WO2022152100A1 - 真空管 - Google Patents

真空管 Download PDF

Info

Publication number
WO2022152100A1
WO2022152100A1 PCT/CN2022/071194 CN2022071194W WO2022152100A1 WO 2022152100 A1 WO2022152100 A1 WO 2022152100A1 CN 2022071194 W CN2022071194 W CN 2022071194W WO 2022152100 A1 WO2022152100 A1 WO 2022152100A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
vacuum
inner tube
outer tube
annular
Prior art date
Application number
PCT/CN2022/071194
Other languages
English (en)
French (fr)
Inventor
高峰
刘在祥
陈艳凤
蔡园丰
王兵
牛争艳
Original Assignee
上海兴邺材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110045538.4A external-priority patent/CN112377725A/zh
Priority claimed from CN202110654537.XA external-priority patent/CN113339616A/zh
Application filed by 上海兴邺材料科技有限公司 filed Critical 上海兴邺材料科技有限公司
Publication of WO2022152100A1 publication Critical patent/WO2022152100A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • F16L23/024Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L51/00Expansion-compensation arrangements for pipe-lines
    • F16L51/02Expansion-compensation arrangements for pipe-lines making use of bellows or an expansible folded or corrugated tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/02Protection of pipes or objects of similar shape against external or internal damage or wear against cracking or buckling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present application relates to a vacuum tube.
  • insulated water pipes are widely used as hot water supply pipes.
  • the thermal insulation water pipe needs to have better thermal insulation performance, so as to reduce the heat loss of hot water in the hot water supply pipe, improve the heating efficiency and reduce the heating cost.
  • thermal insulation water pipes are usually made of thermal insulation materials with low thermal conductivity, especially thermal insulation plastics, while the thermal insulation performance of plastic thermal insulation water pipes is far less than that of vacuum thermal insulation structures. And the pressure bearing capacity of plastic pipes is much smaller than that of metal pipes.
  • Vacuum insulated cups and vacuum insulated tanks are relatively common in the market, but water pipes or air pipes with vacuum insulation structures have not been popular in the market. The main reasons include:
  • the vacuum tube is a slender structure.
  • the inner tube expands and the outer tube shrinks, and the reverse deformation of the two (especially the length direction)
  • the reverse deformation of the vacuum tube makes the vacuum tube extremely easy to bend and deform, which in turn leads to a large area of contact between the inner and outer tubes, which reduces the heat preservation ability of the vacuum tube, and even leads to the destruction of the sealing structure at the connection between the inner and outer tubes, so that the vacuum structure is completely lost.
  • the present application proposes a vacuum tube with an ingenious structure and excellent thermal insulation performance.
  • a vacuum tube comprising:
  • the inner tube includes an annular deformation fold integrally arranged on the inner tube wall and surrounding the periphery of the inner tube axis.
  • the deformed fold is a radially inwardly convex annular protrusion
  • an annular groove is formed on the periphery of the annular protrusion
  • the annular groove is embedded with a hoop outside the inner tube. hoop.
  • the deformed wrinkle is a radially outwardly convex annular protrusion, and an annular groove is formed on the inner circumference of the annular protrusion.
  • the inner tube is a metal tube
  • the annular protrusion is an extruded rib integrally formed on the inner tube wall.
  • the vacuum insulation chamber is provided with an elastic support snap ring supported between the outer tube and the inner tube.
  • the elastic support snap ring includes:
  • the at least two inner tube support protrusions are arranged at intervals along the circumferential direction of the snap ring body, and the at least two outer tube support protrusions are arranged at intervals along the circumferential direction of the snap ring body;
  • the inner tube supporting protrusion abuts on the outer surface of the inner tube, and the outer tube supporting protrusion abuts on the inner surface of the outer tube.
  • a limit groove is provided on the inner tube support protrusion, and the annular protrusion is embedded in the limit groove.
  • the snap ring body includes:
  • the space between the left ring body and the right ring body forms the limiting groove; or, the limiting groove is formed on the connecting body
  • a vacuum tube comprising:
  • the outer tube includes deformed folds integrally arranged on the tube wall of the outer tube and surrounding the periphery of the axis of the outer tube.
  • the present application proposes a vacuum tube having a first end and a second end oppositely arranged in a length direction thereof, the vacuum tube comprising:
  • an inner tube having a third end at the first end and a fourth end at the second end;
  • each of the at least one first folded ring is a radially outwardly convex structure integrally formed on the tube wall of the inner tube and surrounding the periphery of the axis of the inner tube;
  • Each of the at least one first fold is disposed at the third end.
  • the first end is provided with an annular first pipe joint fixedly connected with the third end and the fifth end, and the second end is provided with a fixed connection with the fourth end and the sixth end , and an annular second pipe joint adapted to the first pipe joint.
  • the outer tube wall of the fifth end is provided with a first flared portion that expands radially outward, and each of the at least one first folded ring is accommodated inside the first flared portion and is connected to the first flared portion.
  • the first flared portion is arranged in isolation.
  • all parts of the first pipe joint are arranged on the periphery of the third end, and the outer diameter of each of the at least one first fold is larger than the middle of the outer pipe The inner diameter of the pipe segment.
  • the vacuum tube further includes at least one second folded ring, and each of the at least one second folded ring is integrally formed on the tube wall of the inner tube and surrounds the inner tube.
  • each of the at least one second folding ring is disposed at the fourth end.
  • the tube wall of the sixth end of the outer tube is provided with a second flared portion that expands radially outward, and each of the at least one second folded ring is accommodated in a seat.
  • the second flared portion is arranged inside and isolated from the second flared portion.
  • an air extraction valve fluidly connected to the vacuum insulation chamber is installed on the axially inner end of the first flared portion.
  • the vacuum tube according to the first aspect or the second aspect of the present application adopts a vacuum heat preservation structure, and annular deformation folds are integrally provided on the inner tube or the outer tube of the vacuum tube.
  • the thermal insulation performance of the pipe is improved.
  • the deformation folds can absorb and release the expansion and contraction deformation of the inner tube in its length direction, preventing the vacuum tube from bending and deforming due to the influence of temperature, or even the leakage of the vacuum insulation chamber.
  • all the folded rings that absorb and compensate for deformation and are radially outwardly convex are all arranged on the end of the inner tube, not on the main pipe section of the inner tube, so it is only necessary to add correspondingly.
  • the inner diameter of the end of the outer pipe should be increased to ensure that it is separated from the inner ring. It is not necessary to increase the diameter of the main pipe section of the outer pipe.
  • the diameter of the main pipe section of the outer pipe only needs to be slightly larger than that of the inner pipe. , it can better ensure the isolation between the inner tube and the outer tube on the main section of the vacuum tube. This helps to reduce the diameter of the vacuum tube without reducing the flow capacity of the vacuum tube.
  • FIG. 1 is a three-dimensional schematic diagram of a vacuum tube in Embodiment 1 of the present application.
  • FIG. 2 is an axial cross-sectional view of the vacuum tube in the first embodiment of the present application.
  • FIG. 3 is a radial cross-sectional view of the vacuum tube in the first embodiment of the present application.
  • FIG. 4 is a schematic three-dimensional structural diagram of the elastic support snap ring in the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of the docking of two vacuum tubes in the first embodiment of the present application.
  • FIG. 6 is a cross-sectional view of the butt joint of the two vacuum tubes in FIG. 5 .
  • FIG. 7 is a schematic perspective view of the vacuum tube in the first embodiment of the present application when the screw sleeve slides to the middle of the tube section.
  • FIG. 8 is an axial cross-sectional view of the vacuum tube in the second embodiment of the present application.
  • FIG. 9 is an axial cross-sectional view of the vacuum tube in the third embodiment of the present application.
  • FIG. 10 is a three-dimensional schematic diagram of the vacuum tube in the fourth embodiment of the present application.
  • FIG. 11 is a schematic diagram of the first connection of two vacuum tubes in the fourth embodiment of the present application.
  • FIG. 12 is an enlarged view of the butt joint of the two vacuum tubes in FIG. 10 .
  • FIG. 13 is a schematic diagram of the second docking of two vacuum tubes in the fourth embodiment of the present application.
  • FIG. 14 is a partial structural cross-sectional view of FIG. 13 .
  • FIG. 15 is an exploded view of the insulation jacket of FIG. 13 .
  • FIG. 16 is a schematic structural diagram of the hoop in FIG. 13 .
  • FIG. 17 is a third connection schematic diagram of two vacuum tubes in the fourth embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of the retaining spring in FIG. 17 .
  • FIG. 19 is a three-dimensional schematic diagram of the vacuum tube in the fifth embodiment of the present application.
  • FIG. 20 is a schematic diagram of the butt joint of two vacuum tubes in the fifth embodiment of the present application.
  • FIG. 21 is a cross-sectional view of the butt joint of the two vacuum tubes in FIG. 20 .
  • FIG. 22 is a schematic diagram of the internal structure of the vacuum tube in the sixth embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of the elastic support snap ring in the sixth embodiment of the present application.
  • FIG. 24 is a schematic diagram of the internal structure of the vacuum tube in the seventh embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of the elastic support snap ring in the seventh embodiment of the present application.
  • FIG. 26 is a schematic diagram of the internal structure of the vacuum tube in the eighth embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of the elastic support snap ring in the eighth embodiment of the present application.
  • FIG. 28 is a schematic diagram of the internal structure of the vacuum tube in the ninth embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of the elastic support snap ring in the ninth embodiment of the present application.
  • FIG. 30 is a cross-sectional view of the vacuum tube in the tenth embodiment of the present application.
  • FIG. 31 is an enlarged view of part X1 in FIG. 30 .
  • FIG. 32 is a schematic three-dimensional structure diagram of a spacer in Example 10 of the present application.
  • FIG. 33 is a schematic three-dimensional structure diagram of the hoop in the tenth embodiment of the present application.
  • FIG. 34 is a cross-sectional view of the vacuum tube in the eleventh embodiment of the present application.
  • FIG. 35 is an enlarged view of part X2 in FIG. 34 .
  • FIG. 36 is a schematic three-dimensional structure diagram of a spacer in the eleventh embodiment of the present application.
  • FIG. 37 is a schematic three-dimensional structure diagram of the hoop in the eleventh embodiment of the present application.
  • FIG. 38 is a schematic three-dimensional structure diagram of the vacuum tube in the twelfth embodiment of the present application.
  • FIG. 39 is an axial cross-sectional schematic diagram of the vacuum tube in the twelfth embodiment of the present application.
