WO2022152099A1 - 一种真空保温罐 - Google Patents

一种真空保温罐 Download PDF

Info

Publication number
WO2022152099A1
WO2022152099A1 PCT/CN2022/071193 CN2022071193W WO2022152099A1 WO 2022152099 A1 WO2022152099 A1 WO 2022152099A1 CN 2022071193 W CN2022071193 W CN 2022071193W WO 2022152099 A1 WO2022152099 A1 WO 2022152099A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
heat preservation
tank
vacuum heat
outer shell
Prior art date
Application number
PCT/CN2022/071193
Other languages
English (en)
French (fr)
Inventor
高峰
刘在祥
陈艳凤
蔡园丰
王兵
牛争艳
Original Assignee
上海兴邺材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110045703.6A external-priority patent/CN112744471A/zh
Priority claimed from CN202110045700.2A external-priority patent/CN112722586A/zh
Application filed by 上海兴邺材料科技有限公司 filed Critical 上海兴邺材料科技有限公司
Publication of WO2022152099A1 publication Critical patent/WO2022152099A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/04Linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/08Integral reinforcements, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask

Definitions

  • the present application relates to a vacuum heat preservation tank.
  • the vacuum tank used to store liquids, especially water is mainly composed of an outer shell, an inner tank, and a vacuum insulation cavity formed between the outer shell and the inner tank. It has excellent thermal insulation performance and can store high-temperature or low-temperature liquids for a long time. , especially water.
  • the weak part of vacuum tank insulation lies in its filling opening.
  • the larger the volume of the vacuum tank the lower the heat loss rate.
  • a large-volume vacuum tank that is also full of hot water (or cold water) has obvious advantages in thermal insulation.
  • the volume of the traditional vacuum tank is generally small, because the inner tank of the traditional vacuum tank is suspended and fixed in the outer shell, while the outer shell and inner tank of the large-volume vacuum tank are large in size. Under the action of gravity of a large amount of liquid inside, the top of the shell (suspension joint) is easily collapsed and deformed, so that the shell and the inner tank are in close contact and the thermal insulation performance of the tank is reduced.
  • the water storage capacity is 7t, and if the height is increased to 10m, the vacuum water storage capacity is 70t. If the traditional structure of the vacuum tank is for small-tonnage water storage, the inner tank can be suspended and connected to the outer shell through its top, but when large-tonnage water is stored, the strength of the suspension connection between the inner tank and the top of the outer shell is not enough to support the inner tank and the outer shell. water weight.
  • the tank cavity of the traditional vacuum tank is also difficult to withstand high pressure. This is because when there is high pressure inside the vacuum tank, the inner tank is easy to expand and deform outwards, so that the inner tank and the outer shell are abutted to conduct heat and reduce the thermal insulation performance of the tank. In addition, when the fixtures are stored in the tank cavity of the traditional vacuum tank, the inner tank is easily deformed or even damaged due to the action of the internal fixtures. Although increasing the thickness of the liner can solve the aforementioned problems, it brings various problems such as a lot of materials, high production cost, poor roundness of the liner, and the tank is bulky and difficult to move.
  • the present application proposes a vacuum heat preservation tank, which has long-term and stable heat preservation performance.
  • the application proposes a vacuum insulation tank, comprising:
  • a hoop which is fixedly sleeved on the periphery of the inner tank is arranged in the vacuum insulation chamber.
  • the inner pot is a revolving body
  • the hoop is a circular ring arranged coaxially with the revolving body.
  • the hoop is integrally provided with a hoop reinforcing rib located on the outer periphery of the hoop and arranged coaxially with the hoop.
  • a heat insulating support member supported between the outer shell and the inner container and located at the outer bottom of the inner container is arranged in the vacuum insulation chamber.
  • the hoops are provided with at least three rings, and each hoop is arranged next to each other from the bottom of the liner to the top of the liner along the axis of the liner. .
  • a ring sleeve is provided in the tank mouth on the top of the vacuum heat preservation tank, and the outer shell and the inner tank are respectively fixedly connected to the ring sleeve.
  • the top of the outer shell and the top of the inner tank are respectively provided with flanging holes for upward flanging.
  • the flanges are welded and fixed with the ring sleeve respectively.
  • a vacuum insulation tank comprising:
  • a support ring supported on the inner circumference of the outer shell is arranged in the vacuum insulation chamber.
  • the housing is a rotary body
  • the support ring is a circular ring arranged coaxially with the rotary body
  • the expander ring is integrally provided with a expander ring reinforcing rib located on the inner circumference of the expander ring and arranged coaxially with the expander ring.
  • the expansion ring reinforcing rib is an extrusion protrusion formed by extruding the expansion ring, and an extrusion ring groove is formed on the outer periphery of the extrusion protrusion.
  • At least three expansion rings are provided, and the respective expansion rings are arranged in sequence from the inner bottom of the outer casing to the inner top of the outer casing along the axial direction of the outer casing.
  • an extrusion convex ring arranged coaxially with the rotary body and radially outwardly convex is extruded on the shell wall of the outer casing, and the inner circumference of the extruded convex ring is formed with an extruded convex ring.
  • an extrusion ring groove, and the support ring is embedded in the extrusion ring groove.
  • a heat insulating support member supported between the outer shell and the inner container is arranged in the vacuum heat insulating chamber.
  • a ring sleeve is provided in the tank mouth on the top of the vacuum heat preservation tank, the top of the outer shell and the top of the inner tank are respectively provided with flanging holes that are turned upward, and the outer shell is turned up.
  • the flanging of the side hole and the flanging of the flanging hole on the inner pot are respectively welded and fixed with the ring sleeve.
  • a hoop ring covering the inner bladder is arranged in the vacuum insulation chamber, so as to hoop the inner bladder when the inner bladder is radially expanded, and improve the internal resistance of the inner bladder.
  • the pressure capability keeps the inner tank and the outer shell at a certain distance, so as to prevent the two from contacting each other and conduct heat quickly, so that the vacuum tank has a long-term and stable thermal insulation performance, and the thickness of the inner tank does not need to be large.
