WO2022152206A1 - 功率控制方法、装置及用户设备 - Google Patents

功率控制方法、装置及用户设备 Download PDF

Info

Publication number
WO2022152206A1
WO2022152206A1 PCT/CN2022/071784 CN2022071784W WO2022152206A1 WO 2022152206 A1 WO2022152206 A1 WO 2022152206A1 CN 2022071784 W CN2022071784 W CN 2022071784W WO 2022152206 A1 WO2022152206 A1 WO 2022152206A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
target
control parameters
pusch
resources
Prior art date
Application number
PCT/CN2022/071784
Other languages
English (en)
French (fr)
Inventor
孙荣荣
孙鹏
刘昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020237023928A priority Critical patent/KR20230121122A/ko
Priority to EP22739082.0A priority patent/EP4258755A1/en
Priority to JP2023541050A priority patent/JP2024502121A/ja
Publication of WO2022152206A1 publication Critical patent/WO2022152206A1/zh
Priority to US18/349,773 priority patent/US20230354208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a power control method, apparatus and user equipment.
  • PUSCH Physical Uplink Shared Channel
  • Multi-TRP/panel MTRP
  • PUSCH may be switched and sent on different panels by time division.
  • DCI Downlink Control Information
  • the PUSCH transmission needs to be associated with multiple different sounding reference signal (Sounding Reference Signal, SRS) resources in some cases, different SRS resource configurations Different spatial relationship information.
  • SRS Sounding Reference Signal
  • Embodiments of the present application provide a power control method, apparatus, and user equipment, which can implement transmit power adjustment in a scenario where PUSCH transmission is associated with multiple different SRS resources.
  • a power control method executed by a user equipment (User Equipment, UE), the method includes: receiving DCI from a network side device; the DCI is used to schedule PUSCH transmission; the above PUSCH transmission is associated with N different Target resources; the above target resources include: SRS resources or SRS resource groups; according to DCI, determine target power control parameters corresponding to different target resources associated with the above PUSCH transmission.
  • UE User Equipment
  • a power control apparatus comprising: a receiving module for receiving DCI from a network side device; the DCI is used for scheduling PUSCH transmission; the above-mentioned PUSCH transmission is associated with N different target resources; the above-mentioned target resources include : SRS resource or SRS resource group; according to the DCI received by the receiving module, determine the target power control parameters corresponding to the above-mentioned PUSCH transmission associated with different target resources.
  • a UE in a third aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor. The steps of implementing the method as described in the first aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect or the The steps of the method described in the third aspect.
  • a fifth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network-side device program or instruction, implementing the method described in the first aspect. method described.
  • the UE in a scenario where PUSCH transmission is associated with N different target resources (SRS resources or SRS resource groups), after the UE receives the DCI for scheduling the PUSCH transmission from the network side device, it can The target power control parameters corresponding to different target resources are determined for the above-mentioned PUSCH transmission, thereby ensuring that the PUSCH transmission adopts multiple sets of transmit powers matched with multiple target resources, thereby ensuring the reliability of the PUSCH transmission.
  • SRS resources or SRS resource groups target resources
  • FIG. 1 is a schematic diagram of a system architecture of a wireless communication system provided by an embodiment of the present application
  • FIG. 2 is a method flowchart of a power control method provided by an embodiment of the present application
  • FIG. 3 is one of the schematic structural diagrams of a power control apparatus provided by an embodiment of the present application.
  • FIG. 4 is a second schematic structural diagram of a power control apparatus provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a UE according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th Generation (6th Generation) , 6G) communication system.
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, Netbook, Ultra-mobile Personal Computer (UMPC), Mobile Internet Device (MID), Wearable Device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • MID Wearable Device
  • VUE vehicle-mounted device
  • PUE pedestrian terminal
  • wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the transmit power of the UE at the PUSCH transmission opportunity i is P PUSCH,b,f,c (i,j,q d ,l):
  • b represents the BWP in the uplink active state where the PUSCH is located
  • f represents the PUSCH carrier in the BWP
  • c represents the serving cell.
  • PO_PUSCH,b,f,c (j) PO_NOMINAL_PUSCH,f,c(j)+PO_UE_PUSCH,b,f,c(j).
  • j ⁇ 0,1,...,J-1 ⁇ PO_NOMINAL_PUSCH,f,c(j) is configured by the network side
  • PO_UE_PUSCH,b,f,c(j) that is, P0, is dynamically indicated by the network side.
  • PL b,f,c (q d ) Indicates the downlink path loss estimate, obtained from the path loss-reference signal (PL-RS) measurement with index q d
  • f b, f, c (i, l) represents the closed-loop power control adjustment value corresponding to the power control adjustment state l.
  • target power control parameters eg, ⁇ and P0
  • the technical solutions provided in the embodiments of the present application can be applied to the power adjustment process described above to perform uplink power adjustment.
  • FIG. 2 shows a schematic flowchart of a parameter adjustment method provided by an embodiment of the present invention.
  • the parameter adjustment method may include the following steps:
  • Step 201 The UE receives DCI.
  • the UE receives the DCI from the network side device.
  • the above-mentioned DCI is used to schedule PUSCH transmission; the above-mentioned PUSCH transmission is associated with different target resources; the above-mentioned target resources include: SRS resources or SRS resource groups.
  • Step 202 The UE determines the target power control parameter corresponding to the PUSCH transmission according to the DCI.
  • the above-mentioned target power control parameter includes at least one of the following:
  • Open loop power control parameters eg, ⁇ P0, ⁇
  • the closed loop power control adjusts the state index.
  • the above-mentioned P0 and ⁇ are target received power and path loss compensation factors, and the above-mentioned closed-loop power control adjustment state index is used to indicate the closed-loop power control adjustment state that the SRS can maintain.
  • the DCI further includes a closed-loop power control adjustment state index and a power adjustment value corresponding to the closed-loop power control adjustment state index; wherein the target power control parameter includes the power adjustment value.
  • the closed-loop power control adjustment state index may be multiple closed-loop power control adjustment state indexes, and the multiple closed-loop power control adjustment state indexes may select different values.
  • the TPC field in the above-mentioned DCI is used to indicate the power adjustment value, and the size of the above-mentioned TPC field is indicated by higher layer signaling.
  • the above-mentioned high-level signaling is RRC or MAC CE.
  • RRC Radio Resource Control
  • MAC CE MAC CE
  • the above-mentioned target resource maintains multiple closed-loop power control adjustment states.
  • the above-mentioned closed-loop power control adjustment state satisfies at least one of the following: the above-mentioned closed-loop power control adjustment state is indicated by high-level signaling; the above-mentioned closed-loop power control adjustment state is associated with the SRS resource set; wherein, the above-mentioned SRS resource set includes target resources (that is, PUSCH transmission associated SRS resource or SRS resource group).
  • the UE receives high-layer signaling, and the high-layer signaling indicates that the UE has multiple closed-loop power control adjustment states of SRS resources or SRS resource groups.
  • the foregoing SRS resource set configuration includes a closed-loop power control adjustment state index.
  • Target power control parameters corresponding to different target resources associated with the PUSCH transmission can be determined according to the DCI, thereby ensuring that the PUSCH transmission adopts multiple sets of transmit powers matching multiple target resources, thereby ensuring the reliability of the PUSCH transmission.
  • the above-mentioned target power control parameters include power control parameters in at least one set of first power control parameters.
  • a set of first power control parameters may be referred to as an SRI-PUSCH power control parameter set (SRI-PUSCH-Power Control).
  • the above-mentioned first power control parameter may include at least one of the following parameters: target received power and path loss compensation factor (such as P0 and ⁇ ), the index of the path loss reference signal PL-RS, and the closed-loop power control state index (such as , l) above.
  • the above-mentioned SRI field is used to indicate at least one set of first power control parameters; wherein, the above-mentioned target power control parameters include the above-mentioned at least one set of first power control parameters A power control parameter in a power control parameter.
  • the above-mentioned first power control parameter may be referred to as SRI-PUSCH-PowerControl.
  • the power control method provided by the embodiment of the present application may include the following step 201a:
  • Step 201a The UE determines at least one set of first power control parameters corresponding to at least one first sequence.
  • the above-mentioned first sequence is: a sequence that has a mapping relationship with the first value; the above-mentioned first value includes any one of the following: the domain value of the SRI domain in the DCI, and the domain value of the SRI domain in the DCI is superimposed with different first values. The value obtained after the offset value.
  • the above-mentioned first offset value satisfies at least one of the following:
  • the above-mentioned first offset value is configured by high-layer signaling
  • the above first offset value is an integer
  • the above-mentioned first offset value is associated with an SRS resource set, and the above-mentioned SRS resource set includes at least one above-mentioned target resource.
  • the above-mentioned at least first sequence is associated with Y SRS resource sets; one first sequence is associated with at least one SRS resource set, and Y is a positive integer; wherein, the above-mentioned Y SRS resource sets include different targets associated with the above-mentioned PUSCH transmission resource.
  • the domain value of the SRI domain in the above DCI is mapped to one or more sets of sri-PUSCH mapping addition/modification sequences (sri-PUSCH-MappingToAddModList) (ie the above first sequence), so as to obtain one or more sets of sri-PUSCH-MappingToAddModList Set of first power control parameters (SRI-PUSCH-PowerControl).
  • sri-PUSCH-MappingToAddModList sequence is associated with an SRS resource set (the SRS resource set includes at least one SRS associated with the above-mentioned PUSCH).
  • the SRI field in the above DCI corresponds to at least one field value, and a field value has a mapping relationship with a first sequence.
  • the DCI contains two SRI fields, and one SRI field corresponds to one SRI value (that is, the above SRI field. field value), or the SRI field of the DCI jointly indicates two SRI values.
  • the above DCI indicates that one or more SRI values are respectively mapped to a set of sri-PUSCH-MappingToAddModList sequences, thereby obtaining one or more sets of SRI-PUSCH-PowerControl.
  • the at least one set of first power control parameters indicated by the SRI field included in the DCI is related to the M target resources indicated by the SRI field, where M is a positive integer.
  • the above M target resources satisfy at least one of the following: the above M target resources belong to different SRS resource sets respectively; all SRS resources in one SRS resource group belong to the same SRS resource set.
  • one or more sets of SRI-PUSCH-PowerControl indicated by the SRI field in the above DCI are associated with one or more SRS resources/SRS resource groups indicated by the SRI field.
  • multiple SRS resource/SRS resource groups come from different SRS resource sets; all SRS resources in one SRS resource group come from the same SRS resource set.
  • the power adjustment method provided by the embodiment of the present application may include the following steps:
  • Step 203 The UE determines at least one set of first power control parameters; the above-mentioned target power control parameters are power control parameters in the above-mentioned at least one set of first power control parameters.
  • the above-mentioned at least one set of first power control parameters includes open-loop power control parameters
  • the above step 203 may include the following step 203a:
  • Step 203a The UE determines a target open-loop power control parameter group from the power control parameter set configured by high-level signaling; the above-mentioned power control parameter set includes one or more groups of open-loop power control parameters, and the above-mentioned target open-loop power control parameter group Belonging to the power control parameter set, the target open-loop control parameter group includes at least one set of first power control parameters, and the target power control parameter is a power control parameter in the at least one set of first power control parameters.
  • a target open-loop control parameter group includes: target received power P0 and path loss compensation factor; or, one or more target received powers P0. It should be noted that a target open-loop control parameter group may contain one P0 or two P0s.
  • the open-loop power control parameters of the above-mentioned one or more sets of first power parameters may be obtained from one or more sets of open-loop power control parameter sets (eg, P0-AlphaSets). Power control parameters (such as P0-PUSCH-AlphaSet) are obtained.
  • P0-AlphaSets open-loop power control parameter sets
  • Power control parameters such as P0-PUSCH-AlphaSet
  • the above target open-loop power control parameter group satisfies at least one of the following:
  • the position of the target open-loop power control parameter group in the power control parameter set is determined based on the second offset value
  • the target open-loop power control parameter group is an open-loop power control parameter group corresponding to a group index that satisfies the first condition in the power control parameter set.
  • the above-mentioned second offset value satisfies at least one of the following:
  • the above-mentioned second offset value is configured by high-layer signaling
  • the above second offset value is an integer
  • the above-mentioned second offset value is associated with an SRS resource set, and the above-mentioned SRS resource set includes at least one above-mentioned target resource.
  • the positions of the above-mentioned one or more sets of P0-PUSCH-AlphaSets in the p0-AlphaSets set may be 1, 1+offset1, 1+offset2, and so on, respectively.
  • the above offset1, offset2...offsetK are configured by high-level signaling and are associated with the SRS resource set.
  • the at least one set of first power control parameters includes: parameters indicating at least one set of path loss reference signals; and the parameters of the at least one set of path loss reference signals are determined based on at least one of the following :
  • the index of the path loss reference signal configured by the uplink physical control channel (Physical Uplink Control Channel, PUCCH) resource;
  • One or more sets of path loss reference signals indicated by consecutive multiple indices starting from a first preset index (eg, index 0);
  • the target power control parameters include at least one of the following: power control parameters in the at least one set of first power control parameters, and power control parameters in the at least one set of second power control parameters.
  • a set of first power control parameters may be called SRI-PUSCH-PowerControl
  • a set of second power control parameters may be called a PUSCH target received power set (P0-PUSCH-Set-r16), the P0-PUSCH- The target received power P0 is included in Set-r16.
  • the power control method provided in this embodiment of the present application may include the following step 204:
  • Step 204 The UE determines at least one set of second power control parameters among the multiple sets of second power control parameters configured by high-layer signaling.
  • the set of second power control parameters includes at least two second power control parameters.
  • one set of second power control parameters corresponds to one index; the at least one set of second power control parameters is: at least one set of the above-mentioned multiple sets of second power control parameters corresponding to the target index The second power control parameter; wherein, the above-mentioned target index is obtained based on the third offset value on the basis of the preset index.
  • the above-mentioned third offset value satisfies at least one of the following:
  • the above-mentioned third offset value is configured by high-layer signaling
  • the above third offset value is an integer
  • the above-mentioned third offset value is associated with an SRS resource set, and the above-mentioned SRS resource set includes at least one above-mentioned target resource.
  • the above one or more sets of P0-PUSCH-Set-r16 may be P0 corresponding to indexes such as index a, index (a+offset1), index (a+offset2), ..., index (a+offsetH), etc. -PUSCH-Set-r16.
  • the above offset1, offset2...offsetH are configured by higher layer signaling and are associated with the SRS resource set.
  • the above-mentioned index a may be the smallest index.
  • the above-mentioned target power control parameter includes: a target third power control parameter (for example, the above-mentioned target received power P0), and the above-mentioned step 202 may include the following step 202b:
  • Step 202b Under the condition that both the above-mentioned at least one set of first power control parameters and the above-mentioned at least one set of second power control parameters both include the third power control parameter, according to the open-loop power control parameter set indication in the above DCI The threshold value of the domain, the target third power control parameter is determined from the at least one set of first power control parameters and the at least one set of second power control parameters.
  • the above-mentioned open-loop power control parameter set indication field may be referred to as an OLPC (Open-loop power control parameter set indication) field.
  • OLPC Open-loop power control parameter set indication
  • the OLPC domain and the SRI domain in the DCI indicate at least one set of second power control parameters for the UE.
  • the UE receives the high-level signaling and obtains the bit size of the OLPC domain of the DCI format0_1 and DCI format0_2 of the scheduled PUSCH, which is 1 bit or 2 bits.
  • the above-mentioned OLPC field is used to indicate the source of the target third power control parameter (ie, P0).
  • the field value of the above-mentioned OLPC field is used to indicate: the target third power control parameter is from at least one set of first power control parameters, or whether from at least one second set of power control parameters.
  • Example 1 For the scenario where the OLPC domain is 1 valid bit (ie 1 bit).
  • the OLPC field When the OLPC field is "0", it indicates that one or more sets of P0s for PUSCH transmission take the P0 in one or more SRI-PUSCH-PowerControl indicated by the SRI field; or, when the OLPC field is "1", it indicates that One or more sets of P0 for PUSCH transmission respectively take the P0 in one or more sets of P0-PUSCH-Set-r16 indicated by the SRI field.
  • each group of effective bits in the above-mentioned open-loop power control parameter set indication field corresponds to one of the above-mentioned target resources; the above-mentioned X effective bits include: : at least one set of significant digits; where X is an integer greater than 1. Further, the value of any group of valid bits in the above-mentioned open-loop power control parameter set indication field is used to indicate: the target third power control parameter associated with the target resource corresponding to any group of valid bits.
  • Example 2 In the case where the DCI contains the SRI field, for the scenario where the OLPC field contains 2 significant bits. Assuming that the most significant bit is associated with the first SRS resource and the least significant bit is associated with the second SRS resource, the indication manner of the source of the above P0 is shown in Table 1 below.
  • the OLPC field is used to indicate the source of the P0 of the significant bits corresponding to the SRS resource or SRS resource group.
  • Example 3 When the DCI does not contain the SRI field, for the scenario where the OLPC field contains 4 significant bits. It is assumed that the first two significant bits are associated with the first SRS resource, the last two significant bits are associated with the second SRS resource, and each set of second power control parameters includes two second power control parameters (ie P0-1 and P0-2) Then, the indication mode of the source of the above P0 is shown in Table 2 below.
  • step 204 may include the following step 204a:
  • Step 204a In the case that the DCI includes the SRI field, the UE determines at least one set of second power control parameters corresponding to the at least one second sequence according to the sequence configuration of the at least one second sequence included in the higher layer signaling.
  • the second sequence is: a sequence that has a mapping relationship with the second value; the second value includes any of the following: the domain value of the SRI domain included in the DCI, the domain value of the SRI domain included in the DCI respectively The value obtained by superimposing the different fourth offset values.
  • the above-mentioned fourth offset value satisfies at least one of the following:
  • the above-mentioned fourth offset value is configured by high-layer signaling
  • the above fourth offset value is an integer
  • the above-mentioned fourth offset value is associated with an SRS resource set, and the above-mentioned SRS resource set includes at least one above-mentioned target resource.
  • the SRI domain included in the above-mentioned DCI corresponds to at least one domain value, and one domain value has a mapping relationship with at least one second sequence.
  • the above-mentioned second sequence may be referred to as P0-PUSCH-SetList-r16.
  • the UE receives high-layer signaling to obtain one or more sets of sequence configurations of P0-PUSCH-SetList-r16.
  • the above sequence configuration is used to indicate that the above one or more sets of P0-PUSCH-SetList-r16 are respectively associated with multiple SRS resource sets, and each set of P0-PUSCH-SetList-r16 contains multiple sets of P0-PUSCH-Set-r16, each set of P0-PUSCH-Set-r16 contains a P0-PUSCH-r16 (P0).
  • the SRI fields in the above-mentioned DCI may be mapped to different P0-PUSCH-SetList-r16, respectively, to obtain multiple sets of P0-PUSCH-Set-r16.
  • the UE receives high-layer signaling, obtains a set of P0-PUSCH-SetList-r16 configurations, and obtains multiple fourth offset values. After the SRI values in the SRI field are superimposed with different fourth offset values, they are respectively mapped to One set of P0-PUSCH-SetList-r16, and multiple sets of P0-PUSCH-Set-r16 are obtained.
  • the UE receives high-level signaling.
  • the high-level signaling configures two SRS resource sets for codebook transmission.
  • the UE receives DCI for scheduling PUSCH transmission, the SRI field of the DCI indicates that two SRS resources from different SRS resource sets are used for PUSCH transmission.
  • the value of the SRI field of the DCI is mapped to two sri-PUSCH-MappingToAddModLists, respectively, to obtain two SRI-PUSCH-PowerControls (including P0_a, P0_b) associated with the two SRS resources. Then, map the value of the SRI field of the DCI to the two P0-PUSCH-SetList-r16 respectively, and obtain two P0-PUSCH-Set-r16 (including P0_c, P0_d respectively) associated with the two SRS resources ).
  • '0' indicates that the two P0s of the two sets of power control parameters are respectively equal to P0_a and P0_b in the two SRI-PUSCH-PowerControls.
  • '1' indicates that the two P0s of the two sets of power control parameters take the P0_c and P0_d in the two P0-PUSCH-SetList-r16.
  • the interpretation of the value of the OLPC field is shown in Table 3 below:
  • At least one time-frequency resource information transmitted by the PUSCH corresponds to at least one set of power control parameters.
  • time-frequency resource information is used to indicate any of the following:
  • one time domain resource includes multiple consecutive orthogonal frequency division multiplex (Orthogonal frequency division multiplex, OFDM) symbols.
  • the above-mentioned first transmission opportunity is one of the above-mentioned at least one transmission opportunity;
  • the above-mentioned target power control parameter includes a power control parameter in the above-mentioned at least one set of power control parameters.
  • the above power control parameters may be power control parameters in the at least one set of first power control parameters, or may be power control parameters in the at least one set of second power control parameters. Not limited.
  • the at least one transmission occasion may be at least one repeated transmission occasion of the PUSCH.
  • a set of power control parameters is used to calculate the transmit power for a repeated transmission occasion of the PUSCH.
  • the above-mentioned repeated transmission timing is the same as the SRS resource or SRS resource group associated with the power control parameter.
  • the power control method provided in this embodiment of the present application may further include the following steps 205a and 205b:
  • Step 205a The UE performs K frequency hopping on the PUSCH, each frequency hopping of the PUSCH corresponds to a set of power control parameters, and K is an integer greater than or equal to 1.
  • Step 205b During each frequency hopping process of the PUSCH, the UE adjusts the transmission power of the PUSCH according to the power control parameters corresponding to each frequency hopping.
  • each frequency hopping of the above-mentioned PUSCH satisfies any one of the following:
  • Different frequency hopping points corresponding to the transmission opportunity of the PUSCH are associated with different target resources
  • Each frequency hopping point is the same as the target resource associated with its corresponding power control parameter.
  • one hop (frequency hopping) of the above-mentioned PUSCH uses a set of power control parameters to calculate the transmit power, (that is, the power adjustment of the PUSCH is performed based on one hop).
  • different hops corresponding to the above-mentioned PUSCH transmission occasions are associated with different SRS resources or SRS resource groups.
  • the hop of the above-mentioned PUSCH is the same as the SRS resource or SRS resource group associated with the power control parameter corresponding to the hop.
  • one transmission opportunity corresponds to at least one set of power control parameters.
  • each of the time domain resources in the first transmission occasion corresponds to one set of power control parameters.
  • the target resources associated with the consecutive multiple OFDM symbols are the same; or, the target resources associated with the consecutive multiple OFDM symbols are the targets associated with the power control parameters corresponding to the consecutive multiple OFDM symbols The resources are the same.
  • the PUSCH repetition opportunity adopts at least one set of first power control parameters or at least one set of second power control parameters indicated by the SRI field.
  • a set of power control parameters may be used to calculate the transmit power of consecutive multiple OFDM symbols in one transmission opportunity of the PUSCH (that is, power adjustment may be performed based on consecutive multiple OFDM symbols with the same spatial relationship).
  • the SRS resource or SRS resource group associated with the consecutive OFDM symbols are the same (that is, the transmit beams are the same), and the SRS associated with the power control parameters corresponding to the consecutive OFDM symbols and the consecutive OFDM symbols resource or SRS resource group is the same.
  • the number of repeated transmissions of the PUSCH is 1, if multiple sets of power control parameters are used for the transmission opportunity of the PUSCH, the first half of the OFDM symbols use one set of power control parameters, and the second half of the OFDM symbols use another set of power control parameters control parameter.
  • the first N/2 symbols of the PUSCH transmission opportunity use the same
  • the first SRS resource in the code point is transmitted in the same spatial relationship, and the remaining N-N/2 symbols are transmitted in the same spatial relationship as the second SRS resource in the code point.
  • the SRI field is mapped to two sri-PUSCH-MappingToAddModLists, and two sets of power control parameter groups SRI-PUSCH-PowerControl are obtained.
  • the transmit power used in the first N/2 symbols of the above-mentioned PUSCH transmission opportunity is calculated from the power control parameters mapped on the PUSCH-MappingToAddModList associated with the first SRS resource set, and the transmit power of the remaining N-N/2 symbols is calculated by the second SRS Calculated from the power control parameters mapped on the PUSCH-MappingToAddModList associated with the resource set.
