WO2022152070A1 - 电致变色器件及电致变色器件的控制方法 - Google Patents

电致变色器件及电致变色器件的控制方法 Download PDF

Info

Publication number
WO2022152070A1
WO2022152070A1 PCT/CN2022/070945 CN2022070945W WO2022152070A1 WO 2022152070 A1 WO2022152070 A1 WO 2022152070A1 CN 2022070945 W CN2022070945 W CN 2022070945W WO 2022152070 A1 WO2022152070 A1 WO 2022152070A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochromic
layer
electrochromic device
conductive layer
region
Prior art date
Application number
PCT/CN2022/070945
Other languages
English (en)
French (fr)
Inventor
熊沉璧
Original Assignee
光羿智能科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光羿智能科技(苏州)有限公司 filed Critical 光羿智能科技(苏州)有限公司
Priority to EP22738951.7A priority Critical patent/EP4279987A1/en
Publication of WO2022152070A1 publication Critical patent/WO2022152070A1/zh
Priority to US18/351,103 priority patent/US20230350258A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Definitions

  • the present application relates to the technical field of electrochromism, for example, to an electrochromic device and a control method of the electrochromic device.
  • An electrochromic device is a device that can change its own optical properties in response to the application of an external potential difference, and the change of its optical properties is mainly caused by the ion insertion/extraction of the electrochromic material in the electrochromic device.
  • Electrochromic devices in the related art usually switch optical properties between a colored state and a decolorized state (transparent state). For example, in applications, electrochromic devices can be compounded in windows to form electrochromic windows. .
  • the user can switch the optical state of the window to a colored state (such as gray or blue, etc.), thereby weakening the light intensity to a certain extent and improving human comfort.
  • the external ambient light intensity is weak, the user can The optical state of the window can be switched to a decolorized state, increasing the proportion of incident light intensity to improve indoor brightness.
  • the effective voltage on the surface of the electrochromic device will be uneven, that is, the effective voltage at the edge is greater than the effective voltage at the center. Therefore, when the electrochromic device is discolored, the phenomenon of fast discoloration at the edges and slow discoloration in the middle will occur, and the larger the width of the electrochromic device, the more obvious the phenomenon of uneven discoloration, and the time required for the middle to reach the end point of discoloration longer.
  • the present application provides an electrochromic device and a control method for the electrochromic device, so as to solve the problems of slow center discoloration and uneven overall discoloration of a large-width electrochromic device.
  • the present application provides an electrochromic device, comprising at least two electrochromic regions, and for every two adjacent first electrochromic regions and second electrochromic regions, the first electrochromic regions include The first substrate layer, the first conductive layer, the first electrochromic layer, the second conductive layer and the second substrate layer are stacked in sequence, and the second electrochromic region includes the third substrate layer, the third conductive layer and the third conductive layer stacked in sequence. layer, the second electrochromic layer, the fourth conductive layer and the fourth base layer, the first conductive layer and the third conductive layer are electrically connected, and the second conductive layer and the fourth conductive layer are not mutually contact, and insulation between the peripheral side of the first electrochromic layer and the peripheral side of the second electrochromic layer;
  • first lead-out electrode is electrically connected to the second conductive layer
  • second lead-out electrode is electrically connected to the fourth conductive layer
  • the first electrochromic layer includes a first electrochromic material layer, a first ion conducting layer and a first ion storage layer that are stacked in sequence
  • the second electrochromic layer includes a first electrochromic material layer that is stacked in sequence.
  • the first electrochromic material layer is adjacent to the first conductive layer and the second ion storage layer is adjacent to the third conductive layer, or the first ion storage layer is adjacent to the first conductive layer and the The second electrochromic material layer is adjacent to the third conductive layer.
  • the first electrochromic layer includes a first electrochromic material layer, a first ion conducting layer and a first ion storage layer that are stacked in sequence
  • the second electrochromic layer includes a first electrochromic material layer that is stacked in sequence.
  • the first electrochromic material layer is adjacent to the first conductive layer and the second electrochromic material layer is adjacent to the third conductive layer, or the first ion storage layer is adjacent to the first conductive layer and The second ion storage layer is adjacent to the third conductive layer.
  • the at least two electrochromic regions have the same width.
  • a third lead-out electrode is electrically connected at the electrical connection between the first conductive layer and the third conductive layer.
  • the electrochromic device further includes a controller connected to the first extraction electrode, the second extraction electrode and the at least one third extraction electrode; the controller is configured to pass The first lead-out electrode and the second lead-out electrode control the color change of the electrochromic device as a whole, and the first lead-out electrode, the second lead-out electrode and the at least one third lead-out electrode control the whole electrochromic device.
  • Each electrochromic region in the electrochromic device changes color.
  • the present application also provides a method for controlling an electrochromic device, which is applied to the above-mentioned electrochromic device including a controller, including:
  • the entire electrochromic device is controlled, the entire electrochromic device is controlled to change color through the first lead-out electrode of the electrochromic device and the second lead-out electrode of the electrochromic device;
  • the single electrochromic region in the electrochromic device is controlled, the single electrochromic region is controlled to change color through the extraction electrodes electrically connected on the two conductive layers in the single electrochromic region.
  • the electrochromic device is controlled through the first extraction electrode of the electrochromic device and the second extraction electrode of the electrochromic device. Before the discoloration of the color-changing device as a whole, it also includes:
  • At least two electrochromic regions in the electrochromic device are adjusted to the same or complementary degree of coloration.
  • the method further includes:
  • the lead-out electrodes electrically connected on the two conductive layers in the target electrochromic area are short-circuited.
  • the judging whether each electrochromic region in the electrochromic device is damaged includes:
  • the current of the target electrochromic area exceeds a preset current threshold, it is determined that the target electrochromic area is damaged.
  • FIG. 1 is a schematic structural diagram of an electrochromic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another electrochromic device provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another electrochromic device provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another electrochromic device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another electrochromic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another electrochromic device provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another electrochromic device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another electrochromic device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another electrochromic device provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a control method of an electrochromic device provided by an embodiment of the present application.
  • first”, second, etc. may be used herein to describe various directions, acts, steps or elements, etc., but are not limited by these terms. These terms are only used to distinguish a first direction, act, step or element from another direction, act, step or element.
  • first, second and the like should not be understood as indicating or implying relative importance or implying the number of technical features indicated.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • FIG. 1 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • the electrochromic device includes at least two electrochromic regions (in FIG. 1 , it is shown as an example of including two electrochromic regions), for every two adjacent first electrochromic regions area and the second electrochromic area, the first electrochromic area includes a first base layer 11, a first conductive layer 12, a first electrochromic layer 13, a second conductive layer 14 and a second base layer 15 stacked in sequence , the second electrochromic region includes a third base layer 21, a third conductive layer 22, a second electrochromic layer 23, a fourth conductive layer 24, and a fourth base layer 25, which are stacked in sequence.
  • the three conductive layers 22 are electrically connected, the second conductive layer 14 and the fourth conductive layer 24 are not in contact with each other, and the peripheral side of the first electrochromic layer 13 and the peripheral side of the second electrochromic layer 23 are insulated; If the electrochromic region is located at the edge of the electrochromic device, the first lead-out electrode 31 is electrically connected to the second conductive layer 14. If the second electrochromic region is located at the edge of the electrochromic device, then the fourth conductive layer 24 A second lead-out electrode 32 is electrically connected.
  • the first electrochromic region and the second electrochromic region are connected by the electrical connection between the first conductive layer 12 and the third conductive layer 22 and the second electrochromic region.
  • the connection between the conductive layer 14 and the fourth conductive layer 24 is not in contact with each other to realize the series connection.
  • the peripheral side of the first electrochromic layer 13 is the surface not in contact with the first conductive layer 12 and the second conductive layer 14
