WO2022152130A1 - 电机轴、电机及电动车 - Google Patents

电机轴、电机及电动车 Download PDF

Info

Publication number
WO2022152130A1
WO2022152130A1 PCT/CN2022/071399 CN2022071399W WO2022152130A1 WO 2022152130 A1 WO2022152130 A1 WO 2022152130A1 CN 2022071399 W CN2022071399 W CN 2022071399W WO 2022152130 A1 WO2022152130 A1 WO 2022152130A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting portion
insulating coating
motor shaft
motor
bearing
Prior art date
Application number
PCT/CN2022/071399
Other languages
English (en)
French (fr)
Inventor
胡雄
梅雪钰
唐正义
马森林
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP22739009.3A priority Critical patent/EP4262063A4/en
Publication of WO2022152130A1 publication Critical patent/WO2022152130A1/zh
Priority to US18/348,658 priority patent/US20230353006A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/073Fixing them on the shaft or housing with interposition of an element between shaft and inner race ring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/30Electric properties; Magnetic properties
    • F16C2202/32Conductivity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to the technical field of motors, and in particular, to a motor shaft, a motor and an electric vehicle.
  • the motor is mainly composed of a stator, a rotor, a motor casing, a motor shaft, a bearing, etc.
  • the rotor is installed on the motor shaft, and the motor shaft is connected to the motor casing through the bearing.
  • the motor shaft and the rotor form a rotor part that can rotate around the central axis of the motor shaft, and the stator and the motor casing form a stator part.
  • the motor When the motor is running, the magnetic circuit or phase current between the stator part and the rotor part will produce the magnetic flux linkage of the rotating system due to the existence of unbalance.
  • these flux linkages create a potential difference between the rotor part and the stator part, resulting in a shaft voltage.
  • shaft current is generated. If the shaft voltage is high, or the lubricating oil film in the bearing is not stable at the moment of starting the motor, the shaft voltage will discharge and break down the lubricating oil film in the bearing to form a path, thereby generating shaft current.
  • the high temperature generated by the partial discharge of the shaft current can melt the bearing, that is, electro-corrosion.
  • the electrical corrosion of the bearing will increase the noise and vibration during the operation of the motor, and easily lead to the damage of the bearing and the aging of the lubricant, resulting in the premature failure of the motor.
  • the embodiments of the present application provide a motor shaft, a motor and an electric vehicle capable of reducing the possibility of electrical corrosion of bearings.
  • the present application provides a motor shaft, comprising a shaft body and an insulating coating, the shaft body comprising a fixedly connected first mounting portion and a second mounting portion, the first mounting portion being close to the second mounting portion
  • One end of the mounting portion is provided with a positioning step surface, the first mounting portion is used for mounting the rotor, the second mounting portion is covered with the insulating coating, the second mounting portion is used for mounting the bearing, and the insulating coating
  • the resistivity is not less than 10 7 ⁇ m.
  • the shaft voltage discharge can effectively reduce the breakdown of the lubricating oil film in the bearing.
  • the possibility of forming a channel to generate shaft current, that is, the insulating coating can effectively block the flow of shaft current between the motor shaft and the bearing, thereby reducing the possibility of electrical corrosion of the bearing, and reducing the abnormal operation of the motor caused by the electrical corrosion of the bearing.
  • the possibility of noise can effectively improve the life of the motor.
  • the insulating coating has good insulating properties, simple structure, easy processing and low cost.
  • the positioning step surface is used for positioning the bearing when the bearing is sleeved on the second mounting portion, which improves the convenience of assembling the bearing on the motor shaft.
  • the positioning step surface is covered with the insulating coating.
  • the bearing When the bearing is sleeved on the second mounting part, it abuts on the positioning step surface, and the positioning step surface is covered with an insulating coating, so that the contact surface between the shaft body and the bearing is covered with insulating coating, which further reduces the electrical corrosion of the bearing. possibility.
  • the second mounting portion of the shaft body is further provided with a circumference along the circumference of the second mounting portion.
  • an annular groove extending in the direction, the groove is located at one end of the second mounting portion close to the positioning step surface.
  • the groove is used to improve the dimensional fit accuracy of the motor shaft and bearing.
  • the circumferential direction of the second mounting portion refers to the direction around the axis of the second mounting portion.
  • the groove in a third implementation manner of the first aspect of the present application, includes a first connection wall disposed opposite to a second connection the first connecting wall is arranged at one end of the groove close to the first mounting part, the insulating coating on the positioning step surface is flush with the first connecting wall, An end surface of the insulating coating on the second mounting portion close to one end of the first mounting portion is flush with the second connecting wall.
  • the inner wall of the groove is exposed outside the insulating coating.
  • the groove is a tool relief groove, which is convenient for tool machining to form the mounting surface (ie, the bearing mounting surface) of the bearing on the peripheral wall of the second mounting portion, and facilitates the machining of the motor shaft.
  • the inner wall of the groove is covered with the insulating coating. Due to the larger coverage of the insulating coating on the shaft body, the possibility of electrical corrosion of the bearing is further reduced.
  • the end face of the second mounting portion facing away from the first mounting portion is The insulating coating is at least partially covered, which further increases the coverage of the insulating coating on the shaft body.
  • the first mounting portion includes a fixedly connected mounting section and a shaft shoulder , the outer diameter of the installation section is larger than the outer diameter of the shaft shoulder, and the outer diameter of the shaft shoulder is larger than the outer diameter of the second installation portion to form the positioning step surface.
  • the first installation part includes an installation section and a shaft shoulder, and the shaft shoulder can strengthen the strength of the motor shaft and facilitate the installation of the bearing.
  • the installation section is provided with an axial direction along the installation section
  • the extended rotor installation slot is used for installing the rotor, so that the convenience of installing the rotor on the motor shaft is improved.
  • the thickness of the insulating coating ranges from 0.01 mm to 0.8 mm.
  • the minimum insulation resistance of the insulating coating under 1000V DC voltage is 50M ⁇ .
  • the present application provides a motor, including the motor shaft, rotor, stator, motor casing and bearing described in the first aspect or the first to sixth implementations of the first aspect, the rotor being fixed and sleeved.
  • the stator On the first mounting part of the motor shaft, the stator is sleeved on the rotor, the motor casing is fixedly sleeved outside the stator, and the bearing is sleeved on the second installation of the motor shaft and fixedly connected with the motor housing, the bearing abuts against the positioning step surface, and the motor shaft can rotate relative to the stator along with the rotor.
  • the present application provides an electric vehicle, including a power supply system and an electric drive assembly, wherein the power supply system is used to provide electrical energy to the electric drive assembly, and the electric drive assembly includes the electric drive assembly provided in the second aspect of the present application. of the motor.
  • FIG. 1 is a structural block diagram of an electric vehicle provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a motor of an electric vehicle provided by an embodiment of the present application.
  • Fig. 3 is a partial structural schematic diagram of the motor shaft of the motor shown in Fig. 2;
  • FIG. 4 is a schematic partial structure diagram of a motor shaft provided by another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a motor shaft provided by another embodiment of the present application.
  • FIG. 6 is an enlarged schematic view of the shaft body of the motor shaft shown in FIG. 5 and its region IV.