  • a support ring supported on the inner circumference of the outer casing is arranged in the vacuum insulation chamber, so as to support the outer casing when the outer casing is radially concave, and improve the deformation resistance of the outer casing , so that the outer shell and the inner tank are always kept at a certain distance, so as to prevent the two from contacting each other and conducting rapid heat conduction, so that the vacuum tank has a long-term and stable thermal insulation performance, and the thickness of the outer shell does not need to be large.
  • FIG. 1 is a front view of the vacuum heat preservation tank in the first embodiment of the present application.
  • FIG. 2 is a cross-sectional view of the vacuum heat preservation tank in the first embodiment of the present application.
  • FIG. 3 is an enlarged view of part X1 in FIG. 2 .
  • FIG. 4 is an enlarged view of the portion X2 in FIG. 2 .
  • FIG. 5 is an enlarged view of part X3 in FIG. 2 .
  • FIG. 6 is a front view of the vacuum heat preservation tank in the second embodiment of the present application.
  • FIG. 7 is a cross-sectional view of the vacuum heat preservation tank in the second embodiment of the present application.
  • FIG. 8 is an enlarged view of the portion X4 in FIG. 7 .
  • FIG. 9 is a cross-sectional view of the vacuum heat preservation tank in the third embodiment of the present application.
  • FIG. 10 is an enlarged view of part X5 in FIG. 9 .
  • FIG. 11 is a schematic three-dimensional structural diagram of a spacer in the third embodiment of the present application.
  • FIG. 12 is a schematic three-dimensional structure diagram of the hoop in the third embodiment of the present application.
  • FIG. 13 is a cross-sectional view of the vacuum heat preservation tank in the fourth embodiment of the present application.
  • FIG. 14 is an enlarged view of part X6 in FIG. 13 .
  • FIG. 15 is a schematic three-dimensional structure diagram of a spacer in the fourth embodiment of the present application.
  • FIG. 16 is a schematic three-dimensional structure diagram of the hoop in the fourth embodiment of the present application.
  • FIG. 17 is a cross-sectional view of the vacuum heat preservation tank in the fifth embodiment of the present application.
  • FIG. 18 is an enlarged view of part X7 in FIG. 17 .
  • FIG. 19 is a cross-sectional view of the vacuum heat preservation tank in the sixth embodiment of the present application.
  • FIG. 20 is an enlarged view of part X8 in FIG. 19 .
  • FIGS 1 to 5 show a specific embodiment of the vacuum insulation tank of the present application, which includes some conventional vacuum insulation tanks: an outer shell 1, an inner tank 2 arranged in the outer shell, formed in the outer shell and the inner tank vacuum insulated chamber 3 between.
  • the top of the vacuum insulation tank is provided with a small-diameter tank mouth 6, and the outer shell 1 and the inner tank 2 are made of stainless steel.
  • the size of the outer shell 1 is large. Under the action of external force (not to mention that the inner side of the outer casing 1 is a negative pressure environment), the outer casing 1 is easily dented and deformed inward, which in turn causes the outer casing 1 and the inner tank 2 to be in close contact with a large area, so that the heat is quickly transferred between the inner tank and the outer casing. , reduce the thermal insulation performance of the tank.
  • increasing the thickness of the casing 1 can solve the aforementioned problems well, it brings various problems such as a lot of materials, high manufacturing cost, and the tank is bulky and difficult to move.
  • the roundness of the shell will be deteriorated, and the pressure-bearing capacity of the finally formed shell 1 will be weakened.
  • the solution of increasing the thickness of the casing 1 is abandoned, but a support ring supported on the inner circumference of the casing 1 is arranged in the vacuum insulation chamber 3, so as to support the casing when the casing 1 is radially inwardly concave and lift the Deformation resistance of the shell.
  • the casing 1 in this embodiment adopts a rotary body structure similar to a cylinder, and the support ring 8 A ring structure arranged coaxially with the aforementioned rotary body is adopted.
  • a plurality of expansion rings 8 are sleeved on the inner circumference of the casing 1 , and these expansion rings 8 are arranged at intervals along the axis direction of the casing 1 (ie, the height direction of the tank in FIG. 2 ).
  • the support ring 8 is a circular ring made of high-strength spring steel, which has a strong ability to bear pressure and resist deformation.
  • the spacer 8 and the casing 1 can be bonded and fixed by means of an adhesive.
  • the inner tank 2 and the outer shell 1 are fixedly connected at the tank mouth 5 on the top of the vacuum insulation tank.
  • the tank mouth 6 at the top of the vacuum heat preservation tank is provided with a ring sleeve 7, and the outer shell 1 and the inner tank 2 are respectively fixedly connected by the ring sleeve 7.
  • top of the outer shell 1 and the top of the inner tank 2 are respectively provided with flanging holes for upward flanging, and the flanging of the flanging holes on the outer shell 1 and the flanging holes on the inner tank 2 are respectively welded with the ring sleeve 7. fixed.
  • a heat insulating support member 5 that is supported between the outer shell 1 and the inner bladder 2 and is located at the outer bottom of the inner bladder 2 is arranged in the vacuum insulation chamber 3 , and the inner bladder is mainly supported by the bottom of the outer shell 1 . 2 and the weight of the water stored in the inner tank, as shown in Figure 5.
  • the water pressure resistance of the inner tank 2 can be improved, and the other
  • the lateral deviation of the inner pot 2 can be avoided to be in close contact with the inner wall surface of the outer shell.
  • the inner liner 2 When the temperature of the inner pot 2 is high or the inner pressure of the inner pot is relatively high, radial deformation that expands outward will occur, not to mention that the periphery of the inner pot 2 is a low-pressure vacuum environment. If the expansion deformation is too large, the inner liner 2 and the outer shell 1 will abut on a large area, so that heat is rapidly transferred between the inner liner and the outer shell, and the thermal insulation performance of the vacuum heat preservation tank is significantly reduced. In addition, if the inner liner 2 is subjected to internal high pressure for a long time, the inner liner 2 also has the risk of being damaged due to fatigue deformation.
  • the inner tank 2 Although increasing the thickness of the inner tank 2 can solve the aforementioned problems, it brings various problems such as a lot of materials, high manufacturing cost, and the tank body is bulky and difficult to move. Moreover, when a large-sized inner container is produced, if it is heat-treated to improve the structural strength, the roundness of the inner container will be deteriorated, and the pressure bearing capacity of the finally formed inner container 2 will be weakened.
  • a hoop 4 that is fixedly sleeved on the periphery of the inner bladder 2 is arranged in the vacuum insulation chamber 3, so as to hoop the inner bladder when the inner bladder 2 expands radially outward, and improve the resistance of the inner bladder 2.