  • the peripheral side of the second electrochromic layer 23 is not in contact with the third conductive layer 22 and the fourth conductive layer 24
  • the insulation between the peripheral side of the first electrochromic layer 13 and the peripheral side of the second electrochromic layer 23 includes: the peripheral side of the first electrochromic layer 13 and the peripheral side of the second electrochromic layer 23.
  • a gap with a preset width is set between them, or an electronic insulating material is set between the peripheral side of the first electrochromic layer 13 and the peripheral side of the second electrochromic layer 23.
  • the electronic insulating material can be insulating colloid and ion conductive layer material, etc.
  • the first base layer 11 and the fourth base layer 25 are separate structures, and the second base layer 15 and the third base layer 21 are separate structures; in other optional embodiments, as shown in FIG. 1 ,
  • the first base layer 11 and the fourth base layer 25 can also be set as an integral connection structure, and/or the second base layer 15 and the third base layer 21 can be set as an integral connection structure.
  • one or at least two conductive layers among the first conductive layer 12, the second conductive layer 14, the third conductive layer 22 and the fourth conductive layer 24 may be a single-layer conductive layer with uniform surface resistance, or may be The single-layer conductive layer with uneven surface resistance may also be a multi-layer conductive layer formed by stacking multiple conductive substances with different resistivities.
  • the first lead-out electrode 31 can be electrically connected on the second conductive layer 14, and the second lead-out electrode 32 can be electrically connected on the fourth conductive layer 24, so that by applying a voltage applied between the first lead-out electrode 31 and the second lead-out electrode 32 The voltage is used to control the color change of the first electrochromic region and the second electrochromic region, and the path is from the second conductive layer 14 to the first conductive layer 12, then to the third conductive layer 22, and finally to the fourth conductive layer 24. .
  • the two electrochromic regions jointly divide the voltage applied between the first extraction electrode 31 and the second extraction electrode 32, which is equivalent to The divided voltage is applied to each electrochromic region individually to control the simultaneous color change of the two electrochromic regions, thereby improving the overall color changing speed of the electrochromic device, and by dividing the large-width electrochromic device into For several smaller electrochromic regions, the influence of the surface resistance of the conductive layer on the discoloration process is reduced, and the discoloration uniformity of each electrochromic region is also improved.
  • the first conductive layer 12 and the third conductive layer 22 may be bonded by a conductive medium, and the conductive medium may be conductive adhesive or conductive silver paste, etc.
  • the conductive adhesive may also include conductive adhesive, conductive acrylic And one or more of conductive silver glue, etc.
  • the first conductive layer 12 and the third conductive layer 22 may also be an integral connection structure, and correspondingly, the first base layer 11 and the third base layer 21 may also be an integral connection structure.
  • FIG. 2 the first conductive layer 12 and the third conductive layer 22 may also be an integral connection structure, and correspondingly, the first base layer 11 and the third base layer 21 may also be an integral connection structure.
  • FIG. 1 the first conductive layer 12 and the third conductive layer 22 may be bonded by a conductive medium, and the conductive medium may be conductive adhesive or conductive silver paste, etc.
  • the conductive adhesive may also include conductive adhesive, conductive acrylic And one or more of conductive silver glue, etc.
  • the second base layer 15 and the fourth base layer 25 may also be an integral connection structure, which only ensures that the peripheral side of the first electrochromic layer 13 and the peripheral side of the second electrochromic layer 23 are connected. It suffices that the second conductive layer 14 and the fourth conductive layer 24 are not in contact with each other.
  • the structure of the electrochromic device may be as shown in FIG. 4 (in FIG. 4 , it is shown by including four electrochromic regions as an example).
  • the two conductive layers of each electrochromic region located in the interior are respectively electrically connected to one conductive layer of the electrochromic region adjacent to both sides, and the one conductive layer of the electrochromic region located at the edge is electrically connected to the adjacent electrochromic region.
  • One conductive layer of the color-changing region is electrically connected, and the electrical connection between every two adjacent electrochromic regions is the same as the above-mentioned case of including two electrochromic regions.
  • the other conductive layer of the electrochromic region located at the edge is configured to be electrically connected to the lead-out electrode, that is, the first lead-out electrode 31 and the second lead-out electrode 32 are electrically connected to the two edges of the electrochromic device respectively. Then, the four electrochromic regions in the electrochromic device are connected in series to jointly divide the voltage applied between the first extraction electrode 31 and the second extraction electrode 32 .
  • the voltages obtained on the at least two electrochromic regions are equal.
  • the overall width of the electrochromic device in this embodiment is the same as that of the conventional electrochromic device, compared with the conventional electrochromic device, if an electrochromic device is applied between the first extraction electrode 31 and the second extraction electrode 32
  • the voltage that is multiple of the number of color-changing areas can make the voltage obtained on each electrochromic area to be the same as the voltage applied to the traditional electrochromic device, and the width of each electrochromic area is compared with that of the traditional electrochromic device.
  • the discoloration device is greatly reduced, and on the basis of improving the overall discoloration speed of the electrochromic device and the discoloration uniformity of each electrochromic region, the discoloration speed and coloring degree between multiple electrochromic regions can also be improved. Synchronization, in the case of a plurality of electrochromic regions discoloring in the same direction, improves the discoloration uniformity of the whole electrochromic device.
  • the first electrochromic layer includes a first electrochromic material stacked in sequence. layer 131, a first ion conducting layer 132 and a first ion storage layer 133, the second electrochromic layer includes a second electrochromic material layer 231, a second ion conducting layer 232 and a second ion storage layer 233 stacked in sequence;
  • the first electrochromic material layer 131 is close to the first conductive layer 12 and the second ion storage layer 233 is close to the third conductive layer 22 (as shown in FIG.
  • the first ion storage layer 133 is close to the first conductive layer 12 and the second electric
  • the photochromic material layer 231 is close to the third conductive layer 22 (as shown in FIG. 6 ).
  • the voltages applied to the two electrochromic regions are in the same direction, and the positions of the ion storage layer and the electrochromic material layer in the two electrochromic regions are the same.
  • the coloring states of the two electrochromic regions are the same, that is, the color change in the same direction is realized.
  • the colored state includes colored state, intermediate state and decolorized state.
  • the intermediate state is the state corresponding to when the open circuit voltage on the electrochromic region is 0 volts.
  • the transmittance decreases to enter the colored state.
  • the decolorized state When the excess rate increases, it enters the decolorized state.
  • the colored state includes only the colored state or the decolorized state, wherein the colored state or the decolorized state is the state corresponding to when the open circuit voltage on the electrochromic region is 0 volts.
  • the coloring state and decolorizing state of the electrochromic region can include an interval range, that is, it is divided into multiple coloring levels according to the transmittance, and different coloring levels correspond to different coloring degrees of the electrochromic region. The coloring degrees of the two electrochromic regions in FIG.
  • the widths of the two electrochromic regions are the same, the coloring state and the coloring degree of the two electrochromic regions are the same, so that the overall color changing effect of the electrochromic device is better.
  • the coloring degree of the wider area will be lower than the coloring degree of the narrower area, and the effect of gradation in the same direction can be achieved to meet the needs of some specific occasions.
  • the first electrochromic layer includes the first electrochromic regions that are stacked in sequence.
  • the material layer 131, the first ion conducting layer 132 and the first ion storage layer 133, the second electrochromic layer includes the second electrochromic material layer 231, the second ion conducting layer 232 and the second ion storage layer 233 which are stacked in sequence ;
  • the first electrochromic material layer 131 is close to the first conductive layer 12 and the second electrochromic material layer 231 is close to the third conductive layer 22 (as shown in FIG.
  • the first ion storage layer 133 is close to the first conductive layer 12 and The second ion storage layer 233 is close to the third conductive layer 22 (as shown in FIG. 8).
  • the voltages applied to the two electrochromic regions are reversed, and the positions of the ion storage layer and the electrochromic material layer in the two electrochromic regions are opposite.
  • the coloring states of the two electrochromic regions are opposite (for example, the coloring state of one of the electrochromic regions is the colored state, then the coloring state of the other electrochromic region is The coloring state is decolorizing state), that is, anisotropic discoloration is realized.
