WO2022151911A1 - 卡套、卡套动作控制装置及放射性同位素纯化/标记系统 - Google Patents

卡套、卡套动作控制装置及放射性同位素纯化/标记系统 Download PDF

Info

Publication number
WO2022151911A1
WO2022151911A1 PCT/CN2021/138878 CN2021138878W WO2022151911A1 WO 2022151911 A1 WO2022151911 A1 WO 2022151911A1 CN 2021138878 W CN2021138878 W CN 2021138878W WO 2022151911 A1 WO2022151911 A1 WO 2022151911A1
Authority
WO
WIPO (PCT)
Prior art keywords
way
container
pipe
module
twenty
Prior art date
Application number
PCT/CN2021/138878
Other languages
English (en)
French (fr)
Inventor
虞善友
霍力
颜成龙
方鹏
Original Assignee
无锡诺宇医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110036393.1A external-priority patent/CN114762728A/zh
Priority claimed from CN202120082097.0U external-priority patent/CN215690054U/zh
Application filed by 无锡诺宇医药科技有限公司 filed Critical 无锡诺宇医药科技有限公司
Publication of WO2022151911A1 publication Critical patent/WO2022151911A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention relates to the technical field of radioisotope purification/labeling, in particular to a ferrule, a motion control device for the ferrule and a radioisotope purification/labeling system.
  • Radiolabeling process should comply with Good Manufacturing Practices (GMPs), be adequately documented and validated, provide reliable product yields, and meet pre-set quality specifications.
  • Product quality control includes determining product integrity, radiochemical purity and sterility, and the presence of endotoxins.
  • Safety requires not only good manufacturing practices and standard operating procedures to ensure the sterility and purity of radiopharmaceuticals, but also the radiation protection of radiopharmaceutical chemists during manufacturing, quality control, and dispensing.
  • the typical activity of radiopharmaceuticals used in therapy is in the range of 10-50 GBq, which requires special remote shielding operations to avoid radiation exposure, especially the fingers of the radiopharmacist.
  • the ideal way to meet all these challenges is to automate the production of radiopharmaceuticals in a GMP-compliant manner using proven automated radiolabeling methods, with minimal exposure to radiation for production personnel, while ensuring the quality of radiopharmaceutical production.
  • radiopharmaceutical synthesis equipment on the market, which are mainly used for the labeling and preparation of F-18 and C-11 nuclide-labeled PET-CT diagnostic tracer drugs.
  • radiopharmaceuticals Due to the limitation of the half-life of nuclides, radiopharmaceuticals have a short period of validity, and are usually prepared and used immediately. This customized on-site radiopharmaceutical label has the characteristics of more batches and higher production stability than traditional drug production. Therefore, the disposable ferrule that has been fully verified by process optimization can minimize potential cross-contamination and avoid time-consuming cleaning procedures under the premise of ensuring production stability. It has become the development direction of automatic radiopharmaceutical synthesis modules. At present, major international suppliers such as General Electric (GE), ORANeptis and Japan's Sumitomo have all sold and used fully automatic ferrule modules, but the high cost of using imported ferrules limits their domestic promotion. and use.
  • GE General Electric
  • ORANeptis ORANeptis
  • Japan's Sumitomo have all sold and used fully automatic ferrule modules, but the high cost of using imported ferrules limits their domestic promotion. and use.
  • the domestic radiochemical automation equipment is mainly used for C-11 or F-18 labeled small-molecule PET diagnostic tracer drugs.
  • the method of fixed pipelines and solenoid valves is also prone to failure due to pipeline blockage and joint leakage during long-term use, resulting in failure of marking.
  • the F-18 and C-11 radiolabeling equipment on the market in the early stage can no longer meet the market demand, and it is necessary to achieve longer half-life metal therapeutic nuclides Labeling requirements, such as Lu-177, Y-90, etc.
  • labeling requirements such as Lu-177, Y-90, etc.
  • only imported radiolabeling equipment on the market can automatically label small molecule compounds and small molecule peptides with Ga-68 and Lu-177Lu. 64, Lu-177 and other nuclides for macromolecular protein automatic cassette type radiolabeling module.
  • an object of the present invention is to provide a ferrule with simple structure, low cost, good versatility and wide applicability, which can avoid pollution to the ferrule action control device and ensure the service life of the ferrule action control device.
  • the ferrule is a replaceable and disposable medium transmission ferrule, which is suitable for radioisotope purification and preparation/radiopharmaceutical labeling synthesis process operations, including:
  • a multi-connected three-way module includes a plurality of three-way valves and a common pipeline extending in the left-right direction; each of the three-way valves has three ports and a handle, and the three ports are distributed in the On the left, right and upper sides of the three-way valve, the handle is used to control the communication of any two of the three ports of the three-way valve; a plurality of the three-way valves They are arranged on the common pipeline in sequence, and the right port of the left three-way valve and the left side of the right three-way valve of the two adjacent three-way valves in the left-right direction the ports are connected by the common pipe;
  • a tube the tube communicates the multi-connected three-way module, the syringe and the container according to the flow path required for liquid transfer in the radioisotope purification preparation/radiopharmaceutical labeling synthesis process operation, wherein the multi-connected three-way module
  • the three-way module and the syringe are respectively used to be directly installed on the action control device of the ferrule.
  • the multi-connected three-way module and the syringe can be selected according to actual needs, so as to avoid some multi-connected three-way modules and syringes being idle, Therefore, the use of raw materials can be reduced; the multi-connected three-way module and the syringe that actually need to be used are directly installed on the ferrule action control device respectively. Due to the different reactions generated by different process operations, the preparation/radiopharmaceuticals are prepared according to the radioisotope purification through the tube.
  • the flow path required for the liquid transfer in the marking synthesis process connects the syringe and the container with the multi-tee module respectively, and the syringe, the multi-tee module and the tube can be made independently, thereby effectively reducing the manufacturing cost; different kinds of Syringes, multiple tee modules and tubes can be used independently and flexibly assembled to form media transmission ferrules of different specifications for application in different process operations, with good versatility and wide applicability; in the preparation of radioisotope purification/
  • the liquid only flows in the medium transmission ferrule, and the liquid does not contact the motion control device of the ferrule, so as to avoid contamination of the motion control device of the ferrule and ensure the service life of the motion control device of the ferrule; in addition , Since there are radioactive residues in the medium transmission ferrule after each process operation, a new medium transmission ferrule can be replaced after each process operation, which can prevent cross-contamination between different
  • the container is configured to be directly mounted on the ferrule action control device.
  • the handle includes a rotating shaft and three radial positioning blocks, the three radial positioning blocks are radially arranged and distributed on the circumferential surface of the rotating shaft, three The radial positioning blocks are arranged in a T-shape.
  • the rotating shaft is provided with a positioning hole.
  • the handle is provided with three indicating arrows, and the three indicating arrows are correspondingly arranged on the outer end surfaces of the three radial positioning blocks.
  • the multi-joint three-way module includes first to second five-joint three-way modules and a first two-joint three-way module; the injector comprises first to third injectors;
  • the port on the upper side of the leftmost three-way valve of the first five-way three-way module is connected to the fourth container through the first pipe;
  • the port on the right side of the three-way valve on the far right side of the first five-way three-way module is connected to the fourth container through the second pipe;
  • the first syringe, the first container, the second container and the third container pass through the third pipe, the fourth pipe, the fifth pipe and the sixth pipe in order from left to right, corresponding to connected to the ports on the upper side of the second to fifth three-way valves from the left in the first five-way three-way module;
  • the third container is also connected with the seventh pipe;
  • the port on the upper side of the third three-way valve from the left of the second five-way three-way module is connected to the fourth container through the eighth pipe, and one end of the seventh pipe deep into the bottom of the fourth container;
  • the fifth container is connected to the port on the upper side of the second three-way valve from the left of the second five-way three-way module through the ninth pipe;
  • the second syringe is connected to the port on the upper side of the fourth three-way valve from the left of the second five-way three-way module through the tenth pipe;
  • the upper end of the sixth container is connected to the port on the upper side of the three-way valve on the far right side of the second five-way three-way module through the eleventh pipe;
  • the lower end of the sixth container is connected to the port on the upper side of the three-way valve on the left side of the first two-way three-way module through the twelfth pipe;
  • the seventh container is connected to the port on the left side of the three-way valve on the left side of the first two-way three-way module through the thirteenth pipe;
  • the seventh container is also connected with the fourteenth pipe, and the fourteenth pipe is used for emptying;
  • the third syringe is connected with the port on the upper side of the three-way valve on the right side of the first two-way three-way module through the fifteenth pipe;
  • the eighth container is connected to the port on the right side of the three-way valve on the right side of the first two-way three-way module through the sixteenth pipe;
  • the eighth container is also connected with the seventeenth pipe, and the seventeenth pipe is used for emptying.
  • the multi-connection three-way module includes twenty-first to twenty-second five-way three-way modules and a twenty-first two-way three-way module;
  • the syringe has a second Eleven to twenty-third syringes;
  • said containers have twenty-first to thirtieth containers;
  • said tubes have twenty-first to thirty-ninth tubes;
  • the port on the upper side of the leftmost three-way valve of the twenty-fifth three-way module is connected to the twenty-fourth container through the twenty-first pipe;
  • the port on the right side of the three-way valve on the far right side of the twenty-fifth three-way module is connected to the twenty-fourth container through the twenty-second pipe;
  • the twenty-first syringe, the twenty-first container, the twenty-second container, and the twenty-third container pass through the twenty-third tube, the second
  • the fourteenth pipe, the twenty-fifth pipe and the twenty-sixth pipe are correspondingly described on the upper side of the second to fifth three-way valves from the left in the twenty-first five-way three-way module. port is connected;
  • the twenty-third container is also connected with the twenty-seventh pipe;
  • the port on the leftmost side of the three-way valve on the leftmost side of the twenty-fifth three-way module is connected to the twenty-fourth container through the twenty-eighth pipe, and the twenty-fourth container is One end of the eighth pipe is deep into the bottom of the twenty-fourth container;
  • the twenty-fifth container, the twenty-sixth container, the twenty-seventh container, and the twenty-second syringe pass through the twenty-ninth tube and the thirtieth tube in the order from left to right, respectively.
  • the thirty-first pipe and the thirty-second pipe are correspondingly connected to the ports on the upper side of the first to fourth three-way valves from the left in the twenty-second five-way three-way module;
  • the upper end of the twenty-eighth container is connected to the port on the upper side of the three-way valve on the far right side of the twenty-second five-way three-way module through the thirty-third pipe;
  • the lower end of the twenty-eighth container is connected to the port on the upper side of the three-way valve on the left side of the twenty-first two-way three-way module through the thirty-fourth pipe;
  • the twenty-ninth container is connected to the port on the left side of the three-way valve on the left side of the twenty-first two-way three-way module through the thirty-fifth pipe;
  • the twenty-ninth container is also connected with the thirty-sixth pipe, and the thirty-sixth pipe is used for emptying;
  • the twenty-third syringe is connected to the port on the upper side of the three-way valve on the right side of the twenty-first two-way three-way module through the thirty-seventh pipe;
  • the thirtieth container is connected to the port on the right side of the three-way valve on the right side of the twenty-first two-way three-way module through the thirty-eighth pipe;
  • the thirtieth container is also connected with the thirty-ninth pipe, and the thirty-ninth pipe is used for emptying.
  • the multi-joint three-way module includes a forty-first five-way three-way module and a forty-first two-way three-way module; the syringe has a forty-first syringe; The containers have forty-first to forty-seventh containers; the tubes have forty-first to fifty-second tubes; wherein,
  • the forty-first container is connected with the forty-first pipe, and the forty-first pipe is used for emptying;
  • the forty-first container is connected to the port on the upper side of the three-way valve on the leftmost side of the forty-first five-way three-way module through the forty-second pipe;
  • the forty-first syringe, the forty-second container, the forty-third container, and the forty-fourth container pass through the forty-third tube, the forty-third The forty-fourth pipe, the forty-fifth pipe, and the forty-sixth pipe correspond to the second to fifth tees from the left of the forty-fifth tee module the port on the upper side of the valve is connected;
  • the upper end of the forty-fifth container is connected to the port on the right side of the three-way valve on the far right side of the forty-fifth three-way module through the forty-seventh pipe;
  • the lower end of the forty-fifth container is connected to the port on the upper side of the three-way valve on the left side of the forty-first two-way three-way module through the forty-eighth pipe;
  • the forty-sixth container is connected to the port on the left side of the three-way valve on the left side of the forty-first two-way three-way module through the forty-ninth pipe;
  • the forty-sixth container is further connected with the fiftieth pipe, and the fiftieth pipe is used for emptying;
  • the forty-seventh container is connected to the port on the right side of the three-way valve on the right side of the forty-first two-way three-way module through the fifty-first pipe;
  • the forty-seventh container is also connected with the fifty-second pipe for emptying.
  • the multi-joint three-way module includes sixty-first to sixty-second five-way three-way modules and a sixty-first two-way three-way module;
  • the syringe has a sixth Eleven to sixty-third syringes;
  • said containers have sixty-first to seventieth containers;
  • said tubes have sixty-first to seventy-ninth tubes;
  • the sixty-first container is connected with the sixty-first pipe, and the sixty-first pipe is used for emptying;
  • the sixty-first container is connected to the port on the upper side of the three-way valve on the leftmost side of the sixty-first five-way three-way module through the sixty-second pipe;
  • the sixty-first syringe, the sixty-second container, the sixty-third container, and the sixty-fourth container pass through the sixty-third tube, the sixty-third The 64th pipe, the 65th pipe, and the 66th pipe correspond to the 2nd to 5th tee from the left of the 615th tee module the port on the upper side of the valve is connected;
  • the upper end of the sixty-fifth container is connected to the port on the right side of the three-way valve on the far right side of the sixty-fifth three-way module through the sixty-seventh pipe;
  • the lower end of the sixty-fifth container is connected to the port on the upper side of the three-way valve on the leftmost side of the sixty-fifth three-way module through the sixty-eighth pipe;
  • the upper end of the sixty-sixth container is connected with the port on the upper side of the three-way valve on the far right side of the sixty-fifth three-way module through the sixty-ninth pipe;
  • the sixty-sixth container is further connected with the seventieth pipe, and the seventieth pipe is used for emptying;
  • the sixty-seventh container is connected to the port on the upper side of the second three-way valve from the left of the sixty-second five-way three-way module through the seventy-first pipe;
  • the sixty-second syringe is connected to the port on the upper side of the fourth three-way valve from the left of the sixty-second five-way three-way module through the seventy-second pipe;
  • the upper end of the sixty-eighth container is connected to the port on the upper side of the three-way valve on the far right side of the sixty-second five-way three-way module through the seventy-third pipe;
  • the lower end of the sixty-eighth container is connected to the port on the upper side of the three-way valve on the left side of the sixty-first two-way three-way module through the seventy-fourth pipe;
  • the sixty-ninth container is connected to the port on the left side of the three-way valve on the left side of the sixty-first two-way three-way module through the seventy-fifth pipe;
  • the sixty-ninth container is further connected with the seventy-sixth pipe, and the seventy-sixth pipe is used for emptying;
  • the sixty-third syringe is connected to the port on the upper side of the three-way valve on the right side of the sixty-first two-way three-way module through the seventy-seventh pipe;
  • the seventieth container is connected to the port on the right side of the three-way valve on the right side of the sixty-first two-way three-way module through the seventy-eighth pipe;
  • the seventieth container is also connected with the seventy-ninth pipe for emptying.
  • the multiple three-way modules include eighty-first to eighty-second five-way three-way modules and an eighty-first two-way three-way module;
  • the syringe has eighth Eleven to eighty-third syringes;
  • said containers have eighty-first to ninety-first containers;
  • said tubes have eighty-first to one-hundred tubes;
  • the eighty-first container is connected with the eighty-first pipe, and the eighty-first pipe is used for emptying;
  • the eighty-first container is connected to the port on the upper side of the three-way valve on the leftmost side of the eighty-first five-way three-way module through the eighty-second pipe;
  • the eighty-first syringe, the eighty-second container, the eighty-third container, and the eighty-fourth container pass through the eighty-third tube, the eighty-third The eighty-fourth pipe, the eighty-fifth pipe, and the eighty-sixth pipe correspond to the second to fifth tee from the left of the eighty-fifth tee module the port on the upper side of the valve is connected;
  • the upper end of the eighty-fifth container is connected to the port on the right side of the three-way valve on the far right side of the eighty-fifth three-way module through the eighty-seventh pipe;
  • the lower end of the eighty-fifth container, the eighty-seventh container, the eighty-eighth container, and the eighty-second syringe pass through the eighty-eighth tube,
  • the ninety-first pipe, the ninety-second pipe, and the ninety-third pipe correspond to the first to fourth from the left of the eighty-second five-way tee module.
  • the ports on the upper side of the three-way valve are connected;
  • the upper end of the eighty-sixth container is connected to the port on the upper side of the three-way valve on the leftmost side of the eighty-second five-way three-way module through the eighty-ninth pipe;
  • the eighty-sixth container is also connected with the ninetieth pipe, and the ninetieth pipe is used for emptying;
  • the upper end of the eighty-ninth container is connected to the port on the upper side of the three-way valve on the far right side of the eighty-second five-way three-way module through the ninety-fourth pipe;
  • the lower end of the eighty-ninth container is connected to the port on the upper side of the three-way valve on the left side of the eighty-first two-way three-way module through the ninety-fifth pipe;
  • the ninetieth container is connected to the port on the left side of the three-way valve on the left side of the eighty-first two-way three-way module through the ninety-sixth pipe;
  • the ninety-seventh container is also connected with the ninety-seventh pipe, and the ninety-seventh pipe is used for emptying;
  • the eighty-third syringe is connected to the port on the upper side of the three-way valve on the right side of the eighty-first two-way three-way module through the ninety-eighth pipe;
  • the ninety-first container is connected to the port on the right side of the three-way valve on the right side of the eighty-first two-way three-way module through the ninety-ninth pipe;
  • the ninety-first container is also connected with the one-hundred pipe, and the one-hundred pipe is used for emptying.
  • a second aspect of the present invention also provides a ferrule action control device.
  • the ferrule action control device is used to connect with the ferrule according to any one of the embodiments of the first aspect of the present invention, including:
  • a syringe installation part the syringe installation part is arranged on the bracket, the syringe installation part includes a piston handle installation part that can move up and down and a sleeve installation part located below the piston handle installation part, the piston handle installation part The part is used to install the piston handle of the syringe, and the sleeve installation part is used to install the sleeve of the syringe;
  • piston-driven steering gear is connected to the piston handle mounting part, and is used to drive the piston handle mounting part to move up and down;
  • the three-way valve knob is arranged on the bracket, and the three-way valve knob is used for detachably and fixedly connected with the handle in the multi-connection three-way module;
  • the three-way valve knob drives the steering gear, and the three-way valve knob drives the steering gear to correspondingly drive the three-way valve knob to rotate.
  • the piston handle mounting portion of the syringe mounting portion and the three-way valve knob of the sleeve mounting portion are mounted on the bracket, so that the ferrule is mounted on the ferrule action control device,
  • the ferrule is controlled by the ferrule control device, wherein the syringe mounting part and the piston drive the steering gear to control the syringe, the three-way valve knob and the three-way valve knob drive the steering gear to control the flow path, and operate in the process of radioisotope purification and preparation/radiopharmaceutical labeling synthesis
  • the multi-connected tee module and syringe can be selected according to actual needs, so as to avoid some multi-connected tee modules and syringes from being idle, thereby reducing the use of raw materials;
  • the action control device due to the different reactions produced by different process operations, the syringe and the container are respectively connected to
  • Syringes, multi-link tee modules and tubes can be made independently, thus effectively reducing the manufacturing cost; different types of syringes, multi-link tee modules and tubes can be used independently and flexibly assembled to form media transfer cards of different specifications It has good versatility and wide applicability for application in different process operations; in the process of radioisotope purification preparation/radiopharmaceutical labeling synthesis process operation, the liquid only flows in the medium transmission ferrule, and the liquid does not move with the ferrule The control device is in contact, so as to avoid pollution to the ferrule action control device and ensure the service life of the ferrule action control device.
  • the bracket is provided with a guide groove for the piston handle mounting part to move up and down.
  • the piston handle mounting portion is provided with a handle locking groove into which the piston handle of the syringe is fitted and snapped.
  • the sleeve mounting portion includes a first base wall, a first left side wall and a first right side wall, the first left side wall and the first right side wall
  • the left and right sides of the first base wall and the first base wall respectively define a sleeve mounting cavity adapted to the sleeve of the syringe.
  • the sleeve installation cavity comprises a vertically extending main cylinder cavity and a plurality of annular cavities radially connected to the main cylinder cavity and spaced apart in the up-down direction, wherein,
  • the main barrel cavity is used for accommodating the main barrel body part of the sleeve of the syringe, and the annular cavity is used for accommodating the end flange edge provided on the main barrel body part.
  • the handle in the ferrule, includes a rotating shaft and three radial positioning blocks, and the three radial positioning blocks are radially arranged and distributed on the rotating shaft
  • the three radial positioning blocks are arranged in a T-shape; one end of the three-way valve knob is provided with a cross-shaped notch, and the cross-shaped notch is used to connect with the three handles of the handle.
  • the radial positioning block cooperates to detachably fix the handle and the three-way valve knob.
  • the rotating shaft is provided with a positioning hole; one end of the three-way valve knob is also provided with a positioning column, and the positioning column is used for adapting Fittedly inserted into the positioning hole.
  • the container mounting part is provided on the bracket and is used for mounting the container.
  • the container mounting portion includes a second base wall, a second left side wall, a second right side wall and a transverse blocking wall, the second left side wall and the second
  • the right side wall is located on the left side and the right side of the second base wall respectively
  • the transverse blocking wall is located at the lower end of the second left side wall and the second right side wall, and is respectively connected with the second left side wall.
  • the side wall, the second right side wall and the second base wall are fixedly connected to jointly define a container mounting cavity adapted to the container.
  • the transverse blocking wall is provided with a recessed notch toward the second base wall.
  • a heating module is further included, and the heating module is used for heating the container containing the reaction liquid to be heated in the ferrule.
  • the heating module is provided with a placement hole for placing the container containing the reaction liquid to be heated.
  • the heating module is provided with a temperature control function.
  • the heating module is provided with a fan heating component.
  • a radioactivity probe is provided on the heating module, and the radioactivity probe is used to detect changes in radioactivity in the container being heated.
  • the third aspect of the present invention also provides a radioisotope purification/labeling system.
  • the radioisotope purification/labeling system includes:
  • the ferrule is installed in the ferrule to actuate on the control device.
  • the radioisotope purification/labeling system by installing the ferrule on the ferrule action control device, and controlling the ferrule by the ferrule control device, in the process operation of the radioisotope purification and preparation/radiopharmaceutical labeling synthesis , you can choose the multi-link tee module, container and syringe according to actual needs, avoid some multi-link tee modules, containers and syringes to be idle, thereby reducing the use of raw materials; They are directly installed on the action control device of the ferrule.
  • the syringe and the container are respectively connected with the multi-channel tube according to the flow path required for the liquid transfer in the radioisotope purification preparation/radiopharmaceutical labeling synthesis process operation.
  • the tee modules are connected, and the syringes, containers, multi-tee modules and tubes can be made independently, thus effectively reducing the manufacturing cost; different types of syringes, containers, multi-tee modules and tubes can be used independently and flexibly It can be assembled to form media transmission ferrules of different specifications for application in different process operations, with good versatility and wide applicability; when performing radioisotope purification and preparation/radiopharmaceutical labeling synthesis process operations, the liquid is only in the media transmission ferrule.
  • the liquid does not come into contact with the ferrule action control device, so as to avoid contamination of the ferrule action control device and ensure the service life of the ferrule action control device; in addition, due to the presence of radioactivity in the media transmission ferrule after each process operation Residual, replace the new medium transmission ferrule after each process operation, which can prevent cross-contamination between different batch operations.
  • the ferrule has a simple structure, convenient handling and low cost, and is suitable for industrial operations.
  • FIG. 1 is a schematic structural diagram of a ferrule according to an embodiment of the first aspect of the present invention, wherein the ferrule is a zirconium [Zr-89] marked ferrule.
  • FIG. 2 is another schematic structural diagram of the ferrule according to the embodiment of the first aspect of the present invention, wherein the ferrule is a fluorine-marked ferrule.
  • FIG 3 is another schematic structural diagram of the ferrule according to the embodiment of the first aspect of the present invention, wherein the ferrule is a zirconium [Zr-89]-zirconium oxalate nuclide purification ferrule.
  • FIG. 4 is another schematic structural diagram of the ferrule according to the embodiment of the first aspect of the present invention, wherein the ferrule is a zirconium [Zr-89]-zirconium chloride nuclide purification ferrule.
  • FIG. 5 is another schematic structural diagram of the ferrule according to the embodiment of the first aspect of the present invention, wherein the ferrule is a copper [Cu-64]-neutral copper chloride nuclide purification ferrule.
  • FIG. 6 is a schematic structural diagram of the handle of the ferrule according to the embodiment of the first aspect of the present invention.
  • FIG. 7 is a schematic view of the assembly of the handle of the ferrule and the knob of the three-way valve according to the embodiment of the first aspect of the present invention.
  • FIG. 8 is a schematic structural diagram of a ferrule action control device according to an embodiment of the second aspect of the present invention.
  • FIG. 9 is an enlarged view of A in FIG. 8 .
  • FIG. 10 is an enlarged view of B in FIG. 8 .
  • FIG. 11 is an enlarged view of C in FIG. 8 .