  • the pressure capacity is reduced, and the external expansion deformation of the inner tank 2 is reduced.
  • the inner pot 2 adopts a revolving body structure similar to a cylinder, and the hoop 4 adopts the same revolving body structure as the previous one. Coaxially arranged ring structure.
  • hoop rings 4 are sleeved on the periphery of the inner pot 2, and these hoop rings 4 are arranged at intervals along the axis direction of the inner pot 2 (that is, the height direction of the tank in FIG. 2 ). .
  • the above-mentioned hoop 4 is also a circular ring structure made of spring steel, which has strong resistance to compression and deformation. During manufacture, in order to improve the structural strength of the hoop 4 and the support ring 8, the hoop 4 and the support ring 8 made of spring steel can be heat treated.
  • the hoop 4 and the inner pot 2 can be bonded and fixed.
  • the outer shell 1 of the vacuum heat preservation tank is directly exposed to the environment, not only the outer shell 1 is easily damaged by foreign objects, but (a small amount) of heat radiated from the inner tank 2 to the outer shell 1 will be quickly dissipated into the environment.
  • the thermal insulation performance of the vacuum insulation structure is excellent, there is still the problem of thermal radiation loss. Therefore, we can coat the outer surface of the inner tank 2 or/and the inner surface of the outer shell 1 with an anti-heat radiation coating. And because it is difficult to apply an anti-heat radiation coating on the outer surface of the liner or the inner surface of the shell, we can also coat the inner surface of the liner or the outer surface of the shell with an anti-heat radiation coating.
  • FIGS 6 to 8 show the second specific embodiment of the vacuum heat preservation tank of the present application, which has basically the same structure as the first embodiment, with two main differences:
  • a first extrusion convex ring 101 which is coaxially arranged with the outer casing of the rotary body and protrudes radially outward is extruded on the casing wall of the casing 1 .
  • the first extrusion convex ring 101 is formed by mechanically extruding the casing 1 .
  • An extrusion ring groove is formed on the inner circumference, and the expansion ring 8 is embedded in the extrusion ring groove, so that the position of the expansion ring 8 is limited by the extrusion ring groove.
  • a second extrusion convex ring 201 that is coaxially arranged with the outer casing of the rotary body and protrudes radially inward is extruded and processed on the bladder wall of the inner bladder 2 , and the periphery of the second extrusion convex ring 201 is also formed with Extrusion ring groove, the hoop 4 is embedded in the extrusion ring groove on the periphery of the second extrusion convex ring, so as to use the extrusion ring groove to limit the position of the hoop 4 .
  • the above-mentioned extrusion convex rings arranged on the outer casing 1 and the inner bladder 2 can improve the radial pressure bearing capacity of the outer casing 1 and the inner bladder 2 .
  • FIG 9 shows the third specific embodiment of the vacuum heat preservation tank of the present application, which has basically the same structure as the first embodiment, and the main differences are:
  • the support ring 8 is integrally provided with annular support ring reinforcing ribs 801 located on the inner circumference of the support ring and arranged coaxially with the support ring, as shown in FIGS. 10 and 11 .
  • the expander 8 with the expander rib 801 on the inner circumference has a higher bearing capacity.
  • the above-mentioned support ring reinforcing rib 801 is an extrusion protrusion formed by extruding the support ring 8
  • an extrusion ring groove 802 is formed on the outer periphery of the extrusion protrusion.
  • a radially inwardly convex extrusion convex ring can be extruded on the shell wall of the casing 1.
  • the aforementioned extrusion convex ring is embedded in the aforementioned extrusion convex ring. in the ring groove 802 to fix the position of the support ring 8 .
  • each support ring 8 has a larger axial dimension than that of the first embodiment.
  • the inner tops are arranged next to each other.
  • These supporting rings 8 arranged next to each other are wrapped and positioned by the outer casing 1.
  • the outer casing 1 mainly plays the role of sealing and positioning the supporting ring, and the inner supporting ring 8 is the main pressure bearing member, so that the outer casing 1 can achieve high Thin, easy to process and shape.
  • annular hoop reinforcing rib 401 located on the outer periphery of the hoop and coaxially arranged with the hoop is integrally provided on the hoop 4, as shown in FIG. 10 and Figure 12.
  • the hoop reinforcing rib 401 is an extrusion protrusion formed by extruding the hoop 4, and an extrusion ring groove is formed on the inner circumference of the extrusion protrusion.
  • FIG 13 shows the fourth specific embodiment of the vacuum heat preservation tank of the present application, which has basically the same structure as the third embodiment, and the main differences are:
  • the support ring reinforcing rib 801 on the support ring 8 is no longer an extrusion protrusion with a ring groove on the back side, but a ring rib directly formed on the inner circumference of the support ring 8 when it is die-cast, as shown in the figure 14 and Figure 15.
  • the hoop reinforcing rib 401 on the hoop 4 is no longer an extruded protrusion with a ring groove on the back side, but a ring rib directly formed on the outer periphery of the hoop 4 when the hoop 4 is die-cast, as shown in FIGS. 14 and 16 .
  • FIG. 17 and Figure 18 show the fifth specific embodiment of the vacuum heat preservation tank of the present application, which has basically the same structure as the third embodiment, the only difference is:
  • hoop rings 4 there are a large number of hoop rings 4, and these hoop rings 4 are arranged in sequence from the bottom of the inner pot to the top of the inner pot along the axis direction of the revolving inner pot 2.
  • the inner pot 2 on the inner side of each hoop 4 mainly plays the role of airtightness and positioning the hoop position, and the outer hoop 4 is the main pressure-bearing member, so that the inner pot 2 can be made very thin, which is convenient for processing and molding. Even if a solid product is stored in the vacuum heat preservation tank, the problem that the inner container 2 is forced to bulge outwards will not occur because the outer circumference is supported by a perfect circular hoop 4 .
  • FIG 19 and Figure 20 show the sixth specific embodiment of this vacuum heat preservation tank of the present application, which has basically the same structure as the fourth embodiment, the difference is only:
  • hoop rings 4 there are a large number of hoop rings 4, and these hoop rings 4 are arranged in sequence from the bottom of the inner pot to the top of the inner pot along the axis direction of the rotary inner pot 2.
  • the purpose of such setting is the same as that of the fifth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种真空保温罐,其包括:外壳(1),设于外壳(1)内的内胆(2),以及形成于外壳(1)和内胆(2)之间的真空隔热腔(3);真空隔热腔(3)中布置有固定套设于内胆(2)外围的箍环(4)。

