2条件を満たすか否かを判定する(ステップS22)。
 例えば、第2条件は、検出された物体(車両)の位置が所定の範囲内に含まれることである。図8A及び図8Bに示す例では、検出された車両の軌跡が車線に含まれることが第2条件である。検出された車両の軌跡が車線内に含まれる場合、ユーザは、第2条件が満たされると判断する。車両が車線変更していないにもかかわらず、検出された車両の軌跡が車線から逸脱する場合、ユーザは、第2条件が満たされないと判断する。
 例えば、第2条件は、検出された物体(車両)の数と、対象エリア300内の物体(車両)の数との差が所定の設定範囲に含まれることである。図9に示す例では、検出された車線毎の車両の数と、ユーザが目視によって確認した車線毎の車両の数との差が設定範囲に含まれることが第2条件である。検出された車線毎の車両の数と、目視によって確認された車線毎の車両の数との差が設定範囲に含まれる場合、ユーザは、第2条件が満たされると判断する。検出された車線毎の車両の数と、目視によって確認された車線毎の車両の数との差が設定範囲に含まれない場合、ユーザは、第2条件が満たされないと判断する。設定範囲は、5台以下0台以上等、一定の幅を有する範囲とすることが好ましい。これにより、例えばカメラのコントラストが低い等、目視では正確な車両台数を数えることが困難な場合に、計数の誤差を許容してレーダの角度が正確に調整されたか否かを判断することができる。
 レーダ100による検出結果が、第2条件を満たしていない場合(ステップS22においてNO)、第2調整ステップが完了していないと判定される。この場合、ステップS21へ戻り、第2調整ステップが継続される。
 レーダ100による検出結果が、第2条件を満たしている場合(ステップS22においてYES)、第2調整ステップが完了していると判定される。この場合、レーダ100の設置角度の調整が完了する。
 [3.変形例]
 上述した実施形態では、角度確認部400による確認結果が第1条件を満たすか否かを判定するステップS12がユーザによって実行されたが、これに限定されない。情報端末500によってステップS12が実行されてもよい。
 角度確認部400が照準器400Aである場合、例えば、レーダ100が適正な角度に調整された場合に照準器400Aの視野に入る景色の画像が標準画像として情報端末500に予め記憶される。情報端末500は、照準器400Aから出力された視野画像と標準画像とをマッチングし、両画像の類似度が所定値以上であれば第1条件を満たしていると判定し、類似度が所定値未満であれば第1条件を満たしていないと判定することができる。
 角度確認部400が角度センサ400Bである場合、例えば、レーダ100の水平角度の適正範囲及び俯角の適正範囲が設定範囲として情報端末500に予め記憶される。情報端末500は、角度センサ400Bによる水平角度及び俯角の検出値と設定範囲とを比較し、検出値が設定範囲に入れば第1条件を満たしていると判定し、検出値が設定範囲から外れれば第1条件を満たしていないと判定することができる。
 角度確認部400がスマートフォン400Cである場合、スマートフォン400CによってステップS12が実行されてもよい。
 角度確認部400が通信ネットワークを介してサーバに接続されている場合、情報端末500に代えて、サーバによってステップS12が実行されてもよい。
 上述した実施形態では、レーダ100による検出結果が第2条件を満たすか否かを判定するステップS22がユーザによって実行されたが、これに限定されない。情報端末600によってステップS22が実行されてもよい。
 例えば、情報端末600が、レーダ100の検出データに基づいて、車線毎の車両の軌跡を演算し、車両の軌跡が車線内に含まれるか否かを判定する。車両の軌跡が車線内にあれば第2条件を満たしていると判定し、車両の軌跡が車線から逸脱すれば第2条件を満たしていないと判定することができる。
 例えば、情報端末600が、レーダ100の検出データに基づいて、車線毎の車両の数を検出し、別の検出手段、例えばカメラによる画像を処理することによって車線毎の車両の数を検出し、両者が一致するか否かを判定する。レーダ100の検出データから得られた車両の数と、別の検出手段によって検出された車両の数とが一致すれば第2条件を満たしていると判定し、一致していなければ第2条件を満たしていないと判定することができる。
 レーダ100が通信ネットワークを介してサーバに接続されている場合、情報端末600に代えて、サーバによってステップS22が実行されてもよい。
 [4.効果]