  • FIG. 12 is a schematic structural diagram of the three-way valve knob of the ferrule action control device according to the second aspect of the present invention.
  • the first five-way three-way module 101 The second five-way three-way module 102
  • the twenty-first five-way three-way module 103 The twenty-second five-way three-way module 104
  • the first two-way three-way module 110 is the first two-way three-way module 110
  • the first container 301 The second container 302 The third container 303 The fourth container 304 The fifth container 305 The sixth container 306 The seventh container 307 The eighth container 308
  • the first pipe 401 The second pipe 402 The third pipe 403 The fourth pipe 404 The fifth pipe 405 The sixth pipe 406 The seventh pipe 407 The eighth pipe 408 The ninth pipe 409 The tenth pipe 410 The eleventh pipe 411 The twelfth pipe 412 The thirteenth pipe 413 The fourteenth pipe 414 The fifteenth pipe 415 The sixteenth pipe 416 The seventeenth pipe 417
  • the twenty-first pipe 418 The twenty-second pipe 419 The twenty-third pipe 420
  • the twenty-fourth pipe 421 The twenty-fifth pipe 422
  • the twenty-sixth pipe 423 The twenty-seventh pipe 424
  • the twenty-eighth pipe 425 The second Nineteenth pipe 426
  • Thirty pipe 427 Thirty-first pipe 428
  • Thirty-second pipe 429 Thirty-third pipe 430
  • Thirty-fourth pipe 431 Thirty-fifth pipe 432
  • Thirty-sixth pipe 433 Thirty-seventh pipe 434
  • the thirty-eighth tube 435 The thirty-ninth tube 436
  • Sixty-first pipe 449 Sixty-second pipe 450 Sixty-third pipe 451 Sixty-four pipe 452
  • Sixty-fifth pipe 453 Sixty-sixth pipe 454
  • Sixty-seventh pipe 455 Sixty-eight pipe 456
  • Sixth Nineteenth pipe 457 Seventieth pipe 458 Seventy-first pipe 459 Seventy-second pipe 460
  • Seventy-fourth pipe 462 Seventy-fifth pipe 463 Seventy-sixth pipe 464 Seventy-seventh pipe 465 Seventy-eighth tube 466 Seventy-ninth tube 467
  • Ring cavity 621 Ring cavity 6211 Main cylinder cavity 6212 First base wall 622 First left side wall 623 First right side wall 624
  • Second base wall 71 Second left side wall 72 Second right side wall 73 Transverse blocking wall 74 Notch 741
  • the ferrule 1000 according to the embodiment of the first aspect of the present invention will be described below with reference to FIGS. 1 to 12 .
  • the ferrule 1000 is a replaceable and disposable medium transmission ferrule 1000 , which is suitable for the operation of the radioisotope purification and preparation/radiopharmaceutical labeling synthesis process. , including multiple three-way module 1, syringe 2, container 3 and tube 4;
  • the multi-way three-way module 1 includes a plurality of three-way valves 115 and a common pipeline 116 extending in the left-right direction; each three-way valve 115 has three ports 1151 and a handle 1152 , and the three ports 1151 are distributed on the On the left, right and upper sides, the handle 1152 is used to control the communication between any two ports 1151 of the three ports 1151 of the three-way valve 115; a plurality of three-way valves 115 are sequentially arranged on the common pipe 116, and in the left and right directions The right port 1151 of the left three-way valve 115 among the two adjacent three-way valves 115 is connected with the left port 1151 of the right three-way valve 115 through a common pipeline 116;
  • the tube 4 connects the multi-connected three-way module 1, the syringe 2 and the container 3 according to the flow path required for liquid transfer in the radioisotope purification preparation/radiopharmaceutical labeling synthesis process operation, wherein the multi-connected three-way module 1 and the syringe 2 are respectively.
  • the ferrule action control device 2000 For direct installation on the ferrule action control device 2000.
  • the multi-way three-way module 1 includes a plurality of three-way valves 115 and a common pipeline 116 extending in the left-right direction; each three-way valve 115 has three ports 1151 and a handle 1152, and the three ports 1151 are distributed in the three-way On the left, right and upper sides of the valve 115, the handle 1152 is used to control any two ports 1151 of the three ports 1151 of the three-way valve 115 to communicate; a plurality of three-way valves 115 are sequentially arranged on the common pipe 116, and The right port 1151 of the left three-way valve 115 and the left port 1151 of the right three-way valve 115 of the two adjacent three-way valves 115 in the left-right direction are connected through a common pipe 116 .
  • the multi-connection three-way module 1 is made of plastic with a certain hardness, such as polypropylene material, and by rotating the handle 1152 to different positions, any two of the three ports 1151 are communicated, so as to Provides the liquid flow path required in the operation of the radioisotope purification preparation/radiopharmaceutical labeling synthesis process.
  • the syringe 2 is used for drawing media from different containers 3 or injecting media into different containers 3 according to the requirements in the radioisotope purification preparation/radiopharmaceutical labeling synthesis operation.
  • the container 3 can be a reagent bottle containing various reagents required in the radioisotope purification preparation/radiopharmaceutical labeling synthesis operation and an empty transfer bottle for holding various media in the radioisotope purification preparation/radiopharmaceutical labeling synthesis operation, Target water bottle, target water recovery bottle and large-capacity plastic soft bag, etc.
  • the capacity of the reagent bottle can be 5ML, 10ML and 20ML.
  • the material of the container 3 can be glass bottle or plastic bottle, and the shape of the container 3 can be For flat-bottom glass bottles, conical-bottom glass bottles and V-bottom glass bottles, containers 3 with different capacities can be selected according to different operating requirements.
  • the tube 4 connects the multi-connected three-way module 1, the syringe 2 and the container 3 according to the flow path required for liquid transfer in the radioisotope purification preparation/radiopharmaceutical labeling synthesis process operation, wherein the multi-connected three-way module 1 and the syringe 2 are respectively.
  • the tube 4 can be a flexible tube or a hard tube. According to the needs of different radioisotope purification and preparation/radiopharmaceutical labeling synthesis, the multi-connected three-way module 1 and the syringe 2 are directly installed on the ferrule action control device 2000 respectively.
  • the multi-connected three-way module 1, the syringe 2 and the container 3 are connected through the pipe 4 according to the flow path required for the liquid transfer in the radioisotope purification preparation/radiopharmaceutical labeling synthesis process operation, so as to facilitate the radioisotope purification preparation/radioactive Drug labeling synthesis process operation.
  • pipe 4 and the three-way valve port 1151 can be connected to various small columns, and the small columns can be various purification columns, separation columns or adsorption columns.
  • the multi-connected three-way module 1 and the syringe 2 can be selected according to actual needs, avoiding part of the multi-connected three-way module 1 Idle with the syringe 2, so that the use of raw materials can be reduced; the multi-connection three-way module 1 and the syringe 2 that actually need to be used are directly installed on the ferrule action control device 2000, due to the different reactions generated by different process operations.
  • the action control device 2000 causes pollution to ensure the service life of the ferrule action control device 2000; in addition, since there are radioactive residues in the ferrule 1000 after each process operation, replacing the ferrule 1000 with a new ferrule 1000 after each process operation can prevent the Cross-contamination between different batch operations, the ferrule 1000 has a simple structure, convenient loading and unloading and low cost, and is suitable for industrial operation.
  • the container 3 is used to be directly mounted on the ferrule action control device 2000 . It can be understood that in the operation of the radioisotope purification and preparation/radiopharmaceutical labeling synthesis process, the container 3 can be selected according to actual needs, so as to avoid the idleness of some containers 3, so that the use of raw materials can be reduced, and the container 3 that actually needs to be used is directly installed in the container 3. On the ferrule action control device 2000, due to the different reactions produced by different process operations, the container 3 is connected to the multi-connected three-way module through the pipe 4 according to the flow path required for the liquid transfer in the radioisotope purification preparation/radiopharmaceutical labeling synthesis process operation.
  • the container 3 can be made independently, thereby effectively reducing the manufacturing cost; different types of containers 3, syringes 2, multi-connected three-way modules 1 and tubes 4 can be used independently and flexibly assembled to form ferrules 1000 of different specifications. , to be used in different process operations, with good versatility and wide applicability.
  • the handle 1152 includes a rotating shaft 11521 and three radial positioning blocks 11522 , and the three radial positioning blocks 11522 are radially arranged and distributed on the rotating shaft On the peripheral surface of 11521, three radial positioning blocks 11522 are arranged in a T-shape.
  • the handle 1152 is used to cooperate with the three-way valve knob 8, and the three radial positioning blocks 11522 on the handle 1152 are detachably installed in the cross-shaped notch 81 of the three-way valve knob 8, so that the handle 1152 It is firmly connected with the three-way valve knob 8 to avoid dislocation movement when the three-way valve knob 8 drives the handle 1152 to rotate.
  • the rotating shaft 11521 is provided with a positioning hole.
  • the three-way valve knob 8 is provided with a positioning post 82.
  • the positioning post 82 on the three-way valve knob 8 is fitted into the positioning hole on the handle 1152. , so that the installation stability of the handle 1152 and the three-way valve knob 8 can be further improved.
  • three indicating arrows 1153 are provided on the handle 1152 , and the three indicating arrows 1153 are correspondingly arranged on the outer end surfaces of the three radial positioning blocks 11522 superior. It will be appreciated that the three indicating arrows 1153 on the handle 1152 represent the directions in which the liquid may flow.
  • the multi-connection three-way module 1 has first to second five-way three-way modules 102 and a first two-way three-way module 110 ;
  • the syringe 2 has a first two-way three-way module 110 .
  • container 3 has first to eighth containers 308;
  • tube 4 has first to seventeenth tubes 417; of which,
  • the upper port 1151 of the leftmost three-way valve 115 of the first five-way three-way module 101 is connected to the fourth container 304 through the first pipe 401;
  • the right port 1151 of the rightmost three-way valve 115 of the first five-way three-way module 101 is connected to the fourth container 304 through the second pipe 402;
  • the first syringe 201 , the first container 301 , the second container 302 and the third container 303 pass through the third tube 403 , the fourth tube 404 , the fifth tube 405 and the sixth tube 406 in the order from left to right, corresponding to the The upper ports 1151 of the second to fifth three-way valves 115 from the left in the first five-way three-way module 101 are connected;
  • the third container 303 is also connected with a seventh pipe 407, and the seventh pipe 407 is used for transferring the nuclide into the third container 303;
  • the upper port 1151 of the third three-way valve 115 from the left of the second five-way three-way module 102 is connected to the fourth container 304 through the eighth pipe 408 , and one end of the seventh pipe 407 penetrates into the fourth container 304 bottom;
  • the fifth container 305 is connected to the upper port 1151 of the second three-way valve 115 from the left of the second five-way three-way module 102 through the ninth pipe 409;
  • the second syringe 202 is connected to the upper port 1151 of the fourth three-way valve 115 from the left of the second five-way three-way module 102 through the tenth pipe 410;
  • the upper end of the sixth container 306 is connected to the upper port 1151 of the rightmost three-way valve 115 of the second five-way three-way module 102 through the eleventh pipe 411;
  • the lower end of the sixth container 306 is connected to the upper port 1151 of the left three-way valve 115 of the first two-way three-way module 110 through the twelfth pipe 412;
  • the seventh container 307 is connected to the left port 1151 of the left three-way valve 115 of the first two-way three-way mold 110 block through the thirteenth pipe 413;
  • the seventh container 307 is also connected with a fourteenth pipe 414, and the fourteenth pipe 414 is used for emptying;
  • the third syringe 203 is connected to the upper port 1151 of the right three-way valve 115 of the first two-way three-way module 110 through the fifteenth pipe 415;
  • the eighth container 308 is connected to the right port 1151 of the right three-way valve 115 of the first two-way three-way module 110 through the sixteenth pipe 416;
  • the eighth container 308 is also connected to a seventeenth pipe 417 for emptying.
  • the first container 301 is a buffer solution reagent bottle; the second container 302 is a monoclonal antibody solution reagent bottle; the third container 303 is an 89Zr nuclide reagent bottle, the third container 303 is a conical bottom flask, and the third container 303 is a
  • the bottle mouth is upright, one end of the seventh tube 407 extends into the bottom of the third container 303, and the other end of the seventh tube 407 is connected to the automatic nuclide dispensing device for transferring the nuclide required during the operation to the first nuclide.
  • the fourth container 304 is a reaction bottle, and the fourth container 304 is installed in the heating device;
  • the fifth container 305 is a buffer solution reagent bottle;
  • the sixth container 306 is a purification column, and the packing of the purification column is Sephadex
  • the seventh container 307 can be a waste liquid bottle, one end of the fourteenth pipe 414 is connected to the seventh container 307, and the other end of the fourteenth pipe 414 is connected to a special waste gas treatment system, which can treat the waste gas generated in the reaction process.
  • the eighth container 308 is a product bottle, one end of the seventeenth tube 417 is connected to the product bottle, and the other end of the seventeenth tube 417 is connected to the filter, so that the seventeenth tube 417 can be used as an emptying Tube, when the product is transferred to the product bottle, the gas in the product bottle can be filtered through the filter and discharged to the atmosphere to avoid positive pressure inside the product bottle;
  • the bottle mouths of the first container 301, the second container 302 and the fifth container 305 Placed downward;
  • the first syringe 201, the second syringe 202 and the third syringe 203 are sterile syringes 2 of 10ML specifications, and the outlet ends of the first syringe 201, the second syringe 202 and the third syringe 203 are threaded Luer In this way, the first syringe 201, the second syringe 202 and the third syringe 203 can be respectively connected with the upper
  • the port 1151, the upper port 1151 of the fourth three-way valve 115 from the left of the second five-way three-way and the upper port 1151 of the right three-way valve 115 of the first two-way three-way module 110 are connected and tightened , avoid the connection between the first syringe 201 and the upper port 1151 of the second three-way valve 115 from the left in the first five-way three-way module 101, and the connection between the second syringe 202 and the second five-way three-way from the left Air leakage or leakage occurs at the connection between the upper port 1151 of the fourth three-way valve 115 and the connection between the third syringe 203 and the upper port 1151 of the right three-way valve 115 of the first two-way three-way module 110
  • first syringe 201, second syringe 202 and third syringe 203 power the fluid.
  • the first to second five-way three-way modules 102, the first two-way three-way module 110, the first to third syringes 203, the first to eighth containers 308 and the first to seventeenth tubes 417 are assembled to form a zirconium marker card It can be used for the labeling and synthesis of macromolecular compounds.
  • the target material is irradiated by high-energy particle beams through the accelerator end or the reactor, and trace amounts of crude radioisotopes are produced in the target material. Purification, such as 89Zr, through the purified nuclide, the ferrule 1000 and the ferrule action control device 2000, radioisotope-labeled synthesis, such as 89Zr-labeled monoclonal antibody, can be performed.
  • the first to second five-way three-way modules 102 , the first two-way three-way module 110 , the first to third syringes 203 , the first to eighth containers 308 and the first to seventeenth tubes 417 are assembled to form a ferrule 1000 can choose the five-way three-way module, two-way three-way module, syringe 2, container 3 and tube 4 according to actual needs, to avoid the five-way three-way module, two-way three-way module, syringe 2, container 3 and tube 4 being idle,
  • the use of raw materials can be reduced;
  • the first to second five-way three-way modules 102, the first two-way three-way module 110, the first to third syringes 203, the first to eighth containers 308 and the first to seventeenth tubes 417 can be produced independently, thereby effectively reducing the manufacturing cost;
  • the multi-connection three-way module 1 includes twenty-first to twenty-second five-way three-way modules 104 and a twenty-first two-way three-way module 111 ;
  • Syringe 2 has twenty-first to twenty-third syringes 206;
  • container 3 has twenty-first to thirtieth containers 318;
  • tube 4 has twenty-first to thirty-ninth tubes 436;
  • the upper port 1151 of the leftmost three-way valve 115 of the twenty-fifth three-way module 103 is connected to the twenty-fourth container 312 through the twenty-first pipe 418;
  • the right port 1151 of the rightmost three-way valve 115 of the twenty-fifth three-way module 103 is connected to the twenty-fourth container 312 through the twenty-second pipe 419;
  • the twenty-first syringe 204, the twenty-first container 309, the twenty-second container 310, and the twenty-third container 311 pass through the twenty-third tube 420, the twenty-fourth tube 421,
  • the twenty-fifth pipe 422 and the twenty-sixth pipe 423 are correspondingly connected to the upper ports 1151 of the second to fifth three-way valves 115 from the left in the twenty-first five-way three-way module 103;
  • the twenty-third container 311 is also connected with a twenty-seventh pipe 424, and the twenty-seventh pipe 424 is used for transferring the nuclide into the twenty-third container 311;
  • the left port 1151 of the leftmost three-way valve 115 of the twenty-second five-way three-way module 104 is connected to the twenty-fourth container 312 through the twenty-eighth pipe 425, and one end of the twenty-eighth pipe 425 penetrates into the third The bottoms of twenty-four containers 312;
  • the twenty-fifth container 313, the twenty-sixth container 314, the twenty-seventh container 315, and the twenty-second syringe 205 pass through the twenty-ninth tube 426, the thirtieth tube 427, the second The thirty-one pipes 428 and the thirty-second pipes 429 are correspondingly connected to the upper ports 1151 of the first to fourth three-way valves 115 from the left in the twenty-second five-way three-way module 104;
  • the upper end of the twenty-eighth container 316 is connected to the upper port 1151 of the rightmost three-way valve 115 of the twenty-second five-way three-way module 104 through the thirty-third pipe 430;
  • the lower end of the twenty-eighth container 316 is connected to the upper port 1151 of the left three-way valve 115 of the twenty-first two-way three-way module 111 through the thirty-fourth pipe 431;
  • the twenty-ninth container 317 is connected to the left port 1151 of the left three-way valve 115 of the twenty-first two-way three-way module 111 through the thirty-fifth pipe 432;
  • the twenty-ninth container 317 is also connected with a thirty-sixth pipe 433, and the thirty-sixth pipe 433 is used for emptying;
  • the twenty-third syringe 206 is connected to the upper port 1151 of the right three-way valve 115 of the twenty-first two-way three-way module 111 through the thirty-seventh pipe 434;
  • the thirtieth container 318 is connected to the right port 1151 of the right three-way valve 115 of the twenty-first two-way three-way module 111 through the thirty-eighth pipe 435;
  • the thirtieth container 318 is also connected to a thirty-ninth tube 436 for emptying.
  • the twenty-first container 309 is a buffer solution reagent bottle; the twenty-second container 310 is a NOTA-RGD2 solution reagent bottle; the twenty-third container 311 is an 18F nuclide reagent bottle, and the twenty-third container 311 is a cone Bottom bottle, the bottle mouth of the twenty-third container 311 is upright, one end of the twenty-seventh tube 424 extends into the bottom of the twenty-third container 311, and the other end of the twenty-seventh tube 424 is connected to the automatic nuclide packaging device connected to the twenty-third container 311; the twenty-fourth container 312 is a reaction flask, and the twenty-fourth container 312 is installed in the heating device to provide the twenty-third container 312.
  • the medium in the four containers 312 is heated; the twenty-fifth container 313 is an ultrapure water reagent bottle; the twenty-sixth container 314 is an anhydrous ethanol reagent bottle; the twenty-seventh container 315 is an anhydrous ethanol reagent bottle;
  • the eighteenth container 316 is a purification column, and the packing of the purification column is C-18 silica gel particles; the twenty-ninth container 317 is a waste liquid bottle, and one end of the thirty-sixth tube 433 is connected to the twenty-ninth container 317, and the second container 317 is a waste liquid bottle.
  • the other end of the thirty-sixth pipe 433 is connected to a special waste gas treatment system, which can collect and treat the waste gas generated during the reaction process;
  • the thirty-sixth container 318 is a product bottle, and one end of the thirty-ninth pipe 436 is connected to the product bottle Above, the other end of the thirty-ninth pipe 436 is connected with a filter, so that the thirty-ninth pipe 436 can be used as an evacuation pipe, when the product is transferred to the product bottle, the gas in the product bottle can be filtered and side by side through the filter to the atmosphere to avoid positive pressure inside the product bottle;
  • the bottle mouths of the twenty-first container 309, the twenty-second container 310, the twenty-fifth container 313, the twenty-sixth container 314 and the twenty-seventh container 315 are downward Placement;
  • the twenty-first syringe 204, the twenty-second syringe 205 and the twenty-third syringe 206 are sterile sy
  • the upper port 1151 of the second three-way valve 115 from the left in the three-way module 103 , the upper port 1151 of the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104 and the second The upper port 1151 of the right three-way valve 115 of the eleventh two-way three-way module 111 is connected and tightened to prevent the twenty-first syringe 204 from being connected to the second three-way valve from the left in the twenty-first five-way three-way module 103.
  • connection of the upper port 1151 of the through valve 115, the connection between the twenty-second syringe 205 and the upper port 1151 of the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104, and the first Air leakage or liquid leakage occurs at the connection between the twenty-third syringe 206 and the upper port 1151 of the right three-way valve 115 of the twenty-first two-way three-way module 111; the twenty-first syringe 204, The twenty-second injector 205 and the twenty-third injector 206 power the fluid.
  • the twenty-first to twenty-second five-way tee modules 104, the twenty-first two-way three-way module 111, the twenty-first to twenty-third syringes 206, the twenty-first to thirtieth containers 318 and The twenty-first to thirty-ninth tubes 436 are assembled to form a fluorine-labeled ferrule, which can be used for the labeling and synthesis of small molecular compounds, and the target material is irradiated with a high-energy particle beam through the accelerator end or the reactor to produce a trace amount of crude radioisotope in the target material.
  • the ferrule 1000 formed by assembling the twenty-first to thirty-ninth tubes 436 can be selected according to actual needs as a five-way three-way module, a two-way three-way module, a syringe 2, a container 3 and a tube 4, avoiding the five-way three-way module, the two-way three-way module, the syringe 2, the container 3 and the tube 4
  • the two-way three-way module, the syringe 2, the container 3 and the tube 4 are idle, which can reduce the use of raw materials;
  • the twenty-first to twenty-third syringes 206, the twenty-first to thirtieth containers 318, and the twenty-first to thirty-ninth tubes 436 can all be manufactured independently,
  • the multi-joint three-way module 1 has a forty-first five-way three-way module 105 and a forty-first two-way three-way module 112 ;
  • the syringe 2 has a third Forty-one syringe 207;
  • container 3 has forty-first to forty-seventh container 325;
  • tube 4 has forty-first to fifty-second tubes 448; of which,
  • the forty-first container 319 is connected with a forty-first pipe 437, and the forty-first pipe 437 is used for emptying;
  • the forty-first container 319 is connected to the upper port 1151 of the leftmost three-way valve 115 of the forty-first five-way three-way module 105 through the forty-second pipe 438;
  • the forty-first syringe 207, the forty-second container 320, the forty-third container 321, and the forty-fourth container 322 pass through the forty-third tube 439, the forty-fourth tube 440,
  • the forty-fifth pipe 441 and the forty-sixth pipe 442 are correspondingly connected to the upper ports 1151 of the second to fifth three-way valves 115 from the left of the forty-first five-way three-way module 105;
  • the upper end of the forty-fifth container 323 is connected to the right port 1151 of the rightmost three-way valve 115 of the forty-first five-way three-way module 105 through the forty-seventh pipe 443;
  • the lower end of the forty-fifth container 323 is connected to the upper port 1151 of the left three-way valve 115 of the forty-first two-way three-way module 112 through the forty-eighth pipe 444;
  • the forty-sixth container 324 is connected to the left port 1151 of the left three-way valve 115 of the forty-first two-way three-way module 112 through the forty-ninth pipe 445;
  • the forty-sixth container 324 is also connected with a fiftieth pipe 446, and the fiftieth pipe 446 is used for emptying;
  • the forty-seventh container 325 is connected to the right port 1151 of the right three-way valve 115 of the forty-first two-way three-way module 112 through the fifty-first pipe 447437;
  • the forty-seventh container 325 is also connected to a fifty-second tube 448 for emptying.
  • the forty-first container 319 is a target material dissolving bottle
  • the bottle mouth of the forty-first container 319 is placed upward
  • the forty-first tube 437 is a target material transmission pipeline of a medical cyclotron or target dissolving device, which is bombarded by the accelerator.
  • the dissolved zirconium-containing target [Zr-89] material enters the forty-first container 319 through the forty-first pipe 437, and the target material is yttrium [Y-89] material dissolved in 6M hydrochloric acid.
  • the forty-second container 320 is a hydrochloric acid reagent bottle, and the hydrochloric acid reagent bottle can be a 1M or 10ML hydrochloric acid reagent bottle;
  • the forty-third container 321 is ultrapure water Reagent bottle, the capacity of the ultrapure water reagent bottle can be 10ML;
  • the forty-fourth container 322 is an oxalic acid reagent bottle, and the oxalic acid reagent bottle can be 1M, 2ML oxalic acid reagent bottle;
  • the forty-fifth container 323 is a purification column, a purification column It is a resin column containing hydroxamic acid functional groups, which can efficiently adsorb zirconium [Zr-89] nuclide in the hydrochloric acid system, but does not adsorb the target material yttrium [Y-89], and can pass 1M oxalic acid
  • the forty-sixth container 324 is a waste liquid bottle, and the waste liquid in the purification process flows into the waste liquid bottle for storage.
  • One end of the fifty-sixth pipe 446 is connected to the forty-sixth container 324, and the other end of the fifty-sixth pipe 446 is connected to the exhaust gas treatment system, and the exhaust gas generated in the purification process flows into the exhaust gas treatment system through the fifty-sixth pipe 446 for dehydrochloric acid treatment.