  • a set of power control parameters is used for one transmission opportunity of the PUSCH.
  • the execution body may be a power control apparatus, or a control module in the power control apparatus for executing the power control method.
  • the power control device provided by the embodiment of the present application is described by taking the power control method performed by the power control device as an example.
  • the executing subject of the above-mentioned power control method may also be other devices or apparatuses that can execute the power control method, which is not limited in this embodiment of the present application.
  • the power control apparatus 400 includes: a receiving module 401 and a determining module 402, wherein:
  • the receiving module 401 is used for receiving DCI; the above-mentioned DCI is used for scheduling PUSCH transmission; the above-mentioned PUSCH transmission is associated with different target resources; the above-mentioned target resources include: SRS resources or SRS resource groups; , and determine the target power control parameter corresponding to the above-mentioned PUSCH transmission.
  • the SRI field is used to indicate at least one set of first power control parameters; wherein the target power control parameters include the SRI field indicating power control parameters.
  • the above-mentioned determining module 402 is further configured to determine at least one set of first power control parameters corresponding to at least one first sequence; wherein, the above-mentioned first sequence is: a sequence that has a mapping relationship with the first value;
  • the above-mentioned first value includes any one of the following: the above-mentioned domain value of the SRI domain, and the above-mentioned domain value of the SRI domain respectively superimposed the value obtained after different first offset values;
  • the above-mentioned first offset value satisfies at least one of the following:
  • the above-mentioned first offset value is configured by high-layer signaling
  • the above first offset value is an integer
  • the above-mentioned first offset value is associated with an SRS resource set, and the above-mentioned SRS resource set includes at least one above-mentioned target resource.
  • the at least first sequence is associated with Y SRS resource sets; one first sequence is associated with at least one SRS resource set, and Y is a positive integer; wherein the Y SRS resource sets include the target resource.
  • the above-mentioned SRI field corresponds to at least one field value, and a field value has a mapping relationship with a first sequence.
  • the above-mentioned determining module 402 is further configured to determine a target open-loop power control parameter group from the power control parameter set configured by the high-level signaling in the case that the SRI field is not included in the above-mentioned DCI; the above-mentioned power control parameter set It includes one or more open-loop power control parameter groups; the target open-loop power control parameter group belongs to a power control parameter set; the target open-loop control parameter group includes at least one set of first power control parameters, and the target power control parameter is at least A power control parameter in a set of first power control parameters.
  • the above target open-loop power control parameter group satisfies at least one of the following:
  • the position of the target open-loop power control parameter group in the power control parameter set is determined based on the second offset value
  • the target open-loop power control parameter group is an open-loop power control parameter group corresponding to a group index that satisfies the first condition in the power control parameter set;
  • the above-mentioned second offset value satisfies at least one of the following:
  • the above-mentioned second offset value is configured by high-layer signaling
  • the above-mentioned second offset value is an integer
  • the above-mentioned second offset value is associated with an SRS resource set, and the above-mentioned SRS resource set includes at least one above-mentioned target resource.
  • the at least one set of first power control parameters includes: parameters indicating at least one set of path loss reference signals;
  • the above at least one set of path loss reference signals is determined based on at least one of the following:
  • the index of the path loss reference signal configured by the PUCCH resource of the uplink physical control channel
  • the above-mentioned determining module 402 is further configured to determine at least one set of second power control parameters in multiple sets of second power control parameters configured by high-level signaling;
  • the above-mentioned target power control parameters include at least one of the following:
  • the set of second power control parameters includes at least two second power control parameters.
  • one set of second power control parameters corresponds to one index;
  • the at least one set of second power control parameters is: at least one set of second power control parameters corresponding to the target index among the multiple sets of second power control parameters;
  • the above-mentioned target index is obtained based on the third offset value on the basis of the preset index
  • the above-mentioned third offset value satisfies at least one of the following:
  • the above-mentioned third offset value is configured by high-layer signaling
  • the above third offset value is an integer
  • the above-mentioned third offset value is associated with an SRS resource set, and the above-mentioned SRS resource set includes at least one above-mentioned target resource.
  • the above-mentioned target power control parameters include: a target third power control parameter; and the above-mentioned determining module 402 is specifically configured to: in both the above-mentioned at least one set of first power control parameters and the above-mentioned at least one set of second power control parameters In the case where the third power control parameter is included, according to the threshold value of the open-loop power control parameter set indication field in the above-mentioned DCI, from the above-mentioned at least one set of first power control parameters and the above-mentioned at least one set of second power control parameters, determine The above target third power control parameter.
  • each group of effective bits in the above-mentioned open-loop power control parameter set indication field corresponds to one of the above-mentioned target resources; wherein, X is greater than 1 the integer.
  • the value of any group of valid bits in the above-mentioned open-loop power control parameter set indication field is used to indicate: the above-mentioned target third power control parameter corresponding to the target resource corresponding to the above-mentioned any group of valid bits.
  • the above-mentioned determining module 402 is specifically configured to, in the case that the above-mentioned DCI includes the above-mentioned SRI field, according to the sequence configuration of the at least one second sequence included in the high-level signaling, determine the at least one corresponding to the above-mentioned at least one second sequence.
  • the above-mentioned second value includes any one of the following: the above-mentioned domain value of the SRI domain, and the above-mentioned domain value of the SRI domain respectively superimposed the value obtained after different fourth offset values;
  • the above-mentioned fourth offset value satisfies at least one of the following:
  • the above-mentioned fourth offset value is configured by high-layer signaling
  • the above fourth offset value is an integer
  • the above-mentioned fourth offset value is associated with an SRS resource set, and the above-mentioned SRS resource set includes at least one above-mentioned target resource.
  • the above-mentioned SRI domain corresponds to at least one domain value, and one domain value has a mapping relationship with at least one second sequence.
  • the at least one set of first power control parameters indicated by the SRI field is related to the M target resources indicated by the SRI field, where M is a positive integer.
  • the above-mentioned M target resources satisfy at least one of the following:
  • the above-mentioned M target resources belong to different SRS resource sets respectively;
  • All SRS resources in one SRS resource group belong to the same SRS resource set.
  • At least one time-frequency resource information transmitted by the above-mentioned PUSCH corresponds to at least one set of power control parameters
  • time-frequency resource information is used to indicate any of the following:
  • one time domain resource includes multiple consecutive OFDM symbols
  • the above-mentioned first transmission opportunity is one of the above-mentioned at least one transmission opportunity
  • the above-mentioned target power control parameters include power control parameters in the above-mentioned at least one set of power control parameters.
  • the power control apparatus 400 further includes: an execution module 403, wherein the execution module 403 is configured to perform K frequency hopping on the PUSCH, and each frequency hopping of the PUSCH corresponds to one set Power control parameter, K is an integer greater than or equal to 1; in each frequency hopping process of the above PUSCH, the transmission power of the above PUSCH is adjusted according to the power control parameter corresponding to each frequency hopping.
  • each frequency hopping of the above PUSCH satisfies any of the following:
  • Different frequency hopping points corresponding to the above-mentioned PUSCH transmission opportunities are associated with different target resources
  • Each frequency hopping point is the same as the target resource associated with its corresponding power control parameter.
  • one transmission occasion corresponds to at least one set of power control parameters.
  • each of the time domain resources in the first transmission opportunity corresponds to one set of power control parameters.
  • the target resources associated with the multiple consecutive OFDM symbols are the same; or, the target resources associated with the multiple consecutive OFDM symbols are the same as the target resources associated with the power control parameters corresponding to the multiple consecutive OFDM symbols. .
  • the DCI further includes a closed-loop power control adjustment state index and a power adjustment value corresponding to the closed-loop power control adjustment state index; wherein, the target power control parameter includes the power adjustment value.
  • the TPC field in the above-mentioned DCI is used to indicate the above-mentioned power adjustment value, and the size of the above-mentioned TPC field is indicated by higher layer signaling.
  • the above-mentioned target resource maintains multiple closed-loop power control adjustment states.
  • the closed-loop power control adjustment state satisfies at least one of the following: the closed-loop power control adjustment state is indicated by high-level signaling; the closed-loop power control adjustment state is associated with an SRS resource set; wherein the SRS resource set includes target resources.
  • the device in a scenario where PUSCH transmission is associated with different target resources (SRS resources or SRS resource groups), after the device receives the DCI for scheduling the PUSCH transmission, it can The target power control parameters corresponding to different target resources are determined for the above-mentioned PUSCH transmission, thereby ensuring that the PUSCH transmission adopts multiple sets of transmit powers matched with multiple target resources, thereby ensuring the reliability of the PUSCH transmission.
  • SRS resources or SRS resource groups target resources
  • the power control device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the power control device in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an iOS operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the power control apparatus provided in the embodiments of the present application can implement the various processes implemented in the foregoing method embodiments, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 500, including a processor 501, a memory 502, a program or instruction stored in the memory 502 and executable on the processor 501,
  • a communication device 500 including a processor 501, a memory 502, a program or instruction stored in the memory 502 and executable on the processor 501
  • the communication device 500 is a UE
  • the program or instruction is executed by the processor 501
  • each process of the foregoing power control method embodiments can be implemented, and the same technical effect can be achieved.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110 and other components .
  • the terminal 100 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the above-mentioned radio frequency unit 101 is used for receiving DCI; the above-mentioned DCI is used for scheduling PUSCH transmission; the above-mentioned PUSCH transmission is associated with different target resources; the above-mentioned target resources include: SRS resources or SRS resource groups; The received DCI determines the target power control parameters corresponding to the above-mentioned PUSCH transmission.
  • the terminal in a scenario where PUSCH transmission is associated with different target resources (SRS resources or SRS resource groups), after the terminal receives the DCI used to schedule the PUSCH transmission, it can determine according to the DCI
  • the above-mentioned PUSCH transmission is associated with target power control parameters corresponding to different target resources, thereby ensuring that the PUSCH transmission adopts multiple sets of transmit powers matched with multiple target resources, thereby ensuring the reliability of PUSCH transmission.
  • the input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 101 receives the downlink data from the network side device, and then processes it to the processor 110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 109 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 110 .
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing power control method embodiment can be achieved, and can achieve the same In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running network-side device programs or instructions to implement the above power control method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used for running network-side device programs or instructions to implement the above power control method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种功率控制方法、装置及用户设备,该方法包括:UE接收DCI;上述DCI用于调度PUSCH传输;该PUSCH传输关联不同目标资源;上述目标资源包括:SRS资源或者SRS资源组;根据DCI,确定该PUSCH传输对应的目标功率控制参数。本申请实施例应用于功率调整场景中。