 以上のように、実施形態に係るレーダ100の設置角度調整方法は、対象エリア300における車両Vを検出するインフラ用電波レーダであるレーダ100の設置角度を調整する。レーダ100の設置角度調整方法は、第1調整ステップS11と、第2調整ステップS21とを含む。第1調整ステップS11において、設置対象に設置されたレーダ100を稼働させずに、レーダ100の角度を調整する。第2調整ステップS21において、第1ステップにおいて角度が調整されたレーダ100を稼働させ、レーダ100による検出結果に基づいて、レーダ100の角度を調整する。これにより、第1調整ステップS11において、レーダ100に電源が投入されていなくてもレーダ100の角度を調整することができる。したがって、レーダ100の設置工事を施工した工事担当者が第1調整ステップS11を実行することができるため、レーダ100の設置角度を容易に調整することが可能となる。
 第1調整ステップS11は、レーダ100に取り付けられた角度確認部400における確認結果が予め設定された第1条件を満たすか否かを判定するステップS12を含んでもよい。角度確認部400による確認結果が第1条件を満たす場合に第1調整ステップS11が完了してもよい。これにより、第1調整ステップS11の実行主体(例えば、工事担当者)が、第1調整ステップS11の完了を容易に判断することができる。したがって、レーダの調整に関する知識を有しない工事担当者であっても、容易に第1調整ステップS11を実行することができる。
 角度確認部400は照準器400Aであってもよい。第1条件は照準器400Aにおける視野が対象エリア300に含まれることであってもよい。照準器400Aを用いることによって容易に第1調整ステップS11の完了を判断することができる。
 角度確認部400は、レーダ100の水平角及び俯角のうちの少なくとも1つの角度を検出する角度センサ400Bであってもよい。第1条件は角度センサ400Bが検出した角度が所定の設定範囲に含まれることであってもよい。これにより、角度センサ400Bが検出した角度と設定範囲とを比較することにより、明確に第2条件が満たされたか否かを判定することができる。したがって、容易に第1調整ステップS11の完了を判断することができる。
 第1調整ステップS11は、角度センサ400Bが検出した角度及びレーダ100の設置高さに基づいて設定範囲を決定することを含んでもよい。これにより、角度センサ400Bが検出した角度及びレーダ100の設置高さに応じて適切な設定範囲を決定することができる。
 設定範囲は、角度センサ400Bが検出した角度を示す角度情報及び設置高さを示す高さ情報を受け付ける情報端末500によって決定されてもよい。これにより、情報端末500によって容易に設定範囲を決定することができる。
 角度確認部400はレーダに着脱可能であってもよい。第1調整ステップS11において、角度確認部400がレーダに装着されてもよい。これにより、第1調整ステップの実行時にのみ、角度確認部400をレーダ100に装着することができる。
 第2調整ステップS21は、レーダ100による検出結果が予め設定された第2条件を満たすか否かを判定することを含んでもよい。レーダ100による検出結果が第2条件を満たす場合に第2調整ステップS21が完了してもよい。これにより、第2調整ステップS21の実行主体(例えば、調整担当者)が、第2調整ステップS21の完了を容易に判断することができる。
 第2条件は、レーダ100によって検出された車両の軌跡が車線内に含まれることであってもよい。これにより、レーダ100によって検出される車両の軌跡によって、第2条件が満たされたか否かを明確に判定することができる。
 第2条件は、レーダ100によって検出される車線毎の車両の数と対象エリア300内における車線毎の車両Vの数との差が所定の設定範囲に含まれることであってもよい。これにより、レーダ100によって検出される車線毎の車両の数によって、第2条件が満たされたか否かを明確に判定することができる。
 [5.補記]
 今回開示された実施の形態はすべての点で例示であって、制限的ではない。本発明の権利範囲は、上述の実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及びその範囲内でのすべての変更が含まれる。
 100 レーダ
 101 送受信面
 102 レーダ本体
 103 俯角調整部
 103a アーム
 103b 連結部
 104 水平角調整部
 200 アーム
 300 対象エリア
 400 角度確認部
 400A 照準器
 400B 角度センサ
 400C スマートフォン
 410 スリット
 420 固定部
 500,600 情報端末
 L 車線境界線
 V 車両
 V1,V2 図形
 

