WO2022153414A1 - 接続先切替制御方法、通信装置、及びプログラム - Google Patents

接続先切替制御方法、通信装置、及びプログラム Download PDF

Info

Publication number
WO2022153414A1
WO2022153414A1 PCT/JP2021/000921 JP2021000921W WO2022153414A1 WO 2022153414 A1 WO2022153414 A1 WO 2022153414A1 JP 2021000921 W JP2021000921 W JP 2021000921W WO 2022153414 A1 WO2022153414 A1 WO 2022153414A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection destination
base station
received power
prediction
handover
Prior art date
Application number
PCT/JP2021/000921
Other languages
English (en)
French (fr)
Inventor
元晴 佐々木
伸晃 久野
俊朗 中平
稔 猪又
渉 山田
貴庸 守山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022574928A priority Critical patent/JPWO2022153414A1/ja
Priority to PCT/JP2021/000921 priority patent/WO2022153414A1/ja
Priority to US18/255,743 priority patent/US20240107413A1/en
Publication of WO2022153414A1 publication Critical patent/WO2022153414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • H04W36/008375Determination of triggering parameters for hand-off based on historical data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00833Handover statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • H04W36/362Conditional handover

Definitions

  • the present invention relates to a handover in which a user terminal switches a connection destination base station in a wireless communication system.
  • connection destination base station to which the user terminal is connected is switched as the user terminal moves. Switching the connection destination base station is called handover (HO: HandOver).
  • the user terminal triggers the handover process based on the received power of the signal from the connection destination base station which is the base station of the serving cell and the received power of the signal from the adjacent base station which is the base station of the neighboring cell (neighboring cell).
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique that enables a user terminal to appropriately perform a handover in a cellular wireless communication system.
  • connection destination switching control method executed by a communication device.
  • a connection destination switching control method including a connection destination switching processing step that executes control for handover based on the future received power predicted by the prediction processing step is provided.
  • a technique that enables a user terminal to appropriately perform a handover is provided.
  • FIG. 1 It is a system block diagram in embodiment of this invention. It is a figure for demonstrating the example of the event which triggers a handover. It is a figure which shows the example of the procedure of handover. It is a functional block diagram of the user terminal 100 in Example 1.
  • FIG. It is a figure which shows the hardware configuration example of the user terminal 100. It is a figure which shows the example of the prediction model used by the prediction processing unit 120. It is a figure which shows the example of the prediction result. It is a figure which shows the operation example of the user terminal 100. It is a figure for demonstrating the problem in receiving power prediction.
  • FIG. It is a functional block diagram of the user terminal 100 in Example 2.
  • FIG. It is a figure which shows the example of the movement of a user terminal 100. It is a figure for demonstrating the outline of the process in Example 2.
  • FIG. It is a figure which shows the example of input data and output data. It is a figure which shows the example of input data and output data. It is a figure which shows the example of input data and output data. It is a figure which shows the example of input data and output data. It is a figure which shows the example of input data and output data. It is a figure which shows the processing procedure for acquiring the predicted value of Example 2. It is a figure which shows the processing procedure for acquiring the predicted value of Example 2.
  • FIG. 1 shows a configuration example of the wireless communication system according to the first embodiment.
  • the wireless communication system in the first embodiment is a cellular wireless communication system. Although there are many cells in the wireless communication system, only cell 1 and cell 2 are shown in FIG. Further, the wireless communication system in the first embodiment is not limited to a specific method. For example, the wireless communication system in the first embodiment may be any of 3G, LTE, 5G, and 6G.
  • base station 200-1 forms cell 1 and base station 200-2 forms cell 2.
  • the user terminal 100 connects to the base station of the serving cell and performs wireless communication.
  • the user terminal 100 connected to the base station 200-1 is moving in the direction of the cell 2.
  • the user terminal 100 performs a handover to switch the connection destination base station 200 from the base station 200-1 to the base station 200-2.
  • the handover method itself is not particularly limited, but as an example, an example of the handover process will be described with reference to FIGS. 2 and 3 based on the method used in LTE and LTE-Advanced. do.
  • the curve shown in FIG. 2 shows the change in the received power from the serving cell and the received power from the adjacent cell in the user terminal 100.
  • the user terminal 100 detects an event (eg, A3 event) that triggers the handover (HO), it transmits a Measurement Report (MR) to the connection destination base station 200-1. This triggers the handover process to start.
  • an event eg, A3 event
  • MR Measurement Report
  • the event detection condition is, for example, that M n + HO offset, s, n > M s continue for a certain period (TTT: Time to Tiger) or longer.
  • M s is the received power of the serving cell s
  • M n is the received power of the adjacent cell n
  • HO offset, s, n are offset values uniquely set between the cells s and n. be.
  • the user terminal 100 predicts the future received power using the observed values of the received power from the past to the present, and uses the predicted received power to perform the handover. Detects the event that triggers.
  • FIG. 3 is a sequence diagram showing an example of handover processing.
  • the user terminal 100 switches the connection destination base station from the base station 200-1 to the base station 200-2 by handover.
  • the user terminal 100 detects an event that triggers a handover.
  • the user terminal 100 transmits the MR to the base station 200-1.
  • the MR includes a cell ID (which may be called a base station ID) and a measurement result (received power) for each cell for which the received power is measured.
  • the base station 200-1 that has received the MR determines that the user terminal 100 is handed over to the adjacent base station 200-2, and in S3, the user terminal 100 issues a handover instruction instructing the connection to the base station 200-2. Send to. Further, the base station 200-1 transmits information regarding communication with the user terminal 100 to the base station 200-2. The user terminal 100 that has received the handover instruction makes a connection with the base station 200-2 in S5. This completes the handover.
  • the user terminal 100 uses a prediction technique such as deep learning to measure the received power for each cell (base station) from the past to the present. By predicting the received power in the future (for example, a few seconds ahead) using the observation result of the received power, the processing related to the handover is smoothly performed.
  • a prediction technique such as deep learning
  • FIG. 4 shows an example of the functional configuration of the user terminal 100 in the first embodiment.
  • the user terminal 100 includes a data acquisition unit 110, a prediction processing unit 120, a connection destination switching processing unit 130, a prediction input data holding unit 140, and a prediction result data holding unit 150.
  • the user terminal 100 may be called a communication device.
  • the data acquisition unit 110 acquires a cell ID and received power (observed value) by receiving a signal from each base station and performing measurement.
  • the data acquired by the data acquisition unit 110 is stored in the prediction input data holding unit 140 as the prediction input data.
  • the prediction processing unit 120 uses the data read from the prediction input data holding unit 140 as an input, predicts the future received power from the past received power (observed value), and stores the prediction result in the prediction result data holding unit 150. ..
  • connection destination switching processing unit 130 performs the connection destination switching processing (handover control) using the prediction result data read from the prediction result data holding unit 150.
  • the connection destination switching process includes identification (narrowing down) of the switching destination base station, MR transmission, connection processing with the connection destination base station after handover, and the like.
  • the user terminal 100 performs the reception power prediction processing and the handover control, but the base station (which may be called a communication device) performs the reception power prediction processing and the handover control. It may be controlled.
  • the configuration of the base station in that case is the same as the configuration shown in FIG. 4 (FIG. 10 in the second embodiment).
  • the base station receives the received power which is an observed value from the user terminal 100, and uses the observed value to predict the future received power. Further, as a handover control, the base station notifies the user terminal 100 of the connection destination base station of the hand-over destination specified based on the future received power.
  • ⁇ Hardware configuration example> a hardware configuration example of the user terminal 100 of the first embodiment will be described.
  • the hardware configuration of the user terminal 100 of the second embodiment is also as described below.
  • the hardware configuration of the base station is also described below.
  • the user terminal 100 (and the base station) can be realized, for example, by causing a computer to execute a program.
  • a computer to execute a program.
  • Mobile phones, smartphones, etc. are examples of such computers.
  • the user terminal 100 can be realized by executing a program corresponding to the processing executed by the user terminal 100 by using the hardware resources such as the CPU and the memory built in the computer.
  • the above program can be recorded on a computer-readable recording medium (portable memory, etc.), stored, and distributed. It is also possible to provide the above program through a network such as the Internet or e-mail.
  • FIG. 5 is a diagram showing a hardware configuration example of the above computer.
  • the computer of FIG. 5 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, and the like, each of which is connected to each other by a bus B.
  • the program that realizes the processing on the computer is provided by, for example, a recording medium 1001 such as a CD-ROM or a memory card.
  • a recording medium 1001 such as a CD-ROM or a memory card.
  • the program is installed in the auxiliary storage device 1002 from the recording medium 1001 via the drive device 1000.
  • the program does not necessarily have to be installed from the recording medium 1001, and may be downloaded from another computer via the network.
  • the auxiliary storage device 1002 stores the installed program and also stores necessary files, data, and the like.
  • the memory device 1003 reads and stores the program from the auxiliary storage device 1002 when the program is instructed to start.
  • the CPU 1004 realizes the function related to the user terminal 100 according to the program stored in the memory device 1003.
  • the interface device 1005 is used as an interface for connecting to a network, and functions as an input means and an output means via the network.