  • FIG. 40 is an axial cross-sectional schematic diagram of two vacuum tubes after butt joint in Embodiment 12 of the present application.
  • FIG. 41 is a schematic three-dimensional structural diagram of two vacuum tubes after docking in the twelfth embodiment of the present application.
  • FIG. 43 is an axial cross-sectional schematic diagram of the vacuum tube in the thirteenth embodiment of the present application.
  • FIG. 44 is a schematic three-dimensional structure diagram of the vacuum tube in the fourteenth embodiment of the present application.
  • FIG. 45 is an axial cross-sectional schematic diagram of the vacuum tube in the fourteenth embodiment of the present application.
  • FIG. 46 is an axial cross-sectional schematic diagram of two vacuum tubes after butt joint in the fourteenth embodiment of the present application.
  • FIG. 47 is a schematic three-dimensional structural diagram of two vacuum tubes after butt joint in the fourteenth embodiment of the present application.
  • FIG. 48 is an axial cross-sectional schematic diagram of the vacuum tube in the fifteenth embodiment of the present application.
  • FIG. 49 is an axial cross-sectional schematic diagram of two vacuum tubes after butt joint in the sixteenth embodiment of the present application.
  • Fig. 50 is a cross-sectional view taken along the line A-A in Fig. 49 .
  • Fig. 51 is a cross-sectional view taken along the line B-B in Fig. 49 .
  • FIG. 52 is an axial cross-sectional schematic diagram of two vacuum tubes after butt joints in the seventeenth embodiment of the present application.
  • connection may be a separate connection or an integral connection; it may be a direct connection or an indirect connection through an intermediate medium; it may be a non-detachable connection or a detachable connection.
  • connection does not necessarily mean complete containment as a whole, and the concept also includes partial containment with a part protruding from the outside.
  • FIG. 1 to 4 show a specific embodiment of the vacuum tube of the present application, which includes an outer tube 1, an inner tube 2 disposed inside the outer tube, and a vacuum insulation chamber 3 formed between the outer tube and the inner tube. Both ends of the inner tube 2 are fixedly connected to both ends of the outer tube 1 .
  • the temperature of the inner tube 2 in direct contact with the fluid is relatively high.
  • a vacuum insulation chamber 3 with excellent thermal insulation performance, so it is difficult for the heat of the inner tube 2 to transfer to the outer tube 1 , resulting in the temperature of the inner tube 2 being much higher than that of the outer tube 1 .
  • the temperature of the fluid in the inner tube 2 changes frequently, and the fluid in the tube is interrupted, which leads to the temperature change range of the inner tube 2 reaching one hundred or even several hundred degrees Celsius. According to thermal expansion and contraction, the dimensions of the inner tube 2 at high temperature and low temperature, especially its axial dimension, have obvious differences.
  • the outer tube 1 at the periphery of the inner tube 2 is not affected by the temperature of the internal fluid, and is basically maintained at a fixed value, so the outer tube 1 will not be significantly deformed.
  • the large-scale deformation of the inner tube 2 not only causes the whole vacuum tube to be kinked and deformed, but also causes the problems that the sealing structure at the connection between the inner tube and the outer tube is damaged and the vacuum insulation chamber leaks.
  • the vacuum tube is used to transport ultra-low temperature fluids, such as liquefied natural gas.
  • ultra-low temperature fluids such as liquefied natural gas.
  • an annular deformation fold 201 surrounding the periphery of the axis of the inner tube is integrally provided on the tube wall of the inner tube 2 .
  • the deformed wrinkle 201 is a part of the tube wall of the inner tube 2 .
  • the deformation folds 201 on the tube wall shrink to absorb the expansion and deformation of the inner tube, thereby preventing the expansion stress of the inner tube from being concentrated at the connection between the inner tube and the outer tube, resulting in the deformation of the vacuum tube or even the vacuum insulation chamber. Air leak.
  • the deformation folds 201 on the tube wall stretch to compensate for the shrinkage deformation of the inner tube, and also avoid the shrinkage stress of the inner tube from concentrating on the connection between the inner tube and the outer tube, resulting in the deformation of the vacuum tube or even the leakage of the vacuum insulation chamber. gas.
  • the above-mentioned deformed folds 201 are annular protrusions that are radially inwardly convex, and an annular groove is formed on the periphery of the annular protrusion.
  • a hoop 5 is provided around the outer periphery of the inner tube 2, so as to hoop the inner tube when the inner tube 2 expands radially outward, reduce the outward expansion deformation of the inner tube 2, and lift the inner tube 2 compressive capacity.
  • the above-mentioned hoop 5 is a high-strength steel ring made of high-strength steel with strong bearing capacity.
  • the hoop 5 is embedded in the annular groove on the periphery of the deformed pleats 201 to limit the position of the hoop 5 by the annular groove and prevent the hoop 5 from moving on the inner tube 2 . It should be noted that, if we directly machine an annular groove on the outer surface of the inner tube 2, even if there is no deformation fold formed in the annular groove, the hoop 5 can still be embedded in the annular groove to fix the hoop 5 position.
  • the collar 5 in a non-groove position of the inner tube 2 .
  • the hoop 5 and the inner tube 2 are bonded and fixed by means of an adhesive, so as to prevent the hoop from moving.
  • the inner tube 2 and the outer tube 1 are both metal tubes, preferably copper tubes, aluminum tubes or steel tubes.
  • the above-mentioned annular protrusions are extruded ribs formed by extrusion on the wall of the inner tube 2—they can be made before or after the inner tube is formed. It is not difficult to understand that the annular extrusion rib integrally processed on the inner tube 2 is a bending structure. Compared with the smooth main part of the metal inner tube 2, the extrusion rib of the bending structure has better Stretch/shrink deformability.
  • an elastic support snap ring 4 is provided in the vacuum insulation chamber 3 to be supported between the outer tube 1 and the inner tube 2 .
  • the above-mentioned elastic support snap ring 4 includes an annular snap ring body, and three inner tube support protrusions 401 which are arranged on the snap ring body and protrude radially inward are provided on the snap ring body , and the three outer tube support protrusions 402 radially outwardly protrude.
  • the aforementioned three inner tube support protrusions 401 are evenly spaced along the circumferential direction of the snap ring body, and the three outer tube support protrusions 402 are also evenly spaced along the circumferential direction of the snap ring body.
  • Each of the inner tube support protrusions 401 is in contact with the outer surface of the inner tube 2 (elastically), and each of the outer tube support protrusions 402 is in contact with the inner surface of the outer tube 1 (elastically).
  • the elastic support snap ring 4 is easier to install and remove. 2
  • the elastic support snap ring 4 can better adapt to the small-sized bending deformation of the inner tube 2 or the outer tube 1 .
  • the elastic support snap ring 4 is an integral structure made of stainless steel sheet, and the inner tube support protrusion 401 and the outer tube support protrusion 402 are integrally formed on the snap ring body. Bend bulge.
  • the thermal conductivity of stainless steel is relatively large.
  • the elastic support snap ring 4 can be covered with a layer of thermal insulation rubber.
  • the soft heat insulating rubber has a protective effect on the inner surface of the inner tube 2 and the inner surface of the outer tube 1, so as to prevent the inner tube and the outer tube from being scratched by the snap ring.
  • the above-mentioned elastic support snap ring 4 can also adopt an integral injection molding structure of polymer material, which has better thermal insulation performance than stainless steel.
  • a stud 7 is provided at one end of the vacuum tube, and an annular outer flange 8 radially outwardly protruding is provided at the other end of the vacuum tube.
  • the annular outer flange 8 at the right end of the left vacuum tube is aligned with the stud 7 at the left end of the right vacuum tube, and a sealing gasket 10 is sandwiched therebetween.
  • the screw sleeve 9 sleeved on the left vacuum tube is threadedly connected with the stud 7 at the left end of the right vacuum tube, and the annular inner flange 901 integrally arranged on the left end of the screw sleeve 9 tightly abuts on one side of the annular outer flange 8 , so as to realize the quick sealing butt joint of the left and right vacuum tubes.
  • the screw sleeve 9 with the annular inner flange 901 is usually sleeved outside the vacuum tube, and then the stud 7 or the annular outer flange 8 is installed.
  • thermal insulation performance of the vacuum insulation structure is excellent, there is still the problem of thermal radiation loss. Therefore, we can coat the outer surface of the inner tube or/and the inner surface of the outer tube with anti-heat radiation coating. And because it is difficult to apply a thermal radiation protection coating on the outer surface of the inner tube or the inner surface of the outer tube, we can also apply a thermal radiation protection coating on the inner surface of the inner tube or the outer surface of the outer tube.
  • Fig. 8 shows the second specific embodiment of the vacuum tube of the present application, which has basically the same structure as the first embodiment, except that:
  • the deformed folds 201 on the inner tube 2 are no longer radially inwardly convex annular protrusions, but radially outwardly convex annular protrusions, and an annular ring is formed on the inner circumference of the radially outwardly convex annular protrusions groove.
  • the deformed folds 201 on the inner tube 2 are radially inwardly convex, so that the flow area of the deformed folds 201 is reduced and the flow resistance is increased.
  • the deformed folds 201 on the inner tube 2 are radially outwardly convex, which eliminates the aforementioned defects.
  • the corresponding annular groove is no longer on the periphery of the annular protrusion, but is located on the inner circumference of the annular protrusion .
  • the annular groove on the inner circumference cannot be used to limit the position of the hoop 5 , and the hoop 5 cannot continue to be arranged on the periphery of the deformed fold 201 . Therefore, in this embodiment, the hoop 5 is directly sleeved on the smooth main section of the inner tube 2 .
  • FIG. 9 shows the third specific embodiment of the vacuum tube of the present application, which has basically the same structure as the first embodiment, the difference is: in this embodiment, a tube wall of the outer tube 1 is integrally arranged around the vacuum tube.
  • the annular deformation wrinkles on the periphery of the axis of the outer tube, for the convenience of description, the deformation wrinkles on the outer tube 1 are referred to as the second deformation wrinkles 101 .
  • the inner tube 2 will be deformed by elongation or contraction when the temperature changes.
  • second deformed folds 101 surrounding the periphery of the axis of the outer tube are integrally provided on the tube wall of the outer tube 1, so that the outer tube 1 can well adapt to the extension of the inner tube 2. Long and shrink deformation, further reducing the possibility of kink deformation or air leakage of the vacuum tube when the temperature changes.
  • the second deformed pleats 101 are annular protrusions radially outwardly convex, and an annular groove is formed on the inner circumference of the annular protrusion. Further, the annular protrusion as the second deformed pleat 101 is specifically an extrusion rib integrally formed on the pipe wall of the outer pipe 1 .
  • the outer tube 1 is easily dented and deformed inward under the action of external force (not to mention that the inner side of the outer tube 1 is in a negative pressure environment), thereby causing the outer tube 1 and the inner tube 2 to abut against a large area