  • the forty-seventh container 325 is a product bottle, one end of the fifty-second pipe 448 is connected to the product bottle, and the other end of the fifty-second pipe 448 is connected to the filter, so that the fifty-second pipe 448 can be used as a row Empty pipe, when the product is transferred to the product bottle, the gas in the product bottle can be filtered through the filter and discharged to the atmosphere to avoid positive pressure inside the product bottle; the forty-second container 320, the forty-third container 321 and the fourth container The fourteenth container 322 is placed with the bottle mouth downward; the forty-first syringe 207 is a sterile syringe 2 with a 10ML specification, and the outlet end of the forty-first syringe 207 is a threaded Luer interface.
  • the forty-first syringe 207 can be connected to the upper side port 1151 of the second three-way valve 115 from the left of the forty-first five-way three-way module 105 through a threaded Luer interface and tightened to avoid the forty-first syringe 207 and the fourth Air leakage or liquid leakage occurs at the connection of the upper port 1151 of the second three-way valve 115 from the left of the eleventh five-way three-way module 105; the twenty-first syringe 204 provides power for the fluid.
  • the forty-first five-way tee module 105, the forty-first two-way three-way module 112, the forty-first syringe 207, the forty-first to forty-seventh containers 325, and the forty-first to fifty-second Tube 448 is assembled to form a zirconium [Zr-89]-zirconium oxalate nuclide purification cartridge, which can be used for nuclide purification and preparation, and the target material is irradiated by high-energy particle beam through the accelerator end or the reactor to produce a trace amount of crude radioisotope in the target material.
  • the ferrule 1000 formed by the assembly of the tube 448 can be selected according to actual needs.
  • the container 3 and the tube 4 are idle, which can reduce the use of raw materials; the forty-first five-way three-way module 105, the forty-first two-way three-way module 112, the forty-first syringe 207, the forty-first to the fortieth
  • the seven containers 325 and the forty-first to fifty-second pipes 448 can all be produced independently, thereby effectively reducing the manufacturing cost;
  • the forty-first syringe 207, the forty-first to forty-seventh containers 325, and the forty-first to fifty-second tubes 448 can be used independently and flexibly assembled to form a ferrule 1000 for application in radioisotope purification and preparation It has good versatility and wide applicability; in the process of radioisotope purification and preparation, the liquid only flows in the ferrule 1000, and the liquid does not contact the ferrule action control device 2000, so as to avoid contamination of the ferrule action control device 2000 , to ensure the service life of the ferrule action control device 2000.
  • the multi-connection three-way module 1 has sixty-first to sixty-second five-way three-way modules 107 and a sixty-first two-way three-way module 113 ;
  • Syringe 2 has sixty-first to sixty-third syringe 210;
  • container 3 has sixty-first to seventieth container 335;
  • tube 4 has sixty-first to seventy-ninth tube 467;
  • the sixty-first container 326 is connected with a sixty-first pipe 449, and the sixty-first pipe 449 is used for emptying;
  • the sixty-first container 326 is connected to the upper port 1151 of the leftmost three-way valve 115 of the sixty-first five-way three-way module 106 through the sixty-second pipe 450;
  • the sixty-first syringe 208, the sixty-second container 327, the sixty-third container 328, and the sixty-fourth container 329 pass through the sixty-third pipe 451, the sixty-fourth pipe 452,
  • the sixty-fifth pipe 453 and the sixty-sixth pipe 454 are correspondingly connected to the upper ports 1151 of the second to fifth three-way valves 115 from the left of the sixty-first five-way three-way module 106;
  • the upper end of the sixty-fifth container 330 is connected to the right port 1151 of the rightmost three-way valve 115 of the sixty-first five-way three-way module 106 through the sixty-seventh pipe 455;
  • the lower end of the sixty-fifth container 330 is connected to the upper side port 1151 of the leftmost three-way valve 115 of the sixty-second five-way three-way module 107 through the sixty-eighth pipe 456;
  • the upper end of the sixty-sixth container 331 is connected to the upper port 1151 of the rightmost three-way valve 115 of the sixty-second five-way three-way module 107 through the sixty-ninth pipe 457;
  • the sixty-sixth container 331 is also connected with a seventieth pipe 458, and the seventieth pipe 458 is used for emptying;
  • the sixty-seventh container 332 is connected to the upper port 1151 of the second three-way valve 115 from the left of the sixty-second five-way three-way module 107 through the seventy-first pipe 459;
  • the sixty-second syringe 209 is connected to the upper port 1151 of the fourth three-way valve 115 from the left of the sixty-second five-way three-way module 107 through the seventy-second pipe 460;
  • the upper end of the sixty-eighth container 333 is connected to the upper port 1151 of the rightmost three-way valve 115 of the sixty-second five-way three-way module 107 through the seventy-third pipe 461;
  • the lower end of the sixty-eighth container 333 is connected to the upper port 1151 of the left three-way valve 115 of the sixty-first two-way three-way module 113 through the seventy-fourth pipe 462;
  • the sixty-ninth container 334 is connected to the left port 1151 of the left three-way valve 115 of the sixty-first two-way three-way module 113 through the seventy-fifth pipe 463;
  • the sixty-ninth container 334 is also connected with a seventy-sixth pipe 464, and the seventy-sixth pipe 464 is used for emptying;
  • the sixty-third syringe 210 is connected to the upper port 1151 of the right three-way valve 115 of the sixty-first two-way three-way module 113 through the seventy-seventh pipe 465;
  • the seventieth container 335 is connected to the right port 1151 of the right three-way valve 115 of the sixty-first two-way three-way module 113 through the seventy-eighth pipe 466;
  • the seventieth container 335 is also connected to a seventy-ninth tube 467 for emptying.
  • the sixty-first container 326 is a target material dissolving bottle
  • the bottle mouth of the sixty-first container 326 is placed upward
  • the sixty-first tube 449 is a target material transmission pipeline of a medical cyclotron or target dissolving device, which is bombarded by the accelerator.
  • the zirconium [Zr-89]-containing target material that has been dissolved and then enters the sixty-first container 326 through the sixty-first pipe 449.
  • the target material is the yttrium [Y-89] material dissolved in 6M hydrochloric acid.
  • the target piece is put into the sixty-first container 326 and dissolved with 6M hydrochloric acid;
  • the sixty-second container 327 is a hydrochloric acid reagent bottle, and the hydrochloric acid reagent bottle can be a 1M or 10ML hydrochloric acid reagent bottle;
  • the sixty-third container 328 is ultrapure water
  • the capacity of the reagent bottle, the ultrapure water reagent bottle can be 10ML;
  • the sixty-fourth container 329 is an oxalic acid reagent bottle, and the oxalic acid reagent bottle can be 1M, 2ML oxalic acid reagent bottle;
  • the sixty-fifth container 330 is a purification column, a purification column It is a resin column containing hydroxamic acid functional groups, which can efficiently adsorb zirconium [Zr-89] nuclide in the hydrochloric acid system, but does not adsorb the target material yttrium [Y
  • the sixty-sixth container 331 is a waste liquid bottle, and the waste liquid in the purification process flows into the waste liquid bottle for storage.
  • One end of the seventieth pipe 458 is connected to the sixty-sixth container 331, and the other end of the seventieth pipe 458 is connected to the waste gas treatment system.
  • the waste gas generated during the purification process flows into the waste gas treatment system through the seventieth pipe 458 for dehydrochloric acid treatment.
  • the sixty-sixth container 331 can also be used as a target material recovery bottle, and the target material yttrium [Y-89] can be recovered through the waste liquid bottle during the purification process;
  • the sixty-seventh container 332 is an ultrapure water reagent bottle, an ultrapure water bottle
  • the capacity of the pure water reagent bottle can be 10ML;
  • the sixty-eighth container 333 is a purification column, which is a silica-based ion exchange column.
  • the purification column can efficiently adsorb zirconium [Zr-89] nuclide in the oxalic acid system, It does not adsorb oxalic acid, and can elute the zirconium [Zr-89] nuclide from the purification column by 1M hydrochloric acid solution, thereby realizing the replacement of zirconium [Zr-89]-zirconium oxalate with zirconium [Zr-89]-zirconium chloride ;
  • the sixty-ninth container 334 is a waste liquid bottle, and the waste liquid in the purification process flows into the waste liquid bottle for storage, and one end of the seventy-sixth pipe 464 is connected to the sixty-ninth container 334, and the seventy-sixth pipe 464 The other end is connected with the waste gas treatment system, and the waste gas generated in the purification process flows into the waste gas treatment system through the seventy-sixth pipe 464 for dehydrochloric acid treatment;
  • the gas in the product bottle can pass through the filter. Filter and discharge to the atmosphere to avoid positive pressure inside the product bottle;
  • the bottle mouth is placed downward;
  • the sixty-first syringe 208, the sixty-second syringe 209 and the sixty-third syringe 210 are sterile syringes 2 of 10ML specifications, the sixty-first syringe 208, the sixty-second syringe 209 and the sixth
  • the outlet end of the sixty-third syringe 210 is a threaded Luer port, so that the sixty-first syringe 208, the sixty-second syringe 209, and the sixty-third syringe 210 can be connected to the sixty-first syringe 208 through the threaded Luer port.
  • the upper port 1151 of the second three-way valve 115 from the left of the first five-way three-way module 106 , the upper port 1151 of the fourth three-way valve 115 from the left of the sixty-second five-way three-way module 107 Connect and tighten the upper port 1151 of the right three-way valve 115 of the sixty-first two-way three-way module 113 to avoid the sixty-first syringe 208, the sixty-second syringe 209 and the sixty-third syringe 210 and the sixth
  • the upper side port 1151 of the second three-way valve 115 from the left of the sixty-one five-way three-way module 106 , the upper side of the fourth three-way valve 115 from the left of the sixty-second five-way three-way module 107 Air leakage or liquid leakage occurs at the connection between the port 1151 and the upper port 1151 of the right three-way valve 115 of the sixty-first two-way three-way module 113; the sixty-first syringe
  • the sixty-first to seventy-ninth tubes 467 are assembled to form a zirconium [Zr-89]-zirconium chloride nuclide purification cartridge, which can be used for nuclide purification and preparation, and the target material is irradiated by a high-energy particle beam through the accelerator end or the reactor , to produce crude trace radioisotopes in the target material, and purify radioisotopes through the ferrule 1000 and the ferrule action control device 2000, such as 89Zr, which can be carried out through the purified nuclide, ferrule 1000 and ferrule action control device 2000 Preparation and purification of radioisotopes, such as fully automatic purification and preparation of zirconium [Zr-89]-
  • the sixty-first to sixty-second five-way three-way module 107, the sixty-first two-way three-way module 113, the sixty-first to sixty-third syringe 210, the sixty-first to seventieth container 335, The ferrule 1000 formed by the assembly of the sixty-first to seventy-ninth tubes 467 can be selected according to actual needs.
  • the two-way three-way module, the syringe 2, the container 3 and the tube 4 are idle, which can reduce the use of raw materials;
  • the sixty-first to sixty-third syringes 210, the sixty-first to seventieth containers 335, and the sixty-first to seventy-ninth tubes 467 can all be produced independently, thereby effectively reducing the manufacturing cost;
  • To the sixty-second five-way three-way module 107, the sixty-first two-way three-way module 113, the sixty-first to sixty-third syringe 210, the sixty-first to seventieth container 335, the sixty-first Up to the seventy-ninth tube 467 can be used independently and flexibly assembled to form a ferrule 1000 for application in the purification and preparation of radioisotopes, with good versatility and wide applicability; during the purification and preparation of radioisotopes, the liquid is only in the ferrule. The liquid flows in the sleeve 1000
  • the multi-joint three-way module 1 includes eighty-first to eighty-second five-way three-way modules 109 and an eighty-first two-way three-way module 114 ;
  • Syringe 2 has eighty-first to eighty-third syringe 213;
  • container 3 has eighty-first to ninety-first container 346;
  • tube 4 has eighty-first to one-hundredth tube 487;
  • the eighty-first container 336 is connected with an eighty-first pipe 468, and the eighty-first pipe 468 is used for emptying;
  • the eighty-first container 336 is connected to the upper port 1151 of the leftmost three-way valve 115 of the eighty-first five-way three-way module 108 through the eighty-second pipe 469;
  • the eighty-first syringe 211, the eighty-second container 337, the eighty-third container 338, and the eighty-fourth container 339 pass through the eighty-third tube 470, eighty-fourth tube 471,
  • the eighty-fifth pipe 472 and the eighty-sixth pipe 473 are correspondingly connected to the upper ports 1151 of the second to fifth three-way valves 115 from the left of the eighty-fifth three-way module 108;
  • the upper end of the eighty-fifth container 340 is connected to the right port 1151 of the rightmost three-way valve 115 of the eighty-fifth three-way module 108 through the eighty-seventh pipe 474;
  • the lower end of the eighty-fifth container 340, the eighty-seventh container 342, the eighty-eighth container 343, and the eighty-second syringe 212 pass through the eighty-eighth tube 475 and the ninety-first tube in order from left to right. 478, the ninety-second pipe 479, and the ninety-third pipe 480 are correspondingly connected to the upper ports 1151 of the first to fourth three-way valves 115 from the left of the eighty-second five-way three-way module 109;
  • the upper end of the eighty-sixth container 341 is connected to the upper port 1151 of the leftmost three-way valve 115 of the eighty-second five-way three-way module 109 through the eighty-ninth pipe 476;
  • the eighty-sixth container 341 is also connected with a ninetieth pipe 477, and the ninetieth pipe 477 is used for emptying;
  • the upper end of the eighty-ninth container 344 is connected to the upper port 1151 of the rightmost three-way valve 115 of the eighty-second five-way three-way module 109 through the ninety-fourth pipe 481;
  • the lower end of the eighty-ninth container 344 is connected to the upper port 1151 of the left three-way valve 115 of the eighty-first two-way three-way module 114 through the ninety-fifth pipe 482;
  • the ninetieth container 345 is connected to the left port 1151 of the left three-way valve 115 of the eighty-first two-way three-way module 114 through the ninety-sixth pipe 483;
  • the ninetieth container 345 is also connected with a ninety-seventh pipe 484, and the ninety-seventh pipe 484 is used for emptying;
  • the eighty-third syringe 213 is connected to the upper port 1151 of the right three-way valve 115 of the eighty-first two-way three-way module 114 through the ninety-eighth pipe 485;
  • the ninety-first container 347 is connected to the right port 1151 of the right three-way valve 115 of the eighty-first two-way three-way module 114 through the ninety-ninth pipe 486;
  • the ninety-first container 347 is also connected to the one-hundred pipe 487, and the one-hundred pipe 487 is used for emptying.
  • the eighty-first container 336 is a target material dissolving bottle
  • the bottle mouth of the eighty-first container 336 is placed upward
  • the eighty-first tube 468 is a target material transmission pipeline of a medical cyclotron or a target dissolving device, which is bombarded by the accelerator.
  • the target material is a nickel [Ni-64] material dissolved in 6M hydrochloric acid.
  • the target piece is placed in the eighty-first container 336 and dissolved with 6M hydrochloric acid;
  • the eighty-second container 337 is a high-concentration hydrochloric acid reagent bottle, and the high-concentration hydrochloric acid reagent bottle can be a 6M, 2ML hydrochloric acid reagent bottle;
  • the eighty-third container 338 It is a high-concentration hydrochloric acid reagent bottle, and the high-concentration hydrochloric acid reagent bottle can be a 6M, 10ML hydrochloric acid reagent bottle;
  • the eighty-fourth container 339 is a low-concentration hydrochloric acid reagent bottle, and the low-concentration hydrochloric acid reagent bottle can be a 1M, 2ML hydrochloric acid reagent bottle;
  • the eighty-five container 340 is a purification column, and the purification column is an ion exchange resin column, which can efficiently adsorb the copper [Cu-
  • the eighty-sixth container 341 can also be used as a target material recovery bottle.
  • the target material nickel [Ni-64] can be recovered through the waste liquid bottle;
  • the eighty-seventh container 342 is an ultrapure water reagent bottle, and the capacity of the ultrapure water reagent bottle can be 0.2ML;
  • the eighty-eighth container 343 is an ultrapure water reagent bottle, and the capacity of the ultrapure water reagent bottle can be 2ML;
  • the eighty-ninth container 344 It is a purification column, which is a strong anion exchange column based on silica gel. The purification column can efficiently adsorb the copper [Cu-64] nuclide in the hydrochloric acid system, but not hydrochloric acid.
  • the nuclide is eluted from the purification column, thereby realizing the replacement of copper [Cu-64]-copper chloride hydrochloride with copper [Cu-64]-neutral copper chloride;
  • the ninetieth container 345 is a waste liquid bottle, The waste liquid in the purification process flows into the waste liquid bottle for storage.
  • One end of the ninety-seventh pipe 484 is connected to the ninetieth container 345, and the other end of the ninety-seventh pipe 484 is connected to the waste gas treatment system.
  • the waste gas flows into the waste gas treatment system through the ninety-seventh pipe 484 for dehydrochloric acid treatment;
  • the ninety-first container 346 is a product bottle, one end of the one-hundred pipe 487 is connected to the product bottle, and the other end of the one-hundred pipe 487 is connected to the product bottle.
  • the filter is connected, so that the hundredth tube 487 can be used as an evacuation tube, when the product is transferred to the product bottle, the gas in the product bottle can be filtered through the filter and discharged to the Atmosphere, to avoid positive pressure inside the product bottle;
  • the eighty-second container 337, the eighty-third container 338, the eighty-fourth container 339, the eighty-seventh container 342 and the eighty-eighth container 343 are placed with the bottle mouth downward ;
  • Eighty-first syringe 211, eighty-second syringe 212 and eighty-third syringe 213 are sterile syringes 2 of 10ML specifications, eighty-first syringe 211, eighty-second syringe 212 and eighty-third syringe 213
  • the outlet end is a threaded Luer port, so that the eighty-first syringe 211, the eighty-second syringe 212,
  • the upper port 1151 of the right three-way valve 115 of the two-way three-way module 114 is connected and tightened to avoid that the eighty-first syringe 211 , the eighty-second syringe 212 and the eighty-third syringe 213 are connected with the eighty-fifth syringe
  • the eighty-first to one-hundred tubes 487 are assembled to form a copper [Cu-64]-neutral copper chloride nuclide purification cartridge, which can be used for nuclide purification and preparation, and is irradiated by a high-energy particle beam through the accelerator end or the reactor Target material, produce trace amount of crude radioisotope in the target material, carry out the purification of radioisotope through the ferrule 1000 and the ferrule action control device 2000, and use the purified nuclide, ferrule 1000 and ferrule action control device 2000 to carry out radioactivity Preparation and purification of isotopes, such as automatic purification and preparation of copper [Cu-64]-neutral copper chloride.
  • the ferrule 1000 formed by the assembly of the eighty-first to one-hundred tubes 487 can be selected according to actual needs.
  • the two-way three-way module, the syringe 2, the container 3 and the tube 4 are idle, which can reduce the use of raw materials;
  • the eighty-first to eighty-third syringes 213, the eighty-first to ninety-first containers 346, and the eighty-first to one-hundred tubes 487 can all be produced independently, thereby effectively reducing the manufacturing cost;
  • To the eighty-second five-way three-way module 109, eighty-first two-way three-way module 114, eighty-first to eighty-third syringe 213, eighty-first to ninety-first container 346, eighty One to one hundred tubes 487 can be used independently and assembled flexibly to form a ferrule 1000 for application in the purification and preparation of radioisotopes, with good versatility and wide applicability; during the purification and preparation of radioisotopes, the liquid is only in the ferrule. The liquid flows in the sleeve 1000, and the liquid does not
  • a second aspect of the present invention also provides a ferrule action control device 2000 .
  • the ferrule action control device 2000 is used to connect with the ferrule 1000 according to any one of the embodiments of the first aspect of the present invention, and includes a bracket 5 , The syringe mounting part 6, the piston driving steering gear 8, the three-way valve knob 8 and the three-way valve knob driving steering gear 10; the syringe mounting part 6 is arranged on the bracket 5, and the syringe mounting part 6 includes a piston handle mounting part 61 that can move up and down and the sleeve installation part 62 located below the piston handle installation part 61, the piston handle installation part 61 is used to install the piston handle 1152 of the syringe 2, and the sleeve installation part 62 is used to install the sleeve of the syringe 2; The piston handle mounting portion 61 is connected to drive the piston handle mounting portion 61 to move up and down; the three-way valve knob 8 is arranged on the bracket 5,
  • the piston handle mounting portion 61 of the syringe mounting portion 6 and the three-way valve knob 8 of the sleeve mounting portion 62 are mounted on the bracket 5, so that the ferrule 1000 is mounted on the On the ferrule action control device 2000, the ferrule 1000 is controlled by the ferrule control device, wherein the syringe mounting part 6 and the piston drive steering gear 8 control the syringe 2, and the three-way valve knob 8 and the three-way valve knob drive the steering gear 10 to control the flow
  • the multi-connected three-way module 1 and syringe 2 can be selected according to actual needs, so as to avoid the idleness of some multi-connected three-way module 1 and syringe 2, thereby reducing the use of raw materials ; Install the multi-connected three-way module 1 and the syringe 2 that actually need
  • the bracket 5 is provided with a guide groove 51 for the piston handle mounting portion 61 to move up and down. It can be understood that by providing the guide groove 51 on the bracket 5 , the piston handle mounting portion 61 cooperates with the guide groove 51 , and the piston handle mounting portion 61 can easily move up and down along the guide groove 51 .
  • the piston handle mounting portion 61 is provided with a handle slot 611 into which the piston handle 1152 of the syringe 2 is fitted and snapped. It can be understood that when the syringe 2 is installed, the piston handle 1152 of the syringe 2 is fitted into the handle slot 611, the piston handle 1152 can be positioned and installed conveniently and quickly, and at the same time, the piston handle mounting part 61 is convenient to drive the piston. The handle 1152 moves up and down.
  • the sleeve mounting portion 62 includes a first base wall 622 , a first left side wall 623 and a first right side wall 624 , the first left side wall 624 .
  • the wall 623 and the first right side wall 624 are located on the left and right sides of the first base wall 622 , respectively, and together with the first base wall 622 define a sleeve mounting cavity 621 adapted to the sleeve of the syringe 2 .
  • the sleeve of the syringe 2 is fitted into the sleeve mounting portion 62, so that the sleeve can be installed and positioned conveniently and quickly, and the sleeve can be prevented from shaking during use.
  • the sleeve installation cavity 621 includes a vertically extending main cylinder cavity 6212 and is radially connected to the main cylinder cavity 6212 and spaced apart in the up-down direction.
  • the specifications of the syringe 2 need to be selected according to the actual situation, that is to say, the length of the syringe 2 needs to be selected according to the actual situation. 6211, the piston handle 1152 of the syringe 2 of different specifications can be fitted and installed with different ring cavities 6211, the structure is reasonable and reliable, and the structure is highly versatile.
  • the handle 1152 in the ferrule 1000, includes a rotating shaft 11521 and three radial positioning blocks 11522, and the three radial positioning blocks 11522 are radial
  • the three radial positioning blocks 11522 are arranged in a T shape; one end of the three-way valve knob 8 is provided with a cross-shaped notch 81, and the cross-shaped notch 81 is used for connecting with the handle
  • the three radial positioning blocks 11522 of the 1152 cooperate to detachably fix the handle 1152 and the three-way valve knob 8 .
  • the handle 1152 is used to cooperate with the three-way valve knob 8, and the three radial positioning blocks 11522 on the handle 1152 are detachably installed in the cross-shaped notch 81 of the three-way valve knob 8, so that the handle 1152 It is firmly connected with the three-way valve knob 8 to avoid dislocation movement when the three-way valve knob 8 drives the handle 1152 to rotate, the structure is simple and reasonable, and the disassembly and assembly are convenient.
  • the rotating shaft 11521 is provided with a positioning hole; one end of the three-way valve knob 8 is also provided with a positioning column 82, The positioning post 82 is adapted to be inserted into the positioning hole.
  • the positioning column 82 on the three-way valve knob 8 is fitted into the positioning hole on the handle 1152, so that the handle 1152 and the three-way valve knob can be further improved. 8 installation stability.
  • a container mounting portion 7 is further included, and the container mounting portion 7 is provided on the bracket 5 for mounting the container 3 . It can be understood that, by arranging a plurality of container mounting parts 7 on the support 5, in the operation of the radioisotope purification and preparation/radiopharmaceutical labeling synthesis process, the actual required container 3 can be selected and the container 3 can be mounted on the container mounting part 7.
  • the flow path required for liquid transfer during the operation of the radiopharmaceutical labeling synthesis process connects the container 3 on the container mounting part 7 with the multi-connected three-way module 1, so that the container 3 can be manufactured and used independently, thereby effectively reducing the manufacturing cost , the structure has good versatility and wide applicability.
  • the container mounting portion 7 includes a second base wall 71 , a second left side wall 72 , a second right side wall 73 and a transverse blocking wall 74 .
  • the side wall 72 and the second right side wall 73 are located on the left and right sides of the second base wall 71, respectively, and the transverse blocking wall 74 is located at the lower end of the second left side wall 72 and the second right side wall 73,
  • the left side wall 72 , the second right side wall 73 and the second base wall 71 are fixedly connected to jointly define an installation cavity of the container 3 adapted to the container 3 . It can be understood that when the container 3 is installed, the container 3 can be fitted into the container mounting portion 7 , and the lateral baffle wall 74 supports the bottom of the container 3 , with a simple structure and stable support.
  • the transverse blocking wall 74 is provided with a recess 741 concave toward the direction of the second base wall 71 .