  • the coloring degrees of the two electrochromic regions are also different, but when the widths of the two electrochromic regions are the same, the coloring degrees of the two electrochromic regions can be made complementary, that is, the coloring of the two electrochromic regions The degree is the same as the number of stages from the intermediate state (eg, the Nth tinting level where one electrochromic region is in the tinted state and the Nth tinting level where the other electrochromic region is in the decolorized state).
  • the two electrochromic regions are anisotropically discolored, different anisotropic gradient effects can be achieved by setting the width relationship of the two electrochromic regions, so as to meet the needs of more scenarios.
  • the electrochromic device is divided into at least two electrochromic regions, and the at least two electrochromic regions are sequentially arranged in series, and then the electrochromic regions are located on both sides of the electrochromic device.
  • the electrochromic area on the edge is electrically connected with a first lead-out electrode and a second lead-out electrode, which realizes the process of controlling multiple electrochromic areas to change color at the same time through the first lead-out electrode and the second lead-out electrode, thereby increasing the width
  • the discoloration speed of the whole electrochromic device and the discoloration uniformity of multiple electrochromic regions are provided by the embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of another electrochromic device provided by an embodiment of the present application.
  • the technical solution of this embodiment is described on the basis of the technical solution of the above-mentioned embodiment.
  • the lead-out electrode 33 (in FIG. 9 , it is shown by an example of including two electrochromic regions, and the first electrochromic region and the second electrochromic region are bonded by a conductive medium 34 ). If the electrochromic device includes three or more electrochromic regions, a third lead-out electrode 33 is electrically connected between every two electrochromic regions, so that through the third lead-out electrode 33, the Individual control of each electrochromic region, as shown in FIG.
  • the coloring state and coloring degree of the first electrochromic region can be individually controlled. Applying a voltage between the second lead-out electrode 32 and the third lead-out electrode 33 can individually control the coloring state and coloring degree of the second electrochromic region.
  • the electrochromic device further includes a controller, and the controller is connected to the first extraction electrode 31, the second extraction electrode 32 and at least one third extraction electrode 33; the controller is configured to pass the first extraction electrode 31 and the second extraction electrode 31.
  • the lead-out electrode 32 controls the entire electrochromic device to change color, and is also configured to control each electrochromic region in the electrochromic device to change color through the first lead-out electrode 31, the second lead-out electrode 32 and the at least one third lead-out electrode 33 .
  • the adjustment method can be determined according to the transmittance adjustment control signal received by the controller. When it is determined that the entire electrochromic device needs to be adjusted, the first lead-out electrode 31 and the second lead-out electrode 32 are applied to the entire electrochromic device.
  • the first lead-out electrode 31 and the third lead-out electrode 33, the two The three extraction electrodes 33 or the second extraction electrode 32 and the third extraction electrode 33 apply a desired voltage to the single electrochromic region.
  • a third lead-out electrode is electrically connected at the electrical connection between every two adjacent electrochromic regions in the electrochromic device, thereby improving the large-width electrochromic region.
  • the discoloration process of a single electrochromic region can be independently controlled, so as to meet the needs of more scenarios and facilitate the debugging and maintenance of electrochromic devices.
  • FIG. 10 is a flowchart of a control method of an electrochromic device provided by an embodiment of the present application. This embodiment can be applied to the case of controlling the color changing process of the electrochromic device including the controller, and the method can be executed by the controller provided in the electrochromic device. As shown in Figure 10, it includes the following steps:
  • the first extraction electrode and the second extraction electrode are used to control the entire electrochromic device to change color.
  • the single electrochromic region in the electrochromic device is controlled, the single electrochromic region is controlled to change color through the extraction electrodes electrically connected on the two conductive layers in the single electrochromic region.
  • the user can trigger the generation of a transmittance adjustment control signal through an operation according to the transmittance requirements of the electrochromic device.
  • a transmittance adjustment control signal can be generated and received by the controller in the electrochromic device.
  • the electrochromic device can also spontaneously generate a transmittance adjustment control signal according to the surrounding environment.
  • the electrochromic device can collect ambient brightness according to a certain period, and correspond to the required transmittance according to the ambient brightness.
  • a transmittance adjustment control signal is automatically generated and sent to the controller for processing.
  • the manner of generating the transmittance adjustment signal is not limited in this embodiment, nor is it limited to the above examples.
  • the transmittance adjustment control signal for the electrochromic device After receiving the transmittance adjustment control signal for the electrochromic device, it can be judged whether it is necessary to adjust the whole electrochromic device or a single electrochromic region in the electrochromic device according to the signal. , so as to control by applying voltage through different extraction electrodes, so that the electrochromic device reaches the state corresponding to the transmittance adjustment control signal. When it is determined that the whole electrochromic device needs to be adjusted, the required voltage is applied to the entire electrochromic device through the first extraction electrode and the second extraction electrode.
  • the single electrochromic area is applied to the single electrochromic area through the first lead-out electrode and the third lead-out electrode, the two third lead-out electrodes, or the second lead-out electrode and the third lead-out electrode corresponding to the single electrochromic area. required voltage.
  • the electrochromic device includes three or more electrochromic regions, it is also possible to control at least two electrochromic regions between them to perform color changing through two spaced-apart extraction electrodes.
  • the method further includes: At least two electrochromic regions in the color-changing device are adjusted to the same or complementary degree of coloration.
  • At least two electrochromic regions in the electrochromic device need to be adjusted to a state of the same coloring degree, and for anisotropic electrochromic devices, it is necessary to adjust the electrochromic regions At least two electrochromic regions in the device are tuned to a state where the degree of coloration is complementary.
  • the coloring degree of a single electrochromic region is adjusted individually, that is, it is charged with a certain amount of electricity.
  • the single electrochromic region is not adjusted to the same or complementary state of coloration as the other electrochromic regions, then in the process of controlling the electrochromic device as a whole, the single electrochromic region The area will be fully charged first, so that the charging process of other electrochromic areas is limited. After the single electrochromic area is fully charged, if the voltage is continued to be applied, the single electrochromic area may be damaged. As a result, other electrochromic regions cannot reach the state corresponding to the transmittance adjustment control signal.
  • At least two electrochromic regions in the electrochromic device can be adjusted to the same or complementary coloring degrees to ensure the accuracy of the control results. For example, monitoring The open circuit voltage of each electrochromic region achieves the same or complementary degree of coloration of at least two electrochromic regions.
  • the method further includes: It is judged whether each electrochromic region in the electrochromic device is damaged; if there is damage in the target electrochromic region, the lead electrodes electrically connected on the two conductive layers in the target electrochromic region are short-circuited.
  • judging whether each electrochromic region in the electrochromic device is damaged includes: controlling each electrochromic region in the electrochromic region to change color, and acquiring each electrochromic region in the control process If the current of the target electrochromic area exceeds the preset current threshold, it is determined that the target electrochromic area is damaged.
  • the preset current threshold is a current interval with an upper current limit and a lower current limit.
  • the current exceeds the upper limit of the preset current threshold, it can be determined that the corresponding single electrochromic region is short-circuited; if the current does not reach the lower limit of the preset current threshold, it can be determined that the corresponding single electrochromic region has an open circuit. In both cases, it can be determined that the target electrochromic area is damaged, and the target electrochromic area can be ignored by short-circuiting the lead-out electrodes electrically connected on the two conductive layers in the target electrochromic area.
  • the above process of adjusting at least two electrochromic regions in an electrochromic device to the same or complementary degree of coloration is better achieved.
  • the adjustment mode of the electrochromic device is determined according to the received transmittance adjustment control signal, thereby realizing the overall adjustment of the electrochromic device and the adjustment of the single-area adjustment. process.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本文公开了一种电致变色器件及电致变色器件的控制方法。该电致变色器件包括至少两个电致变色区域,针对每两个相邻的第一电致变色区域和第二电致变色区域,第一电致变色区域包括依次叠加的第一基底层、第一导电层、第一电致变色层、第二导电层和第二基底层,第二电致变色区域包括依次叠加的第三基底层、第三导电层、第二电致变色层、第四导电层和第四基底层,第一导电层与第三导电层电连接,第二导电层与第四导电层互不接触,且第一电致变色层周侧与第二电致变色层周侧之间绝缘;在位于边缘的第二导电层和第四导电层上分别电连接有第一引出电极和第二引出电极。

