WO2021073605A1 - 一种功率控制参数确定方法及终端 - Google Patents

一种功率控制参数确定方法及终端 Download PDF

Info

Publication number
WO2021073605A1
WO2021073605A1 PCT/CN2020/121442 CN2020121442W WO2021073605A1 WO 2021073605 A1 WO2021073605 A1 WO 2021073605A1 CN 2020121442 W CN2020121442 W CN 2020121442W WO 2021073605 A1 WO2021073605 A1 WO 2021073605A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
coreset
carrier
identification number
path loss
Prior art date
Application number
PCT/CN2020/121442
Other languages
English (en)
French (fr)
Inventor
杨昂
孙鹏
袁江伟
孙晓东
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022523258A priority Critical patent/JP7330378B2/ja
Priority to EP20877151.9A priority patent/EP4047994A4/en
Priority to BR112022007222A priority patent/BR112022007222A2/pt
Priority to KR1020227016250A priority patent/KR20220084117A/ko
Publication of WO2021073605A1 publication Critical patent/WO2021073605A1/zh
Priority to US17/722,829 priority patent/US20220240178A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/226TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to the field of communication technology, and in particular to a method and terminal for determining power control parameters.
  • the power control parameters usually include parameters such as path loss calculation reference signal (Pathloss Reference RS, PL RS), target received power, path loss compensation factor, and closed-loop power control.
  • Pathloss Reference RS path loss calculation reference signal
  • PL RS path loss calculation reference signal
  • target received power path loss compensation factor
  • closed-loop power control the terminal (User Equipment, UE) cannot adjust the uplink transmit power, which causes the network to lose control of the UE's power, and it is easy to cause the UE's transmit power to be too high or too low.
  • the UE consumes too much transmit power, increases intra-cell interference, increases inter-cell interference, or decreases system capacity. In this way, the configured power control parameters need to include all parameters, resulting in a large resource overhead for power control.
  • the embodiments of the present invention provide a method and a terminal for determining power control parameters to solve the problem of large resource overhead occupied by power control.
  • an embodiment of the present invention provides a method for determining power control parameters, which is applied to a terminal, and includes:
  • the target parameter of the target object is determined according to any one of the following methods:
  • the target object and the other objects are selected from physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and sounding reference signal SRS;
  • the target parameter includes path loss calculation reference signal, target received power, and path loss compensation factor And at least one of closed-loop power control.
  • an embodiment of the present invention also provides a terminal, which is characterized in that it includes:
  • the determining module is configured to determine the target parameter of the target object in any of the following ways when the target parameter among the power control parameters of the target object is not configured:
  • the target object and the other objects are selected from physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and sounding reference signal SRS;
  • the target parameter includes path loss calculation reference signal, target received power, and path loss compensation factor And at least one of closed-loop power control.
  • an embodiment of the present invention also provides a terminal, including: a memory, a processor, and a program stored on the memory and running on the processor, and the program is implemented when the processor is executed Steps in the above method for determining power control parameters.
  • an embodiment of the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the power control parameter determination method described above are implemented.
  • the terminal can determine the target parameter of the target object according to the target parameter, historical configuration and/or protocol agreement of other objects; in this way, It can simplify the requirements of network equipment for power control parameter configuration, and reduce the resource overhead occupied by power control. At the same time, the flexibility of network device configuration is improved.
  • Figure 1 is a structural diagram of a network system applicable to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for determining power control parameters according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a terminal provided by an embodiment of the present invention.
  • Fig. 4 is a structural diagram of another terminal provided by an embodiment of the present invention.
  • words such as “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “for example” in the embodiment of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present invention. As shown in FIG. 1, it includes a terminal 11 and a network device 12, where the terminal 11 may be a user terminal or other terminal-side device , Such as: mobile phone, tablet computer (Tablet Personal Computer), laptop computer (Laptop Computer), personal digital assistant (personal digital assistant, PDA for short), mobile Internet device (Mobile Internet Device, MID) or wearable device ( For terminal-side devices such as Wearable Device), it should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present invention.
  • the above-mentioned network device 12 may be a 5G base station, or a later version base station, or a base station in other communication systems, or it is called Node B, Evolved Node B, or Transmission Reception Point (TRP), or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiment of the present invention, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • the power control parameters of PUCCH, PUSCH or SRS include reference signal for path loss calculation, target received power (target value of open-loop received power), path loss compensation factor, closed-loop power control and other parameters.
  • target received power target value of open-loop received power
  • path loss compensation factor path loss compensation factor
  • closed-loop power control other parameters.
  • Network equipment needs to pass High-level signaling or physical layer signaling configures these power control parameters.
  • the uplink transmission beam indication mechanism can reuse the power control parameter indication.
  • the media access control element For a PUCCH transmission, the media access control element (MAC CE) can activate a spatial related information in the spatial related information set to indicate the PUCCH transmission beam, and the association relationship between them is pre-defined by RRC signaling. Configuration.
  • the power parameters used for actual PUCCH transmission can be obtained through the association relationship between the spatial related information and the power control parameters.
  • the association relationship between the power control parameter set of the physical uplink shared channel, the SRS resource indicator (SRI) and the power control parameter is configured through RRC signaling.
  • the actual transmission power of the PUSCH by the terminal is indicated by the SRI field in the Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the power control parameters of the SRS are configured through RRC signaling and configured in units of SRS resource sets.
  • Each SRS resource set contains at least one SRS resource, and each SRS resource contains space-related information for indicating the transmission beam of the SRS.
  • the PUSCH space-related information is indicated by the SRI in the DCI, and each SRI corresponds to one SRS resource, and the space-related information contained in the SRS resource is used to indicate the transmission beam of the PUSCH.
  • the terminal can use the above-mentioned power control parameters to adjust the uplink transmission power to meet the transmission power requirements.
  • the terminal cannot adjust the uplink transmit power, so that the network loses control of the terminal's power, which easily causes the terminal's transmit power to be too high or too low, causing the terminal to consume Excessive transmission power, increased intra-cell interference, increased inter-cell interference, or reduced system capacity.
  • the reference signal for path loss calculation is a downlink RS.
  • the reference signal for path loss calculation is a downlink RS.
  • a downlink RS To select a default downlink RS, multiple aspects need to be considered: whether the channel environment from the terminal to the network device can be effectively reflected, and whether the downlink RS can be found in as many cases as possible. Whether the Quasi co-location (QCL) information of this downlink RS is relatively stable and does not change frequently, and how to operate in some extreme situations.
  • QCL Quasi co-location
  • a physical downlink control channel (PDCCH) and a physical random access channel (PRACH) are initially selected from all channels and RSs.
  • the PDCCH is a downlink channel that plays a control role, and an important role is to schedule PUCCH, PUSCH, or SRS, and the QCL of the PDCCH contains a downlink RS, so it can be used as a candidate for reference signal for path loss calculation.
  • the problem of which one to use is faced. That is, a carrier has multiple control resource sets (CORESET).
  • CORESET control resource sets
  • BWP bandwidth part
  • the PRACH parameter network will be configured, but it is an uplink channel. But what is special is that the QCL of PRACH is always a synchronization signal block (Synchronization Signal Block, SSB) or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS), both of which are downlink RSs.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • PDSCH physical downlink shared channel
  • SRS physical downlink shared channel
  • PDSCH requires high channel capacity and narrow beam, which conflicts with the requirements of PUCCH and SRS; and PDSCH often does not have it, or the channel environment often changes.
  • the initial access of the SSB although the beam is wider and the transmission success rate is the goal, the channel environment between the terminal and the network is likely to change after a period of time, and the beam direction of the initial access of the SSB is likely to no longer be the same. The best, and even worse.
  • a network device when a network device configures a transmission configuration indicator (TCI) for the PDSCH, it will first configure many TCIs. , And then activate some of them. Then the network device will let the TCI with the smallest TCI ID or the largest TCI ID as a special TCI, for example, the TCI corresponds to a beam with good coverage or stability, or a beam with the highest channel reference signal received power (RSRP).
  • TCI transmission configuration indicator
  • RSRP channel reference signal received power
  • the SSB where the terminal is located is more appropriate, because the terminal believes that the SSB has good performance, and its corresponding beam should be facing the terminal.
  • the PL RS configured by the network for other channels can be used. Further, it is necessary to consider the number of PL RS and the activation or update of MAC CE.
  • a default downlink RS in QCL can be used.
  • the RS in the QCL can be either a downlink RS or an SRS.
  • the latter is an uplink RS and cannot be used as a reference signal for path loss calculation.
  • the default QCL is SRS and the SRS is associated with a downlink RS, then the SRS associated (associated) downlink RS is used. More specifically, in many cases, the present invention shows how to find the default QCL.
  • the network device will use the PDCCH to schedule a dedicated PUCCH (dedicated-PUCCH) or SRS. If the PDCCH has QCL information, then the downlink RS in the QCL information of the PDCCH can also be used.
  • a dedicated PUCCH dedicated-PUCCH
  • SRS SRS
  • the terminal has a CORESET with a CORESET flag of 0 (ie, CORESET#0), and the downlink RS in the QCL information of CORESET#0 can be used.
  • CORESET#0 a CORESET flag of 0
  • the terminal has a CORESET with a CORESET flag of 0 (ie, CORESET#0), and the downlink RS in the QCL information of CORESET#0 can be used.
  • CORESET CORESET with low ID
  • the downlink RS in the QCL of PRACH can be used.
  • PRACH is used as a random access channel, and network equipment is a downlink RS that always configures PRACH.
  • the configuration network is configurable, and it is a good choice to configure the stability of the link quality and the probability of successful transmission as the goal.
  • FIG. 2 is a flowchart of a method for determining power control parameters according to an embodiment of the present invention. The method is applied to a terminal, as shown in FIG. 2, and includes the following steps:
  • Step 201 In the case where the target parameter in the power control parameter of the target object is not configured, the target parameter of the target object is determined according to any of the following methods:
  • the target object and the other objects are selected from physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and sounding reference signal SRS;
  • the target parameter includes path loss calculation reference signal, target received power, and path loss compensation factor And at least one of closed-loop power control.
  • the network device can configure part of the power control parameters for the target object, or not configure the power control parameters.
  • the terminal can determine that the network device is not configured according to the target parameters, historical configuration and/or protocol conventions of other objects. Target parameters.
  • the terminal may determine the target parameters of the target object according to the target parameters of other objects configured by the network device, the terminal may also independently select a certain configuration parameter in the historical configuration to determine the target parameter, and the terminal may also select the historical parameter according to the agreement.
  • a certain configuration parameter in the configuration determines the target parameter, and the terminal can also directly determine the target parameter by the parameter value agreed by the protocol, which is described in detail in the following embodiments.
  • the above-mentioned path loss calculation reference reference signal may be referred to as a path loss reference signal or a path loss reference signal.
  • the aforementioned downlink reference signal (Reference Signal, RS) may specifically refer to a channel state information reference signal CSI-RS and/or a synchronization signal block SSB.
  • the aforementioned PUCCH may be a dedicated PUCCH.
  • the terminal can determine the target parameter of the target object according to the target parameter, historical configuration and/or protocol agreement of other objects; in this way, It can simplify the requirements of network equipment for power control parameter configuration, and reduce the resource overhead occupied by power control. At the same time, the flexibility of network device configuration is improved.
  • the determining the target parameter of the target object according to the target parameters of objects other than the target object includes:
  • the first path loss calculation reference reference signal of other objects is determined as the path loss calculation reference reference signal of the target object.
  • the network equipment configures the PL RS of one or both of PUCCH, PUSCH, and SRS through RRC signaling
  • the PL RS that is not configured in PUCCH, PUSCH, and SRS can be based on the configured PL in the other. RS to determine.
  • the first path loss calculation reference reference signal is any one of the following:
  • the reference reference signal for path loss calculation of the lowest identification number the reference reference signal for path loss calculation of the lowest identification number
  • the path loss calculation reference reference signal with the highest identification number the path loss calculation reference reference signal with the highest identification number
  • the path loss calculation reference reference signal of the lowest identification number activated or updated by the media intervention control unit MAC CE;
  • the path loss calculation reference reference signal with the highest identification number activated or updated by the MAC CE;
  • the path loss calculation reference reference signal used at the latest time that is activated or updated by the MAC CE is activated or updated by the MAC CE.
  • the PL RS of the target object can also be determined according to the number of PL RS configured by RRC signaling.
  • the first path loss calculation reference reference signal is any one of the following:
  • the path loss calculation reference reference signal of other objects the path loss calculation reference reference signal of the lowest identification number
  • the path loss calculation reference reference signal of other objects the path loss calculation reference reference signal of the highest identification number
  • the path loss calculation reference reference signal used at the latest time.
  • the first path loss calculation reference reference signal is any one of the following:
  • the path loss calculation reference reference signal of other objects the path loss calculation reference reference signal of the lowest identification number activated or updated by the MAC CE;
  • the path loss calculation reference reference signal of other objects the path loss calculation reference reference signal of the highest identification number activated or updated by the MAC CE;
  • the path loss calculation reference reference signal used at the latest time that is activated or updated by the MAC CE.
  • the first path loss calculation reference reference signal is any one of the following:
  • the path loss calculation reference reference signal with the lowest identification number Among the most recently used path loss calculation reference reference signals activated or updated by the MAC CE, the path loss calculation reference reference signal with the lowest identification number;
  • the path loss calculation reference signal with the highest identification number among the path loss calculation reference reference signals used at the latest time activated or updated by the MAC CE.
  • the value of the aforementioned preset threshold may be 4.
  • the value of the preset threshold is not limited to 4, and may also be other values, which can be set as required.
  • the path loss calculation reference signal of one or two objects is selected as the path loss calculation reference reference signal of the target object according to the preset first priority information,
  • the first priority information is obtained through any one of the following methods:
  • PL RS for SRS can preferentially use PL RS for PUCCH, or preferentially use PL RS for PUSCH, or the same PL RS for PUCCH and PUSCH.
  • Priority, or the terminal determines the priority of the PL RS of PUCCH and PUSCH by itself.
  • PUSCH PL RS can preferentially adopt PUCCH PL RS, or prefer SRS PL RS, or PUCCH and SRS PL RS have the same priority , Or the terminal decides the priority of the PL RS of PUCCH and SRS by itself.
  • the PL RS of PUCCH can preferentially adopt the PL RS of PUSCH, or preferentially adopt the PL RS of SRS, or the PL RS of PUSCH and SRS have the same priority.
  • the terminal decides the priority of the PL RS of PUSCH and SRS by itself
  • the path loss calculation reference reference signal is associated with a synchronization signal block and a channel state information reference signal, and the path loss calculation reference reference signal of the target object is determined according to preset second priority information, and the target object
  • the path loss calculation reference reference signal is selected from the synchronization signal block and the channel state information reference signal, and the second priority information is obtained by any of the following methods:
  • the RS associated with the PL RS is selected from SSB and CSI-RS, SSB is preferred, CSI-RS is preferred, or SSB or CSI-RS is preferred by the terminal itself.
  • the identification of the path loss calculation reference reference signal is any one of the following situations:
  • the identification SSB-Index of the synchronization signal block SSB is adopted;
  • the path loss calculation reference reference signal is the PUSCH path loss calculation reference reference signal
  • the PUSCH path loss calculation reference reference signal identifier PUSCH-PathlossReferenceRS-Id is adopted;
  • path loss calculation reference reference signal is a PUCCH path loss calculation reference signal
  • PUCCH path loss calculation reference signal identifier PUCCH-PathlossReferenceRS-Id use the PUCCH path loss calculation reference signal identifier PUCCH-PathlossReferenceRS-Id
  • the path loss calculation reference reference signal is an SRS path loss calculation reference reference signal
  • the SRS resource identifier SRS-ResourceId is adopted
  • the path loss calculation reference reference signal is the path loss calculation reference reference signal of the SRS
  • the SRS resource set identifier SRS-ResourceSetId is adopted.
  • determining the target parameter according to historical configuration information and/or agreement includes:
  • the first RS may be understood as the terminal determining the downlink RS associated with the path loss calculation reference signal, and after determining the first RS, the path loss may be calculated based on the first RS.
  • the first RS may be determined in multiple manners, which will be described in detail below.
  • the first RS is any one of the following downlink RSs:
  • a downlink RS associated with a PRACH corresponding to a random access response (Random Access Response, RAR), and the random access response RAR is used to schedule the target object.
  • RAR Random Access Response
  • the QCL information includes the RS identification number (ie RS ID), and the RS corresponding to the RS ID is the downlink RS in the QCL information.
  • the downlink RS in the QCL information can be understood as the QCL information association The downlink RS.
  • the embodiment of the present invention provides multiple first RS determination schemes, and the terminal can set one of the schemes according to actual needs to determine target parameters that are not configured by the network device, thereby improving the flexibility of target parameter determination.
  • the downlink RS in the quasi co-located QCL information associated with the target object includes any one of the following:
  • Solution 1 In the case of the first carrier configuration control resource set CORESET, the downlink RS in the QCL information of the first CORESET, the first CORESET is one of the CORESETs configured by the first carrier;
  • Solution 2 In the case where CORESET is not configured on the first carrier and M TCIs for PDSCH are configured in the active bandwidth part BWP of the first carrier, the downlink RS in the first TCI, the first TCI Is one of the M TCIs, the M TCIs are in an active state, and M is a positive integer;
  • Solution 3 In the case that the first carrier is not configured with CORESET, and the activated BWP of the first carrier is not configured with an activated TCI, the third RS of the first BWP of the second carrier, the second carrier and all The first carrier is different;
  • Solution 4 In the case that the first carrier is not configured with CORESET, the third RS of the first BWP of the second carrier, the second carrier is different from the first carrier.
  • the first CORESET may include any one of the following:
  • the CORESET configured at the most recent moment of the first carrier
  • the CORESET configured at the most recent time of the first carrier may include: the CORESET of the lowest identification number or the highest identification number among the CORESETs configured at the most recent time of the first carrier.
  • CORESET ID that is, CORESET ID.
  • CORESET with the lowest ID can be understood as the ID with the lowest CORESET;
  • CORESET with the highest ID can be understood as The identification number with the highest CORESET ID.
  • the CORESET whose identification number is 0 in the CORESET of the above-mentioned first carrier configuration may be the most recent CORESET#0.
  • the beam corresponding to the CORESET with the lowest identification number is often a beam with wide coverage or relatively stable, and the beam corresponding to the CORESET with the highest identification number is often the beam that best matches the current channel and has the highest channel RSRP.
  • the downlink RS in the QCL information of the first CORESET includes:
  • N1 is a positive integer
  • the N1 downlink RSs are associated with the CORESET of the BWP configuration activated by the first carrier.
  • a second RS can be selected as the first RS from all CORESET-associated downlink RSs of the BWP configuration activated by the first carrier.
  • the second RS may include any of the following:
  • the RS identification number is SSB-Index; if the RS is a channel state information reference signal CSI-RS, the RS identification number is CSI-RS-Index;
  • the downlink RS includes SSB and CSI-RS
  • the downlink RS includes SSB and CSI-RS
  • the CSI-RS with the lowest identification number or the highest identification number, where the priority of the SSB is lower than the CSI-RS
  • One RS arbitrarily selected among the N1 downlink RSs.
  • the second RS may also be the latest downlink RS among the N1 downlink RSs.
  • the first TCI is the TCI with the lowest identification number or the highest identification number among the M TCIs.
  • the first TCI may also be the TCI at the most recent time among the M TCIs.
  • the RS ID is included in the TCI, and the RS corresponding to the RS ID can be understood as the RS in the TCI.
  • the second carrier includes at least one of the current carrier, the carrier of the primary cell, the carrier with the lowest identification number, and the carrier with the highest identification number.
  • the first BWP includes at least one of the activated BWP, the initial BWP, the BWP with the lowest identification number, and the BWP with the highest identification number.
  • the third RS includes any one of the following:
  • the third CORESET includes CORESET with an identification number of 0, CORESET with the lowest identification number, CORESET with the highest identification number, or CORESET selected by the terminal;
  • N2 is a positive integer, and the N2 downlink RSs are associated with the CORESET configured by the first BWP;
  • the fourth TCI is the TCI with the lowest identification number or the highest identification number among the L TCIs in the active state, or the most recently used TCI among the L TCIs, and L is a positive integer.
  • the third CORESET can be selected among the BWPs of different carriers according to the priority of the carrier, and the third CORESET is CORESET#0 as an example for description.
  • the priority of the BWP of carriers other than the first carrier in the first cell group is greater than that of the BWP in the second cell group
  • the first cell group is the cell group where the target object is located
  • the second cell group is connected to the BWP of the second cell group.
  • the first cell group is different.
  • the aforementioned third CORESET is the CORESET configured by the first BWP.
  • the foregoing fourth RS may be an RS with the smallest RS ID, the largest RS ID, or an RS selected by the terminal among the N2 downlink RSs.
  • the L TCIs may be all TCIs configured for the first BWP, or may be TCIs used for PDSCH among all TCIs configured for the first BWP, that is, the L TCIs are used for PDSCH.
  • selecting the RS with the smallest RS ID or the largest RS ID among the N downlink RSs as the fourth RS can be selected according to priority, specifically:
  • the downlink RS includes SSB and CSI-RS
  • the downlink RS includes SSB and CSI-RS
  • the CSI-RS with the lowest identification number or the highest identification number, wherein the priority of the SSB is lower than the CSI-RS.
  • the confirmation of the above-mentioned priority may be configured by the network device, or agreed upon by the protocol, or independently determined by the terminal, which will not be further described here.
  • the foregoing third CORESET may be understood as the CORESET recently configured by the first BWP
  • the foregoing L TCI may be understood as the most recently configured TCI of the first BWP.
  • the third RS of the first BWP of the second carrier is used, and the second carrier is the third RS of the first BWP.
  • the carrier is different from the first carrier; or, when the first carrier is not configured with CORESET, the third RS of the first BWP of the second carrier is used, and the second carrier is different from the first carrier.
  • the case where the activated BWP of the first carrier is not configured with the TCI in the activated state can be specifically understood as that the TCIs configured on the activated BWP of the first carrier are all in the deactivated state, or the activated BWP of the first carrier is not configured with TCI.
  • the fifth RS includes at least one of the following:
  • the RS with the lowest identification number If the RS is a synchronization signal block SSB, the RS identification number is SSB-Index; if the RS is a channel state information reference signal CSI-RS, the RS identification number is CSI-RS-Index;
  • the RS with the highest identification number If the RS is a synchronization signal block SSB, the RS identification number is SSB-Index; if the RS is a channel state information reference signal CSI-RS, the RS identification number is CSI-RS-Index;
  • the RS in the TCI state with the highest identification number Among all TCI states or activated TCI states, the RS in the TCI state with the highest identification number.
  • the RS in the TCI state with the lowest identification number and the RS in the TCI state with the highest identification number are used when CORESET is not configured.
  • the SSB where the terminal is located includes at least one of the following:
  • the first RS is the RS that currently transmits the available beam:
  • the RS of the beam used for the current transmission belongs to the path loss calculation reference reference signal configured by the radio resource control RRC signaling;
  • the RS of the beam used for the current transmission belongs to the reference signal for path loss calculation configured by RRC signaling and activated or updated by the MAC CE;
  • the number of RSs corresponding to the current beams available for transmission is less than or equal to K;
  • the sum of the number of RSs corresponding to the currently available beams for transmission and the number of reference signals for calculating the path loss configured by RRC signaling is less than or equal to K;
  • the RSs of the beams currently used for transmission belong to the path loss calculation reference reference signals configured by the radio resource control RRC signaling, and the number of RSs corresponding to the beams currently available for transmission is less than or equal to K;
  • the RSs of the beams currently used for transmission belong to the path loss calculation reference reference signals configured by the radio resource control RRC signaling, and the sum of the number of RSs corresponding to the currently available beams for transmission and the number of path loss calculation reference signals configured by the RRC signaling is less than or equal to K;
  • the RSs of the beams currently used for transmission belong to the path loss calculation reference reference signals configured by RRC signaling and activated or updated by the MAC CE, and the number of RSs corresponding to the beams currently available for transmission is less than or equal to K;
  • the RS of the beam used for current transmission belongs to the reference signal for path loss calculation configured by RRC signaling and activated or updated by MAC CE, and the number of RSs corresponding to the beams currently available for transmission is the same as the reference signal for path loss calculation configured by RRC signaling.
  • the sum of the numbers is less than or equal to K.
  • the value of K is equal to 4.
  • the value of K is not limited to being equal to 4, and can also be set to other values as required.
  • none of the PUCCH, PUSCH, and SRS is configured with the path loss calculation reference signal
  • determining the target parameter of the target object according to historical configuration and/or agreement includes:
  • the target parameter in the power control parameter of the target object is not configured, the target parameter is determined according to the historical configuration and/or agreement.
  • the target parameter includes at least one of target received power, path loss compensation factor, and closed-loop power control, according to the historical configuration information and/or protocol
  • the agreed and determined target parameters include:
  • the target parameter of the PUCCH and the PUCCH corresponding to the target time are the same;
  • the SRS and the target parameter of the SRS corresponding to the target time are the same;
  • the target time is located after the initial access and before the RRC configuration.
  • the target parameters can be determined based on the PUCCH corresponding to the target time.
  • the target received power, path loss compensation factor, and closed-loop power control can be replaced with the target time corresponding
  • the target parameter can be determined based on the configuration of the SRS corresponding to the target time.
  • the target received power, path loss compensation factor, and closed-loop power control can be replaced with the target time corresponding The corresponding power control parameters of the SRS.
  • the target parameter when the target object is selected from PUCCH, PUSCH, or SRS, the target parameter can be determined directly according to the parameter value agreed by the protocol. For example, when the target parameter includes closed-loop power control, the value of the closed-loop power control is 0; when the target parameter includes a path loss compensation factor, the value of the path loss compensation factor is 1.
  • P0 when the target object is selected from PUCCH and SRS, when the target parameter includes the target received power P0, P0 may be calculated based on the following method:
  • msg3-DeltaPreamble is the power offset of msg3 and RACH sequence transmission configured by the upper layer.
  • preambleReceivedTargetPower is the target power value of the RACH sequence that the network is configured to expect to receive.
  • the path loss compensation factor may be calculated based on the following method:
  • the path loss compensation factor is the value of msg3-Alpha; otherwise, the path loss compensation factor is 1.
  • the closed-loop power control can be calculated based on the following method:
  • f ⁇ P rampup,b,f,c + ⁇ msg2,b,f,c ;
  • ⁇ msg2, b, f, c represent a transmit power control (transmit power control, TPC) command value indicated in the random response grant of the random access message, and correspond to the carrier f in the serving cell c where the uplink BWP is currently activated.
  • TPC transmit power control
  • ⁇ P rampuprequested, b, f, c is provided by the higher layer.
  • carrier f is from the first random access preamble to the last random access preamble, and the total power requested by the higher layer Increment.
  • the carrier f of the serving cell c where the currently activated BWP b is located in the uplink Is the bandwidth allocated by PUSCH resources, and represents the number of resource blocks for the first PUSCH transmission on the currently activated BWP b in the uplink;
  • ⁇ TF,b,f,c (0) represents the power adjustment of the first PUSCH transmission on the currently activated BWP b in the uplink
  • ⁇ b, f, c (0) is the path loss compensation factor value configured by the upper layer for msg3PUSCH, and if it is not configured by the upper layer, it is 0;
  • PO_PUSCH, b, f, c (0) is the target received power
  • the terminal may calculate the path loss based on one of the following RSs:
  • Method 1 Use the RS in the QCL information of CORESET.
  • the downlink RS can be selected as follows:
  • Case 1 when CORESET is configured on the current carrier (the first carrier where the PUCCH or SRS is located), including the method 1.1 to the method 1.3.
  • the RS in the QCL information of the CORESET at the most recent moment is used; further, it can be the highest CORESET ID or the lowest CORESET ID.
  • Method 1.2 use the RS in the QCL information of CORESET#0; 1. Further, it can be CORESET#0 at the most recent moment.
  • Manner 1.3 select from all the downlink RSs associated with CORESET in the BWP activated by the current carrier.
  • it may be the RS with the smallest or largest RS ID. Further, if both SSB and CSI-RS exist, then select from the preferred SSB, or select from the preferred CSI-RS, or the terminal itself selects the preferred SSB or the CSI-RS; in another embodiment, it can be arbitrarily selected by the terminal One RS; in another embodiment, it can also be the RS at the most recent moment.
  • Method 1.4 using the TCI (activated TCI state) used for the activated state of the PDSCH on the activated BWP of the current carrier; optionally, the TCI with the largest or smallest identification number in the activated state can be used (ie activated TCI state) with lowest/highest ID); The TCI at the most recent moment in the TCI in the active state can also be used.
  • Method 1.5 there is no activated TCI state on the activated BWP of the current carrier, or regardless of whether there is activated TCI state on the activated BWP of the current carrier, the specific RS of the specific BWP of the specific carrier is used;
  • the specific carrier may include: the carrier of the primary cell or the lowest ID carrier or the highest ID carrier;
  • the specific BWP includes at least one of the activated BWP, the initial BWP, the BWP (lowest ID BWP) with the lowest identification number, and the BWP (highest ID BWP) with the highest identification number. It can also include all BWPs, that is, for BWPs. There are no restrictions.
  • the specific RS may include any of the following:
  • One of all the downlink RSs associated with CORESET configured by the first BWP can be the RS with the largest RS ID or the smallest RS ID, or the RS self-selected by the terminal; it should be understood that when selecting the largest RS ID or the smallest RS ID, It can be selected according to the priority of SSB and CSI-RS. For example, when the priority of SSB is greater than the priority of CSI-RS, the SSB with the largest or smallest SSB ID can be selected as the specific RS; when the priority of CSI-RS When the priority is greater than the SSB, the CSI-RS with the largest or smallest CSI-RS ID can be selected as the specific RS.
  • the most recently used RS in the active state TCI for PDSCH.
  • the specific RS should satisfy the RS at the most recent moment.
  • the specific RS is one of all CORESET-associated downlink RSs recently configured by the first BWP; or, the specific RS is the most recently configured first BWP for PDSCH.
  • Manner 2 one of several RSs associated with the spatial related information of PUCCH or SRS;
  • the RS may be the one with the largest or smallest RSID in the corresponding RS.
  • the RS is the synchronization signal block SSB
  • the RS identification number is SSB-Index
  • the RS is the channel state information reference signal CSI-RS
  • the RS The identification number is CSI-RS-Index.
  • it may also be the RS configured in the QCL information of the CORESET with the smallest or the largest CORESET ID in the CORESET used to determine the spatial related information. Further, the CORESET in the CORESET configured at the most recent moment may be used. The RS configured in the QCL information of the CORESET with the smallest ID or the largest CORESET ID.
  • the RS may also be the RS with the smallest TCI state ID or the largest TCI state ID in the corresponding TCI used for the PDSCH.