  • the tube 4 can extend into the bottle mouth of the container 3 through the notch 741 on the transverse baffle wall 74, and the structure is reasonable.
  • a heating module 9 is further included, and the heating module 9 is used for heating the container 3 in the ferrule 1000 containing the reaction liquid to be heated.
  • the heating module 9 includes a metal block and a heating component.
  • the metal block is used to realize heat conduction, and the heating component is used to heat the metal block.
  • the heating component can be PTC thermostatic ceramic, electric heating pipe or electric heating fin. The block is heated, and the metal block is used to transfer heat to the container 3 in the ferrule 1000 containing the reaction liquid to be heated.
  • the heating module 9 is provided with a placement hole 91 for placing the container 3 containing the reaction liquid to be heated.
  • a placement hole 91 is arranged in the middle of the metal block, and the container 3 containing the reaction liquid to be heated is placed in the placement hole 91, so that the container 3 containing the reaction liquid to be heated can be conveniently heated, with a simple structure and convenient installation.
  • the heating module 9 is provided with a temperature control function. It can be understood that when the heating module 9 heats the medium in the container 3, it is necessary to detect the temperature of the medium in the container 3 in real time and control the temperature of the medium in the container 3 to be within the temperature range required for the reaction. Specifically, a PT100 probe or The thermocouple probe detects the temperature of the medium in the container 3 in real time, and accurately controls the temperature of the medium in the container 3 through the PID temperature controller. In this way, the temperature of the medium in the container 3 can be guaranteed to be within the temperature range required for the reaction, and the effect of the medium reaction can be guaranteed. .
  • the heating module 9 is provided with a fan heating component 92 .
  • the fan heating component 92 can be a fan heating grid or a fan, and a fan heating grid is arranged on the side of the heating module 9 or a fan is arranged at the bottom of the heating module 9.
  • the fan heating component 92 can enhance the heat dissipation effect during heating to ensure uniform heating, and can accelerate the cooling speed during cooling. In order to facilitate the precise temperature control of the heating module 9 .
  • the heating module 9 is provided with a radioactive probe, and the radioactive probe is used to detect the radioactive change in the container 3 being heated. It can be understood that, the radioactive change in the container 3 placed in the heating module 9 is detected by the radioactive probe, the radioactive probe is connected with the automatic operation software, the radioactive value can be displayed by the automatic operation software, and the operator can easily and quickly judge according to the radioactive value. reaction process.
  • the third aspect of the present invention also provides a radioisotope purification/labeling system.
  • the radioisotope purification/labeling system includes the ferrule 1000 according to any one of the embodiments of the first aspect of the present invention and the ferrule action according to any one of the embodiments of the second aspect of the present invention
  • the control device 2000, the ferrule 1000 is installed on the ferrule action control device 2000.
  • the radioisotope purification/labeling system by installing the ferrule 1000 on the ferrule action control device 2000, and controlling the ferrule 1000 through the ferrule control device, in the radioisotope purification preparation/radiopharmaceutical labeling synthesis
  • the multi-connected three-way module 1, container 3 and syringe 2 can be selected according to actual needs, so as to avoid idleness of some multi-connected three-way module 1, container 3 and syringe 2, thereby reducing the use of raw materials;
  • the multi-connected three-way module 1, the container 3 and the syringe 2 are respectively directly installed on the ferrule action control device 2000.
  • the tube 4 is used for the purification and preparation of radioisotopes/radiopharmaceutical labeling synthesis process operation.
  • the flow path required for the liquid transfer connects the syringe 2 and the container 3 with the multi-connected tee module 1 respectively.
  • the syringe 2, the container 3, the multi-connected tee module 1 and the tube 4 can all be produced independently, thereby effectively reducing the manufacturing cost.
  • ferrules 1000 Different types of syringes 2, containers 3, multi-connection three-way modules 1 and tubes 4 can be used independently and flexibly assembled to form ferrules 1000 of different specifications to be applied in different process operations, with good versatility and applicability Wide; during the operation of the radioisotope purification and preparation/radiopharmaceutical labeling synthesis process, the liquid only flows in the ferrule 1000, and the liquid does not contact the ferrule action control device 2000, thereby avoiding contamination of the ferrule action control device 2000, ensuring The service life of the ferrule action control device 2000; in addition, since there are radioactive residues in the ferrule 1000 after each process operation, a new ferrule 1000 is replaced after each process operation, which can prevent cross-contamination between different batches of operations ,
  • the ferrule 1000 is simple in structure, convenient in assembly and disassembly and low in cost, and is suitable for industrial operation.
  • the communication state of the port 1151 of the three-way valve 115 mainly includes three situations.
  • the communication state of the port 1151 of the three-way valve 115 is mainly determined by the rotation position of the three-way valve knob 8, and the handle 1152 is in the shape of a "T".
  • the first communication situation is: the communication state of the three-way valve 115 is a left-right straight-through type, the handle 1152 is "T" shaped downward, and the three-way valve 115 is in the D state in this state;
  • the second communication situation is: the three-way The connection state of the valve 115 is the left-up connection type, the handle 1152 is "T" shaped to the left, and the three-way valve 115 is in the L state in this state;
  • the third connection situation is: the connection state of the three-way valve 115 is right-up connection.
  • the handle 1152 is "T" shaped to the right, in this state the three-way valve 115 is in the R state; by turning the three-way valve knob 8 to control the control handle 1152, the three-way valve 115 is in the D state, R state or L state,
  • the flow path required for liquid transfer in the radioisotope purification preparation/radiopharmaceutical labeling synthesis process operation is realized.
  • Example 1 The reaction of [Zr-89]-labeled trastuzumab on a zirconium [Zr-89]-labeled cartridge is illustrated, as shown in Figure 1:
  • the nuclide transfer is performed, and the [Zr-89] nuclide required for single labeling is transferred to the third container 303 bottle through the seventh tube 407 by the automatic nuclide dispensing device.
  • the knob 8 is in the R state, and the three-way valve knob 8 corresponding to the second three-way valve 115 from the left of the first five-way three-way module 101 is turned to the L state, and the first syringe 201 is controlled to absorb air while maintaining this state.
  • the gas is extracted to form a negative pressure, so that under this negative pressure, the [Zr-89] nuclide solution in the third container 303 enters the first five-way three-way module 101 through the sixth pipe 406 and passes through the first five-way three-way module 101
  • the right port 1151 of the rightmost three-way valve 115 of the first five-way three-way module 101 enters the fourth container 304 through the second pipe 402; after the transfer is completed, turn the three-way corresponding to the leftmost three-way valve 115 of the first five-way three-way module 101
  • the valve knob 8 is in the D state, turning the three-way valve knob 8 corresponding to the second three-way valve 115 from the left of the first five-way three-way module 101 is in the L state, and the first syringe 201 is controlled to
  • the first syringe 201 sucks air, and then passes through the leftmost three-way valve 115 of the first five-way three-way module 101 , the second three-way valve 115 from the left of the first five-way three-way module 101 , and the first pipe 401
  • the gas in the fourth container 304 is drawn out to form a negative pressure, so that under this negative pressure, the mixed buffer solution of acetic acid/sodium acetate and HEPES in the first container 301 passes through the third three-way from the left of the first five-way three-way module 101.
  • the through valve 115 enters the first five-way three-way module 101 and enters the fourth container 304 through the second pipe 402 through the right port 1151 of the rightmost three-way valve 115 of the first five-way three-way module 101.
  • the three-way valve knob 8 is in the L state, which controls the first syringe 201 to press out air, and the air is discharged through the left port 1151 of the leftmost three-way valve 115 of the first five-way three-way module 101 .
  • the concentration of acetic acid/sodium acetate and HEPES mixed buffer solution is 0.25mol/L, the pH value is 7.2, and the volume is 0.5mL.
  • other types, concentrations, and pH values of buffer solutions can also be selected according to different reactions.
  • the purpose of the buffer solution is to neutralize the acidity of the nuclide zirconium [Zr-89]-zirconium oxalate, and to provide a reaction solution with a suitable pH value for the 89Zr chelation reaction.
  • the first syringe 201 is controlled to absorb air, and then passes through the leftmost three-way valve 115 of the first five-way three-way module 101, the second three-way valve 115 from the left of the first five-way three-way module 101, and
  • the first tube 401 draws out the gas in the fourth container 304 to form a negative pressure, so that under this negative pressure, the trastuzumab solution in the second container 302 passes through the fifth tube 405 and the first five-way three-way module 101.
  • the trastuzumab solution added in this example is modified by the bifunctional chelating agent deferoxamine isothiocyanate, the solution is 0.15M acetic acid/sodium acetate buffer solution, pH 7.2, volume 1mL, according to different other buffer solutions can be used, and the volume of the buffer solution can be determined according to the actual situation.
  • the three-way valve knob 8 corresponding to the leftmost three-way valve 115 of the first five-way three-way module 101 is in the L state, which controls the first syringe 201 to press out air, and the air is discharged through the left port 1151 of the leftmost three-way valve 115 of the first five-way three-way module 101 .
  • the chelation reaction maintains this state to carry out the metal chelation reaction between [Zr-89] nuclide and DFO-trastuzumab.
  • the chelation reaction adopts room temperature transition state, and the reaction is carried out for 60 minutes. Set other reaction temperatures and reaction times.
  • pneumatic stirring is continuously performed by means of air blowing from the bottom of the fourth container 304, so that the reaction is more uniform and fast.
  • the pneumatic stirring is realized by: turning the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left of the second five-way three-way module 102 to the R state, and keeping the rightmost three-way valve of the second five-way three-way module 102 .
  • the three-way valve knob 8 corresponding to the through valve 115 is in the D state, and the second syringe 202 is controlled to inhale the air.
  • the port 1151 above the rightmost three-way valve 115 of the three-way module 102 enters the syringe 2 secondly; turn the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left of the second five-way three-way module 102 to L.
  • the valve 115, the third three-way valve 115 from the left of the second five-way three-way module 102, and the eighth pipe 408 enter the bottom of the fourth container 304 and blow out, so as to stir the reaction liquid, and the gas under pressure in the fourth container 304 It flows into the leftmost three-way valve 115 of the first five-way three-way module 101 through the first pipe 401 , and flows out from the left port 1151 of the leftmost three-way valve 115 of the first five-way three-way module 101 . This step is repeated during the reaction until the reaction is complete.
  • the syringe 202 sucks the liquid, and the reaction liquid passes through the eighth tube 408 , the third three-way valve 115 from the left of the second five-way three-way module 102 and the fourth three-way from the left of the second five-way three-way module 102 Valve 115 enters second syringe 202 .
  • the through valve knob 8 is in the L state, and the three-way valve knob 8 corresponding to the left three-way valve 115 of the first two-way three-way module 110 is turned to the L state, and the second syringe 202 is controlled to press out the liquid, and the liquid passes through the second five-way valve.
  • the fourth three-way valve 115 from the left of the three-way module 102 and the rightmost three-way valve 115 of the second five-way three-way module 102 enter the sixth container 306 , and the waste liquid passes through the first two-way three-way module 110 .
  • the left port 1151 of the left three-way valve 115 flows into the waste liquid bottle; turn the three-way valve knob 8 corresponding to the second three-way valve 115 from the left of the second five-way three-way module 102 to the R state, and turn the second three-way valve
  • the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left of the five-way three-way module 102 is in the L state, and the second syringe 202 is controlled to absorb the buffer solution in the reagent bottle of the fifth container 305; in this example, the buffer solution is Sterile and endotoxin-controlled 0.15M acetic acid/sodium acetate buffer solution, this solution can be used directly as a dosing solvent.
  • the three-way valve knob 8 corresponding to the fourth three-way valve 115 is in the L state, turning the three-way valve knob 8 corresponding to the left three-way valve 115 of the first two-way three-way module 110 is in the R state, and turning the right three-way valve of the first two-way three-way module 110
  • the three-way valve knob 8 corresponding to the through valve 115 is in the D state, and the second syringe 202 is controlled to press out part of the buffer solution through the sixth container 306 , and then pass through the left three-way valve 115 of the first two-way three-way module 110 , the third The right three-way valve 115 of the one-two-three-way module 110 flows out and enters the eighth container 308 after being filtered by a sterile filter membrane.
  • the excess gas in the eighth container 308 is discharged through the seventeenth pipe 417; rotate the first two-way three-way
  • the three-way valve knob 8 corresponding to the three-way valve 115 on the right side of the module 110 is in the R state, and the third syringe 203 is controlled to press out the pre-loaded buffer solution, which is filtered by a sterile filter and then enters the eighth container 308 to obtain zirconium [ 89Zr]-trastuzumab injection formulation.
  • the buffer solution added by the third syringe 203 is a sterile 0.15M acetic acid/sodium acetate buffer solution with endotoxin in the control range. Select other solutions, and the volume of the solution can be determined according to the actual situation.
  • the labeling synthesis time was 72 minutes, and the synthesis yield was 80% without decay correction, and the radiochemical purity of zirconium [89Zr]-trastuzumab was more than 99%.
  • the product properties, chemical purity, specific activity, activity concentration, pH value, sterility, endotoxin and other quality indicators all meet the clinical medication standards.
  • Example 2 Illustrate the 18F-labeled NOTA-RGD2 reaction on fluorine-labeled ferrules, as shown in Figure 2:
  • the nuclide transfer is performed, and the [F-18] nuclide required for single labeling is transferred into the twenty-third container 311 through the twenty-seventh tube 424 by the automatic nuclide dispensing device.
  • the rightmost three-way valve 115 in the five-way three-way module 103 enters the twenty-first five-way three-way module 103 and passes through the right port 1151 of the rightmost three-way valve 115 in the twenty-first five-way three-way module 103 Enter the twenty-fourth container 312 through the twenty-second tube 419.
  • the [F-18] nuclide is usually added in a volume of 1-2 mL, and the radioactivity is determined according to the activity requirements of the synthetic product.
  • the three-way valve knobs 8 corresponding to the two three-way valves 115 are in the L state, which controls the twenty-first syringe 204 to press out air, and the air passes through the left side of the leftmost three-way valve 115 in the twenty-first five-way three-way module 103 Side port 1151 discharges.
  • the three-way valve knob 8 corresponding to the left three-way valve 115 is in the R state
  • the three-way valve knob 8 corresponding to the second three-way valve 115 from the left in the twenty-first five-way three-way module 103 is in the L state
  • the 21st syringe 204 is controlled to absorb air, and then passes through the second 3-way valve 115 from the left in the 21st 5th 3-way module 103 and the 21st 5th 3-way module 103
  • the leftmost three-way valve 115 and the twenty-first pipe 418 draw out the gas in the twenty-fourth container 312 to form a negative pressure, so that under this negative pressure, the acetic acid/sodium acetate buffer solution in the twenty-first container 309 passes
  • the port 1151 above the third three-way valve 115 from the left in the twenty-first five-way three-way module 103 enters the twenty-first five-way three-way module 103 and passes through the twenty-first five-way three-way module 103
  • the right port 1151 of the rightmost three-way valve 115 enters the twenty-fourth container 312 through the twenty-second pipe 419.
  • the concentration of the acetic acid/sodium acetate buffer solution is 0.15 mol/L
  • the pH value is 6, and the volume is 0.5 mL.
  • buffer solutions of other types, concentrations, pH values and volumes can also be selected in the buffer solution according to different reactions. The purpose of adding the buffer solution is to provide a reaction solution with a suitable pH value for the F-18 chelation reaction.
  • the upper port 1151 of the fourth three-way valve 115 from the left in the twenty-fifth three-way module 103 enters the twenty-first five-way three-way module 103 and passes through the highest port in the twenty-fifth five-way three-way module 103
  • the right port 1151 of the right three-way valve 115 enters the twenty-fourth container 312 through the twenty-second pipe 419.
  • the NOTA-RGD2 solution added in this example uses a 75% acetonitrile aqueous solution as a solvent (containing a trace amount of aluminum trichloride).
  • the concentration is 0.2mg/mL
  • the volume of single addition is 0.25mL
  • the actual amount of NOTA-RGD2 added is 50ug
  • different amounts of NOTA-RGD2 can also be added according to the difference in the single dose.
  • the three-way valve knobs 8 corresponding to the two three-way valves 115 are in the L state, which controls the twenty-first syringe 204 to press out air, and the air passes through the left side of the leftmost three-way valve 115 in the twenty-first five-way three-way module 103 Side port 1151 discharges.
  • the temperature of H1 is started through the automatic control system, and the [F-18] nuclide aluminum fluoride metal chelation reaction is carried out.
  • the chelation reaction adopts 90 ° C for 15 minutes, or it can be set according to the type of reaction. Other reaction temperatures and reaction times.
  • pneumatic stirring is performed twice by blowing air from the bottom of the twenty-fourth container 312, so that the reaction is more uniform and fast.
  • the pneumatic stirring is realized by: turning the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104 to the R state, and in the twenty-first five-way three-way module 103
  • the three-way valve knob 8 corresponding to the rightmost three-way valve 115 maintains the D state, and controls the twenty-second syringe 205 to absorb air, and the air passes through the rightmost three-way valve 115 in the twenty-first five-way three-way module 103
  • the right port 1151 is sucked into the twenty-second syringe 205 through the upper port 1151 of the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104; turn the twenty-second five-way three-way module
  • the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left in 104 is in the L-turn state, and the three-way valve knob 8 corresponding to the leftmost three-
  • the twenty-first pipe 418 flows into the upper port 1151 of the leftmost three-way valve 115 in the twenty-first five-way three-way module 103 , and flows from the upper port 1151 of the leftmost three-way valve 115 in the twenty-first five-way three-way module 103 .
  • the left port 1151 flows out, repeat the start stirring work twice, and wait for the end of the reaction.
  • the second three-way valve 115 from the left, the third three-way valve 115 from the left in the twenty-second five-way three-way module 104, and the third three-way valve 115 from the left in the twenty-second five-way three-way module 104 The upper ports 1151 of the four three-way valves 115 are sucked into the twenty-second syringe 205, and the volume of absolute ethanol in the twenty-sixth container 314 is 10 mL.
  • the liquid is discharged, and the anhydrous ethanol in the syringe 2 flows through the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104 and the rightmost three-way in the twenty-second five-way three-way module 104
  • the valve 115 and the thirty-third pipe 430 enter the twenty-eighth container 316, they flow into the twenty-first two-way three-way module 111 through the left port 1151 of the left three-way valve 115 and the thirty-fifth pipe 432
  • the three-way valve knob 8 corresponding to the fourth three-way valve 115 is in the L state
  • the other three-way valve knobs 8 are in the D state
  • the twenty-second syringe 205 is controlled
  • the three-way valve knob 8 corresponding to the fourth three-way valve 115 is in the L state, and turning the three-way valve knob 8 corresponding to the left three-way valve 115 in the twenty-first two-way three-way module 111 is in the L state, controlling the twenty-second syringe 205 Press out the internal sterile water for injection through the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104, the rightmost three-way valve 115 in the twenty-fifth three-way module 104, and
  • the thirty-third pipe 430 flows into the twenty-eighth container 316, and flows into the twenty-ninth container 317 through the left port 1151 of the left three-way valve 115 in the twenty-first two-way three-way module 111, and repeats this action 1 time to ensure that the purification column is fully activated and
  • the right port 1151 of the three-way valve 115 is sucked into the twenty-second syringe 205 through the upper port 1151 of the fourth three-way valve 115 from the left in the twenty-fifth three-way module 104, turning the twenty-fifth
  • the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left in the three-way module 104 is in the R state, and the three-way corresponding to the rightmost three-way valve 115 in the twenty-fifth three-way module 104 is rotated.
  • the valve knob 8 is in the L state, turn the three-way valve knob 8 corresponding to the left three-way valve 115 in the twenty-first two-way three-way module 111 to the L state, and control the twenty-second syringe 205 to press out the air, and the air passes through the third
  • the left port 1151 of the left three-way valve 115 in the one-two-three-way module 111 enters the twenty-ninth container 317.
  • the purpose of this operation is to dry the residual moisture in the purification column with air, and repeat the operation three times.
  • the three-way valve knobs 8 corresponding to the four three-way valves 115 are in the L state, which controls the twenty-second syringe 205 to absorb liquid, and the sterile water for injection in the twenty-fifth container 313 passes through the twenty-fifth three-way module 104
  • Valve 115 and the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104 the upper port of the fourth three-way valve 115 from the left in the twenty-second five-way
  • a pipe 418 is discharged from the left port 1151 of the leftmost three-way valve 115 in the twenty-first five-way three-way module 103 .
  • the three-way valve knob 8 corresponding to the through valve 115 , the three-way valve knob 8 corresponding to the second three-way valve 115 from the left in the twenty-second five-way three-way module 104 , and the twenty-second five-way three-way module 104 The three-way valve knob 8 corresponding to the leftmost three-way valve 115 in the middle is in the D state, and the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104 is turned L.
  • the side port 1151 passes through the second three-way valve 115 from the left in the twenty-second five-way three-way module 104, the third three-way valve 115 from the left in the twenty-second five-way three-way module 104, and the third three-way valve 115 from the left in the twenty-fifth three-way module 104.
  • the upper port 1151 of the fourth three-way valve 115 from the left in the twenty-fifth five-way three-way module 104 is connected to the Inhale into the twenty-second syringe 205; turn the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104 to the R state, and turn the twenty-second five-way three-way
  • the three-way valve knob 8 corresponding to the rightmost three-way valve 115 in the communication module 104 is in the L state
  • the three-way valve knob 8 corresponding to the leftmost three-way valve 115 in the twenty-first two-way three-way module 111 is in the L state.
  • the three-way valve knob 8 corresponding to the leftmost three-way valve 115 in the twenty-second five-way three-way module 104 to the R state, and turn the fourth three-way from the left in the twenty-second five-way three-way module 104
  • the three-way valve knob 8 corresponding to the valve 115 is in the L state, which controls the twenty-second syringe 205 to absorb the liquid, and the sterile water for injection in the twenty-fifth container 313 passes through the leftmost part of the twenty-fifth joint three-way module 104
  • the valve knob 8 is in the L state, and the three-way valve knob 8 corresponding to the leftmost three-way valve 115 in the twenty-first two-way three-way module 111 is turned to the L state, and the twenty-second syringe 205 is controlled to press out air, and the air Through the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104, the rightmost three-way valve 115 in the twenty-second five-way three-way module 104, and the thirty-third pipe 430 into the third
  • the twenty-eighth pipe 425 enters the waste liquid bottle through the left port 1151 of the leftmost three-way valve 115 in the twenty-first two-way three-way module 111.
  • the purpose of this operation is to remove the liquid in the twenty-eighth container 316 by air. Dry the residual moisture and repeat the operation 2 times.
  • the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left is in the L state, which controls the twenty-second syringe 205 to absorb liquid, and 1-2 mL of anhydrous ethanol in the twenty-eighth container 316 passes through the twenty-fifth joint.
  • the third three-way valve 115 from the left in the three-way module 104 and the fourth three-way valve 115 from the left in the twenty-second five-way three-way module 104 enter the twenty-two syringe 2, and turn the twenty-second In the five-way three-way module 104, the three-way valve knob 8 corresponding to the fourth three-way valve 115 from the left is in the R state.
  • the valve knob 8 is in the L state, and the three-way valve knob 8 corresponding to the leftmost three-way valve 115 in the twenty-first two-way three-way module 111 is in the R state.
  • the three-way valve knob 8 corresponding to the three-way valve 115 on the right is in the D state, which controls the twenty-second syringe 205 to press out the liquid, and the absolute ethanol in the twenty-second syringe 205 passes through the twenty-second five-way three-way module 104.
  • the 18F-AlF-NOTA-RGD2 product in the twenty-eighth container 316 is eluted, and passes through the leftmost three-way valve 115 and the twenty-first two-way three-way module 111 with absolute ethanol.
  • the right port 1151 and the thirty-eighth pipe 435 of the rightmost three-way valve 115 in the connecting three-way module 111 flow into the thirty-seventh container 318 after being filtered by a sterile filter.
  • the twenty-seventh container 315 The volume of absolute ethanol is 1mL, and the volume of absolute ethanol can also be increased or decreased as required.
  • the rightmost three-way valve 115 and the thirty-eighth pipe 435 in the twenty-one two-way three-way module 111 are filtered through a sterile filter membrane and then enter the thirtieth container 318, and the anhydrous water in the thirtieth container 318 is removed.
  • the ethanol concentration was diluted to less than 10% to obtain 18F-AlF-NOTA-RGD2 sterile injection.
  • the labeling synthesis time was 25 minutes, and the synthesis yield was 35% without decay correction, and the radiochemical purity of 18F-AlF-NOTA-RGD2 sterile injection was greater than 99%.