  • Electric vehicles include battery electric vehicles (BEV, Battery Electric Vehicle), hybrid electric vehicles (HEV, Hybrid Electric Vehicle) and plug-in hybrid electric vehicles (PHEV, Plug In Hybrid Electric Vehicle) and so on.
  • BEV Battery Electric Vehicle
  • HEV Hybrid Electric Vehicle
  • PHEV Plug In Hybrid Electric Vehicle
  • a battery electric vehicle includes an electric motor, wherein the energy source of the electric motor is a power battery.
  • the power battery of a battery electric vehicle can be recharged from an external grid.
  • the power battery of a battery electric vehicle is actually the only source of onboard energy for the vehicle's propulsion.
  • a hybrid electric vehicle includes an internal combustion engine and an electric motor, wherein the energy source of the engine is fuel, and the energy source of the electric motor is a power battery.
  • the engine is the main source of energy for vehicle propulsion
  • the power battery of a hybrid electric vehicle provides supplementary energy for vehicle propulsion (the power battery of a hybrid electric vehicle buffers fuel energy and restores kinetic energy in the form of electricity).
  • a plug-in hybrid electric vehicle differs from a hybrid electric vehicle in that the plug-in hybrid electric vehicle power battery has a larger capacity than the hybrid electric vehicle power battery, and the plug-in hybrid electric vehicle power battery can be regenerated from the grid. Charge.
  • the power battery of the plug-in hybrid electric vehicle is the main source of energy for vehicle propulsion, until the plug-in hybrid electric vehicle power battery is depleted to a low energy level, at which time the plug-in hybrid electric vehicle is used as a vehicle for propulsion. that operates like a hybrid electric vehicle.
  • a battery electric vehicle is taken as an example to describe the structure of the electric vehicle.
  • an electric vehicle 200 provided by an embodiment of the present application includes a power supply system 201 , an electric drive assembly 100 , a vehicle controller 203 , a motor controller 204 , driving wheels 205 and an auxiliary system 207 .
  • the power system 201 includes a power battery 2011 , a battery management system 2013 and a charger 2015 .
  • the electric drive assembly 100 includes a motor 20 and a reducer 10 mechanically connected to the motor 20 .
  • the speed reducer 10 is also mechanically connected with the driving wheels 205 for transmitting the power generated by the motor 20 to the driving wheels 205 to drive the electric vehicle 200 to travel.
  • Vehicle Control Unit (VCU, Vehicle Control Unit) 203 also called powertrain controller, is the core control component of the entire car, equivalent to the brain of the car. It collects accelerator pedal signals, brake pedal signals and other component signals, and after making corresponding judgments, controls the actions of the lower-level component controllers to drive the car to drive normally.
  • the main functions of the vehicle controller include: driving torque control, optimal control of braking energy, energy management of the vehicle, maintenance and management of CAN (Controller Area Network) network, fault diagnosis and control. processing, vehicle status monitoring, etc., it plays a role in controlling the operation of the vehicle. Therefore, the quality of the vehicle controller directly determines the stability and safety of the vehicle.
  • the motor controller 204 is an integrated circuit that controls the motor 20 in the electric drive assembly 100 to work according to the set direction, speed, angle, and response time through active operation, and is connected to the vehicle controller 203 in communication.
  • the function of the motor controller 204 is to convert the electrical energy stored in the power battery 2011 into electrical energy required by the motor according to the gear, accelerator, brake and other commands, so as to control the start-up operation, advance and retreat speed of the electric vehicle 200 . , climbing strength and other driving states, or will help the electric vehicle 200 to brake, and store part of the braking energy in the power battery 2011 .
  • the motor 20 refers to an electromagnetic device that realizes electric energy conversion or transmission according to the law of electromagnetic induction, and is electrically connected to the motor controller 204 and mechanically connected to the reducer 10 . Its main function is to generate driving torque as a power source for driving the wheels 205 .
  • the power battery 2011 is electrically connected to the motor controller 204 for storing and providing electrical energy.
  • the power battery 2011 includes, but is not limited to, lead-acid batteries, lithium iron phosphate batteries, nickel-metal hydride batteries, nickel-cadmium batteries, and the like.
  • the power battery 2011 may also include a supercapacitor.
  • the battery management system 2013 is electrically connected with the power battery 2011 and is connected in communication with the vehicle controller 203 .
  • the battery management system 2013 is used to monitor and estimate the state of the power battery 2011 under different working conditions, so as to improve the utilization rate of the power battery 2011, prevent overcharge and overdischarge of the power battery 2011, and prolong the service life of the power battery 2011 .
  • the main functions of the battery management system 2013 may include: real-time monitoring of battery physical parameters; battery state estimation; online diagnosis and early warning; charge, discharge and pre-charge control; balance management and thermal management.
  • the charger 2015 is electrically connected to the power battery 2011 for connecting with an external power source to charge the power battery 2011 .
  • an external power source eg, a charging pile
  • the charger 2015 converts the alternating current provided by the external power source into direct current to charge the power battery 2011 .
  • the battery management system 2013 is also connected with the charger 2015 to monitor the charging process of the power battery 2011 .
  • the auxiliary system 207 includes a DC/DC converter 310 , an auxiliary battery 320 , a low voltage load 330 and a high voltage load 340 .
  • One end of the DC/DC converter 310 is connected to the power battery 2011 , and the other end is connected to the auxiliary battery 320 and the low-voltage load 330 respectively.
  • the DC/DC converter 310 is used to convert the high voltage (eg, 380V) output from the power battery 2011 into a low voltage (eg, 12V) and then charge the auxiliary battery 320 and supply power to the low-voltage load 330 .
  • low pressure loads 330 include low pressure automotive accessories such as cooling pumps, fans, heaters, power steering, brakes, and the like.
  • the auxiliary battery 320 can also supply power to the low-voltage load 330 .
  • the power battery 2011 is also connected to the high-voltage load 340 to supply power to the high-voltage load 340 .
  • high voltage loads 340 include PTC heaters and air conditioning units, among others.
  • the vehicle network may include multiple channels for communication.
  • One channel of the vehicle network may be a serial bus such as a Controller Area Network (CAN).
  • One of the channels of the vehicle network may include Ethernet as defined by the Institute of Electrical and Electronics Engineers (IEEE) 802 family of standards.
  • Other channels of the vehicle network may include discrete connections between modules, and may include power signals from the auxiliary power battery 2011 .
  • Different signals can be transmitted over different channels of the vehicle network.
  • video signals may be transmitted over a high-speed channel (eg, Ethernet), while control signals may be transmitted over CAN or discrete signals.
  • the vehicle network may include any hardware and software components that assist in transferring signals and data between modules.
  • the vehicle network is not shown in FIG. 1 , but it may be implied that the vehicle network may be connected to any electronic module present in the electric vehicle 200 .
  • a vehicle controller 203 may be present to coordinate the operation of the various components.
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the electric vehicle 200 .
  • the electric vehicle 200 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the motor 20 includes a motor shaft 21 , a rotor 23 , a stator 25 , a motor housing 26 and a bearing 27 .
  • the rotor 23 is fixedly sleeved on the motor shaft 21
  • the stator 25 is sleeved on the rotor 23 .
  • the motor casing 26 is fixedly sleeved on the stator 25 for accommodating the motor shaft 21 , the rotor 23 and the stator 25 .
  • the motor shaft 21 can rotate relative to the stator 25 along with the rotor 23 .
  • the bearing 27 is sleeved on the end of the motor shaft 21 and fixed with the motor casing 26 for supporting the motor shaft 21 .
  • the bearing 27 includes a relatively rotatable inner ring 271 and an outer ring 273 .
  • the inner ring 271 is fixed on the motor shaft 21
  • the outer ring 273 is fixed on the motor housing 26 .