  • the display device 1006 displays a programmatic GUI (Graphical User Interface) or the like.
  • the input device 157 is composed of a keyboard, a mouse, buttons, a touch panel, and the like, and is used for inputting various operation instructions.
  • a prediction model by a neural network is used.
  • a DNN deep neural network
  • RSTM Long Short-Term Memory
  • RNNs Recurrent Neural Networks
  • LSTM Long Short-Term Memory
  • GRU Gate Recurrent Unit
  • RNNs other than LSTM and GRU may be used.
  • FIG. 6 shows an example of a prediction model used in the prediction processing unit 120.
  • the predictive model shown in FIG. 6 has an LSTM layer (50 nodes), three fully connected layers (50 nodes each), and one fully connected layer (1 node).
  • Received power (observed value in Example 1, statistical value in Example 2) is sequentially input to the prediction model. For example, when predicting the received power 1 second after a certain time t, a predetermined number (for example, 100) of received power from a predetermined period (for example, 10 seconds) before the time t to the time t is input to the prediction model. Will be done.
  • the prediction model outputs a predicted value of the received power at time t + 1 based on the input received power.
  • FIG. 7 is a diagram comparing the prediction by the prediction model using LSTM, the prediction by the conventional method (Conv) not using LSTM, and the measured value.
  • the horizontal axis shows a sample of the observation point, and the vertical axis shows the path loss.
  • the LSTM can make a prediction closer to the measured value than the conventional method.
  • an existing method such as an error back propagation method may be used.
  • the handover condition is set in the connection destination switching processing unit 130 of the user terminal 100.
  • the setting of the handover condition is, for example, the condition that " Mn + HO offset, s, n > M s continues for a certain period (TTT: Time to Tiger) or more", and HO offset, s, n or TTT. Is to set the value of.
  • S103 and S104 are performed for each cell (serving cell and each adjacent cell).
  • the determination of S105 is performed for each pair of serving cell and adjacent cell.
  • cell 1 (cell of base station 200-1) is a serving cell
  • cell 2 (cell of base station 200-2) is an adjacent cell.
  • the data acquisition unit 110 of the user terminal 100 observes each of the received power of the serving cell and the received power of the adjacent cell, and acquires the observed value of the received power for each cell.
  • the observation processing value of the received power is sequentially input to the prediction processing unit 120 for each cell, and the prediction processing unit 120 predicts the future received power for each cell. For example, assuming that the current time is t, the received power after k seconds of t is predicted. k may be any of 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, and may be a value other than these.
  • connection destination switching processing unit 130 of the user terminal 100 determines whether or not “M n + HO offset, s, n > M s continues for TTT or more”.
  • M s is a predicted value of the received power of the serving cell s
  • M n is a predicted value of the received power of the adjacent cell n. If the determination in S105 is Yes, the process proceeds to S106, and if No, the process proceeds to S102. When the process proceeds to S102, the time t is updated and the processes of S103 to S105 are performed for the next time t.
  • the connection destination switching processing unit 130 of the user terminal 100 transmits MR to the base station 200-1 which is the connection destination base station.
  • the MR includes the cell ID of the base station 200-2 as the handover destination.
  • the handover process is performed in S107.
  • An example of the handover process is as described with reference to FIG.
  • connection destination switching processing unit 130 can control the handover by using the predicted value of the received power k seconds ahead of the current time t. More specifically, any one or more of the following Examples 1 to 3 may be performed.
  • Example 1 the connection destination switching processing unit 130 specifies a connection destination base station to be handed over in advance. High wireless communication quality can be maintained by predicting in advance and handing over.
  • connection destination switching processing unit 130 determines from the predicted value of the received power of each cell that only the received power of the adjacent cell B satisfies the condition, the connection destination switching processing unit 130 should hand over the base station of the adjacent cell B. Specify as the connection destination base station. As a result, by transmitting the MR at an early stage, the handover can be performed at an early stage, and the wireless communication quality can be maintained.
  • Example 2 the connection destination switching processing unit 130 narrows down the connection destination base stations for which the handover conditions should be observed in advance. By narrowing down the base stations to be handed over in advance, the computational load related to the handover can be reduced. Note that “specification” in Example 1 is an example of “narrowing down”.
  • the connection destination switching processing unit 130 has the predicted value of the received power of the adjacent cells A, B, C, and D among the predicted values of the received power of the adjacent cells A, B, C, and D.
  • the predicted value of the received power of the adjacent cells C and D is not low (for example, larger than a certain threshold value) due to a very low value (for example, smaller than a certain threshold value)
  • the adjacent cells to be observed thereafter In addition, the determination target of the handover condition is narrowed down to only the adjacent cells C and D.
  • the processing addition of the user terminal 100 is reduced. Further, since the number of adjacent cells reported to the base station in S106 is also reduced, the processing load for determining the handover destination on the base station side is also reduced.
  • Example 3 the connection destination switching processing unit 130 identifies a base station in which the handover processing occurs again immediately after the handover processing, and excludes the base station from the candidates for the connection destination base station. As a result, it is possible to avoid the occurrence of frequent handover processing and maintain high wireless communication quality.
  • the prediction processing unit 120 calculates the predicted value of the received power k seconds after the current time t for each cell, and also calculates the predicted value of the received power (k + r) seconds after the current time t. .. r is a short time, for example, it may be 1 second, it may be shorter than 1 second, or it may be longer than 1 second.
  • connection destination switching processing unit 130 uses the predicted value (predicted value for each cell) of the received power k seconds after the current time t to perform the procedure of S102 to S105 shown in FIG. 8 of the current connected base station. Performs processing to identify the base station of the handover destination.
  • connection destination switching processing unit 130 sets the base station of the adjacent cell determined to satisfy the handover condition based on the predicted value of the received power after k seconds as a new connection destination base station (connection destination base station X). ), And when the other base stations are regarded as the base stations of the adjacent cells, the determination of S105 is performed using the predicted value of the received power after calculated (k + r) seconds, and the connection destination is connected.
  • connection destination base station X is excluded from the candidates for the handover destination base station, and the received power of the received power k seconds after the current time t
  • the determination of S102 to S105 based on the predicted value is continued.
  • connection destination base station X is used. It is determined as the base station of the handover destination, and in S106, the MR having the cell ID of the connection destination base station X as the ID of the adjacent cell is transmitted to the current connection destination base station.
  • connection destination base station for which the handover condition should be observed is narrowed down in advance, the connection destination base station in which the handover processing occurs again immediately after the handover processing is specified, and the connection destination base station is selected as the connection destination base station.
  • Example 2 Next, Example 2 will be described.
  • the technique according to the second embodiment is assumed to be used in combination with the first embodiment. However, the technique according to the second embodiment may be used alone without being combined with the first embodiment.
  • Example 2 Various time-series information prediction methods have been proposed as future information prediction methods based on information observed from the past to the present. For example, as described in Example 1, as a prediction method using deep learning, time series prediction using RNN (Recurrent Neural Network), GRU (Gated Recurrent Unit) or LSTM which is a method based on RNN. There are various methods such as a method using (Long Short-Term Memory).
  • RNN Recurrent Neural Network
  • GRU Gate Recurrent Unit
  • LSTM Long Short-Term Memory
  • these prediction methods are used for parameters such as amplitude and phase information of received signals.
  • these are signals for a transmission signal by predicting parameters at a future time from a reception signal for amplitude and phase information required for signal processing such as MIMO (Multiple-Input Multiple-Output) using a plurality of transmission / reception antennas. It is used for processing.
  • MIMO Multiple-Input Multiple-Output
  • These predictions are on the order of ⁇ sec to msec, and the focus is on predicting instantaneous fluctuations in signals.
  • the prediction is executed by using the data of the observed value having an instantaneous fluctuation by DNN using LSTM or the like.
  • the time correlation of the received signal becomes small due to the influence of the instantaneous fluctuation, and the observed value which is the original information of the prediction and the information of the prediction target become uncorrelated, which may make the prediction difficult.
  • such fluctuations can be regarded as data noise, so that a result with low prediction accuracy is output.
  • FIG. 9 shows an example in which the user terminal 100 predicts the received power one point after the received power at the position of the immediately preceding 50 points by using the DNN having the LSTM while moving.
  • the horizontal axis of FIG. 9 indicates the observation point, and the vertical axis indicates the received power.
  • the predicted value is shown in white.
  • ⁇ Outline of the prediction method in Example 2> a DNN having an LSTM or the like as shown in FIG. 6 is used as in the first embodiment.
  • the statistical values (median values) of the input data and the output data to the prediction model at the series length in consideration of the Doppler frequency (frequency and moving speed) of the received signal are taken into consideration. Alternatively, by using an average value, etc.), it is possible to make a prediction that excludes the influence of instantaneous fluctuations from the received signal.
  • FIG. 10 shows a functional configuration diagram of the user terminal 100 in the second embodiment.
  • the above-mentioned statistical value value obtained by preprocessing the observed value
