WO2022152318A1 - 基于vcsel成像和同轴可视化设计的激光器 - Google Patents

基于vcsel成像和同轴可视化设计的激光器 Download PDF

Info

Publication number
WO2022152318A1
WO2022152318A1 PCT/CN2022/072597 CN2022072597W WO2022152318A1 WO 2022152318 A1 WO2022152318 A1 WO 2022152318A1 CN 2022072597 W CN2022072597 W CN 2022072597W WO 2022152318 A1 WO2022152318 A1 WO 2022152318A1
Authority
WO
WIPO (PCT)
Prior art keywords
vcsel
laser
imaging lens
light source
imaging
Prior art date
Application number
PCT/CN2022/072597
Other languages
English (en)
French (fr)
Inventor
李阳
Original Assignee
北京镭科光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京镭科光电科技有限公司 filed Critical 北京镭科光电科技有限公司
Priority to EP22739193.5A priority Critical patent/EP4280400A1/en
Priority to CN202290000111.0U priority patent/CN218123962U/zh
Publication of WO2022152318A1 publication Critical patent/WO2022152318A1/zh
Priority to US18/353,079 priority patent/US20240055831A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18302Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] comprising an integrated optical modulator

Definitions

  • the invention relates to a laser designed based on VCSEL imaging and coaxial visualization.
  • Lasers have a wide range of uses in the field of industrial laser processing and medical lasers. In the process of using lasers for operations, especially when using lasers for medical treatment, it is necessary to set up a CCD camera for field observation and auxiliary visual positioning, so as to facilitate the observation and adjustment of the laser.
  • the field of view observation and visual positioning equipment are usually installed separately from the laser treatment instrument handpiece, and the imaging light is not coaxial with the laser beam, so it is impossible to directly observe the field of view for treatment. And in terms of laser control, complex coordinate conversion work is required.
  • the technical problem to be solved by the present invention is to provide a laser based on VCSEL imaging and coaxial visualization design.
  • a laser based on VCSEL imaging and coaxial visualization design including:
  • a shell defining a hollow accommodating cavity
  • the VCSEL plane array light source and the heat sink are arranged in the casing; the VCSEL plane array light source is arranged on the heat sink and is used to emit the VCSEL laser;
  • the imaging lens is arranged in the housing, and the imaging lens is coaxially arranged with the main optical axis of the VCSEL plane array light source, and is used for imaging the VCSEL laser; the distance between the VCSEL plane array light source and the imaging lens is greater than the focal length of the imaging lens;
  • the plane reflection mirror is arranged in the housing; the plane reflection mirror is located behind the imaging lens and is arranged at an angle of ⁇ with the main optical axis of the VCSEL plane array light source, so that the laser light passing through the imaging lens is deflected, and the deflected VCSEL A real image is formed on the main optical axis of the laser, 0° ⁇ 90°; the plane mirror is used to totally reflect the VCSEL laser and allow light of other wavelengths to pass through;
  • the optical window is arranged on the housing and is arranged at the real image point position of the deflected VCSEL laser;
  • the observation position is set on the side of the plane mirror away from the imaging lens and the optical window, and the observation position is coaxial with the optical axis of the deflected VCSEL laser.
  • the diameter D of the imaging lens should satisfy the following formula: D ⁇ m+2c ⁇ tan( ⁇ /2); where m is the spot diameter of the VCSEL planar array light source, and ⁇ is the divergence of the VCSEL planar array light source full-width corners.
  • the imaging lens is a biconvex lens.
  • a surface of one side of the plane mirror facing the imaging lens is provided with a high-reflection film for reflecting the VCSEL laser light.
  • the plane reflection mirror and the main optical axis of the VCSEL plane array light source are arranged at an angle of 45 degrees.
  • the observation position is provided with a CCD imaging device.
  • the observation position is provided with an observation window, or the observation position is provided with a combination of an observation window and a magnifying glass.
  • the laser further includes a semiconductor cooling chip and a heat pipe, wherein the cold end of the semiconductor cooling chip cools the optical window through the casing, and the hot end of the semiconductor cooling chip conducts heat dissipation through the heat pipe and the heat sink.
  • the laser further includes a fan and a control unit, and the fan is arranged below the heat sink to dissipate heat from the heat sink; the semiconductor cooling chip, the VCSEL planar array light source and the The fans are respectively electrically connected with the control unit.
  • the laser provided by the present invention controls the transmission process of the VCSEL laser by using the principle of optical imaging.
  • the side of the plane mirror away from the real image point forms an observation position to realize coaxial observation.
  • the above-mentioned laser can be used as a laser therapeutic apparatus, and can also be applied in the field of laser processing.
  • FIG. 1 is a schematic structural diagram of a laser provided by the present invention.
  • FIG. 2 is a schematic diagram of the imaging principle of the laser provided by the present invention.
  • Fig. 3 is in the laser provided by the present invention, the positional relationship schematic diagram of each component in the optical system;
  • FIG. 4 is a schematic diagram of the size relationship among the imaging lens, the plane mirror and the virtual image in the laser provided by the present invention.
  • the laser based on VCSEL Very Cavity Surface Emitting Semiconductor Laser
  • a housing 1 which defines a hollow receiving cavity
  • VCSEL plane array light source 2 imaging lens 3
  • plane mirror 4 plane mirror 4
  • the casing 1 is elongated.
  • the shell 1 is used to connect and fix the internal components, and adopts an ergonomic design, which not only increases the comfort of holding, but also protects the precision components inside the product to a certain extent.
  • the VCSEL planar array light source 2 is arranged in a position near the lower part of the housing 1 (see the orientation shown in FIG. 1 ).