Description

电致变色器件及电致变色器件的控制方法
本申请要求在2021年01月13日提交中国专利局、申请号为202110042216.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电致变色技术领域,例如涉及一种电致变色器件及电致变色器件的控制方法。
背景技术
电致变色器件是一种能够响应于外界电位差的施加,而改变其自身的光学性能的装置,其光学性能的变化主要由电致变色器件内的电致变色材料的离子嵌入/脱出而导致。相关技术中的电致变色器件通常是在着色态和去色态(透明态)之间进行光学性能切换,例如,在应用时,可以将电致变色器件复合于窗户中,形成电致变色窗户。当有外界强光时,用户可以将窗户的光学状态切换至着色态(如灰色或蓝色等),从而一定程度上削弱光线强度,提高人体舒适度,当外界环境光强较弱时,用户可以将窗户的光学状态切换至去色态,增加入射的光强比例,以提高室内的亮度。
但是随着电致变色器件的宽幅逐渐增大,由于所使用的导电层自身存在面阻,会导致电致变色器件面上的有效电压不均匀,即边缘的有效电压大于中心的有效电压。因此,在电致变色器件变色时,会出现边缘变色快,而中间变色慢的现象,且电致变色器件的宽幅越大,变色不均匀的现象越明显,中间达到变色终点所需的时间也就越久。
发明内容
本申请提供一种电致变色器件及电致变色器件的控制方法,以解决大宽幅电致变色器件中心变色速度慢以及整体变色不均匀的问题。
本申请提供了一种电致变色器件,包括至少两个电致变色区域,针对每两个相邻的第一电致变色区域和第二电致变色区域,所述第一电致变色区域包括依次叠加的第一基底层、第一导电层、第一电致变色层、第二导电层和第二基底层,所述第二电致变色区域包括依次叠加的第三基底层、第三导电层、第二电致变色层、第四导电层和第四基底层,所述第一导电层与所述第三导电层电连接,所述第二导电层与所述第四导电层互不接触,且所述第一电致变色层周侧与所述第二电致变色层周侧之间绝缘;
若所述第一电致变色区域位于所述电致变色器件的边缘,则在所述第二导电层上电连接有第一引出电极,若所述第二电致变色区域位于所述电致变色器件的边缘,则在所述第四导电层上电连接有第二引出电极。
一实施例中,所述第一电致变色层包括依次叠加的第一电致变色材料层、第一离子传导层和第一离子存储层,所述第二电致变色层包括依次叠加的第二电致变色材料层、第二离子传导层和第二离子存储层;
所述第一电致变色材料层靠近所述第一导电层且所述第二离子存储层靠近所述第三导电层,或者所述第一离子存储层靠近所述第一导电层且所述第二电致变色材料层靠近所述第三导电层。
一实施例中,所述第一电致变色层包括依次叠加的第一电致变色材料层、第一离子传导层和第一离子存储层,所述第二电致变色层包括依次叠加的第二电致变色材料层、第二离子传导层和第二离子存储层;
所述第一电致变色材料层靠近所述第一导电层且所述第二电致变色材料层靠近所述第三导电层,或者所述第一离子存储层靠近所述第一导电层且所述第二离子存储层靠近所述第三导电层。
一实施例中,所述至少两个电致变色区域的宽度相同。
一实施例中,在所述第一导电层与所述第三导电层之间的电连接处电连接有第三引出电极。
一实施例中,所述电致变色器件还包括控制器,所述控制器与所述第一引出电极、所述第二引出电极以及至少一个第三引出电极连接;所述控制器设置为通过所述第一引出电极和所述第二引出电极控制所述电致变色器件整体进行变色,以及通过所述第一引出电极、所述第二引出电极以及所述至少一个第三引出电极控制所述电致变色器件中的每个电致变色区域进行变色。
本申请还提供了一种电致变色器件的控制方法,应用于上述包括控制器的电致变色器件,包括:
接收电致变色器件的透过率调节控制信号;
根据所述透过率调节控制信号确定是对所述电致变色器件整体进行控制或者是对所述电致变色器件中的单个电致变色区域进行控制;
若对所述电致变色器件整体进行控制,则通过所述电致变色器件的第一引出电极和所述电致变色器件的第二引出电极控制所述电致变色器件整体进行变色;
若对所述电致变色器件中的单个电致变色区域进行控制,则通过所述单个 电致变色区域中两个导电层上电连接的引出电极控制所述单个电致变色区域进行变色。
一实施例中,若对所述电致变色器件整体进行控制,则在所述通过所述电致变色器件的第一引出电极和所述电致变色器件的第二引出电极控制所述电致变色器件整体进行变色之前,还包括:
将所述电致变色器件中的至少两个电致变色区域调节至着色程度相同或互补。
一实施例中,若对所述电致变色器件整体进行控制,则在所述将所述电致变色器件中的至少两个电致变色区域调节至着色程度相同或互补之前,还包括:
判断所述电致变色器件中的每个电致变色区域是否发生损坏;
若存在目标电致变色区域发生损坏,则将所述目标电致变色区域中两个导电层上电连接的引出电极短接。
一实施例中,所述判断所述电致变色器件中的每个电致变色区域是否发生损坏,包括:
控制所述电致变色区域中的每个电致变色区域进行变色,并获取控制过程中每个电致变色区域的电流;
若存在所述目标电致变色区域的电流超出预设电流阈值,则确定所述目标电致变色区域损坏。
附图说明
图1为本申请实施例提供的一种电致变色器件的结构示意图;
图2为本申请实施例提供的另一种电致变色器件的结构示意图;
图3为本申请实施例提供的另一种电致变色器件的结构示意图;
图4为本申请实施例提供的另一种电致变色器件的结构示意图;
图5为本申请实施例提供的另一种电致变色器件的结构示意图;
图6为本申请实施例提供的另一种电致变色器件的结构示意图;
图7为本申请实施例提供的另一种电致变色器件的结构示意图;
图8为本申请实施例提供的另一种电致变色器件的结构示意图;
图9为本申请实施例提供的另一种电致变色器件的结构示意图;
图10为本申请实施例提供的一种电致变色器件的控制方法的流程图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
此外,术语“第一”、“第二”等可在本文中用于描述多种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。术语“第一”、“第二”等而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多个步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,多个步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
图1为本申请实施例提供的一种电致变色器件的结构示意图。如图1所示,该电致变色器件包括至少两个电致变色区域(图1中以包括两个电致变色区域为例进行示出),针对每两个相邻的第一电致变色区域和第二电致变色区域,第一电致变色区域包括依次叠加的第一基底层11、第一导电层12、第一电致变色层13、第二导电层14和第二基底层15,第二电致变色区域包括依次叠加的第三基底层21、第三导电层22、第二电致变色层23、第四导电层24和第四基底层25,第一导电层12与第三导电层22电连接,第二导电层14与第四导电层24互不接触,且第一电致变色层13周侧与第二电致变色层23周侧之间绝缘;若第一电致变色区域位于电致变色器件的边缘,则在第二导电层14上电连接有第一引出电极31,若第二电致变色区域位于电致变色器件的边缘,则在第四导电层24上电连接有第二引出电极32。