Description

一种真空保温罐 技术领域
本申请涉及一种真空保温罐。
背景技术
用于存储液体尤其是水的真空罐主要由外壳、内胆,以及形成于外壳和内胆之间的真空隔热腔构成,其具有优秀的隔热保温性能,可长时间存放高温或低温液体,尤其是水。
一般来说,真空罐的保温薄弱部位在于其灌口,在灌口的大小一定时,真空罐的容积越大,其热量散失速度越小。相较于满载热水(或冷水)的小容积真空罐,同样满载热水(或冷水)的大容积真空罐在保温性上优势明显。
然而,传统真空罐的容积普遍较小,这是传统真空罐的内胆悬吊固定在外壳中,而大容积真空罐的外壳和内胆尺寸很大,当罐腔中满载液体后,在罐内大量液体的重力作用下,外壳顶部(悬吊连接处)容易下塌变形,从而使得外壳与内胆贴靠接触,降低罐的保温性能。
以3m直径的真空罐为例,若高度为1m,则储水量为7t,若高度提高到10m,则真空储水量为70t。传统结构的真空罐若为小吨位储水,内胆可通过其顶部悬吊连接在外壳内,而在大吨位储水时,内胆与外壳顶部悬吊连接处的强度不足以支撑内胆和水的重量。
虽然将内胆和外壳在罐底部固定连接可以解决上述问题,但随之又带来了这样的问题:当内胆或外壳之一的温度发生明显改变时,热胀冷缩,胀大或缩小的内胆(或外壳)会对温度和尺寸未明显变化的外壳施加很大的作用力,该作用力使得真空罐发生变形,这种变形又易导致真空隔热腔漏气,失去保温能力。
而且,传统真空罐的罐腔也难以承受高压,这是因为真空罐内部存在高压时,其内胆容易向外扩张变形,从而使得内胆与外壳贴靠导热,降低罐的保温性能。此外,传统真空罐的罐腔中存放固定物时,其内胆容易受内部固定物的作用而外凸变形甚至破损。虽然增加内胆的厚度可以解决前述问题,但随之带来诸如用料多、制作成本高、内胆圆度差、罐体笨重难以移动等各种问题。
发明内容
本申请为了解决上述技术问题中的至少之一,提出一种真空保温罐,该真空保温罐具有长久稳定的保温性能。
本申请的技术方案是:
第一方面,本申请提出一种真空保温罐,包括:
外壳,
设于所述外壳内的内胆,以及
形成于所述外壳和所述内胆之间的真空隔热腔;
所述真空隔热腔中布置有固定套设于所述内胆外围的箍环。
一种可选的设计中,所述内胆是回转体,所述箍环是与所述回转体同轴布置的圆环。
一种可选的设计中,所述箍环上一体设置有位于所述箍环外周、且与所述箍环同轴布置的箍环加强筋。
一种可选的设计中,所述真空隔热腔中布置有支撑于所述外壳和所述内胆之间、且位于所述内胆外底部的隔热支撑件。
一种可选的设计中,所述箍环设有至少三个,并且各个箍环沿着所述内胆的轴线方向自所述内胆的底部向所述内胆的顶部依次紧挨排布。
一种可选的设计中,所述真空保温罐顶部的罐口中设有环套,所述外壳和所述内胆分别与该环套固定连接。
一种可选的设计中,所述外壳的顶部以及所述内胆的顶部分别设有向上翻边的翻边孔,所述外壳上翻边孔的翻边以及所述内胆上翻边孔的翻边分别与所述环套焊接固定。
第二方面,本申请提出一种真空保温罐,包括:
外壳,
设于所述外壳内的内胆,以及
形成于所述外壳和所述内胆之间的真空隔热腔;
所述真空隔热腔中布置有支撑于所述外壳内周的撑环。
一种可选的设计中,所述外壳是回转体,所述撑环是与所述回转体同轴布置的圆环。
一种可选的设计中,所述撑环上一体设置有位于所述撑环内周、且与所述撑环同轴布置的撑环加强筋。
所述撑环加强筋是通过对所述撑环挤压加工而形成的挤压凸起,所述挤压凸起的外周形成有挤压环槽。
所述撑环设置至少三个,并且各个撑环沿着所述外壳的轴线方向自所述外壳的内底部向所述外壳的内顶部依次紧挨排布。
一种可选的设计中,所述外壳的壳壁上挤压加工有与所述回转体同轴布置、且径向外凸的挤压凸环,所述挤压凸环的内周形成有挤压环槽,所述撑环嵌于所述挤压环槽中。
一种可选的设计中,所述真空隔热腔中布置有支撑于所述外壳和所述内胆之间的隔热支撑件。
一种可选的设计中,所述真空保温罐顶部的罐口中设有环套,所述外壳的顶部以及所述 内胆的顶部分别设有向上翻边的翻边孔,所述外壳上翻边孔的翻边以及所述内胆上翻边孔的翻边分别与所述环套焊接固定。
本申请至少具有如下有益效果:
1、根据本申请第一方面提出的真空保温罐,在真空隔热腔中布置了套在内胆的箍环,以在内胆径向扩张时箍住内胆,提升了内胆的内部抗压能力,使得内胆与外壳始终保持一定间隔,避免二者相互接触而快速导热,进而使得真空罐具有长久稳定的保温性能,而且内胆的厚度无需较大。
2、根据本申请第二方面提出的真空保温罐,在真空隔热腔中布置了支撑于外壳内周的撑环,以在外壳径向内凹时撑住外壳,提升了外壳的抗变形能力,使得外壳和内胆始终保持一定间隔,避免二者相互接触而快速导热,进而使得真空罐具有长久稳定的保温性能,而且外壳的厚度无需较大。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本申请的一些实施例,而非对本申请的限制。
图1是本申请实施例一中真空保温罐的主视图。
图2是本申请实施例一中真空保温罐的剖视图。
图3是图2的X1部放大图。
图4是图2的X2部放大图。