  • the motor shaft 21 includes a shaft body 211 and an insulating coating 213 .
  • the shaft body 211 includes a first mounting portion 2111 and a second mounting portion 2113 that are fixedly connected.
  • the second mounting portion 2113 is located at the end of the shaft body 211 .
  • One end of the first mounting portion 2111 close to the second mounting portion 2113 is provided with a positioning step surface 2115 .
  • the second mounting portion 2113 is covered with an insulating coating 213 .
  • the resistivity of the insulating coating 213 is not less than 10 7 ⁇ m.
  • the rotor 23 is fixedly sleeved on the first mounting portion 2111 .
  • the inner ring 271 of the bearing 27 is sleeved on the second mounting portion 2113 and is in contact with the positioning step surface 2115 .
  • the positioning step surface 2115 is used to contact the bearing 27 when the bearing 27 is assembled on the second mounting portion 2113 , so as to limit the inner ring 271 of the bearing 27 , thereby facilitating the assembly of the bearing 27 on the motor shaft 21 . It can be understood that the present application does not limit the position of the second installation portion 2113 on the shaft body 211 , for example, the second installation portion 2113 is located in the middle of the shaft body 211 .
  • the motor shaft 21 and the rotor 23 constitute a rotor part that can rotate around the central axis of the motor shaft 21
  • the stator 25 and the motor housing 26 constitute a stator part.
  • the high temperature generated by partial discharge of shaft current can melt at least part of the bearing, such as the inner ring of the bearing, the outer ring of the bearing or the balls of the bearing, etc., that is, the electrical corrosion of the bearing.
  • the electrical corrosion of the bearing will increase the noise and vibration during the operation of the motor, and easily lead to the damage of the bearing and the aging of the lubricant, resulting in the premature failure of the motor.
  • the running power of the electric vehicle is usually above 100kw, which leads to a large shaft voltage generated by the motor, which makes the bearing installed on the shaft body more risky.
  • the second mounting portion 2113 is covered with an insulating coating 213 having a resistivity of not less than 10 7 ohm ⁇ m (also known as ⁇ m), that is, the insulating coating 213 can withstand larger shafts. voltage, so as to effectively reduce the possibility that the shaft voltage discharge breaks down the lubricating oil film in the bearing 27 to form a passage and generate shaft current. Since the insulating coating 213 can effectively block the flow of shaft current between the motor shaft 21 and the bearing 27 , the possibility of abnormal operation of the motor 20 caused by the electrical corrosion of the bearing 27 is reduced, and the service life of the motor 20 is effectively improved. In addition, the insulating coating 213 has good insulating performance, simple structure, easy processing and low cost.
  • the insulating coating 213 is formed by spraying an insulating material on the surface of the shaft body 211 .
  • the thickness of the insulating coating 213 ranges from 0.01 mm to 0.8 mm, and the minimum insulation resistance of the insulating coating 213 under 1000V DC voltage is 50 megohms (also known as M ⁇ ).
  • Insulating materials include but are not limited to insulating ceramics, Teflon and other insulating materials and their special insulating materials.
  • the outer diameter of the first mounting portion 2111 is larger than the outer diameter of the second mounting portion 2113 , so that a positioning step surface 2115 is formed at the end of the first mounting portion 2111 close to the second mounting portion 2113 .
  • the positioning step surface 2115 is covered with an insulating coating 213 , so that the contact surface between the shaft body 211 and the bearing 27 is covered with the insulating coating 213 , which further reduces the possibility of the bearing 27 .
  • the rotor 23 can be fixed on the first mounting portion 2111 by means of fasteners or interference fit.
  • the number of the second mounting portions 2113 is two, and the two second mounting portions 2113 are fixedly connected to the two ends of the first mounting portion 2111 in one-to-one correspondence, and one of the second mounting portions 2113 is connected to the deceleration
  • the input shaft (not shown) of the speed reducer 10 is connected to the drive wheel 205 , and the output shaft of the speed reducer 10 is connected to the drive wheel 205 , so that the power generated by the motor 20 is transmitted to the drive wheel 205 .
  • the second mounting portion 2113 is further provided with an annular groove 2117 extending along the circumferential direction of the second mounting portion 2113 , and the groove 2117 is located at one end of the second mounting portion 2113 close to the first mounting portion 2111 .
  • the groove 2117 is used to improve the dimensional matching accuracy of the motor shaft 21 and the bearing 27 .
  • the inner wall of the groove 2117 is not covered with the insulating coating 213 , that is, the inner wall of the groove 2117 is exposed outside the insulating coating 213 .
  • the groove 2117 is a relief groove, which is convenient for tool machining (eg, grinding) to form the bearing 27 on the mounting surface (ie, the bearing mounting surface) of the peripheral wall of the second mounting portion 2113 and then the tool is retracted.
  • tool machining eg, grinding
  • the groove 2117 includes a first connecting wall 2118 and a second connecting wall 2119 disposed opposite to each other.
  • the first connecting wall 2118 is disposed at one end of the groove 2117 close to the first mounting portion 2111, and the insulating coating 213 on the positioning step surface 2115 and the The first connecting wall 2118 is flush with the second connecting wall 2119 , and the end surface of the insulating coating 213 located on the second mounting portion 2113 close to one end of the first mounting portion 2111 is flush with the second connecting wall 2119 .
  • the coverage of the insulating coating 213 of the motor shaft 21 in the present application includes but is not limited to the contact surface between the motor shaft 21 and the bearing 27 , for example, please refer to FIG.
  • the second installation At least the edge part of the end face of the part 2113 facing away from the first mounting part 2111 (ie the end face of the shaft body 211 ) is covered with the insulating coating 213 , and the inner wall of the groove 2117 is covered with the insulating coating 213 to increase the insulation on the shaft body 211
  • the covering area of the coating 213 ; or, at least part of the outer surface of the first mounting portion 2111 may be covered with the insulating coating 213 , that is, the contact surface between the motor shaft 21 and the rotor 23 may also be covered with the insulating coating 213 .
  • the shaft body 211 includes the first mounting portion 2111 and the end of the first mounting portion 2111 .
  • the second mounting portion 2113 is fixedly connected, and the first mounting portion 2111 includes a fixedly connected mounting section 2201 and a shaft shoulder 2203.
  • the outer diameter of the mounting section 2201 is larger than the outer diameter of the shaft shoulder 2203, and the outer diameter of the shaft shoulder 2201 is larger than that of the shaft shoulder 2203.
  • the outer diameter of the second mounting portion 2113 forms a positioning step surface 2115 .
  • the shoulder 2203 can strengthen the strength of the motor shaft and facilitate the installation of the bearing.
  • the installation section 2201 is provided with a rotor installation slot 2205 extending along the axial direction of the installation section 2201 for installing the rotor, thus improving the convenience of installing the rotor on the motor shaft.
  • the groove 2117 is disposed close to the positioning step surface 2115 .
  • the second mounting portion 2113 is covered with an insulating coating 213 .
  • the expression “and/or” includes any and all combinations of the associated listed words.
  • the expression “A and/or B” may include A, may include B, or may include both A and B.
  • expressions including ordinal numbers such as "first” and “second” may modify various elements.
  • such elements are not limited by the above expression.
  • the above expressions do not limit the order and/or importance of the elements.
  • the above expressions are only used to distinguish one element from another.
  • the first user equipment and the second user equipment indicate different user equipments, although the first user equipment and the second user equipment are both user equipments.
  • a first element could be termed a second element
  • a second element could be termed a first element, without departing from the scope of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本申请提供一种电机轴、电机及电动车。电机轴包括轴本体及绝缘涂层。轴本体包括固定连接的第一安装部与第二安装部。第一安装部靠近所述第二安装部的一端设有定位台阶面。第一安装部用于安装转子。第二安装部覆盖有绝缘涂层,第二安装部用于安装轴承。绝缘涂层的电阻率不小于10 7Ω·m,如此,能够有效降低轴电压放电击穿轴承内润滑油膜形成通路产生轴电流的可能性,即绝缘涂层能够有效阻断轴电流在电机轴和轴承之间的流通,进而降低了轴承因电腐蚀导致电机运行异响的可能性,有效提高电机的寿命。