  • the user terminal 100 in the second embodiment has a configuration in which a data preprocessing unit 160 is added to the user terminal 100 of the first embodiment.
  • the data pre-processing unit 160 reads out the observed value stored in the prediction input data holding unit 140, performs pre-processing, calculates a statistical value, and calculates the statistical value in the predictive processing unit 120 (prediction model). Input to.
  • the prediction processing unit 120 when predicting the received power 1 second after a certain time t, the prediction processing unit 120 (prediction model) has a predetermined number (for example, 100) from a predetermined period (for example, 10 seconds) before the time t to the time t. ) Statistical value is entered. The prediction processing unit 120 (prediction model) outputs a predicted value of received power at time t + 1 based on a series of input statistical values.
  • the processing of the data acquisition unit 110 and the connection destination switching processing unit 130 is as described in the first embodiment.
  • the prediction method in the second embodiment can be applied not only to the prediction of the received power for the handover process described in the first embodiment. That is, as the configuration of the user terminal 100 in the second embodiment, the configuration shown in FIG. 11 that does not include the connection destination switching processing unit 130 may be adopted. In the case of the configuration of FIG. 11, the prediction result obtained by the prediction processing unit 120 is output from the prediction result output unit 170.
  • FIG. 12 shows the movement locus of the user terminal 100.
  • FIG. 12 shows a situation in which the user terminal 100 linearly moves from the grid point ⁇ to another ⁇ .
  • the user terminal 100 reaches a certain ⁇ , it changes the direction and proceeds to another ⁇ .
  • the user terminal 100 moves 0.1 m every 0.1 seconds, for example, and the data acquisition unit 110 measures the received power every 0.1 seconds.
  • the data acquisition unit 110 of the user terminal 100 acquires the raw data (data having instantaneous fluctuation) shown as an image in FIG. 13 and stores the acquired data in the prediction input data holding unit 140. ..
  • the data preprocessing unit 160 calculates, for example, while moving the median value of data in a section of 10 seconds (that is, 100 points) one point at a time (one sample). That is, by moving one sample at a time, the median moving value (which may be the moving average value) is calculated. For example, the data pre-processing unit 160 sequentially inputs the median movement of 200 points from the time 200 points before the current time point to the present time into the prediction processing unit 120, and the prediction processing unit 120 is in the future than the present time point ( For example, after 1 second), the received power is predicted. By such processing, the influence of the instantaneous fluctuation can be reduced, and the handover processing that does not become sensitive to the instantaneous fluctuation can be realized.
  • FIGS. 14 to 17 an operation example (input / output data) of the data preprocessing unit 160 and the prediction processing unit 120 (prediction model) will be described with reference to FIGS. 14 to 17.
  • the information to be predicted is the received power.
  • t indicates the current time
  • N indicates the number of past series (number of data) of the time series data used for prediction
  • M indicates the number of time series to be predicted (that is, T to M ahead.
  • the prediction model may be learned by using an existing method such as an error back propagation method by using the statistical value calculated from the measured value as the correct answer data.
  • the median value is used as the statistical value, but this is an example, and a value other than the median value (for example, an average value) may be used as the statistical value.
  • FIG. 14 shows input / output data in the prior art for reference.
  • N + 1 data instantaneous fluctuation data not preprocessed
  • t-N to t are input to the prediction model, and the predicted value at the time point of t + M (predicted value of instantaneous fluctuation data) Is output.
  • FIG. 15 shows Example 1 of input / output data in Example 2.
  • the prediction is executed with both the input data and the output data as the median value of a predetermined interval.
  • the predetermined section may be a time (for example, 10 seconds) or a moving distance of the user terminal 100 (for example, 10 m).
  • Instantaneous fluctuation data is input to the data preprocessing unit 160.
  • the data preprocessing unit 160 calculates the section median value while moving the section by one time series data, and sequentially inputs the calculated section median value into the prediction model.
  • the prediction model outputs a predicted value (predicted value of the median of a predetermined interval) at the time point of t + M based on the input data.
  • FIG. 16 shows Example 2 of input / output data in Example 2.
  • the input data is data including instantaneous fluctuations (data that has not been preprocessed), and the prediction is executed with the output data as the median value of a predetermined section.
  • N + 1 data (instantaneous fluctuation data not preprocessed) at each time point (each time) from t to t are input to the prediction model, and the predicted value at the time point of t + M (predicted value of the median value of a predetermined interval) ) Is output.
  • FIG. 17 shows Example 3 of input / output data in Example 2.
  • the input data is a plurality of data series such as data including instantaneous fluctuation, first section median data, and second section median data
  • the output data is predicted as, for example, the second section median. ..
  • the first section may be 5 m
  • the second section may be 10 m
  • the first section may be 5 seconds
  • the second section may be 10 seconds.
  • the number of data series of a plurality of data series is three as described above.
  • the number of data series of the plurality of data series may be two or may be larger than three.
  • Instantaneous fluctuation data is input to the data preprocessing unit 160.
  • the data preprocessing unit 160 calculates the median value of the first section while moving the first section (example: section length P) by one time series data. Further, the data preprocessing unit 160 calculates the median value of the second section while moving the second section (example: section length Q) by one time series data.
  • the data preprocessing unit 160 sequentially inputs the instantaneous fluctuation data, the median of the first section, and the median of the second section into the prediction model.
  • the prediction model outputs a predicted value (predicted value of the median of a predetermined interval) at the time point of t + M based on the input data.
  • a section length (for example, a section of 10 m at 4.5 GHz) may be used in consideration of the environment in the radio wave propagation field and short section fluctuations for each frequency.
  • the section length may be dynamically set according to the position and moving speed of the user terminal. Further, for example, when the speed at which the user terminal 100 moves is equal to or less than a predetermined threshold value, the section length may be set to a time unit such as 10 seconds.
  • FIG. 18 corresponds to Examples 1 and 3.
  • the data pre-processing unit 160 confirms whether or not the time-series data required for statistical value processing is stored in the prediction input data holding unit 140, and if it is stored, proceeds to S203. If it is not stored, wait until it is stored before proceeding to S203.
  • the data pre-processing unit 160 reads the time-series data from the prediction input data holding unit 140 and performs statistical processing (median value, average value, etc.) on the time-series data.
  • the data pre-processing unit 160 inputs the statistically processed data to the prediction processing unit 120 and executes the prediction.
  • the prediction processing unit 120 acquires and outputs the predicted value.
  • FIG. 19 corresponds to Example 2.
  • the prediction processing unit 120 confirms whether or not the time series data necessary for prediction is stored in the prediction input data holding unit 140, and if it is stored, proceeds to S303. If it is not stored, wait until it is stored before proceeding to S303.
  • the prediction processing unit 120 inputs time series data (instantaneous fluctuation data) and executes prediction.
  • the prediction processing unit 120 acquires and outputs the predicted value of the statistical value (median value, average value, etc.).
  • Example 2 ⁇ Effect of Example 2>
  • the second embodiment by using the statistical value (median value or average value) according to the radio wave propagation characteristic as the data to be predicted, the influence of the high-speed instantaneous fluctuation is eliminated and the prediction accuracy is improved. Can be done.
  • the prediction on the sec order there is a method that incorporates external information such as camera information in addition to the parameters of the received signal, and the technique according to the second embodiment can be applied to such a method as well.
  • connection destination switching control method It is a connection destination switching control method executed by the communication device.
  • a data acquisition step to acquire the observed value of the received power of the signal transmitted from the base station, and
  • a prediction processing step for predicting future received power by using the observed value acquired in the data acquisition step as input data to the prediction model.
  • a connection destination switching control method including a connection destination switching processing step that executes control for handover based on the future received power predicted by the prediction processing step.
  • connection destination switching control method The connection destination switching control method according to item 1, wherein in the connection destination switching processing step, the connection destination base station of the handover destination is narrowed down based on the future received power.
  • connection destination switching processing step In the connection destination switching processing step, based on the future received power, a connection destination base station in which the handover processing occurs again immediately after the handover processing is specified, and the connection destination base station is designated as the connection destination base station.
  • the connection destination switching control method according to item 1 or 2 wherein the connection destination base station of the handover destination is narrowed down by excluding from the candidates.
  • the statistical value obtained by preprocessing the observed value acquired in the data acquisition step is used as input data to the prediction model in any one of the first to third terms.
  • the described connection destination switching control method (Section 5) The connection destination switching control method according to item 4, wherein the statistical value is a median value or an average value of a predetermined section in the observed value.
  • (Section 6) A data acquisition unit that acquires the observed value of the received power of the signal transmitted from the base station, A prediction processing unit that predicts future received power by using the observed value acquired by the data acquisition unit as input data to the prediction model.
  • a communication device including a connection destination switching processing unit that executes control for handover based on the future received power predicted by the prediction processing unit.
  • (Section 7) A program for making a computer function as each part in the communication device according to the sixth item.