Claims (10)

  1.  対象エリアにおける物体を検出するインフラ用電波レーダの設置角度を調整するためのレーダの設置角度調整方法であって、
     設置対象に設置されたレーダを稼働させずに、前記レーダの角度を調整する第1調整ステップと、
     前記第1調整ステップにおいて角度が調整された前記レーダを稼働させ、前記レーダによる検出結果に基づいて、前記レーダの角度を調整する第2調整ステップと、
     を含む、
     レーダの設置角度調整方法。
  2.  前記第1調整ステップは、前記レーダに取り付けられた角度確認部における確認結果が予め設定された第1条件を満たすか否かを判定することを含み、前記確認結果が前記第1条件を満たす場合に前記第1調整ステップが完了する、
     請求項1に記載のレーダの設置角度調整方法。
  3.  前記角度確認部は照準器であり、
     前記第1条件は前記照準器における視野が前記対象エリアに含まれることである、
     請求項2に記載のレーダの設置角度調整方法。
  4.  前記角度確認部は、前記レーダの水平角及び俯角のうち少なくとも1つの角度を検出する角度センサであり、
     前記第1条件は前記角度センサが検出した前記角度が所定の設定範囲に含まれることである、
     請求項2に記載のレーダの設置角度調整方法。
  5.  前記第1調整ステップは、前記角度センサが検出した前記角度及び前記レーダの設置高さに基づいて前記設定範囲を決定することを含む、
     請求項4に記載のレーダの設置角度調整方法。
  6.  前記設定範囲は、前記角度センサが検出した前記角度を示す角度情報及び前記設置高さを示す高さ情報を受け付ける情報端末によって決定される、
     請求項5に記載のレーダの設置角度調整方法。
  7.  前記角度確認部は前記レーダに着脱可能であり、
     前記第1調整ステップにおいて、前記角度確認部が前記レーダに装着される、
     請求項2から請求項6のいずれか1項に記載のレーダの設置角度調整方法。
  8.  前記第2調整ステップは、前記レーダによる検出結果が予め設定された第2条件を満たすか否かを判定することを含み、前記検出結果が前記第2条件を満たす場合に前記第2調整ステップが完了する、
     請求項1から請求項7のいずれか1項に記載のレーダの設置角度調整方法。
  9.  前記第2条件は、前記レーダによって検出された物体の位置が所定の範囲内に含まれることである、
     請求項8に記載のレーダの設置角度調整方法。
  10.  前記第2条件は、前記レーダによって検出された物体の数と前記対象エリア内における物体の数との差が所定の設定範囲に含まれることである、
     請求項8に記載のレーダの設置角度調整方法。
     
PCT/JP2021/042109 2021-01-15 2021-11-16 レーダの設置角度調整方法 WO2022153660A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/272,098 US20240069159A1 (en) 2021-01-15 2021-11-16 Radar installation-angle adjustment method
CN202180078006.9A CN116490795A (zh) 2021-01-15 2021-11-16 雷达的设置角度调整方法
JP2022575093A JPWO2022153660A1 (ja) 2021-01-15 2021-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021004844 2021-01-15
JP2021-004844 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022153660A1 true WO2022153660A1 (ja) 2022-07-21

Family

ID=82447148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042109 WO2022153660A1 (ja) 2021-01-15 2021-11-16 レーダの設置角度調整方法

Country Status (4)