  • the VCSEL planar array light source 2 is disposed on the heat sink 11 and is used to emit VCSEL laser light upward.
  • the VCSEL planar array light source 2 is realized by a plurality of VCSEL laser chips.
  • VCSEL laser chips have the characteristics of long life, flexible packaging structure, and high long-term reliability.
  • One or more VCSEL laser chips can be selected, and the wavelength can be selected or mixed with multiple wavelength chips.
  • the VCSEL planar array light source with regular and close-packed light-emitting dies is a planar light source with uniform light-emitting characteristics.
  • the VCSEL has the same divergence angle in all directions, and the divergence angle is not large (about 12 to 20 degrees in the full angle), so it is convenient to use a convex lens for imaging, and a flat top spot with excellent uniformity can be obtained at the image point position (ie, uniform spot, the same below) , and then serve various industrial, medical and scientific research applications.
  • An imaging lens 3 and a flat mirror 4 are provided on the main optical axis 20 of the VCSEL laser.
  • the imaging lens 3 is arranged coaxially with the main optical axis of the VCSEL plane array light source 2, and is used for focusing and imaging the VCSEL laser light.
  • the imaging lens 3 uses a biconvex lens, and the imaging lens 3 is arranged in the housing 1 through a fixing bracket.
  • the imaging lens 3 uses a biconvex lens for imaging.
  • the plane mirror 4 is located behind the imaging lens 3 (ie, the upper part shown in FIG. 1 ), and is arranged at an angle ⁇ with the main optical axis 20 of the VCSEL plane array light source 2, so that the laser light passing through the imaging lens 3 is deflected (Fig.
  • the flat mirror 4 is used to totally reflect the VCSEL laser light and allow other wavelengths of light to pass through.
  • the surface of the flat reflector 4 can be coated with a high-reflection film according to the wavelength of the laser chip, so as to enhance the reflectivity of the flat reflector 4 to laser light in a preset wavelength range.
  • An optical window 5 is arranged on the housing 1, and the optical window 5 is arranged at the position of the image point after the VCSEL laser is deflected (ie, the position where the real image 2B is located). After passing through the optical window 5, the laser beam is imaged on the surface of the object in contact with the optical window 5 (ie, the treatment surface or the working surface).
  • an optical device such as sapphire that has light transmittance and has a cooling effect can be used.
  • c is the distance between the VCSEL plane array light source 2 and the imaging lens 3
  • a is the distance between the imaging lens 3 and the plane mirror 4
  • b is the distance between the plane mirror 4 and the optical window 5 .
  • the distance c between the VCSEL planar array light source 2 and the imaging lens 3 should be greater than the focal length f of the imaging lens 3 .
  • the VCSEL plane array light source 2 is set at a position of twice the focal length of the imaging lens 3 .
  • m represents the diameter of the uniform light spot generated by the VCSEL planar array light source 2
  • m' represents the diameter of the real image 2 .
  • the size of the imaging lens 3 is required to cover the entire range of the VCSEL laser beam to avoid optical energy leakage. That is, the diameter D of the imaging lens 3 should satisfy the following formula: D ⁇ m+2c ⁇ tan( ⁇ /2); wherein, ⁇ is the full angle of the divergence angle of the VCSEL planar array light source 2 .
  • the plane mirror 4 can be inserted at any position between the imaging lens 3 and the position of the virtual image point 2A of the undeflected laser.
  • the position of the virtual image point 2A refers to when the VCSEL laser beam is not deflected imaging location.
  • the deflected laser light forms a real image at the position of the real image image point 2B (ie, the position where the optical window 5 is located), the real image is rotated relative to the virtual image, and the real image and the virtual image are equal in size.
  • the size of the flat mirror 4 is required to cover the entire range of the VCSEL beam to avoid optical energy leakage.
  • the diameter D' of the plane mirror 4 should satisfy the following formula:
  • n x*cos( ⁇ )+x*sin( ⁇ )/tan( ⁇ ); (5)
  • the plane reflection mirror 4 is arranged at 45 degrees to the main optical axis 20 of the VCSEL plane array light source 2, so as to deflect the VCSEL laser light by 90 degrees, so that the main optical axis 20' of the deflected laser light and the VCSEL plane array light source 2
  • the main optical axis 20 is vertical, thus providing a reasonable space for VCSEL imaging and coaxial observation.
  • the plane reflection mirror 4 and the main optical axis 20 of the VCSEL plane array light source 2 can also be set at other angles. Can.
  • a plane mirror 4 is inserted along the main optical axis at 45 degrees, and the plane mirror 4 is a laser reflection lens (reflects only the laser wavelength, and transmits visible light) to achieve The laser light path is deflected at 90 degrees, which enables coaxial real-time observation behind the flat mirror 4 set at 45 degrees.
  • Various schemes can be adopted for the observation method, such as direct observation by human eye, observation by human eye with magnifying glass, and imaging by CCD imaging device.
  • a high reflection film with high reflectivity for the laser light is provided on the surface of the plane reflection mirror 4 facing the imaging lens 3 . Since the surface of the flat reflector 4 is coated with a high-reflection film to ensure the safety of coaxial observation by the human eye, it is safe for the human eye to perform coaxial observation.
  • An observation position 6 is set in the housing 1, and the observation position 6 is set on the side of the plane mirror 4 away from the imaging lens 3 and the optical window 5 (the right side as shown in FIG. 1), and the observation position 6 is connected to the deflected VCSEL.
  • the optical mandrel 20' of the laser is coaxially arranged.
  • An observation unit such as a CCD imaging device, is arranged at the observation position 6, and the image can be transmitted in real time on the display screen for observation; the observation window can also be used for human eye observation.