Abstract

通信装置が実行する接続先切替制御方法であって、基地局から送信される信号の受信電力の観測値を取得するデータ取得ステップと、前記データ取得ステップにより取得された前記観測値を、予測モデルへの入力データとして用いることにより、将来の受信電力を予測する予測処理ステップと、前記予測処理ステップにより予測された前記将来の受信電力に基づいて、ハンドオーバのための制御を実行する接続先切替処理ステップとを備える接続先切替制御方法。

Description

接続先切替制御方法、通信装置、及びプログラム
 本発明は、無線通信システムにおいて、ユーザ端末が接続先基地局を切り替えるハンドオーバに関連するものである。
 セルラー方式の無線通信システムでは、ユーザ端末の移動に伴って、ユーザ端末が接続する接続先基地局の切り替えが行われる。接続先基地局の切り替えは、ハンドオーバ(HO:HandOver)と呼ばれる。
 ユーザ端末は、サービングセルの基地局である接続先基地局からの信号の受信電力と、隣接セル(neighboring cell)の基地局である隣接基地局からの信号の受信電力に基づいて、ハンドオーバ処理のトリガとなるイベントを検知する(非特許文献2)。
 ところで、6G以降の無線通信システムにおいては超高速大容量/超低遅延高信頼/超多接続など、5Gと比べて高度な要求条件が求められている。この要求条件を満たすために、高周波数帯の利用が拡大(つまり、セルサイズが狭小化)するとともに、セル構成としてはNew Network Topologyと呼ばれる複数のセルのエリアを重複させる複雑な構成が検討されている。
 このような無線NW構成においては、接続先基地局の切り替えが従来よりも頻繁に発生することが想定される。
Changqing Luo , Jinlong Ji , Qianlong Wang , Xuhui Chen , and Pan Li, "Channel State Information Prediction for 5G Wireless Communications: A Deep Learning Approach ", IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 1, JANUARY-MARCH 2020 小西他、"LTE/LTE-AdvancedシステムのためのSelf-Organizing Networks(SON)技術による自動最適化の効果" ドコモ6Gホワイトペーパー.
 今後の無線通信システムにおいて想定される高周波数帯の利用拡大(セルサイズの狭小化)、及び多数のセルが重複する状況では、ユーザ端末においてハンドオーバの条件を確認すべき基地局からの信号が多数になるとともに、受信電力がこれまでより高速に変動することになる。
 そのため、ハンドオーバに関わる処理が過負荷になりスムーズなハンドオーバ処理ができなくなる。その結果、ハンドオーバ前に無線品質が大きく低下してしまう、ハンドオーバ処理が頻繁に発生してしまう、といった事象が発生すると考えられる。つまり、ユーザ端末が、ハンドオーバを適切に実施することができなくなる可能性がある。
 本発明は上記の点に鑑みてなされたものであり、セルラー方式の無線通信システムにおいて、ユーザ端末が、ハンドオーバを適切に実施することを可能とする技術を提供することを目的とする。
 開示の技術によれば、通信装置が実行する接続先切替制御方法であって、
 基地局から送信される信号の受信電力の観測値を取得するデータ取得ステップと、
 前記データ取得ステップにより取得された前記観測値を、予測モデルへの入力データとして用いることにより、将来の受信電力を予測する予測処理ステップと、
 前記予測処理ステップにより予測された前記将来の受信電力に基づいて、ハンドオーバのための制御を実行する接続先切替処理ステップと
 を備える接続先切替制御方法が提供される。
 開示の技術によれば、セルラー方式の無線通信システムにおいて、ユーザ端末が、ハンドオーバを適切に実施することを可能とする技術が提供される。
本発明の実施の形態におけるシステム構成図である。 ハンドオーバのトリガとなる事象の例を説明するための図である。 ハンドオーバの手順の例を示す図である。 実施例1におけるユーザ端末100の機能構成図である。 ユーザ端末100のハードウェア構成例を示す図である。 予測処理部120で用いる予測モデルの例を示す図である。 予測結果の例を示す図である。 ユーザ端末100の動作例を示す図である。 受信電力予測における課題を説明するための図である。 実施例2におけるユーザ端末100の機能構成図である。 実施例2におけるユーザ端末100の機能構成図である。 ユーザ端末100の移動の例を示す図である。 実施例2における処理の概要を説明するための図である。 入力データと出力データの例を示す図である。 入力データと出力データの例を示す図である。 入力データと出力データの例を示す図である。 入力データと出力データの例を示す図である。 実施例2の予測値を取得するための処理手順を示す図である。 実施例2の予測値を取得するための処理手順を示す図である。
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。以下、本実施の形態における構成及び動作について、実施例1、実施例2を用いて説明する。
 (実施例1)
  <システム構成>
 図1に、実施例1における無線通信システムの構成例を示す。実施例1における無線通信システムは、セルラー方式の無線通信システムである。当該無線通信システムには、多数のセルが存在するが、図1には、セル1とセル2のみが示されている。また、実施例1における無線通信システムは、特定の方式に限定されない。例えば、実施例1における無線通信システムは、3G、LTE、5G、6Gのいずれであってもよい。
 図1に示す例において、基地局200-1がセル1を形成し、基地局200-2がセル2を形成する。ユーザ端末100は、サービングセルの基地局に接続して、無線通信を行う。
 図1の例において、基地局200-1に接続しているユーザ端末100が、セル2の方向に移動しているとする。このとき、ユーザ端末100は、接続先の基地局200を基地局200-1から基地局200-2に切り替えるハンドオーバを実施する。
  <ハンドオーバ処理の例>
 実施例1において、ハンドオーバの方法自体には特に限定はないが、一例として、LTEやLTE-Advacedで使用されている方法に基づいて、図2、図3を参照してハンドオーバ処理の例を説明する。
 図2に示す曲線は、ユーザ端末100におけるサービングセルからの受信電力と隣接セルからの受信電力の変化を示している。ユーザ端末100は、ハンドオーバ(HO)のトリガとなるイベント(例:A3イベント)を検知すると、接続先基地局200-1へMeasurement Report(MR)を送信する。これが契機になってハンドオーバ処理が開始される。
 イベントの検知条件は、例えば、M+HOoffset,s,n>Mが一定期間(TTT:Time to Trigger)以上継続することである。ここで、Mは、サービングセルsの受信電力であり、Mは、隣接セルnの受信電力であり、HOoffset,s,nは、セルs-n間に固有に設定されるオフセット値である。
 なお、後述するように、本実施の形態では、ユーザ端末100は、過去から現在までの受信電力の観測値を用いて、将来の受信電力を予測し、その予測した受信電力を用いて、ハンドオーバのトリガとなるイベントを検知する。
 図3は、ハンドオーバ処理の例を示すシーケンス図である。図3の例では、ユーザ端末100が、ハンドオーバにより、接続先基地局を基地局200-1から基地局200-2に切り替えるものとする。
 S1において、ユーザ端末100が、ハンドオーバのトリガとなるイベントを検知する。S2において、ユーザ端末100は、MRを基地局200-1に送信する。MRには、受信電力を測定したセル毎の、セルID(基地局IDと呼んでもよい)と測定結果(受信電力)が含まれている。
 MRを受信した基地局200-1は、ユーザ端末100を隣接の基地局200-2にハンドオーバさせることを決定し、S3において、基地局200-2への接続を指示するハンドオーバ指示をユーザ端末100に送信する。また、基地局200-1は、ユーザ端末100との通信に関する情報を基地局200-2に送信する。ハンドオーバ指示を受信したユーザ端末100は、S5において、基地局200-2との接続を行う。これにより、ハンドオーバが完了する。
 前述したように、今後、セルサイズが狭小化するとともに、非常に多数のセルが重複することが想定され、イベント発生の条件を確認すべき基地局からの信号が多数になるとともに、受信電力が高速に変動することが想定される。従って、ハンドオーバに関わる処理が過負荷になりスムーズなハンドオーバ処理ができなくなる可能性がある。