Description

功率控制方法、装置及用户设备
相关申请的交叉引用
本申请主张在2021年01月15日在中国提交的中国专利申请号202110057780.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种功率控制方法、装置及用户设备。
背景技术
为了支持物理上行共享信道(Physical Uplink Shared Channel,PUSCH)在多发送接收点或面板(Multi-TRP/panel,MTRP)传输,即PUSCH可能通过时分方式在不同的面板上切换发送。在继续采用single下行控制信息(Downlink Control Information,DCI)调度PUSCH的情况下,该PUSCH传输在某些情况下需要关联多个不同探测参考信号(Sounding Reference Signal,SRS)资源,不同的SRS资源配置不同的空间关系信息。
然而,针对PUSCH传输关联多个不同SRS资源的场景,目前并未给出有效的发射功率调整方案。
发明内容
本申请实施例提供一种功率控制方法、装置及用户设备,能够在PUSCH传输关联多个不同SRS资源的场景实现发射功率调整。
第一方面,提供了一种功率控制方法,由用户设备(User Equipment,UE)执行,所述方法包括:从网络侧设备接收DCI;该DCI用于调度PUSCH传输;上述PUSCH传输关联N个不同目标资源;上述目标资源包括:SRS资源或者SRS资源组;根据DCI,确定上述PUSCH传输关联不同目标资源时对应的目标功率控制参数。
第二方面,提供了一种功率控制装置,该装置包括:接收模块,用于从网络侧设备接收DCI;该DCI用于调度PUSCH传输;上述PUSCH传输关联N个不同目标资源;上述目标资源包括:SRS资源或者SRS资源组;根据接收模块接收到的DCI,确定上述PUSCH传输关联不同目标资源时对应的目标功率控制参数。
第三方面,提供了一种UE,该UE包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述 的方法。
在本申请实施例中,在PUSCH传输关联N个不同目标资源(SRS资源或者SRS资源组)的场景下,UE从网络侧设备接收到用于调度该PUSCH传输的DCI后,便可根据该DCI确定出上述PUSCH传输关联不同目标资源时对应的目标功率控制参数,进而能确保该PUSCH传输采用多套与多个目标资源匹配的发射功率,保证PUSCH传输可靠性。
附图说明
图1是本申请实施例提供的一种无线通信系统的系统架构示意图;
图2是本申请实施例提供的一种功率控制方法的方法流程图;
图3是本申请实施例提供的一种功率控制装置的结构示意图之一;
图4是本申请实施例提供的一种功率控制装置的结构示意图之二;
图5是本申请实施例提供的一种通信设备的结构示意图;
图6是本申请实施例提供的一种UE的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital  Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
以下将上行功率控制和调整过程进行解释说明,以方便读者理解:
UE在PUSCH传输时机i的发射功率为P PUSCH,b,f,c(i,j,q d,l):
Figure PCTCN2022071784-appb-000001
其中,b表示PUSCH所在上行激活态BWP,f表示在该BWP中PUSCH载波,c表示服务小区。
P CMAX,f,c(i):为UE配置的最大发射功率
P O_PUSCH,b,f,c(j)=PO_NOMINAL_PUSCH,f,c(j)+PO_UE_PUSCH,b,f,c(j)。
其中,j∈{0,1,...,J-1}PO_NOMINAL_PUSCH,f,c(j)由网络侧配置,PO_UE_PUSCH,b,f,c(j)即P0由网络侧动态指示。
α b,f,c(j),即α与P0成组,由网络侧动态指示。
PL b,f,c(q d):表示下行路损估计,由索引为q d的路径损耗-参考信号(PL-RS)测量得到
f b,f,c(i,l)表示功率控制调整状态l对应的闭环功控调整值。
需要说明的是,本申请实施例提供的技术方案所确定出的目标功率控制参数(如,α与P0)可以应用于至上文中描述的功率调整过程中,进行上行功率调整。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的功率控制方法进行详细地说明。
图2示出了本发明实施例提供的一种参数调节方法的流程示意图,如图2所示,该参数调节方法可以包括如下步骤:
步骤201:UE接收DCI。
示例性的,UE从网络侧设备接收DCI。
示例性的,上述DCI用于调度PUSCH传输;上述PUSCH传输关联不同目标资源;上述目标资源包括:SRS资源或者SRS资源组。
步骤202:UE根据该DCI,确定PUSCH传输对应的目标功率控制参数。
在本申请实施例中,上述目标功率控制参数包括以下至少一种:
开环功控参数(如,{P0,α}),
指示路损参考信号PL-RS的参数,
闭环功率控制调整状态索引。
其中,上述P0和α为目标接收功率和路损补偿因子,上述闭环功率控制调整状态索引用于指示SRS能够维持的闭环功率控制调整状态。
可选地,在本申请实施例中,上述DCI中还包含闭环功率控制调整状态索引和该闭环功率控制调整状态索引对应的功率调整值;其中,上述目标功率控制参数包括该功率调整值。示例性的,上述闭环功率控制调整状态索引可以为多个闭环功率控制调整状态索引,该多个闭环功率控制调整状态索引可以选取不同的值。
示例性的,上述DCI中的TPC域用于指示该功率调整值,上述TPC域的大小由高层信令指示。进一步的,上述高层信令为RRC或MAC CE。例如,UE接收MAC CE,当该MAC CE指示的所有码点都只对应一个SRS资源时,或者,当该MAC CE指示的所有码点对应的SRS资源都属于同一个SRS资源集时,TPC域大小为2比特,否则,TPC域的大小为4比特。
可选地,在本申请实施例中,上述目标资源维持多个闭环功率控制调整状态。其中,上述闭环功率控制调整状态满足以下至少一项:上述闭环功率控制调整状态是高层信令指示的;上述闭环功率控制调整状态与SRS资源集合关联;其中,上述SRS资源集合包括目标资源(即PUSCH传输关联的SRS资源或者SRS资源组)。
示例性的,UE接收高层信令,该高层信令指示UESRS资源或者SRS资源组的闭环功控调整状态有多个。
示例性的,上述SRS资源集合配置中包含闭环功率控制调整状态索引。
在本申请实施例提供的功率控制方法中,在PUSCH传输关联N个不同目标资源(SRS资源或者SRS资源组)的场景下,UE从网络侧设备接收到用于调度该PUSCH传输的DCI后,便可根据该DCI确定出上述PUSCH传输关联不同目标资源时对应的目标功率控制参数,进而能确保该PUSCH传输采用多套与多个目标资源匹配的发射功率,保证PUSCH传输可靠性。
以下将对本申请实施例提供的功率控制方法的几种方案进行进一步说明:
一种可选的方案:上述目标功率控制参数包括至少一套第一功率控制参数中的功率控制参数。示例性的,一套第一功率控制参数可以称为SRI-PUSCH功率控制参数集(SRI-PUSCH-Power Control)。进一步的,上述第一功率控制参数可以包含以下至少一项参数:目标接收功率和路损补偿因子(如,P0和α),路损参考信号PL-RS的索引,闭环功率控制状态索引(如,上文中的l)。
可选地,在本申请实施例中,在上述DCI中包含SRI域的情况下,上述SRI域用于指示至少一套第一功率控制参数;其中,上述目标功率控制参数包括上述至少一套第一功率控制参数中的功率控制参数。在一种示例中,上述第一功率控制参数可以称为SRI-PUSCH-PowerControl。
进一步可选地,在本申请实施例中,在上述步骤201之后,本申请实施例提供的功率控制方法可以包括如下步骤201a:
步骤201a:UE确定至少一个第一序列对应的至少一套第一功率控制参数。
其中,上述第一序列为:与第一值存在映射关系的序列;上述第一值包括以下任 一项:DCI中的SRI域的域值,DCI中的SRI域的域值分别叠加不同第一偏移值后得到的值。
其中,上述第一偏移值满足以下至少一项:
上述第一偏移值由高层信令配置,
上述第一偏移值为整数,
上述第一偏移值与SRS资源集合关联,上述SRS资源集合包括至少一个上述目标资源。
示例性的,上述至少第一序列与Y个SRS资源集合关联;一个第一序列与至少一个SRS资源集合关联,Y为正整数;其中,上述Y个SRS资源集合包括上述PUSCH传输关联的不同目标资源。
示例性的,上述DCI中的SRI域的域值映射到一套或多套sri-PUSCH映射的添加/修改序列(sri-PUSCH-MappingToAddModList)(即上述第一序列),从而获得一套或者多套第一功率控制参数(SRI-PUSCH-PowerControl)。在一种示例中,上述sri-PUSCH-MappingToAddModList序列与SRS resource set(该SRS resource set中包含至少一个与上述PUSCH关联的SRS)关联。
示例性的,上述SRI域的域值叠加不同第一偏移值(即第一值)后,分别映射到一套sri-PUSCH-MappingToAddModList序列,从而获得一套或多套SRI-PUSCH-PowerControl。
示例性的,上述DCI中的SRI域对应至少一个域值,一个域值与一个第一序列存在映射关系,例如,DCI中包含两个SRI域,一个SRI域对应一个SRI值(即上述SRI域的域值),或者,DCI的SRI域联合指示两个SRI值。可以理解,上述DCI指示一个或多个SRI值分别映射到一套sri-PUSCH-MappingToAddModList序列,从而获得一套或多套SRI-PUSCH-PowerControl。
进一步可选地,在本申请实施例中,上述DCI中包含的SRI域指示的上述至少一套第一功率控制参数与该SRI域指示的M个目标资源相关;其中,M为正整数。上述M个目标资源满足以下至少一项:上述M个目标资源分别属于不同的SRS资源集合;一个SRS资源组中的所有SRS资源属于同一SRS资源集合。
示例性的,上述DCI中的SRI域指示的一套或多套SRI-PUSCH-PowerControl与该SRI域指示的一个或多个SRS resource/SRS resource group关联。例如,多个SRS resource/SRS resource group分别来自不同的SRS resource set;一个SRS resource group中的所有SRS resource来自同一个SRS resource set。
可选地,在本申请实施例中,在上述DCI中不包含SRI域的情况下,在上述步骤202之前,本申请实施例提供的功率调整方法可以包括如下步骤:
步骤203:UE确定至少一套第一功率控制参数;上述目标功率控制参数为上述至少一套第一功率控制参数中的功率控制参数。
进一步可选地,在本申请实施例中,上述至少一套第一功率控制参数包括开环功率控制参数,上述步骤203可以包括如下步骤203a:
步骤203a:UE从高层信令配置的功率控制参数集合中,确定目标开环功率控制参数组;上述功率控制参数集合包括一组或多组开环功率控制参数,上述目标开环功率 控制参数组属于所述功率控制参数集合,上述目标开环控制参数组包括至少一套第一功率控制参数,上述目标功率控制参数为该至少一套第一功率控制参数中的功率控制参数。
示例性的,一个目标开环控制参数组包括:目标接收功率P0和路损补偿因子;或者,一个或多个目标接收功率P0。需要说明的是,一个目标开环控制参数组里面可以包含一个P0,也可以包含2个P0。
示例性的,当DCI不包含SRI域时,上述一套或多套第一功率参数的开环功率控制参数可以从功率控制参数集合(如,P0-AlphaSets)中的一套或多套开环功率控制参数(如P0-PUSCH-AlphaSet)中获取。
示例性的,上述目标开环功率控制参数组满足以下至少一项:
上述目标开环功率控制参数组在功率控制参数集合中的位置是基于第二偏移值确定,
上述目标开环功率控制参数组为功率控制参数集合中满足第一条件的组索引所对应的开环功率控制参数组。
其中,上述第二偏移值满足以下至少一项:
上述第二偏移值由高层信令配置,
上述第二偏移值为整数,
上述第二偏移值与SRS资源集合关联,上述SRS资源集合包括至少一个上述目标资源。
示例性的,上述一套或多套P0-PUSCH-AlphaSet在p0-AlphaSets集合中的位置分别可以是1,1+offset1,1+offset2等。其中,上述offset1、offset2……offsetK,由高层信令配置,跟SRS资源集关联。
进一步可选地,在本申请实施例中,上述至少一套第一功率控制参数包括:指示至少一套路损参考信号的参数;上述至少一套路损参考信号的参数是基于以下至少一项确定的:
上行物理控制信道(Physical Uplink Control Channel,PUCCH)资源配置的路损参考信号的索引;
从第一预设索引(例如,索引0)开始的连续多个索引指示的一套或多套路损参考信号;
从第二预设索引(例如,最低索引,特定索引等)开始的连续多个索引指示的多个CORESET的传输配置指示(Transmission Configuration Indicator,TCI)状态中的参考信号;