Description

电机轴、电机及电动车
本申请要求于2021年1月15日提交中国专利局、申请号为202120118966.0、申请名称为“电机轴、电机及电动车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,特别涉及一种电机轴、电机及电动车。
背景技术
电机主要由定子、转子、电机外壳、电机轴、轴承等部分组成,其中转子安装在电机轴上,电机轴通过轴承与电机外壳连接。电机轴与转子构成能绕电机轴的中轴线转动的转子部件,定子与电机外壳构成定子部件。电机运行时,定子部件与转子部件之间的磁路或相电流由于存在不平衡会产生旋转系统磁链。当电机轴旋转时,该等磁链会在转子部件与定子部件产生电势差,形成轴电压。
轴电压通过转子部件、定子部件、轴承等构成闭合回路时,则会产生轴电流。若轴电压较高,或者轴承内的润滑油膜在电机起动瞬间未稳定的情况下,轴电压将放电击穿轴承内润滑油膜形成通路,从而产生轴电流。轴电流局部放电产生的高温,可以融化轴承,即电腐蚀。轴承电腐蚀会增大电机运行过程中的噪声和振动,并容易导致轴承的损坏及润滑剂的老化,使得电机过早发生故障。
发明内容
本申请实施例提供了一种能够降低轴承电腐蚀的可能性的电机轴、电机及电动车。
第一方面,本申请提供一种电机轴,包括轴本体及绝缘涂层,所述轴本体包括固定连接的第一安装部与第二安装部,所述第一安装部靠近所述第二安装部的一端设有定位台阶面,所述第一安装部用于安装转子,所述第二安装部覆盖有所述绝缘涂层,所述第二安装部用于安装轴承,所述绝缘涂层的电阻率不小于10 7Ω·m。
本申请第一方面提供的电机轴,由于第二安装部覆盖有电阻率不小于10 7欧姆·米(又称Ω·m)的绝缘涂层,能够有效降低轴电压放电击穿轴承内润滑油膜形成通路产生轴电流的可能性,即绝缘涂层能够有效阻断轴电流在电机轴和轴承之间的流通,进而降低了轴承电腐蚀的可能性,亦降低了因轴承电腐蚀导致电机运行异响的可能性,有效提高电机的寿命。绝缘涂层的绝缘性能好,结构简单、易加工、成本较低。另外,定位台阶面用于在轴承套设于第二安装部上时对轴承进行定位,提高了轴承组装于电机轴上的便利性。
根据第一方面,本申请第一方面的第一种实现方式中,所述定位台阶面覆盖有所述绝缘涂层。由于轴承套设于第二安装部上时贴靠于定位台阶面,而定位台阶面覆盖有绝缘涂层,使得轴本体与轴承的接触面之间均覆盖有绝缘涂层,进一步降低轴承电腐蚀的可能性。
根据第一方面或本申请第一方面的第一种实现方式,本申请第一方面的第二种实现方式中,所述轴本体第二安装部还设有沿所述第二安装部的周向延伸的环形凹槽,所述凹槽位于所述第二安装部靠近所述定位台阶面的一端。凹槽用于提高电机轴和轴承的尺寸配合精度。其中,第二安装部的周向,是指绕第二安装部的轴线方向。
根据第一方面或本申请第一方面的第一种至第二种实现方式,本申请第一方面的第三种实现方式中,所述凹槽包括相对设置的第一连接壁与第二连接壁,所述第一连接壁设于所述 凹槽靠近所述第一安装部的一端,位于所述定位台阶面上的所述绝缘涂层与所述第一连接壁平齐,位于所述第二安装部上的所述绝缘涂层的靠近所述第一安装部一端的端面与所述第二连接壁平齐。换而言之,所述凹槽的内壁裸露于所述绝缘涂层外。凹槽为退刀槽,便于刀具加工形成轴承于第二安装部的周壁上的安装面(即轴承安装面),方便电机轴的加工。
根据第一方面或本申请第一方面的第一种至第三种实现方式,本申请第一方面的第四种实现方式中,所述凹槽的内壁覆盖有所述绝缘涂层。由于绝缘涂层在轴本体上的覆盖面较大,进一步降低轴承电腐蚀的可能性。
根据第一方面或本申请第一方面的第一种至第四种实现方式,本申请第一方面的第五种实现方式中,所述第二安装部背离所述第一安装部的端面的至少部分覆盖有所述绝缘涂层,进一步增大绝缘涂层在轴本体上的覆盖面。
根据第一方面或本申请第一方面的第一种至第五种实现方式,本申请第一方面的第六种实现方式中,所述第一安装部包括固定连接的装设段与轴肩,所述装设段的外径大于所述轴肩的外径,所述轴肩的外径大于所述第二安装部的外径而形成所述定位台阶面。第一安装部包括装设段及轴肩,轴肩能够加强电机轴的强度并方便轴承的安装。
根据第一方面或本申请第一方面的第一种至第六种实现方式,本申请第一方面的第七种实现方式中,所述装设段设有沿所述装设段的轴向延伸的转子安装槽,用于安装所述转子,如此,提高转子安装于电机轴的便利性。
根据第一方面或本申请第一方面的第一种至第七种实现方式,本申请第一方面的第八种实现方式中,所述绝缘涂层的厚度范围为0.01mm~0.8mm。
根据第一方面或本申请第一方面的第一种至第八种实现方式,本申请第一方面的第九种实现方式中,所述绝缘涂层在1000V直流电压下的最小绝缘电阻为50MΩ。
第二方面,本申请提供一种电机,包括第一方面或第一方面的第一种至第六种实现方式所述的电机轴、转子、定子、电机外壳及轴承,所述转子固定套设于所述电机轴的第一安装部上,所述定子套设于所述转子上,所述电机外壳固定套设于所述定子外,所述轴承套设于所述电机轴的第二安装部上并与所述电机外壳固定连接,所述轴承与所述定位台阶面相抵持,所述电机轴能够随同所述转子相对所述定子转动。
第三方面,本申请提供一种电动车,包括电源系统及电驱动总成,所述电源系统用于向所述电驱动总成提供电能,所述电驱动总成包括本申请第二方面提供的电机。
附图说明
图1为本申请一实施方式提供的电动车的结构框图;
图2为本申请一实施方式提供的电动车的电机示意图;
图3为图2所示的电机的电机轴的部分结构示意图;
图4为本申请另一实施方式提供的电机轴的部分结构示意图;
图5为本申请又一实施方式提供的电机轴的结构示意图;
图6为图5所示的电机轴的轴本体及其区域IV的放大示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