  • the TCI selection range for the PDSCH is all TCI states or activated TCI states; further, the RS is used when the first carrier is not configured with CORESET for determining the spatial related information.
  • Method 6 the SSB where the terminal is located, refers to the SSB receiving the current broadcast information, or the SSB corresponding to CORSET#0;
  • FIG. 3 is a structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 300 includes:
  • the determining module 301 is configured to determine the target parameter of the target object according to any one of the following methods when the target parameter among the power control parameters of the target object is not configured:
  • the target object and the other objects are selected from physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and sounding reference signal SRS;
  • the target parameter includes path loss calculation reference signal, target received power, and path loss compensation factor And at least one of closed-loop power control.
  • the determining the target parameter of the target object according to the target parameters of objects other than the target object includes:
  • the first path loss calculation reference reference signal of other objects is determined as the path loss calculation reference reference signal of the target object.
  • the first path loss calculation reference reference signal is any one of the following:
  • the path loss calculation reference reference signal with the lowest identification number the path loss calculation reference reference signal with the lowest identification number
  • the path loss calculation reference reference signal with the highest identification number the path loss calculation reference reference signal with the highest identification number
  • the path loss calculation reference reference signal of the lowest identification number activated or updated by the media intervention control unit MAC CE;
  • the path loss calculation reference reference signal with the highest identification number activated or updated by the MAC CE;
  • the path loss calculation reference reference signal used at the latest time that is activated or updated by the MAC CE is activated or updated by the MAC CE.
  • the first path loss calculation reference reference signal is any one of the following:
  • the path loss calculation reference reference signal of other objects the path loss calculation reference reference signal of the lowest identification number
  • the path loss calculation reference reference signal of other objects the path loss calculation reference reference signal of the highest identification number
  • the path loss calculation reference reference signal used at the latest time.
  • the first path loss calculation reference reference signal is any one of the following:
  • the path loss calculation reference reference signal of other objects the path loss calculation reference reference signal of the lowest identification number activated or updated by the MAC CE;
  • the path loss calculation reference reference signal of other objects the path loss calculation reference reference signal of the highest identification number activated or updated by the MAC CE;
  • the path loss calculation reference reference signal used at the latest time that is activated or updated by the MAC CE.
  • the first path loss calculation reference reference signal is any one of the following:
  • the path loss calculation reference reference signal with the lowest identification number Among the most recently used path loss calculation reference reference signals activated or updated by the MAC CE, the path loss calculation reference reference signal with the lowest identification number;
  • the path loss calculation reference signal with the highest identification number among the path loss calculation reference reference signals used at the latest time activated or updated by the MAC CE.
  • the path loss calculation reference signal of one or two objects is selected as the path loss calculation reference reference signal of the target object according to the preset first priority information,
  • the first priority information is obtained through any one of the following methods:
  • the path loss calculation reference reference signal is associated with a synchronization signal block and a channel state information reference signal, and the path loss calculation reference reference signal of the target object is determined according to preset second priority information, and the target object
  • the path loss calculation reference reference signal is selected from the synchronization signal block and the channel state information reference signal, and the second priority information is obtained by any of the following methods:
  • the identification of the path loss calculation reference reference signal is any one of the following situations:
  • the identification SSB-Index of the synchronization signal block SSB is adopted;
  • the path loss calculation reference reference signal is the PUSCH path loss calculation reference reference signal
  • the PUSCH path loss calculation reference reference signal identifier PUSCH-PathlossReferenceRS-Id is adopted;
  • path loss calculation reference reference signal is a PUCCH path loss calculation reference signal
  • PUCCH path loss calculation reference signal identifier PUCCH-PathlossReferenceRS-Id use the PUCCH path loss calculation reference signal identifier PUCCH-PathlossReferenceRS-Id
  • the path loss calculation reference reference signal is an SRS path loss calculation reference reference signal
  • the SRS resource identifier SRS-ResourceId is adopted
  • the path loss calculation reference reference signal is the path loss calculation reference reference signal of the SRS
  • the SRS resource set identifier SRS-ResourceSetId is adopted.
  • determining the target parameter of the target object according to historical configuration and/or agreement includes:
  • the first RS in the historically configured downlink reference signals RS is determined as the path loss calculation reference reference signal.
  • the first RS is any one of the following:
  • the random access response RAR corresponds to the downlink RS associated with the PRACH, and the random access response RAR is used to schedule the target object.
  • the target object is located on the first carrier, and the downlink RS in the quasi co-located QCL information associated with the target object includes any one of the following:
  • the active bandwidth part BWP of the first carrier is configured with M transmission configuration indication TCIs for PDSCH
  • the downlink RS in the first TCI the first TCI Is one of the M TCIs, the M TCIs are in an active state, and M is a positive integer
  • the third RS of the first BWP of the second carrier, the second carrier and the first carrier Carriers are different;
  • the third RS of the first BWP of the second carrier, the second carrier is different from the first carrier.
  • the first CORESET includes any one of the following:
  • the CORESET configured at the most recent moment of the first carrier
  • the CORESET configured at the latest time of the first carrier includes:
  • the downlink RS in the QCL information of the first CORESET includes:
  • N1 is a positive integer
  • the N1 downlink RSs are associated with the CORESET of the BWP configuration activated by the first carrier.
  • the second RS includes any one of the following:
  • the RS identification number is SSB-Index; if the RS is a channel state information reference signal CSI-RS, the RS identification number is CSI-RS-Index;
  • the downlink RS includes SSB and CSI-RS
  • the downlink RS includes SSB and CSI-RS
  • the CSI-RS with the lowest identification number or the highest identification number, where the priority of the SSB is lower than the CSI-RS
  • One RS arbitrarily selected among the N1 downlink RSs.
  • the first TCI is the TCI with the lowest identification number or the highest identification number among the M TCIs.
  • the second carrier includes at least one of the current carrier, the carrier of the primary cell, the carrier with the lowest identification number, and the carrier with the highest identification number.
  • the first BWP includes at least one of an activated BWP, an initial BWP, a BWP with the lowest identification number, and a BWP with the highest identification number.
  • the third RS includes any one of the following:
  • the third CORESET includes at least one of CORESET with an identification number of 0, CORESET with the lowest identification number, CORESET with the highest identification number, and CORESET selected by the terminal;
  • N2 is a positive integer, and the N2 downlink RSs are associated with the CORESET configured by the first BWP;
  • the fourth TCI is the TCI with the lowest identification number or the highest identification number among the L TCIs in the active state, or the most recently used TCI among the L TCIs, and L is a positive integer.
  • the L TCIs are used for PDSCH.
  • the fifth RS includes at least one of the following:
  • the RS with the lowest identification number If the RS is a synchronization signal block SSB, the RS identification number is SSB-Index; if the RS is a channel state information reference signal CSI-RS, the RS identification number is CSI-RS-Index;
  • the RS with the highest identification number If the RS is a synchronization signal block SSB, the RS identification number is SSB-Index; if the RS is a channel state information reference signal CSI-RS, the RS identification number is CSI-RS-Index;
  • the RS in the TCI state with the highest identification number Among all TCI states or activated TCI states, the RS in the TCI state with the highest identification number.
  • the RS in the TCI state with the lowest identification number and the RS in the TCI state with the highest identification number are used when CORESET is not configured.
  • the SSB where the terminal is located includes at least one of the following:
  • the first RS is the RS that currently transmits the available beam:
  • the RS of the beam used for the current transmission belongs to the path loss calculation reference reference signal configured by the radio resource control RRC signaling;
  • the RS of the beam used for the current transmission belongs to the reference signal for path loss calculation configured by RRC signaling and activated or updated by the MAC CE;
  • the number of RSs corresponding to the current beams available for transmission is less than or equal to K;
  • the sum of the number of RSs corresponding to the currently available beams for transmission and the number of reference signals for calculating the path loss configured by RRC signaling is less than or equal to K;
  • the RSs of the beams currently used for transmission belong to the path loss calculation reference reference signals configured by the radio resource control RRC signaling, and the number of RSs corresponding to the beams currently available for transmission is less than or equal to K;
  • the RSs of the beams currently used for transmission belong to the path loss calculation reference reference signals configured by the radio resource control RRC signaling, and the sum of the number of RSs corresponding to the currently available beams for transmission and the number of path loss calculation reference signals configured by the RRC signaling is less than or equal to K;
  • the RSs of the beams currently used for transmission belong to the path loss calculation reference reference signals configured by RRC signaling and activated or updated by the MAC CE, and the number of RSs corresponding to the beams currently available for transmission is less than or equal to K;
  • the RS of the beam used for current transmission belongs to the reference signal for path loss calculation configured by RRC signaling and activated or updated by MAC CE, and the number of RSs corresponding to the beams currently available for transmission is the same as the reference signal for path loss calculation configured by RRC signaling.
  • the sum of the numbers is less than or equal to K.
  • K is equal to 4.
  • none of the PUCCH, PUSCH, and SRS is configured with the path loss calculation reference reference signal
  • determining the target parameter of the target object according to historical configuration and/or agreement includes:
  • the target parameter in the power control parameter of the target object is not configured, the target parameter is determined according to the historical configuration and/or agreement.
  • the determining the target parameter according to historical configuration information and/or agreement includes:
  • the target parameter of the target PUCCH is the same as the target parameter of the PUCCH corresponding to the target moment;
  • the target parameter of the target PUSCH is the same as the target parameter of the PUSCH corresponding to the target moment;
  • the target SRS and the target parameter of the SRS corresponding to the target time are the same;
  • the target time is located after initial access and before RRC configuration.
  • the value of the closed-loop power control is 0.
  • the value of the path loss compensation factor is 1.
  • the PUCCH is a dedicated PUCCH.
  • the terminal provided by the embodiment of the present invention can implement the various processes implemented by the terminal in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again.
  • Fig. 4 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present invention.
  • the terminal 400 includes but is not limited to: a radio frequency unit 401, a network module 402, an audio output unit 403, an input unit 404, a sensor 405, a display unit 406, a user input unit 407, an interface unit 408, a memory 409, a processor 410, and a power supply 411 and other components.
  • a radio frequency unit 401 includes but is not limited to: a radio frequency unit 401, a network module 402, an audio output unit 403, an input unit 404, a sensor 405, a display unit 406, a user input unit 407, an interface unit 408, a memory 409, a processor 410, and a power supply 411 and other components.
  • the terminal structure shown in FIG. 4 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle
  • the processor 410 is configured to determine the target parameter of the target object according to any one of the following methods when the target parameter among the power control parameters of the target object is not configured:
  • the target object and the other objects are selected from physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and sounding reference signal SRS;
  • the target parameter includes path loss calculation reference signal, target received power, and path loss compensation factor And at least one of closed-loop power control.
  • processor 410 and radio frequency unit 401 can implement various processes implemented by the terminal in the method embodiment of FIG. 2, and to avoid repetition, details are not described herein again.
  • the radio frequency unit 401 can be used to receive and send signals during information transmission or communication. Specifically, the downlink data from the base station is received and processed by the processor 410; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 401 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 402, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 403 may convert the audio data received by the radio frequency unit 401 or the network module 402 or stored in the memory 409 into an audio signal and output it as sound. Moreover, the audio output unit 403 may also provide audio output related to a specific function performed by the terminal 400 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 403 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 404 is used to receive audio or video signals.
  • the input unit 404 may include a graphics processing unit (GPU) 4041 and a microphone 4042.
  • the graphics processor 4041 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 406.
  • the image frame processed by the graphics processor 4041 may be stored in the memory 409 (or other storage medium) or sent via the radio frequency unit 401 or the network module 402.
  • the microphone 4042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 401 in the case of a telephone call mode for output.
  • the terminal 400 also includes at least one sensor 405, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 4041 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 4041 and/or when the terminal 400 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 405 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 406 is used to display information input by the user or information provided to the user.
  • the display unit 406 may include a display panel 4061, and the display panel 4061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 407 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 407 includes a touch panel 4071 and other input devices 4072.
  • the touch panel 4071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 4071 or near the touch panel 4071. operating).
  • the touch panel 4071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 410, the command sent by the processor 410 is received and executed.
  • the touch panel 4071 can be realized by various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 407 may also include other input devices 4072.
  • other input devices 4072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 4071 can be overlaid on the display panel 4041.
  • the touch panel 4071 detects a touch operation on or near it, it transmits it to the processor 410 to determine the type of the touch event, and then the processor 410 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 4041.
  • the touch panel 4071 and the display panel 4041 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 4071 and the display panel 4041 can be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 408 is an interface for connecting an external device with the terminal 400.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 408 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 400 or may be used to communicate between the terminal 400 and the external device. Transfer data between.
  • the memory 409 can be used to store software programs and various data.
  • the memory 409 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 409 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 410 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 409, and calling data stored in the memory 409. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 410 may include one or more processing units; preferably, the processor 410 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc., the modem
  • the processor mainly deals with wireless communication. It can be understood that the above-mentioned modem processor may not be integrated into the processor 410.
  • the terminal 400 may also include a power source 411 (such as a battery) for supplying power to various components.
  • a power source 411 such as a battery
  • the power source 411 may be logically connected to the processor 410 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 400 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 410, a memory 409, a computer program stored in the memory 409 and running on the processor 410, and the computer program is implemented when the processor 410 is executed.
  • a terminal including a processor 410, a memory 409, a computer program stored in the memory 409 and running on the processor 410, and the computer program is implemented when the processor 410 is executed.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the embodiment of the method for determining power control parameters on the terminal side provided by the embodiment of the present invention is realized.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种功率控制参数确定方法及终端,该方法包括:在未配置目标对象的功率控制参数中目标参数的情况下,按照以下任一种方式确定所述目标对象的目标参数:根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,所述其他对象不同于所述目标对象;按照历史配置确定所述目标对象的目标参数;按照协议约定确定所述目标对象的目标参数;其中,所述目标对象和所述其他对象选自物理上行控制信道PUCCH、物理上行共享信道PUSCH和探测参考信号SRS;所述目标参数包括路损计算参考参考信号、目标接收功率、路损补偿因子和闭环功率控制其中至少一项。