一种可选的方案:上述目标功率控制参数包括以下至少一项:上述至少一套第一功率控制参数中的功率控制参数,上述至少一套第二功率控制参数中的功率控制参数。示例性的,一套第一功率控制参数可以称为SRI-PUSCH-PowerControl;一套第二功率控制参数可以称为PUSCH目标接收功率组(P0-PUSCH-Set-r16),该P0-PUSCH-Set-r16中包含目标接收功率P0。
可选地,在本申请实施例中,在上述步骤202之后,本申请实施例提供的功率控制方法可以包括如下步骤204:
步骤204:UE确定高层信令配置的多套第二功率控制参数中的至少一套第二功率控制参数。
进一步可选地,在本申请实施例中,在上述DCI中不包含SRI域的情况下,一套第二功率控制参数中包含至少两个第二功率控制参数。
进一步可选地,在本申请实施例中,一套第二功率控制参数对应一个索引;上述至少一套第二功率控制参数为:上述多套第二功率控制参数中目标索引对应的至少一套第二功率控制参数;其中,上述目标索引是在预设索引的基础上基于第三偏移值得到。
示例性的,上述第三偏移值满足以下至少一项:
上述第三偏移值由高层信令配置,
上述第三偏移值为整数,
上述第三偏移值与SRS资源集合关联,上述SRS资源集合包括至少一个上述目标资源。
示例性的,上述一套或多套P0-PUSCH-Set-r16可以是索引a、索引(a+offset1),索引(a+offset2),……,索引(a+offsetH)等索引对应的P0-PUSCH-Set-r16。其中,上述offset1、offset2……offsetH,由高层信令配置,跟SRS资源集关联。在一种示例中,上述索引a可以为最小索引。
进一步可选地,在本申请实施例中,上述目标功率控制参数包括:目标第三功率控制参数(如,上述目标接收功率P0),上述步骤202可以包括如下步骤202b:
步骤202b:UE在上述至少一套第一功率控制参数和上述至少一套第二功率控制参数中均中均包含第三功率控制参数的情况下,根据上述DCI中的开环功率控制参数集指示域的域值,从上述至少一套第一功率控制参数和上述至少一套第二功率控制参数中,确定目标第三功率控制参数。
示例性的,上述开环功率控制参数集指示域可以称为OLPC(Open-loop power control parameter set indication)域。可以理解,DCI中的OLPC域联合SRI域为UE指示至少一套第二功率控制参数。例如,UE接收高层信令,获得调度PUSCH的DCIformat0_1和DCI format0_2的OLPC域的bit数大小为1bit或2bit。
示例性的,上述OLPC域用于指示目标第三功率控制参数(即P0)的来源。
示例性的,在上述开环功率控制参数集指示域包含1个有效位的情况下,上述OLPC域的域值用于指示:目标第三功率控制参数来自至少一套第一功率控制参数,还是来自至少一套第二功率控制参数。
示例1:针对OLPC域为1个有效位(即1bit)场景。当OLPC域取“0”时,表示PUSCH传输的一套或多套P0分别取SRI域指示的一个或多个SRI-PUSCH-PowerControl中的P0;或者,当OLPC域取“1”时,表示PUSCH传输的一套或多套P0分别取SRI域指示的一套或多套P0-PUSCH-Set-r16中的P0。
示例性的,在上述开环功率控制参数集指示域包含X个有效位的情况下,上述开环功率控制参数集指示域的每组有效位各对应一个上述目标资源;上述X个有效位包括:至少一组有效位;其中,X为大于1的整数。进一步的,上述开环功率控制参数集指示域的任一组有效位的值用于指示:关联该任一组有效位对应目标资源的目标第 三功率控制参数。
示例2:在DCI包含SRI域的情况下,针对OLPC域包含2个有效位的场景。假设最高有效位关联第一SRS资源,最低有效位关联第二SRS资源,则上述P0的来源的指示方式如下表1所示。
表1
Figure PCTCN2022071784-appb-000002
应注意的是,当SRI域只指示一个SRS resource或一个SRS resource group时,该OLPC域用于指示与该SRS resource或SRS resource group对应的有效位的P0的来源。
示例3:在DCI不包含SRI域时,针对OLPC域包含4个有效位的场景。假设前两个有效位关联第一SRS资源,后两个效位关联第二SRS资源,且每套第二功率控制参数中包含2个第二功率控制参数(即P0-1和P0-2)则上述P0的来源的指示方式如下表2所示。
表2
Figure PCTCN2022071784-appb-000003
进一步可选地,在本申请实施例中,上述步骤204可以包括如下步骤204a:
步骤204a:UE在上述DCI中包含SRI域的情况下,根据高层信令中包含的至少一个第二序列的序列配置,确定上述至少一个第二序列对应的至少一套第二功率控制参数。
其中,上述第二序列为:与第二值存在映射关系的序列;上述第二值包括以下任一项:上述DCI中包含的SRI域的域值,上述DCI中包含的SRI域的域值分别叠加不同第四偏移值后得到的值。
示例性的,上述第四偏移值满足以下至少一项:
上述第四偏移值由高层信令配置,
上述第四偏移值为整数,
上述第四偏移值与SRS资源集合关联,上述SRS资源集合包括至少一个上述目标资源。
示例性的,上述DCI中包含的SRI域对应至少一个域值,一个域值与至少一个第二序列存在映射关系。
示例性的,上述第二序列可以称为P0-PUSCH-SetList-r16。在一种示例中,UE接收高层信令,获得一套或多套P0-PUSCH-SetList-r16的序列配置。上述序列配置用于指示上述一套或多套P0-PUSCH-SetList-r16分别与多个SRS resource set关联,每套P0-PUSCH-SetList-r16包含多套P0-PUSCH-Set-r16,每套P0-PUSCH-Set-r16包含一个P0-PUSCH-r16(P0)。
示例性的,上述DCI中的SRI域可以分别映射到不同P0-PUSCH-SetList-r16,以获得多套P0-PUSCH-Set-r16。
示例性的,UE接收高层信令,获得一套P0-PUSCH-SetList-r16配置,得到多个第四偏移值,SRI域的SRI值分别叠加不同的第四偏移值后,分别映射到一套P0-PUSCH-SetList-r16,获得多套P0-PUSCH-Set-r16。
示例3:
首先,UE接收高层信令,该高层信令配置两个用于码本传输的SRS resource set,存在两个sri-PUSCH-MappingToAddModList与上述两个SRS resource set关联,两个P0-PUSCH-SetList-r16与SRS resource set关联。此外,UE接收用于调度PUSCH传输的DCI,该DCI的SRI域指示了两个来自不同SRS resource set的SRS resource用于PUSCH传输。此时,DCI的SRI域的取值分别映射到两个sri-PUSCH-MappingToAddModList,以获得与两个SRS resource关联的两个SRI-PUSCH-PowerControl(分别包含P0_a,P0_b)。然后,再将DCI的SRI域的取值分别映射到映射到两个P0-PUSCH-SetList-r16上,获得与两个SRS resource关联的两个P0-PUSCH-Set-r16(分别包含P0_c,P0_d)。
接着,当高层信令配置OLPC域的大小是1bit,‘0’表示两套功率控制参数的两个P0分别等于两个SRI-PUSCH-PowerControl中的P0_a,P0_b。‘1’表示两套功率控制参数的两个P0取两个P0-PUSCH-SetList-r16中的P0_c,P0_d。
当高层信令配置OLPC域的大小是2比特,最高有效位关联第一SRS资源,最低有效位关联第二SRS资源,则OLPC域的取值的解释如下表3所示:
表3
Figure PCTCN2022071784-appb-000004
一种可选的方案:PUSCH传输的至少一个时频资源信息对应至少一套功率控制参数。
其中,上述时频资源信息用于指示以下任一项:
上述PUSCH的至少一个传输时机,
上述PUSCH的每次跳频的时频资源,
上述PUSCH的第一传输时机内的多个时域资源,一个时域资源包括连续多个正交频分复用(Orthogonal frequency division multiplex,OFDM)符号。
其中,上述第一传输时机为上述至少一个传输时机中的一个;上述目标功率控制参数包括上述至少一套功率控制参数中的功率控制参数。应注意的是,上述功率控制参数可以为上述至少一套第一功率控制参数中的功率控制参数,也可以为上述至少一套第二功率控制参数中的功率控制参数,本申请实施例对此不做限定。
示例性的,上述至少一个传输时机可以为PUSCH的至少一个重复传输时机。具体的,PUSCH的一个重复传输时机采用一套功率控制参数计算发射功率。其中,上述重复传输时机与功率控制参数所关联的SRS resource或SRS resource group相同。
进一步可选地,在本申请实施例中,在上述步骤202之后,本申请实施例提供的功率控制方法还可以包括如下步骤205a和步骤205b:
步骤205a:UE对PUSCH进行K次跳频,该PUSCH的每次跳频对应一套功率控制参数,K为大于或等于1的整数。
步骤205b:UE在PUSCH的每次跳频过程中,分别根据每次跳频对应的功率控制参数,调整该PUSCH的发送功率。
进一步可选地,在本申请实施例中,上述PUSCH的每次跳频满足以下任一项:
该PUSCH的传输时机对应的不同跳频点关联不同的目标资源;
每个跳频点与各自对应的功率控制参数所关联的目标资源相同。
示例性的,上述PUSCH的一个hop(跳频)采用一套功率控制参数计算发射功率,(即PUSCH的功率调整基于一个hop进行)。其中,上述PUSCH传输时机对应的不同 hop关联不同的SRS resource或者SRS resource group。或者,上述PUSCH的hop与该hop对应的功率控制参数所关联的SRS resource或SRS resource group相同。
进一步可选地,在本申请实施例中,一个传输时机对应至少一套功率控制参数。
进一步可选地,在本申请实施例中,在上述第一传输时机对应至少两套功率控制参数的情况下,上述第一传输时机中的每个上述时域资源对应一套功率控制参数。在一种示例中,上述连续的多个OFDM符号关联的目标资源相同;或者,该连续的多个OFDM符号关联的目标资源,与该连续的多个OFDM符号对应的功率控制参数所关联的目标资源相同。
示例性的,在上述PUSCH的重复次数为1时,该PUSCH重复时机采用SRI域指示的至少一套第一功率控制参数或至少一套第二功率控制参数。
示例性的,上述PUSCH的一个传输时机中的连续的多个OFDM符号可以采用一套功率控制参数计算发射功率(即,功率调整可以基于空间关系相同的连续的多个OFDM符号进行)。应注意的是,上述连续的OFDM符号关联的SRS resource或SRS resource group相同(即发射波束相同),上述连续的多个OFDM符号与该连续的多个OFDM符号对应的功率控制参数所关联的SRS resource或SRS resource group相同。
在一种示例中,当PUSCH的重复传输次数为1时,若该PUSCH的传输时机采用多套功率控制参数,则前一半OFDM符号采用一套功率控制参数,后一半OFDM符号采用另一套功率控制参数。
例如,当PUSCH的重复传输次数为1时,调度该PUSCH的DCI的SRI指示的码点关联了两个属于不同SRS resource set的SRS资源,则PUSCH的传输时机的前N/2个符号采用与码点中的第一个SRS资源相同的空间关系传输,余下N-N/2个符号采用与码点中的第二个SRS资源相同的空间关系传输。此时,SRI域映射到两个sri-PUSCH-MappingToAddModList上,得到两套功率控制参数组SRI-PUSCH-PowerControl。其中,上述PUSCH的传输时机的前N/2个符号采用的发射功率由第一SRS resource set关联的PUSCH-MappingToAddModList上映射的功控参数计算得到,余下N-N/2个的发射功率由第二SRS resource set关联的PUSCH-MappingToAddModList上映射的功率控制参数计算得到。
示例性的,当PUSCH的复传输次数大于1时,该PUSCH的一个传输时机采用一套功率控制参数。
需要说明的是,本申请实施例提供的功率控制方法,执行主体可以为功率控制装置,或者该功率控制装置中的用于执行功率控制方法的控制模块。本申请实施例中以功率控制装置执行功率控制方法为例,说明本申请实施例提供的功率控制装置。但实际应用中上述功率控制方法的执行主体还可以是其他可以执行该功率控制方法的设备或装置,本申请实施例对此不作限定。
本申请实施例提供一种功率控制装置,如图3、图4所示,该功率控制装置400包括:接收模块401和确定模块402,其中:
接收模块401,用于接收DCI;上述DCI用于调度PUSCH传输;上述PUSCH传输关联不同目标资源;上述目标资源包括:SRS资源或者SRS资源组;确定模块402,用于根据接收模块接收到的DCI,确定上述PUSCH传输对应的目标功率控制参数。