图5是图2的X3部放大图。
图6是本申请实施例二中真空保温罐的主视图。
图7是本申请实施例二中真空保温罐的剖视图。
图8是图7的X4部放大图。
图9是本申请实施例三中真空保温罐的剖视图。
图10是图9的X5部放大图。
图11是本申请实施例三中撑环的立体结构示意图。
图12是本申请实施例三中箍环的立体结构示意图。
图13是本申请实施例四中真空保温罐的剖视图。
图14是图13的X6部放大图。
图15是本申请实施例四中撑环的立体结构示意图。
图16是本申请实施例四中箍环的立体结构示意图。
图17是本申请实施例五中真空保温罐的剖视图。
图18是图17的X7部放大图。
图19是本申请实施例六中真空保温罐的剖视图。
图20是图19的X8部放大图。
附图标记说明:
1-外壳,2-内胆,3-真空隔热腔,4-箍环,5-隔热支撑件,6-罐口,7-环套,8-撑环,401-箍环加强筋,801-撑环加强筋,802-挤压环槽。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。可以理解,在不冲突的情况下,本文所描述的各个实施例的一些技术手段可相互替换或结合。
在本申请说明书和权利要求书的描述中,若存在术语“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。由此,限定有“第一”、“第二”等的对象可以明示或者隐含地包括一个或者多个该对象。并且,“一个”或者“一”等类似词语,不表示数量限制,而是表示存在至少一个,“多个”表示不少于两个。
在本申请说明书和权利要求书的描述中,若存在术语“上”、“下”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于清楚且简化地描述本申请,而不是指示或暗示所指的元件必须具有特定的方向、以特定的方位构造和操作,这些方向性术语是相对的概念,用于相对于的描述和澄清,可以根据附图中部件所放置的方位的变化而相应地发生变化。例如,若图中装置被翻转,被描述为在其他元件“下方”的元件将被定位在其他元件的“上方”。
现在,参照附图描述本申请的实施例。
<实施例一>
图1至图5示出了本申请这种真空保温罐的一个具体实施例,其包括一些传统真空保温罐所具有的:外壳1,设于外壳内的内胆2,形成于外壳和内胆之间的真空隔热腔3。真空保温罐的顶部设置一小口径的罐口6,而且外壳1和内胆2均为不锈钢材质。
如果上述真空保温罐为大容积水罐,外壳1尺寸很大。那么外壳1在外力作用下(更何况外壳1内侧为负压环境)极易向内凹陷变形,进而导致外壳1与内胆2大面积贴靠接触,使得热量在内胆和外壳之间快速传递,降低罐的保温性能。虽然增加外壳1的厚度可以很好地解决前述问题,但随之带来诸如用料多、制作成本高、罐体笨重难以移动等各种问题。而 且制作大尺寸外壳时,若对其进行热处理以提升结构强度,一定会导致外壳的圆度变差,进而导致最终成型的外壳1承压能力变弱。
鉴于此,本实施例舍弃了增加外壳1厚度的方案,而是在真空隔热腔3中布置了支撑于外壳1内周的撑环,以在外壳1径向内凹时撑住外壳,提升外壳的抗变形能力。
为了方便外壳1和撑环8的制作和安装,并保证外壳1及撑环8各个部位承受的压力尽可能均匀一致,本实施例中的外壳1采用近似圆筒的回转体结构,撑环8采用与前述回转体同轴布置的圆环结构。
如果撑环8仅设置一个,那么远离该撑环8的外壳部分仍存在承压能力较差的问题。基于此,本实施例在外壳1内周一共套设了多个撑环8,并将这些撑环8且沿着外壳1的轴线方向(也即图2中罐的高度方向)间隔排布。
撑环8是高强度弹簧钢材质的圆环,其具有极强的承压抗变形能力。为防止撑环8从外壳1上脱离,可借助胶合剂将撑环8与外壳1粘结固定。
如图4所示,在本实施例中,内胆2与外壳1在该真空保温罐顶部的罐口5处固定连接。具体地,真空保温罐顶部的罐口6中设有环套7,外壳1和内胆2分别该环套7固定连接。
进一步地,外壳1的顶部和内胆2的顶部分别设有向上翻边的翻边孔,外壳1上翻边孔的翻边以及内胆2上翻边孔的翻边分别与环套7焊接固定。
当然,我们也可以剔除环套7,直接将外壳1和内胆2在罐口6处焊接固定。
如果内胆2以及内胆内部储水的重量全部施加在该真空保温罐顶部的罐口位置,外壳1的顶部容易下塌变形。基于此,本实施例在真空隔热腔3中布置了支撑于外壳1和内胆2之间、且位于内胆2外底部的隔热支撑件5,主要由外壳1的底部承托内胆2以及内胆内部储水的重量,如图5。
此外,我们还可以在内胆2侧围的真空隔热腔3中设置支撑于外壳1和内胆2之间的隔热支撑件,一方面可提升内胆2的抗水压能力,另一方面可避免内胆2侧向偏移与外壳内壁面贴靠接触。
当内胆2温度较高或者内胆内部压力较大时,会产生向外扩张的径向变形,更何况内胆2外围为低压的真空环境。如果这种扩张变形过大,将导致内胆2与外壳1大面积贴靠,使得热量在内胆和外壳之间快速传递,显著降低该真空保温罐的保温性能。此外,如果内胆2长期承受内部高压,内胆2还存在因疲劳变形而破损的风险。虽然增加内胆2的厚度可以解决前述问题,但随之带来诸如用料多、制作成本高、罐体笨重难以移动等各种问题。而且制作大尺寸内胆时,若对其进行热处理以提升结构强度,一定会导致内胆的圆度变差,进而导致最终成型的内胆2的承压能力变弱。