Description

一种功率控制参数确定方法及终端 技术领域
本发明涉及通信技术领域,尤其涉及一种功率控制参数确定方法及终端。
背景技术
众所周知,现有通信系统中,在发送物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或探测参考信号(Sounding Reference Signal,SRS)时,通常需要基于网络设备配置的功率控制参数进行功率控制。该功率控制参数通常包括路损计算参考参考信号(Pathloss ReferenceRS,PL RS)、目标接收功率、路损补偿因子和闭环功率控制等参数。若网络设备未对其中的任一种进行配置时,终端(User Equipment,UE)就无法调节上行发射功率,从而使网络对UE的功率失去控制,容易造成UE发射功率过高或过低,使UE消耗过多发射功率、增加小区内的干扰、增加小区间的干扰、或系统容量的降低。这样,配置的功率控制参数需要包括所有的参数,导致功率控制所占用的资源开销较大。
发明内容
本发明实施例提供一种功率控制参数确定方法及终端,以解决功率控制所占用的资源开销较大的问题。
第一方面,本发明实施例提供一种功率控制参数确定方法,应用于终端,包括:
在未配置目标对象的功率控制参数中目标参数的情况下,按照以下任一种方式确定所述目标对象的目标参数:
根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,所述其他对象不同于所述目标对象;
按照历史配置确定所述目标对象的目标参数;
按照协议约定确定所述目标对象的目标参数;
其中,所述目标对象和所述其他对象选自物理上行控制信道PUCCH、物理上行共享信道PUSCH和探测参考信号SRS;所述目标参数包括路损计算参考参考信号、目标接收功率、路损补偿因子和闭环功率控制其中至少一项。
第二方面,本发明实施例还提供一种终端,其特征在于,包括:
确定模块,用于在未配置目标对象的功率控制参数中目标参数的情况下,按照以下任一种方式确定所述目标对象的目标参数:
根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,所述其他对象不同于所述目标对象;
按照历史配置确定所述目标对象的目标参数;
按照协议约定确定所述目标对象的目标参数;
其中,所述目标对象和所述其他对象选自物理上行控制信道PUCCH、物理上行共享信道PUSCH和探测参考信号SRS;所述目标参数包括路损计算参考参考信号、目标接收功率、路损补偿因子和闭环功率控制其中至少一项。
第三方面,本发明实施例还提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述功率控制参数确定方法中的步骤。
第四方面,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述功率控制参数确定方法的步骤。
本发明实施例中,由于在未配置目标对象的功率控制参数中目标参数的情况下,终端可以按照其他对象的目标参数、历史配置和/或协议约定确定所述目标对象的目标参数;这样,可以简化网络设备对功率控制参数配置的需求,降低了功率控制所占用的资源开销。与此同时,提高了网络设备配置的灵活性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳 动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例可应用的一种网络系统的结构图;
图2是本发明实施例提供的一种功率控制参数确定方法的流程图;
图3是本发明实施例提供的一种终端的结构图;
图4是本发明实施例提供的另一种终端的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本发明实施例中,“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本发明的实施例。本发明实施例提供的一种功率控制参数确定方法及终端可以应用于无线通信系统中。该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
请参见图1,图1是本发明实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称 PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本发明实施例中并不限定终端11的具体类型。上述网络设备12可以是5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者发送接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本发明实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
在无线通信系统中,PUCCH、PUSCH或SRS的功率控制参数包括路损计算参考参考信号、目标接收功率(开环接收功率目标值)、路损补偿因子和闭环功率控制等参数,网络设备需要通过高层信令或物理层信令对这些功率控制参数进行配置。
相关技术中,单传输接收点(Single-Transmission Reception Point,Single-TRP)传输场景下,无线资源控制(Radio Resource Control,RRC)信令指示信息中每个终端的所有PUCCH资源配置信息共享相同的功率控制参数集合,包括P0取值集合、路损计算参考信号集合、闭环功率控制进程集合;每个终端的所有PUCCH资源配置信息共享相同的空间相关信息集合。功率控制参数与空间相关信息的关联关系包含在空间相关信息配置信息中。因此上行发送波束指示机制可以复用功率控制参数指示。
对于一个PUCCH传输,媒体接入控制单元(media access controlcontrol element,MAC CE)可激活空间相关信息集合中的一个空间相关信息用于指示PUCCH的发送波束,它们之间的关联关系通过RRC信令预配置。同时,通过空间相关信息与功率控制参数的关联关系,可获取到实际PUCCH传输使用的功率参数。
物理上行共享信道的功率控制参数集合、SRS资源指示(SRI)与功率控制参数之间的关联关系通过RRC信令配置。终端实际传输PUSCH的功率通过下行控制信息(Downlink Control Information,DCI)中的SRI域指示。
SRS的功率控制参数通过RRC信令配置,以SRS资源集合为单位配置。
每个SRS资源集合包含至少一个SRS资源,每个SRS资源包含空间相关信息,用于指示SRS的发送波束。
PUSCH空间相关信息通过DCI中的SRI指示,每个SRI对应一个SRS资源,SRS资源中包含的空间相关信息用于指示PUSCH的发送波束。
终端可以使用上述功率控制参数来调节上行发射功率,满足发射功率要求。当这些功率控制参数的一个或多个参数没有被网络配置时,终端就无法调节上行发射功率,从而使网络对终端的功率失去控制,容易造成终端发射功率过高或过低,造成终端出现消耗过多发射功率、增加小区内的干扰、增加小区间的干扰或系统容量的降低等问题。
为了解决这个问题,需要给出这些功率参数的默认值或缺省值。而对这些功率控制参数,需要分开考虑,因为它们的用途和物理意义有很大的不同,为此,本发明实施例提供了一种功率控制参数确定方法。具体考虑思路如下:
首先考虑路损计算参考参考信号。路损计算参考参考信号为一个下行RS,选择一个默认的下行RS,需要考虑多个方面:能否有效体现终端至网络设备的信道环境,是否在尽量多的情况下都能找到这个下行RS,这个下行RS的准共址(Quasi co-location,QCL)信息是否相对稳定、不会经常变化,面对一些极端情况应该怎么操作。
基于上述原则,初步从所有的信道和RS中选出物理下行控制信道(Physical downlink control channel,PDCCH)和物理随机接入信道(Physical Random Access Channel,PRACH)。
PDCCH是下行的信道,起控制作用,并且一个重要作用是调度PUCCH、PUSCH或SRS,而且PDCCH的QCL中包含下行RS,那么可以作为路损计算参考参考信号的候选。但是PDCCH也可能有多个,面临使用哪一个的问题,即一个载波有多个控制资源集(Control resource set,CORESET),需要解决使用哪个CORESET的问题,并且还可能有当前带宽部分(Bandwidth Part,BWP)没有任何CORESET的可能。
PRACH的参数网络会配置,但其是一个上行信道。但特殊的是,PRACH的QCL中总是同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(Channel State InformationReference Signal,CSI-RS),都 是下行RS。
其它信道和RS如物理下行共享信道(Physical downlink shared channel,PDSCH)、初始接入的SSB等,都存在各种各样的问题,不能作为默认的路损计算参考参考信号。例如PDSCH需要高信道容量和波束较窄,与PUCCH和SRS的需求有所冲突;并且PDSCH经常没有,或信道环境经常变化。例如初始接入的SSB,虽然波束较宽、以传输成功率为目标,但终端和网络间的信道环境经过一段时间后很可能发生了变化,初始接入的SSB的波束方向很可能不再是最优的了、甚至变得很差。
但是上面提到的PDSCH也有例外,以下对部分例外的方案进行举例说明:例如,在一些方案中,网络设备为PDSCH配传输配置指示(Transmission configuration indicator,TCI)的时候,会首先配很多个TCI,然后激活其中部分。那么网络设备会让其中TCI ID最小或TCI ID最大的TCI作为特殊TCI,例如该TCI对应覆盖或稳定等性能好的波束、或信道参考信号接收功率(Reference Signal Received Power,RSRP)最高的波束。考虑其它参数,即目标接收功率、路损补偿因子和闭环功率控制等参数,同样需要寻找网络总会配置的功率相关的参数,可以参考初始接入message 1之后、RRC配置之前PUCCH和SRS的配置。该配置网络设备是会配置的,而且以链路质量的稳定、成功传输的概率为目标配置的。
虽然初始接入的SSB不合适,但是终端所在SSB就比较合适,因为终端认为该SSB性能很好,其对应的波束应该是对着终端的。
进一步地,如果PUCCH、PUSCH和SRS这三者中有一者或二者配置了PL RS,则三者中未配置PL RS的可以使用这些已经配置了的PL RS。另外,还需要考虑这些PL RS是否被MACCE激活或更新、PL RS数量的问题。基于以上原因,可以得到下述解决方案:
例如,在一些方案中,可以使用网络给其它信道配置的PL RS。进一步的,需要考虑PL RS数量和MAC CE激活或更新的问题。
例如,在一些方案中,可以使用一个默认的QCL中的下行RS。QCL中的RS既可以是下行的RS,但也可能是SRS,后者是个上行RS,不能作为路损计算参考参考信号。如果默认的QCL中是SRS且该SRS关联了一个下行 RS,那么使用该SRS关联的(associated)下行RS。更具体的,在多个情况下,本发明给出了怎么寻找该默认的QCL。
例如,在一些方案中,网络设备会使用PDCCH来调度专用PUCCH(dedicated-PUCCH)或SRS,该PDCCH有QCL信息,那么也可以使用该PDCCH的QCL信息中的下行RS。
例如,在一些方案中,终端会有CORESET标识为0的CORESET(即CORESET#0),可以使用CORESET#0的QCL信息中的下行RS。当然,如果当前BWP没有CORESET#0,需要寻找其它BWP的CORESET#0。如果当前载波上所有BWP都没有CORESET#0,我们需要搜索其它小区组(cell group)。但是这样搜索下来,可能有很多个CORESET#0,需要对他们进行排序,可以从重要程度、ID序列等角度进行排序。
例如,在一些方案中,可以使用当前BWP的标识号最低的CORESET(CORESET with loweset ID)。同样会碰到当前BWP没有CORESET的问题,可以通过上面类似的推导给出解决方案。
在一些方案中,可以使用PRACH的QCL中的下行RS。PRACH作为随机接入信道,网络设备是总会配置PRACH的下行RS。
考虑其它参数,即目标接收功率、路损补偿因子、闭环功率控制等参数,同样需要寻找网络总会配置的功率相关的参数,可以参考初始接入message 1之后、RRC配置之前PUCCH、SRS的配置。该配置网络是会配置的,而且以链路质量的稳定、成功传输的概率为目标配置的,是一个不错的选择。
具体的,请参见图2,图2是本发明实施例提供的一种功率控制参数确定方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201,在未配置目标对象的功率控制参数中目标参数的情况下,按照以下任一种方式确定所述目标对象的目标参数:
根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,所述其他对象不同于所述目标对象;
按照历史配置确定所述目标对象的目标参数;
按照协议约定确定所述目标对象的目标参数;
其中,所述目标对象和所述其他对象选自物理上行控制信道PUCCH、物 理上行共享信道PUSCH和探测参考信号SRS;所述目标参数包括路损计算参考参考信号、目标接收功率、路损补偿因子和闭环功率控制其中至少一项。
本实施例中,网络设备可以针对目标对象配置功率控制参数的部分参数,或者不配置功率控制参数,此时终端可以按照其他对象的目标参数、历史配置和/或协议约定确定网络设备未配置的目标参数。
具体的,终端可以根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,终端还可以自主选择历史配置中的某一配置参数从而确定目标参数,终端也可以按照协议约定选择历史配置中的某一配置参数从而确定目标参数,终端还可以直接将协议约定的参数值确定目标参数,以下各实施例对此进行详细说明。
应理解,在一些实施例中,上述路损计算参考参考信号可以称之为:路损参考参考信号或路损参考信号。可选的,上述下行参考信号(Reference Signal,RS)具体可以指信道状态信息参考信号CSI-RS和/或同步信号块SSB。
可选的,上述PUCCH可以为专用PUCCH。
本发明实施例中,由于在未配置目标对象的功率控制参数中目标参数的情况下,终端可以按照其他对象的目标参数、历史配置和/或协议约定确定所述目标对象的目标参数;这样,可以简化网络设备对功率控制参数配置的需求,降低了功率控制所占用的资源开销。与此同时,提高了网络设备配置的灵活性。
在一可选实施例中,所述目标参数包括所述路损计算参考参考信号时,所述按照除目标对象之外其他对象的目标参数确定所述目标对象的目标参数包括:
将其他对象的第一路损计算参考参考信号确定为所述目标对象的路损计算参考参考信号。
即当网络设备通过RRC信令配置了PUCCH、PUSCH和SRS这三者中一者或二者的PL RS,则PUCCH、PUSCH和SRS中未配置的PL RS,可以根据其他者中已配置的PL RS来确定。
可选的,所述第一路损计算参考参考信号为以下任一种:
其他对象的路损计算参考参考信号中,最低标识号的路损计算参考参考 信号;
其他对象的路损计算参考参考信号中,最高标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,最近时刻被使用的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,被媒体介入控制单元MAC CE激活或更新的最低标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,被MAC CE激活或更新的最高标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号。
可选的,还可以根据RRC信令配置的PL RS数目来确定目标对象的PL RS。
若其他对象的路损计算参考参考信号的数目小于等于预设阈值,所述第一路损计算参考参考信号为以下任一种:
其他对象的路损计算参考参考信号中,所述最低标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,所述最高标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,所述最近时刻被使用的路损计算参考参考信号。
若其他对象的路损计算参考参考信号的数目大于预设阈值,所述第一路损计算参考参考信号为以下任一种:
其他对象的路损计算参考参考信号中,所述被MAC CE激活或更新的最低标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,所述被MAC CE激活或更新的最高标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,所述被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号。
其中,若被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号的数目大于1,所述第一路损计算参考参考信号为以下任一种:
被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号中,最低标识号的路损计算参考参考信号;
被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号中,最高标识号的路损计算参考参考信号。
上述预设阈值的取值可以为4,当然,预设阈值的取值并不局限为4,还可以为其他值,可以根据需要设定。
可选的,若所述其他对象的数目大于1,按照预设的第一优先级信息选择其中一个或两个对象的路损计算参考参考信号作为所述目标对象的路损计算参考参考信号,所述第一优先级信息为通过以下任一项方式获取:
协议约定;
网络设备配置;
终端配置。
比如,当网络设备配置了PUCCH和PUSCH的PL RS,未配置SRS的PL RS时,SRS的PL RS可以优先采用PUCCH的PL RS,或优先采用PUSCH的PL RS,或PUCCH和PUSCH的PL RS同优先级,或终端自己决定PUCCH和PUSCH的PL RS的优先级。
当网络设备配置了PUCCH和SRS的PL RS,未配置PUSCH的PL RS时,PUSCH的PL RS可以优先采用PUCCH的PL RS,或优先采用SRS的PL RS,或PUCCH和SRS的PL RS同优先级,或终端自己决定PUCCH和SRS的PL RS的优先级。
当网络设备配置了PUSCH和SRS的PL RS,未配置PUCCH的PL RS时,PUCCH的PL RS可以优先采用PUSCH的PL RS,或优先采用SRS的PL RS,或PUSCH和SRS的PL RS同优先级,或终端自己决定PUSCH和SRS的PL RS的优先级
可选的,所述路损计算参考参考信号与同步信号块和信道状态信息参考信号关联,按照预设的第二优先级信息确定所述目标对象的路损计算参考参考信号,所述目标对象的路损计算参考参考信号选自所述同步信号块和信道 状态信息参考信号,所述第二优先级信息为通过以下任一项方式获取:
协议约定;
网络设备配置;
终端配置。
比如,当PL RS关联的RS选自SSB和CSI-RS时,则优先选择SSB,或优先选择CSI-RS,或终端自己选择优先SSB还是CSI-RS。
可选的,所述路损计算参考参考信号的标识为以下任一种情况:
采用同步信号块SSB的标识SSB-Index;
采用信道状态信息参考信号CSI-RS的标识CSI-RS-Index;
若所述路损计算参考参考信号为PUSCH的路损计算参考参考信号,采用PUSCH路损计算参考参考信号标识PUSCH-PathlossReferenceRS-Id;
若所述路损计算参考参考信号为PUCCH的路损计算参考参考信号,采用PUCCH路损计算参考参考信号的标识PUCCH-PathlossReferenceRS-Id;