可选地,在上述DCI中包含参考信号资源指示SRI域的情况下,上述SRI域用于指示至少一套第一功率控制参数;其中,上述目标功率控制参数包括SRI域指示功率控制参数。
可选地,上述确定模块402,还用于确定至少一个第一序列对应的至少一套第一功率控制参数;其中,上述第一序列为:与第一值存在映射关系的序列;
上述第一值包括以下任一项:上述SRI域的域值,上述SRI域的域值分别叠加不同第一偏移值后得到的值;
上述第一偏移值满足以下至少一项:
上述第一偏移值由高层信令配置,
上述第一偏移值为整数,
上述第一偏移值与SRS资源集合关联,上述SRS资源集合包括至少一个上述目标资源。
可选地,上述至少第一序列与Y个SRS资源集合关联;一个第一序列与至少一个上述SRS资源集合关联,Y为正整数;其中,上述Y个SRS资源集合包括上述目标资源。
可选地,上述SRI域对应至少一个域值,一个域值与一个第一序列存在映射关系。
可选地,上述确定模块402,还用于在上述DCI中不包含SRI域的情况下,从高层信令配置的功率控制参数集合中,确定目标开环功率控制参数组;上述功率控制参数集合包括一个或多个开环功率控制参数组;上述目标开环功率控制参数组属于功率控制参数集合;上述目标开环控制参数组包括至少一套第一功率控制参数,上述目标功率控制参数为至少一套第一功率控制参数中的功率控制参数。
可选地,上述目标开环功率控制参数组满足以下至少一项:
上述目标开环功率控制参数组在上述功率控制参数集合中的位置是基于第二偏移值确定,
上述目标开环功率控制参数组为上述功率控制参数集合中满足第一条件的组索引所对应的开环功率控制参数组;
上述第二偏移值满足以下至少一项:
上述第二偏移值由高层信令配置,
上述第二偏移值为整数,
上述第二偏移值与SRS资源集合关联,上述SRS资源集合包括至少一个上述目标资源。
可选地,上述至少一套第一功率控制参数包括:指示至少一套路损参考信号的参数;
上述至少一套路损参考信号是基于以下至少一项确定的:
上行物理控制信道PUCCH资源配置的路损参考信号的索引;
从第一预设索引开始的连续多个索引指示的一套或多套路损参考信号;
从第二预设索引开始的连续多个索引指示的多个CORESET的TCI状态中的参考信号。
可选地,上述确定模块402,还用于确定高层信令配置的多套第二功率控制参数 中的至少一套第二功率控制参数;
其中,上述目标功率控制参数包括以下至少一项:
上述至少一套第一功率控制参数中的功率控制参数,
上述至少一套第二功率控制参数中的功率控制参数。
可选地,在上述DCI中不包含SRI域的情况下,一套第二功率控制参数中包含至少两个第二功率控制参数。
可选地,一套第二功率控制参数对应一个索引;上述至少一套第二功率控制参数为:上述多套第二功率控制参数中目标索引对应的至少一套第二功率控制参数;
其中,上述目标索引是在预设索引的基础上基于第三偏移值得到;
上述第三偏移值满足以下至少一项:
上述第三偏移值由高层信令配置,
上述第三偏移值为整数,
上述第三偏移值与SRS资源集合关联,上述SRS资源集合包括至少一个上述目标资源。
可选地,上述目标功率控制参数包括:目标第三功率控制参数;上述确定模块402,具体用于:在上述至少一套第一功率控制参数和上述至少一套第二功率控制参数中均中包含第三功率控制参数的情况下,根据上述DCI中的开环功率控制参数集指示域的域值,从上述至少一套第一功率控制参数和上述至少一套第二功率控制参数中,确定上述目标第三功率控制参数。
可选地,在上述开环功率控制参数集指示域包含X个有效位的情况下,上述开环功率控制参数集指示域的每组有效位各对应一个上述目标资源;其中,X为大于1的整数。
可选地,上述开环功率控制参数集指示域的任一组有效位的值用于指示:关联上述任一组有效位对应目标资源的上述目标第三功率控制参数。
可选地,上述确定模块402,具体用于在上述DCI中包含上述SRI域的情况下,根据高层信令中包含的至少一个第二序列的序列配置,确定上述至少一个第二序列对应的至少一套第二功率控制参数;其中,上述第二序列为:与第二值存在映射关系的序列;
上述第二值包括以下任一项:上述SRI域的域值,上述SRI域的域值分别叠加不同第四偏移值后得到的值;
上述第四偏移值满足以下至少一项:
上述第四偏移值由高层信令配置,
上述第四偏移值为整数,
上述第四偏移值与SRS资源集合关联,上述SRS资源集合包括至少一个上述目标资源。
可选地,上述SRI域对应至少一个域值,一个域值与至少一个第二序列存在映射关系。
可选地,上述SRI域指示的上述至少一套第一功率控制参数与上述SRI域指示的M个上述目标资源相关;其中,M为正整数。
可选地,上述M个目标资源满足以下至少一项:
上述M个目标资源分别属于不同的SRS资源集合;
一个SRS资源组中的所有SRS资源属于同一SRS资源集合。
可选地,上述PUSCH传输的至少一个时频资源信息对应至少一套功率控制参数;
其中,上述时频资源信息用于指示以下任一项:
上述PUSCH的至少一个传输时机,
上述PUSCH的每次跳频的时频资源,
上述PUSCH的第一传输时机内的多个时域资源,一个时域资源包括连续多个正交频分复用OFDM符号;
上述第一传输时机为上述至少一个传输时机中的一个;
上述目标功率控制参数包括上述至少一套功率控制参数中的功率控制参数。
可选地,如图4所示,该功率控制装置400还包括:执行模块403,其中,上述执行模块403,用于对上述PUSCH进行K次跳频,上述PUSCH的每次跳频对应一套功率控制参数,K为大于或等于1的整数;在上述PUSCH的每次跳频过程中,分别根据每次跳频对应的功率控制参数,调整上述PUSCH的发送功率。
可选地,上述PUSCH的每次跳频满足以下任一项:
上述PUSCH的传输时机对应的不同跳频点关联不同的目标资源;
每个跳频点与上各自对应的功率控制参数所关联的目标资源相同。
可选地,一个传输时机对应至少一套功率控制参数。
可选地,在上述第一传输时机对应至少两套功率控制参数的情况下,上述第一传输时机中的每个上述时域资源对应一套功率控制参数。
可选地,上述连续的多个OFDM符号关联的目标资源相同;或者,上述连续的多个OFDM符号关联的目标资源,与上述连续的多个OFDM符号对应的功率控制参数所关联的目标资源相同。
可选地,上述DCI中还包含闭环功率控制调整状态索引和上述闭环功率控制调整状态索引对应的功率调整值;其中,上述目标功率控制参数包括上述功率调整值。
可选地,上述DCI中的TPC域用于指示上述功率调整值,上述TPC域的大小由高层信令指示。
可选地,上述目标资源维持多个闭环功率控制调整状态。其中,上述闭环功率控制调整状态满足以下至少一项:上述闭环功率控制调整状态是高层信令指示的;上述闭环功率控制调整状态与SRS资源集合关联;其中,上述SRS资源集合包括目标资源。
在本申请实施例提供的功率控制装置中,在PUSCH传输关联不同目标资源(SRS资源或者SRS资源组)的场景下,该装置接收到用于调度该PUSCH传输的DCI后,便可根据该DCI确定出上述PUSCH传输关联不同目标资源时对应的目标功率控制参数,进而能确保该PUSCH传输采用多套与多个目标资源匹配的发射功率,保证PUSCH传输可靠性。
本实施例中各种实现方式具有的有益效果具体可以参见上述方法实施例中相应实现方式所具有的有益效果,为避免重复,此处不再赘述。
本申请实施例中的功率控制装置可以是装置,也可以是终端中的部件、集成电路、 或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的功率控制装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为iOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的功率控制装置能够实现上述方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图5所示,本申请实施例还提供一种通信设备500,包括处理器501,存储器502,存储在存储器502上并可在所述处理器501上运行的程序或指令,例如,该通信设备500为UE时,该程序或指令被处理器501执行时实现上述功率控制方法实施例的各个过程,且能达到相同的技术效果。
以UE为终端为例,图6为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、以及处理器110等部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
上述射频单元101,用于接收DCI;上述DCI用于调度PUSCH传输;上述PUSCH传输关联不同目标资源;上述目标资源包括:SRS资源或者SRS资源组;处理器110,用于根据上述射频单元101接收到的DCI,确定上述PUSCH传输对应的目标功率控制参数。
在本申请实施例提供的终端中,在PUSCH传输关联不同目标资源(SRS资源或者SRS资源组)的场景下,该终端接收到用于调度该PUSCH传输的DCI后,便可根据该DCI确定出上述PUSCH传输关联不同目标资源时对应的目标功率控制参数,进而能确保该PUSCH传输采用多套与多个目标资源匹配的发射功率,保证PUSCH传输可靠性。
本实施例中各种实现方式以及各实现方式具有的有益效果具体可以参见上述方法实施例中相应实现方式中内容,为避免重复,此处不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控 制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101将来自网络侧设备的下行数据接收后,给处理器110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述功率控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述功率控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情 况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种功率调整方法,所述方法包括:
    用户设备UE接收下行控制信息DCI;所述DCI用于调度物理上行共享信道PUSCH传输;所述PUSCH传输关联不同目标资源;所述目标资源包括:探测参考信号SRS资源或者SRS资源组;
    根据所述DCI,确定所述PUSCH传输对应的目标功率控制参数。
  2. 根据权利要求1所述的方法,其中,在所述DCI中包含SRS资源指示SRI域的情况下,所述SRI域用于指示至少一套第一功率控制参数;其中,所述目标功率控制参数包括所述SRI域指示的功率控制参数。
  3. 根据权利要求2所述的方法,其中,所述接收DCI之后,所述方法还包括:
    确定至少一个第一序列对应的至少一套第一功率控制参数;
    其中,所述第一序列为:与第一值存在映射关系的序列;
    所述第一值包括以下任一项:所述SRI域的域值,所述SRI域的域值分别叠加不同第一偏移值后得到的值;
    所述第一偏移值满足以下至少一项:
    所述第一偏移值由高层信令配置,
    所述第一偏移值为整数,
    所述第一偏移值与SRS资源集合关联,所述SRS资源集合包括至少一个所述目标资源。
  4. 根据权利要求3所述的方法,其中,所述至少一个第一序列与Y个SRS资源集合关联;一个第一序列与至少一个所述SRS资源集合关联,Y为正整数;
    其中,所述Y个SRS资源集合包括所述不同目标资源。
  5. 根据权利要求3所述的方法,其中,所述SRI域对应至少一个域值,一个域值与一个第一序列存在映射关系。
  6. 根据权利要求1所述的方法,其中,在所述DCI中不包含SRI域的情况下,根据所述DCI,确定所述PUSCH传输对应的目标功率控制参数之前,所述方法还包括:
    从高层信令配置的功率控制参数集合中,确定目标开环功率控制参数组;
    其中,所述功率控制参数集合包括一个或多个开环功率控制参数组;所述目标开环功率控制参数组属于所述功率控制参数集合;所述目标开环控制参数组包括至少一套第一功率控制参数,所述目标功率控制参数为所述至少一套第一功率控制参数中的功率控制参数。
  7. 根据权利要求6所述的方法,其中,所述目标开环功率控制参数组满足以下至少一项:
    所述目标开环功率控制参数组在所述功率控制参数集合中的位置是基于第二偏移值确定,
    所述目标开环功率控制参数组为所述功率控制参数集合中满足第一条件的组索引所对应的开环功率控制参数组;
    所述第二偏移值满足以下至少一项:
    所述第二偏移值由高层信令配置,
    所述第二偏移值为整数,
    所述第二偏移值与SRS资源集合关联,所述SRS资源集合包括至少一个所述目标资源。
  8. 根据权利要求1所述的方法,其中,在所述DCI中不包含SRI域的情况下,根据所述DCI,确定所述PUSCH传输对应的目标功率控制参数之前,所述方法还包括:
    确定至少一套第一功率控制参数;
    其中,所述至少一套第一功率控制参数包括:指示至少一套路损参考信号的参数;