  • the contact makes the heat transfer rapidly between the inner tube and the outer tube, reducing the thermal insulation performance of the vacuum tube.
  • increasing the thickness of the outer tube 1 can solve the aforementioned problems well, it brings various problems such as a lot of materials, high manufacturing cost, and the product is bulky and difficult to move and install.
  • the solution of thickening the outer tube wall is abandoned, and a support ring 6 supported on the inner circumference of the outer tube is arranged in the vacuum insulation chamber 3 to support the outer tube when the outer tube is radially inwardly concave , to improve the deformation resistance of the outer tube.
  • the above-mentioned support ring 6 is embedded in the annular groove on the inner circumference of the second deformation pleat 101 , so as to use the annular groove to limit the position of the support ring 6 and prevent the support ring 6 from moving in the outer tube 1 . It should be noted that, if we directly machine an annular groove on the inner surface of the outer tube 1, even if the second deformation wrinkle is not formed in the annular groove, the support ring 6 can still be embedded in the annular groove to fix the support Ring 6 location.
  • the above-mentioned support ring 6 is also a high-strength steel ring made of high-strength steel and having a strong bearing capacity.
  • the inner tube 2 and the outer tube 1 are both circular steel pipes, and the hoop 5 and the support ring 6 are both circular rings.
  • the respective hoop rings 5 are arranged at equal distances along the length direction of the inner tube 2
  • the respective support rings 6 are arranged at equal distances along the length direction of the outer tube 1 .
  • Fig. 10 shows the fourth specific embodiment of the vacuum tube of the present application, the structure of which is basically the same as that of the vacuum tube in the first embodiment, the difference is that in this embodiment, a connecting flange 11 is respectively provided at both ends of the vacuum tube , using the aforementioned connecting flange 11 to realize the quick connection between the vacuum tube and the vacuum tube, instead of using the stud and the annular outer flange in the first embodiment.
  • the above-mentioned thermal insulation cover 15 is formed by butt jointing of two semi-annular cover bodies 1501, and the two cover bodies 1501 are both polyurethane foams.
  • tongues 1501 a and tongue grooves 1501 b are respectively provided at both ends of each sleeve body 1501 .
  • a hoop 14 is arranged around the heat preservation sleeve 15 to tie the two sleeve bodies together.
  • a rubber sealing ring 18 sandwiched between the thermal insulation jacket 15 and the vacuum tube is provided on the vacuum tube jacket.
  • the inner surface of the sleeve body 1501 is provided with a sealing ring embedding groove 1501c. After the assembly is completed, the aforementioned sealing ring 18 is embedded in the sealing ring embedding groove 1501c.
  • Fig. 19 shows the fifth specific embodiment of the vacuum tube of the present application, and its structure is basically the same as that of the vacuum tube in the first embodiment, except that in this embodiment, a circle of radially outer
  • the convex annular outer flange 8 - the stud 7 at the other end of the vacuum tube is also replaced with an annular outer flange 8 .
  • the vacuum tube of this embodiment has basically the same structure as the second embodiment, and the main difference lies in the structure and installation position of the elastic support snap ring 4:
  • each inner tube supporting protrusion 401 of the elastic support snap ring 4 is provided with a limiting groove 401a, and the annular protrusion on the inner tube 2 is embedded in the limiting groove 401a In order to limit the axial position of the elastic support snap ring 4 in the vacuum tube, the elastic support snap ring 4 is prevented from moving along the length direction of the inner tube 2 .
  • the annular protrusion provided on the wall of the inner tube 2 does not have the ability to absorb deformation, it will not affect the upper limit of the annular protrusion and the inner tube supporting protrusion 401
  • the matching of the position groove 401a defines the axial position of the elastic support snap ring 4 . That is to say, when the annular protrusion of the inner tube 2 is used to define the axial position of the elastic support snap ring 4 with the limiting groove 401a, it is not required that the annular protrusion must be a deformation wrinkle capable of absorbing deformation, it may also be It is a ring that is bonded or welded to the periphery of the inner tube.
  • the structure of the vacuum tube in this embodiment is basically the same as that in the sixth embodiment, and the difference is only in the specific structure of the elastic support snap ring 4:
  • the snap ring body of the elastic support snap ring 4 is composed of a left ring body 4a, a right ring body 4b and a connecting body 4c.
  • the left ring body 4a and the right ring body 4b are separated by a certain distance in the length direction of the inner tube 2, and the connecting body 4c is integrally connected between the left ring body 4a and the right ring body 4b.
  • a part of the inner tube supporting protrusion 401 is formed on the left ring body 4a, a part is formed on the right ring body 4b, and a part is formed on the connecting body 4c.
  • the limiting groove 401a of the inner tube supporting protrusion 401 is specifically formed on the connecting body 4c.
  • the structure of the vacuum tube in this embodiment is basically the same as that of the seventh embodiment, and the clasp body of the elastic support clasp 4 is also composed of the left annular body 4a and the right annular body 4b arranged separately and fixedly connected.
  • the connecting body 4c of the left ring body and the right ring body is constituted. The difference is that:
  • the connecting body 4c is not provided at the inner tube supporting protrusion 401 but is provided at the outer tube supporting protrusion 402 .
  • the space between the left ring body 4a and the right ring body 4b forms a limiting groove 401a.
  • the elastic support snap ring 4 in the sixth embodiment is a ring-shaped structure, and the limiting groove 401a thereon has a certain length dimension.
  • the elastic support snap ring 4 in the ninth embodiment is a ring-shaped steel wire structure with a circular cross-section, and the limiting groove 401a (as well as the inner tube supporting protrusion 401 and the outer tube supporting protrusion 402) are formed by bending the steel wire. However, the length of the limiting groove 401a is almost zero.
  • Fig. 30 shows the tenth specific embodiment of the vacuum tube of the present application, which has basically the same structure as the second embodiment, and the main differences are:
  • the hoop 5 is integrally provided with an annular hoop reinforcing rib 501 located on the outer periphery of the hoop and coaxially arranged with the hoop, as shown in FIGS. 31 and 33 .
  • the hoop reinforcement rib 501 is an extrusion protrusion formed by extruding the hoop 5 , and an extrusion ring groove is formed on the inner circumference of the extrusion protrusion.
  • the hoop 5 with reinforcing ribs on the inner circumference has a higher bearing capacity.
  • a plurality of support rings 6 are provided on the inner periphery of the outer tube 1 to support.
  • an annular spacer reinforcement rib 601 located on the inner circumference of the hoop and arranged coaxially with the support ring is integrally provided on the support ring 6, as shown in FIG. 31 . and Figure 32.
  • the aforementioned expander rib 601 is an extrusion protrusion formed by extruding the expander 6
  • an extrusion ring groove 602 is formed on the outer periphery of the extrusion protrusion.
  • each expander ring 6 has a larger axial dimension than that of the first embodiment.
  • These support rings 6 arranged next to each other are wrapped and positioned by the outer tube 1 , and the outer tube 1 on the periphery mainly plays the role of sealing and positioning the support ring.
  • Fig. 34 shows the eleventh specific embodiment of the vacuum tube of the present application, which has basically the same structure as the tenth embodiment, except that:
  • the support ring reinforcing rib 601 on the support ring 6 is no longer an extruded protrusion with a ring groove on the back side, but a ring rib formed directly on the inner circumference of the support ring during die casting, as shown in FIG. 35 . and Figure 36.
  • the hoop reinforcing rib 501 on the hoop 5 is also no longer an extruded protrusion with a ring groove on the back side, but a ring rib formed directly on the outer periphery of the hoop 5 when the hoop 5 is die-cast, as shown in FIGS. 35 and 37 .
  • both the support ring 6 and the hoop 5 are provided with outwardly protruding annular reinforcing ribs, it is difficult to install the elastic support snap ring 4 into the vacuum insulation chamber. In the eleventh embodiment, it is better not to configure the elastic support snap ring 4 .
  • the outwardly convex deformation folds on the inner tube increase the maximum outer diameter of the inner tube.
  • the outer tube needs to be enlarged. Therefore, the overall diameter of the vacuum tube becomes larger, which is not only bulky, but also increases the material and production costs.
  • the twelfth embodiment provides a vacuum tube, the vacuum tube has a first end and a second end oppositely arranged in the length direction, wherein the first end is shown in FIG. 39 .
  • the right end of the middle vacuum tube, and the second end is the left end of the vacuum tube in Figure 39.
  • the vacuum tube includes an inner tube 2, an outer tube 1, and a vacuum insulation chamber 3 formed between the inner tube and the outer tube.
  • the inner tube 2 has a third end at the aforementioned first end and a fourth end at the aforementioned second end.
  • the outer tube 1 is arranged around the inner tube 2 and has a fifth end at the aforementioned first end and a sixth end at the aforementioned second end.
  • the third end of the inner tube 2 is the right end of the inner tube in FIG. 39
  • the fourth end of the inner tube 2 is the left end of the inner tube in FIG. 39
  • the fifth end of the outer tube 1 That is, the right end of the outer tube in FIG. 39
  • the aforementioned sixth end of the outer tube 1 is also the left end of the outer tube in FIG. 39 .
  • Two first folding rings 202 are integrally provided on the tube wall of the inner tube 2 , and the two first folding rings 202 are radially outwardly protruding structures surrounding the periphery of the axis of the inner tube 2 .
  • a part of the tube wall of the inner tube 2 is radially outwardly convex to form the aforementioned first folding ring 202 .
  • “folding ring” is the abbreviation of "bent ring”.
  • the aforementioned first fold can be obtained by applying mechanical force (eg, squeezing) to the inner tube wall.
  • the "folding ring” in this embodiment is equivalent to the "deformation pleat" in the above-mentioned various embodiments, and they have basically the same structure and function.
  • end such as “first end”, “second end”, “third end”, “fourth end”, “fifth end”, “sixth end” “End” is not limited to the end face of the evacuated tube or the inner or outer tube, but also includes the non-end portion near the end face. Generally, 20% of the length extending inward from the end face of the tube body belongs to the end of the tube body.
  • intermediate pipe section and “main pipe section” have the same meaning, and both refer to the non-end pipe section of the pipe body.
  • the outer convex ring 101 has better axial deformation ability.
  • the first fold ring 202 on the tube wall shrinks to absorb the expansion and deformation of the inner tube 2 in the length direction, thereby preventing the expansion stress of the inner tube from being concentrated at the connection between the inner tube and the outer tube.
  • the vacuum tube is bent and deformed, and even the vacuum insulation chamber 3 leaks.
  • the first fold ring 202 on the tube wall is stretched to compensate for the shrinkage and deformation of the inner tube 2 in the longitudinal direction, and also to avoid the shrinkage stress of the inner tube from being concentrated at the connection between the inner tube and the outer tube and causing the vacuum tube Bending deformation or even leakage of vacuum insulation chamber 3.