若所述路损计算参考参考信号为SRS的路损计算参考参考信号,采用SRS资源标识SRS-ResourceId;
若所述路损计算参考参考信号为SRS的路损计算参考参考信号,采用SRS资源集标识SRS-ResourceSetId。
在一可选实施例中,所述目标参数包括所述路损计算参考参考信号时,按照历史配置信息和/或协议约定确定所述目标参数包括:
将历史配置的下行RS中的第一RS确定为所述路损计算参考参考信号。
本发明实施例中,第一RS可以理解为终端确定与路损计算参考参考信号关联的下行RS,在确定第一RS后,可以基于第一RS计算路损。
可选的,第一RS确定的方式可以包括多种,以下对此进行详细说明。例如,本实施例中,所述第一RS为以下任一项下行RS:
所述目标对象关联的准共址QCL信息中的下行RS;
用于确定当前资源对应的发射波束的多个RS中的第五RS;
终端所在的SSB;
当前发送所用波束的RS;
目标物理下行控制信道PDCCH的QCL信息中的下行RS,所述目标 PDCCH为调度所述目标对象的PDCCH;
最近一次物理随机接入信道PRACH关联的下行RS;
随机接入响应(Random Access Response,RAR)对应的PRACH关联的下行RS,所述随机接入响应RAR用于调度所述目标对象。
本实施例中,QCL信息中包括RS的标识号(即RS ID),该RS ID对应的RS即为QCL信息中的下行RS,换句话说,QCL信息中的下行RS可以理解为QCL信息关联的下行RS。
本发明实施例提供了多种第一RS的确定方案,终端可以根据实际需要设置其中某一种方案确定网络设备未配置的目标参数,从而提高了目标参数确定的灵活性。
应理解,上述目标对象位于第一载波,在一可选实施例中,所述目标对象关联的准共址QCL信息中的下行RS包括以下任一项:
方案1:第一载波配置控制资源集CORESET的情况下,第一CORESET的QCL信息中的下行RS,第一CORESET为所述第一载波配置的CORESET其中之一;
方案2:在所述第一载波未配置CORESET,且所述第一载波的激活带宽部分BWP配置了用于PDSCH的M个TCI的情况下,第一TCI中的下行RS,所述第一TCI为所述M个TCI其中之一,所述M个TCI处于激活状态,M为正整数;
方案3:在所述第一载波未配置CORESET,且第一载波的激活BWP没有配置处于激活状态的TCI的情况下,第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同;
方案4:在所述第一载波未配置CORESET的情况下,第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同。
其中,在方案1中,可选的,第一CORESET可以包括以下任一项:
所述第一载波最近时刻配置的CORESET;
所述第一载波配置的CORESET中标识号为0的CORESET。
可选的,所述第一载波最近时刻配置的CORESET可以包括:所述第一载波最近时刻配置的CORESET中最低标识号或者最高标识号的CORESET。 本实施例中,通常的网络设备在配置CORESET时,通常配置了CORESET的标识号,即CORESET ID,最低标识号的CORESET可以理解为CORESET ID最低的一个标识号;最高标识号的CORESET可以理解为CORESET ID最高的一个标识号。上述第一载波配置的CORESET中标识号为0的CORESET可以为最近时刻的CORESET#0。
应当说明的是,最低标识号的CORESET对应的波束往往是覆盖广或较稳定的波束,最高标识号的CORESET对应的波束往往是最匹配当前信道、信道RSRP最高的波束。
进一步的,在一可选实施例中,所述第一CORESET的QCL信息中的下行RS包括:
N1个下行RS中的第二RS,N1为正整数,所述N1个下行RS与所述第一载波激活的BWP配置的CORESET关联。
换句话说,在本实施例中,可以从第一载波激活的BWP配置的所有CORESET关联的下行RS中进行选择一个第二RS作为第一RS。在一可选实施例中,第二RS可以包括以下任一项:
最低标识号或者最高标识号的RS,若RS为同步信号块SSB,则RS标识号为SSB-Index;若RS为信道状态信息参考信号CSI-RS,则RS标识号为CSI-RS-Index;
当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的SSB,其中,SSB的优先级大于CSI-RS;
当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的CSI-RS,其中,SSB的优先级小于CSI-RS;
在所述N1个下行RS中任意选择的一个RS。
需要说明的是,在其他实施例中,该第二RS还可以为N1个下行RS中最近时刻的下行RS。
在方案2中,所述第一TCI为所述M个TCI中最低标识号或者最高标识号的TCI。当然在其他实施例中,第一TCI还可以为M个TCI中最近时刻的TCI。可选的,TCI中包括RS ID,该RS ID对应的RS即可以理解为TCI中的RS。
在方案3中,所述第二载波包括当前载波、主小区的载波、最低标识号的载波和最高标识号的载波中的至少一项。所述第一BWP包括激活BWP、初始BWP、最低标识号的BWP和最高标识号的BWP中的至少一项。
本实施例中,所述第三RS包括以下任一项:
第三CORESET的QCL信息中的RS,所述第三CORESET包括标识号为0的CORESET、最低标识号的CORESET、最高标识号的CORESET或所述终端选择的CORESET;
N2个下行RS中的第四RS,N2为正整数,所述N2个下行RS与所述第一BWP配置的CORESET关联;
第四TCI中的下行RS,所述第四TCI为处于激活状态的L个TCI中最低标识号或最高标识号的TCI,或者所述L个TCI中最近使用的TCI,L为正整数。
应当说明的是,在本发明实施例中,可以按照载波的优先级在不同载波的BWP中选择第三CORESET,以第三CORESET为CORESET#0为例进行说明。
具体的,第一小区组中除第一载波之外的载波的BWP的优先级大于第二小区组中的BWP,第一小区组为目标对象所在的小区组,所述第二小区组与所述第一小区组不同。
本实施例中,上述第三CORESET为第一BWP配置的CORESET。可选的,上述第四RS可以为N2个下行RS中RS ID最小、RS ID最大或终端自选的RS。可选的,所述L个TCI可以为第一BWP配置的所有TCI,也可以为第一BWP配置的所有TCI中用于PDSCH的TCI,即所述L个TCI用于PDSCH。
需要说明的是,本实施例中,在N个下行RS中选择RS ID最小或RS ID最大的RS作为第四RS可以按照优先级进行选择,具体的:
当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的SSB,其中,SSB的优先级大于CSI-RS;
当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的CSI-RS,其中,SSB的优先级小于CSI-RS。
具体的,上述优先级的确认可以由网络设备配置,也可以由协议约定,还可以由终端自主确定,在此不做进一步的说明。
进一步的,在一可选实施例中,上述第三CORESET可以理解为第一BWP最近配置的CORESET,上述L个TCI可以理解为第一BWP最近配置TCI。
在方案4中,在所述第一载波未配置CORESET,且第一载波的激活BWP没有配置处于激活状态的TCI的情况下,采用第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同;或,在所述第一载波未配置CORESET的情况下,采用第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同。第一载波的激活BWP没有配置处于激活状态的TCI的情况具体可以理解为,第一载波的激活BWP配置的TCI均处于去激活状态,或者第一载波的激活BWP未配置TCI。
在一可选实施例中,所述第五RS包括以下至少一项:
最低标识号的RS,若RS为同步信号块SSB,则RS标识号为SSB-Index;若RS为信道状态信息参考信号CSI-RS,则RS标识号为CSI-RS-Index;
最高标识号的RS,若RS为同步信号块SSB,则RS标识号为SSB-Index;若RS为信道状态信息参考信号CSI-RS,则RS标识号为CSI-RS-Index;
用于确定当前资源波束的CORESET中,最低标识号的CORESET的QCL信息中的RS;
用于确定当前资源波束的CORESET中,最高标识号的CORESET的QCL信息中的RS;
所有TCI state或激活的TCI state中,最低标识号的TCI state中的RS;
所有TCI state或激活的TCI state中,最高标识号的TCI state中的RS。
其中,所述最低标识号的TCI state中的RS和所述最高标识号的TCI state中的RS在未配置CORESET时使用。
在一可选实施例中,终端所在的SSB包括以下至少一项:
接收当前广播信息的SSB;
标识号为0的CORESET对应的SSB。
在一可选实施例中,在以下任一种情况时,所述第一RS为当前发送可用波束的RS:
当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号;
当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号;
当前发送可用波束对应的RS数量小于等于K个;
当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个;
当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号,且当前发送可用波束对应的RS数量小于等于K个;
当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号,且当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个;
当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号,且当前发送可用波束对应的RS数量小于等于K个;
当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号,且当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个。
可选的,K的取值等于4,当然,K的取值并不局限于等于4,还可以根据需要设置为其他值。
进一步的,在上述将历史配置的下行RS中的第一RS确定为所述路损计算参考参考信号的方案中,PUCCH、PUSCH和SRS均未被配置所述路损计算参考参考信号
进一步的,在未配置目标对象的功率控制参数中目标参数的情况下,按照历史配置和/或协议约定确定所述目标对象的目标参数包括:
在波束对应(beam correspondence)场景中,未配置目标对象的功率控制参数中目标参数的情况下,按照历史配置和/或协议约定确定所述目标参数。
在一可选实施例中,当目标对象选自PUCCH、PUSCH或SRS,上述目标参数包括目标接收功率、路损补偿因子和闭环功率控制其中至少之一时, 所述按照历史配置信息和/或协议约定确定所述目标参数包括:
所述PUCCH与目标时刻对应的PUCCH的所述目标参数相同;
或者,所述SRS与目标时刻对应的SRS的所述目标参数相同;
所述目标时刻位于初始接入之后,RRC配置之前。
应理解,在本实施例中,当上述目标对象为PUCCH时,可以基于目标时刻对应的PUCCH确定目标参数,换句话说,目标接收功率、路损补偿因子和闭环功率控制可以替换为目标时刻对应的PUCCH的对应功率控制参数;当目标对象为SRS时,可以基于目标时刻对应的SRS的配置确定目标参数,换句话说,目标接收功率、路损补偿因子和闭环功率控制可以替换为目标时刻对应的SRS的对应功率控制参数。
在一可选实施例中,在目标对象选自PUCCH、PUSCH或SRS时,可以直接根据协议约定的参数值确定目标参数。例如所述目标参数包括闭环功率控制时,所述闭环功率控制的取值为0;所述目标参数包括路损补偿因子时,所述路损补偿因子的取值为1。
在一可选实施例中,在目标对象选自PUCCH和SRS时,当目标参数包括目标接收功率P0时,P0可以基于如下方式进行计算:
P O=P O_PREPREAMBLE_Msg3,其中参数preambleReceivedTargetPower(P O_PRE)和msg3-DeltaPreamble(Δ PREAMBLE_Msg3)可以由高层提供;如果高层没有为当前载波提供msg3-DeltaPreamble参数,则Δ PREAMBLE_Msg3=0。msg3-DeltaPreamble为高层配置的msg3与RACH序列传输的功率偏置。preambleReceivedTargetPower为高层配置的网络期望接收的RACH序列目标功率值。
在一可选实施例中,在目标对象选自PUCCH和SRS时,当目标参数包括路损补偿因子,则路损补偿因子可以基于如下方式进行计算:
如果高层信令配置了msg3-Alpha,则路损补偿因子为msg3-Alpha的值;否则路损补偿因子为1。
在一可选实施例中,在目标对象选自PUCCH和SRS时,当目标参数包括路闭环功率控制,则闭环功率控制可以基于如下方式进行计算:
f=ΔP rampup,b,f,cmsg2,b,f,c
δ msg2,b,f,c表示随机接入消息的随机响应grant中指示的一个传输功率控制(transmit power control,TPC)命令值,对应于上行当前激活BWP所在的服务小区c中载波f。
Figure PCTCN2020121442-appb-000001
其中,ΔP rampuprequested,b,f,c由高层提供,在当前激活BWP b所在的服务小区c中载波f从第一个随机接入preamble到最后一个随机接入preamble,通过更高层请求的总功率增量。
Figure PCTCN2020121442-appb-000002
为初始接入功率取值;
在上行当前激活BWP b所在的服务小区c的载波f中,
Figure PCTCN2020121442-appb-000003
是PUSCH资源分配的带宽,表示上行当前激活BWP b上的第一个PUSCH传输的资源块的数量;
Δ TF,b,f,c(0)表示上行当前激活BWP b上的第一个PUSCH传输的功率调整;
α b,f,c(0)为高层配置的用于msg3PUSCH的路损补偿因子值,如果高层没有配置,则为0;
P O_PUSCH,b,f,c(0)为目标接收功率;
PL c为路损计算的数值;
μ为子载波间隔参数;即子载波间隔为N*15KHz时,2^μ=N。
为了更好的理解本发明的实现,以下将以网络设备未配置路损计算参考参考信号为例进行详细说明。
具体的,在网络设备未给出PUCCH或SRS配置功率控制参数中的路损计算参考参考信号时,则终端可以基于如下RS之一进行计算路损:
方式1,采用CORESET的QCL信息中的RS,具体的,可以按照如下方式选取下行RS:
情况1,当前载波(PUCCH或SRS所在的第一载波)上配置了CORESET 的情况下,包括方式1.1至方式1.3。
方式1.1,使用最近时刻的CORESET的QCL信息中的RS;进一步的,可以为最高CORESET ID或者最低CORESET ID。
方式1.2,使用CORESET#0的QCL信息中的RS;1.进一步的,可以为最近时刻的CORESET#0。
方式1.3,从当前载波激活的BWP中所有CORESET关联的下行RS中进行选择。
针对方式1.3,在一实施例中,可以为RS ID最小或最大的RS。进一步的,若SSB和CSI-RS都存在,则优先SSB中选择,或优先CSI-RS中选择,或终端自己选择优先SSB还是CSI-RS;在另一实施例中,可以为终端任意选择的一个RS;在另一实施例中,还可以为最近时刻的RS。
情况2,当前载波上没有配置任何CORESET,包括方式1.4和方式1.5。
方式1.4,使用当前载波的激活BWP上用于PDSCH的激活状态的TCI(即activated TCI state);可选的,可以采用激活状态中TCI中标识号最大或标识号最小的TCI(即activated TCI state with lowest/highest ID);还可以采用激活状态中TCI中最近时刻的TCI。
方式1.5,当前载波的激活BWP上没有activated TCI state,或不管当前载波的激活BWP上有没有activated TCI state,则使用特定载波的特定BWP的特定RS;
可选的,特定载波可以包括:主小区的载波或lowest ID载波或highest ID载波;
可选的,特定BWP包括激活BWP、初始BWP、标识号最低的BWP(lowest ID BWP)和标识号最高的BWP(highest ID BWP)中的至少一项,也可以包括全部的BWP,即对BWP没有任何限制。
可选的,特定RS可以包括以下任一项:
CORESET#0的QCL信息中的RS;
标识号最大或标识号最小的CORESET的QCL信息中的RS;
第一BWP配置的所有CORESET关联的下行RS之一,例如,可以为RS ID最大或者RS ID最小的RS,也可以为终端自选的RS;应理解,在选 择最大RS ID或者最小RS ID时,可以按照SSB和CSI-RS的优先级进行选择,例如当SSB的优先级大于CSI-RS的优先级时,可以选择SSB ID最大或最小的SSB作为所述特定RS;当CSI-RS的优先级大于SSB的优先级时,可以选择CSI-RS ID最大或最小的CSI-RS作为所述特定RS。
用于PDSCH的所有TCI中标识号最大或者标识号最小的TCI中的RS;
用于PDSCH的激活状态TCI中标识号最大或者标识号最小的TCI中的RS;
最近使用的用于PDSCH的激活状态TCI中的RS。
可选的,特定RS应满足最近时刻的RS,换句话说,特定RS为第一BWP最近配置的所有CORESET关联的下行RS之一;或者,特定RS为第一BWP最近配置的用于PDSCH的所有TCI中,标识号最大或者标识号最小的TCI中的RS;或者,特定RS第一BWP最近配置的用于PDSCH的激活状态TCI中,标识号最大或者标识号最小的TCI中的RS。
方式2,PUCCH或SRS的空间相关信息关联的若干RS中的一个;
在一实施例中,可以为对应RS中RSID最大或者最小RSID的一个,若RS为同步信号块SSB,则RS标识号为SSB-Index;若RS为信道状态信息参考信号CSI-RS,则RS标识号为CSI-RS-Index。
在另一实施例中,也可以为用于确定空间相关信息的CORESET中,对应的CORESET ID最小或CORESET ID最大的CORESET的QCL信息中配置的RS,进一步的,可以最近时刻配置的CORESET中CORESET ID最小或CORESET ID最大的CORESET的QCL信息中配置的RS。
在又一实施例中,还可以为对应的用于PDSCH的TCI中TCI state ID最小或TCI state ID最大的RS。可选的,用于PDSCH的TCI选择范围为所有TCI state或激活的TCI state;进一步的,该RS在所述第一载波未配置用于确定所述空间相关信息的CORESET时使用。
方式3,调度PUCCH或SRS的PDCCH的QCL信息中的下行RS;
方式4,最近一次物理随机接入信道PRACH关联的下行RS;
方式5,如果PUCCH或SRS是被RAR上行授权调度的,则路损计算基于相应PRACH关联的(associated)下行RS;
方式6,终端所在的SSB,指接收当前广播信息的SSB,或CORSET#0对应的SSB;
方式7,当前发送所用波束的RS;
可选的,仅当该RS属于被RRC配置、或被RRC配置且被MAC CE激活和/或更新的PL RS;可选的,仅当当前发送可用波束对应的RS数量小于等于K个,或RS数量加RRC配置的PL RS数量小于等于K个,其中,在计算PL RS数量的时候,需要去掉重复的RS。可选的,K=4。