基于此因,本实施例在真空隔热腔3中布置了固定套设在内胆2外围的箍环4,以在内胆2径向外扩时箍住内胆,提升内胆2的抗压能力,减小内胆2的外扩变形量。
为了让内胆2和箍环4各个部位承受的外扩压力尽可能均匀一致,进一步提升内胆的抗变形能力,内胆2采用近似圆筒的回转体结构,箍环4采用与前述回转体同轴布置的圆环结构。
如果箍环4仅设置一个,那么远离该箍环4的内胆2部分仍存在承压能力较差、易疲劳变形的问题。鉴于此,本实施例在内胆2外围一共套设了多个箍环4,并将这些箍环4且沿着内胆2的轴线方向(也即图2中罐的高度方向)间隔排布。
上述箍环4也是弹簧钢材质的圆环结构,具有很强的抗压抗变形能力。制作时,为了提升箍环4和撑环8的结构强度,可对弹簧钢材质的箍环4和撑环8做热处理。
为防止箍环4从内胆2上脱离,可将箍环4与内胆2粘结固定。
如果该真空保温罐的外壳1直接暴露在环境中使用,不仅存在外壳1易遭外物破坏的问题,而成由内胆2热辐射至外壳1的(少量)热量会迅速散发至环境中。对此,我们还可设置包覆在外壳1外围的防护外罩,并在防护外罩与外壳之间填充聚氨酯保温材料。
虽然真空保温结构的隔热性能极佳,但仍然存在热辐射丢温问题。故我们可在内胆2的外表面或/和外壳1的内表面涂覆防热辐射涂层。又因为在内胆外表面或外壳内表面涂覆防热辐射涂层难以实施,所以我们也可以在内胆内表面或外壳外表面涂覆防热辐射涂层。
<实施例二>
图6至图8示出了本申请这种真空保温罐的第二个具体实施例,其具有与实施例一基本相同的结构,主要区别有二:
本实施例在外壳1的壳壁上挤压加工有与该回转体外壳同轴布置、且径向外凸的第一挤压凸环101。第一挤压凸环101通过对外壳1机械挤压而形成,在第一挤压凸环101挤压加工出前述第一挤压凸环101后,自然会在第一挤压凸环101的内周形成挤压环槽,撑环8嵌于前述挤压环槽中,从而利用该挤压环槽限定撑环8的位置。
本实施例在内胆2的胆壁上挤压加工有与该回转体外壳同轴布置、且径向内凸的第二挤压凸环201,第二挤压凸环201的外围也形成有挤压环槽,箍环4嵌于第二挤压凸环外围的挤压环槽中,以利用该挤压环槽限定箍环4的位置。
并且,在外壳1和内胆2上设置的上述挤压凸环可提升外壳1和内胆2的径向承压能力。
<实施例三>
图9示出了本申请这种真空保温罐的第三个具体实施例,其具有与实施例一基本相同的结构,主要区别在于:
本实施例中,撑环8上一体设置有位于撑环内周、且与撑环同轴布置的环形的撑环加强筋801,如图10和图11。相比于实施例一中的撑环,内周带有撑环加强筋801的撑环8具有更高的承压能力。
本实施例中,上述撑环加强筋801是通过对撑环8挤压加工而形成的挤压凸起,挤压凸起的外周形成有挤压环槽802。为便于将该撑环8固定在外壳1内,可在外壳1的壳壁上挤压加工出径向内凸的挤压凸环,装配完成后,使前述挤压凸环嵌于前述挤压环槽802中,以固定撑环8的位置。
并且,本实施例的撑环8设有许多个,每个撑环8都具有比实施例一更大的轴向尺寸,这些撑环8沿着外壳1的轴线方向自外壳的内底部向外壳的内顶部依次紧挨排布。这些相互紧挨布置的撑环8由外壳1包裹定位,外围的外壳1主要起密封以及定位撑环的作用,内侧的撑环8才是主要的承压件,从而使得外壳1可以做到很薄,便于加工成型。
为了提升内胆2外箍环4的承压能力,本实施例在箍环4上一体设置了位于箍环外周、且与箍环同轴布置的环形的箍环加强筋401,如图10和图12。箍环加强筋401是通过对箍环4挤压加工而形成的挤压凸起,挤压凸起的内周形成有挤压环槽。
<实施例四>
图13示出了本申请这种真空保温罐的第四个具体实施例,其具有与实施例三基本相同的结构,主要区别在于:
本实施例中,撑环8上的撑环加强筋801不再是背侧带有环槽的挤压凸起,而是在压铸撑环8时直接形成于其内周的环筋,如图14和图15。
箍环4上的箍环加强筋401也不再是背侧带有环槽的挤压凸起,而是在压铸箍环4时直接形成于其外周的环筋,如图14和图16。
<实施例五>
图17和图18示出了本申请这种真空保温罐的第五个具体实施例,其具有与实施例三基本相同的结构,区别仅在于:
本实施例中箍环4数量众多,这些箍环4沿着回转体内胆2轴线方向自内胆的底部向内胆的顶部依次紧挨排布。处于各个箍环4内侧的内胆2主要起气密以及定位箍环位置的作用,外侧的箍环4才是主要的承压件,从而使得内胆2可以做到很薄,便于加工成型。即便在该真空保温罐内存放固体产品,因外围有正圆形箍环4支撑,所以不会发生内胆2受力而向外凸起的问题。
<实施例六>
图19和图20示出了本申请这种真空保温罐的第六个具体实施例,其具有与实施例四基 本相同的结构,区别仅在于:
本实施例中箍环4数量众多,这些箍环4沿着回转体内胆2轴线方向自内胆的底部向内胆的顶部依次紧挨排布。如此设置的目的与上述实施例五相同。