  • the first folded ring 202 of such an outwardly convex structure does not have a part that protrudes into the inner pipe pipeline obviously, so it will neither reduce the flow area of the inner pipe 2 nor increase the flow resistance of the inner pipe 2 .
  • the radially outwardly convex first fold ring 202 will be closer to the inner wall of the outer tube 1, thereby increasing the connection between the inner tube 2, especially the first fold ring 202 on the inner tube and the outer tube 1. Risk of tube 1 contact with heat conduction.
  • the above-mentioned two first folding rings 202 are both disposed at the third end of the inner tube 2 . That is, the two first folds for absorbing and compensating the axial deformation of the inner tube 2 are provided on the right end of the inner tube 2 in FIG.
  • each first fold ring 202 that absorbs and compensates for deformation and protrudes radially outwards is all disposed on the end of the inner tube 2, not on the main section of the inner tube 2, so it is only necessary to correspondingly enlarge the outer tube 1
  • the inner diameter of the end of the outer The diameter of the main pipe section can better ensure the isolation between the inner pipe 2 and the outer pipe 1 on the main pipe section of the vacuum tube.
  • a first flared portion 102 that expands radially outward is provided on the tube wall of the fifth end of the outer tube 1 , and the two first folding rings 202 are all accommodated in the first flared portion 102 , and is arranged in isolation from the first flared portion 102 .
  • the first flared portion 102 is an integral part of the outer tube 1 , and may be an integral structure with the outer tube body, or may be a structure that is separately connected (eg welded) to the outer tube body.
  • the first fold ring 202 is arranged at the position of the first flared portion 102 at the end of the outer tube. While solving the problem of axial expansion and contraction of the vacuum tube, especially the inner tube, there is no need to set too much space between the main section of the inner tube and the main section of the outer tube. clearance to accommodate the fold ring.
  • the inner diameter of the main section of the outer pipe can be set to a smaller value.
  • the curvature increases, and its ability to resist radial pressure is improved, so the radial thickness h of the main pipe section of the outer pipe can also be further reduced, thereby further reducing the unit length of the outer pipe main body. material.
  • the first end of the vacuum tube is provided with the third end of the inner tube 2 and the outer tube 1 .
  • the fifth end of the vacuum tube is fixedly connected to the first pipe joint 18
  • the second end of the vacuum tube is provided with a second pipe joint 19 fixedly connected to the fourth end of the inner pipe 2 and the sixth end of the outer pipe 1 .
  • the first pipe joint 18 and the second pipe joint 19 are both annular structures, and the two are adapted to each other.
  • the so-called mutual matching means that the first pipe joint 18 can be connected with the second pipe joint 19 on another vacuum tube directly or by means of conventional connecting parts (such as bolts).
  • all parts of the first pipe joint 18 are arranged on the third end of the inner pipe 2. peripheral.
  • the outer diameters of the two first folding rings 202 are both designed to be larger than the inner diameter of the middle pipe section of the outer pipe 1 .
  • the larger outer diameter design of the first folding ring 202 further enhances its ability to absorb and compensate for axial deformation, so that a smaller number of first folding rings 202 can be provided, and a small number of first folding rings 202 arranged centrally is more convenient.
  • the production of the vacuum tube is helpful for shortening the length of the first flared portion 102 .
  • the first pipe joint 18 and the second pipe joint 19 whose two ends of the vacuum tank are matched with each other are flange plates.
  • the axial outer end face is provided with a threaded hole 1801 extending inward in the longitudinal direction of the vacuum tube.
  • the flange plate serving as the second pipe joint 19 has a through hole 1901 extending in the longitudinal direction of the vacuum tube formed therethrough.
  • the threaded hole 1801 is a blind hole, and the through hole 1901 can be a threaded hole or a smooth hole.
  • the left and right vacuum tubes are fixedly connected by bolts 12 locked into the first tube joint 18 of the left vacuum tube and the second tube joint 19 of the right vacuum tube respectively.
  • the first pipe joint 18 and the second pipe joint 19 can also adopt other structures, such as the structure shown in FIG. 42 : the first pipe joint 18 includes an externally threaded sleeve 1802 extending axially outward, and the second pipe joint 19 includes an internally threaded sleeve 1902 that is rotatable and mates with the aforementioned externally threaded sleeve.
  • the inner threaded sleeve 1902 by rotating the inner threaded sleeve 1902 on the right vacuum tube, the inner threaded sleeve 1902 bites into the outer threaded sleeve 1802 of the left vacuum tube to realize the fixed connection of the left and right vacuum tubes.
  • pipe joints are usually integrated at the end of the pipe.
  • the outer diameter of the pipe joint is generally larger than the outer diameter of the pipe body, so an obvious enlarged structure will be formed at the end of the pipe, as shown in Figure 38.
  • This embodiment makes full use of the space near the swollen structure that already exists, and skillfully places the first folding ring 202 of the vacuum tube in the vicinity of the aforementioned swollen structure. Increase the size, cost and manufacturing difficulty of the vacuum tube.
  • first folding rings 202 are centrally arranged at the end of the vacuum tube, especially the inner tube, and a flared structure is provided at the corresponding end of the outer tube 1, which also makes the production of the vacuum tube more feasible.
  • the inner tube 2 and the outer tube 1 are only fixed at both ends, when the length of the vacuum tube is large and the tube is filled with fluid, the inner tube 2 is easy to bend downward under the action of its own gravity and internal fluid gravity.
  • the aforementioned bending deformation of the inner tube 2 will not only lead to the deformation of the entire vacuum tube, but also easily cause the inner tube 2 and the outer tube 1 to abut on a large area, reducing the thermal insulation capability of the vacuum tube. Therefore, in the present embodiment, a plurality of elastic support snap rings 4 supported between the outer tube 1 and the inner tube 2 are provided in the vacuum insulation chamber 3 .
  • the elastic support snap ring 4 is preferably a plastic material with low thermal conductivity.
  • FIG. 43 shows the thirteenth embodiment of the vacuum tube of the present application, which has basically the same structure as that of the twelfth embodiment, and the only difference is that only one first folding ring 202 is provided in the thirteenth embodiment.
  • Figures 44 to 47 show the fourteenth embodiment of the vacuum tube of the present application, which has basically the same structure as the twelfth embodiment, the main difference is: the fourteenth embodiment except that the third end of the inner tube 2 is arranged In addition to the two first folding rings 202, two second folding rings 203 are also provided at the other end of the inner tube 2, that is, the fourth end.
  • the second fold ring 203 has the same structure as the first fold ring 202 , and is also a radially outwardly convex structure integrally formed on the wall of the inner tube 2 and surrounding the periphery of the axis of the inner tube 2 .
  • the length of the vacuum tube is relatively large, it will be difficult to completely absorb/compensate the expansion and contraction deformation of the inner tube if only one or two folded rings are arranged on the inner tube 2 . Therefore, in this embodiment, four folded rings, two first folded rings 202 and two second folded rings 203 , are arranged on the wall of the inner tube 2 . If all the four folding rings are arranged at the same end of the inner tube 2, the length of the flared portion of the outer tube needs to be increased correspondingly, which not only increases the difficulty of manufacturing the vacuum tube, but also does not make full use of the other end of the vacuum tube. space. Therefore, in this embodiment, the four folding rings are respectively arranged at both ends of the vacuum tube.
  • a second flared portion 103 is provided at the sixth end of the outer tube 1 .
  • the second flared portion 103 at the sixth end of the outer tube 1 accommodates all the above-mentioned two second folding rings 203 in its interior, and the second folding rings 203 are arranged in isolation from the second flared portion 103 .
  • the first fold ring 202 and the second fold ring 203 on the vacuum tube are symmetrical, and the first flared portion 102 and the second flared portion 103 are symmetrical. Therefore, the vacuum tube, especially the vacuum tube, can be understood with reference to the description of the first embodiment above. The detailed structure of the two ends is not repeated here.
  • the second difference between the fourth embodiment and the above-mentioned first embodiment is that the threaded holes on the first pipe joint 18 are replaced with smooth through holes without threads.
  • the flange plates on the two vacuum tubes are fixedly connected by means of bolts 12 and nuts 13 that cooperate with each other, as shown in Figure 46 and Figure 47 .
  • FIG. 48 shows the fifteenth embodiment of the vacuum tube of the present application, which has basically the same structure as that of the fourteenth embodiment, except that only one first fold ring 202 and one second fold ring 203 are respectively provided.
  • Figures 49 to 51 show the sixteenth embodiment of the vacuum tube of the present application, which has basically the same structure as the twelfth embodiment, except that:
  • the first pipe joint 18 and the second pipe joint 19 at both ends of the vacuum tube in this embodiment adopt the same structure as that shown in FIG. 42 : the first pipe joint 18 includes an externally threaded sleeve 1802 extending axially outward, and the second pipe joint 19 An internally threaded sleeve 1902 is included that is rotatable and mates with the aforementioned externally threaded sleeve.
  • Fig. 49 by rotating the inner threaded sleeve 1902 on the right vacuum tube, the inner threaded sleeve 1902 is threadedly fastened to the outer threaded sleeve 1802 of the left vacuum tube, so as to realize the fixed connection of the left and right vacuum tubes .
  • the outer peripheral surfaces of the first pipe joint 18 and the female threaded sleeve 1902 are both set as polygonal outer peripheral surfaces that are convenient for fixing by installation tools such as wrenches. , specifically an octagonal outer peripheral surface, as shown in Figure 50 and Figure 51.
  • first folding rings 202 are disposed on the vacuum tube of this embodiment.
  • the vacuum tube provided in the seventeenth embodiment has basically the same structure as the sixteenth embodiment, and the main differences are:
  • a suction valve 20 that is fluidly connected to the vacuum insulation chamber 3 is installed on the outer pipe 1 .
  • the exhaust valve 20 allows the gas in the vacuum insulation chamber 3 to be discharged to the outside, but prevents the gas in the surrounding environment from entering the vacuum insulation chamber 3 through the exhaust valve 20 . In this way, when the vacuum degree of the vacuum insulation chamber 3 decreases and the heat preservation performance of the vacuum tube is significantly reduced, the vacuum insulation chamber 3 can be evacuated by the vacuuming device connected with the air extraction valve 20 .
  • the above-mentioned air suction valve 20 is specifically installed at the axial inner end of the first flared portion 102 , that is, the end of the first flared portion 102 close to the central portion of the outer tube in the axial direction.
  • a raised space separated from the ground is easily formed between the largest radial portion and the smallest radial portion of the first flared portion 102, and the air extraction valve 20 is just arranged in this raised space, reducing the The possibility of damage to the exhaust valve due to contact with the ground during use.