  • a magnifying glass 60 is provided in the observation window, and the human eye can magnify and observe the treatment surface through the magnifying glass 60 .
  • a ring-shaped illumination light source is arranged around the observation device to facilitate better observation.
  • the above-mentioned laser further includes a semiconductor cooling chip (not shown) and a heat pipe 12 .
  • the cold end of the semiconductor refrigeration sheet passes through the casing 2 to realize heat conduction and cooling of the optical window 5, thereby reducing the temperature of the optical window 5; the hot end of the semiconductor refrigeration sheet realizes heat conduction through the heat pipe 12 and the heat sink 11; thus the optical window 5 is absorbed
  • the heat energy is conducted from the heat sink 11 through the semiconductor refrigerating sheet and the heat pipe.
  • the semiconductor refrigeration sheet can be made by utilizing the Peltier effect of semiconductor materials.
  • a control unit 21 is provided in the laser, and the control unit 21 controls the refrigerating chip to work by reading the temperature data of the temperature sensor (see below) in the detection unit 22 to achieve a comfortable treatment temperature.
  • the above-mentioned laser further includes a fan 13 , and the fan 13 is arranged below the heat sink 11 for dissipating heat from the heat sink 11 .
  • the housing 1 is provided with an air inlet and an air outlet that communicate with the area where the fan 13 is located. The heat generated inside the casing 1 is dissipated by the fan 13 .
  • the control unit 21 controls the start and stop of the fan 13 .
  • the semiconductor cooling chip, the VCSEL planar array light source 2 and the fan 13 are all electrically connected to the control unit 21 .
  • the control unit 21 can be implemented by a single chip microcomputer, a microcontroller or the like.
  • the control unit 21 includes a main control board assembly and multiple interfaces, and is electrically connected to the semiconductor refrigeration chip, the VCSEL planar array light source 2 , the fan 13 , the detection unit 22 and the control buttons 23 through the multiple interfaces.
  • the laser is provided with a detection unit 22 near the optical window 5 .
  • the detection unit 22 includes a skin contact detection element and a temperature detection element.
  • the skin contact detection element is used to detect whether the optical window 5 (ie, the treatment head of the laser therapeutic apparatus) is in contact with the surface of the object (eg, the skin surface, that is, the treatment surface). When the treatment head is not in contact with the skin, pressing the light-emitting button will not emit laser light. When the treatment head is in good contact with the skin, pressing the light-emitting button will only emit laser light.
  • the temperature detection element is used to measure the temperature of the optical window 5 (eg, sapphire). The above-mentioned skin contact detection element and temperature detection element are electrically connected to the control unit 21, respectively.
  • the laser is also provided with a control button 23 connected to the control unit 21 for performing button control on the laser.
  • a plurality of LED indicator lights are simultaneously arranged on the housing 1, and the plurality of indicator lights are connected to the control unit 21 to indicate switching on and off and gear setting.
  • the control buttons 23 are divided into touch buttons and light-emitting buttons. The functions of the touch buttons are: long press for three seconds to turn on, long press for three seconds to shut down, and single-press gear adjustment.
  • the touch button is used for gear indication through LED lights, and different gears can be applied to different skin tones or different parts.
  • the light-emitting button controls the emission of the laser.
  • the control unit 21 only allows laser emission when it detects that the epilator is turned on, has good contact with the skin, and presses the light-emitting button, so as to ensure the safety of laser emission.
  • the laser based on VCSEL imaging and coaxial visualization design provided by the embodiment of the present invention is realized based on a VCSEL light source, and imaging is performed through an imaging lens; imaging with a lenticular lens can obtain excellent uniformity at the image point position
  • the flat-top light spot can be used in various industrial, medical and scientific research applications.
  • a laser reflective lens is inserted at 45 degrees along the main optical axis (reflecting only the laser wavelength, and transmitting visible light) to achieve a 90-degree laser optical path deflection. , and then behind the 45-degree mirror, coaxial real-time observation can be performed.
  • Various schemes can be adopted for the observation method, such as direct observation by human eyes, observation by human eyes with magnifying glass, and imaging by CCD imaging device.
  • the above-mentioned laser can be used as a laser therapy apparatus, and uses a flat-top light spot with excellent uniformity for skin surgical treatment, such as hair removal, pigment removal, skin lesion burning, red blood treatment, etc.
  • the above lasers can also be used as industrial lasers, using a flat-top light spot with excellent uniformity for plastic penetration welding, screen frame welding, screen frame heating and dissolving lamps, etc.
  • the laser based on VCSEL imaging and coaxial visualization design provided by the embodiment of the present invention is not only easy to hold, but also obtains a flat-top light spot with excellent uniformity under the premise of keeping small size and light weight, with short optical path and heat dissipation.
  • the performance is good; by setting the magnifying glass, it can also magnify the observation under the condition of keeping the small size, so as to meet the observation requirements of the human eye.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Surgery Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种基于VCSEL成像和同轴可视化设计的激光器,包括设置于外壳中的VCSEL平面阵列光源、热沉、成像透镜、平面反射镜;VCSEL平面阵列光源设置在热沉上且用于发射出VCSEL激光;成像透镜与VCSEL平面阵列光源的主光轴同轴设置;平面反射镜与VCSEL平面阵列光源的主光轴呈α角设置,以使激光发生偏折,并在偏折后的VCSEL激光的主光轴上形成实像;光学窗口设置在偏折后的VCSEL激光的像点位置;观测位置,设置在平面反射镜远离成像透镜的一侧,与偏折后的激光的光心轴同轴设置。该激光器利用光学成像原理对VCSEL激光的传输过程进行控制,通过在成像透镜后方设置平面反射镜,使得VCSEL激光发生偏折,从而在平面反射镜远离实像像点的一侧形成了一个观测位置,实现同轴观测。