以电致变色器件包括两个电致变色区域为例进行说明,第一电致变色区域与第二电致变色区域通过第一导电层12和第三导电层22之间的电连接以及第二导电层14与第四导电层24之间的互不接触来实现串联。第一电致变色层13周侧为不与第一导电层12和第二导电层14接触的面,第二电致变色层23周侧为不与第三导电层22和第四导电层24接触的面,第一电致变色层13周侧和第二电致变色层23周侧之间绝缘的情况包括:第一电致变色层13周侧和第二电致变色层23周侧之间设置预设宽度的空隙,或第一电致变色层13周侧和第二电致变色层23周侧之间设置电子绝缘材料,示例性地,该电子绝缘材料可以是 绝缘胶体以及离子传导层材料等。如图1所示,第一基底层11与第四基底层25是分离的结构,第二基底层15与第三基底层21是分离的结构;在其它可选实施例中,在图1所示的结构的基础上,还可以将第一基底层11与第四基底层25设置为一体连接结构,和/或将第二基底层15与第三基底层21设置为一体连接结构。通过将第一电致变色层13周侧与第二电致变色层23周侧设置为相互绝缘,可以有效防止电致变色器件内部短路。可选地,第一导电层12、第二导电层14、第三导电层22和第四导电层24中的一个或至少两个导电层可以是面阻均匀的单层导电层,也可以是面阻不均匀的单层导电层,还可以是由电阻率不同的多种导电物质层叠而成的多层导电层。此时可以在第二导电层14上电连接第一引出电极31,在第四导电层24上电连接第二引出电极32,从而通过在第一引出电极31和第二引出电极32之间施加电压来控制第一电致变色区域与第二电致变色区域进行变色,通路即为从第二导电层14到第一导电层12,再到第三导电层22,最后到第四导电层24。由于第一电致变色区域与第二电致变色区域为串联,因此两个电致变色区域共同对在第一引出电极31和第二引出电极32之间施加的电压进行分压,即相当于单独在每个电致变色区域上施加所分得的电压以控制两个电致变色区域同时进行变色,从而提高了电致变色器件整体的变色速度,且通过将大宽幅电致变色器件分为几个更小的电致变色区域,降低了导电层的面阻对变色过程产生的影响,也就提高了每个电致变色区域的变色均匀性。
如图1所示,第一导电层12与第三导电层22之间可以通过导电介质粘结,该导电介质可以是导电胶或导电银浆等,该导电胶还可以包括导电胶粘剂、导电丙烯酸以及导电银胶等的一种或多种。可选的,如图2所示,第一导电层12与第三导电层22也可以是一体连接结构,相应的,第一基底层11与第三基底层21也可以是一体连接结构。可选的,如图3所示,第二基底层15和第四基底层25也可以是一体连接结构,仅保证第一电致变色层13周侧与第二电致变色层23周侧之间绝缘,以及第二导电层14与第四导电层24之间互不接触即可。
当该电致变色器件包括三个及以上的电致变色区域时,该电致变色器件的结构可以如图4所示(图4中以包括四个电致变色区域为例进行示出)。其中位于内部的每个电致变色区域的两个导电层分别与两侧相邻的电致变色区域的一个导电层电连接,位于边缘的电致变色区域的一个导电层与相邻的电致变色区域的一个导电层电连接,每两个相邻的电致变色区域之间的电连接方式与上述包括两个电致变色区域的情况相同。位于边缘的电致变色区域的另一个导电层设置为电连接引出电极,即在该电致变色器件的两侧边缘分别电连接有第一引出电极31和第二引出电极32。则该电致变色器件中的四个电致变色区域串联,共同对在第一引出电极31和第二引出电极32之间施加的电压进行分压。
可选的,至少两个电致变色区域的宽度相同,则至少两个电致变色区域上所分得的电压相等。假设本实施例中的电致变色器件的整体宽度与传统的电致变色器件相同,与传统的电致变色器件相比,若在第一引出电极31与第二引出电极32之间施加电致变色区域数量倍数的电压,则可以使得每个电致变色区域上所分得的电压与传统的电致变色器件上施加的电压相同,而每个电致变色区域的宽度相比传统的电致变色器件大大减小,则在提高了电致变色器件整体的变色速度以及每个电致变色区域的变色均匀性的基础上,还可以使得多个电致变色区域之间的变色速度与着色程度同步,在多个电致变色区域同向变色的情况下,则提高了电致变色器件整体的变色均匀性。
可选的,如图5和图6所示(图5和图6中以包括两个电致变色区域为例进行示出),第一电致变色层包括依次叠加的第一电致变色材料层131、第一离子传导层132和第一离子存储层133,第二电致变色层包括依次叠加的第二电致变色材料层231、第二离子传导层232和第二离子存储层233;第一电致变色材料层131靠近第一导电层12且第二离子存储层233靠近第三导电层22(如图5),或者第一离子存储层133靠近第一导电层12且第二电致变色材料层231靠近第三导电层22(如图6)。在上述两种情况下,相当于施加在两个电致变色区域的电压是同向的,两个电致变色区域中离子存储层与电致变色材料层的位置相同。在第一引出电极31与第二引出电极32之间施加电压时,两个电致变色区域的着色状态相同,即实现同向变色。其中,着色状态包括着色态、中间态和去色态,中间态为电致变色区域上的开路电压为0伏时对应的状态,在中间态的基础上透过率降低则进入着色态,透过率升高则进入去色态。在另一些类型的电致变色器件中,着色状态仅包括着色态或者去色态,其中着色态或去色态为电致变色区域上的开路电压为0伏时对应的状态。电致变色区域的着色态与去色态均可包括一个区间范围,即根据透过率的大小分为多个着色等级,不同的着色等级对应电致变色区域不同的着色程度,则图5和图6中的两个电致变色区域的着色程度可以相同,也可以不同,可以通过设置两个电致变色区域的宽度关系来实现。例如,两个电致变色区域的宽度相同,则两个电致变色区域的着色状态和着色程度均相同,从而使得电致变色器件整体的变色效果更好。当两个电致变色器件的宽度不同时,较宽区域的着色程度会低于较窄区域的着色程度,则可以实现同向渐变的效果,从而满足一些特定场合下的需求。
或者可选的,如图7和图8所示(图7和图8中以包括两个电致变色区域为例进行示出),第一电致变色层包括依次叠加的第一电致变色材料层131、第一离子传导层132和第一离子存储层133,第二电致变色层包括依次叠加的第二电致变色材料层231、第二离子传导层232和第二离子存储层233;第一电致变色材料层131靠近第一导电层12且第二电致变色材料层231靠近第三导电层22 (如图7),或者第一离子存储层133靠近第一导电层12且第二离子存储层233靠近第三导电层22(如图8)。在上述两种情况下,相当于施加在两个电致变色区域的电压是反向的,两个电致变色区域中离子存储层与电致变色材料层的位置相反。在第一引出电极31与第二引出电极32之间施加电压时,两个电致变色区域的着色状态相反(如其中一个电致变色区域的着色状态为着色态,则另一个电致变色区域的着色状态为去色态),即实现异向变色。同时,两个电致变色区域的着色程度也就不同,但是当两个电致变色区域的宽度相同时,可以使得两个电致变色区域的着色程度互补,即两个电致变色区域的着色程度与中间态相距的级数相同(如其中一个电致变色区域处于着色态的第N级着色等级,另一个电致变色区域处于去色态的第N级着色等级)。当两个电致变色区域为异向变色时,可以通过设置两个电致变色区域的宽度关系来实现不同的异向渐变效果,从而满足更多场景下的需求。