Country Link
US (1) US20240069159A1 (ja)
JP (1) JPWO2022153660A1 (ja)
CN (1) CN116490795A (ja)
WO (1) WO2022153660A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079101A (zh) * 2022-08-18 2022-09-20 山东穆柯传感器有限公司 一种用于车间安全监测的具有防护功能的相控阵雷达装置
CN116359865A (zh) * 2023-06-02 2023-06-30 上海几何伙伴智能驾驶有限公司 毫米波雷达水平安装角估计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090826A (ja) * 2004-09-24 2006-04-06 Hitachi Ltd レーダの設置情報の確認画面と調整画面の表示方法
US20130151135A1 (en) * 2010-11-15 2013-06-13 Image Sensing Systems, Inc. Hybrid traffic system and associated method
KR20170094805A (ko) * 2016-02-11 2017-08-22 주식회사 로브아이 레이더 및 비디오 카메라 일체형 교통정보 측정시스템
JP2019132643A (ja) * 2018-01-30 2019-08-08 住友電気工業株式会社 照準器、電波センサおよび調整方法
JP2019174201A (ja) * 2018-03-27 2019-10-10 住友電気工業株式会社 電波センサ、ずれ測定方法およびずれ測定プログラム
KR20200087055A (ko) * 2019-01-10 2020-07-20 주식회사 바이다 레이더 센서, 레이더 장치 및 레이더 지향점 조정 시스템
JP2020122693A (ja) * 2019-01-30 2020-08-13 住友電気工業株式会社 電波センサ状態の評価装置、電波センサシステム、電波センサの評価方法、コンピュータプログラム、及び電波センサの調整方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090826A (ja) * 2004-09-24 2006-04-06 Hitachi Ltd レーダの設置情報の確認画面と調整画面の表示方法
US20130151135A1 (en) * 2010-11-15 2013-06-13 Image Sensing Systems, Inc. Hybrid traffic system and associated method
KR20170094805A (ko) * 2016-02-11 2017-08-22 주식회사 로브아이 레이더 및 비디오 카메라 일체형 교통정보 측정시스템
JP2019132643A (ja) * 2018-01-30 2019-08-08 住友電気工業株式会社 照準器、電波センサおよび調整方法
JP2019174201A (ja) * 2018-03-27 2019-10-10 住友電気工業株式会社 電波センサ、ずれ測定方法およびずれ測定プログラム
KR20200087055A (ko) * 2019-01-10 2020-07-20 주식회사 바이다 레이더 센서, 레이더 장치 및 레이더 지향점 조정 시스템
JP2020122693A (ja) * 2019-01-30 2020-08-13 住友電気工業株式会社 電波センサ状態の評価装置、電波センサシステム、電波センサの評価方法、コンピュータプログラム、及び電波センサの調整方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079101A (zh) * 2022-08-18 2022-09-20 山东穆柯传感器有限公司 一种用于车间安全监测的具有防护功能的相控阵雷达装置
CN115079101B (zh) * 2022-08-18 2022-11-29 山东穆柯传感器有限公司 一种用于车间安全监测的具有防护功能的相控阵雷达装置
CN116359865A (zh) * 2023-06-02 2023-06-30 上海几何伙伴智能驾驶有限公司 毫米波雷达水平安装角估计方法

Also Published As

Publication number Publication date
US20240069159A1 (en) 2024-02-29
JPWO2022153660A1 (ja) 2022-07-21
CN116490795A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2022153660A1 (ja) レーダの設置角度調整方法
US10490079B2 (en) Method and device for selecting and transmitting sensor data from a first motor vehicle to a second motor vehicle
US7904247B2 (en) Drive assist system for vehicle
EP3742200B1 (en) Detection apparatus and parameter adjustment method thereof
JP2900737B2 (ja) 車間距離検出装置
JP4109679B2 (ja) 車載用レーダの電波軸調整装置
JP6422978B2 (ja) センサ装置
EP2284568A2 (en) Object sensing system
JP2022051779A (ja) 制御装置、制御方法、プログラム及び記憶媒体
JP2002366936A (ja) カメラを利用した車両の道路情報抽出方法及びシステム
EP2663971A1 (en) Hybrid traffic sensor system and associated method
CN111366901A (zh) 标定车载毫米波雷达方位角度安装偏差的方法及装置
CN110261831B (zh) 一种雷达安装校准方法及系统
CN109143290A (zh) 用于位置误差检测的方法和装置
JP2003315442A (ja) 車載レーダ装置の位置調整装置および位置調整方法
JP2006090826A (ja) レーダの設置情報の確認画面と調整画面の表示方法
JP4600391B2 (ja) 表示装置、表示システム及び表示方法
KR102228824B1 (ko) 레이더 센서, 레이더 장치 및 레이더 지향점 조정 시스템
US20240103157A1 (en) Method for installing radio wave sensor, radio wave sensor, and adjustment device
JP2002236167A (ja) レーダ取付方向調整装置、及びレーダ取付方向調整方法
CN115616510B (zh) 一种交通毫米波雷达标定方法及系统
KR102502155B1 (ko) 음성 안내를 위한 보행 안내 장치 및 이의 동작 방법
US20210141079A1 (en) Object detection device for vehicle
CN114821531B (zh) 基于电子外后视镜adas的车道线识别图像显示系统
JPH0880791A (ja) 車載用後方確認装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078006.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022575093

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18272098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919551

Country of ref document: EP

Kind code of ref document: A1