Description

基于VCSEL成像和同轴可视化设计的激光器 技术领域
本发明涉及一种基于VCSEL成像和同轴可视化设计的激光器。
背景技术
激光在工业激光加工领域和医疗激光领域具有广泛的用途。在利用激光进行作业的过程中,尤其是使用激光进行医学治疗时,需要设置CCD相机来进行视场观测和辅助视觉定位,以便于观察和调整激光。
目前,视场观测和视觉定位设备通常与激光治疗仪手具分开设置,成像光线与激光光束不同轴,无法对治疗的视场进行直接的观察。并且在激光的控制方面,需要进行复杂的坐标转换工作。
发明内容
本发明所要解决的技术问题在于提供一种基于VCSEL成像和同轴可视化设计的激光器。
为了实现上述技术目的,本发明采用下述技术方案:
一种基于VCSEL成像和同轴可视化设计的激光器,包括:
外壳,限定中空的容纳腔;
VCSEL平面阵列光源和热沉,设置于外壳中;VCSEL平面阵列光源设置在热沉上,用于发射出VCSEL激光;
成像透镜,设置于外壳中,并且成像透镜与VCSEL平面阵列光源的主光轴同轴设置,用于对VCSEL激光进行成像;VCSEL平面阵列光源和成像透镜之间的距离大于成像透镜的焦距;
平面反射镜,设置于外壳中;平面反射镜位于成像透镜的后方并与VCSEL平面阵列光源的主光轴呈α角设置,以使经过成像透镜的激光发生偏折,并在偏折后的VCSEL激光的主光轴上形成实像,0°<α<90°;所述平面反射镜用于对VCSEL激光进行全反射并允许其他波长光线透过;
光学窗口,设置在外壳上,并设置在偏折后的VCSEL激光的实像像点位置;
观测位置,设置在平面反射镜远离成像透镜和光学窗口的一侧, 所述观测位置与偏折后的VCSEL激光的光心轴同轴设置。
其中较优地,VCSEL平面阵列光源和成像透镜之间的距离c,成像透镜和平面反射镜之间的距离a,以及平面反射镜与光学窗口之间的距离b,满足以下公式:1/(a+b)+1/c=1/f;其中,f表示成像透镜的焦距。
其中较优地,所述成像透镜的直径D应满足以下公式:D≥m+2c×tan(θ/2);其中,m为VCSEL平面阵列光源的光斑直径,θ为VCSEL平面阵列光源的发散角全角。
其中较优地,所述成像透镜是双凸透镜。
其中较优地,所述平面反射镜面向所述成像透镜的一侧表面设置有用于对VCSEL激光进行反射的高反膜。
其中较优地,所述平面反射镜和所述VCSEL平面阵列光源的主光轴呈45度角设置。
其中较优地,所述观测位置设置有CCD成像设备。
其中较优地,所述观测位置设置有观测窗口,或者所述观测位置设置有观测窗口和放大镜的组合。
其中较优地,所述激光器还包括半导体制冷片和热管,其中,半导体制冷片的冷端通过外壳对光学窗口进行制冷,所述半导体制冷片的热端通过热管与所述热沉进行散热。
其中较优地,所述激光器还包括风扇和控制单元,所述风扇设置在所述热沉下方,用于对所述热沉进行散热;所述半导体制冷片、所述VCSEL平面阵列光源和所述风扇分别与所述控制单元电连接。
本发明所提供的激光器,利用光学成像原理对VCSEL激光的传输过程进行控制,通过在成像透镜和未经偏折的激光的像点之间设置平面反射镜,使得VCSEL激光发生偏折,从而在平面反射镜远离实像像点的一侧形成了一个观测位置,实现同轴观测。上述激光器可以作为激光治疗仪使用,也可以应用于激光加工领域。
附图说明
图1是本发明所提供的激光器的结构示意图;
图2是本发明所提供的激光器的成像原理示意图;
图3是本发明所提供的激光器中,光学系统中各部件的位置关系 示意图;
图4是本发明所提供的激光器中,成像透镜、平面反射镜及虚像之间的尺寸关系示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案进行进一步地详细说明。
如图1所示,本发明实施例所提供的基于VCSEL(垂直腔面发射半导体激光器)成像和同轴可视化设计的激光器,包括外壳1,限定中空的容纳腔;还包括设置于外壳1中的VCSEL平面阵列光源2、成像透镜3、平面反射镜4。
其中,外壳1呈细长型。外壳1用于对内部各器件进行连接固定,并采用人体工学设计,增加握持舒适度的同时,对产品内部精密部件起到一定的保护作用。
VCSEL平面阵列光源2设置于外壳1中靠近下部的位置(参见图1所示的方位)。VCSEL平面阵列光源2设置在热沉11上,并且用于向上发射出VCSEL激光。VCSEL平面阵列光源2由多个VCSEL激光芯片实现。VCSEL激光芯片具有寿命长、封装结构灵活、长期可靠性高等特点。VCSEL激光芯片可选用一片或者多片,波长可以进行选择或者多种波长芯片混合使用。发光管芯规则密排的VCSEL平面阵列光源是一种具有均匀发光特质的平面光源。VCSEL各向发散角相同,并且发散角不大(全角约12~20度),因此便于利用凸透镜进行成像,可以在像点位置得到均匀性极佳的平顶光斑(即均匀光斑,下同),进而服务于各类工业、医疗与科研应用。