    所述至少一套路损参考信号的参数是基于以下至少一项确定的:
    上行物理控制信道PUCCH资源配置的路损参考信号的索引;
    从第一预设索引开始的连续多个索引指示的一套或多套路损参考信号;
    从第二预设索引开始的连续多个索引指示的多个控制资源集CORESET的传输配置指示TCI状态中的参考信号。
  9. 根据权利要求2至8任一项所述的方法,其中,所述根据所述DCI,确定所述PUSCH对应的目标功率控制参数之前,所述方法还包括:
    确定高层信令配置的多套第二功率控制参数中的至少一套第二功率控制参数;
    其中,所述目标功率控制参数包括以下至少一项:
    所述至少一套第一功率控制参数中的功率控制参数,
    所述至少一套第二功率控制参数中的功率控制参数。
  10. 根据权利要求9所述的方法,其中,在所述DCI中不包含SRI域的情况下,一套第二功率控制参数中包含至少两个第二功率控制参数。
  11. 根据权利要求9所述的方法,其中,一套第二功率控制参数对应一个索引;所述至少一套第二功率控制参数为:所述多套第二功率控制参数中目标索引对应的至少一套第二功率控制参数;
    其中,所述目标索引是在预设索引的基础上基于第三偏移值得到;
    所述第三偏移值满足以下至少一项:
    所述第三偏移值由高层信令配置,
    所述第三偏移值为整数,
    所述第三偏移值与SRS资源集合关联,所述SRS资源集合包括至少一个所述目标资源。
  12. 根据权利要求9所述的方法,其中,所述目标功率控制参数包括:目标第三功率控制参数;
    所述根据所述DCI,确定所述PUSCH传输对应的目标功率控制参数,包括:
    在所述至少一套第一功率控制参数和所述至少一套第二功率控制参数中均包含第三功率控制参数的情况下,根据所述DCI中的开环功率控制参数集指示域的域值,从所述至少一套第一功率控制参数和所述至少一套第二功率控制参数中,确定所述目标第三功率控制参数。
  13. 根据权利要求12所述的方法,其中,所述开环功率控制参数集指示域包含X个有效位,所述开环功率控制参数集指示域的每组有效位各对应一个所述目标资源;
    其中,X为大于1的整数。
  14. 根据权利要求13所述的方法,其中,所述开环功率控制参数集指示域的任一组有效位的值用于指示:关联所述任一组有效位对应目标资源的目标第三功率控制参数。
  15. 根据权利要求9所述的方法,其中,所述确定高层信令配置的多套第二功率控制参数中的至少一套第二功率控制参数,包括:
    在所述DCI中包含所述SRI域的情况下,根据高层信令中包含的至少一个第二序列的序列配置,确定所述至少一个第二序列对应的至少一套第二功率控制参数;
    其中,所述第二序列为:与第二值存在映射关系的序列;
    所述第二值包括以下任一项:所述SRI域的域值,所述SRI域的域值分别叠加不同第四偏移值后得到的值;
    所述第四偏移值满足以下至少一项:
    所述第四偏移值由高层信令配置,
    所述第四偏移值为整数,
    所述第四偏移值与SRS资源集合关联,所述SRS资源集合包括至少一个所述目标资源。
  16. 根据权利要求15所述的方法,其中,所述SRI域对应至少一个域值,一个域值与至少一个第二序列存在映射关系。
  17. 根据权利要求2所述的方法,其中,所述SRI域指示的所述至少一套第一功率控制参数与所述SRI域指示的M个所述目标资源相关;其中,M为正整数。
  18. 根据权利要求17所述的方法,其中,所述M个目标资源满足以下至少一项:
    所述M个目标资源分别属于不同的SRS资源集合;
    一个SRS资源组中的所有SRS资源属于同一SRS资源集合。
  19. 根据权利要求1所述的方法,其中,所述PUSCH传输的至少一个时频资源信息对应至少一套功率控制参数;
    其中,所述时频资源信息用于指示以下任一项:
    所述PUSCH的至少一个传输时机,
    所述PUSCH的每次跳频的时频资源,
    所述PUSCH的第一传输时机内的多个时域资源,一个时域资源包括连续多个正交频分复用OFDM符号;
    所述第一传输时机为所述至少一个传输时机中的一个;
    所述目标功率控制参数包括所述至少一套功率控制参数中的功率控制参数。
  20. 根据权利要求1或19所述的方法,其中,所述根据所述DCI,确定所述PUSCH传输对应的目标功率控制参数之后,所述方法还包括:
    对所述PUSCH进行K次跳频,所述PUSCH的每次跳频对应一套功率控制参数,K为大于或等于1的整数;
    在所述PUSCH的每次跳频过程中,分别根据每次跳频对应的功率控制参数,调整所述PUSCH的发送功率。
  21. 根据权利要求20所述的方法,其中,所述PUSCH的每次跳频满足以下任一项:
    所述PUSCH的传输时机对应的不同跳频点关联不同的目标资源;
    每个跳频点与各自对应的功率控制参数所关联的目标资源相同。
  22. 根据权利要求19所述的方法,其中,一个传输时机对应至少一套功率控制参数。
  23. 根据权利要求19所述的方法,其中,在所述第一传输时机对应至少两套功率控制参数的情况下,所述第一传输时机中的每个所述时域资源对应一套功率控制参数。
  24. 根据权利要求23所述的方法,其中,所述连续的多个OFDM符号关联的目标资源相同;或者,所述连续的多个OFDM符号关联的目标资源,与所述连续的多个OFDM符号对应的功率控制参数所关联的目标资源相同。
  25. 根据权利要求1所述的方法,其中,所述DCI中还包含闭环功率控制调整状态索引和所述闭环功率控制调整状态索引对应的功率调整值;
    其中,所述目标功率控制参数包括所述功率调整值。
  26. 根据权利要求25所述的方法,其中,所述DCI中的TPC域用于指示所述功率调整值,所述TPC域的大小由高层信令指示。
  27. 根据权利要求1所述的方法,其中,所述目标资源维持多个闭环功率控制调整状态;
    其中,所述闭环功率控制调整状态满足以下至少一项:
    所述闭环功率控制调整状态是高层信令指示的;
    所述闭环功率控制调整状态与SRS资源集合关联;
    其中,所述SRS资源集合包括所述目标资源。
  28. 一种功率控制装置,所述装置包括:
    接收模块,用于接收DCI;所述DCI用于调度PUSCH传输;所述PUSCH传输关联不同目标资源;所述目标资源包括:SRS资源或者SRS资源组;
    确定模块,用于根据所述接收模块接收到的所述DCI,确定所述PUSCH传输对应的目标功率控制参数。
  29. 根据权利要求28所述的装置,其中,在所述DCI中包含SRS资源指示SRI域的情况下,所述SRI域用于指示至少一套第一功率控制参数;其中,所述目标功率控制参数包括所述SRI域指示的功率控制参数。
  30. 根据权利要求29所述的装置,其中,所述确定模块,还用于:确定至少一个第一序列对应的至少一套第一功率控制参数;
    其中,所述第一序列为:与第一值存在映射关系的序列;
    所述第一值包括以下任一项:所述SRI域的域值,所述SRI域的域值分别叠加不同第一偏移值后得到的值;
    所述第一偏移值满足以下至少一项:
    所述第一偏移值由高层信令配置,
    所述第一偏移值为整数,
    所述第一偏移值与SRS资源集合关联,所述SRS资源集合包括至少一个所述目标资源。
  31. 根据权利要求29或30所述的装置,其中,所述确定模块,还用于确定高层信令配置的多套第二功率控制参数中的至少一套第二功率控制参数;
    其中,所述目标功率控制参数包括以下至少一项:
    所述至少一套第一功率控制参数中的功率控制参数,
    所述至少一套第二功率控制参数中的功率控制参数。
  32. 根据权利要求31所述的装置,其中,在所述DCI中不包含SRI域的情况下,一套第二功率控制参数中包含至少两个第二功率控制参数。
  33. 根据权利要求31所述的装置,其中,所述目标功率控制参数包括:目标第三功率控制参数;
    所述确定模块,具体用于:在所述至少一套第一功率控制参数和所述至少一套第二功率控制参数中均包含第三功率控制参数的情况下,根据所述DCI中的开环功率控制参数集指示域的域值,从所述至少一套第一功率控制参数和所述至少一套第二功率控制参数中,确定所述目标第三功率控制参数。
  34. 根据权利要求33所述的装置,其中,所述开环功率控制参数集指示域包含X个有效位,所述开环功率控制参数集指示域的每组有效位各对应一个所述目标资源;
    其中,X为大于1的整数。
  35. 根据权利要求34所述的装置,其中,所述开环功率控制参数集指示域的任一组有效位的值用于指示:关联所述任一组有效位对应目标资源的目标第三功率控制参数。
  36. 根据权利要求31所述的装置,其中,所述确定模块,具体用于:
    在所述DCI中包含所述SRI域的情况下,根据高层信令中包含的至少一个第二序列的序列配置,确定所述至少一个第二序列对应的至少一套第二功率控制参数;
    其中,所述第二序列为:与第二值存在映射关系的序列;
    所述第二值包括以下任一项:所述SRI域的域值,所述SRI域的域值分别叠加不同第四偏移值后得到的值;
    所述第四偏移值满足以下至少一项:
    所述第四偏移值由高层信令配置,
    所述第四偏移值为整数,
    所述第四偏移值与SRS资源集合关联,所述SRS资源集合包括至少一个所述目标资源。
  37. 根据权利要求28所述的装置,其中,所述PUSCH传输的至少一个时频资源信息对应至少一套功率控制参数;
    其中,所述时频资源信息用于指示以下任一项:
    所述PUSCH的至少一个传输时机,
    所述PUSCH的每次跳频的时频资源,
    所述PUSCH的第一传输时机内的多个时域资源,一个时域资源包括连续多个正交频分复用OFDM符号;
    所述第一传输时机为所述至少一个传输时机中的一个;
    所述目标功率控制参数包括所述至少一套功率控制参数中的功率控制参数。
  38. 根据权利要求28或37所述的装置,其中,所述装置还包括:执行模块,其中:
    所述执行模块,用于:对所述PUSCH进行K次跳频,所述PUSCH的每次跳频对应 一套功率控制参数,K为大于或等于1的整数;在所述PUSCH的每次跳频过程中,分别根据每次跳频对应的功率控制参数,调整所述PUSCH的发送功率。
  39. 根据权利要求38所述的装置,其中,所述PUSCH的每次跳频满足以下任一项:
    所述PUSCH的传输时机对应的不同跳频点关联不同的目标资源;
    每个跳频点与各自对应的功率控制参数所关联的目标资源相同。
  40. 根据权利要求37所述的装置,其中,在所述第一传输时机对应至少两套功率控制参数的情况下,所述第一传输时机中的每个所述时域资源对应一套功率控制参数。
  41. 根据权利要求40所述的装置,其中,所述连续的多个OFDM符号关联的目标资源相同;或者,所述连续的多个OFDM符号关联的目标资源,与所述连续的多个OFDM符号对应的功率控制参数所关联的目标资源相同。
  42. 一种UE,处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至27任一项所述的功率控制方法的步骤。
  43. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至27任一项所述的功率控制方法的步骤。
PCT/CN2022/071784 2021-01-15 2022-01-13 功率控制方法、装置及用户设备 WO2022152206A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237023928A KR20230121122A (ko) 2021-01-15 2022-01-13 전력 제어 방법, 장치 및 사용자 기기
EP22739082.0A EP4258755A1 (en) 2021-01-15 2022-01-13 Power control method and apparatus, and user equipment
JP2023541050A JP2024502121A (ja) 2021-01-15 2022-01-13 パワー制御方法、装置及びユーザ機器
US18/349,773 US20230354208A1 (en) 2021-01-15 2023-07-10 Power control method and apparatus, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110057780.3 2021-01-15
CN202110057780.3A CN114765845A (zh) 2021-01-15 2021-01-15 功率控制方法、装置及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/349,773 Continuation US20230354208A1 (en) 2021-01-15 2023-07-10 Power control method and apparatus, and user equipment