请参见图3,图3是本发明实施例提供的一种终端的结构图,如图3所示,终端300包括:
确定模块301,用于在未配置目标对象的功率控制参数中目标参数的情况下,按照以下任一种方式确定所述目标对象的目标参数:
根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,所述其他对象不同于所述目标对象;
按照历史配置确定所述目标对象的目标参数;
按照协议约定确定所述目标对象的目标参数;
其中,所述目标对象和所述其他对象选自物理上行控制信道PUCCH、物理上行共享信道PUSCH和探测参考信号SRS;所述目标参数包括路损计算参考参考信号、目标接收功率、路损补偿因子和闭环功率控制其中至少一项。
可选的,所述目标参数包括所述路损计算参考参考信号时,所述按照除目标对象之外其他对象的目标参数确定所述目标对象的目标参数包括:
将其他对象的第一路损计算参考参考信号确定为所述目标对象的路损计算参考参考信号。
可选的,所述第一路损计算参考参考信号为以下任一种:
其他对象的路损计算参考参考信号中,最低标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,最高标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,最近时刻被使用的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,被媒体介入控制单元MAC CE激活或更新的最低标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,被MAC CE激活或更新的最高标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号。
可选的,若其他对象的路损计算参考参考信号的数目小于等于预设阈值,所述第一路损计算参考参考信号为以下任一种:
其他对象的路损计算参考参考信号中,所述最低标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,所述最高标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,所述最近时刻被使用的路损计算参考参考信号。
可选的,若其他对象的路损计算参考参考信号的数目大于预设阈值,所述第一路损计算参考参考信号为以下任一种:
其他对象的路损计算参考参考信号中,所述被MAC CE激活或更新的最低标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,所述被MAC CE激活或更新的最高标识号的路损计算参考参考信号;
其他对象的路损计算参考参考信号中,所述被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号。
可选的,若被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号的数目大于1,所述第一路损计算参考参考信号为以下任一种:
被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号中,最低标识号的路损计算参考参考信号;
被MAC CE激活或更新的最近时刻被使用的路损计算参考参考信号中,最高标识号的路损计算参考参考信号。
可选的,若所述其他对象的数目大于1,按照预设的第一优先级信息选 择其中一个或两个对象的路损计算参考参考信号作为所述目标对象的路损计算参考参考信号,所述第一优先级信息为通过以下任一项方式获取:
协议约定;
网络设备配置;
终端配置。
可选的,所述路损计算参考参考信号与同步信号块和信道状态信息参考信号关联,按照预设的第二优先级信息确定所述目标对象的路损计算参考参考信号,所述目标对象的路损计算参考参考信号选自所述同步信号块和信道状态信息参考信号,所述第二优先级信息为通过以下任一项方式获取:
协议约定;
网络设备配置;
终端配置。
可选的,所述路损计算参考参考信号的标识为以下任一种情况:
采用同步信号块SSB的标识SSB-Index;
采用信道状态信息参考信号CSI-RS的标识CSI-RS-Index;
若所述路损计算参考参考信号为PUSCH的路损计算参考参考信号,采用PUSCH路损计算参考参考信号标识PUSCH-PathlossReferenceRS-Id;
若所述路损计算参考参考信号为PUCCH的路损计算参考参考信号,采用PUCCH路损计算参考参考信号的标识PUCCH-PathlossReferenceRS-Id;
若所述路损计算参考参考信号为SRS的路损计算参考参考信号,采用SRS资源标识SRS-ResourceId;
若所述路损计算参考参考信号为SRS的路损计算参考参考信号,采用SRS资源集标识SRS-ResourceSetId。
可选的,所述目标参数包括所述路损计算参考参考信号时,按照历史配置和/或协议约定确定所述目标对象的目标参数包括:
将历史配置的下行参考信号RS中的第一RS确定为所述路损计算参考参考信号。
可选的,所述第一RS为以下任一种:
所述目标对象关联的准共址QCL信息中的下行RS;
用于确定当前资源对应的发射波束的多个RS中的第五RS;
终端所在的SSB;
当前发送所用波束的RS;
目标物理下行控制信道PDCCH的QCL信息中的下行RS,所述目标PDCCH为调度所述目标对象的PDCCH;
最近一次物理随机接入信道PRACH关联的下行RS;
随机接入响应RAR对应的PRACH关联的下行RS,所述随机接入响应RAR用于调度所述目标对象。
可选的,所述目标对象位于第一载波,所述目标对象关联的准共址QCL信息中的下行RS包括以下任一种:
所述第一载波配置控制资源集CORESET的情况下,第一CORESET的QCL信息中的下行RS,所述第一CORESET为所述第一载波配置的CORESET其中之一;
在所述第一载波未配置CORESET,且所述第一载波的激活带宽部分BWP配置了用于PDSCH的M个传输配置指示TCI的情况下,第一TCI中的下行RS,所述第一TCI为所述M个TCI其中之一,所述M个TCI处于激活状态,M为正整数;
在所述第一载波未配置CORESET,且第一载波的激活BWP没有配置处于激活状态的TCI的情况下,第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同;
在所述第一载波未配置CORESET的情况下,第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同。
可选的,所述第一CORESET包括以下任一种:
所述第一载波最近时刻配置的CORESET;
所述第一载波配置的CORESET中标识号为0的CORESET。
可选的,所述第一载波最近时刻配置的CORESET包括:
所述第一载波最近时刻配置的CORESET中最低标识号或者最高标识号的CORESET。
可选的,所述第一CORESET的QCL信息中的下行RS包括:
N1个下行RS中的第二RS,N1为正整数,所述N1个下行RS与所述第一载波激活的BWP配置的CORESET关联。
可选的,所述第二RS包括以下任一种:
最低标识号或者最高标识号的RS,若RS为同步信号块SSB,则RS标识号为SSB-Index;若RS为信道状态信息参考信号CSI-RS,则RS标识号为CSI-RS-Index;
当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的SSB,其中,SSB的优先级大于CSI-RS;
当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的CSI-RS,其中,SSB的优先级小于CSI-RS;
在所述N1个下行RS中任意选择的一个RS。
可选的,所述第一TCI为所述M个TCI中最低标识号或者最高标识号的TCI。
可选的,所述第二载波包括当前载波、主小区的载波、最低标识号的载波和最高标识号的载波中的至少一项。
可选的,所述第一BWP包括激活BWP、初始BWP、最低标识号的BWP和最高标识号的BWP中的至少一项。
可选的,所述第三RS包括以下任一项:
第三CORESET的QCL信息中的RS,所述第三CORESET包括标识号为0的CORESET、最低标识号的CORESET、最高标识号的CORESET和所述终端选择的CORESET中的至少一项;
N2个下行RS中的第四RS,N2为正整数,所述N2个下行RS与所述第一BWP配置的CORESET关联;
第四TCI中的下行RS,所述第四TCI为处于激活状态的L个TCI中最低标识号或最高标识号的TCI,或者所述L个TCI中最近使用的TCI,L为正整数。
可选的,所述L个TCI用于PDSCH。
可选的,所述第五RS包括以下至少一项:
最低标识号的RS,若RS为同步信号块SSB,则RS标识号为SSB-Index; 若RS为信道状态信息参考信号CSI-RS,则RS标识号为CSI-RS-Index;
最高标识号的RS,若RS为同步信号块SSB,则RS标识号为SSB-Index;若RS为信道状态信息参考信号CSI-RS,则RS标识号为CSI-RS-Index;
用于确定当前资源波束的CORESET中,最低标识号的CORESET的QCL信息中的RS;
用于确定当前资源波束的CORESET中,最高标识号的CORESET的QCL信息中的RS;
所有TCI state或激活的TCI state中,最低标识号的TCI state中的RS;
所有TCI state或激活的TCI state中,最高标识号的TCI state中的RS。
可选的,所述最低标识号的TCI state中的RS和所述最高标识号的TCI state中的RS在未配置CORESET时使用。
可选的,终端所在的SSB包括以下至少一项:
接收当前广播信息的SSB;
标识号为0的CORESET对应的SSB。
可选的,在以下任一种情况时,所述第一RS为当前发送可用波束的RS:
当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号;
当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号;
当前发送可用波束对应的RS数量小于等于K个;
当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个;
当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号,且当前发送可用波束对应的RS数量小于等于K个;
当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号,且当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个;
当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号,且当前发送可用波束对应的RS数量小于等 于K个;
当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号,且当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个。
可选的,K等于4。
可选的,PUCCH、PUSCH和SRS均未被配置所述路损计算参考参考信号
可选的,在未配置目标对象的功率控制参数中目标参数的情况下,按照历史配置和/或协议约定确定所述目标对象的目标参数包括:
在波束对应beam correspondence场景中,未配置目标对象的功率控制参数中目标参数的情况下,按照历史配置和/或协议约定确定所述目标参数。
可选的,所述目标参数包括目标接收功率、路损补偿因子和闭环功率控制其中至少之一时,所述按照历史配置信息和/或协议约定确定所述目标参数包括:
目标PUCCH的目标参数与目标时刻对应的PUCCH的所述目标参数相同;
目标PUSCH的目标参数与目标时刻对应的PUSCH的所述目标参数相同;
或者,目标SRS与目标时刻对应的SRS的所述目标参数相同;
其中,所述目标时刻位于初始接入之后,RRC配置之前。
可选的,所述目标参数包括闭环功率控制时,所述闭环功率控制的取值为0。
可选的,所述目标参数包括路损补偿因子时,所述路损补偿因子的取值为1。
可选的,所述PUCCH为专用PUCCH。
本发明实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
图4为实现本发明各个实施例的一种终端的硬件结构示意图。
该终端400包括但不限于:射频单元401、网络模块402、音频输出单元403、输入单元404、传感器405、显示单元406、用户输入单元407、接口单元408、存储器409、处理器410、以及电源411等部件。本领域技术人员可 以理解,图4中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
处理器410,用于在未配置目标对象的功率控制参数中目标参数的情况下,按照以下任一种方式确定所述目标对象的目标参数:
根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,所述其他对象不同于所述目标对象;
按照历史配置确定所述目标对象的目标参数;
按照协议约定确定所述目标对象的目标参数;
其中,所述目标对象和所述其他对象选自物理上行控制信道PUCCH、物理上行共享信道PUSCH和探测参考信号SRS;所述目标参数包括路损计算参考参考信号、目标接收功率、路损补偿因子和闭环功率控制其中至少一项。
应理解,本实施例中,上述处理器410和射频单元401能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
应理解的是,本发明实施例中,射频单元401可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器410处理;另外,将上行的数据发送给基站。通常,射频单元401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元401还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块402为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元403可以将射频单元401或网络模块402接收的或者在存储器409中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元403还可以提供与终端400执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元403包括扬声器、蜂鸣器以及受话器等。
输入单元404用于接收音频或视频信号。输入单元404可以包括图形处理器(Graphics Processing Unit,GPU)4041和麦克风4042,图形处理器4041 对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元406上。经图形处理器4041处理后的图像帧可以存储在存储器409(或其它存储介质)中或者经由射频单元401或网络模块402进行发送。麦克风4042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元401发送到移动通信基站的格式输出。
终端400还包括至少一种传感器405,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板4041的亮度,接近传感器可在终端400移动到耳边时,关闭显示面板4041和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器405还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元406用于显示由用户输入的信息或提供给用户的信息。显示单元406可包括显示面板4061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板4061。
用户输入单元407可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元407包括触控面板4071以及其他输入设备4072。触控面板4071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板4071上或在触控面板4071附近的操作)。触控面板4071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器410,接收处理器410发来的命令并加以执行。此外,可以采用电 阻式、电容式、红外线以及表面声波等多种类型实现触控面板4071。除了触控面板4071,用户输入单元407还可以包括其他输入设备4072。具体地,其他输入设备4072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板4071可覆盖在显示面板4041上,当触控面板4071检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件的类型,随后处理器410根据触摸事件的类型在显示面板4041上提供相应的视觉输出。虽然在图4中,触控面板4071与显示面板4041是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板4071与显示面板4041集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元408为外部装置与终端400连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元408可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端400内的一个或多个元件或者可以用于在终端400和外部装置之间传输数据。
存储器409可用于存储软件程序以及各种数据。存储器409可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器409可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器410是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器409内的软件程序和/或模块,以及调用存储在存储器409内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器410可包括一个或多个处理单元;优选的,处理器410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理 解的是,上述调制解调处理器也可以不集成到处理器410中。
终端400还可以包括给各个部件供电的电源411(比如电池),优选的,电源411可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端400包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器410,存储器409,存储在存储器409上并可在所述处理器410上运行的计算机程序,该计算机程序被处理器410执行时实现上述功率控制参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本发明实施例提供的终端侧的功率控制参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本发明各个实施例所述的方法。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软 件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (34)