Claims (15)

  1. 一种真空保温罐,包括:
    外壳(1),
    设于所述外壳内的内胆(2),以及
    形成于所述外壳和所述内胆之间的真空隔热腔(3);
    其特征在于,所述真空隔热腔(3)中布置有固定套设于所述内胆(2)外围的箍环(4)。
  2. 根据权利要求1所述的真空保温罐,其特征在于,所述内胆(2)是回转体,所述箍环(4)是与所述回转体同轴布置的圆环。
  3. 根据权利要求2所述的真空保温罐,其特征在于,所述箍环(4)上一体设置有位于所述箍环外周、且与所述箍环同轴布置的箍环加强筋(401)。
  4. 根据权利要求1所述的真空保温罐,其特征在于,所述真空隔热腔(3)中布置有支撑于所述外壳(1)和所述内胆(2)之间、且位于所述内胆(2)外底部的隔热支撑件(5)。
  5. 根据权利要求2所述的真空保温罐,其特征在于,所述箍环(4)设有至少三个,并且各个箍环(4)沿着所述内胆(2)的轴线方向自所述内胆(2)的底部向所述内胆(2)的顶部依次紧挨排布。
  6. 根据权利要求1所述的真空保温罐,其特征在于,所述真空保温罐顶部的罐口(6)中设有环套(7),所述外壳(1)和所述内胆(2)分别与该环套(7)固定连接。
  7. 根据权利要求6所述的真空保温罐,其特征在于,所述外壳(1)的顶部以及所述内胆(2)的顶部分别设有向上翻边的翻边孔,所述外壳(1)上翻边孔的翻边以及所述内胆(2)上翻边孔的翻边分别与所述环套(7)焊接固定。
  8. 一种真空保温罐,包括:
    外壳(1),
    设于所述外壳内的内胆(2),以及
    形成于所述外壳和所述内胆之间的真空隔热腔(3);
    其特征在于,所述真空隔热腔(3)中布置有支撑于所述外壳(1)内周的撑环(8)。
  9. 根据权利要求8所述的真空保温罐,其特征在于,所述外壳(1)是回转体,所述撑环(8)是与所述回转体同轴布置的圆环。
  10. 根据权利要求9所述的真空保温罐,其特征在于,所述撑环(8)上一体设置有位于所述撑环内周、且与所述撑环同轴布置的撑环加强筋(801)。
  11. 根据权利要求10所述的真空保温罐,其特征在于,所述撑环加强筋(801)是通过对所述撑环(8)挤压加工而形成的挤压凸起,所述挤压凸起的外周形成有挤压环槽(802)。
  12. 根据权利要求9所述的真空保温罐,其特征在于,所述撑环(8)设置至少三个,并 且各个撑环(8)沿着所述外壳(1)的轴线方向自所述外壳(1)的内底部向所述外壳(1)的内顶部依次紧挨排布。
  13. 根据权利要求9所述的真空保温罐,其特征在于,所述外壳(1)的壳壁上挤压加工有与所述回转体同轴布置、且径向外凸的挤压凸环(101),所述挤压凸环(101)的内周形成有挤压环槽,所述撑环(8)嵌于所述挤压环槽中。
  14. 根据权利要求9所述的真空保温罐,其特征在于,所述真空隔热腔(3)中布置有支撑于所述外壳(1)和所述内胆(2)之间、且位于所述内胆(2)外底部的隔热支撑件(5)。
  15. 根据权利要求1所述的真空保温罐,其特征在于,所述真空保温罐顶部的罐口(6)中设有环套(7),所述外壳(1)的顶部以及所述内胆(2)的顶部分别设有向上翻边的翻边孔,所述外壳(1)上翻边孔的翻边以及所述内胆(2)上翻边孔的翻边分别与所述环套(7)焊接固定。
PCT/CN2022/071193 2021-01-14 2022-01-11 一种真空保温罐 WO2022152099A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110045703.6A CN112744471A (zh) 2021-01-14 2021-01-14 一种真空保温罐
CN202110045700.2 2021-01-14
CN202110045703.6 2021-01-14
CN202110045700.2A CN112722586A (zh) 2021-01-14 2021-01-14 真空罐

Publications (1)