本申请实施例所提供的电致变色器件,通过将电致变色器件分为至少两个电致变色区域,并将至少两个电致变色区域依次串联设置,再在位于电致变色器件两侧边缘的电致变色区域上电连接有第一引出电极和第二引出电极,实现了通过第一引出电极和第二引出电极控制多个电致变色区域同时进行变色的过程,从而提高了大宽幅电致变色器件整体的变色速度以及多个电致变色区域的变色均匀性。
图9为本申请实施例提供的另一种电致变色器件的结构示意图。本实施例的技术方案在上述实施例技术方案的基础上说明,可选的,如图9所示,在第一导电层12与第三导电层22之间的电连接处电连接有第三引出电极33(图9中以包括两个电致变色区域,且第一电致变色区域与第二电致变色区域之间通过导电介质34粘结为例进行示出)。若电致变色器件包括三个及以上数量的电致变色区域,则是在每两个电致变色区域之间均电连接有第三引出电极33,从而通过第三引出电极33可以实现对每个电致变色区域的单独控制,如图9所示,通过在第一引出电极31和第三引出电极33之间施加电压可以单独控制第一电致变色区域的着色状态和着色程度,通过在第二引出电极32和第三引出电极33之间施加电压可以单独控制第二电致变色区域的着色状态和着色程度。
可选的,电致变色器件还包括控制器,控制器与第一引出电极31、第二引出电极32以及至少一个第三引出电极33连接;控制器设置为通过第一引出电极31和第二引出电极32控制电致变色器件整体进行变色,还设置为通过第一引出电极31、第二引出电极32以及至少一个第三引出电极33控制电致变色器件中的每个电致变色区域进行变色。可以根据控制器接收到的透过率调节控制 信号确定调节方式,当确定需要对电致变色器件整体进行调节时,则通过第一引出电极31和第二引出电极32对整个电致变色器件施加所需的电压,当确定需要对电致变色器件中的一单个电致变色区域进行调节时,则通过该单个电致变色区域对应的第一引出电极31和第三引出电极33、两个第三引出电极33或者第二引出电极32和第三引出电极33对该单个电致变色区域施加所需的电压。
本申请实施例所提供的电致变色器件,通过在电致变色器件中每两个相邻的电致变色区域的电连接处电连接有第三引出电极,在提高了大宽幅电致变色器件整体的变色速度的基础上,还实现了单独控制单个电致变色区域的变色过程,从而满足更多场景下的需求,也更便于对电致变色器件的调试和维护。
图10为本申请实施例提供的一种电致变色器件的控制方法的流程图。本实施例可适用于对上述包括控制器的电致变色器件的变色过程进行控制的情况,该方法可以由电致变色器件中设置的控制器来执行。如图10所示,包括如下步骤:
S101、接收电致变色器件的透过率调节控制信号。
S102、根据透过率调节控制信号确定是对电致变色器件整体进行控制或者是对电致变色器件中的单个电致变色区域进行控制。
S103、若对电致变色器件整体进行控制,则通过第一引出电极和第二引出电极控制电致变色器件整体进行变色。
S104、若对电致变色器件中的单个电致变色区域进行控制,则通过单个电致变色区域中两个导电层上电连接的引出电极控制单个电致变色区域进行变色。
在电致变色器件的使用过程中,用户可以根据对电致变色器件透过率的需求通过一种操作来触发生成透过率调节控制信号。示例性的,如在电致变色器件的外部设置调节按钮,当用户按下一个按钮时,即可产生一透过率调节控制信号并由电致变色器件中的控制器接收。此外,电致变色器件也可以自发的根据周围的环境生成透过率调节控制信号,示例性的,电致变色器件可以按照一定的周期采集环境亮度,并根据环境亮度对应所需的透过率自动的产生一透过率调节控制信号并发送至控制器进行处理。关于透过率调节信号的产生方式,在本实施例中不作限制,也不限于上述的示例。
在接收到针对电致变色器件的透过率调节控制信号之后,即可根据该信号判断是需要对电致变色器件整体进行调节还是需要对电致变色器件中的一单个电致变色区域进行调节,以便通过不同的引出电极施加电压进行控制,使得电 致变色器件达到与透过率调节控制信号对应的状态。当确定需要对电致变色器件整体进行调节时,则通过第一引出电极和第二引出电极对整个电致变色器件施加所需的电压,当确定需要对电致变色器件中的一单个电致变色区域进行调节时,则通过该单个电致变色区域对应的第一引出电极和第三引出电极、两个第三引出电极或者第二引出电极和第三引出电极对该单个电致变色区域施加所需的电压。另外,在电致变色器件包括三个及以上数量的电致变色区域时,还可以通过相间隔的两个引出电极控制其间的至少两个电致变色区域进行变色。
在上述技术方案的基础上,可选的,若对电致变色器件整体进行控制,则在通过第一引出电极和第二引出电极控制电致变色器件整体进行变色之前,还包括:将电致变色器件中的至少两个电致变色区域调节至着色程度相同或互补。对于同向变色的电致变色器件,则需要将电致变色器件中的至少两个电致变色区域调节至着色程度相同的状态,对于异向变色的电致变色器件,则需要将电致变色器件中的至少两个电致变色区域调节至着色程度互补的状态。在电致变色器件的使用过程中,可能存在一单个电致变色区域的着色程度被单独调节的情况,即被充上一定的电量。在这种情况下,若不将该单个电致变色区域调节至与其他电致变色区域着色程度相同或互补的状态,则在对电致变色器件整体进行控制的过程中,该单个电致变色区域会首先被充满,从而使得其他电致变色区域的充电过程被限制,该单个电致变色区域充满后,若继续施加电压可能会导致该单个电致变色区域损坏,而不继续施加电压,则会导致其他电致变色区域不能达到与透过率调节控制信号对应的状态。因此,在对电致变色器件整体进行控制之前,可以首先将电致变色器件中的至少两个电致变色区域调节至着色程度相同或互补,来保证控制结果的准确性,例如,可以通过监控每个电致变色区域的开路电压来实现至少两个电致变色区域的着色程度相同或互补。
在上述技术方案的基础上,可选的,若对电致变色器件整体进行控制,则在将电致变色器件中的至少两个电致变色区域调节至着色程度相同或互补之前,还包括:判断电致变色器件中的每个电致变色区域是否发生损坏;若存在目标电致变色区域发生损坏,则将目标电致变色区域中两个导电层上电连接的引出电极短接。可选的,判断电致变色器件中的每个电致变色区域是否发生损坏,包括:控制电致变色区域中的每个电致变色区域进行变色,并获取控制过程中每个电致变色区域的电流;若存在目标电致变色区域的电流超出预设电流阈值,则确定目标电致变色区域损坏。其中,预设电流阈值为具有电流上限和电流下限的电流区间。在对电致变色器件整体进行调节之前,可以首先通过对每个电致变色区域进行调节来判断每个电致变色区域是否发生损坏,在调节的过程中获取每个电致变色区域的电流,若电流超过预设电流阈值的上限,则可以认定对应的单个电致变色区域发生短路,若电流未达到预设电流阈值的下限, 则可以认定对应的单个电致变色区域发生断路。在这两种情况下,即可认定存在目标电致变色区域发生损坏,进而可以通过将目标电致变色区域中两个导电层上电连接的引出电极短接来忽略目标电致变色区域,从而更好地实现上述将电致变色器件中的至少两个电致变色区域调节至着色程度相同或互补的过程。
本申请实施例所提供的电致变色器件的控制方法,根据接收到的透过率调节控制信号判断电致变色器件的调节方式,进而实现了对电致变色器件的整体调节以及单区域调节的过程。