  • the product properties, chemical purity, specific activity, activity concentration, pH value, sterility, endotoxin and other quality indicators all meet the clinical medication standards.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种卡套,卡套为可更换一次性介质传输卡套,适用于放射性同位素纯化制备/放射性药物标记合成工艺操作中,包括多联三通模块、注射器、容器和管子,多联三通模块包括多个三通阀和共用管道;每个三通阀具有三个端口和一个手柄,手柄控制三通阀的三个端口中的其中任意两个端口连通;管子根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将多联三通模块、注射器和容器进行连通,多联三通模块、注射器分别用于直接安装在卡套动作控制装置上。

Description

卡套、卡套动作控制装置及放射性同位素纯化/标记系统
相关申请的交叉引用
本申请基于申请号为:202110036393.1,申请日为2021年01月12日的中国专利申请及申请号为202120082097.0,申请日为2021年01月12日的中国专利申请提出,并要求该两件中国专利申请的优先权,该两件中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及放射性同位素纯化/标记技术领域,尤其是涉及一种卡套、卡套动作控制装置及放射性同位素纯化/标记系统。
背景技术
随着新的放射性免疫疗法(RIT)和放射性多肽与配体治疗(PRRT和PRLT)的发展,肿瘤领域放射性诊疗一体化(Theranostics)持续快速发展,这些都需基于靶向放射性药物的实用、经济和安全的治疗活动。
为确保患者安全,放射性标记过程应符合良好生产规范(GMPs),充分记录和验证,提供可靠的产品产量,并符合预设的质量规范。产品质量控制包括确定产品完整性、放射化学纯度和无菌性,以及是否存在内毒素。安全性不仅要求良好的生产实践和标准操作程序来确保放射性药物的无菌性和纯度,而且还包括放射性药物化学家在制造、质量控制和配药过程中的辐射防护。用于治疗的放射性药物的典型活性在10-50GBq范围内,这需要特殊的远程屏蔽操作,以避免辐射暴露,特别是放射药剂师的手指。应对所有这些挑战的理想方式是采用经过验证的自动放射性标记方法、以符合GMP的方式通过设备自动化进行放射性药品生产,使得生产人员接触辐射最少,同时确保放射性药品生产质量可靠。目前市面上已有各类放射性药品合成设备,主要用于F-18、C-11核素标记PET-CT诊断示踪药物的标记制备。
放射性药物由于核素半衰期限制,有效期较短,通常为现制备现用,在给患者用药前进行各类放射性药物的现场制备。这种定制的现场放射性药物标记较传统药物生产有批次数多,要求更高的生产稳定性等特点。故经充分工艺优化验证的一次性卡套,在保证生产稳定性的前提下,能最大限度地减少潜在的交叉污染,并避免耗时的清洁程序,已成为放射性药物自动合成模块的发展方向。目前,国际上主要的供应商通用电气(GE)、ORANeptis和日本住友等均已销售和使用全自动卡套式模块,不过依赖进口的单次卡套使用成本过高限制了其在国内的推广和使用。国产放射化学的自动化设备主要用于C-11或F-18标记的小分子PET诊断示踪药物,尚未有一次性卡套类设备面世,皆采用早期的固定管道加电磁阀方式,每次使用完皆需要进行清洗工作,存在批次间交叉污染的风险,同时固定管道加电磁阀的方式在长时间使用过程中也极易因管道堵塞和接头泄漏发生故障,导致标记失败。
随着放射性诊疗一体化(Theranostics)持续快速发展,尤其放射性治疗药物方面,早期市面上的F-18、C-11放射性标记设备已不能满足市场需求,而需要能实现更长半衰期金属治疗核素标记需求,如Lu-177、Y-90等,目前市面上仅进口放射性标记设备具备Ga-68、Lu-177Lu自动化标记小分子化合物和小分子肽类,尚无可实现Zr-89、Cu-64、Lu-177等核素进行大分子蛋白类全自动卡套式放射标记模块。
此外,在目前放射性药物研究领域,在国内越来越多的医用回旋加速器开始具备金属核素生产能力,例如临床常用的Ga-68、Zr-89、Cu-64等核素,该类核素不同于F-18、C-11、N-13核素使用液体靶或气体靶,经加速器辐照轰击后可直接用于放射性药物标记合成。金属核素大多数使用金属靶,经医用回旋加速器辐照轰击后的金属靶片还需进行复杂的提纯工艺,将目标核素从靶片中提取出来同时进行纯化处理,达到相应的质量标准,方可进行后续放射性药物的标记制备。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种卡套,结构简单、成本低、通用性好且适用性广,可以避免对卡套动作控制装置造成污染,保证卡套动作控制装置的使用寿命。
根据本发明第一方面实施例的卡套,所述卡套为可更换一次性介质传输卡套,适用于放射性同位素纯化制备/放射性药物标记合成工艺操作中,包括:
多联三通模块,所述多联三通模块包括多个三通阀和在左右方向延伸的共用管道;每个所述三通阀具有三个端口和一个手柄,三个所述端口分布在所述三通阀的左侧、右侧和上侧,所述手柄用于控制所述三通阀的三个所述端口中的其中任意两个所述端口连通;多个所述三通阀依次设置在所述共用管道上,且在左右方向上相邻两个所述三通阀中左侧一个所述三通阀的右侧所述端口与右侧一个所述三通阀的左侧所述端口通过所述共用管道相连;
注射器;
容器;
管子,所述管子根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将所述多联三通模块、所述注射器和所述容器进行连通,其中,所述多联三通模块、所述注射器分别用于直接安装在卡套动作控制装置上。
根据本发明第一方面实施例的卡套,在放射性同位素纯化制备/放射性药物标记合成工艺操作中,可以根据实际需要选择多联三通模块和注射器,避免部分多联三通模块和注射器闲置,从而可以减少原材料的使用;将实际需要使用的多联三通模块和注射器分别直接安装在卡套动作控制装置上,由于不同的工艺操作产生的反应不同,通过管子根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将注射器和容器分别与多联三通模块连通,注射器、多联三通模块和管子均可以独立制作,从而有效地降低了制造成本;不同种类的注射器、多联三通模块和管子可以独立地使用并灵活地组装形成不同规格的介质传输卡套,以应用在不同的工艺操作中,通用性好且适用性广;在进行放射性同位素纯化制备/放射性药物标记合成工艺操作时,液体只在介质传输卡套中流动,液体不与卡套动作控制装置接触,从而避免对卡套动作控制装置造成污染,保证卡套动作控制装置的使用寿命;此外,由于每次工艺操作后介质传输卡套中都存在放射性残留,每次工艺操作完成后更换新的介质传输卡套,可以防止不同批次操作间的交叉污染,卡套结构简单,装卸方便且成本低,适用于工业化操作。
根据本发明第一方面的一个实施例,所述容器用于直接安装在所述卡套动作控制装置上。
根据本发明第一方面的一个实施例,所述手柄包括旋转轴和三个径向定位块,所述三个径向定位块呈径向设置分布在所述旋转轴的周面上,三个所述径向定位块呈T型布置。
根据本发明第一方面进一步的实施例,所述旋转轴设有定位孔。
根据本发明第一方面进一步的实施例,所述手柄上设有三个指示箭头,三个所述指示箭头对应地设置在三个所述径向定位块的外端面上。
根据本发明第一方面的一个实施例,所述多联三通模块有第一至第二五联三通模块和第一二联三通模块;所述注射器有第一至第三注射器;所述容器有第一至第八容器;所述管子有第一至第十七管子;其中,
所述第一五联三通模块的最左侧的所述三通阀的上侧所述端口通过所述第一管子与所述第四容器相连;
所述第一五联三通模块的最右侧的所述三通阀的右侧所述端口通过所述第二管子与所述第四容器相连;
所述第一注射器、所述第一容器、所述第二容器和所述第三容器以自左向右的顺序分别通过所述第三管子、第四管子、第五管子和第六管子对应地与所述第一五联三通模块中自左起第二个至第五个所述三通阀的上侧所述端口相连;
所述第三容器还连接有所述第七管子;
所述第二五联三通模块的自左起的第三个所述三通阀的上侧所述端口通过所述第八管子与所述第四容器相连,且所述第七管子的一端深入所述第四容器的底部;
所述第五容器通过所述第九管子与所述第二五联三通模块的自左起的第二个所述三通阀的上侧所述端口相连;
所述第二注射器通过所述第十管子与所述第二五联三通模块的自左起的第四个所述三通阀的 上侧所述端口相连;
所述第六容器的上端通过所述第十一管子与所述第二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
所述第六容器的下端通过所述第十二管子与所述第一二联三通模块的左侧所述三通阀的上侧所述端口相连;
所述第七容器通过所述第十三管子与所述第一二联三通模块的左侧所述三通阀的左侧所述端口相连;
所述第七容器还连接有所述第十四管子,所述第十四管子用于排空;
所述第三注射器通过所述第十五管子与所述第一二联三通模块的右侧所述三通阀的上侧所述端口相连;
所述第八容器通过所述第十六管子与所述第一二联三通模块的右侧所述三通阀的右侧所述端口相连;
所述第八容器还连接有所述第十七管子,所述第十七管子用于排空。
根据本发明第一方面的一个实施例,所述多联三通模块有第二十一至第二十二五联三通模块和第二十一二联三通模块;所述注射器有第二十一至第二十三注射器;所述容器有第二十一至第三十容器;所述管子有第二十一至第三十九管子;其中,
所述第二十一五联三通模块的最左侧的所述三通阀的上侧所述端口通过所述第二十一管子与所述第二十四容器相连;
所述第二十一五联三通模块的最右侧的所述三通阀的右侧所述端口通过所述第二十二管子与所述第二十四容器相连;
所述第二十一注射器、所述第二十一容器、所述第二十二容器和所述第二十三容器以自左向右的顺序分别通过所述第二十三管子、第二十四管子、第二十五管子和第二十六管子对应地与所述第二十一五联三通模块中自左起第二个至第五个所述三通阀的上侧所述端口相连;
所述第二十三容器还连接有所述第二十七管子;
所述第二十二五联三通模块的最左侧所述三通阀的左侧所述端口通过所述第二十八管子与所述第二十四容器相连,且所述第二十八管子的一端深入所述第二十四容器的底部;
所述第二十五容器、所述第二十六容器、所述第二十七容器和所述第二十二注射器以自左向右的顺序分别通过第二十九管子、第三十管子、第三十一管子和第三十二管子对应地与所述第二十二五联三通模块中自左起第一个至第四个所述三通阀的上侧所述端口相连;
所述第二十八容器的上端通过第三十三管子与所述第二十二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
所述第二十八容器的下端通过所述第三十四管子与所述第二十一二联三通模块的左侧所述三通阀的上侧所述端口相连;
所述第二十九容器通过所述第三十五管子与所述第二十一二联三通模块的左侧所述三通阀的左侧所述端口相连;
所述第二十九容器还连接有所述第三十六管子,所述第三十六管子用于排空;
所述第二十三注射器通过所述第三十七管子与所述第二十一二联三通模块的右侧所述三通阀的上侧所述端口相连;
所述第三十容器通过所述第三十八管子与所述第二十一二联三通模块的右侧所述三通阀的右侧所述端口相连;
所述第三十容器还连接有所述第三十九管子,所述第三十九管子用于排空。
根据本发明第一方面的一个实施例,所述多联三通模块有第四十一五联三通模块和第四十一二联三通模块;所述注射器有第四十一注射器;所述容器有第四十一至第四十七容器;所述管子有第四十一至第五十二管子;其中,
所述第四十一容器连接有所述第四十一管子,所述第四十一管子用于排空;
所述第四十一容器通过所述第四十二管子与所述第四十一五联三通模块的最左侧所述三通阀 的上侧所述端口相连;
所述第四十一注射器、所述第四十二容器、所述第四十三容器、所述第四十四容器以自左向右的顺序分别通过所述第四十三管子、所述第四十四管子、所述第四十五管子、所述第四十六管子对应地与所述第四十一五联三通模块的自左起第二个至第五个所述三通阀的上侧所述端口相连;
所述第四十五容器的上端通过所述第四十七管子与所述第四十一五联三通模块的最右侧所述三通阀的右侧所述端口相连;
所述第四十五容器的下端通过所述第四十八管子与所述第四十一二联三通模块的左侧所述三通阀的上侧所述端口相连;
所述第四十六容器通过所述第四十九管子与所述第四十一二联三通模块的左侧所述三通阀的左侧所述端口相连;
所述第四十六容器还连接有所述第五十管子,所述第五十管子用于排空;
所述第四十七容器通过所述第五十一管子与所述第四十一二联三通模块的右侧所述三通阀的右侧所述端口相连;
所述第四十七容器还连接有所述第五十二管子,所述第五十二管子用于排空。
根据本发明第一方面的一个实施例,所述多联三通模块有第六十一至第六十二五联三通模块和第六十一二联三通模块;所述注射器有第六十一至第六十三注射器;所述容器有第六十一至第七十容器;所述管子有第六十一至第七十九管子;其中,
所述第六十一容器连接有所述第六十一管子,所述第六十一管子用于排空;
所述第六十一容器通过所述第六十二管子与所述第六十一五联三通模块的最左侧所述三通阀的上侧所述端口相连;
所述第六十一注射器、所述第六十二容器、所述第六十三容器、所述第六十四容器以自左向右的顺序分别通过所述第六十三管子、所述第六十四管子、所述第六十五管子、所述第六十六管子对应地与所述第六十一五联三通模块的自左起第二个至第五个所述三通阀的上侧所述端口相连;
所述第六十五容器的上端通过所述第六十七管子与所述第六十一五联三通模块的最右侧所述三通阀的右侧所述端口相连;
所述第六十五容器的下端通过所述第六十八管子与所述第六十二五联三通模块的最左侧所述三通阀的上侧所述端口相连;
所述第六十六容器的上端通过第六十九管子与所述第六十二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
所述第六十六容器还连接有所述第七十管子,所述第七十管子用于排空;
所述第六十七容器通过所述第七十一管子与所述第六十二五联三通模块的自左起第二个所述三通阀的上侧所述端口相连;
所述第六十二注射器通过所述第七十二管子与所述第六十二五联三通模块的自左起第四个所述三通阀的上侧所述端口相连;
所述第六十八容器的上端通过所述第七十三管子与所述第六十二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
所述第六十八容器的下端通过所述第七十四管子与所述第六十一二联三通模块的左侧所述三通阀的上侧所述端口相连;
所述第六十九容器通过所述第七十五管子与所述第六十一二联三通模块的左侧所述三通阀的左侧所述端口相连;
所述第六十九容器还连接有所述第七十六管子,所述第七十六管子用于排空;
所述第六十三注射器通过所述第七十七管子与所述第六十一二联三通模块的右侧所述三通阀的上侧所述端口相连;
所述第七十容器通过所述第七十八管子与所述第六十一二联三通模块的右侧所述三通阀的右侧所述端口相连;
所述第七十容器还连接有所述第七十九管子,所述第七十九管子用于排空。
根据本发明第一方面的一个实施例,所述多联三通模块有第八十一至第八十二五联三通模块和第八十一二联三通模块;所述注射器有第八十一至第八十三注射器;所述容器有第八十一至第九十一容器;所述管子有第八十一至第一百管子;其中,
所述第八十一容器连接有所述第八十一管子,所述第八十一管子用于排空;
所述第八十一容器通过所述第八十二管子与所述第八十一五联三通模块的最左侧所述三通阀的上侧所述端口相连;
所述第八十一注射器、所述第八十二容器、所述第八十三容器、所述第八十四容器以自左向右的顺序分别通过所述第八十三管子、所述第八十四管子、所述第八十五管子、所述第八十六管子对应地与所述第八十一五联三通模块的自左起第二个至第五个所述三通阀的上侧所述端口相连;
所述第八十五容器的上端通过所述第八十七管子与所述第八十一五联三通模块的最右侧所述三通阀的右侧所述端口相连;
所述第八十五容器的下端、所述第八十七容器、所述第八十八容器、所述第八十二注射器以自左向右的顺序分别通过所述第八十八管子、所述第九十一管子、所述第九十二管子、所述第九十三管子对应地与所述第八十二五联三通模块的自左起第一个至第四个所述三通阀的上侧所述端口相连;
所述第八十六容器的上端通过所述第八十九管子与所述第八十二五联三通模块的最左侧所述三通阀的上侧所述端口相连;
所述第八十六容器还连接有所述第九十管子,所述第九十管子用于排空;
所述第八十九容器的上端通过所述第九十四管子与所述第八十二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
所述第八十九容器的下端通过所述第九十五管子与所述第八十一二联三通模块的左侧所述三通阀的上侧所述端口相连;
所述第九十容器通过所述第九十六管子与所述第八十一二联三通模块的左侧所述三通阀的左侧所述端口相连;
所述第九十容器还连接有所述第九十七管子,所述第九十七管子用于排空;
所述第八十三注射器通过所述第九十八管子与所述第八十一二联三通模块的右侧所述三通阀的上侧所述端口相连;
所述第九十一容器通过所述第九十九管子与所述第八十一二联三通模块的右侧所述三通阀的右侧所述端口相连;
所述第九十一容器还连接有所述第一百管子,所述第一百管子用于排空。
本发明第二方面还提出了一种卡套动作控制装置。
根据本发明第二方面实施例的卡套动作控制装置,用于与根据本发明第一方面实施例中任意一项所述的卡套相连,包括:
支架;
注射器安装部,所述注射器安装部设置在所述支架上,所述注射器安装部包括可上下移动的活塞手柄安装部和位于所述活塞手柄安装部下方的套筒安装部,所述活塞手柄安装部用于安装所述注射器的活塞手柄,所述套筒安装部用于安装所述注射器的套筒;
活塞驱动舵机,所述活塞驱动舵机与所述活塞手柄安装部相连,用于驱动所述活塞手柄安装部上下移动;
三通阀旋钮,所述三通阀旋钮设置在所述支架上,所述三通阀旋钮用于可拆卸地与所述多联三通模块中的所述手柄对应固定相连;
三通阀旋钮驱动舵机,所述三通阀旋钮驱动舵机对应地驱动所述三通阀旋钮转动。
根据本发明第二方面实施例的卡套动作控制装置,注射器安装部的活塞手柄安装部和套筒安装部三通阀旋钮安装在支架上,从而将卡套安装在卡套动作控制装置上,通过卡套控制装置控制卡套,其中,注射器安装部和活塞驱动舵机控制注射器,三通阀旋钮和三通阀旋钮驱动舵机控制流路,在放射性同位素纯化制备/放射性药物标记合成工艺操作中,可以根据实际需要选择多联三通模块和注 射器,避免部分多联三通模块和注射器闲置,从而可以减少原材料的使用;将实际需要使用的多联三通模块和注射器分别直接安装在卡套动作控制装置上,由于不同的工艺操作产生的反应不同,通过管子根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将注射器和容器分别与多联三通模块连通,注射器、多联三通模块和管子均可以独立制作,从而有效地降低了制造成本;不同种类的注射器、多联三通模块和管子可以独立地使用并灵活地组装形成不同规格的介质传输卡套,以应用在不同的工艺操作中,通用性好且适用性广;在进行放射性同位素纯化制备/放射性药物标记合成工艺操作时,液体只在介质传输卡套中流动,液体不与卡套动作控制装置接触,从而避免对卡套动作控制装置造成污染,保证卡套动作控制装置的使用寿命。
根据本发明第二方面的一个实施例,所述支架上设有供所述活塞手柄安装部上下运动的导向槽。
根据本发明第二方面的一个实施例,所述活塞手柄安装部上设有供所述注射器的所述活塞手柄适配卡入的手柄卡槽。
根据本发明第二方面的一个实施例,所述套筒安装部包括第一基壁、第一左侧壁和第一右侧壁,所述第一左侧壁和所述第一右侧壁分别位于所述第一基壁的左侧和右侧并与所述第一基壁共同限定出与所述注射器的所述套筒相适配的套筒安装腔。
根据本发明第二方面进一步的实施例,所述套筒安装腔包含竖向延伸的主筒腔和与所述主筒腔径向相连且在上下方向上间隔开的多个环腔,其中,所述主筒腔用于容纳所述注射器的所述套筒的主筒体部分,所述环腔用于容纳设置在所述主筒体部分的末端法兰边。
根据本发明第二方面的一个实施例,在所述卡套中,所述手柄包括旋转轴和三个径向定位块,所述三个径向定位块呈径向设置分布在所述旋转轴的周面上,三个所述径向定位块呈T型布置;所述三通阀旋钮的一端端部设有十字型槽口,所述十字型槽口用于与所述手柄的三个所述径向定位块配合,以将所述手柄与所述三通阀旋钮可拆卸地固定。
根据本发明第二方面进一步的实施例,在所述卡套中,所述旋转轴设有定位孔;所述三通阀旋钮的一端端部还设有定位柱,所述定位柱用于适配地插入所述定位孔中。
根据本发明第二方面的一个实施例,还包括容器安装部,所述容器安装部设置在所述支架上,用于安装所述容器。
根据本发明第二方面进一步的实施例,所述容器安装部包括第二基壁、第二左侧壁、第二右侧壁和横向挡壁,所述第二左侧壁和所述第二右侧壁分别位于所述第二基壁的左侧和右侧,所述横向挡壁位于所述第二左侧壁和所述第二右侧壁的下端,并分别与所述第二左侧壁、所述第二右侧壁和所述第二基壁固定相连以共同限定出与所述容器相适配的容器安装腔。
根据本发明第二方面再进一步的实施例,所述横向挡壁上设有朝向所述第二基壁方向凹入的缺口。
根据本发明第二方面的一个实施例,还包括加热模块,所述加热模块用于对所述卡套中的盛有待加热反应液体的所述容器进行加热。
根据本发明第二方面进一步的实施例,所述加热模块中设有用于放置盛有待加热反应液体的所述容器的安放孔。
根据本发明第二方面再进一步的实施例,所述加热模块设有具有温控功能。
根据本发明第二方面再进一步的实施例,所述加热模块设有扇热部件。
根据本发明第二方面再进一步的实施例,所述加热模块上设有放射性探头,所述放射性探头用于探测正在加热的所述容器中的放射性变化。
本发明第三方面还提出了一种放射性同位素纯化/标记系统。
根据本发明第三方面实施例的放射性同位素纯化/标记系统,包括:
根据本发明第一方面实施例中任意一项所述的卡套和根据本发明第二方面实施例中任意一项所述的卡套动作控制装置,所述卡套安装在所述卡套动作控制装置上。
本发明第三方面实施例的放射性同位素纯化/标记系统,通过将卡套安装在卡套动作控制装置上,通过卡套控制装置控制卡套,在放射性同位素纯化制备/放射性药物标记合成工艺操作中,可以 根据实际需要选择多联三通模块、容器和注射器,避免部分多联三通模块、容器和注射器闲置,从而可以减少原材料的使用;将实际需要使用的多联三通模块、容器和注射器分别直接安装在卡套动作控制装置上,由于不同的工艺操作产生的反应不同,通过管子根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将注射器和容器分别与多联三通模块连通,注射器、容器、多联三通模块和管子均可以独立制作,从而有效地降低了制造成本;不同种类的注射器、容器、多联三通模块和管子可以独立地使用并灵活地组装形成不同规格的介质传输卡套,以应用在不同的工艺操作中,通用性好且适用性广;在进行放射性同位素纯化制备/放射性药物标记合成工艺操作时,液体只在介质传输卡套中流动,液体不与卡套动作控制装置接触,从而避免对卡套动作控制装置造成污染,保证卡套动作控制装置的使用寿命;此外,由于每次工艺操作后介质传输卡套中都存在放射性残留,每次工艺操作完成后更换新的介质传输卡套,可以防止不同批次操作间的交叉污染,卡套结构简单,装卸方便且成本低,适用于工业化操作。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一方面实施例的卡套的一个结构示意图,其中卡套为锆[Zr-89]标记卡套。
图2为本发明第一方面实施例的卡套的另一个结构示意图,其中卡套为氟标记卡套。
图3为本发明第一方面实施例的卡套的另一个结构示意图,其中卡套为锆[Zr-89]-草酸锆核素纯化卡套。
图4为本发明第一方面实施例的卡套的另一个结构示意图,其中卡套为锆[Zr-89]-氯化锆核素纯化卡套。
图5为本发明第一方面实施例的卡套的另一个结构示意图,其中卡套为铜[Cu-64]-中性氯化铜核素纯化卡套。
图6为本发明第一方面实施例的卡套的手柄的结构示意图。
图7为本发明第一方面实施例的卡套的手柄和三通阀旋钮的装配示意图。
图8为本发明第二方面实施例的卡套动作控制装置的结构示意图。
图9为图8中A处的放大图。
图10为图8中B处的放大图。
图11为图8中C处的放大图。
图12为本发明第二方面实施例的卡套动作控制装置的三通阀旋钮的结构示意图。
附图标记:
卡套1000
多联三通模块1
第一五联三通模块101 第二五联三通模块102
第二十一五联三通模块103 第二十二五联三通模块104
第四十一五联三通模块105
第六十一五联三通模块106 第六十二五联三通模块107
第八十一五联三通模块108 第八十二五联三通模块109
第一二联三通模块110
第二十一二联三通模块111
第四十一二联三通模块112
第六十一二联三通模块113
第八十一二联三通模块114
三通阀115 端口1151 手柄1152 旋转轴11521 径向定位块11522
指示箭头1153 共用管道116
注射器2
第一注射器201 第二注射器202 第三注射器203
第二十一注射器204 第二十二注射器205 第二十三注射器206
第四十一注射器207
第六十一注射器208 第六十二注射器209 第六十三注射器210
第八十一注射器211 第八十二注射器212 第八十三注射器213
容器3
第一容器301 第二容器302 第三容器303 第四容器304 第五容器305 第六容器306 第七容器307 第八容器308
第二十一容器309 第二十二容器310 第二十三容器311 第二十四容器312 第二十五容器313 第二十六容器314 第二十七容器315 第二十八容器316 第二十九容器317 第三十容器318
第四十一容器319 第四十二容器320 第四十三容器321 第四十四容器322 第四十五容器323 第四十六容器324 第四十七容器325
第六十一容器326 第六十二容器327 第六十三容器328 第六十四容器329 第六十五容器330 第六十六容器331 第六十七容器332 第六十八容器333 第六十九容器334 第七十容器335
第八十一容器336 第八十二容器337 第八十三容器338 第八十四容器339 第八十五容器340 第八十六容器341 第八十七容器342 第八十八容器343 第八十九容器344 第九十容器345 第九十一容器346
管子4
第一管子401 第二管子402 第三管子403 第四管子404 第五管子405 第六管子406 第七管子407 第八管子408 第九管子409 第十管子410 第十一管子411 第十二管子412 第十三管子413 第十四管子414 第十五管子415 第十六管子416 第十七管子417