Publication Number Publication Date
WO2022152099A1 true WO2022152099A1 (zh) 2022-07-21

Family

ID=82447953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071193 WO2022152099A1 (zh) 2021-01-14 2022-01-11 一种真空保温罐

Country Status (1)

Country Link
WO (1) WO2022152099A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116293392A (zh) * 2023-03-31 2023-06-23 一汽解放汽车有限公司 一种lng气瓶
CN116293389A (zh) * 2023-03-31 2023-06-23 一汽解放汽车有限公司 一种lng气瓶
CN116293400A (zh) * 2023-03-31 2023-06-23 一汽解放汽车有限公司 一种椭圆形lng气瓶
CN116293399A (zh) * 2023-03-31 2023-06-23 一汽解放汽车有限公司 一种椭圆形lng气瓶

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2711092Y (zh) * 2004-07-21 2005-07-20 余建岳 低温液体管束式集装箱的管筒形储罐
CN203428295U (zh) * 2013-09-12 2014-02-12 江西雄宇(集团)有限公司 一种真空阻隔防爆储罐
CN106382453A (zh) * 2016-09-09 2017-02-08 荆门宏图特种飞行器制造有限公司 立式低温储罐
US20180224064A1 (en) * 2017-02-07 2018-08-09 Lawrence Livermore National Security, Llc Cryogenic pressurized storage with hump-reinforced vacuum jacket
CN208699638U (zh) * 2018-07-17 2019-04-05 宁波明欣化工机械有限责任公司 低温液体运输车罐体外壳
CN208715994U (zh) * 2018-09-07 2019-04-09 江西昌宇能源设备有限公司 高稳定阻隔防爆sf双层储油罐
CN112722586A (zh) * 2021-01-14 2021-04-30 上海兴邺材料科技有限公司 真空罐
CN112744471A (zh) * 2021-01-14 2021-05-04 上海兴邺材料科技有限公司 一种真空保温罐
CN112793941A (zh) * 2021-01-29 2021-05-14 上海兴邺材料科技有限公司 一种真空罐
CN214987597U (zh) * 2021-01-29 2021-12-03 上海兴邺材料科技有限公司 一种真空罐
CN215045527U (zh) * 2021-01-29 2021-12-07 上海兴邺材料科技有限公司 水罐

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2711092Y (zh) * 2004-07-21 2005-07-20 余建岳 低温液体管束式集装箱的管筒形储罐
CN203428295U (zh) * 2013-09-12 2014-02-12 江西雄宇(集团)有限公司 一种真空阻隔防爆储罐
CN106382453A (zh) * 2016-09-09 2017-02-08 荆门宏图特种飞行器制造有限公司 立式低温储罐
US20180224064A1 (en) * 2017-02-07 2018-08-09 Lawrence Livermore National Security, Llc Cryogenic pressurized storage with hump-reinforced vacuum jacket
CN208699638U (zh) * 2018-07-17 2019-04-05 宁波明欣化工机械有限责任公司 低温液体运输车罐体外壳
CN208715994U (zh) * 2018-09-07 2019-04-09 江西昌宇能源设备有限公司 高稳定阻隔防爆sf双层储油罐
CN112722586A (zh) * 2021-01-14 2021-04-30 上海兴邺材料科技有限公司 真空罐
CN112744471A (zh) * 2021-01-14 2021-05-04 上海兴邺材料科技有限公司 一种真空保温罐
CN112793941A (zh) * 2021-01-29 2021-05-14 上海兴邺材料科技有限公司 一种真空罐
CN214987597U (zh) * 2021-01-29 2021-12-03 上海兴邺材料科技有限公司 一种真空罐
CN215045527U (zh) * 2021-01-29 2021-12-07 上海兴邺材料科技有限公司 水罐

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116293392A (zh) * 2023-03-31 2023-06-23 一汽解放汽车有限公司 一种lng气瓶
CN116293389A (zh) * 2023-03-31 2023-06-23 一汽解放汽车有限公司 一种lng气瓶
CN116293400A (zh) * 2023-03-31 2023-06-23 一汽解放汽车有限公司 一种椭圆形lng气瓶
CN116293399A (zh) * 2023-03-31 2023-06-23 一汽解放汽车有限公司 一种椭圆形lng气瓶

Similar Documents

Publication Publication Date Title
WO2022152099A1 (zh) 一种真空保温罐
RU2357829C2 (ru) Оболочка для металлической банки и крышка металлической банки, соединяемая посредством двойного закаточного шва
CN112744471A (zh) 一种真空保温罐
JP2020506337A5 (zh)
CN214987597U (zh) 一种真空罐
MX2008001101A (es) Cierre de tapa de lata y metodo para unir un cierre de tapa de lata al cuerpo de una lata.
WO2022121371A1 (zh) 一种抗菌保温杯及其加工工艺
JP2010534596A (ja) 金属容器のベース
CN112722586A (zh) 真空罐
CN102997034A (zh) 一种低温贮运容器
JP5931728B2 (ja) シリンダーコンパートメント−ガスシリンダー組立体
US20210215295A1 (en) Hybrid tanks
US3866785A (en) Liquefied gas container
CN112793941B (zh) 一种真空罐
CN215045527U (zh) 水罐
CN214268812U (zh) 一种真空保温罐
US3170586A (en) Single walled metal container
US3948411A (en) Liquefied gas container
CN110207001B (zh) 一种带有承载结构的低温液体储罐
RU2709750C1 (ru) Резервуар для криогенных жидкостей
CN111846668A (zh) 一种真空绝热立式储罐的支撑机构
WO2022161155A1 (zh)
CN210772897U (zh) 一种工业制冷的翅片式冷凝器
US3324895A (en) Corrugated tubes
CN210319381U (zh) 一种带有新型承载结构的低温液体储罐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738979

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22738979

Country of ref document: EP

Kind code of ref document: A1