Abstract

一种真空管,包括:外管(1),设于外管(1)内部、且其两端分别与外管(1)的两端固定连接的内管(2),以及形成于外管(1)和内管(2)之间的真空隔热腔(3);内管(2)包括一体设置于内管(2)管壁上、且环绕在内管(2)轴线外围的环形的变形褶皱(201)。

Description

真空管 技术领域
本申请涉及一种真空管。
背景技术
在家庭用水和房屋供暖中会大量使用到保温水管作为热水的供应管道。为了保证热水的供应效率和减少能耗,保温水管需要具有较佳的保温隔热性能,以减少热水在供热水管中的热量散失,提高供热效率,降低供热的成本。
传统保温水管通常都采用低导热系数的保温材料尤其是为保温塑料制作,而塑料类保温水管的保温性能远小于真空保温结构。并且塑料管的承压能力远小于金属管。
真空保温杯、真空保温罐在市场上比较常见,而真空保温结构的水管或气管却没能在市场上流行,主要原因包括:
1、真空管制作工艺复杂,制作成本高。
2、与真空杯和真空罐不同的是,真空管为细长结构,当真空管处于寒冷环境且管内流体温度较高时,内管扩张,外管收缩,二者的反向变形(尤其是长度方向的反向变形)使得真空管极易弯曲形变,进而导致内、外管大面积接触,降低了真空管的保温能力,甚至导致内、外管连接处的密封结构被破坏,使真空结构完全丧失。
发明内容
本申请为了解决上述技术问题中的至少之一,提出一种结构巧妙且保温性能优异的真空管。
本申请的技术方案是:
第一方面,本申请提出一种真空管,包括:
外管,
设于所述外管内部、且其两端分别与所述外管的两端固定连接的内管,以及
以及形成于所述外管和所述内管之间的真空隔热腔;
所述内管包括一体设置于该内管管壁上、且环绕在该内管轴线外围的环形的变形褶皱。
一种可选的设计中,所述变形褶皱是径向内凸的环形凸起,所述环形凸起的外围形成有环形凹槽,所述环形凹槽中嵌有箍于所述内管外的箍环。
一种可选的设计中,所述变形褶皱是径向外凸的环形凸起,所述环形凸起的内周形成有环形凹槽。
一种可选的设计中,所述内管为金属管,所述环形凸起是一体形成于所述内管管壁上的 挤压凸筋。
一种可选的设计中,所述真空隔热腔中设有支撑于所述外管和所述内管之间弹性支撑卡环。
一种可选的设计中,所述弹性支撑卡环包括:
环形的卡环本体,
设于所述卡环本体上、且径向内凸的至少两个内管支撑凸起,以及
设于所述卡环本体上、且径向外凸的至少两个外管支撑凸起;
所述至少两个内管支撑凸起沿着所述卡环本体的环周方向间隔布置,所述至少两个外管支撑凸起沿着所述卡环本体的环周方向间隔布置;
所述内管支撑凸起与所述内管的外表面抵接,所述外管支撑凸起与所述外管的内表面抵接。
一种可选的设计中,所述内管支撑凸起上设有限位槽,所述环形凸起嵌入所述限位槽中。
一种可选的设计中,所述卡环本体包括:
在所述内管的长度方向上间隔布置的左环体和右环体,以及
连接所述左环体和所述右环体的连接体。
一种可选的设计中,所述左环体与所述右环体的间隔空隙形成所述限位槽;或者,所述限位槽形成于所述连接体上
第二方面,本申请提出一种真空管,包括:
外管,
设于所述外管内部的内管,以及
以及形成于所述外管和所述内管之间的真空隔热腔;
所述外管包括一体设置于该外管管壁上、且环绕在该外管轴线外围的变形褶皱。
第三方面,本申请提出一种真空管,具有在其长度方向上相对布置的第一端和第二端,所述真空管包括:
内管,其具有位于所述第一端处的第三端和位于所述第二端处的第四端;
外管,其设于所述内管外围,并且具有位于所述第一端处的第五端和位于所述第二端处的第六端;
真空隔热腔,其形成于所述内管和所述外管之间;以及
至少一个第一折环,所述至少一个第一折环中的每一个均为一体形成于所述内管的管壁上、且环绕于所述内管的轴线外围的径向外凸结构;
所述至少一个第一折环中的每一个均设置于所述第三端。
所述第一端设置有与所述第三端和所述第五端固定连接的环形的第一管接头,所述第二端设置有与所述第四端和所述第六端固定连接、且与所述第一管接头相适配的环形的第二管接头。
所述第五端的外管管壁上设置有径向外扩的第一扩口部,所述至少一个第一折环中的每一个均收容于所述第一扩口部内部、并与所述第一扩口部隔离布置。
一种可选的设计中,所述第一管接头的所有部分都布置于所述第三端的外围,所述至少一个第一折环中的每一个的外径均大于所述外管的中间管段的内径。
一种可选的设计中,所述真空管还包括至少一个第二折环,所述至少一个第二折环中的每一个均为一体形成于所述内管的管壁上、且环绕于所述内管的轴线外围的径向外凸结构,所述至少一个第二折环中的每一个均设置于所述第四端。
一种可选的设计中,所述外管的所述第六端的管壁上设置有径向外扩的第二扩口部,所述至少一个第二折环中的每一个均收容于所述第二扩口部内部、并与所述第二扩口部隔离布置。
一种可选的设计中,所述第一扩口部的轴向内侧端安装有与所述真空隔热腔流体连接的抽气阀。
本申请至少具有如下有益效果:
1.根据本申请第一方面或第二方面提出的真空管,其采用真空保温结构,并在真空管的内管或外管上一体设置环形的变形褶皱。一方面,提升了管的隔热保温性能。另一方面,变形褶皱能够吸收和释放内管在其长度方向伸缩变形,防止真空管受温度影响而弯曲变形甚至真空隔热腔漏气。
2.根据本申请第三方面提出的真空管,将吸收和补偿变形且径向外凸的各个折环全部设置于内管的端部,而非内管的主管段上,所以只需要对应地加大外管的端部内径,以保证其与内侧折环相互隔开即可,无需增大外管主管段的管径,外管的主管段管径只需略大于内管的主管段管径,便能较好地保证该真空管主管段上的内管与外管的隔离性。从而有助于在不减小真空管通流能力的情况下,缩减真空管的管径。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本申请的一些实施例,而非对本申请的限制。
图1是本申请实施例一中真空管的立体示意图。
图2是本申请实施例一中真空管的轴向剖示图。
图3是本申请实施例一中的真空管的径向剖示图。
图4是本申请实施例一中弹性支撑卡环的立体结构示意图。
图5是本申请实施例一中两根真空管的对接示意图。
图6是图5中两真空管的对接处的剖视图。
图7是本申请实施例一中真空管在螺套滑移至管段中部时的立体示意图。
图8是本申请实施例二中真空管的轴向剖示图。
图9是本申请实施例三中真空管的轴向剖示图。
图10是本申请实施例四中真空管的立体示意图。
图11是本申请实施例四中两根真空管的第一种对接示意图。
图12是图10中两真空管的对接处的放大图。
图13是本申请实施例四中两根真空管的第二种对接示意图。
图14是图13的局部结构剖视图。
图15是图13中保温套的分解图。
图16是图13中抱箍的结构示意图。
图17是本申请实施例四中两根真空管的第三种对接示意图。
图18是图17中卡簧的结构示意图。
图19是本申请实施例五中真空管的立体示意图。
图20是本申请实施例五中两根真空管的对接示意图。
图21是图20中两真空管的对接处的剖示图。
图22是本申请实施例六中真空管的内部结构示意图。
图23是本申请实施例六中弹性支撑卡环的结构示意图。
图24是本申请实施例七中真空管的内部结构示意图。
图25是本申请实施例七中弹性支撑卡环的结构示意图。
图26是本申请实施例八中真空管的内部结构示意图。
图27是本申请实施例八中弹性支撑卡环的结构示意图。
图28是本申请实施例九中真空管的内部结构示意图。
图29是本申请实施例九中弹性支撑卡环的结构示意图。
图30是本申请实施例十中真空管的剖视图。
图31是图30的X1部放大图。
图32是本申请实施例十中撑环的立体结构示意图。
图33是本申请实施例十中箍环的立体结构示意图。
图34是本申请实施例十一中真空管的剖视图。
图35是图34的X2部放大图。
图36是本申请实施例十一中撑环的立体结构示意图。
图37是本申请实施例十一中箍环的立体结构示意图。
图38是本申请实施例十二中真空管的立体结构示意图。
图39是本申请实施例十二中真空管的轴向剖视示意图。
图40是本申请实施例十二中两个真空管对接后的轴向剖视示意图。
图41是本申请实施例十二中两个真空管对接后的立体结构示意图。
图42是本申请实施例十三提供的两个另一结构的真空管对接后的轴向剖视示意图;
图43是本申请实施例十三中真空管的轴向剖视示意图。
图44是本申请实施例十四中真空管的立体结构示意图。
图45是本申请实施例十四中真空管的轴向剖视示意图。
图46是本申请实施例十四中两个真空管对接后的轴向剖视示意图。
图47是本申请实施例十四中两个真空管对接后的立体结构示意图。
图48是本申请实施例十五中真空管的轴向剖视示意图。
图49是本申请实施例十六中两个真空管对接后的轴向剖视示意图。
图50是图49的A-A向剖视图。
图51是图49的B-B向剖视图。
图52是本申请实施例十七中两个真空管对接后的轴向剖视示意图。
附图标记说明:
1-外管,2-内管,3-真空隔热腔,4-弹性支撑卡环,5-箍环,6-撑环,7-螺柱,8-环形外凸缘,9-螺套,10-密封垫圈,11-连接法兰,12-螺栓,13-螺母,14-抱箍,15-保温套,16-密封圈,17-卡簧,18-第一管接头,19-第二管接头,20-抽气阀;
101-第二变形褶皱,102-第一折环,103-第二折环,201-变形褶皱,202-第一扩口部,203-第二扩口部,4a-左环体,4b-右环体,4c-连接体,401-内管支撑凸起,401a-限位槽,402-外管支撑凸起,501-箍环加强筋,601-撑环加强筋,602-挤压环槽,901-环形内凸缘,1501-套体,1501a-榫舌,1501b-榫槽,1501c-密封圈嵌槽,1801-螺纹孔,1802-外螺纹套筒,1901-通孔,1902-内螺纹套筒。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创 造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。可以理解,在不冲突的情况下,本文所描述的各个实施例的一些技术手段可相互替换或结合。
在本申请说明书和权利要求书的描述中,若存在术语“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。由此,限定有“第一”、“第二”等的对象可以明示或者隐含地包括一个或者多个该对象。并且,“一个”或者“一”等类似词语,不表示数量限制,而是表示存在至少一个,“多个”表示不少于两个。
在本申请说明书和权利要求书的描述中,若存在术语“连接”、“安装”、“固定”、“收容”等,如无特别说明,均应做广义理解。例如,“连接”可以是分体连接,也可以是一体地连接;可以是直接相连,也可以是通过中间媒介间接相连;可以是不可拆卸地连接,也可以是可拆地连接。又例如,“收容”并不一定表示整体完全收容,该概念还包括一部分突出于外部的部分收容情况。对于本领域的技术人员而言,可以根据具体情况理解前述术语在本申请中的具体含义。
<实施例一>
图1至图4示出了本申请真空管的一个具体实施例,其包括外管1,设于外管内部的内管2,形成于外管和内管之间的真空隔热腔3。内管2两端与外管1两端固定连接。
如果该真空管用于输送高温流体,因内管2与流体直接接触温度较高。内管与外管之间为隔热性能优异的真空隔热腔3,所以内管2的热量难以传至外管1,进而导致内管2的温度远高于外管1。而在实际应用中,时常出现内管2中流体温度高低变化、以及管内流体断流现象,这就导致内管2的温度变化范围可达一百甚至几百摄氏度。根据热胀冷缩,内管2在高温和低温时的尺寸尤其是其轴向尺寸具有明显的差别。处于内管2外围的外管1则不受内部流体温度的影响,基本维持在一固定值,所以外管1不会产生明显的变形。内管2的大尺寸变形不仅造成该真空管整体扭折形变,而且会出现内管和外管连接处的密封结构被破坏、真空隔热腔漏气的问题。
如果该真空管用于输送超低温流体,如液化天然气,同样存在上述问题。当该真空管既用于输送高温流体,又用于输送低温流体,上述问题更加凸显。
基于上述考虑,本实施例在内管2的管壁上一体设置了环绕在该内管轴线外围的环形的变形褶皱201。变形褶皱201为内管2管壁的一部分。
内管2温度升高时,其管壁上的变形褶皱201收缩以吸收内管的膨胀变形,从而防止内管的膨胀应力集中在内管和外管的连接处导致真空管变形甚至真空隔热腔漏气。内管2温度降低时,其管壁上的变形褶皱201伸展以补偿内管的收缩变形,同样避免内管的收缩应力集中在内管和外管的连接处导致真空管变形甚至真空隔热腔漏气。
当该真空管长度较大时,仅在内管2上设置一个变形褶皱201将难以全部吸收/释放内管的伸缩变形,故而本实施例在内管2的管壁上一共设置了多个变形褶皱201,并且这些变形褶皱201沿着内管2的长度方向等距间隔排布。