第二十一管子418 第二十二管子419 第二十三管子420 第二十四管子421 第二十五管子422 第二十六管子423 第二十七管子424 第二十八管子425 第二十九管子426 第三十管子427 第三十一管子428 第三十二管子429 第三十三管子430 第三十四管子431 第三十五管子432 第三十六管子433 第三十七管子434 第三十八管子435 第三十九管子436 
第四十一管子437 第四十二管子438 第四十三管子439 第四十四管子440 第四十五管子441 第四十六管子442 第四十七管子443 第四十八管子444 第四十九管子445 第五十管子446 第五十一管子447 第五十二管子448
第六十一管子449 第六十二管子450 第六十三管子451 第六十四管子452 第六十五管子453 第六十六管子454 第六十七管子455 第六十八管子456 第六十九管子457 第七十管子458 第七十一管子459 第七十二管子460 第七十三管子461 第七十四管子462 第七十五管子463 第七十六管子464 第七十七管子465 第七十八管子466 第七十九管子467
第八十一管子468 第八十二管子469 第八十三管子470 第八十四管子471 第八十五管子472 第八十六管子473 第八十七管子474 第八十八管子475 第八十九管子476 第九十管子477 第九十一管子478 第九十二管子479 第九十三管子480 第九十四管子481 第九十五管子482 第九十六管子483 第九十七管子484 第九十八管子485 第九十九管子486 第一百管子487
卡套动作控制装置2000
支架5 导向槽51
注射器安装部6
活塞手柄安装部61
手柄卡槽611
套筒安装部62
套筒安装腔621 环腔6211 主筒腔6212 第一基壁622 第一左侧壁623 第一右侧壁624
容器安装部7
第二基壁71 第二左侧壁72 第二右侧壁73 横向挡壁74 缺口741
三通阀旋钮8
十字型槽口81 定位柱82
加热模块9
安放孔91 扇热部件92
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
下面结合图1至图12来描述本发明第一方面实施例的卡套1000。
如图1至图12所示,根据本发明第一方面实施例的卡套1000,卡套1000为可更换一次性介质传输卡套1000,适用于放射性同位素纯化制备/放射性药物标记合成工艺操作中,包括多联三通模块1、注射器2、容器3和管子4;
多联三通模块1包括多个三通阀115和在左右方向延伸的共用管道116;每个三通阀115具有三个端口1151和一个手柄1152,三个端口1151分布在三通阀115的左、右侧和上侧,手柄1152用于控制三通阀115的三个端口1151中的其中任意两个端口1151连通;多个三通阀115依次设置在共用管道116上,且在左右方向上相邻两个三通阀115中左侧一个三通阀115的右侧端口1151与右侧一个三通阀115的左侧端口1151通过共用管道116相连;
管子4根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将多联三通模块1、注射器2和容器3进行连通,其中,多联三通模块1、注射器2分别用于直接安装在卡套动作控制装置2000上。
具体地,多联三通模块1包括多个三通阀115和在左右方向延伸的共用管道116;每个三通阀115具有三个端口1151和一个手柄1152,三个端口1151分布在三通阀115的左、右侧和上侧,手柄1152用于控制三通阀115的三个端口1151中的其中任意两个端口1151连通;多个三通阀115依次设置在共用管道116上,且在左右方向上相邻两个三通阀115中左侧一个三通阀115的右侧端口1151与右侧一个三通阀115的左侧端口1151通过共用管道116相连。可以理解的是,多联三通模块1由具有一定硬度的塑料制成,例如聚丙烯材料,通过转动手柄1152到不同的位置,实现三个端口1151中的其中任意两个端口1151连通,以提供放射性同位素纯化制备/放射性药物标记合成工艺操作中所需的液体流路。
注射器2用于根据放射性同位素纯化制备/放射性药物标记合成操作中的需求从不同的容器3中吸取介质或向不同的容器3中注入介质。
容器3可以为盛装放射性同位素纯化制备/放射性药物标记合成操作中所需的各种试剂的试剂瓶和用于盛装放射性同位素纯化制备/放射性药物标记合成操作中的多种介质的空的中转瓶、靶水瓶、靶水回收瓶和大容量塑料软袋等,试剂瓶的容量可以为5ML、10ML和20ML,根据介质的类型,容器3的材质可以为玻璃瓶或塑料瓶,容器3的形状可以为平底玻璃瓶、锥底玻璃瓶和V底玻璃瓶,根据不同的操作需求,可以选择不同容量的容器3,容器3可以瓶口朝上放置或瓶口向下放置。
管子4根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将多联三通模块1、注射器2和容器3进行连通,其中,多联三通模块1、注射器2分别用于直接安装在卡套动作控制装置2000上。可以理解的是,管子4可以为软管或硬管,根据不同的放射性同位素纯化制备/放射性药物标记合成的需要,将多联三通模块1和注射器2分别直接安装在卡套动作控制装置2000上,通过管子4根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将多联三通模块1、注射器2和容器3进行连通,以方便进行放射性同位素纯化制备/放射性药物标记合成工艺操作。
需要说明的是,管子4和三通阀端口1151可以与多种小柱相连,小柱可以为多种纯化柱、分离柱或吸附柱。
根据本发明第一方面实施例的卡套1000,在放射性同位素纯化制备/放射性药物标记合成工艺操作中,可以根据实际需要选择多联三通模块1和注射器2,避免部分多联三通模块1和注射器2闲置,从而可以减少原材料的使用;将实际需要使用的多联三通模块1和注射器2分别直接安装在卡套动作控制装置2000上,由于不同的工艺操作产生的反应不同,通过管子4根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将注射器2和容器3分别与多联三通模块1连通,注射器2、多联三通模块1和管子4均可以独立制作,从而有效地降低了制造成本;不同种类的注射器2、多联三通模块1和管子4可以独立地使用并灵活地组装形成不同规格的卡套1000,以应用在不同的工艺操作中,通用性好且适用性广;在进行放射性同位素纯化制备/放射性药物标记合成工艺操作时,液体只在卡套1000中流动,液体不与卡套动作控制装置2000接触,从而避免对卡套动作控制装置2000造成污染,保证卡套动作控制装置2000的使用寿命;此外,由于每次工艺操作后卡套1000中都存在放射性残留,每次工艺操作完成后更换新的卡套1000,可以防止不同批次操作间的交叉污染,卡套1000结构简单,装卸方便且成本低,适用于工业化操作。
根据本发明第一方面的一个实施例,容器3用于直接安装在卡套动作控制装置2000上。可以理解的是,在放射性同位素纯化制备/放射性药物标记合成工艺操作中,可以根据实际需要选择容器3,避免部分容器3闲置,从而可以减少原材料的使用,将实际需要使用的容器3直接安装在卡套动作控制装置2000上,由于不同的工艺操作产生的反应不同,通过管子4根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将容器3与多联三通模块1连通,容器3可以独立制作,从而有效地降低了制造成本;不同种类的容器3、注射器2、多联三通模块1和管子4可以独立地使用并灵活地组装形成不同规格的卡套1000,以应用在不同的工艺操作中,通用性好且适用性广。
如图6和图7所示,根据本发明第一方面的一个实施例,手柄1152包括旋转轴11521和三个径向定位块11522,三个径向定位块11522呈径向设置分布在旋转轴11521的周面上,三个径向定位块11522呈T型布置。可以理解的是,手柄1152用于与三通阀旋钮8配合,手柄1152上的三个径向定位块11522可拆卸地安装在三通阀旋钮8的十字型槽口81中,以将手柄1152与三通阀旋钮8牢固连接,避免在三通阀旋钮8带动手柄1152旋转时发生错位移动。
如图6和图7所示,根根据本发明第一方面进一步的实施例,旋转轴11521设有定位孔。具体地,三通阀旋钮8上设有定位柱82,当手柄1152与三通阀旋钮8适配安装时,三通阀旋钮8上的定位柱82适配地插入手柄1152上的定位孔中,从而可以进一步的提高手柄1152与三通阀旋钮8的安装稳固性。
如图6和图7所示,根根据本发明第一方面进一步的实施例,手柄1152上设有三个指示箭头1153,三个指示箭头1153对应地设置在三个径向定位块11522的外端面上。可以理解的是,手柄1152上的三个指示箭头1153代表液体可以流动的方向。
如图1所示,根据本发明第一方面的一个实施例,多联三通模块1有第一至第二五联三通模块102和第一二联三通模块110;注射器2有第一至第三注射器203;容器3有第一至第八容器308;管子4有第一至第十七管子417;其中,
第一五联三通模块101的最左侧的三通阀115的上侧端口1151通过第一管子401与第四容器304相连;
第一五联三通模块101的最右侧的三通阀115的右侧端口1151通过第二管子402与第四容器304相连;
第一注射器201、第一容器301、第二容器302和第三容器303以自左向右的顺序分别通过第三管子403、第四管子404、第五管子405和第六管子406对应地与第一五联三通模块101中自左起第二个至第五个三通阀115的上侧端口1151相连;
第三容器303还连接有第七管子407,第七管子407用于将核素转移至第三容器303中;
第二五联三通模块102的自左起的第三个三通阀115的上侧端口1151通过第八管子408与第四容器304相连,且第七管子407的一端深入第四容器304的底部;
第五容器305通过第九管子409与第二五联三通模块102的自左起的第二个三通阀115的上侧端口1151相连;
第二注射器202通过第十管子410与第二五联三通模块102的自左起的第四个三通阀115的上侧端口1151相连;
第六容器306的上端通过第十一管子411与第二五联三通模块102的最右侧三通阀115的上侧端口1151相连;
第六容器306的下端通过第十二管子412与第一二联三通模块110的左侧三通阀115的上侧端口1151相连;
第七容器307通过第十三管子413与第一二联三通模110块的左侧三通阀115的左侧端口1151相连;
第七容器307还连接有第十四管子414,第十四管子414用于排空;
第三注射器203通过第十五管子415与第一二联三通模块110的右侧三通阀115的上侧端口1151相连;
第八容器308通过第十六管子416与第一二联三通模块110的右侧三通阀115的右侧端口1151相连;
第八容器308还连接有第十七管子417,第十七管子417用于排空。
具体地,第一容器301为缓冲溶液试剂瓶;第二容器302为单克隆抗体溶液试剂瓶;第三容器303为89Zr核素试剂瓶,第三容器303为锥底瓶,第三容器303的瓶口向上正置,第七管子407的一端伸入第三容器303底部,第七管子407的另一端与核素自动分装装置相连,用于将操作过程中所需的核素转移至第三容器303中;第四容器304为反应瓶,第四容器304安装在加热装置中;第五容器305为缓冲溶液试剂瓶;第六容器306为纯化柱,纯化柱填料为葡聚糖凝胶;第七容器307可以为废液瓶,第十四管子414的一端连接在第七容器307上,第十四管子414的另一端连接在专门的废气处理系统,可以对反应过程中产生的废气进行收集和处理;第八容器308为产品瓶,第十七管子417的一端连接在产品瓶上,第十七管子417的另一端与过滤器连接,这样,第十七管子417可以作为排空管,当产品向产品瓶转移时,产品瓶中的气体可以通过过滤器进行过滤并排至大气,避免产品瓶内部产生正压;第一容器301、第二容器302和第五容器305的瓶口向下放置;第一注射器201、第二注射器202和第三注射器203为10ML规格的无菌注射器2,第一注射器201、第二注射器202和第三注射器203的出口端为带螺纹的鲁尔接口,这样,第一注射器201、第二注射器202和第三注射器203可以通过带螺纹的鲁尔接口分别与第一五联三通模块101中自左起第二个三通阀115的上侧端口1151、第二五联三通的自左起的第四个三通阀115的上侧端口1151和第一二联三通模块110的右侧三通阀115的上侧端口1151连接并拧紧,避免第一注射器201与第一五联三通模块101中自左起第二个三通阀115的上侧端口1151的连接处、第二注射器202与第二五联三通的自左起的第四个三通阀115的上侧端口1151的连接处和第三注射器203与第一二联三通模块110的右侧三通阀115的上侧端口1151的连接处发生漏气或漏液的情况;第一注射器201、第二注射器202和第三注射器203为流体提供动力。
第一至第二五联三通模块102、第一二联三通模块110、第一至第三注射器203、第一至第八容器308和第一至第十七管子417组装形成锆标记卡套,可以用来进行大分子化合物标记合成,通过加速器端或反应堆由高能粒子束照射靶材料,在靶材料中生产微量放射性同位素粗品,通过卡套 1000和卡套动作控制装置2000进行放射性同位素的提纯,例如89Zr,通过已提纯的核素、卡套1000和卡套动作控制装置2000可以进行放射性同位素的标记合成,例如89Zr标记单克隆抗体。第一至第二五联三通模块102、第一二联三通模块110、第一至第三注射器203、第一至第八容器308和第一至第十七管子417组装形成的卡套1000可以根据实际需要选择五联三通模块、二联三通模块、注射器2、容器3和管子4,避免五联三通模块、二联三通模块、注射器2、容器3和管子4闲置,可以减少原材料的使用;第一至第二五联三通模块102、第一二联三通模块110、第一至第三注射器203、第一至第八容器308和第一至第十七管子417均可以独立制作,从而有效地降低了制造成本;第一至第二五联三通模块102、第一二联三通模块110、第一至第三注射器203、第一至第八容器308和第一至第十七管子417可以独立地使用并灵活地组装形成卡套1000,以应用在大分子化合物标记合成中,通用性好且适用性广;在进行大分子化合物标记合成过程中,液体只在卡套1000中流动,液体不与卡套动作控制装置2000接触,从而避免对卡套动作控制装置2000造成污染,保证卡套动作控制装置2000的使用寿命。
如图2所示,根据本发明第一方面的一个实施例,多联三通模块1有第二十一至第二十二五联三通模块104和第二十一二联三通模块111;注射器2有第二十一至第二十三注射器206;容器3有第二十一至第三十容器318;管子4有第二十一至第三十九管子436;其中,
第二十一五联三通模块103的最左侧的三通阀115的上侧端口1151通过第二十一管子418与第二十四容器312相连;
第二十一五联三通模块103的最右侧的三通阀115的右侧端口1151通过第二十二管子419与第二十四容器312相连;
第二十一注射器204、第二十一容器309、第二十二容器310和第二十三容器311以自左向右的顺序分别通过第二十三管子420、第二十四管子421、第二十五管子422和第二十六管子423对应地与第二十一五联三通模块103中自左起第二个至第五个三通阀115的上侧端口1151相连;
第二十三容器311还连接有第二十七管子424,第二十七管子424用于将核素转移至第二十三容器311中;
第二十二五联三通模块104的最左侧三通阀115的左侧端口1151通过第二十八管子425与第二十四容器312相连,且第二十八管子425的一端深入第二十四容器312的底部;
第二十五容器313、第二十六容器314、第二十七容器315和第二十二注射器205以自左向右的顺序分别通过第二十九管子426、第三十管子427、第三十一管子428和第三十二管子429对应地与第二十二五联三通模块104中自左起第一个至第四个三通阀115的上侧端口1151相连;
第二十八容器316的上端通过第三十三管子430与第二十二五联三通模块104的最右侧三通阀115的上侧端口1151相连;
第二十八容器316的下端通过第三十四管子431与第二十一二联三通模块111的左侧三通阀115的上侧端口1151相连;
第二十九容器317通过第三十五管子432与第二十一二联三通模块111的左侧三通阀115的左侧端口1151相连;
第二十九容器317还连接有第三十六管子433,第三十六管子433用于排空;
第二十三注射器206通过第三十七管子434与第二十一二联三通模块111的右侧三通阀115的上侧端口1151相连;
第三十容器318通过第三十八管子435与第二十一二联三通模块111的右侧三通阀115的右侧端口1151相连;
第三十容器318还连接有第三十九管子436,第三十九管子436用于排空。
具体地,第二十一容器309为缓冲溶液试剂瓶;第二十二容器310为NOTA-RGD2溶液试剂瓶;第二十三容器311为18F核素试剂瓶,第二十三容器311为锥底瓶,第二十三容器311的瓶口向上正置,第二十七管子424的一端伸入第二十三容器311底部,第二十七管子424的另一端与核素自动分装装置相连,用于将操作过程中所需的核素转移至第二十三容器311中;第二十四容器312为反应瓶,第二十四容器312安装在加热装置中,以对第二十四容器312中的介质进行加 热;第二十五容器313为超纯水试剂瓶;第二十六容器314为无水乙醇试剂瓶;第二十七容器315为无水乙醇试剂瓶;第二十八容器316为纯化柱,纯化柱的填料为C-18类硅胶颗粒;第二十九容器317为废液瓶,第三十六管子433的一端连接在第二十九容器317上,第三十六管子433的另一端连接在专门的废气处理系统,可以对反应过程中产生的废气进行收集和处理;第三十容器318为产品瓶,第三十九管子436的一端连接在产品瓶上,第三十九管子436的另一端与过滤器连接,这样,第三十九管子436可以作为排空管,当产品向产品瓶转移时,产品瓶中的气体可以通过过滤器进行过滤并排至大气,避免产品瓶内部产生正压;第二十一容器309、第二十二容器310、第二十五容器313、第二十六容器314和第二十七容器315的瓶口向下放置;第二十一注射器204、第二十二注射器205和第二十三注射器206为10ML规格的无菌注射器2,第二十一注射器204、第二十二注射器205和第二十三注射器206的出口端为带螺纹的鲁尔接口,这样,第二十一注射器204、第二十二注射器205和第二十三注射器206可以通过带螺纹的鲁尔接口分别与第二十一五联三通模块103中自左起第二个三通阀115的上侧端口1151、第二十二五联三通模块104中自左起第四个三通阀115的上侧端口1151和第二十一二联三通模块111的右侧三通阀115的上侧端口1151连接并拧紧,避免第二十一注射器204与第二十一五联三通模块103中自左起第二个三通阀115的上侧端口1151的连接处、第二十二注射器205与第二十二五联三通模块104中自左起第四个三通阀115的上侧端口1151的连接处和第二十三注射器206与第二十一二联三通模块111的右侧三通阀115的上侧端口1151的连接处发生漏气或漏液的情况;第二十一注射器204、第二十二注射器205和第二十三注射器206为流体提供动力。
第二十一至第二十二五联三通模块104、第二十一二联三通模块111、第二十一至第二十三注射器206、第二十一至第三十容器318和第二十一至第三十九管子436组装形成氟标记卡套,可以用来进行小分子化合物标记合成,通过加速器端或反应堆由高能粒子束照射靶材料,在靶材料中生产微量放射性同位素粗品,通过卡套1000和卡套动作控制装置2000进行放射性同位素的提纯,例如18F,通过已提纯的核素、卡套1000和卡套动作控制装置2000可以进行放射性同位素的标记合成,例如18F标记RGD。第二十一至第二十二五联三通模块104、第二十一二联三通模块111、第二十一至第二十三注射器206、第二十一至第三十容器318和第二十一至第三十九管子436组装形成的卡套1000可以根据实际需要选择五联三通模块、二联三通模块、注射器2、容器3和管子4,避免五联三通模块、二联三通模块、注射器2、容器3和管子4闲置,可以减少原材料的使用;第二十一至第二十二五联三通模块104、第二十一二联三通模块111、第二十一至第二十三注射器206、第二十一至第三十容器318和第二十一至第三十九管子436均可以独立制作,从而有效地降低了制造成本;第二十一至第二十二五联三通模块104、第二十一二联三通模块111、第二十一至第二十三注射器206、第二十一至第三十容器318和第二十一至第三十九管子436可以独立地使用并灵活地组装形成卡套1000,以应用在小分子化合物标记合成中,通用性好且适用性广;在进行小分子化合物标记合成过程中,液体只在卡套1000中流动,液体不与卡套动作控制装置2000接触,从而避免对卡套动作控制装置2000造成污染,保证卡套动作控制装置2000的使用寿命。
如图3所示,根据本发明第一方面的一个实施例,多联三通模块1有第四十一五联三通模块105和第四十一二联三通模块112;注射器2有第四十一注射器207;容器3有第四十一至第四十七容器325;管子4有第四十一至第五十二管子448;其中,
第四十一容器319连接有第四十一管子437,第四十一管子437用于排空;
第四十一容器319通过第四十二管子438与第四十一五联三通模块105的最左侧三通阀115的上侧端口1151相连;
第四十一注射器207、第四十二容器320、第四十三容器321、第四十四容器322以自左向右的顺序分别通过第四十三管子439、第四十四管子440、第四十五管子441、第四十六管子442对应地与第四十一五联三通模块105的自左起第二个至第五个三通阀115的上侧端口1151相连;
第四十五容器323的上端通过第四十七管子443与第四十一五联三通模块105的最右侧三通阀115的右侧端口1151相连;
第四十五容器323的下端通过第四十八管子444与第四十一二联三通模块112的左侧三通阀 115的上侧端口1151相连;
第四十六容器324通过第四十九管子445与第四十一二联三通模块112的左侧三通阀115的左侧端口1151相连;
第四十六容器324还连接有第五十管子446,第五十管子446用于排空;
第四十七容器325通过第五十一管子447437与第四十一二联三通模块112的右侧三通阀115的右侧端口1151相连;
第四十七容器325还连接有第五十二管子448,第五十二管子448用于排空。
具体地,第四十一容器319为靶材料溶解瓶,第四十一容器319瓶口向上放置,第四十一管子437为医用回旋加速器或靶片溶解装置的靶材料传输管道,经过加速器轰击后并经过溶解的含锆的靶[Zr-89]材料通过第四十一管子437进入第四十一容器319中,靶材料为6M盐酸溶解的钇[Y-89]材料,也可以直接将将靶片放入第十四容器319中用6M盐酸溶解;第四十二容器320为盐酸试剂瓶,盐酸试剂瓶可以为1M、10ML的盐酸试剂瓶;第四十三容器321为超纯水试剂瓶,超纯水试剂瓶的容量可以为10ML;第四十四容器322为草酸试剂瓶,草酸试剂瓶可以为1M、2ML的草酸试剂瓶;第四十五容器323为纯化柱,纯化柱为含异羟肟酸官能团的树脂柱,其在盐酸体系下能高效吸附锆[Zr-89]核素,不吸附靶材料钇[Y-89],并能通过1M草酸溶液将锆[Zr-89]从纯化柱上洗脱,从而实现靶材料中锆[Zr-89]的提取纯化;第四十六容器324为废液瓶,纯化过程中的废液流入废液瓶中进行储存,第五十管子446的一端连接在第四十六容器324中,第五十管子446的另一端与废气处理系统连接,纯化过程中产生的废气通过第五十管子446流入废气处理系统进行脱盐酸处理;第四十七容器325为产品瓶,第五十二管子448的一端连接在产品瓶上,第五十二管子448的另一端与过滤器连接,这样,第五十二管子448可以作为排空管,当产品向产品瓶转移时,产品瓶中的气体可以通过过滤器进行过滤并排至大气,避免产品瓶内部产生正压;第四十二容器320、第四十三容器321和第四十四容器322呈瓶口向下放置;第四十一注射器207为10ML规格的无菌注射器2,第四十一注射器207的出口端为带螺纹的鲁尔接口,这样,第四十一注射器207可以通过带螺纹的鲁尔接口与第四十一五联三通模块105的自左起第二个三通阀115的上侧端口1151连接并拧紧,避免第四十一注射器207与第四十一五联三通模块105的自左起第二个三通阀115的上侧端口1151的连接处发生漏气或漏液的情况;第二十一注射器204为流体提供动力。
第四十一五联三通模块105、第四十一二联三通模块112、第四十一注射器207、第四十一至第四十七容器325、第四十一至第五十二管子448组装形成锆[Zr-89]-草酸锆核素纯化卡套,可以用来进行核素纯化制备,通过加速器端或反应堆由高能粒子束照射靶材料,在靶材料中生产微量放射性同位素粗品,通过卡套1000和卡套动作控制装置2000进行放射性同位素的提纯,例如89Zr,通过已提纯的核素、卡套1000和卡套动作控制装置2000可以进行放射性同位素的制备纯化,例如草酸锆核素纯化制备。第四十一五联三通模块105、第四十一二联三通模块112、第四十一注射器207、第四十一至第四十七容器325、第四十一至第五十二管子448组装形成的卡套1000可以根据实际需要选择五联三通模块、二联三通模块、注射器2、容器3和管子4,避免五联三通模块、二联三通模块、注射器2、容器3和管子4闲置,可以减少原材料的使用;第四十一五联三通模块105、第四十一二联三通模块112、第四十一注射器207、第四十一至第四十七容器325、第四十一至第五十二管子448均可以独立制作,从而有效地降低了制造成本;第四十一五联三通模块105、第四十一二联三通模块112、第四十一注射器207、第四十一至第四十七容器325、第四十一至第五十二管子448可以独立地使用并灵活地组装形成卡套1000,以应用在放射性同位素纯化制备中,通用性好且适用性广;在进行放射性同位素纯化制备过程中,液体只在卡套1000中流动,液体不与卡套动作控制装置2000接触,从而避免对卡套动作控制装置2000造成污染,保证卡套动作控制装置2000的使用寿命。
如图4所示,根据本发明第一方面的一个实施例,多联三通模块1有第六十一至第六十二五联三通模块107和第六十一二联三通模块113;注射器2有第六十一至第六十三注射器210;容器3有第六十一至第七十容器335;管子4有第六十一至第七十九管子467;其中,
第六十一容器326连接有第六十一管子449,第六十一管子449用于排空;
第六十一容器326通过第六十二管子450与第六十一五联三通模块106的最左侧三通阀115的上侧端口1151相连;
第六十一注射器208、第六十二容器327、第六十三容器328、第六十四容器329以自左向右的顺序分别通过第六十三管子451、第六十四管子452、第六十五管子453、第六十六管子454对应地与第六十一五联三通模块106的自左起第二个至第五个三通阀115的上侧端口1151相连;
第六十五容器330的上端通过第六十七管子455与第六十一五联三通模块106的最右侧三通阀115的右侧端口1151相连;