在VCSEL激光的主光轴20上设置有成像透镜3和平面反射镜4。成像透镜3与VCSEL平面阵列光源2的主光轴同轴设置,用于对VCSEL激光进行聚焦成像。成像透镜3使用双凸透镜,成像透镜3通过固定支架设置在外壳1中。成像透镜3采用双凸透镜成像。平面反射镜4位于成像透镜3的后方(即图1所示的上方),并与VCSEL平面阵列光源2的主光轴20呈α角设置,以使经过成像透镜3的激光发生偏折(图1所示为向左侧偏折),并在偏折后的VCSEL激光的主光轴20’上形成实像2B,0°<α<90°。平面反射镜4用于对VCSEL激光进行全 反射并允许其他波长光线透过。平面反射镜4的表面可根据激光芯片波长镀上一层高反膜,用于增强平面反射镜4对预设波长范围的激光的反射率。
在外壳1上设置有光学窗口5,光学窗口5设置在VCSEL激光偏折后的像点位置(即实像2B所在的位置)。激光光束透过光学窗口5后在与光学窗口5接触的物体表面(即治疗面或工作面)成像。光学窗口5可以使用蓝宝石等具有透光性且具有冷却作用的光学器件。
如图2和图3所示,成像透镜3的焦距f、物距c、像距a+b符合成像原理:1/(a+b)+1/c=1/f。其中,c为VCSEL平面阵列光源2和成像透镜3之间的距离,a为成像透镜3和平面反射镜4之间的距离,b为平面反射镜4与光学窗口5之间的距离。
为了得到VCSEL激光的实像,VCSEL平面阵列光源2和成像透镜3之间的距离c应大于成像透镜3的焦距f。较优地,VCSEL平面阵列光源2设置在成像透镜3的2倍焦距位置。
VCSEL平面阵列光源2的成像可以通过调节物距c和像距a+b进行放大或者缩小,成像倍率=m’/m=(a+b)/c。在典型的1:1成像倍率下,a+b=c=2f。在本发明中,m表示VCSEL平面阵列光源2生成的均匀光斑的直径,m’表示实像2的直径。
成像透镜3的尺寸要求覆盖VCSEL激光光束的整个范围,以避免光学能量泄露。即,成像透镜3的直径D应满足以下公式:D≥m+2c×tan(θ/2);其中,θ为VCSEL平面阵列光源2的发散角全角。
如图2所示,平面反射镜4可以插入成像透镜3和未经偏折的激光的虚像像点2A位置之间的任意位置,虚像像点2A位置是指在VCSEL激光光束不发生偏折时的成像位置。经偏折的激光在实像像点2B位置处(即,光学窗口5所在的位置)形成实像,实像相对于虚像发生旋转,并且实像和虚像等大小。平面反射镜4的尺寸要求覆盖VCSEL光束的整个范围,以避免光学能量泄露。
下面以成像透镜3成等大的实像时,对平面反射镜4的直径D’的计算过程进行示例性的介绍。当成像透镜3成等大的实像时,m’=m,a+b=c=2f。
如图4所示,平面反射镜4的直径D’应满足以下公式:
D’≥x+y+z+z’                      (1)
其中,z=z’=m/2cos(α);                                   (2)
x和y的计算公式如下:
由图4可知,
Figure PCTCN2022072597-appb-000001
l=b-m*tan(α)/2;                   (4)
n=x*cos(α)+x*sin(α)/tan(θ);           (5)
Figure PCTCN2022072597-appb-000002
由式(6)计算得到:
Figure PCTCN2022072597-appb-000003
s=b+s1+s2;                      (8)
s1=m*tan(α)/2;                    (9)
s2=y*sin(α);                    (10)
r=y*cos(α);                    (11)
Figure PCTCN2022072597-appb-000004
由式(12)计算得到:
Figure PCTCN2022072597-appb-000005
由式(1)、式(2)、式(7)和式(13),可以得出D’的最小值。
优选地,平面反射镜4与VCSEL平面阵列光源2的主光轴20呈45度设置,从而将VCSEL激光偏折90°,使得偏折后的激光的主光轴20’与VCSEL平面阵列光源2的主光轴20相垂直,从而给VCSEL成像和同轴观测提供了合理的空间。当然,平面反射镜4与VCSEL平面阵列光源2的主光轴20还可以采用其他角度设置,此时,使观测位置6与像点沿偏折后的激光的主光轴20’同轴设置即可。