进一步地,上述变形褶皱201是径向内凸的环形凸起,而且环形凸起的外围形成一圈环形凹槽。
当内管2温度较高或者内管内部流体压力较大时,会产生向外扩张的径向变形,更何况内管2外围为低压的真空环境。如果这种扩张变形过大,将导致内管2与外管1大面积贴靠,使得热量在内管和外管之间快速传递,显著降低该真空管的保温性能。基于此,本实施例设置了箍在该内管2外围的箍环5,以在内管2径向外扩时箍住内管,减小内管2的外扩变形量,提升内管2的抗压能力。
上述箍环5是高强度钢材质的、具有强承压能力的高强度钢环。
进一步地,本实施例将上述箍环5嵌装在变形褶皱201外围的环形凹槽中,以利用环形凹槽限定箍环5的位置,防止箍环5在内管2上活动。需要说明的是,如果我们直接在内管2的外表面加工出环形凹槽,即便该环形凹槽处没有形成变形褶皱,仍然可以将箍环5嵌于该环形凹槽中,以固定箍环5的位置。
当然,我们也可以将箍环5布置在内管2的非凹槽位置。这时,最好借助粘接剂将箍环5与内管2粘接固定,以防止箍环活动。
本实施例中,内管2和外管1均为金属管,优选铜管、铝管或钢管。上述环形凸起是在内管2管壁上挤压形成的挤压凸筋——可在内管成型前或成型后制作。不难理解,在内管2管壁上一体加工出的环形的挤压凸筋为弯折结构,相比于金属内管2平滑的主体部分,弯折结构的挤压凸筋具有更优的伸/缩变形能力。
如果内管2和外管1只在两端位置固定,当该真空管长度较大且管内充满流体时,内管2在自身重力和内部流体重力的作用下易向下弯曲变形。内管2的前述弯曲变形不但会导致整个真空管的变形,而且容易造成内管与外管大面积贴靠,降低真空管的保温能力。鉴于此,本实施例在真空隔热腔3中设置了支撑于外管1和内管2之间弹性支撑卡环4。
如图3和图4所示,上述弹性支撑卡环4包括环形的卡环本体,设于卡环本体上、且径向内凸的三个内管支撑凸起401,设于卡环本体上、且径向外凸的三个外管支撑凸起402。前述三个内管支撑凸起401沿着卡环本体的环周方向均匀间隔布置,三个外管支撑凸起402也沿着所述卡环本体的环周方向均匀间隔布置。各个内管支撑凸起401与内管2的外表面(弹性)抵接,各个外管支撑凸起402与外管1的内表面(弹性)抵接。
内管2和外管1之间的真空腔采用弹性件而非钢性件支撑是有利的:①弹性支撑卡环4 更易安装和拆除。②弹性支撑卡环4能够更好地适应内管2或外管1的小尺寸弯曲变形。
如果内管支撑凸起401与内管2、外管支撑凸起402与外管1的接触面积较大,热量会快速地在内管和外管之间传递,从而导致该真空水管保温性能明显降低。基于此,我们可以合理设置内管支撑凸起401和外管支撑凸起402的结构,以使得内管支撑凸起401与内管2的外表面线性接触,外管支撑凸起402与外管1的内表面线性接触。
在本实施例中,该弹性支撑卡环4是以不锈钢片为原料加工而成的整体式结构,上述内管支撑凸起401和外管支撑凸起402均为一体形成于卡环本体上的折弯凸起。
不锈钢的导热系数较大,为了避免热量经该弹性支撑卡环4在内管2和外管1之间快速传递,可以在弹性支撑卡环4外包覆一层隔热橡胶。并且,柔软的隔热橡胶对内管2的内表面和外管1的内表面具有保护作用,避免内管和外管被卡环划伤。
当然,上述弹性支撑卡环4也可以采用高分子材料的整体注塑结构,相比于不锈钢,其具有更优的隔热保温性能。
当该真空管的长度很大时,仅设置一个弹性支撑卡环4显然不够。基于此,本实施一共设置了多个弹性支撑卡环4,并且这些弹性支撑卡环4沿着该真空管的长度方向间隔排布。
此外,为了方便真空管与真空管的快速连接,本实施例在该真空管一端设置一螺柱7,在真空管另一端设置一圈径向外凸的环形外凸缘8。参照图5和图6所示,实际应用时,将左侧真空管右端的环形外凸缘8与右侧真空管左端的螺柱7对齐、并在二者之间夹设密封垫圈10。套在左侧真空管上的螺套9与右侧真空管左端部的螺柱7螺纹连接,一体设置于螺套9左端部的环形内凸缘901紧紧抵靠在环形外凸缘8的一侧,从而实现左、右两根真空管的快速密封对接。
在制作该真空管时,通常先将带有环形内凸缘901的螺套9套于真空管外,再安装螺柱7或环形外凸缘8。
虽然真空保温结构的隔热性能极佳,但仍然存在热辐射丢温问题。故我们可在内管的外表面或/和外管的内表面均涂覆防热辐射涂层。又因为在内管外表面或外管内表面涂覆防热辐射涂层难以实施,所以我们也可以在内管内表面或外管外表面涂覆防热辐射涂层。
<实施例二>
图8示出了本申请这种真空管的第二个具体实施例,其具有与实施例一基本相同的结构,不同之处在于:
本实施例中,内管2上的变形褶皱201不再是径向内凸的环形凸起,而是径向外凸的环形凸起,径向外凸环形凸起的内周形成有一圈环形凹槽。
这是因为:实施例一中内管2上变形褶皱201径向内凸,使得变形褶皱201部位的流通 面积减小,流阻增大。而本实施例中内管2上的变形褶皱201径向外凸,消除了前述缺陷。
因为内管2上的变形褶皱201由实施例一的径向内凸改为径向外凸,所以与之对应的环形凹槽不再处于环形凸起的外围,而处于环形凸起的内周。内周的环形凹槽显然不能用于限制箍环5的位置,箍环5无法继续布置在变形褶皱201外围。故而,本实施例将箍环5直接套设在内管2的平滑的主管段上。
<实施例三>
图9示出了本申请这种真空管的第三个具体实施例,其具有与实施例一基本相同的结构,不同之处在于:本实施例在外管1的管壁上一体设置了环绕在该外管轴线外围的环形的变形褶皱,为方便描述,将外管1上的变形褶皱称为第二变形褶皱101。
前已述及,内管2在温度变化时会产生伸长或收缩变形。本实施例在实施例一的基础上,于外管1的管壁上一体设置环绕在该外管轴线外围的第二变形褶皱101,从而使得外管1能够很好地适应内管2的伸长和收缩变形,进一步减小真空管在温度变化时发生扭折形变或漏气的可能性。
上述第二变形褶皱101也设有多个,各个第二变形褶皱沿着外管1的长度方向等距间隔排布。
本实施例中,第二变形褶皱101是径向外凸的环形凸起,环形凸起的内周形成一圈环形凹槽。进一步地,作为第二变形褶皱101的环形凸起具体是一体形成于外管1管壁上的挤压凸筋。
如果该真空管的直径达一米以上,那么外管1在外力作用下(更何况外管1内侧为负压环境)极易向内凹陷变形,进而导致外管1与内管2大面积贴靠接触,使得热量在内管和外管之间快速传递,降低该真空管的保温性能。虽然增加外管1的厚度可以很好地解决前述问题,但随之带来诸如用料多、制作成本高、产品笨重难以移动和安装等各种问题。鉴于此因,本实施例舍弃了加厚外管管壁的方案,而是在真空隔热腔3中布置了支撑在外管内周的撑环6,以在外管径向内凹时撑住外管,提升外管的抗变形能力。
进一步地,本实施例将上述撑环6嵌装在第二变形褶皱101内周的环形凹槽中,以利用环形凹槽限定撑环6的位置,防止撑环6在外管1内活动。需要说明的是,如果我们直接在外管1的内表面加工出环形凹槽,即便该环形凹槽处没有形成第二变形褶皱,仍然可以将撑环6嵌于该环形凹槽中,以固定撑环6的位置。
当然,我们也可以将撑环6布置在外管1的非凹槽位置。这时,最好借助粘接剂将撑环6与外管1粘接固定,以防止撑环活动。
上述撑环6也是高强度钢材质的、具有强承压能力的高强度钢环。
在本实施例中,内管2和外管1都是圆形钢管,箍环5和撑环6均为圆环。各个箍环5沿着内管2的长度方向等距布置,各个撑环6沿着外管1的长度方向等距布置。
需要说明的是,因为内管2与外管1在两端位置已固定连接,且内管管壁已具有变形褶皱结构,即便不在外管1上设置变形褶皱,该真空管受温度变化而产生的破坏性变形微乎其微。同理,如果仅在外管管壁设置变形褶皱结构,即便不在内管管壁设置变形褶皱,该真空管受温度变化而产生的破坏性变形量微乎其微。
<实施例四>
图10示出了本申请这种真空管的第四个具体实施例,其结构与实施例一中真空管的结构基本相同,区别在于:本实施例在真空管的两端分别设置了一个连接法兰11,利用前述连接法兰11实现真空管与真空管的快速对接,而未采用实施例一中的螺柱和环形外凸缘。
如图11和图12所示,实际应用时,将左侧真空管右端的连接法兰11与右侧真空管左端的连接法兰11对齐,并在这两个连接法兰11之间夹设密封垫圈10。螺栓12依次穿过两个连接法兰11的螺栓孔与螺母13锁紧。
图11和图12中两真空管连接处无真空隔热结构,是管道系统的隔热薄弱处。为了提升两真空管连接处的保温能力,如图13至图15所示,本实施例在两管连接处包裹设置保温套15。
上述保温套15由两个半环形的套体1501对接形成,这两个套体1501均为聚氨酯泡沫。
为方便上述两个套体1501的对接固定,本实施例在每个套体1501的两端分别设置有榫舌1501a和榫槽1501b。装配时,先在套体1501的榫舌1501a涂布粘结剂,然后将各个套体的榫舌分别插入另一套体1501的榫槽1501b内,使这两个套体1501相互对接固定。
仅仅依靠榫舌1501a和榫槽1501b的插接配合以及粘结剂的粘结力,仍存在两套体相互分离的可能性。基于此因,本实施例在保温套15外围设置了将这两个套体箍在一起的抱箍14。
我们可以将上述抱箍14替换成弹性卡簧17,如图17和图18所示,相比于用螺栓调节松紧度的抱箍14,卡簧17的安装和拆除更加方便。当然,我们也可以采用诸如绳带、钢丝等其他紧固件加强两个半环形套体1501的连接。
为了提升保温套15与真空管之间的密封性,防止水进入保温套15和真空管之间的空隙,本实施例在真空管外套设了夹在保温套15和真空管之间的橡胶材质的密封圈18。
进一步地,套体1501的内表面设置了密封圈嵌槽1501c,装配完成后,前述密封圈18嵌于密封圈嵌槽1501c中。
<实施例五>
图19示出了本申请这种真空管的第五个具体实施例,其结构与实施例一中真空管的结构基本相同,区别在于:本实施例在真空管的两端分别设置了一圈径向外凸的环形外凸缘8——真空管另一端的螺柱7也替换为环形外凸缘8。
如图20和图21所示,实际应用时,将左侧真空管右端的环形外凸缘8与右侧真空管左端的环形外凸缘8对齐,并在这两个环形外凸缘8之间夹设密封垫圈。然后用抱在这两个环形外凸缘8外围的抱箍14将左、右两根真空管密封对接。本实施例中抱箍14与上述实施例四中用于箍紧保温套的抱箍结构不同。
<实施例六>
本实施例的真空管具有与实施例二基本相同的结构,主要不同在于弹性支撑卡环4的结构和安装位置:
如图22和图23所示,在本实施例中,弹性支撑卡环4的每个内管支撑凸起401上都设置有限位槽401a,内管2上的环形凸起嵌入限位槽401a中,以限定弹性支撑卡环4在该真空管内的轴向位置,防止弹性支撑卡环4沿着内管2长度方向移动。
得益于弹性支撑卡环4的弹性变形特性,在制作该真空管时,人们能够十分方便地将弹性支撑卡环4装至内、外管之间,并使卡环上的限位槽401a与内管上外凸的环形凸起相互嵌合到位。
需要说明的是,在本申请的一些其他实施例中,即便内管2管壁上设置的环形凸起不具备吸收变形的能力,并不会影响该环形凸起与内管支撑凸起401上限位槽401a的配合,以限定弹性支撑卡环4的轴向位置。也就是说,在利用内管2的环形凸起限定带有限位槽401a的弹性支撑卡环4的轴向位置时,并不要求该环形凸起必需是能够吸收变形的变形褶皱,其也可以是粘接或焊接在内管外围的圆环。
<实施例七>
参照图24和图25所示,本实施例真空管的结构与实施例六基本相同,区别仅在于弹性支撑卡环4的具体结构:
在本实施例中,弹性支撑卡环4的卡环本体由左环体4a、右环体4b和连接体4c构成。前述左环体4a和右环体4b在内管2长度方向上隔开一定距离,连接体4c一体连接于左环体4a和右环体4b之间。
进一步地,内管支撑凸起401的一部分形成于左环体4a上,一部分形成于右环体4b上,还有一部分形成于连接体4c上。内管支撑凸起401的限位槽401a具体形成于连接体4c上。
<实施例八>
参照图26和图27所示,本实施例真空管的结构与实施例七基本相同,其弹性支撑卡环 4的卡环本体也由隔开布置的左环体4a和右环体4b以及固定连接左环体和右环体的连接体4c构成。区别在于:
本实施例中,连接体4c并没有设置在内管支撑凸起401处,而是设置在了外管支撑凸起402处。左环体4a与右环体4b之间的间隔空隙形成了限位槽401a。
<实施例九>
参照图28和图29所示,本实施例真空管的结构与实施例六相似,主要区别在于:
实施例六中的弹性支撑卡环4为环片状结构,其上的限位槽401a具有一定的长度尺寸。而本实施例九中的弹性支撑卡环4是截面为圆形的环形钢丝结构,其上的限位槽401a(以及内管支撑凸起401和外管支撑凸起402通过对钢丝进行折弯而形成,该限位槽401a的长度几乎为零。
<实施例十>