 実施例1では、上記の課題を解決するために、ユーザ端末100は、深層学習等の予測技術を用いることにより、受信電力測定の対象となるセル(基地局)毎に、過去から現在までの受信電力の観測結果を用いて、将来(例えば、数秒先)の受信電力の予測を行うことで、ハンドオーバに関わる処理をスムーズに行うこととしている。以下、深層学習等の予測技術を用いた構成と動作についてより詳細に説明する。
  <ユーザ端末100の構成例>
 図4に、実施例1におけるユーザ端末100の機能構成例を示す。図4に示すように、ユーザ端末100は、データ取得部110、予測処理部120、接続先切替処理部130、予測用入力データ保持部140、予測結果データ保持部150を有する。なお、ユーザ端末100を通信装置と呼んでもよい。
 データ取得部110は、各基地局から信号を受信し、測定を行うことで、セルIDと受信電力(観測値)を取得する。データ取得部110により取得されたデータは、予測用入力データとして、予測用入力データ保持部140に格納される。予測処理部120は、予測用入力データ保持部140から読み出したデータを入力として、過去の受信電力(観測値)から将来の受信電力を予測し、予測結果を予測結果データ保持部150に格納する。
 接続先切替処理部130は、予測結果データ保持部150から読み出した予測結果のデータを用いて、接続先切替処理(ハンドオーバ制御)を行う。接続先切替処理には、切替先の基地局の特定(絞り込み)、MRの送信、ハンドオーバ後の接続先基地局との接続処理等が含まれる。
 なお、実施例1(及び実施例2)では、ユーザ端末100が受信電力の予測処理やハンドオーバ制御を行うこととしているが、基地局(通信装置と呼んでもよい)において受信電力の予測処理やハンドオーバ制御を行うこととしてもよい。その場合における基地局の構成は図4(実施例2では図10)に示す構成と同様である。ただし、この場合、基地局は、ユーザ端末100から観測値である受信電力を受信し、その観測値を用いて、将来の受信電力の予測を行う。また、ハンドオーバ制御としては、基地局は、将来の受信電力に基づいて特定したハンドーバ先の接続先基地局をユーザ端末100に通知する。
  <ハードウェア構成例>
 ここで、実施例1のユーザ端末100のハードウェア構成例を説明する。実施例2のユーザ端末100のハードウェア構成についても以下の説明のとおりである。更に、基地局のハードウェア構成についても以下の説明のとおりである。
 ユーザ端末100(及び基地局)は、例えば、コンピュータにプログラムを実行させることにより実現できる。携帯電話機、スマートフォン等は、当該コンピュータの例である。
 すなわち、ユーザ端末100は、コンピュータに内蔵されるCPUやメモリ等のハードウェア資源を用いて、当該ユーザ端末100で実施される処理に対応するプログラムを実行することによって実現することが可能である。上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。
 図5は、上記コンピュータのハードウェア構成例を示す図である。図5のコンピュータは、それぞれバスBで相互に接続されているドライブ装置1000、補助記憶装置1002、メモリ装置1003、CPU1004、インタフェース装置1005、表示装置1006、及び入力装置1007等を有する。
 当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体1001によって提供される。プログラムを記憶した記録媒体1001がドライブ装置1000にセットされると、プログラムが記録媒体1001からドライブ装置1000を介して補助記憶装置1002にインストールされる。但し、プログラムのインストールは必ずしも記録媒体1001より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置1002は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。
 メモリ装置1003は、プログラムの起動指示があった場合に、補助記憶装置1002からプログラムを読み出して格納する。CPU1004は、メモリ装置1003に格納されたプログラムに従って、ユーザ端末100に係る機能を実現する。インタフェース装置1005は、ネットワークに接続するためのインタフェースとして用いられ、ネットワークを介した入力手段及び出力手段として機能する。表示装置1006はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置157はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。
 <予測処理部120の例>
 実施例1における予測処理部120として、ニューラルネットワークによる予測モデルを用いている。具体的には、深層学習を行うDNN(ディープニューラルネットワーク)を用いている。当該DNNには、時系列予測に用いられるRNN(Recurrent Neural Network)の一つであるLSTM(Long Short-Term Memory)が使用されている。なお、LSTMを使用することは一例である。LSTMに代えて、又は、LSTMに加えて、GRU(Gated Recurrent Unit)を使用してもよい。また、LSTMとGRU以外のRNNを使用してもよい。
 図6に、予測処理部120において使用する予測モデルの例を示す。図6に示す予測モデルは、LSTM層(50ノード)、3つの全結合層(それぞれ50ノード)、及び1つの全結合層(1ノード)を有する。予測モデルには、受信電力(実施例1では観測値、実施例2では統計値)が順次入力される。例えば、ある時刻tの1秒後の受信電力を予測する際に、予測モデルには、時刻tの所定期間(例えば10秒)前から時刻tまでの所定数(例えば100)の受信電力が入力される。予測モデルは、入力された受信電力に基づいて、時刻t+1の受信電力の予測値を出力する。
 予測の対象は受信電力に限らず、パスロスの予測を行うことも可能である。図7は、LSTMを用いた予測モデルによる予測と、LSTMを用いない従来手法(Conv)による予測と、実測値とを比較した図である。横軸は、観測地点のサンプルを示し、縦軸は、パスロスを示す。図7に示すように、LSTMは従来手法よりも実測値に近い予測ができていることがわかる。
 図6に示すような予測モデルの学習については、例えば、実測値を正解データとして使用することにより、誤差逆伝搬法等の既存手法を用いて行えばよい。
  <処理手順>
 図8を参照して、図4の構成を備えるユーザ端末100の動作例を説明する。S101において、ユーザ端末100の接続先切替処理部130に、ハンドオーバ条件を設定する。ここでのハンドオーバ条件の設定は、例えば、「M+HOoffset,s,n>Mが一定期間(TTT:Time to Trigger)以上継続すること」という条件と、HOoffset,s,nやTTTの値を設定することである。
 図8のフローにおいて、S103、S104は、セル毎(サービングセルと各隣接セル)に行われる。S105の判定は、サービングセルと隣接セルの組毎に行われる。ここでは、説明の便宜上、適宜、セル1(基地局200-1のセル)がサービングセル、セル2(基地局200-2のセル)が隣接セルであるとして説明を行う。
 S103において、ユーザ端末100のデータ取得部110は、サービングセルの受信電力と隣接セルの受信電力のそれぞれを観測し、セル毎の受信電力の観測値を取得する。
 S104において、予測処理部120には、セル毎に、受信電力の観測値が順次入力され、予測処理部120は、セル毎の将来の受信電力を予測する。例えば、現在時刻がtであるとすると、tのk秒後の受信電力を予測する。kは1、2、3、4、5、6、7、8、9、10のうちのいずれであってもよいし、これら以外の値であってもよい。
 S105において、ユーザ端末100の接続先切替処理部130は、「M+HOoffset,s,n>MがTTT以上継続」したかどうか判定する。ここでのMは、サービングセルsの受信電力の予測値であり、Mは、隣接セルnの受信電力の予測値である。S105の判定がYesであればS106に進み、NoであればS102に進む。S102に進んだ場合、時刻tを更新して、次の時刻tについてS103~S105の処理を行う。
 S106に進んだ場合、ユーザ端末100の接続先切替処理部130は、接続先基地局である基地局200-1にMRを送信する。MRには、ハンドオーバ先となる基地局200-2のセルIDが含まれている。これにより、S107においてハンドオーバ処理が実施される。ハンドオーバ処理の例は図3を参照して説明したとおりである。
 上記のように、接続先切替処理部130は、現在時刻tからk秒先の受信電力の予測値を用いて、ハンドオーバに係る制御を行うことができる。より具体的には、下記の例1~例3のうちのいずれか1つ又は複数の処理を行うこととしてもよい。
  <例1>
 例1において、接続先切替処理部130は、事前にハンドオーバすべき接続先基地局を特定する。事前に予測してハンドオーバすることで高い無線通信品質を維持可能である。