电动车包括电池电动汽车(BEV,Battery Electric Vehicle)、混合动力电动汽车(HEV,Hybrid Electric Vehicle)和插入式混合动力电动汽车(PHEV,Plug In Hybrid Electric Vehicle) 等。
电池电动汽车包括电动机,其中,电动机的能量来源是动力电池。电池电动汽车的动力电池可从外部电网再充电。电池电动汽车的动力电池实际上是用于汽车推进的车载能量的唯一来源。
混合动力电动汽车包括内燃引擎和电动机,其中,引擎的能量来源是燃料,电动机的能量来源是动力电池。引擎是用于汽车推进的能量的主要来源,混合动力电动汽车的动力电池提供用于汽车推进的补充能量(混合动力电动汽车的动力电池以电的形式缓冲燃料能量和恢复动能)。
插入式混合动力电动汽车与混合动力电动汽车的不同之处在于:插入式混合动力电动汽车动力电池具有比混合动力电动汽车动力电池更大的容量,插入式混合动力电动汽车动力电池可从电网再充电。插入式混合动力电动汽车的动力电池是用于汽车推进的能量的主要来源,直到插入式混合的动力电动汽车动力电池损耗到低能量水平,这时,插入式混合动力电动汽车如同用于汽车推进的混合动力电动汽车那样操作。
下面结合附图,对本申请的实施例进行描述。本申请实施例中,以电池电动汽车为例来对电动车的结构进行说明。
请参阅图1,本申请一实施方式提供的一种电动车200,包括电源系统201、电驱动总成100、整车控制器203、电机控制器204、驱动车轮205及辅助系统207。电源系统201包括动力电池2011、电池管理系统2013及充电器2015。电驱动总成100包括电机20及与电机20机械连接的减速器10。减速器10还与驱动车轮205机械连接,用于将电机20产生的动力传递至驱动车轮205以驱动电动车200行驶。
整车控制器(VCU,Vehicle Control Unit)203,也叫动力总成控制器,是整个汽车的核心控制部件,相当于汽车的大脑。它采集加速踏板信号、制动踏板信号及其他部件信号,并做出相应判断后,控制下层的各部件控制器的动作,驱动汽车正常行驶。作为汽车的指挥管理中心,整车控制器主要功能包括:驱动力矩控制、制动能量的优化控制、整车的能量管理、CAN(ControllerAreaNetwork,控制器局域网)网络的维护和管理、故障的诊断和处理、车辆状态监视等,它起着控制车辆运行的作用。因此整车控制器的优劣直接决定了车辆的稳定性和安全性。
电机控制器204是通过主动工作来控制电驱动总成100中的电机20按照设定的方向、速度、角度、响应时间进行工作的集成电路,其与整车控制器203通信连接。在电动车200中,电机控制器204的功能是根据档位、油门、刹车等指令,将动力电池2011所存储的电能转化为电机所需的电能,来控制电动车200的启动运行、进退速度、爬坡力度等行驶状态,或者将帮助电动车200刹车,并将部分刹车能量存储到动力电池2011中。
电机(俗称“马达”)20是指依据电磁感应定律实现电能转换或传递的一种电磁装置,其与电机控制器204电连接并与减速器10机械连接。它的主要作用是产生驱动转矩,作为驱动车轮205的动力源。
动力电池2011与电机控制器204电连接,用于储存并提供电能。动力电池2011包括但不限于铅酸电池、磷酸铁锂电池、镍氢电池、镍镉电池等。一些实施例中,动力电池2011还可以包括超级电容器。
电池管理系统2013与动力电池2011电连接,并与整车控制器203通信连接。电池管理系统2013用于对动力电池2011在不同工况下的状态进行监测和估算,以提高动力电池2011的利用率,防止动力电池2011出现过充电和过放电,从而延长动力电池2011的使用寿命。 具体地,电池管理系统2013的主要功能可包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。
充电器2015与动力电池2011电连接,用于与外部电源连接以为动力电池2011充电。具体地,当电动车200与外部电源(如充电桩)连接时,充电器2015将外部电源提供的交流电转换为直流电以为动力电池2011进行充电。此外,电池管理系统2013还与充电器2015连接,以对动力电池2011充电过程进行监控。
辅助系统207包括DC/DC转换器310、辅助电池320、低压负载330及高压负载340。DC/DC转换器310的一端与动力电池2011连接,另一端分别与辅助电池320及低压负载330相连。DC/DC转换器310用于将动力电池2011输出的高压(如380V)转换成低压(如12V)后为辅助电池320充电以及为低压负载330供电。一些实施方式中,低压负载330包括低压汽车附件,例如冷却泵、风扇、加热器、动力转向装置、制动器等。当然,辅助电池320也可以为低压负载330供电。另外,动力电池2011还与高压负载340连接,以为高压负载340供电。一些实施方式中,高压负载340包括PTC加热器和空调单元等。
需要说明的是,电动车200中的电子模块可经由一个或更多个车辆网络进行通信。车辆网络可包括多个用于通信的信道。车辆网络的一个信道可以是诸如控制器局域网(Controller Area Network,CAN)的串行总线。车辆网络的信道中的一个可包括由电气与电子工程师协会(IEEE)802标准族定义的以太网。车辆网络的其它信道可包括模块之间的离散连接,并且可包括来自辅助动力电池2011的电力信号。不同的信号可通过车辆网络的不同信道进行传输。例如,视频信号可通过高速信道(例如,以太网)进行传输,而控制信号可通过CAN或离散信号进行传输。车辆网络可包括协助在模块之间传输信号和数据的任意硬件组件和软件组件。车辆网络在图1中未示出,但可隐含的是,车辆网络可连接到存在于电动车200中的任何电子模块。例如,可存在整车控制器203以协调各个组件的操作。