  1. 一种功率控制参数确定方法,应用于终端,其特征在于,包括:
    在未配置目标对象的功率控制参数中目标参数的情况下,按照以下任一种方式确定所述目标对象的目标参数:
    根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,所述其他对象不同于所述目标对象;
    按照历史配置确定所述目标对象的目标参数;
    按照协议约定确定所述目标对象的目标参数;
    其中,所述目标对象和所述其他对象选自物理上行控制信道PUCCH、物理上行共享信道PUSCH和探测参考信号SRS;所述目标参数包括路损计算参考参考信号、目标接收功率、路损补偿因子和闭环功率控制其中至少一项。
  2. 根据权利要求1所述的方法,其特征在于,所述目标参数包括所述路损计算参考参考信号时,按照历史配置和/或协议约定确定所述目标对象的目标参数包括:
    将历史配置的下行参考信号RS中的第一RS确定为所述路损计算参考参考信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一RS为以下任一种:
    所述目标对象关联的准共址QCL信息中的下行RS;
    用于确定当前资源对应的发射波束的多个RS中的第五RS;
    终端所在的SSB;
    当前发送所用波束的RS;
    目标物理下行控制信道PDCCH的QCL信息中的下行RS,所述目标PDCCH为调度所述目标对象的PDCCH;
    最近一次物理随机接入信道PRACH关联的下行RS;
    随机接入响应RAR对应的PRACH关联的下行RS,所述随机接入响应RAR用于调度所述目标对象。
  4. 根据权利要求3所述的方法,其特征在于,所述目标对象位于第一载 波,所述目标对象关联的准共址QCL信息中的下行RS包括以下任一种:
    所述第一载波配置控制资源集CORESET的情况下,第一CORESET的QCL信息中的下行RS,所述第一CORESET为所述第一载波配置的CORESET其中之一;
    在所述第一载波未配置CORESET,且所述第一载波的激活带宽部分BWP配置了用于PDSCH的M个传输配置指示TCI的情况下,第一TCI中的下行RS,所述第一TCI为所述M个TCI其中之一,所述M个TCI处于激活状态,M为正整数;
    在所述第一载波未配置CORESET,且第一载波的激活BWP没有配置处于激活状态的TCI的情况下,第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同;
    在所述第一载波未配置CORESET的情况下,第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同。
  5. 根据权利要求4所述的方法,其特征在于,所述第一CORESET包括以下任一种:
    所述第一载波最近时刻配置的CORESET;
    所述第一载波配置的CORESET中标识号为0的CORESET。
  6. 根据权利要求5所述的方法,其特征在于,所述第一载波最近时刻配置的CORESET包括:
    所述第一载波最近时刻配置的CORESET中最低标识号或者最高标识号的CORESET。
  7. 根据权利要求4所述的方法,其特征在于,所述第一CORESET的QCL信息中的下行RS包括:
    N1个下行RS中的第二RS,N1为正整数,所述N1个下行RS与所述第一载波激活的BWP配置的CORESET关联。
  8. 根据权利要求7所述的方法,其特征在于,所述第二RS包括以下任一种:
    最低标识号或者最高标识号的RS;
    当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标 识号的SSB,其中,SSB的优先级大于CSI-RS;
    当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的CSI-RS,其中,SSB的优先级小于CSI-RS;
    在所述N1个下行RS中任意选择的一个RS。
  9. 根据权利要求4所述的方法,其特征在于,所述第一TCI为所述M个TCI中最低标识号或者最高标识号的TCI。
  10. 根据权利要求4所述的方法,其特征在于,所述第二载波包括当前载波、主小区的载波、最低标识号的载波和最高标识号的载波中的至少一项。
  11. 根据权利要求4所述的方法,其特征在于,所述第一BWP包括激活BWP、初始BWP、最低标识号的BWP和最高标识号的BWP中的至少一项。
  12. 根据权利要求4所述的方法,其特征在于,所述第三RS包括以下任一项:
    第三CORESET的QCL信息中的RS,所述第三CORESET包括标识号为0的CORESET、最低标识号的CORESET、最高标识号的CORESET和所述终端选择的CORESET中的至少一项;
    N2个下行RS中的第四RS,N2为正整数,所述N2个下行RS与所述第一BWP配置的CORESET关联;
    第四TCI中的下行RS,所述第四TCI为处于激活状态的L个TCI中最低标识号或最高标识号的TCI,或者所述L个TCI中最近使用的TCI,L为正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述L个TCI用于PDSCH。
  14. 根据权利要求3所述的方法,其特征在于,所述第五RS包括以下至少一项:
    最低标识号的RS;
    最高标识号的RS;
    用于确定当前资源波束的CORESET中,最低标识号的CORESET的QCL信息中的RS;
    用于确定当前资源波束的CORESET中,最高标识号的CORESET的QCL信息中的RS;
    所有TCI state或激活的TCI state中,最低标识号的TCI state中的RS;
    所有TCI state或激活的TCI state中,最高标识号的TCI state中的RS。
  15. 根据权利要求14所述的方法,其特征在于,所述最低标识号的TCI state中的RS和所述最高标识号的TCI state中的RS在未配置CORESET时使用。
  16. 根据权利要求3所述的方法,其特征在于,终端所在的SSB包括以下至少一项:
    接收当前广播信息的SSB;
    标识号为0的CORESET对应的SSB。
  17. 根据权利要求3所述的方法,其特征在于,在以下任一种情况时,所述第一RS为当前发送可用波束的RS:
    当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号;
    当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号;
    当前发送可用波束对应的RS数量小于等于K个;
    当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个;
    当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号,且当前发送可用波束对应的RS数量小于等于K个;
    当前发送所用波束的RS属于被无线资源控制RRC信令配置的路损计算参考参考信号,且当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个;
    当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号,且当前发送可用波束对应的RS数量小于等于K个;
    当前发送所用波束的RS属于被RRC信令配置、且被MAC CE激活或更新的路损计算参考参考信号,且当前发送可用波束对应的RS数量与RRC信令配置的路损计算参考参考信号的数量之和小于等于K个。
  18. 根据权利要求17所述的方法,其特征在于,K等于4。
  19. 根据权利要求2-18中任一项所述的方法,其特征在于,PUCCH、PUSCH和SRS均未被配置所述路损计算参考参考信号。
  20. 根据权利要求2-18中任一项所述的方法,其特征在于,在未配置目标对象的功率控制参数中目标参数的情况下,按照历史配置和/或协议约定确定所述目标对象的目标参数包括:
    在波束对应beam correspondence场景中,未配置目标对象的功率控制参数中目标参数的情况下,按照历史配置和/或协议约定确定所述目标参数。
  21. 根据权利要求1所述的方法,其特征在于,所述目标参数包括目标接收功率、路损补偿因子和闭环功率控制其中至少之一时,所述按照历史配置信息和/或协议约定确定所述目标参数包括:
    目标PUCCH的目标参数与目标时刻对应的PUCCH的所述目标参数相同;
    目标PUSCH的目标参数与目标时刻对应的PUSCH的所述目标参数相同;
    或者,目标SRS与目标时刻对应的SRS的所述目标参数相同;
    其中,所述目标时刻位于初始接入之后,RRC配置之前。
  22. 根据权利要求1所述的方法,其特征在于,所述目标参数包括闭环功率控制时,所述闭环功率控制的取值为0。
  23. 根据权利要求1所述的方法,其特征在于,所述目标参数包括路损补偿因子时,所述路损补偿因子的取值为1。
  24. 一种终端,其特征在于,包括:
    确定模块,用于在未配置目标对象的功率控制参数中目标参数的情况下,按照以下任一种方式确定所述目标对象的目标参数:
    根据网络设备配置的其他对象的目标参数确定所述目标对象的目标参数,所述其他对象不同于所述目标对象;
    按照历史配置确定所述目标对象的目标参数;
    按照协议约定确定所述目标对象的目标参数;
    其中,所述目标对象和所述其他对象选自物理上行控制信道PUCCH、物理上行共享信道PUSCH和探测参考信号SRS;所述目标参数包括路损计算参考参考信号、目标接收功率、路损补偿因子和闭环功率控制其中至少一项。
  25. 根据权利要求24所述的终端,其特征在于,所述目标参数包括所述路损计算参考参考信号时,按照历史配置和/或协议约定确定所述目标对象的目标参数包括:
    将历史配置的下行参考信号RS中的第一RS确定为所述路损计算参考参考信号。
  26. 根据权利要求25所述的终端,其特征在于,所述第一RS为以下任一种:
    所述目标对象关联的准共址QCL信息中的下行RS;
    用于确定当前资源对应的发射波束的多个RS中的第五RS;
    终端所在的SSB;
    当前发送所用波束的RS;
    目标物理下行控制信道PDCCH的QCL信息中的下行RS,所述目标PDCCH为调度所述目标对象的PDCCH;
    最近一次物理随机接入信道PRACH关联的下行RS;
    随机接入响应RAR对应的PRACH关联的下行RS,所述随机接入响应RAR用于调度所述目标对象。
  27. 根据权利要求26所述的终端,其特征在于,所述目标对象位于第一载波,所述目标对象关联的准共址QCL信息中的下行RS包括以下任一种:
    所述第一载波配置控制资源集CORESET的情况下,第一CORESET的QCL信息中的下行RS,所述第一CORESET为所述第一载波配置的CORESET其中之一;
    在所述第一载波未配置CORESET,且所述第一载波的激活带宽部分BWP配置了用于PDSCH的M个传输配置指示TCI的情况下,第一TCI中的下行RS,所述第一TCI为所述M个TCI其中之一,所述M个TCI处于激活状态,M为正整数;
    在所述第一载波未配置CORESET,且第一载波的激活BWP没有配置处于激活状态的TCI的情况下,第二载波的第一BWP的第三RS,所述第二载波与所述第一载波不同;
    在所述第一载波未配置CORESET的情况下,第二载波的第一BWP的第 三RS,所述第二载波与所述第一载波不同。
  28. 根据权利要求27所述的终端,其特征在于,所述第一CORESET包括以下任一种:
    所述第一载波最近时刻配置的CORESET;
    所述第一载波配置的CORESET中标识号为0的CORESET。
  29. 根据权利要求28所述的终端,其特征在于,所述第一载波最近时刻配置的CORESET包括:
    所述第一载波最近时刻配置的CORESET中最低标识号或者最高标识号的CORESET。
  30. 根据权利要求27所述的终端,其特征在于,所述第一CORESET的QCL信息中的下行RS包括:
    N1个下行RS中的第二RS,N1为正整数,所述N1个下行RS与所述第一载波激活的BWP配置的CORESET关联。
  31. 根据权利要求30所述的终端,其特征在于,所述第二RS包括以下任一种:
    最低标识号或者最高标识号的RS;
    当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的SSB,其中,SSB的优先级大于CSI-RS;
    当所述下行RS包括SSB和CSI-RS的情况下,最低标识号或者最高标识号的CSI-RS,其中,SSB的优先级小于CSI-RS;
    在所述N1个下行RS中任意选择的一个RS。
  32. 根据权利要求27所述的终端,其特征在于,所述第一TCI为所述M个TCI中最低标识号或者最高标识号的TCI。
  33. 一种终端,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至23中任一项所述的功率控制参数确定方法中的步骤。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至23中任一项所述的功率控制参数确定方法的步骤。
PCT/CN2020/121442 2019-10-18 2020-10-16 一种功率控制参数确定方法及终端 WO2021073605A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022523258A JP7330378B2 (ja) 2019-10-18 2020-10-16 パワー制御パラメータ決定方法及び端末
EP20877151.9A EP4047994A4 (en) 2019-10-18 2020-10-16 METHOD OF DETERMINING A PERFORMANCE CONTROL PARAMETER AND TERMINAL
BR112022007222A BR112022007222A2 (pt) 2019-10-18 2020-10-16 Método para determinar parâmetro de controle de potência e terminal.
KR1020227016250A KR20220084117A (ko) 2019-10-18 2020-10-16 파워 컨트롤 파라미터 결정 방법 및 단말기
US17/722,829 US20220240178A1 (en) 2019-10-18 2022-04-18 Method for determining power control parameter and terminal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910995833.9 2019-10-18
CN201910995833 2019-10-18
CN201911129702.9 2019-11-18
CN201911129702.9A CN112689321B (zh) 2019-10-18 2019-11-18 一种功率控制参数确定方法及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/722,829 Continuation US20220240178A1 (en) 2019-10-18 2022-04-18 Method for determining power control parameter and terminal