Publications (1)

Publication Number Publication Date
WO2022152206A1 true WO2022152206A1 (zh) 2022-07-21

Family

ID=82364568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071784 WO2022152206A1 (zh) 2021-01-15 2022-01-13 功率控制方法、装置及用户设备

Country Status (6)

Country Link
US (1) US20230354208A1 (zh)
EP (1) EP4258755A1 (zh)
JP (1) JP2024502121A (zh)
KR (1) KR20230121122A (zh)
CN (1) CN114765845A (zh)
WO (1) WO2022152206A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055251A1 (zh) * 2022-09-15 2024-03-21 深圳传音控股股份有限公司 控制方法、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151973A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 功率控制方法及装置
CN109803362A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
WO2020118574A1 (zh) * 2018-12-12 2020-06-18 Oppo广东移动通信有限公司 一种上行传输的功率控制方法及终端设备
CN111867078A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 上行信号传输方法、调度信息确定方法和相关设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102219059B1 (ko) * 2017-05-05 2021-02-23 후아웨이 테크놀러지 컴퍼니 리미티드 업링크 송신에 대한 전력 제어의 방법
CN109803363B (zh) * 2017-11-17 2022-11-08 华为技术有限公司 通信方法、通信装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151973A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 功率控制方法及装置
CN109803362A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
WO2020118574A1 (zh) * 2018-12-12 2020-06-18 Oppo广东移动通信有限公司 一种上行传输的功率控制方法及终端设备
CN111867078A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 上行信号传输方法、调度信息确定方法和相关设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Independent Power control for SRS", 3GPP DRAFT; R1-1804449, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051426729 *
SAMSUNG: "Remaining Issues on UL Power Control", 3GPP DRAFT; R1-1720361 REMAINING ISSUES ON UL POWER CONTROL-SAMSUNG, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051369934 *

Also Published As

Publication number Publication date
US20230354208A1 (en) 2023-11-02
KR20230121122A (ko) 2023-08-17
EP4258755A1 (en) 2023-10-11
CN114765845A (zh) 2022-07-19
JP2024502121A (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2022117035A1 (zh) Pusch的调度传输方法、终端和网络侧设备
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
WO2022068749A1 (zh) 确定传输模式的方法、装置和通信设备
WO2022078502A1 (zh) 功率确定方法、装置、终端及可读存储介质
WO2022117039A1 (zh) Srs的功控指示方法、资源集簇的划分方法和设备
WO2022001848A1 (zh) 一种传输处理方法、装置及终端
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
US20230354208A1 (en) Power control method and apparatus, and user equipment
WO2022078451A1 (zh) 配置授权的重复传输方法、装置、设备及可读存储介质
WO2022028468A1 (zh) 信息确定方法、信息发送方法、终端及网络侧设备
WO2021073605A1 (zh) 一种功率控制参数确定方法及终端
WO2022152269A1 (zh) 配置授权的配置的处理方法、装置、设备及存储介质
EP3739972A1 (en) Power control method, related apparatus and product
WO2022127702A1 (zh) 信息确定方法、装置及通信设备
WO2022028597A1 (zh) 控制辅小区的方法、终端及网络侧设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022206997A1 (zh) 功率控制参数指示方法、终端及网络侧设备
WO2023151519A1 (zh) 功率控制pc参数的确定方法、装置及终端
WO2023151550A1 (zh) 功率控制pc参数的确定方法、装置及终端
WO2023011342A1 (zh) 信道发送参数确定方法、装置及相关设备
WO2022063102A1 (zh) 功率控制方法、终端及网络侧设备
WO2022233281A1 (zh) 参考pdcch的确定方法、装置、设备及可读存储介质
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
US20240080818A1 (en) Method and apparatus for determining uplink transmission time window, terminal, and network-side device
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541050

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237023928

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022739082

Country of ref document: EP

Effective date: 20230706

NENP Non-entry into the national phase

Ref country code: DE