为了便于实时观测,在成像透镜3和虚像像点2A之间,沿主光轴45度插入平面反射镜4,平面反射镜4是激光反射透镜(仅对激光波长反射,对可见光透射),实现90度的激光光路偏折,进而能够在45度设置的平面反射镜4背后进行同轴的实时观测。观测方式可以采用 多种方案,如人眼直接观测、人眼加放大镜观测、CCD成像器件成像等不同方式。
为了改善平面反射镜4对VCSEL激光的反射效果,在平面反射镜4面向成像透镜3的一侧表面设置有对激光具有高反射率的高反膜。由于平面反射镜4的表面镀有高反膜,以保证人眼进行同轴观测的安全,因此人眼进行同轴观测是安全的。
在外壳1中设置有观测位置6,观测位置6设置在平面反射镜4远离成像透镜3和光学窗口5的一侧(如图1所示的右侧),观测位置6与偏折后的VCSEL激光的光心轴20’同轴设置。
在观测位置6设置有观测单元,例如CCD成像设备,图像可实时传输在显示屏进行观测;还可以通过观测窗口进行人眼观测。较优地,在观测窗口设置放大镜60,人眼通过放大镜60可以对治疗面进行放大观测。通过上述观测途径,进行治疗过程及治疗结果的观测。另外,在观测设备四周设置有环状的照明光源,便于更好地进行观测。
为了实现激光的及时散热,上述激光器还包括半导体制冷片(未图示)和热管12。其中,半导体制冷片的冷端通过外壳2,实现光学窗口5的热传导和制冷,降低光学窗口5的温度;半导体制冷片的热端通过热管12与热沉11实现热传导;从而将光学窗口5吸收的热能,通过半导体制冷片和热管,从热沉11传导出去。在本发明的一个实施例中,半导体制冷片可以利用半导体材料的帕尔贴效应制成。
在激光器中设置有控制单元21,控制单元21通过读取检测单元22中温度传感器(参见下文)的温度数据控制半导体制冷片工作,以实现舒适的治疗温度。
为了增强激光的散热效果,上述激光器还包括风扇13,风扇13设置在热沉11下方,用于对热沉11进行散热。在外壳1上设置有与风扇13所在的区域相通的进风口和出风口。通过风扇13将外壳1内部产生的热量散发出去。控制单元21控制风扇13的启停。
半导体制冷片、VCSEL平面阵列光源2和风扇13均与控制单元21电连接。控制单元21可以采用单片机、微控制器等实现。控制单元21包括主控板组件与多个接口,并通过多个接口与半导体制冷片、VCSEL平面阵列光源2、风扇13、检测单元22、控制按键23电连接。
该激光器在光学窗口5附近设置有检测单元22。检测单元22包括皮肤接触检测元件和温度检测元件。皮肤接触检测元件用于对光学窗口5(即激光治疗仪的治疗头)是否与物体表面(例如,皮肤表面,即治疗面)接触进行检测。治疗头未接触皮肤时,按下出光按键不会发射激光,当治疗头与皮肤接触好后,按下出光按键才会有激光发射。温度检测元件用于对光学窗口5(例如,蓝宝石)的温度进行测量。上述皮肤接触检测元件和温度检测元件分别与控制单元21电连接。
并且,该激光器还设置有与控制单元21连接的控制按键23,用于对激光器进行按键控制。在外壳1上同时设置有多个LED指示灯,多个指示灯与控制单元21连接,用于指示开关机及档位设置。具体来说,控制按键23分为触摸按键和出光按键。触摸按键的功能为长按三秒开机、长按三秒关机及单按档位调节。触摸按键通过LED灯进行档位指示,不同的档位可应用于不同的肤色或者不同的部位。出光按键控制激光的发射。控制单元21在检测到脱毛仪开机、与皮肤接触良好,并按下出光按键时才允许激光发射,保证激光发射安全。
综上所述,本发明实施例所提供的基于VCSEL成像和同轴可视化设计的激光器基于VCSEL光源实现,并通过成像透镜进行成像;利用双凸透镜进行成像,可以在像点位置得到均匀性极佳的平顶光斑,进而应用于各类工业、医疗与科研应用。为了便于实时观测,在成像透镜和未偏折的激光的像点之间,沿主光轴45度插入激光反射透镜(仅对激光波长反射,对可见光透射),实现90度的激光光路偏折,进而在45度反射镜背后,可以进行同轴的实时观测。观测方式可以采用多种方案,如人眼直接观测、人眼加放大镜观测、CCD成像器件成像等不同方式。
上述激光器,可以作为激光治疗仪使用,利用均匀性极佳的平顶光斑进行皮肤外科治疗,如脱毛、祛色斑、皮肤病灶灼烧、红血丝治疗等。上述激光器还可以作为工业激光器使用,利用均匀性极佳的平顶光斑进行塑料穿透焊接、屏幕边框焊接、屏幕边框加热解胶灯等。
如前述,本发明实施例所提供的基于VCSEL成像和同轴可视化设计的激光器,不仅便于握持,而且在保持小尺寸和轻便的前提下获得均匀性极佳的平顶光斑,光路短,散热性能良好;通过设置放大镜, 在保持小尺寸的条件下还可以放大观测,以满足人眼的观测要求。
以上对本发明所提供的基于VCSEL成像和同轴可视化设计的激光器进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质内容的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (10)