 例えば、サービングセルと、隣接セルA、B、Cがある場合を想定する。図8のS105において、接続先切替処理部130は、各セルの受信電力の予測値から、隣接セルBの受信電力のみが条件を満たしたと判定した場合、隣接セルBの基地局をハンドオーバすべき接続先基地局として特定する。これにより、早期にMRを送信することで、早期にハンドオーバを実施することができ、無線通信品質を維持することができる。
  <例2>
 例2において、接続先切替処理部130は、事前にハンドオーバ条件を観測すべき接続先基地局を絞り込む。事前にハンドオーバすべき基地局を絞り込むことでハンドオーバに関わる計算負荷を低減できる。なお、例1の「特定」は、「絞り込む」ことの一例である。
 例えば、サービングセルと、隣接セルA、B、C、Dがある場合を想定する。例えば、ある時刻で、図8のS104において、接続先切替処理部130は、隣接セルA、B、C、Dの受信電力の予測値のうち、隣接セルA、Bの受信電力の予測値が非常に低くなり(例えばある閾値よりも小さくなり)、隣接セルC、Dの受信電力の予測値が低くない(例えばある閾値よりも大きい)ことを検知した場合において、以降の観測対象隣接セル、及び、ハンドオーバ条件の判定対象を、隣接セルC、Dのみに絞り込む。
 観測対象及びハンドオーバ条件の判定対象を絞り込むことで、ユーザ端末100の処理付加が軽減する。また、S106で基地局に報告する隣接セル数も減少するので、基地局側のハンドオーバ先決定のための処理負荷も軽減する。
  <例3>
 例3において、接続先切替処理部130は、ハンドオーバ処理の直後に再度ハンドオーバ処理が発生してしまう基地局を特定し、当該基地局を接続先基地局の候補から除外する。これにより、頻繁なハンドオーバ処理の発生を回避して、高い無線通信品質を維持可能になる。
 例えば、サービングセルと、隣接セルA、B、C、Dがある場合を想定する。本例では、予測処理部120は、セル毎に、現在時刻tからk秒後の受信電力の予測値を算出するとともに、現在時刻tから(k+r)秒後の受信電力の予測値を算出する。rは短時間であり、例えば1秒であってもよいし、1秒よりも短くてもよいし、1秒よりも長くてもよい。
 接続先切替処理部130は、現在時刻tからk秒後の受信電力の予測値(セル毎の予測値)を使用して、図8に示したS102~S105の手順で現在の接続基地局のハンドオーバ先の基地局を特定する処理を行う。
 接続先切替処理部130は、S105において、k秒後の受信電力の予測値に基づきハンドオーバ条件を満たすと判定された隣接セルの基地局を新たな接続先基地局(接続先基地局Xとする)と見なし、それ以外の基地局を隣接セルの基地局と見なしたときに、計算済みである(k+r)秒後の受信電力の予測値を使用してS105の判定を行って、接続先基地局Xに対してハンドオーバ条件を満たすと判定される基地局がある場合に、接続先基地局Xをハンドオーバ先の基地局の候補から除外して、現在時刻tからk秒後の受信電力の予測値に基づくS102~S105の判定を継続する。
 一方、現在時刻tから(k+r)秒後の受信電力の予測値を使用してS105の判定を行って、ハンドオーバ条件を満たすと判定される基地局がない場合には、接続先基地局Xをハンドオーバ先の基地局として決定し、S106において、隣接セルのIDとして接続先基地局XのセルIDを有するMRを、現在の接続先基地局に送信する。
  <実施例1の効果>
 実施例1で説明した技術により、セルサイズが小さくなりセルの重複が増大する場合でも、スムーズなハンドオーバ処理ができなくなる(ハンドオーバ前に無線品質が大きく低下してしまう)、ハンドオーバ処理が頻繁に発生してしまうという事象を回避することができる。
 また、事前にハンドオーバ条件を観測すべき接続先基地局を絞り込むことや、ハンドオーバ処理の直後に再度ハンドオーバ処理が発生してしまう接続先基地局を特定し、当該接続先基地局を接続先基地局の候補から除外することを実施することで、ハンドオーバ処理に関わる計算負荷を軽減することが可能となる。
 (実施例2)
 次に、実施例2を説明する。実施例2に係る技術は、実施例1と組み合わせて使用することを想定している。ただし、実施例2に係る技術を実施例1と組み合わせずに単独で使用することとしてもよい。
   <実施例2に関する背景と課題の説明>
 過去から現在までに観測されている情報を元にした未来の情報の予測手法として、様々な時系列情報の予測手法が提案されている。例えば、実施例1で説明したように、深層学習を用いた予測手法として、RNN(Recurrent Neural Network)を用いた時系列予測や、RNNを元にした手法であるGRU(Gated Recurrent Unit)やLSTM(Long Short-Term Memory)を用いる手法など、様々な手法が存在する。
 また、特に無線通信分野では受信信号の振幅や位相情報のようなパラメータに対してこれらの予測手法が活用されている。これらは例えば、複数の送受信アンテナを用いるMIMO(Multiple-Input Multiple-Output)などの信号処理に必要な振幅や位相情報について、未来の時刻におけるパラメータを受信信号から予測することで、送信信号に対する信号処理に活用されるものである。これらの予測はμsec~msecオーダでの予測であり、信号の瞬時変動を予測することに主眼が置かれている。
 実施例1で説明したように、受信電力の観測値を元にsecオーダの予測を行う場合において、LSTM等を用いたDNNにより、瞬時変動を有する観測値のデータをそのまま用いて予測を実行する場合、瞬時変動の影響で受信信号の時間相関が小さくなり、予測の元情報である観測値と予測対象の情報が無相関となり、予測が困難となる可能性がある。あるいは、このような無相関の変動である瞬時変動が含まれた情報を予測しようとする場合、そのような変動はデータの雑音と見なせるため、予測精度が低い結果が出力されることとなる。
 ユーザ端末100が、移動しながら、LSTMを有するDNNを用いて直前の50点の位置における受信電力から1点後の受信電力を予測した場合の例を図9に示す。図9の横軸は、観測点を示し、縦軸は受信電力を示す。図9の例は、仲上ライスフェージング(Kファクタ=10dB)の瞬時変動が観測値として示されており、白抜きで予測値を示している。右下に図示するとおりに、予測値において誤差が発生している。つまり、信号の変動は予測できず、かつ変動がノイズとなり安定した予測が不可となる。
  <実施例2における予測手法の概要>
 実施例2においても、予測モデルとして、実施例1と同様に、図6に示したようなLSTM等を有するDNNを使用する。実施例2では、上記の課題を解決するために、予測モデルへの入力データや出力データに対して、受信信号のドップラー周波数(周波数や移動速度)を考慮した系列長での統計値(中央値あるいは平均値など)を用いることで、受信信号から瞬時変動の影響を排除した予測を可能としている。
  <装置構成例>
 実施例2におけるシステム構成は、実施例1と同じであり、図1に示したとおりである。図10に、実施例2におけるユーザ端末100の機能構成図を示す。実施例2では、実施例1におけるセル毎の受信電力の予測において、上述した統計値(観測値に対して事前処理して得られる値)を使用することとしているため、図10に示すとおり、実施例2におけるユーザ端末100は、実施例1のユーザ端末100に対してデータ事前処理部160が追加された構成になる。
 データ事前処理部160は、予測用入力データ保持部140に格納されている観測値を読み出して、事前処理を施すことにより、統計値を算出し、当該統計値を予測処理部120(予測モデル)への入力とする。
 例えば、ある時刻tの1秒後の受信電力を予測する際に、予測処理部120(予測モデル)には、時刻tの所定期間(例えば10秒)前から時刻tまでの所定数(例えば100)の統計値が入力される。予測処理部120(予測モデル)は、入力された統計値の系列に基づいて、時刻t+1の受信電力の予測値を出力する。データ取得部110、接続先切替処理部130の処理は実施例1で説明したとおりである。
 なお、実施例2における予測手法は、実施例1で説明したハンドオーバ処理のための受信電力の予測に限らずに適用することが可能である。すなわち、実施例2におけるユーザ端末100の構成として、接続先切替処理部130を含まない図11に示す構成を採用ししてもよい。図11の構成の場合、予測処理部120により得られた予測結果は、予測結果出力部170から出力される。
  <動作概要>
 図12と図13を参照して、実施例2におけるユーザ端末100の受信電力の予測に関する動作の概要を説明する。
 図12は、ユーザ端末100の移動軌跡を示す。図12は、ユーザ端末100が、格子点である●から別の●へ直線的に移動する状況を示している。ユーザ端末100は、ある●に到達したら方向を変えて別の〇に進む。