图30示出了本申请这种真空管的第十个具体实施例,其具有与实施例二基本相同的结构,主要区别在于:
本实施例中,箍环5上一体设置了位于该箍环外周、且与该箍环同轴布置的环形的箍环加强筋501,如图31和图33。箍环加强筋501是通过对箍环5挤压加工而形成的挤压凸起,挤压凸起的内周形成有挤压环槽。相比于实施例二中的箍环,内周带有加强筋的箍环5具有更高的承压能力。
此外,本实施例也同实施三那样在外管1的内周支撑设置有许多撑环6。不同的是,为了提升撑环6的承压能力,本实施例在撑环6上一体设置了位于箍环内周、且与撑环同轴布置的环形的撑环加强筋601,如图31和图32。前述撑环加强筋601是通过对撑环6挤压加工而形成的挤压凸起,挤压凸起的外周形成有挤压环槽602。
并且,本实施例的撑环6设有许多个,每个撑环6都具有比实施例一更大的轴向尺寸,这些撑环6沿着外管1的轴线方向依次紧挨排布。这些相互紧挨布置的撑环6由外管1包裹定位,外围的外管1主要起到密封以及定位撑环的作用。
<实施例十一>
图34示出了本申请这种真空管的第十一个具体实施例,其具有与实施例十基本相同的结构,不同之处在于:
本实施例中,撑环6上的撑环加强筋601不再是背侧带有环槽的挤压凸起,而是在压铸撑环时直接形成于其内周的环筋,如图35和图36。
箍环5上的箍环加强筋501也不再是背侧带有环槽的挤压凸起,而是在压铸箍环5时直接形成于其外周的环筋,如图35和图37。
因为上述实施例十和实施例十一中撑环6和箍环5上都带有外凸的环形加强筋,所以弹性支撑卡环4难以装至真空隔热腔中,故而上述实施例十和实施例十一最好不要配置弹性支撑卡环4。
<实施例十二>
然而,在上述各个实施例中,特别是实施例二和实施例十中,其内管上外凸的变形褶皱增大了内管的最大外径,为了保证前述间隙,则需加大外管的管径,从而导致真空管的整体管径变大,既笨重,又增加了材料和制作成本。
为了解决上述问题,请参照图38至图41,本实施例十二提供了一种真空管,该真空管具有在其长度方向上相对布置的第一端和第二端,其中第一端为图39中真空管的右端,第二端为图39中真空管的左端。该真空管包括内管2、外管1、形成于内管和外管之间的真空隔热腔3。内管2具有位于前述第一端处的第三端和前述第二端处的第四端。外管1设于内管2外围,其具有位于前述第一端处的第五端和位于前述第二端处的第六端。在本实施例中,内管2的前述第三端也即图39中内管的右端,内管2的前述第四端也即图39中内管的左端,外管1的前述第五端也即图39中外管的右端,外管1的前述第六端也即图39中外管的左端。内管2的管壁上一体设置有两个第一折环202,这两个第一折环202均为环绕于该内管2的轴线外围的径向外凸结构。内管2的一部分管壁径向外凸而形成前述第一折环202。其中,“折环”为“弯折的环”的简称。在一些实施例中,可通过对内管管壁施以机械力(如挤压)而获得前述第一折环。本实施例中的“折环”相当于上述各个实施例中的“变形褶皱”,它们具有基本相同的结构和作用。
在本申请的描述中,所谓“端”,比如“第一端”、“第二端”、“第三端”、“第四端”、“第五端”、“第六端”中的“端”,并不局限于真空管或内管或外管的端面,其也包括靠近端面的非端面部分。一般来说,自管体的端面向内延伸的20%长度段都属于管体的端部。
在本申请的描述中,所谓“中间管段”、“主管段”,具有相同的含义,二者均是指管体的非端部管段。
可以理解,相比于内管2的平直管段部分,外凸的折环101具有更好的轴向变形能力。
内管2温度升高时,其管壁上的第一折环202收缩以吸收内管2在长度方向上的膨胀变形,从而防止内管的膨胀应力集中在内管和外管的连接处导致该真空管弯曲变形甚至真空隔热腔3漏气。内管2温度降低时,其管壁上的第一折环202伸展以补偿内管2在长度方向上的收缩变形,同样避免内管的收缩应力集中在内管和外管的连接处导致真空管弯曲变形甚至真空隔热腔3漏气。
这种外凸结构的第一折环202不存在明显伸入内管管道的部分,故而既不会减小内管2的流通面积,也不会增加内管2的流阻。不过,相比于内管2的平直部分,径向外凸的第一折环202会更加靠近外管1的内壁,从而增加了内管2特别是内管上第一折环202与外管1接触导热的风险。
鉴于此,本实施例将上述两个第一折环202均设置于内管2的第三端。即,吸收和补偿内管2轴向变形的两个第一折环均设置于内管2在图39中的右端,而非内管2的主管段(或称中间管段)上。
本实施例将吸收和补偿变形且径向外凸的各个第一折环202全部设置于内管2的端部,而非内管2的主管段上,所以只需要对应地加大外管1的端部内径,以保证其与内侧第一折环202相互隔开即可,无需特别增大外管1主管段的管径,外管1的主管段管径只需略大于内管2的主管段管径,便能较好地保证该真空管主管段上的内管2与外管1的隔离性。
由此,本实施例在外管1的第五端的管壁上设置了径向外扩的第一扩口部102,上述两个第一折环202全部收容于该第一扩口部102的内部、并与该第一扩口部102隔离布置。第一扩口部102为外管1的组成部分,其与外管本体可以是一体式结构,也可以是分体地连接于(如焊接)外管本体上的结构。
将第一折环202设置在外管端部的第一扩口部102位置,在解决真空管尤其是内管轴向伸缩问题的同时,内管主管段与外管主管段之间不需要设置过大的间隙来容纳折环。外管主管段内径可以较小的设置,单位长度用料的简略计算公式,P=0.25*π*D 2*h,其中D是外管主管段内径,h是外管主管段径向厚度,在厚度不变的前提下,单位长度用料P可以有较大比例的减小。并且,由于外管主管段内径减小,曲率增大,其抵抗径向压力的能力提升,因此外管主管段的径向厚度h也可以进一步减小,从而进一步减少外管主体的单位长度用料。
如图39并参考图38、图40和图41所示,为了便于多根真空管之间的对接,本实施例在该真空管的第一端设置了与内管2的第三端以及外管1的第五端固定连接的第一管接头18,在该真空管的第二端设置了与内管2的第四端以及外管1的第六端固定连接的第二管接头19。第一管接头18和第二管接头19均为环形结构,二者相互适配。所谓相互适配,是指:第一管接头18能够与另一根真空管上的第二管接头19直接或借助常规连接件(如螺栓)对接。
本实施例中,为了防止第一管接头18的结构或位置减小了内管2特别是内管第三端的流通面积,第一管接头18的所有部分都布置于内管2的第三端的外围。
可以理解,在内管2尺寸不变的情况下,第一折环202的外径越大,或称高度越大,能够补偿内管变形的能力越强。由此,本实施例将两个第一折环202外径均设计为大于外管1的中间管段的内径。第一折环202较大的外径设计,使其吸收和补偿轴向变形的能力进一步 提升,从而可设置较少数量的第一折环202,少量且集中布置的第一折环202更便于该真空管的生产制作,有助于缩短第一扩口部102的长度。
本实施例中,该真空罐两端相互匹配的上述第一管接头18和第二管接头19为法兰板。其中,作为第一管接头18的法兰板,其轴向外端面开设有在该真空管的长度方向上向内延伸的螺纹孔1801。作为第二管接头19的法兰板,其上贯通开设有在该真空管的长度方向上延伸的通孔1901。其中,螺纹孔1801为盲孔,通孔1901可以是螺纹孔,也可以是光滑孔。在实际应用时,如图40,左、右两个真空管借助分别锁入左侧真空管的第一管接头18和右侧真空管的第二管接头19的螺栓12固定连接。
第一管接头18和第二管接头19也可以采用其他结构,例如图42所示的这种结构:第一管接头18包括轴向向外伸出的外螺纹套筒1802,第二管接头19包括可旋转的且与前述外螺纹套筒相适配的内螺纹套筒1902。在图42中,通过转动右侧真空管上的内螺纹套筒1902,使该内螺纹套筒1902咬入左侧真空管的外螺纹套筒1802,实现左、右两个真空管的固定连接。
为方便管与管的连接,通常会在管的端部集成管接头。而管接头的外径一般都会大于管本体的外径,故而会在管端部形成明显的膨大结构,如图38。本实施例充分利用原本就存在的膨大结构附近的空间,巧妙地将真空管的第一折环202集中设置在前述膨大结构附近,并在该膨大部位对外管1作扩口处理,不会明显地增加真空管的尺寸、成本及制作难度。
此外,在管-管对接后,在对接处也会形成明显的膨大对接部,如图40和图41。所以在实际应用中,人们通常会在应用场景中(如地下)预留好用于容纳前述膨大对接部的空间。虽然本实施例真空管的外管在折环位置进行了扩口处理,不过在安装时无需为该扩口部分专门设置容纳空间,方便了真空管在应用场景中的安装。
另外,将第一折环202集中布置在真空管尤其是内管的端部,并于对应的外管1端部设置扩口结构,也使得真空管的生产制作更加切实可行。
如果内管2和外管1只在两端位置固定,当该真空管长度较大且管内充满流体时,内管2在自身重力和内部流体重力的作用下易向下弯曲变形。内管2的前述弯曲变形不但会导致整个真空管的变形,而且容易造成内管2与外管1大面积贴靠,降低真空管的保温能力。由此,本实施例在真空隔热腔3中设置了支撑于外管1和内管2之间的多个弹性支撑卡环4。弹性支撑卡环4优选导热系数低的塑料材质。
<实施例十三>
图43示出了本申请真空管的第十三个实施例,其具有与实施例十二基本相同的结构,区别仅在于:本实施例十三只设置有一个第一折环202。
<实施例十四>
图44至图47示出了本申请真空管的第十四个实施例,其具有与实施例十二基本相同的结构,主要区别在于:本实施例十四除了在内管2的第三端设置了两个第一折环202之外,还在内管2的另一端也即第四端还设置了两个第二折环203。
第二折环203具有与第一折环202相同的结构,也是一体形成于内管2的管壁上、且环绕于内管2的轴线外围的径向外凸结构。
当真空管长度较大时,在内管2上仅设置一个或两个折环将难以全部吸收/补偿内管的伸缩变形。故而本实施例在内管2管壁上设置了四个折环——两个第一折环202和两个第二折环203。如果将这四个折环全部设置在内管2的同一端,需要对应地较多地增加外管扩口部的长度,这不仅增加了真空管的制作难度,而且并没有充分利用真空管另一端的空间。故而,本实施例将这四个折环分别设置在真空管的两端。
对应地,本实施例在外管1的第六端设置了第二扩口部103。外管1第六端的第二扩口部103将上述两个第二折环203全部收容于其内部,并且第二折环203与该第二扩口部103隔离布置。该真空管上的第一折环202与第二折环203对称,第一扩口部102与第二扩口部103对称,故可结合上述实施例一的描述来理解该真空管尤其是该真空管第二端的详细结构,在此不作赘述。
本实施例四与上述实施例一的第二个区别在于:第一管接头18上的螺纹孔被替换成了不带螺纹的光滑通孔。利用相互配合的螺栓12和螺母13将两个真空管上的法兰板固定连接,如图46和图47。
<实施例十五>
图48示出了本申请真空管的第十五个实施例,其具有与实施例十四基本相同的结构,区别仅在于:第一折环202和第二折环203分别设置仅一个。
<实施例十六>
图49至图51示出了本申请真空管的第十六个实施例,其具有与实施例十二基本相同的结构,区别在于:
本实施例真空管两端的第一管接头18和第二管接头19采用了与图42相同的结构:第一管接头18包括轴向向外伸出的外螺纹套筒1802,第二管接头19包括可旋转的且与前述外螺纹套筒相适配的内螺纹套筒1902。在图49中,通过转动右侧真空管上的内螺纹套筒1902,使该内螺纹套筒1902螺纹紧固于左侧真空管的外螺纹套筒1802上,实现左、右两个真空管的固定连接。
并且,为了方便内螺纹套筒1902与外螺纹套筒1802的旋转对接,本实施例将第一管接 头18和内螺纹套筒1902的外周面均设置成便于扳手等安装工具固定的多边形外周面,具体为八边形外周面,如图50和图51。
此外,本实施例的真空管上一共配置了三个第一折环202。
<实施例十七>
如图52所示,本实施例十七提供的真空管具有与实施例十六基本相同的结构,主要区别在于:
本实施例在外管1上安装了与真空隔热腔3流体连接的抽气阀20。该抽气阀20允许真空隔热腔3中的气体向外排出,但阻止周围环境中的气体经该抽气阀20进入真空隔热腔3。如此,可在真空隔热腔3的真空度下降而使得该真空管保温性能明显降低时,通过与抽气阀20连接的抽真空设备对真空隔热腔3抽真空。
在搬运时,真空管外管不可避免会与地面发生拖动和转动,安装在外管上的抽气阀20易触碰地面而损坏。鉴于此,本实施例将上述抽气阀20具体安装在第一扩口部102的轴向内侧端,即第一扩口部102在轴向方向上靠近外管中心部分的一端。在搬运时,第一扩口部102的最大径向部分与最小径向部分之间容易形成与地面隔开的抬起空间,抽气阀20恰好布置在该抬起空间内,减小了在使用过程中抽气阀因与地面接触而损坏的可能。