  1. 一种基于VCSEL成像和同轴可视化设计的激光器,其特征在于包括:
    外壳,限定中空的容纳腔;
    VCSEL平面阵列光源和热沉,设置于外壳中;VCSEL平面阵列光源设置在热沉上,用于发射VCSEL激光;
    成像透镜,设置于外壳中;并且成像透镜与VCSEL平面阵列光源的主光轴同轴设置,用于对VCSEL激光进行成像;VCSEL平面阵列光源和成像透镜之间的距离大于成像透镜的焦距;
    平面反射镜,设置于外壳中;平面反射镜位于成像透镜的后方并与VCSEL平面阵列光源的主光轴成α角设置,以使经过成像透镜的激光发生偏折,并在偏折后的VCSEL激光的主光轴上形成实像,0°<α<90°;所述平面反射镜用于对VCSEL激光进行全反射并允许其他波长光线透过;
    光学窗口,设置在外壳上,并设置在偏折后的VCSEL激光的实像像点位置;
    观测位置,设置在平面反射镜远离成像透镜和光学窗口的一侧,所述观测位置与偏折后的VCSEL激光的光心轴同轴设置。
  2. 如权利要求1所述的激光器,其特征在于:
    VCSEL平面阵列光源和成像透镜之间的距离c,成像透镜和平面反射镜之间的距离a,以及平面反射镜与光学窗口之间的距离b,满足以下公式:1/(a+b)+1/c=1/f;
    其中,f表示成像透镜的焦距。
  3. 如权利要求2所述的激光器,其特征在于:
    所述成像透镜的直径D应满足以下公式:D≥m+2c×tan(θ/2);
    其中,m为VCSEL平面阵列光源的光斑直径,θ为VCSEL平面阵列光源的发散角全角。
  4. 如权利要求1所述的激光器,其特征在于:
    所述成像透镜是双凸透镜。
  5. 如权利要求1所述的激光器,其特征在于:
    所述平面反射镜面向所述成像透镜的一侧表面设置有用于对VCSEL激光进行反射的高反膜。
  6. 如权利要求1所述的激光器,其特征在于:
    平面反射镜和VCSEL平面阵列光源的主光轴呈45度角设置。
  7. 如权利要求1所述的激光器,其特征在于:所述观测位置设置有CCD成像设备。
  8. 如权利要求1所述的激光器,其特征在于:所述观测位置设置有观测窗口,或者所述观测位置设置有观测窗口和放大镜的组合。
  9. 如权利要求1所述的激光器,其特征在于:还包括半导体制冷片和热管,其中,半导体制冷片的冷端用于对光学窗口进行制冷,所述半导体制冷片的热端通过所述热管与所述热沉进行散热。
  10. 如权利要求9所述的激光器,其特征在于还包括风扇和控制单元,所述风扇设置在所述热沉下方,用于对所述热沉进行散热;所述半导体制冷片、所述VCSEL平面阵列光源和所述风扇分别与所述控制单元电连接。
PCT/CN2022/072597 2021-01-18 2022-01-18 基于vcsel成像和同轴可视化设计的激光器 WO2022152318A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22739193.5A EP4280400A1 (en) 2021-01-18 2022-01-18 Laser based on vcsel imaging and coaxial visualization design
CN202290000111.0U CN218123962U (zh) 2021-01-18 2022-01-18 基于vcsel成像和同轴可视化设计的激光器
US18/353,079 US20240055831A1 (en) 2021-01-18 2023-07-16 Laser based on vcsel imaging and coaxial visualization design