可以理解的是,本申请实施例示意的结构并不构成对电动车200的具体限定。在本申请另一些实施例中,电动车200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
请参阅图2,电机20包括电机轴21、转子23、定子25、电机外壳26及轴承27。转子23固定套设于电机轴21上,定子25套设于转子23上。电机外壳26固定套设于定子25上,用于收容电机轴21、转子23及定子25。电机轴21能够随同转子23相对定子25转动。轴承27套设于电机轴21的端部上并与电机外壳26固定,用于支撑电机轴21。轴承27包括能够相对转动的内圈271及外圈273,内圈271固定于电机轴21上,外圈273固定于电机外壳26。
请参阅图3,电机轴21包括轴本体211及绝缘涂层213。轴本体211包括固定连接的第一安装部2111与第二安装部2113。第二安装部2113位于轴本体211的端部。第一安装部2111靠近第二安装部2113的一端设有定位台阶面2115。第二安装部2113覆盖有绝缘涂层213。绝缘涂层213的电阻率不小于10 7Ω·m。转子23固定套设于第一安装部2111上。轴承27的内圈271套设于第二安装部2113上并与定位台阶面2115相接触。定位台阶面2115用于在轴承27组装于第二安装部2113上时与轴承27接触,以实现对轴承27的内圈271进行限位,从而方便轴承27组装于电机轴21上。可以理解,本申请对第二安装部2113于轴本体211上的位置不作限定,例如,第二安装部2113位于轴本体211的中部。
其中,电机轴21与转子23构成能绕电机轴21的中轴线转动的转子部件,定子25与电机外壳26构成定子部件。轴承27内有润滑油,以提高轴承27的内圈271与轴承27的外圈 273相对转动的顺畅性。
电机运行时,定子与转子之间的磁路或相电流由于不平衡会产生旋转系统磁链。当电机轴旋转时,该等磁链会在转子部件和定子部件之间产生电势差,即形成轴电压。轴电压通过转子部件、定子部件、轴承或辅助装置等构成闭合回路时,则会产生轴电流。若轴电压较高,或者轴承内的润滑油膜在电机起动瞬间未稳定的情况下,轴电压将放电击穿轴承内润滑油膜形成通路而产生轴电流。轴电流局部放电产生高温能融化轴承至少部分,例如轴承内圈、轴承外圈或轴承的滚珠等,即轴承电腐蚀。轴承电腐蚀会增大电机运行过程中的噪声和振动,并容易导致轴承的损坏及润滑剂的老化,使得电机过早发生故障。电动车运行的功率通常在100kw以上,导致电机产生的轴电压很大,使得安装于轴本体上的轴承的风险性较大。
本申请实施方式提供的电机20中,第二安装部2113覆盖有电阻率不小于10 7欧姆·米(又称Ω·m)的绝缘涂层213,即绝缘涂层213能够承受较大的轴电压,从而有效降低轴电压放电击穿轴承27内润滑油膜形成通路而产生轴电流的可能性。由于绝缘涂层213能够有效阻断轴电流在电机轴21和轴承27之间的流通,进而降低了轴承27因电腐蚀导致电机20运行异响的可能性,有效提高电机20的寿命。另外,绝缘涂层213的绝缘性能好,结构简单、易加工、成本较低。
绝缘涂层213通过将绝缘材料喷涂于轴本体211的表面上形成。本实施方式中,绝缘涂层213的厚度范围为0.01mm-0.8mm,绝缘涂层213在1000V直流电压下的最小绝缘电阻为50兆欧姆(又称MΩ)。绝缘材料包括且不限于绝缘陶瓷、特氟龙等绝缘材料及其特制绝缘材料。
本实施方式中,第一安装部2111的外径大于第二安装部2113的外径,从而于第一安装部2111靠近第二安装部2113的端部形成定位台阶面2115。定位台阶面2115覆盖有绝缘涂层213,以使轴本体211与轴承27的接触面之间均覆盖有绝缘涂层213,进一步降低轴承27的可能性。可以理解,转子23可以通过紧固件或过盈配合等方式固定于第一安装部2111上。
本实施方式中,第二安装部2113的数量为两个,两个第二安装部2113一一对应地与第一安装部2111的两个端部固定连接,其中一个第二安装部2113与减速器10的输入轴(图未示)相连接,减速器10的输出轴与驱动车轮205连接,从而将电机20产生的动力传递至驱动车轮205。
第二安装部2113上还设有沿第二安装部2113的周向延伸的环形凹槽2117,凹槽2117位于第二安装部2113靠近第一安装部2111的一端。凹槽2117用于提高电机轴21和轴承27的尺寸配合精度。凹槽2117的内壁未覆盖有绝缘涂层213,即凹槽2117的内壁裸露于绝缘涂层213外。本实施方式中,凹槽2117为退刀槽,便于刀具加工(例如磨削)形成轴承27于第二安装部2113的周壁的安装面(即轴承安装面)后进行退刀。
凹槽2117包括相对设置的第一连接壁2118与第二连接壁2119,第一连接壁2118设置于凹槽2117靠近第一安装部2111的一端,位于定位台阶面2115上的绝缘涂层213与第一连接壁2118平齐,位于第二安装部2113上的绝缘涂层213的靠近第一安装部2111一端的端面与第二连接壁2119平齐。需要说明的是,本申请对电机轴21的绝缘涂层213的覆盖面(即绝缘材料的喷涂范围)包括且不限于电机轴21与轴承27的接触面,例如,请参阅图4,第二安装部2113背离第一安装部2111的端面(即轴本体211的端面)的至少边缘部分覆盖有绝缘涂层213,凹槽2117的内壁覆盖有绝缘涂层213,以增大轴本体211上的绝缘涂层213的覆盖面积;又或者,第一安装部2111的外表面至少部分可以覆盖有绝缘涂层213,即电机轴21与转子23之间的接触表面亦可以覆盖绝缘涂层213。
可以理解,本申请对第一安装部2111的结构不作限定,例如,在一实施方式中,请参阅图5与图6,轴本体211包括第一安装部2111及与第一安装部2111的端部固定连接的第二安装部2113,第一安装部2111包括固定连接的装设段2201与轴肩2203,装设段2201的外径大于轴肩2203的外径,轴肩2201的外径大于第二安装部2113的外径而形成定位台阶面2115。轴肩2203能够加强电机轴的强度并方便轴承的安装。装设段2201设有沿装设段2201的轴向延伸的转子安装槽2205,用于安装转子,如此,提高转子安装于电机轴的便利性。凹槽2117靠近定位台阶面2115设置。其中,第二安装部2113上覆盖有绝缘涂层213。