 また、ユーザ端末100は、例えば、0.1秒毎に0.1m移動し、データ取得部110は、0.1秒毎に受信電力を測定する。このような状況において、ユーザ端末100のデータ取得部110は、図13にイメージとして示す生データ(瞬時変動を有するデータ)を取得して、取得したデータを予測用入力データ保持部140に格納する。
 データ事前処理部160は、例えば、10秒間(つまり100点)の区間のデータの中央値を、1点(1サンプル)ずつ移動させながら算出する。つまり、1サンプルずつ移動させることで、移動中央値(移動平均値でもよい)を算出する。例えば、データ事前処理部160は、現在時点から200点前の時点から、現在までの200点の移動中央値を予測処理部120に順次入力し、予測処理部120は、現在時点よりも将来(例えば1秒後)の受信電力を予測する。このような処理により、瞬時変動の影響を小さくでき、瞬時変動に過敏にならないハンドオーバ処理を実現できる。
  <詳細動作例>
 次に、図14~図17を参照して、データ事前処理部160と予測処理部120(予測モデル)の動作例(入出力データ)を説明する。ここでは、予測する対象の情報は受信電力であるとする。図14~図17において、tは現在時刻を示し、Nは予測に用いる時系列データの過去の系列数(データの個数)を示し、Mは予測する時系列数(つまり、tからMだけ先の時刻(あるいは点)の受信電力を予測すること)を示す。
 なお、いずれの例においても、予測モデルの学習については、例えば、実測値から算出した統計値を正解データとして使用することにより、誤差逆伝搬法等の既存手法を用いて行えばよい。また、以下の例では、統計値として中央値を使用しているが、これは例であり、統計値として中央値以外の値(例えば平均値)を使用してもよい。
 図14は、参考として従来技術での入出力データを示している。予測モデルに、t-Nからtまでの各時点(各時刻)のN+1個のデータ(事前処理していない瞬時変動データ)が入力され、t+Mの時点における予測値(瞬時変動データの予測値)が出力される。
 図15は、実施例2における入出力データの例1を示す。例1では、入力データ及び出力データをともに、所定区間中央値として予測を実行する。所定区間は、時間(例えば10秒間)でもよいし、ユーザ端末100の移動距離(例えば10m)でもよい。以下、「所定区間」について同様である。
 データ事前処理部160に、瞬時変動データが入力される。データ事前処理部160は、区間を1時系列データずつ移動させながら、区間中央値を算出し、算出した区間中央値を順次予測モデルに入力する。予測モデルは、入力データに基づいて、t+Mの時点における予測値(所定区間中央値の予測値)を出力する。
 図16は、実施例2における入出力データの例2を示す。例2では、入力データは瞬時変動を含むデータ(事前処理をしていないデータ)であり、出力データを所定区間中央値として予測を実行する。
 予測モデルに、t-Nからtまでの各時点(各時刻)のN+1個のデータ(事前処理していない瞬時変動データ)が入力され、t+Mの時点における予測値(所定区間中央値の予測値)が出力される。
 図17は、実施例2における入出力データの例3を示す。例3では、入力データは瞬時変動を含むデータ、第1区間中央値データ、及び第2区間中央値データなどの複数データ系列であり、出力データは、例えば第2区間中央値として予測を実行する。例えば、第1区間は5m、第2区間は10mであってもよいし、第1区間は5秒、第2区間は10秒であってもよい。また、複数データ系列のデータ系列の数は、上記のように3つであることは一例ある。複数データ系列のデータ系列の数は、2つであってもよいし、3つよりも大きな数であってもよい。
 データ事前処理部160に、瞬時変動データが入力される。データ事前処理部160は、第1区間(例:区間長P)を1時系列データずつ移動させながら、第1区間中央値を算出する。また、データ事前処理部160は、第2区間(例:区間長Q)を1時系列データずつ移動させながら、第2区間中央値を算出する。データ事前処理部160は、瞬時変動データと、第1区間中央値と、第2区間中央値とを、それぞれ順次予測モデルに入力する。予測モデルは、入力データに基づいて、t+Mの時点における予測値(所定区間中央値の予測値)を出力する。
 上記の例1~例3において、統計値の処理区間については、電波伝搬分野における環境や周波数毎の短区間変動を考慮した区間長(例えば4.5GHzでは10m区間)を用いることとしてもよいし、区間長をユーザ端末の位置や移動速度に合わせて動的に設定することとしてもよい。また、例えば、ユーザ端末100が移動する速さが所定閾値以下である場合に、区間長を10秒などの時間単位にしてもよい。
  <処理フロー>
 図18、図19を参照して、データ事前処理部160と予測処理部120の処理について説明する。
 図18は、例1と例3に対応する。S202において、データ事前処理部160は、予測用入力データ保持部140の中に、統計値処理に必要な時系列データが格納されているかどうかを確認し、格納されていればS203に進む。格納されていなければ格納されるまで待ってからS203に進む。
 S203において、データ事前処理部160は、予測用入力データ保持部140から時系列データを読み出し、時系列データに対して統計処理(中央値、平均値等)を実施する。S204において、データ事前処理部160は、統計処理済みのデータを予測処理部120に入力し、予測を実施する。S205において、予測処理部120は、予測値を取得して出力する。
 図19は、例2に対応する。S302において、予測処理部120は、予測用入力データ保持部140の中に、予測に必要な時系列データが格納されているかどうかを確認し、格納されていればS303に進む。格納されていなければ格納されるまで待ってからS303に進む。
 S303において、予測処理部120は、時系列データ(瞬時変動データ)を入力し、予測を実施する。S304において、予測処理部120は、統計値(中央値、平均値等)の予測値を取得して出力する。
 <実施例2の効果>
 実施例2により、電波伝搬特性に応じた統計値(中央値や平均値)を予測対象となるデータとして用いることで、高速な瞬時変動による影響を排除して、予測精度の向上を達成することができる。例えば、secオーダでの精度の良い予測が可能となることで、実施例1で説明したハンドオーバ処理への活用が可能となる。なお、secオーダでの予測では受信信号のパラメータ以外に、カメラ情報等の外部情報を取り入れた手法が存在するが、そのような手法においても実施例2に係る技術を適用可能である。
 (実施の形態のまとめ)
 本明細書には、少なくとも下記各項の接続先切替制御方法、通信装置、及びプログラムが開示されている。
(第1項)
 通信装置が実行する接続先切替制御方法であって、
 基地局から送信される信号の受信電力の観測値を取得するデータ取得ステップと、
 前記データ取得ステップにより取得された前記観測値を、予測モデルへの入力データとして用いることにより、将来の受信電力を予測する予測処理ステップと、
 前記予測処理ステップにより予測された前記将来の受信電力に基づいて、ハンドオーバのための制御を実行する接続先切替処理ステップと
 を備える接続先切替制御方法。
(第2項)
 前記接続先切替処理ステップにおいて、前記将来の受信電力に基づいて、ハンドオーバ先の接続先基地局を絞り込む
 第1項に記載の接続先切替制御方法。
(第3項)
 前記接続先切替処理ステップにおいて、前記将来の受信電力に基づいて、ハンドオーバ処理の直後に再度ハンドオーバ処理が発生するような接続先基地局を特定し、当該接続先基地局を、接続先基地局の候補から除外して、ハンドオーバ先の接続先基地局を絞り込む
 第1項又は第2項に記載の接続先切替制御方法。
(第4項)
 前記データ取得ステップにより取得された前記観測値に対して事前処理を施すことにより得られた統計値を、前記予測モデルへの入力データとして用いる
 第1項ないし第3項のうちいずれか1項に記載の接続先切替制御方法。
(第5項)
 前記統計値は、前記観測値における所定区間の中央値又は平均値である
 第4項に記載の接続先切替制御方法。
(第6項)
 基地局から送信される信号の受信電力の観測値を取得するデータ取得部と、
 前記データ取得部により取得された前記観測値を、予測モデルへの入力データとして用いることにより、将来の受信電力を予測する予測処理部と、
 前記予測処理部により予測された将来の受信電力に基づいて、ハンドオーバのための制御を実行する接続先切替処理部と
 を備える通信装置。
(第7項)
 コンピュータを、第6項に記載の通信装置における各部として機能させるためのプログラム。
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
100 ユーザ端末
110 データ取得部
120 予測処理部
130 接続先切替処理部
140 予測用入力データ保持部
150 予測結果データ保持部
160 データ事前処理部
170 予測結果出力部
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置