Claims (10)

  1. 一种电致变色器件,包括至少两个电致变色区域,针对每两个相邻的第一电致变色区域和第二电致变色区域,所述第一电致变色区域包括依次叠加的第一基底层、第一导电层、第一电致变色层、第二导电层和第二基底层,所述第二电致变色区域包括依次叠加的第三基底层、第三导电层、第二电致变色层、第四导电层和第四基底层,所述第一导电层与所述第三导电层电连接,所述第二导电层与所述第四导电层互不接触,且所述第一电致变色层周侧与所述第二电致变色层周侧之间绝缘;
    在所述第一电致变色区域位于所述电致变色器件的边缘的情况下,在所述第二导电层上电连接有第一引出电极,在所述第二电致变色区域位于所述电致变色器件的边缘的情况下,在所述第四导电层上电连接有第二引出电极。
  2. 根据权利要求1所述的电致变色器件,其中,所述第一电致变色层包括依次叠加的第一电致变色材料层、第一离子传导层和第一离子存储层,所述第二电致变色层包括依次叠加的第二电致变色材料层、第二离子传导层和第二离子存储层;
    所述第一电致变色材料层靠近所述第一导电层且所述第二离子存储层靠近所述第三导电层,或者所述第一离子存储层靠近所述第一导电层且所述第二电致变色材料层靠近所述第三导电层。
  3. 根据权利要求1所述的电致变色器件,其中,所述第一电致变色层包括依次叠加的第一电致变色材料层、第一离子传导层和第一离子存储层,所述第二电致变色层包括依次叠加的第二电致变色材料层、第二离子传导层和第二离子存储层;
    所述第一电致变色材料层靠近所述第一导电层且所述第二电致变色材料层靠近所述第三导电层,或者所述第一离子存储层靠近所述第一导电层且所述第二离子存储层靠近所述第三导电层。
  4. 根据权利要求1所述的电致变色器件,其中,所述至少两个电致变色区域的宽度相同。
  5. 根据权利要求1-4任一项所述的电致变色器件,其中,在所述第一导电层与所述第三导电层之间的电连接处电连接有第三引出电极。
  6. 根据权利要求5所述的电致变色器件,还包括控制器,所述控制器与所述第一引出电极、所述第二引出电极以及至少一个所述第三引出电极连接;所述控制器设置为通过所述第一引出电极和所述第二引出电极控制所述电致变色器件整体进行变色,以及通过所述第一引出电极、所述第二引出电极以及至少一个所述第三引出电极控制所述电致变色器件中的每个电致变色区域进行变色。
  7. 一种电致变色器件的控制方法,应用于权利要求6所述的电致变色器件,包括:
    接收所述电致变色器件的透过率调节控制信号;
    根据所述透过率调节控制信号确定是对所述电致变色器件整体进行控制或者是对所述电致变色器件中的单个电致变色区域进行控制;
    响应于对所述电致变色器件整体进行控制,通过所述电致变色器件的第一引出电极和所述电致变色器件的第二引出电极控制所述电致变色器件整体进行变色;
    响应于对所述电致变色器件中的单个电致变色区域进行控制,通过所述单个电致变色区域中两个导电层上电连接的引出电极控制所述单个电致变色区域进行变色。
  8. 根据权利要求7所述的电致变色器件的控制方法,在对所述电致变色器件整体进行控制的情况下,在所述通过所述电致变色器件的第一引出电极和所述电致变色器件的第二引出电极控制所述电致变色器件整体进行变色之前,还包括:
    将所述电致变色器件中的至少两个电致变色区域调节至着色程度相同或互补。
  9. 根据权利要求8所述的电致变色器件的控制方法,在对所述电致变色器件整体进行控制的情况下,在所述将所述电致变色器件中的至少两个电致变色区域调节至着色程度相同或互补之前,还包括:
    判断所述电致变色器件中的每个电致变色区域是否发生损坏;
    响应于存在目标电致变色区域发生损坏,将所述目标电致变色区域中两个导电层上电连接的引出电极短接。
  10. 根据权利要求9所述的电致变色器件的控制方法,其中,所述判断所述电致变色器件中的每个电致变色区域是否发生损坏,包括:
    控制所述电致变色区域中的每个电致变色区域进行变色,并获取控制过程中每个电致变色区域的电流;
    在存在所述目标电致变色区域的电流超出预设电流阈值的情况下,确定所述目标电致变色区域损坏。
PCT/CN2022/070945 2021-01-13 2022-01-10 电致变色器件及电致变色器件的控制方法 WO2022152070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22738951.7A EP4279987A1 (en) 2021-01-13 2022-01-10 Electrochromic device and control method for same
US18/351,103 US20230350258A1 (en) 2021-01-13 2023-07-12 Electrochromic device and method for controlling an electrochromic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110042216.4 2021-01-13
CN202110042216.4A CN112782899A (zh) 2021-01-13 2021-01-13 一种电致变色器件及电致变色器件的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/351,103 Continuation US20230350258A1 (en) 2021-01-13 2023-07-12 Electrochromic device and method for controlling an electrochromic device