Publications (1)

Publication Number Publication Date
WO2021073605A1 true WO2021073605A1 (zh) 2021-04-22

Family

ID=75445192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121442 WO2021073605A1 (zh) 2019-10-18 2020-10-16 一种功率控制参数确定方法及终端

Country Status (7)

Country Link
US (1) US20220240178A1 (zh)
EP (1) EP4047994A4 (zh)
JP (1) JP7330378B2 (zh)
KR (1) KR20220084117A (zh)
CN (1) CN112689321B (zh)
BR (1) BR112022007222A2 (zh)
WO (1) WO2021073605A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115701187A (zh) * 2021-07-30 2023-02-07 维沃移动通信有限公司 功控参数的确定方法、装置及通信设备
KR102625064B1 (ko) * 2022-06-22 2024-01-15 주식회사 이노와이어리스 기지국 빔포밍 시험 장비의 어레이 경로 캘리브레이션 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067496A1 (en) * 2008-09-15 2010-03-18 Infineon Technologies Ag Methods for controlling an uplink signal transmission power and communication devices
CN109495959A (zh) * 2017-09-11 2019-03-19 维沃移动通信有限公司 功率控制方法、网络设备及终端
CN110167122A (zh) * 2018-02-13 2019-08-23 电信科学技术研究院有限公司 一种上行物理共享信道功率控制方法和终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499391C (zh) * 2006-02-28 2009-06-10 中兴通讯股份有限公司 一种更新高速共享信息信道的功率控制参数的方法
US8995405B2 (en) * 2012-01-25 2015-03-31 Ofinno Technologies, Llc Pathloss reference configuration in a wireless device and base station
US9591583B2 (en) * 2012-03-17 2017-03-07 Lg Electronics Inc. Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
CN103369654A (zh) * 2012-04-09 2013-10-23 电信科学技术研究院 功控参数的指示及功控方法和设备
EP3534652B1 (en) * 2016-11-14 2022-05-18 Huawei Technologies Co., Ltd. Power control method and terminal
WO2018202014A1 (en) * 2017-05-05 2018-11-08 Huawei Technologies Co., Ltd. Method of power control for uplink transmission
CN108112065B (zh) * 2017-05-05 2023-09-26 中兴通讯股份有限公司 发送功率的确定、信令配置方法及装置、终端、基站
US10560901B2 (en) * 2018-02-16 2020-02-11 Lenovo (Singapore) Pte. Ltd. Method and apparatus having power control for grant-free uplink transmission
CN109302273B (zh) * 2018-04-04 2021-08-27 华为技术有限公司 Srs传输方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067496A1 (en) * 2008-09-15 2010-03-18 Infineon Technologies Ag Methods for controlling an uplink signal transmission power and communication devices
CN109495959A (zh) * 2017-09-11 2019-03-19 维沃移动通信有限公司 功率控制方法、网络设备及终端
CN110167122A (zh) * 2018-02-13 2019-08-23 电信科学技术研究院有限公司 一种上行物理共享信道功率控制方法和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOROLA MOBILITY, LENOVO: "Remaining Details on non-CA NR UL power control", 3GPP DRAFT; R1-1807278_POWER-CONTROL-NON-CA-FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051442474 *

Also Published As

Publication number Publication date
US20220240178A1 (en) 2022-07-28
CN112689321B (zh) 2022-08-05
BR112022007222A2 (pt) 2022-07-05
JP2022552865A (ja) 2022-12-20
EP4047994A4 (en) 2022-12-14
JP7330378B2 (ja) 2023-08-21
CN112689321A (zh) 2021-04-20
KR20220084117A (ko) 2022-06-21
EP4047994A1 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
US11855734B2 (en) Beam failure processing method and related device
WO2021109955A1 (zh) 邻小区csi报告发送方法、接收方法及相关设备
US11800400B2 (en) Transmission collision processing method, terminal, and control node
US20230247468A1 (en) Measurement control method, terminal, and network-side device
WO2020253587A1 (zh) Srs功率控制方法、srs功率控制的配置方法及相关设备
US20220240178A1 (en) Method for determining power control parameter and terminal
WO2020057335A1 (zh) 传输方法及相关设备
US20220394631A1 (en) Method for reporting power headroom report and terminal
US20220417870A1 (en) Phr reporting method, phr receiving method, terminal, and network device
CN110972246A (zh) 功率控制方法、传输功率控制参数确定方法及相关设备
JP2022554221A (ja) 情報伝送方法及び機器
US20210219247A1 (en) Power headroom reporting method and terminal device
US20200359332A1 (en) Power control method, related apparatus, and product
US11418996B2 (en) Operation control method, mobile communications terminal, and network-side device
CN113259073B (zh) Pusch传输方法、pusch传输控制方法及相关设备
CN110475328B (zh) 控制方法、终端设备及网络设备
CN111278114B (zh) 功率控制方法、终端设备及网络侧设备
WO2021197191A1 (zh) 冲突资源确定方法和终端
US11570724B2 (en) Method for PH calculation and terminal
US20230009965A1 (en) Random access method, random access processing method, terminal, and network device
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
CN110012531B (zh) 一种phr的触发方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523258

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007222

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227016250

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020877151

Country of ref document: EP

Effective date: 20220518

ENP Entry into the national phase

Ref document number: 112022007222

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220414