Claims (7)

  1.  通信装置が実行する接続先切替制御方法であって、
     基地局から送信される信号の受信電力の観測値を取得するデータ取得ステップと、
     前記データ取得ステップにより取得された前記観測値を、予測モデルへの入力データとして用いることにより、将来の受信電力を予測する予測処理ステップと、
     前記予測処理ステップにより予測された前記将来の受信電力に基づいて、ハンドオーバのための制御を実行する接続先切替処理ステップと
     を備える接続先切替制御方法。
  2.  前記接続先切替処理ステップにおいて、前記将来の受信電力に基づいて、ハンドオーバ先の接続先基地局を絞り込む
     請求項1に記載の接続先切替制御方法。
  3.  前記接続先切替処理ステップにおいて、前記将来の受信電力に基づいて、ハンドオーバ処理の直後に再度ハンドオーバ処理が発生するような接続先基地局を特定し、当該接続先基地局を、接続先基地局の候補から除外して、ハンドオーバ先の接続先基地局を絞り込む
     請求項1又は2に記載の接続先切替制御方法。
  4.  前記データ取得ステップにより取得された前記観測値に対して事前処理を施すことにより得られた統計値を、前記予測モデルへの入力データとして用いる
     請求項1ないし3のうちいずれか1項に記載の接続先切替制御方法。
  5.  前記統計値は、前記観測値における所定区間の中央値又は平均値である
     請求項4に記載の接続先切替制御方法。
  6.  基地局から送信される信号の受信電力の観測値を取得するデータ取得部と、
     前記データ取得部により取得された前記観測値を、予測モデルへの入力データとして用いることにより、将来の受信電力を予測する予測処理部と、
     前記予測処理部により予測された将来の受信電力に基づいて、ハンドオーバのための制御を実行する接続先切替処理部と
     を備える通信装置。
  7.  コンピュータを、請求項6に記載の通信装置における各部として機能させるためのプログラム。
PCT/JP2021/000921 2021-01-13 2021-01-13 接続先切替制御方法、通信装置、及びプログラム WO2022153414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022574928A JPWO2022153414A1 (ja) 2021-01-13 2021-01-13
PCT/JP2021/000921 WO2022153414A1 (ja) 2021-01-13 2021-01-13 接続先切替制御方法、通信装置、及びプログラム
US18/255,743 US20240107413A1 (en) 2021-01-13 2021-01-13 Connection destination switching control method, communication apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000921 WO2022153414A1 (ja) 2021-01-13 2021-01-13 接続先切替制御方法、通信装置、及びプログラム

Publications (1)

Publication Number Publication Date
WO2022153414A1 true WO2022153414A1 (ja) 2022-07-21

Family

ID=82448011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000921 WO2022153414A1 (ja) 2021-01-13 2021-01-13 接続先切替制御方法、通信装置、及びプログラム

Country Status (3)

Country Link
US (1) US20240107413A1 (ja)
JP (1) JPWO2022153414A1 (ja)
WO (1) WO2022153414A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175317A (ja) * 2016-03-23 2017-09-28 日本電気株式会社 網管理装置、通信システム、通信制御方法、及びプログラム
CN111343680A (zh) * 2020-03-02 2020-06-26 东南大学 一种基于参考信号接收功率预测的切换时延减少方法
US20200413316A1 (en) * 2018-03-08 2020-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Managing communication in a wireless communications network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175317A (ja) * 2016-03-23 2017-09-28 日本電気株式会社 網管理装置、通信システム、通信制御方法、及びプログラム
US20200413316A1 (en) * 2018-03-08 2020-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Managing communication in a wireless communications network
CN111343680A (zh) * 2020-03-02 2020-06-26 东南大学 一种基于参考信号接收功率预测的切换时延减少方法

Also Published As

Publication number Publication date
US20240107413A1 (en) 2024-03-28
JPWO2022153414A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
US20200366340A1 (en) Beam management method, apparatus, electronic device and computer readable storage medium
EP1145586B1 (en) Methods and systems for dynamic threshold adjustment for handoffs in radio communication systems
JP4200149B2 (ja) 無線ローカルエリアネットワークにおけるハンドオーバを遂行する移動端末装置及びハンドオーバ遂行方法
CN113994598A (zh) 无线网络的波束预测
US9107123B2 (en) Systems and methods for limiting mobile device measurements for cell reselection and handover
US11722938B2 (en) Switching connections over frequency bands of a wireless network
JP5610352B2 (ja) 無線通信システムおよびハンドオーバー方法
JP2001136558A (ja) Cdma移動通信システムと通信制御方法
KR20090061071A (ko) 블라인드 핸드오버에 대한 타겟 셀의 선택
JP2004159304A (ja) 移動局、移動通信システム、及びセル選択方法
EP1034668A4 (en) METHOD AND APPARATUS FOR DETERMINING CANDIDATES FOR TRANSFER IN A COMMUNICATION SYSTEM
JP2007251654A (ja) 無線lan移動局、無線lanシステム、ハンドオーバ制御方法及びハンドオーバ制御プログラム
CN108282813B (zh) 测量报告触发方法、装置及用户设备
Ghatak A change-detection-based Thompson sampling framework for non-stationary bandits
KR20110050024A (ko) 단일 채널 센서 네트워크에서 채널 간섭 회피를 위한 시스템 및 방법
KR20090077674A (ko) 무선 통신 단말, 무선 통신 시스템, 무선 통신 제어 방법
JP5669229B2 (ja) 無線通信端末、及び無線通信端末のローミング方法
Chen et al. 1 A deep reinforcement learning framework to combat dynamic blockage in mmWave V2X networks
WO2022153414A1 (ja) 接続先切替制御方法、通信装置、及びプログラム
Mahamod et al. Handover parameter for self-optimisation in 6G mobile networks: A survey
JP5982133B2 (ja) 負荷分散装置、負荷分散方法および負荷分散プログラム
CN111492592B (zh) 用户装置以及基站装置
Zaidi et al. A framework to address mobility management challenges in emerging networks
CN114125965B (zh) 小区切换方法、基站、终端和通信系统
KR20050015859A (ko) 이동통신 시스템의 핸드오프 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574928

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18255743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919308

Country of ref document: EP

Kind code of ref document: A1