应当理解的是,可以在本申请中使用的诸如“包括”以及“可以包括”之类的表述表示所公开的功能、操作或构成要素的存在性,并且并不限制一个或多个附加功能、操作和构成要素。在本申请中,诸如“包括”和/或“具有”之类的术语可解释为表示特定特性、数目、操作、构成要素、组件或它们的组合,但是不可解释为将一个或多个其它特性、数目、操作、构成要素、组件或它们的组合的存在性或添加可能性排除在外。
此外,在本申请中,表述“和/或”包括关联列出的词语中的任意和所有组合。例如,表述“A和/或B”可以包括A,可以包括B,或者可以包括A和B这二者。
在本申请中,包含诸如“第一”和“第二”等的序数在内的表述可以修饰各要素。然而,这种要素不被上述表述限制。例如,上述表述并不限制要素的顺序和/或重要性。上述表述仅用于将一个要素与其它要素进行区分。例如,第一用户设备和第二用户设备指示不同的用户设备,尽管第一用户设备和第二用户设备都是用户设备。类似地,在不脱离本申请的范围的情况下,第一要素可以被称为第二要素,类似地,第二要素也可以被称为第一要素。
当组件被称作“连接”或“接入”其他组件时,应当理解的是:该组件不仅直接连接到或接入到其他组件,而且在该组件和其它组件之间还可以存在另一组件。另一方面,当组件被称作“直接连接”或“直接接入”其他组件的情况下,应该理解它们之间不存在组件。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种电机轴,其特征在于,包括轴本体及绝缘涂层,所述轴本体包括固定连接的第一安装部与第二安装部,所述第一安装部靠近所述第二安装部的一端设有定位台阶面,所述第一安装部用于安装转子,所述第二安装部覆盖有所述绝缘涂层,所述第二安装部用于安装轴承,所述绝缘涂层的电阻率不小于10 7Ω·m。
  2. 根据权利要求1所述的电机轴,其特征在于,所述定位台阶面覆盖有所述绝缘涂层。
  3. 根据权利要求2所述的电机轴,其特征在于,所述第二安装部还设有沿所述第二安装部的周向延伸的环形凹槽,所述凹槽位于所述第二安装部靠近所述定位台阶面的一端。
  4. 根据权利要求3所述的电机轴,其特征在于,所述凹槽包括相对设置的第一连接壁与第二连接壁,所述第一连接壁设于所述凹槽靠近所述第一安装部的一端,位于所述定位台阶面上的所述绝缘涂层与所述第一连接壁平齐,位于所述第二安装部上的所述绝缘涂层的靠近所述第一安装部一端的端面与所述第二连接壁平齐。
  5. 根据权利要求3所述的电机轴,其特征在于,所述凹槽的内壁覆盖有所述绝缘涂层。
  6. 根据权利要求1所述的电机轴,其特征在于,所述第二安装部背离所述第一安装部的端面的至少部分覆盖有所述绝缘涂层。
  7. 根据权利要求1所述的电机轴,其特征在于,所述第一安装部包括固定连接的装设段与轴肩,所述装设段的外径大于所述轴肩的外径,所述轴肩的外径大于所述第二安装部的外径而形成所述定位台阶面。
  8. 根据权利要求7所述的电机轴,其特征在于,所述装设段设有沿所述装设段的轴向延伸的转子安装槽,用于安装所述转子。
  9. 根据权利要求1所述的电机轴,其特征在于,所述绝缘涂层的厚度范围为0.01mm~0.8mm。
  10. 根据权利要求1所述的电机轴,其特征在于,所述绝缘涂层在1000V直流电压下的最小绝缘电阻为50MΩ。
  11. 一种电机,其特征在于,包括根据权利要求1-10任意一项所述的电机轴、转子、定子、电机外壳及轴承,所述转子固定套设于所述电机轴的第一安装部上,所述定子套设于所述转子上,所述电机外壳固定套设于所述定子外,所述轴承套设于所述电机轴的第二安装部上并与所述电机外壳固定连接,所述轴承与所述定位台阶面相接触,所述电机轴能够随同所述转子相对所述定子转动。
  12. 一种电动车,其特征在于,包括电源系统及电驱动总成,所述电源系统用于向所述电驱动总成提供电能,所述电驱动总成包括根据权利要求11所述的电机。
PCT/CN2022/071399 2021-01-15 2022-01-11 电机轴、电机及电动车 WO2022152130A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22739009.3A EP4262063A4 (en) 2021-01-15 2022-01-11 ELECTRIC MOTOR SHAFT, ELECTRIC MOTOR AND ELECTRIC VEHICLE
US18/348,658 US20230353006A1 (en) 2021-01-15 2023-07-07 Motor shaft, motor, and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120118966.0U CN214506787U (zh) 2021-01-15 2021-01-15 电机轴、电机及电动车
CN202120118966.0 2021-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/348,658 Continuation US20230353006A1 (en) 2021-01-15 2023-07-07 Motor shaft, motor, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2022152130A1 true WO2022152130A1 (zh) 2022-07-21