Publications (1)

Publication Number Publication Date
WO2022152070A1 true WO2022152070A1 (zh) 2022-07-21

Family

ID=75755773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070945 WO2022152070A1 (zh) 2021-01-13 2022-01-10 电致变色器件及电致变色器件的控制方法

Country Status (4)

Country Link
US (1) US20230350258A1 (zh)
EP (1) EP4279987A1 (zh)
CN (1) CN112782899A (zh)
WO (1) WO2022152070A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782899A (zh) * 2021-01-13 2021-05-11 深圳市光羿科技有限公司 一种电致变色器件及电致变色器件的控制方法
EP4174564A1 (en) * 2021-11-02 2023-05-03 Freshape SA Electrochromic device comprising a plurality of unit cells connected in series
CN116699917B (zh) * 2023-08-09 2024-01-26 合肥威迪变色玻璃有限公司 一种电致变色器件及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490712A (zh) * 2018-03-29 2018-09-04 安徽鑫昊等离子显示器件有限公司 一种具有快速响应性的无机全固态电致变色器件及制备方法
CN109597260A (zh) * 2017-09-29 2019-04-09 斯坦雷电气株式会社 电化学光学装置
JP2019158940A (ja) * 2018-03-08 2019-09-19 株式会社カネカ エレクトロクロミックデバイス
CN111897172A (zh) * 2020-09-01 2020-11-06 深圳市光羿科技有限公司 一种电致变色器件和包含其的电子终端
CN112782899A (zh) * 2021-01-13 2021-05-11 深圳市光羿科技有限公司 一种电致变色器件及电致变色器件的控制方法
CN214375727U (zh) * 2021-01-13 2021-10-08 光羿智能科技(苏州)有限公司 一种电致变色器件及一种电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195191B2 (ja) * 2019-03-22 2022-12-23 スタンレー電気株式会社 光学素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597260A (zh) * 2017-09-29 2019-04-09 斯坦雷电气株式会社 电化学光学装置
JP2019158940A (ja) * 2018-03-08 2019-09-19 株式会社カネカ エレクトロクロミックデバイス
CN108490712A (zh) * 2018-03-29 2018-09-04 安徽鑫昊等离子显示器件有限公司 一种具有快速响应性的无机全固态电致变色器件及制备方法
CN111897172A (zh) * 2020-09-01 2020-11-06 深圳市光羿科技有限公司 一种电致变色器件和包含其的电子终端
CN112782899A (zh) * 2021-01-13 2021-05-11 深圳市光羿科技有限公司 一种电致变色器件及电致变色器件的控制方法
CN214375727U (zh) * 2021-01-13 2021-10-08 光羿智能科技(苏州)有限公司 一种电致变色器件及一种电子设备

Also Published As

Publication number Publication date
US20230350258A1 (en) 2023-11-02
CN112782899A (zh) 2021-05-11
EP4279987A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2022152070A1 (zh) 电致变色器件及电致变色器件的控制方法
JP6592123B2 (ja) 複数の独立して制御可能なゾーン及び内部バスバーを有するエレクトロクロミックデバイス
WO2016126460A2 (en) Electrochromic devices
RU2378672C2 (ru) Способ подачи питания на электроуправляемое устройство, имеющее переменные оптические и/или энергетические свойства
US20160202591A1 (en) Multi-zone electrochromic device
US8537295B2 (en) Methods of switching and apparatus comprising an electrically actuated variable transmission material
CN112904636B (zh) 一种电致变色器件及包含其的电子终端
US20150355520A1 (en) Control circuit and method for maintaining light transmittance of electrochromic device
CN110095914B (zh) 电致变色器件和电子设备
US9341911B2 (en) Color rendering in optical glazings
CN107402488B (zh) 电致变色元件的驱动方法及决定褪色电压的方法
CN110383163A (zh) 电致变色元件和包括电致变色元件的电致变色设备
KR20150122319A (ko) 전기변색 소자의 제조방법
CN214375727U (zh) 一种电致变色器件及一种电子设备
CN210123513U (zh) 一种图案化电致变色器件以及电致变色玻璃
KR20170043828A (ko) 전기변색소자의 제어장치, 이를 포함하는 전기변색 모듈 및 전기변색 소자의 제어방법
KR101845362B1 (ko) 전계구동 셀 및 그 작동방법
KR102397829B1 (ko) 전기 변색소자의 구동제어 방법 및 장치
TWI407404B (zh) 電濕潤顯示器的驅動方法
CN113433750A (zh) 一种电致变色器件及电子设备
CN220064568U (zh) 一种电致变色膜片、变色装置及终端产品
CN114647119B (zh) 调光结构和调光设备
CN109696783A (zh) 新型电致变色组件及其制备方法、驱动方法和电致变色玻璃
CN214751246U (zh) 一种可控颜色均匀度的电致变色玻璃
CN218630418U (zh) 一种调光玻璃及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022738951

Country of ref document: EP

Effective date: 20230814