第六十五容器330的下端通过第六十八管子456与第六十二五联三通模块107的最左侧三通阀115的上侧端口1151相连;
第六十六容器331的上端通过第六十九管子457与第六十二五联三通模块107的最右侧三通阀115的上侧端口1151相连;
第六十六容器331还连接有第七十管子458,第七十管子458用于排空;
第六十七容器332通过第七十一管子459与第六十二五联三通模块107的自左起第二个三通阀115的上侧端口1151相连;
第六十二注射器209通过第七十二管子460与第六十二五联三通模块107的自左起第四个三通阀115的上侧端口1151相连;
第六十八容器333的上端通过第七十三管子461与第六十二五联三通模块107的最右侧三通阀115的上侧端口1151相连;
第六十八容器333的下端通过第七十四管子462与第六十一二联三通模块113的左侧三通阀115的上侧端口1151相连;
第六十九容器334通过第七十五管子463与第六十一二联三通模块113的左侧三通阀115的左侧端口1151相连;
第六十九容器334还连接有第七十六管子464,第七十六管子464用于排空;
第六十三注射器210通过第七十七管子465与第六十一二联三通模块113的右侧三通阀115的上侧端口1151相连;
第七十容器335通过第七十八管子466与第六十一二联三通模块113的右侧三通阀115的右侧端口1151相连;
第七十容器335还连接有第七十九管子467,第七十九管子467用于排空。
具体地,第六十一容器326为靶材料溶解瓶,第六十一容器326瓶口向上放置,第六十一管子449为医用回旋加速器或靶片溶解装置的靶材料传输管道,经过加速器轰击后并经过溶解的含锆[Zr-89]的靶材料通过第六十一管子449进入第六十一容器326中,靶材料为6M盐酸溶解的钇[Y-89]材料,也可以直接将靶片放入第六十一容器326中用6M盐酸溶解;第六十二容器327为盐酸试剂瓶,盐酸试剂瓶可以为1M、10ML的盐酸试剂瓶;第六十三容器328为超纯水试剂瓶,超纯水试剂瓶的容量可以为10ML;第六十四容器329为草酸试剂瓶,草酸试剂瓶可以为1M、2ML的草酸试剂瓶;第六十五容器330为纯化柱,纯化柱为含异羟肟酸官能团的树脂柱,其在盐酸体系下能高效吸附锆[Zr-89]核素,不吸附靶材料钇[Y-89],并能通过1M草酸溶液将锆[Zr-89]从纯化柱上洗脱,从而实现靶材料中锆[Zr-89]的提取纯化;第六十六容器331为废液瓶,纯化过程中的废液流入废液瓶中进行储存,第七十管子458的一端连接在第六十六容器331中,第七十管子458的另一端与废气处理系统连接,纯化过程中产生的废气通过第七十管子458流入废气处理系统进行脱盐酸处理,第六十六容器331也可以作为靶材料回收瓶,在纯化过程中靶材料钇[Y-89]可以通过该废液瓶进行回收;第六十七容器332为超纯水试剂瓶,超纯水试剂瓶的容量可以为10ML;第六十八容器333为纯化柱,该纯化柱为硅胶基质的离子交换柱,纯化柱在草酸体系下能高效吸附锆[Zr-89]核素,而不吸附草酸,并能通过1M盐酸溶液将锆[Zr-89]核素从纯化柱上洗脱,从而实现将锆[Zr-89]-草酸锆置换为锆[Zr-89]-氯化锆;第六十九容器334为废液瓶,纯化过程中的废液流入废液瓶中进行储存,第七十六管子464的一端连接在第六十九容器334中,第七十六管子464的另一端与废气处理系统连接,纯化过程中产生的废气通过第七十六管子464流入废气处理系统进行脱盐酸处理; 第七十容器335为产品瓶,第七十九管子467的一端连接在产品瓶上,第七十九管子467的另一端与过滤器连接,这样,第七十九管子467可以作为排空管,当产品向产品瓶转移时,产品瓶中的气体可以通过过滤器进行过滤并排至大气,避免产品瓶内部产生正压;第六十二容器327、第六十三容器328、第六十四容器329和第六十七容器332呈瓶口向下放置;第六十一注射器208、第六十二注射器209和第六十三注射器210为10ML规格的无菌注射器2,第六十一注射器208、第六十二注射器209和第六十三注射器210的出口端为带螺纹的鲁尔接口,这样,第六十一注射器208、第六十二注射器209和第六十三注射器210可以通过带螺纹的鲁尔接口与第六十一五联三通模块106的自左起第二个三通阀115的上侧端口1151、第六十二五联三通模块107的自左起第四个三通阀115的上侧端口1151和第六十一二联三通模块113的右侧三通阀115的上侧端口1151连接并拧紧,避免第六十一注射器208、第六十二注射器209和第六十三注射器210与第六十一五联三通模块106的自左起第二个三通阀115的上侧端口1151、第六十二五联三通模块107的自左起第四个三通阀115的上侧端口1151和第六十一二联三通模块113的右侧三通阀115的上侧端口1151的连接处发生漏气或漏液的情况;第六十一注射器208、第六十二注射器209和第六十三注射器210为流体提供动力。
第六十一至第六十二五联三通模块107、第六十一二联三通模块113、第六十一至第六十三注射器210、第六十一至第七十容器335、第六十一至第七十九管子467组装形成锆[Zr-89]-氯化锆核素纯化卡套,可以用来进行核素纯化制备,通过加速器端或反应堆由高能粒子束照射靶材料,在靶材料中生产微量放射性同位素粗品,通过卡套1000和卡套动作控制装置2000进行放射性同位素的提纯,例如89Zr,通过已提纯的核素、卡套1000和卡套动作控制装置2000可以进行放射性同位素的制备纯化,例如锆[Zr-89]-氯化锆全自动纯化制备。第六十一至第六十二五联三通模块107、第六十一二联三通模块113、第六十一至第六十三注射器210、第六十一至第七十容器335、第六十一至第七十九管子467组装形成的卡套1000可以根据实际需要选择五联三通模块、二联三通模块、注射器2、容器3和管子4,避免五联三通模块、二联三通模块、注射器2、容器3和管子4闲置,可以减少原材料的使用;第六十一至第六十二五联三通模块107、第六十一二联三通模块113、第六十一至第六十三注射器210、第六十一至第七十容器335、第六十一至第七十九管子467均可以独立制作,从而有效地降低了制造成本;第六十一至第六十二五联三通模块107、第六十一二联三通模块113、第六十一至第六十三注射器210、第六十一至第七十容器335、第六十一至第七十九管子467可以独立地使用并灵活地组装形成卡套1000,以应用在放射性同位素纯化制备中,通用性好且适用性广;在进行放射性同位素纯化制备过程中,液体只在卡套1000中流动,液体不与卡套动作控制装置2000接触,从而避免对卡套动作控制装置2000造成污染,保证卡套动作控制装置2000的使用寿命。
如图5所示,根据本发明第一方面的一个实施例,多联三通模块1有第八十一至第八十二五联三通模块109和第八十一二联三通模块114;注射器2有第八十一至第八十三注射器213;容器3有第八十一至第九十一容器346;管子4有第八十一至第一百管子487;其中,
第八十一容器336连接有第八十一管子468,第八十一管子468用于排空;
第八十一容器336通过第八十二管子469与第八十一五联三通模块108的最左侧三通阀115的上侧端口1151相连;
第八十一注射器211、第八十二容器337、第八十三容器338、第八十四容器339以自左向右的顺序分别通过第八十三管子470、第八十四管子471、第八十五管子472、第八十六管子473对应地与第八十一五联三通模块108的自左起第二个至第五个三通阀115的上侧端口1151相连;
第八十五容器340的上端通过第八十七管子474与第八十一五联三通模块108的最右侧三通阀115的右侧端口1151相连;
第八十五容器340的下端、第八十七容器342、第八十八容器343、第八十二注射器212以自左向右的顺序分别通过第八十八管子475、第九十一管子478、第九十二管子479、第九十三管子480对应地与第八十二五联三通模块109的自左起第一个至第四个三通阀115的上侧端口1151相连;
第八十六容器341的上端通过第八十九管子476与第八十二五联三通模块109的最左侧三通阀115的上侧端口1151相连;
第八十六容器341还连接有第九十管子477,第九十管子477用于排空;
第八十九容器344的上端通过第九十四管子481与第八十二五联三通模块109的最右侧三通阀115的上侧端口1151相连;
第八十九容器344的下端通过第九十五管子482与第八十一二联三通模块114的左侧三通阀115的上侧端口1151相连;
第九十容器345通过第九十六管子483与第八十一二联三通模块114的左侧三通阀115的左侧端口1151相连;
第九十容器345还连接有第九十七管子484,第九十七管子484用于排空;
第八十三注射器213通过第九十八管子485与第八十一二联三通模块114的右侧三通阀115的上侧端口1151相连;
第九十一容器347通过第九十九管子486与第八十一二联三通模块114的右侧三通阀115的右侧端口1151相连;
第九十一容器347还连接有第一百管子487,第一百管子487用于排空。
具体地,第八十一容器336为靶材料溶解瓶,第八十一容器336瓶口向上放置,第八十一管子468为医用回旋加速器或靶片溶解装置的靶材料传输管道,经过加速器轰击后并经过溶解的含铜[Cu-64]的靶材料通过第八十一管子468进入第八十一容器336中,靶材料为6M盐酸溶解的镍[Ni-64]材料,也可以直接将靶片放入第八十一容器336中用6M盐酸溶解;第八十二容器337为高浓度盐酸试剂瓶,高浓度盐酸试剂瓶可以为6M、2ML的盐酸试剂瓶;第八十三容器338为高浓度盐酸试剂瓶,高浓度盐酸试剂瓶可以为6M、10ML的盐酸试剂瓶;第八十四容器339为低浓度盐酸试剂瓶低浓度盐酸试剂瓶可以为1M、2ML的盐酸试剂瓶;第八十五容器340为纯化柱,纯化柱为离子交换树脂柱,其在高浓度盐酸体系下能高效吸附铜[Cu-64]核素,不吸附靶材料镍[Ni-64],并能通过低浓度1M盐酸溶液将铜[Cu-64]从纯化柱上洗脱,从而实现靶材料中铜[Cu-64]的提取纯化;第八十六容器341为废液瓶,纯化过程中的废液流入废液瓶中进行储存,第九十管子477的一端连接在第八十六容器341中,第九十管子477的另一端与废气处理系统连接,纯化过程中产生的废气通过第九十管子477流入废气处理系统进行脱盐酸处理,第八十六容器341也可以作为靶材料回收瓶,在纯化过程中靶材料镍[Ni-64]可以通过废液瓶进行回收;第八十七容器342为超纯水试剂瓶,超纯水试剂瓶的容量可以为0.2ML;第八十八容器343为超纯水试剂瓶,超纯水试剂瓶的容量可以为2ML;第八十九容器344为纯化柱,该纯化柱为硅胶基质的强阴离子交换柱,纯化柱在盐酸体系下能高效吸附铜[Cu-64]核素,而不吸附盐酸,并能通过超纯水将铜[Cu-64]核素从纯化柱上洗脱,从而实现将铜[Cu-64]-盐酸氯化铜置换为铜[Cu-64]-中性氯化铜;第九十容器345为废液瓶,纯化过程中的废液流入废液瓶中进行储存,第九十七管子484的一端连接在第九十容器345中,第九十七管子484的另一端与废气处理系统连接,纯化过程中产生的废气通过第九十七管子484流入废气处理系统进行脱盐酸处理;第九十一容器346为产品瓶,第一百管子487的一端连接在产品瓶上,第一百管子487的另一端与过滤器连接,这样,第一百管子487可以作为排空管,当产品向产品瓶转移时,产品瓶中的气体可以通过过滤器进行过滤并排至大气,避免产品瓶内部产生正压;第八十二容器337、第八十三容器338、第八十四容器339、第八十七容器342和第八十八容器343呈瓶口向下放置;第八十一注射器211、第八十二注射器212和第八十三注射器213为10ML规格的无菌注射器2,第八十一注射器211、第八十二注射器212和第八十三注射器213的出口端为带螺纹的鲁尔接口,这样,第八十一注射器211、第八十二注射器212和第八十三注射器213可以通过带螺纹的鲁尔接口与第八十一五联三通模块108的自左起第二个三通阀115的上侧端口1151、第八十二五联三通模块109的自左起第四个三通阀115的上侧端口1151和第八十一二联三通模块114的右侧三通阀115的上侧端口1151连接并拧紧,避免,第八十一注射器211、第八十二注射器212和第八十三注射器213与第八十一五联三通模块108的自左起第二个三通阀115的上侧端口1151、第八十二五联三通模块109的自左起第四个三通阀115的上侧端口1151和第八十一二联三通模块 114的右侧三通阀115的上侧端口1151的连接处发生漏气或漏液的情况;第八十一注射器211、第八十二注射器212和第八十三注射器213为流体提供动力。
第八十一至第八十二五联三通模块109、第八十一二联三通模块114、第八十一至第八十三注射器213、第八十一至第九十一容器346、第八十一至第一百管子487组装形成铜[Cu-64]-中性氯化铜核素纯化卡套,可以用来进行核素纯化制备,通过加速器端或反应堆由高能粒子束照射靶材料,在靶材料中生产微量放射性同位素粗品,通过卡套1000和卡套动作控制装置2000进行放射性同位素的提纯,通过已提纯的核素、卡套1000和卡套动作控制装置2000可以进行放射性同位素的制备纯化,例如铜[Cu-64]-中性氯化铜全自动纯化制备。第八十一至第八十二五联三通模块109、第八十一二联三通模块114、第八十一至第八十三注射器213、第八十一至第九十一容器346、第八十一至第一百管子487组装形成的卡套1000可以根据实际需要选择五联三通模块、二联三通模块、注射器2、容器3和管子4,避免五联三通模块、二联三通模块、注射器2、容器3和管子4闲置,可以减少原材料的使用;第八十一至第八十二五联三通模块109、第八十一二联三通模块114、第八十一至第八十三注射器213、第八十一至第九十一容器346、第八十一至第一百管子487均可以独立制作,从而有效地降低了制造成本;第八十一至第八十二五联三通模块109、第八十一二联三通模块114、第八十一至第八十三注射器213、第八十一至第九十一容器346、第八十一至第一百管子487可以独立地使用并灵活地组装形成卡套1000,以应用在放射性同位素纯化制备中,通用性好且适用性广;在进行放射性同位素纯化制备过程中,液体只在卡套1000中流动,液体不与卡套动作控制装置2000接触,从而避免对卡套动作控制装置2000造成污染,保证卡套动作控制装置2000的使用寿命。
本发明第二方面还提出了一种卡套动作控制装置2000。
如图8至图12所示,根据本发明第二方面实施例的卡套动作控制装置2000,用于与根据本发明第一方面实施例中任意一项的卡套1000相连,包括支架5、注射器安装部6、活塞驱动舵机8、三通阀旋钮8和三通阀旋钮驱动舵机10;注射器安装部6设置在支架5上,注射器安装部6包括可上下移动的活塞手柄安装部61和位于活塞手柄安装部61下方的套筒安装部62,活塞手柄安装部61用于安装注射器2的活塞手柄1152,套筒安装部62用于安装注射器2的套筒;活塞驱动舵机8与活塞手柄安装部61相连,用于驱动活塞手柄安装部61上下移动;三通阀旋钮8设置在支架5上,三通阀旋钮8用于可拆卸地与多联三通模块1中的手柄1152对应固定相连;三通阀旋钮8驱动舵机对应地驱动三通阀旋钮8转动。
根据本发明第二方面实施例的卡套动作控制装置2000,注射器安装部6的活塞手柄安装部61和套筒安装部62三通阀旋钮8安装在支架5上,从而将卡套1000安装在卡套动作控制装置2000上,通过卡套控制装置控制卡套1000,其中,注射器安装部6和活塞驱动舵机8控制注射器2,三通阀旋钮8和三通阀旋钮驱动舵机10控制流路,在放射性同位素纯化制备/放射性药物标记合成工艺操作中,可以根据实际需要选择多联三通模块1和注射器2,避免部分多联三通模块1和注射器2闲置,从而可以减少原材料的使用;将实际需要使用的多联三通模块1和注射器2分别直接安装在卡套动作控制装置2000上,由于不同的工艺操作产生的反应不同,通过管子4根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将注射器2和容器3分别与多联三通模块1连通,注射器2、多联三通模块1和管子4均可以独立制作,从而有效地降低了制造成本;不同种类的注射器2、多联三通模块1和管子4可以独立地使用并灵活地组装形成不同规格的卡套1000,以应用在不同的工艺操作中,通用性好且适用性广;在进行放射性同位素纯化制备/放射性药物标记合成工艺操作时,液体只在卡套1000中流动,液体不与卡套动作控制装置2000接触,从而避免对卡套动作控制装置2000造成污染,保证卡套动作控制装置2000的使用寿命。
如图8和图9所示,根据本发明第二方面的一个实施例,支架5上设有供活塞手柄安装部61上下运动的导向槽51。可以理解的是,通过在支架5上设置导向槽51,活塞手柄安装部61和导向槽51配合,活塞手柄安装部61可以方便沿着导向槽51上下移动。
如图8和图9所示,根据本发明第二方面的一个实施例,活塞手柄安装部61上设有供注射器2的活塞手柄1152适配卡入的手柄卡槽611。可以理解的是,在安装注射器2时,将注射器2的 活塞手柄1152适配地卡入手柄卡槽611中,可以方便快速地将活塞手柄1152进行定位安装,同时方便活塞手柄安装部61带动活塞手柄1152上下移动。
如图8至图10所示,根据本发明第二方面的一个实施例,套筒安装部62包括第一基壁622、第一左侧壁623和第一右侧壁624,第一左侧壁623和第一右侧壁624分别位于第一基壁622的左侧和右侧并与第一基壁622共同限定出与注射器2的套筒相适配的套筒安装腔621。可以理解的是,在安装注射器2时,将注射器2的套筒适配地卡入套筒安装部62,可以方便快速地将套筒进行安装定位,避免套筒在使用过程中出现晃动。
如图8和图12所示,根据本发明第二方面进一步的实施例,套筒安装腔621包含竖向延伸的主筒腔6212和与主筒腔6212径向相连且在上下方向上间隔开的多个环腔6211,其中,主筒腔6212用于容纳注射器2的套筒的主筒体部分,环腔6211用于容纳设置在主筒体部分的末端法兰边。可以理解的是,在实际工艺过程中,注射器2的规格需要根据实际情况进行选择,也就是说,注射器2的长度需要根据实际情况进行选择,通过设置在上下方向上间隔开的多个环腔6211,不同规格的注射器2的活塞手柄1152可以和不同的环腔6211适配安装,结构合理可靠,结构通用性高。
如图7和图12所示,根据本发明第二方面的一个实施例,在卡套1000中,手柄1152包括旋转轴11521和三个径向定位块11522,三个径向定位块11522呈径向设置分布在旋转轴11521的周面上,三个径向定位块11522呈T型布置;三通阀旋钮8的一端端部设有十字型槽口81,十字型槽口81用于与手柄1152的三个径向定位块11522配合,以将手柄1152与三通阀旋钮8可拆卸地固定。可以理解的是,手柄1152用于与三通阀旋钮8配合,手柄1152上的三个径向定位块11522可拆卸地安装在三通阀旋钮8的十字型槽口81中,以将手柄1152与三通阀旋钮8牢固连接,避免在三通阀旋钮8带动手柄1152旋转时发生错位移动,结构简单合理,拆装方便。
如图7和图12所示,根据本发明第二方面进一步的实施例,在卡套1000中,旋转轴11521设有定位孔;三通阀旋钮8的一端端部还设有定位柱82,定位柱82用于适配地插入定位孔中。这样,当手柄1152与三通阀旋钮8适配安装时,三通阀旋钮8上的定位柱82适配地插入手柄1152上的定位孔中,从而可以进一步的提高手柄1152与三通阀旋钮8的安装稳固性。
如图8所示,根据本发明第二方面的一个实施例,还包括容器安装部7,容器安装部7设置在支架5上,用于安装容器3。可以理解的是,通过在支架5上设置多个容器安装部7,在放射性同位素纯化制备/放射性药物标记合成工艺操作中,可以选择实际需要的容器3并将容器3安装在容器安装部7上,避免部分容器3闲置,从而可以减少原材料的使用,将实际需要使用的容器3直接安装在容器安装部7上,由于不同的工艺操作产生的反应不同,可以通过管子4根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将容器安装部7上的容器3与多联三通模块1连通,这样,使得容器3可以独立制作和使用,从而有效地降低了制造成本,结构通用性好且适用性广。
如图11所示,根据本发明第二方面进一步的实施例,容器安装部7包括第二基壁71、第二左侧壁72、第二右侧壁73和横向挡壁74,第二左侧壁72和第二右侧壁73分别位于第二基壁71的左侧和右侧,横向挡壁74位于第二左侧壁72和第二右侧壁73的下端,并分别与第二左侧壁72、第二右侧壁73和第二基壁71固定相连以共同限定出与容器3相适配的容器3安装腔。可以理解的是,在安装容器3时,可以将容器3适配地放入容器安装部7中,横向挡壁74支撑容器3的底部,结构简单,支撑稳定。
如图11所示,根据本发明第二方面再进一步的实施例,横向挡壁74上设有朝向第二基壁71方向凹入的缺口741。这样,当容器3瓶口向下放置在容器安装部7中时,管子4可以穿过横向挡壁74上的缺口741伸入容器3瓶口,结构合理。
根据本发明第二方面的一个实施例,还包括加热模块9,加热模块9用于对卡套1000中的盛有待加热反应液体的容器3进行加热。具体地,加热模块9包括金属块和加热部件,金属块用于实现热传导,加热部件用于给金属块加热,加热部件可以为PTC恒温陶瓷、电热管或电热翅片,通过启动加热部件对金属块加热,金属块用于将热量传递至卡套1000中的盛有待加热反应液体的容器3中。
如图8所示,根据本发明第二方面进一步的实施例,加热模块9中设有用于放置盛有待加热反应液体的容器3的安放孔91。具体地,在金属块中间设置安放孔91,将盛有待加热反应液体的容器3放置在安放孔91中,可以方便地对盛有待加热反应液体的容器3进行加热,结构简单,设置方便。
根据本发明第二方面再进一步的实施例,加热模块9设有具有温控功能。可以理解的是,在加热模块9对容器3中介质进行加热时,需要实时探测容器3内介质温度并控制容器3内介质的温度处于反应所需温度范围内,具体地,可以采用PT100探头或热电偶探头对容器3内介质温度进行实时探测,通过PID温控仪精确控制容器3内介质的温度,这样,可以保证容器3内介质的温度处于反应所需的温度范围内,保证介质反应效果。
如图8所示,根据本发明第二方面再进一步的实施例,加热模块9设有扇热部件92。具体地,扇热部件92可以为扇热用栅格或风扇,在加热模块9的侧面设置扇热用栅格或在加热模块9的底部设置风扇,这样,一方面通过在加热模块9上设置扇热部件92,在加热时,可以加强散热效果,保证加热均匀,在降温时,可以加快降温速度,另一方面通过扇热部件92可以保证加热模块9在加热和散热时的温度动态平衡,以方便实现加热模块9的精确控温。
根据本发明第二方面再进一步的实施例,加热模块9上设有放射性探头,放射性探头用于探测正在加热的容器3中的放射性变化。可以理解的是,通过放射性探头探测加热模块9中放置的容器3内的放射性变化,放射性探头与自动化操作软件连接,放射性数值可以通过自动化操作软件显示出来,操作人员可以根据放射性数值方便快速地判断反应进程。
本发明第三方面还提出了一种放射性同位素纯化/标记系统。
根据本发明第三方面实施例的放射性同位素纯化/标记系统,包括根据本发明第一方面实施例中任意一项的卡套1000和根据本发明第二方面实施例中任意一项的卡套动作控制装置2000,卡套1000安装在卡套动作控制装置2000上。
本发明第三方面实施例的放射性同位素纯化/标记系统,通过将卡套1000安装在卡套动作控制装置2000上,通过卡套控制装置控制卡套1000,在放射性同位素纯化制备/放射性药物标记合成工艺操作中,可以根据实际需要选择多联三通模块1、容器3和注射器2,避免部分多联三通模块1、容器3和注射器2闲置,从而可以减少原材料的使用;将实际需要使用的多联三通模块1、容器3和注射器2分别直接安装在卡套动作控制装置2000上,由于不同的工艺操作产生的反应不同,通过管子4根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将注射器2和容器3分别与多联三通模块1连通,注射器2、容器3、多联三通模块1和管子4均可以独立制作,从而有效地降低了制造成本;不同种类的注射器2、容器3、多联三通模块1和管子4可以独立地使用并灵活地组装形成不同规格的卡套1000,以应用在不同的工艺操作中,通用性好且适用性广;在进行放射性同位素纯化制备/放射性药物标记合成工艺操作时,液体只在卡套1000中流动,液体不与卡套动作控制装置2000接触,从而避免对卡套动作控制装置2000造成污染,保证卡套动作控制装置2000的使用寿命;此外,由于每次工艺操作后卡套1000中都存在放射性残留,每次工艺操作完成后更换新的卡套1000,可以防止不同批次操作间的交叉污染,卡套1000结构简单,装卸方便且成本低,适用于工业化操作。
下面根据两个具体的例子来说明本发明第三方面放射性同位素纯化/标记系统的操作过程。
三通阀115的端口1151的连通状态主要有3种情形,三通阀115的端口1151的连通状态主要由三通阀旋钮8转动的位置决定,手柄1152整体呈“T”字型。第一种连通情形为:三通阀115连通状态为左-右直通型,手柄1152“T”字型向下,该状态下三通阀115为D状态;第二种连通情形为:三通阀115连通状态为左-上连通型,手柄1152“T”字型向左,该状态下三通阀115为L状态;第三种连通情形为:三通阀115连通状态为右-上连通型,手柄1152“T”字型向右,该状态下三通阀115为R状态;通过转动三通阀旋钮8控制控制手柄1152,使三通阀115到D状态、R状态或L状态,从而实现放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路。
例1:对锆[Zr-89]标记卡套进行[Zr-89]标记曲妥珠单抗反应进行说明,如图1所示:
首先进行核素转移,通过核素自动分装装置将单次标记所需的[Zr-89]核素通过第七管子407转 移至第三容器303瓶内。转动第一五联三通模块101的最右侧三通阀115对应的三通阀旋钮8为R状态,转动第一五联三通模块101的最左侧三通阀115对应的三通阀旋钮8为R状态,转动第一五联三通模块101的自左起第二个三通阀115对应的三通阀旋钮8为L转态,保持该状态的同时控制第一注射器201吸取空气,进而通过第一五联三通模块101的自左起第二个三通阀115、第一五联三通模块101的最左侧三通阀115和第一管子401将第四容器304内气体抽出形成负压,使得在此负压下,第三容器303内[Zr-89]核素溶液经第六管子406进入第一五联三通模块101并通过第一五联三通模块101的最右侧三通阀115的右侧端口1151经第二管子402进入第四容器304中;转移完成后,转动第一五联三通模块101的最左侧三通阀115对应的三通阀旋钮8为D状态,转动第一五联三通模块101的自左起第二个三通阀115对应的三通阀旋钮8为L状态,控制第一注射器201压出空气,空气经第一五联三通模块101的最左侧三通阀115的左侧端口1151排出。