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110059453.1 2021-01-18
CN202110059453.1A CN112382928A (zh) 2021-01-18 2021-01-18 基于vcsel成像和同轴可视化设计的激光器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/353,079 Continuation US20240055831A1 (en) 2021-01-18 2023-07-16 Laser based on vcsel imaging and coaxial visualization design

Publications (1)

Publication Number Publication Date
WO2022152318A1 true WO2022152318A1 (zh) 2022-07-21

Family

ID=74581954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072597 WO2022152318A1 (zh) 2021-01-18 2022-01-18 基于vcsel成像和同轴可视化设计的激光器

Country Status (4)

Country Link
US (1) US20240055831A1 (zh)
EP (1) EP4280400A1 (zh)
CN (2) CN112382928A (zh)
WO (1) WO2022152318A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382928A (zh) * 2021-01-18 2021-02-19 北京镭科光电科技有限公司 基于vcsel成像和同轴可视化设计的激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827768A (zh) * 2012-08-15 2012-12-19 华中科技大学 一种研究神经环路功能和调控动物行为活动的系统
CN104339080A (zh) * 2013-08-06 2015-02-11 斯甘索尼克咪有限公司 用于钢材接合的方法
CN206065662U (zh) * 2016-08-29 2017-04-05 武汉华工激光工程有限责任公司 一种带图像定位的振镜式激光加工系统
CN109664017A (zh) * 2018-12-25 2019-04-23 中国科学院西安光学精密机械研究所 实现激光扫描加工监测和加工定位的装置及方法、激光加工设备
CN112382928A (zh) * 2021-01-18 2021-02-19 北京镭科光电科技有限公司 基于vcsel成像和同轴可视化设计的激光器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303503A (ja) * 1993-04-12 1994-10-28 Kiyousera Opt Kk テレビカメラレンズ用同軸照明装置
JPH10165371A (ja) * 1996-12-09 1998-06-23 Niles Parts Co Ltd 視線計測装置
US6747771B2 (en) * 2002-09-03 2004-06-08 Ut-Battelle, L.L.C. Off-axis illumination direct-to-digital holography
US8919960B2 (en) * 2005-12-20 2014-12-30 James Waller Lambuth Lewis Adaptive infrared retinoscopic device for detecting ocular aberrations
CN106383127A (zh) * 2016-02-29 2017-02-08 深港产学研基地 Ito透明薄膜的缺陷图像采集系统
CN110460758B (zh) * 2019-08-28 2021-04-30 上海集成电路研发中心有限公司 一种基于激光测距点标识的成像装置及成像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827768A (zh) * 2012-08-15 2012-12-19 华中科技大学 一种研究神经环路功能和调控动物行为活动的系统
CN104339080A (zh) * 2013-08-06 2015-02-11 斯甘索尼克咪有限公司 用于钢材接合的方法
CN206065662U (zh) * 2016-08-29 2017-04-05 武汉华工激光工程有限责任公司 一种带图像定位的振镜式激光加工系统
CN109664017A (zh) * 2018-12-25 2019-04-23 中国科学院西安光学精密机械研究所 实现激光扫描加工监测和加工定位的装置及方法、激光加工设备
CN112382928A (zh) * 2021-01-18 2021-02-19 北京镭科光电科技有限公司 基于vcsel成像和同轴可视化设计的激光器

Also Published As

Publication number Publication date
US20240055831A1 (en) 2024-02-15
EP4280400A1 (en) 2023-11-22
CN112382928A (zh) 2021-02-19
CN218123962U (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US20210396988A1 (en) User Wearable Fluorescence Enabled Visualization System
WO2022152318A1 (zh) 基于vcsel成像和同轴可视化设计的激光器
CN105765294A (zh) 基于led的太阳模拟器系统及使用的方法
US20200278486A1 (en) Illumination system
CN105842836B (zh) 显微观察用光学装置
TW201213727A (en) Light emitting diode illumination light source module installed in medical illumination lamp
US9851074B2 (en) Surgical illuminator
US5409480A (en) Laser endoscope system console
WO2018072610A1 (zh) 一种半导体激光器模块及用于无创医疗的方法
JP2014147476A (ja) 細隙灯顕微鏡
TWI743473B (zh) 外科手術攝影系統
EP4093262B1 (en) Compact examination apparatus with visual field perimetry and blind spot capabilities
WO2016167031A1 (ja) 冷却装置及び内視鏡用光源装置
US3589799A (en) Optical system for illumination and viewing of an area
CN208573823U (zh) 医用定位指示模块
JP4086587B2 (ja) レーザ治療装置
US11957412B2 (en) Imaging device for ophthalmic laser system using off-axis miniature camera
JP4404596B2 (ja) レーザ治療装置
JP4388655B2 (ja) レーザ治療装置
CN217484679U (zh) 一种带增反膜的投影机
JP3916358B2 (ja) レーザ治療装置
CN117918878A (zh) 一种诊疗防一体化激光设备
JP2004057739A (ja) レーザ治療装置
RU138858U1 (ru) Лазерный медицинский прибор
JP2024130952A (ja) 照明装置および診療システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022739193

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739193

Country of ref document: EP

Effective date: 20230818