Family

ID=78215687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071399 WO2022152130A1 (zh) 2021-01-15 2022-01-11 电机轴、电机及电动车

Country Status (4)

Country Link
US (1) US20230353006A1 (zh)
EP (1) EP4262063A4 (zh)
CN (1) CN214506787U (zh)
WO (1) WO2022152130A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214506787U (zh) * 2021-01-15 2021-10-26 华为技术有限公司 电机轴、电机及电动车
DE102021134418A1 (de) * 2021-12-22 2023-06-22 Torqeedo Gmbh Bootsantrieb
CN114465401B (zh) * 2022-03-24 2023-12-22 浙江亿利达风机股份有限公司 一种防电腐蚀电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156952A (ja) * 1998-11-17 2000-06-06 Mitsubishi Electric Corp 回転電機
US20030169953A1 (en) * 2000-07-21 2003-09-11 Johannes Schelbert Rolling bearing arrangement for an electromotor
CN201013765Y (zh) * 2007-03-21 2008-01-30 上海思博特轴承技术研发有限公司 含有绝缘轴套、档片的组装式滚动轴承
CN202914514U (zh) * 2012-10-18 2013-05-01 山东华力电机集团股份有限公司 一种电机用绝缘转轴
CN207612151U (zh) * 2017-12-25 2018-07-13 雷勃电气(常州)有限公司 一种防轴电流的绝缘装置
CN208782618U (zh) * 2018-10-10 2019-04-23 英格(阳江)电气股份有限公司 一种用于阻断电机轴电流的轴承绝缘结构
CN214506787U (zh) * 2021-01-15 2021-10-26 华为技术有限公司 电机轴、电机及电动车
CN215221906U (zh) * 2021-05-19 2021-12-17 浙江零跑科技股份有限公司 一种可消除轴电流的电机轴

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521426A (zh) * 2009-03-30 2009-09-02 美的集团有限公司 用于大中型电动机轴承的防轴电流装置及其制作方法
CN205647136U (zh) * 2016-05-20 2016-10-12 永济市众鑫电机配件制造有限公司 变频电动机轴承绝缘结构
CN208241479U (zh) * 2018-05-30 2018-12-14 无锡市宏泰电机股份有限公司 一种电机非轴伸端转轴绝缘结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156952A (ja) * 1998-11-17 2000-06-06 Mitsubishi Electric Corp 回転電機
US20030169953A1 (en) * 2000-07-21 2003-09-11 Johannes Schelbert Rolling bearing arrangement for an electromotor
CN201013765Y (zh) * 2007-03-21 2008-01-30 上海思博特轴承技术研发有限公司 含有绝缘轴套、档片的组装式滚动轴承
CN202914514U (zh) * 2012-10-18 2013-05-01 山东华力电机集团股份有限公司 一种电机用绝缘转轴
CN207612151U (zh) * 2017-12-25 2018-07-13 雷勃电气(常州)有限公司 一种防轴电流的绝缘装置
CN208782618U (zh) * 2018-10-10 2019-04-23 英格(阳江)电气股份有限公司 一种用于阻断电机轴电流的轴承绝缘结构
CN214506787U (zh) * 2021-01-15 2021-10-26 华为技术有限公司 电机轴、电机及电动车
CN215221906U (zh) * 2021-05-19 2021-12-17 浙江零跑科技股份有限公司 一种可消除轴电流的电机轴

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4262063A4

Also Published As

Publication number Publication date
US20230353006A1 (en) 2023-11-02
EP4262063A1 (en) 2023-10-18
EP4262063A4 (en) 2024-06-12
CN214506787U (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2022152130A1 (zh) 电机轴、电机及电动车
US11641146B2 (en) Wheel bearing system with generator
JP5276915B2 (ja) 二次電池を用いた電源装置
US12021427B2 (en) Motor, vehicle power unit with motor, generator, vehicle wheel bearing with generator
US10618418B2 (en) Vehicle charging systems incorporating phase change materials for absorbing heat during charging events
US10749404B2 (en) Terminal connector assembly in overmolded single unit with coil end windings, temperature sensors, and cooling channel
US9994108B2 (en) Regenerative braking power distribution
US10181765B2 (en) Thermal management assembly for an electrified vehicle
WO2019138965A1 (ja) 車輪用軸受装置およびこの車輪用軸受装置を備えた車両
US11447003B2 (en) Vehicle power device and wheel bearing device with generator
US9637112B2 (en) Vehicle performance preload enabler
US10720806B2 (en) Rotor structure for electric machine assembly
WO2022110058A1 (zh) 电驱动总成及电动车
CN220234386U (zh) 电机轴、电机及电动车
JP6491719B1 (ja) 車両動力補助システム
WO2019078216A1 (ja) 車両用動力装置および発電機付き車輪用軸受装置
CN209072234U (zh) 增程发电机
CN218040949U (zh) 转子冲片、转子、驱动电机及电动车
US11901769B2 (en) Stator with piloting supports
CN114825694A (zh) 转子冲片、转子、驱动电机及电动车
JP6755988B2 (ja) 車両動力補助システム
EP4178087A1 (en) Conducting member, liquid-cooled conductive structure, motor, and electric car power assembly
WO2023170853A1 (ja) ハイブリッド車の回生制動装置
US20230098893A1 (en) Vehicle power device and vehicle bearing with power generator
US20240072589A1 (en) Electric machine rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022739009

Country of ref document: EP

Effective date: 20230714

NENP Non-entry into the national phase

Ref country code: DE