Claims (17)

  1. 一种真空管,包括:
    外管(1),
    设于所述外管内部、且其两端分别与所述外管的两端固定连接的内管(2),以及
    以及形成于所述外管和所述内管之间的真空隔热腔(3);
    其特征在于,所述内管(2)包括一体设置于该内管管壁上、且环绕在该内管轴线外围的环形的变形褶皱(201)。
  2. 根据权利要求1所述的真空管,其特征在于,所述变形褶皱(201)是径向内凸的环形凸起,所述环形凸起的外围形成有环形凹槽,所述环形凹槽中嵌有箍于所述内管外的箍环(5)。
  3. 根据权利要求1所述的真空管,其特征在于,所述变形褶皱(201)是径向外凸的环形凸起,所述环形凸起的内周形成有环形凹槽。
  4. 根据权利要求2或3所述的真空管,其特征在于,所述内管(2)为金属管,所述环形凸起是一体形成于所述内管(2)管壁上的挤压凸筋。
  5. 根据权利要求1或2或3所述的真空管,其特征在于,所述真空隔热腔(3)中设有支撑于所述外管(1)和所述内管(2)之间弹性支撑卡环(4)。
  6. 根据权利要求5所述的真空管,其特征在于,所述弹性支撑卡环(4)包括:
    环形的卡环本体,
    设于所述卡环本体上、且径向内凸的至少两个内管支撑凸起(401),以及
    设于所述卡环本体上、且径向外凸的至少两个外管支撑凸起(402);
    所述至少两个内管支撑凸起(401)沿着所述卡环本体的环周方向间隔布置,所述至少两个外管支撑凸起(402)沿着所述卡环本体的环周方向间隔布置;
    所述内管支撑凸起(401)与所述内管(2)的外表面抵接,所述外管支撑凸起(402)与所述外管(1)的内表面抵接。
  7. 根据权利要求6所述的真空管,其特征在于,当权利要求5引用权利要求3时,所述内管支撑凸起(401)上设有限位槽(401a),所述环形凸起嵌入所述限位槽(401a)中。
  8. 根据权利要求7所述的真空管,其特征在于,所述卡环本体包括:
    在所述内管(2)的长度方向上间隔布置的左环体(4a)和右环体(4b),以及
    连接所述左环体和所述右环体的连接体(4c)。
  9. 根据权利要求8所述的真空管,其特征在于,所述左环体(4a)与所述右环体(4b)的间隔空隙形成所述限位槽(401a);或者,所述限位槽(401a)形成于所述连接体(4c)上。
  10. 一种真空管,包括:
    外管(1),
    设于所述外管内部的内管(2),以及
    以及形成于所述外管和所述内管之间的真空隔热腔(3);
    其特征在于,所述外管(1)包括一体设置于该外管管壁上、且环绕在该外管轴线外围的变形褶皱。
  11. 一种真空管,具有在其长度方向上相对布置的第一端和第二端,所述真空管包括:
    内管(2),其具有位于所述第一端处的第三端和位于所述第二端处的第四端;
    外管(1),其设于所述内管外围,并且具有位于所述第一端处的第五端和位于所述第二端处的第六端;
    真空隔热腔(3),其形成于所述内管和所述外管之间;以及
    至少一个第一折环(202),所述至少一个第一折环(202)中的每一个均为一体形成于所述内管(2)的管壁上、且环绕于所述内管(2)的轴线外围的径向外凸结构;
    其特征在于,所述至少一个第一折环(202)中的每一个均设置于所述第三端。
  12. 如据权利要求11所述的真空管,其特征在于,所述第一端设置有与所述第三端和所述第五端固定连接的环形的第一管接头(18),所述第二端设置有与所述第四端和所述第六端固定连接、且与所述第一管接头相适配的环形的第二管接头(19)。
  13. 如据权利要求11或12所述的真空管,其特征在于,所述第五端的外管管壁上设置有径向外扩的第一扩口部(102),所述至少一个第一折环(202)中的每一个均收容于所述第一扩口部(102)内部、并与所述第一扩口部(102)隔离布置。
  14. 如据权利要求13所述的真空管,其特征在于,所述第一管接头(18)的所有部分都布置于所述第三端的外围,所述至少一个第一折环(202)中的每一个的外径均大于所述外管(1)的中间管段的内径。
  15. 如据权利要求11或12所述的真空管,其特征在于,所述真空管还包括至少一个第二折环(203),所述至少一个第二折环(203)中的每一个均为一体形成于所述内管(2)的管壁上、且环绕于所述内管(2)的轴线外围的径向外凸结构,所述至少一个第二折环(203)中的每一个均设置于所述第四端。
  16. 如据权利要求15所述的真空管,其特征在于,所述外管(1)的所述第六端的管壁上设置有径向外扩的第二扩口部(103),所述至少一个第二折环(203)中的每一个均收容于所述第二扩口部(103)内部、并与所述第二扩口部(103)隔离布置。
  17. 如据权利要求13所述的真空管,其特征在于,所述第一扩口部(102)的轴向内侧端安装有与所述真空隔热腔(3)流体连接的抽气阀(20)。
PCT/CN2022/071194 2021-01-14 2022-01-11 真空管 WO2022152100A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110045538.4A CN112377725A (zh) 2021-01-14 2021-01-14 真空管
CN202110045538.4 2021-01-14
CN202110654537.X 2021-06-11
CN202110654537.XA CN113339616A (zh) 2021-06-11 2021-06-11 一种真空管

Publications (1)

Publication Number Publication Date
WO2022152100A1 true WO2022152100A1 (zh) 2022-07-21

Family

ID=82447949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071194 WO2022152100A1 (zh) 2021-01-14 2022-01-11 真空管

Country Status (1)

Country Link
WO (1) WO2022152100A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986495U (ja) * 1982-12-02 1984-06-11 日本鋼管株式会社 伸縮性断熱配管
US20050011573A1 (en) * 2003-07-14 2005-01-20 American Boa, Inc. Flexible liner air gap pipe
CN201363512Y (zh) * 2009-03-12 2009-12-16 闫万河 真空绝热高温管道
CN101799102A (zh) * 2010-03-31 2010-08-11 益科博能源科技(上海)有限公司 真空绝热管道及其制造方法
CN101813230A (zh) * 2010-03-31 2010-08-25 益科博能源科技(上海)有限公司 热传输介质管道及其制造方法
CN203189960U (zh) * 2013-01-28 2013-09-11 湖北守能真空科技有限公司 真空绝热管
CN203671146U (zh) * 2013-12-06 2014-06-25 安徽科达洁能股份有限公司 保温管道
CN104373759A (zh) * 2014-11-04 2015-02-25 王文杰 一种长距离真空绝热输送管道
CN104508396A (zh) * 2012-08-01 2015-04-08 株式会社丰田自动织机 太阳热集热管
CN206555635U (zh) * 2017-02-10 2017-10-13 鲁西新能源装备集团有限公司 一种低温绝热真空管
CN206723693U (zh) * 2017-05-02 2017-12-08 北京智耐博科技有限公司 一种真空绝热管道
CN210196798U (zh) * 2019-06-19 2020-03-27 成都科瑞尔低温设备有限公司 一种低温真空管道
CN112377725A (zh) * 2021-01-14 2021-02-19 上海兴邺材料科技有限公司 真空管
CN112555524A (zh) * 2021-01-14 2021-03-26 上海兴邺材料科技有限公司 真空保温管
CN113339616A (zh) * 2021-06-11 2021-09-03 上海兴邺材料科技有限公司 一种真空管
CN214999917U (zh) * 2021-01-14 2021-12-03 上海兴邺材料科技有限公司 一种耐压真空管
CN215000230U (zh) * 2021-01-14 2021-12-03 上海兴邺材料科技有限公司 管道

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986495U (ja) * 1982-12-02 1984-06-11 日本鋼管株式会社 伸縮性断熱配管
US20050011573A1 (en) * 2003-07-14 2005-01-20 American Boa, Inc. Flexible liner air gap pipe
CN201363512Y (zh) * 2009-03-12 2009-12-16 闫万河 真空绝热高温管道
CN101799102A (zh) * 2010-03-31 2010-08-11 益科博能源科技(上海)有限公司 真空绝热管道及其制造方法
CN101813230A (zh) * 2010-03-31 2010-08-25 益科博能源科技(上海)有限公司 热传输介质管道及其制造方法
CN104508396A (zh) * 2012-08-01 2015-04-08 株式会社丰田自动织机 太阳热集热管
CN203189960U (zh) * 2013-01-28 2013-09-11 湖北守能真空科技有限公司 真空绝热管
CN203671146U (zh) * 2013-12-06 2014-06-25 安徽科达洁能股份有限公司 保温管道
CN104373759A (zh) * 2014-11-04 2015-02-25 王文杰 一种长距离真空绝热输送管道
CN206555635U (zh) * 2017-02-10 2017-10-13 鲁西新能源装备集团有限公司 一种低温绝热真空管
CN206723693U (zh) * 2017-05-02 2017-12-08 北京智耐博科技有限公司 一种真空绝热管道
CN210196798U (zh) * 2019-06-19 2020-03-27 成都科瑞尔低温设备有限公司 一种低温真空管道
CN112377725A (zh) * 2021-01-14 2021-02-19 上海兴邺材料科技有限公司 真空管
CN112555524A (zh) * 2021-01-14 2021-03-26 上海兴邺材料科技有限公司 真空保温管
CN214999917U (zh) * 2021-01-14 2021-12-03 上海兴邺材料科技有限公司 一种耐压真空管
CN215000230U (zh) * 2021-01-14 2021-12-03 上海兴邺材料科技有限公司 管道
CN113339616A (zh) * 2021-06-11 2021-09-03 上海兴邺材料科技有限公司 一种真空管

Similar Documents

Publication Publication Date Title
CN206682459U (zh) 一种高真空多层绝热管道用平面法兰接头
CN106322014A (zh) 一种卡箍式变径管道连接装置
CN103968179B (zh) 新型塑料管道补偿器
CN112555524A (zh) 真空保温管
WO2022152100A1 (zh) 真空管
CN214274755U (zh) 真空保温管
CN214999917U (zh) 一种耐压真空管
CN112793941A (zh) 一种真空罐
CN201599526U (zh) 套筒式塑料管道补偿器
CN112377725A (zh) 真空管
CN215000230U (zh) 管道
CN113339616A (zh) 一种真空管
CN112682620A (zh) 真空管接头
CN202612933U (zh) 双卡槽内衬卡箍
CN214999916U (zh) 一种真空管
CN203223677U (zh) 可伸缩曲挠的法兰管件
CN215488308U (zh) 一种真空管
WO2016188407A1 (zh) 一种伸缩流体管
CN214274932U (zh) 真空管接头
CN219388992U (zh) 一种环卡密封式波纹补偿连接金属管件
CN214197463U (zh) 真空保温阀门
CN206299929U (zh) 大口径缠绕结构壁排污管道
CN211738335U (zh) 煤粉管道专用挠性联接器
KR200325953Y1 (ko) 배관용 파이프의 이음관 결합구조
CN109084096B (zh) 管件和管组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738980

Country of ref document: EP

Kind code of ref document: A1