转移缓冲溶液,转动第一五联三通模块101的自左起第三个三通阀115对应的三通阀旋钮8为R状态,转动第一五联三通模块101的最左侧三通阀115对应的三通阀旋钮8为R状态,转动第一五联三通模块101的自左起第二个三通阀115对应的三通阀旋钮8为L状态,保持该状态的同时控制第一注射器201吸取空气,进而通过第一五联三通模块101的最左侧三通阀115、第一五联三通模块101的自左起第二个三通阀115和第一管子401将第四容器304内气体抽出形成负压,使得在此负压下,第一容器301内醋酸/醋酸钠与HEPES混合缓冲溶液经第一五联三通模块101的自左起第三个三通阀115进入第一五联三通模块101并通过第一五联三通模块101的最右侧三通阀115的右侧端口1151经第二管子402进入第四容器304内,转移完成后,转动第一五联三通模块101的最左侧三通阀115对应的三通阀旋钮8为D状态,转动第一五联三通模块101的自左起第二个三通阀115对应的三通阀旋钮8为L状态,控制第一注射器201压出空气,空气经第一五联三通模块101的最左侧三通阀115的左侧端口1151排出。本例中醋酸/醋酸钠和HEPES混合缓冲溶液浓度为0.25mol/L,pH值为7.2,体积0.5mL,缓冲溶液中也可以根据反应的不同选择其他种类、浓度、pH值的缓冲溶液,加入缓冲溶液的目的是中和核素锆[Zr-89]-草酸锆的酸性,并为89Zr螯合反应提供适宜pH值的反应液。
转移曲妥珠单抗溶液,转动第一五联三通模块101的自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第一五联三通模块101的最左侧三通阀115对应的三通阀旋钮8为R状态,转动第一五联三通模块101的自左起第二个三通阀115对应的三通阀旋钮8为L状态,保持该状态的同时控制第一注射器201吸取空气,进而通过第一五联三通模块101的最左侧三通阀115、第一五联三通模块101的自左起第二个三通阀115和第一管子401将第四容器304内气体抽出形成负压,使得在此负压下,使得第二容器302内曲妥珠单抗溶液经第五管子405和第一五联三通模块101的自左起第四个三通阀115进入第一五联三通并通过第一五联三通模块101的最右侧三通阀115的右侧端口1151经第二管子402进入第四容器304内,本例中加入的曲妥珠单抗溶液为经双功能螯合剂异硫氰酸酯去铁胺修饰的,溶液为0.15M醋酸/醋酸钠缓冲溶液,pH7.2,体积1mL,根据不同的抗体,可以选用其他缓冲溶液,缓冲液的体积可以根据实际情况确定。转移完成后,转动第一五联三通模块101的最左侧三通阀115对应的三通阀旋钮8为D状态,转动第一五联三通模块101的自左起第二个三通阀115对应的三通阀旋钮8为L状态,控制第一注射器201压出空气,空气经第一五联三通模块101的最左侧三通阀115的左侧端口1151排出。
螯合反应维持该状态进行[Zr-89]核素与DFO-曲妥珠单抗的金属螯合反应,本例中,螯合反应采用室温转态,反应60min,也可以根据反应类型所需设置其他反应温度及反应时间。同时在反应过程中,持续通过空气从第四容器304底部鼓吹的方式进行气动搅拌,使得反应更为均一快速。气动搅拌实现方式为:转动第二五联三通模块102的自左起第四个三通阀115对应的三通阀旋钮8为R状态,保持第二五联三通模块102的最右端三通阀115对应的三通阀旋钮8为D状态,控制第二注射器202吸取空气,空气经第二五联三通模块102的最右端三通阀115的右侧端口1151吸入,经第二五联三通模块102的最右端三通阀115上方端口1151第二进入注射器2;转动第二五联三通模块102的自左起第四个三通阀115对应的三通阀旋钮8为L转态,转动第二五联三通模块102的自左起第三个三通阀115对应的三通阀旋钮8为R状态,转动第一五联三通模块101的 最左端三通阀115对应的三通阀旋钮8为L转态,其余三通阀115皆为D状态,控制第二注射器202压出空气,空气经第二五联三通模块102的自左起第四个三通阀115、第二五联三通模块102的自左起第三个三通阀115和第八管子408进入第四容器304底部吹出,从而对反应液进行搅拌,第四容器304内带压气体经第一管子401流入第一五联三通模块101的最左端三通阀115,并从第一五联三通模块101的最左端三通阀115的左侧端口1151流出。反应过程中重复该步骤,直至反应结束。
分离纯化,螯合反应结束后,转动第一五联三通模块101的最左端三通阀115对应的三通阀115为L状态,转动第二五联三通模块102的自左起第三个三通阀115对应的三通阀旋钮8为R状态,转动第二五联三通模块102的自左起第四个三通阀115对应的三通阀旋钮8为L状态,控制第二注射器202吸取液体,反应液经第八管子408、第二五联三通模块102的自左起第三个三通阀115和第二五联三通模块102的自左起第四个三通阀115进入第二注射器202。转动第二五联三通模块102的自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二五联三通模块102的最右端三通阀115对应的三通阀旋钮8为L状态,转动第一二联三通模块110的左侧三通阀115对应的三通阀旋钮8为L状态,控制第二注射器202压出液体,液体经第二五联三通模块102的自左起第四个三通阀115和第二五联三通模块102的最右侧三通阀115进入第六容器306,废液经第一二联三通模块110的左侧三通阀115的左侧端口1151流入废液瓶;转动第二五联三通模块102的自左起第二个三通阀115对应的三通阀旋钮8为R状态,转动第二五联三通模块102的自左起第四个三通阀115对应的三通阀旋钮8为L状态,控制第二注射器202吸取第五容器305试剂瓶内缓冲溶液;本例中缓冲溶液为无菌且内毒素在控制范围的0.15M醋酸/醋酸钠缓冲溶液,该溶液可直接做给给药溶剂。转动第二五联三通模块102的自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二五联三通模块102的最右侧三通阀115对应的三通阀旋钮8为L状态,转动第一二联三通模块110的左侧三通阀115对应的三通阀旋钮8为R转态,转动第一二联三通模块110的右侧三通阀115对应的三通阀旋钮8为D状态,控制第二注射器202压出部分缓冲溶液经第六容器306后,再经第一二联三通模块110的左侧三通阀115、第一二联三通模块110的右侧三通阀115流出经无菌滤膜过滤后进入第八容器308,第八容器308内多余气体经第十七管子417排出;转动第一二联三通模块110的右侧三通阀115对应的三通阀旋钮8为R状态,控制第三注射器203压出预先装入的缓冲溶液,经无菌滤膜过滤后进入第八容器308,得到锆[89Zr]-曲妥珠单抗注射制剂。本例中第三注射器203加入的缓冲溶液为无菌且内毒素在控制范围的0.15M醋酸/醋酸钠缓冲溶液,加入体积为2mL,也可以根据最终锆[89Zr]-标记产物制剂需求,可以选用其他溶液,溶液的体积可以根据实际情况确定。
经多次锆[89Zr]-曲妥珠单抗标记测试,标记合成时间为72min,不经衰变校正合成产率80%,获得锆[89Zr]-曲妥珠单抗放射性化学纯度大于99%。产品性状、化学纯度、比活度、活度浓度、pH值、无菌、内毒素等质量指标均符合临床用药标准。
例2:对氟标记卡套进行18F标记NOTA-RGD2反应进行说明,如图2所示:
首先进行核素转移,通过核素自动分装装置将单次标记所需的[F-18]核素通过第二十七管子424转移至第二十三容器311内。转动第二十一五联三通模块103中最右侧三通阀115对应的三通阀旋钮8为R状态,转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为R状态,转动第二十一五联三通模块103中自左起第二个三通阀115对应的三通阀旋钮8为L转态,保持该状态的同时控制第二十一注射器204吸取空气,进而通过第二十一五联三通模块103中自左起第二个三通阀115、第二十一五联三通模块103中最左侧三通阀115和第二十一管子418将第二十四容器312内气体抽出形成负压,使得在此负压下,第二十三容器311内的[F-18]核素溶液经第二十一五联三通模块103中最右侧三通阀115进入第二十一五联三通模块103并通过第二十一五联三通模块103中最右侧三通阀115的右侧端口1151经第二十二管子419进入第二十四容器312内,本例中,[F-18]核素加入体积通常为1-2mL,放射性活度根据合成产物活度需求而定。转移完成后,转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为D状态,转动第二十一五联三通模块103中自左起第二个三通阀115对应的三通阀旋钮8为L状态,控制第二 十一注射器204压出空气,空气经第二十一五联三通模块103中最左侧三通阀115的左侧端口1151排出。
转移缓冲溶液,转动第二十一五联三通模块103中自左起第三个三通阀115对应的三通阀旋钮8为R状态,转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为R状态,转动第二十一五联三通模块103中自左起第二个三通阀115对应的三通阀旋钮8为L状态,保持该状态的同时控制第二十一注射器204吸取空气,进而通过第二十一五联三通模块103中自左起第二个三通阀115、第二十一五联三通模块103中最左侧三通阀115和第二十一管子418将第二十四容器312内气体抽出形成负压,使得在此负压下,第二十一容器309内的醋酸/醋酸钠缓冲溶液经动第二十一五联三通模块103中自左起第三个三通阀115上方端口1151进入第二十一五联三通模块103中并通过动第二十一五联三通模块103中最右侧三通阀115的右侧端口1151经第二十二管子419进入第二十四容器312内,转移完成后,转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为D状态,转动第二十一五联三通模块103中自左起第二个三通阀115对应的三通阀旋钮8为L状态,控制第二十一注射器204压出空气,空气经第二十一五联三通模块103中最左侧三通阀115的左侧端口1151排出。本例中醋酸/醋酸钠缓冲溶液浓度为0.15mol/L,pH值为6,体积0.5mL。同时缓冲溶液中也可以根据反应的不同选择其他种类、浓度、pH值、体积的缓冲溶液,加入缓冲溶液的目的是为F-18螯合反应提供适宜pH值的反应液。
转移NOTA-RGD2溶液,转动第二十一五联三通模块103中自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为R状态,转动第二十一五联三通模块103中自左起第二个三通阀115对应的三通阀旋钮8为L状态,保持该状态的同时控制第二十一注射器204吸取空气,进而通过第二十一五联三通模块103中自左起第二个三通阀115、第二十一五联三通模块103中最左侧三通阀115和第二十一管子418将第二十四容器312内气体抽出形成负压,使得在此负压下,第二十二容器310内的NOTA-RGD2溶液经第二十一五联三通模块103中自左起第四个三通阀115的上方端口1151进入第二十一五联三通模块103并通过第二十一五联三通模块103中最右侧三通阀115的右侧端口1151经第二十二管子419进入第二十四容器312内,本例中加入的NOTA-RGD2溶液以75%乙腈水溶液为溶剂(含微量三氯化铝),浓度为0.2mg/mL,单次加入体积为0.25mL,实际加入NOTA-RGD2量为50ug,同时根据单次出药量的不同,也可以加入不同量的NOTA-RGD2。转移完成后,转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为D状态,转动第二十一五联三通模块103中自左起第二个三通阀115对应的三通阀旋钮8为L状态,控制第二十一注射器204压出空气,空气经第二十一五联三通模块103中最左侧三通阀115的左侧端口1151排出。
螯合反应,通过自动化控制系统启动H1升温,进行[F-18]核素氟化铝金属螯合反应,本例中,螯合反应采用90℃,反应15min,也可以根据反应类型所需设置其他反应温度及反应时间。同时在反应之前,通过空气从第二十四容器312底部鼓吹的方式进行气动搅拌两次,使得反应更为均匀快速。气动搅拌实现方式为:转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态,第二十一五联三通模块103中最右侧的三通阀115对应的三通阀旋钮8维持D状态,控制第二十二注射器205吸取空气,空气经第二十一五联三通模块103中最右侧的三通阀115的右侧端口1151吸入经第二十二五联三通模块104中自左起第四个三通阀115的上方端口1151进入第二十二注射器205;转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为L转态,转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为L转态,其余皆为D状态。控制第二十二注射器205压出空气,空气经第二十二五联三通模块104中自左起第四个三通阀115的上方端口1151流经第二十二五联三通模块104中自左起第三个三通阀115上方端口1151,经第二十八管子425进入第二十四容器312底部吹出,从而对反应液进行搅拌,第二十四容器312内带压气体经第二十一管子418流入第二十一五联三通模块103中最左侧三通阀115的上方端口1151,从第二十一五联三通模块103中最左侧三通阀115的左侧端口1151流出,重复该启动搅拌工作两次即可,等待反应结束。
活化纯化柱,在等待反应过程中对纯化柱进行活化。转动第二十二五联三通模块104中自左起 第二个三通阀115对应的三通阀旋钮8为R转态,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205吸取液体,第二十六容器314内的无水乙醇经第二十二五联三通模块104中自左起第二个三通阀115、第二十二五联三通模块104中自左起第三个三通阀115,再从第二十二五联三通模块104中自左起第四个三通阀115的上方端口1151吸入第二十二注射器205内,第二十六容器314内的无水乙醇体积为10mL。转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中最右侧三通阀115对应的三通阀旋钮8为L状态,转动第二十一二联三通模块111中左侧三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205压出液体,注射器2内的无水乙醇流经第二十二五联三通模块104中自左起第四个三通阀115、第二十二五联三通模块104中最右侧三通阀115和第三十三管子430进入第二十八容器316中后,经第二十一二联三通模块111中左侧三通阀115的左侧端口1151及第三十五管子432流入第二十九容器317,转动第二十二五联三通模块104中最左侧三通阀115的三通阀旋钮8为R状态,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为L状态,其余三通阀旋钮8为D状态,控制第二十二注射器205吸取液体第二十五容器313内的灭菌注射用水经第二十二五联三通模块104中最左侧三通阀115、第二十二五联三通模块104中自左起第二个三通阀115、第二十二五联三通模块104中自左起第三个三通阀115,从第二十二五联三通模块104中自左起第四个三通阀115的上方端口1151进入第二十二注射器205,单次吸取10mL液体,第二十五容器313内额的液体为50mL。转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R转态,转动第二十二五联三通模块104中最右侧三通阀115对应的三通阀旋钮8为L转态,转动第二十一二联三通模块111中左侧三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205压出内部灭菌注射用水经第二十二五联三通模块104中自左起第四个三通阀115、第二十二五联三通模块104中最右侧三通阀115以及第三十三管子430流入第二十八容器316内,经第二十一二联三通模块111中左侧三通阀115的左侧端口1151流入第二十九容器317中,重复该动作1次,确保纯化柱充分活化洗净。
吹干第二十八容器316内水分,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中最右侧三通阀115对应的三通阀旋钮8为D状态,控制第二十二注射器205吸取空气,空气经第二十二五联三通模块104中最右侧三通阀115的右侧端口1151吸入经第二十二五联三通模块104中自左起第四个三通阀115上方端口1151进入第二十二注射器205内,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中最右侧三通阀115对应的三通阀旋钮8为L状态,转动第二十一二联三通模块111中左侧三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205压出空气,空气经第二十二五联三通模块104中自左起第四个三通阀115、第二十二五联三通模块104中最右侧三通阀115、第三十三管子430和第二十一二联三通模块111中左侧三通阀115的左侧端口1151进入第二十九容器317,该操作目的是通过空气将纯化柱内残留水分吹干,重复该操作3次。
转移反应液,转动第二十二五联三通模块104中最左侧三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205吸取液体,第二十五容器313内的灭菌注射用水经第二十二五联三通模块104中最左侧三通阀115、第二十二五联三通模块104中自左起第二个三通阀115、第二十二五联三通模块104中自左起第三个三通阀115和第二十二五联三通模块104中自左起第四个三通阀115,从第二十二五联三通模块104中自左起第四个三通阀115的上方端口1151吸入第二十二注射器205内,本例中吸入5-7mL灭菌注射用水,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为L转态,转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为L状态,其余三通阀旋钮8为D状态,控制第二十二注射器205压出液体,第二十二注射器205内灭菌注射用水经第二十二五联三通模块104中自左起第四个三通阀115、第二十二五联三通模块104中自左起第三个三通阀115、第二十二五联三通模块104中自左起第二个 三通阀115和第二十二五联三通模块104中最左侧三通阀115,并从第二十二五联三通模块104中最左侧三通阀115的左侧端口1151流入第二十四容器312中,第二十四容器312内气压经第二十一管子418从第二十一五联三通模块103中最左侧三通阀115的左侧端口1151排出。转动第二十一五联三通模块103中最左侧三通阀115对应的三通阀旋钮8为L转态,保持第二十二五联三通模块104中自左起第三个三通阀115对应的三通阀旋钮8、第二十二五联三通模块104中自左起第二个三通阀115对应的三通阀旋钮8和第二十二五联三通模块104中最左侧三通阀115对应的三通阀旋钮8为D状态,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205吸取液体,第二十四容器312内的反应液经第二十八管子425进入第二十二五联三通模块104中最左侧三通阀115的左侧端口1151,经第二十二五联三通模块104中自左起第二个三通阀115、第二十二五联三通模块104中自左起第三个三通阀115和第二十二五联三通模块104中自左起第四个三通阀115后,再从第二十二五联三通模块104中自左起第四个三通阀115的上方端口1151被吸入第二十二注射器205内;转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中最右侧三通阀115对应的三通阀旋钮8为L状态,转动第二十一二联三通模块111中最左侧三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205将反应液压出,反应液经第二十二五联三通模块104中自左起第四个三通阀115、第二十二五联三通模块104中最右侧三通阀115、第三十三管子430进入第二十八容器316,产品18F-AlF-NOTA-RGD2被吸附在第二十八容器316上,游离的[F-18]核素、乙腈及其他反应液成分随废液进入第二十九容器317中。转动第二十二五联三通模块104中最左侧三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205吸取液体,第二十五容器313内的灭菌注射用水经第二十二五联三通模块104中最左侧三通阀115、第二十二五联三通模块104中自左起第二个三通阀115、第二十二五联三通模块104中自左起第三个三通阀115、第二十二五联三通模块104中自左起第四个三通阀115,并从第二十二五联三通模块104中自左起第四个三通阀115的上方端口1151进入第二十二注射器205内,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中最右侧三通阀115对应的三通阀旋钮8为L状态,转动第二十一二联三通模块111中最左侧三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射射器压出液体,第二十二注射器205内灭菌注射用水经第二十二五联三通模块104中自左起第四个三通阀115、第二十二五联三通模块104中最右侧三通阀115、第三十三管子430进入第二十八容器316,进而将第二十八容器316中残留的游离[F-18]核素、乙腈以及其他反应液成分冲洗进入第二十九容器317中,重复该操作1-2次,重复次数依据清洗情况而定,本例中为重复清洗一次。
吹干第二十八容器316内的水分,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中最右侧三通阀115对应的三通阀旋钮8为D状态,控制第二十二注射器205吸取空气,空气经第二十二五联三通模块104中最右侧三通阀115的右侧端口1151吸入经第二十二五联三通模块104中自左起第四个三通阀115的上方端口1151进入第二十二注射器205内,第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中最右侧三通阀115对应的三通阀旋钮8为L状态,转动第二十一二联三通模块111中最左侧三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205压出空气,空气经第二十二五联三通模块104中自左起第四个三通阀115、第二十二五联三通模块104中最右侧三通阀115、第三十三管子430进入第二十八管子425,经第二十一二联三通模块111中最左侧三通阀115的左侧端口1151进入废液瓶,该操作目的是通过空气将第二十八容器316内的残留水分吹干,重复该操作2次。
洗脱产品,转动第二十二五联三通模块104中自左起第三个三通阀115对应的三通阀旋钮8为R状态,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为L状态,控制第二十二注射器205吸取液体,第二十八容器316内1-2mL无水乙醇经第二十二五联三通模块104中自左起第三个三通阀115、第二十二五联三通模块104中自左起第四个三通阀115 进入二十二注射器2内,转动第二十二五联三通模块104中自左起第四个三通阀115对应的三通阀旋钮8为R状态、转动第二十二五联三通模块104最右侧三通阀115对应的三通阀旋钮8为L状态、转动第二十一二联三通模块111中最左侧三通阀115对应的三通阀旋钮8为R状态、转动第二十一二联三通模块111中最右侧三通阀115对应的三通阀旋钮8为D状态,控制第二十二注射器205压出液体,第二十二注射器205内无水乙醇经第二十二五联三通模块104中自左起第四个三通阀115、第二十二五联三通模块104中最右侧三通阀115、第三十三管子430进入第二十八容器316,无水乙醇能将吸附在第二十八容器316内的18F-AlF-NOTA-RGD2产品洗脱出来,随无水乙醇经第二十一二联三通模块111中最左侧三通阀115、第二十一二联三通模块111中最右侧三通阀115右侧端口1151、第三十八管子435,再经无菌滤膜过滤后流入第三十容器318,本例中第二十七容器315内的无水乙醇体积为1mL,也可以根据需求增加或减少无水乙醇体积。
转动第二十一二联三通模块111中最右侧三通阀115对应的三通阀旋钮8为R状态,控制第二十三注射器206压出预先装入的生理盐水,生理盐水经第二十一二联三通模块111中最右侧三通阀115、第三十八管子435,再经无菌滤膜过滤后进入第三十容器318,将第三十容器318中的无水乙醇浓度稀释至低于10%,则获得18F-AlF-NOTA-RGD2无菌注射剂。
经多次18F-AlF-NOTA-RGD2标记测试,标记合成时间为25min,不经衰变校正合成产率35%,获得18F-AlF-NOTA-RGD2无菌注射剂放射性化学纯度大于99%。产品性状、化学纯度、比活度、活度浓度、pH值、无菌、内毒素等质量指标均符合临床用药标准。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (26)

  1. 一种卡套,其特征在于,所述卡套为可更换一次性介质传输卡套,适用于放射性同位素纯化制备/放射性药物标记合成工艺操作中,包括:
    多联三通模块,所述多联三通模块包括多个三通阀和在左右方向延伸的共用管道;每个所述三通阀具有三个端口和一个手柄,三个所述端口分布在所述三通阀的左侧、右侧和上侧,所述手柄用于控制所述三通阀的三个所述端口中的其中任意两个所述端口连通;多个所述三通阀依次设置在所述共用管道上,且在左右方向上相邻两个所述三通阀中左侧一个所述三通阀的右侧所述端口与右侧一个所述三通阀的左侧所述端口通过所述共用管道相连;
    注射器;
    容器;
    管子,所述管子根据放射性同位素纯化制备/放射性药物标记合成工艺操作中液体转移所需的流路将所述多联三通模块、所述注射器和所述容器进行连通,其中,所述多联三通模块、所述注射器分别用于直接安装在卡套动作控制装置上。
  2. 根据权利要求1所述的卡套,其特征在于,所述容器用于直接安装在所述卡套动作控制装置上。
  3. 根据权利要求1-2中任意一项所述的卡套,其特征在于,所述手柄包括旋转轴和三个径向定位块,所述三个径向定位块呈径向设置分布在所述旋转轴的周面上,三个所述径向定位块呈T型布置。
  4. 根据权利要求1-3中任意一项所述的卡套,其特征在于,所述旋转轴设有定位孔。
  5. 根据权利要求1-4中任意一项所述的卡套,其特征在于,所述手柄上设有三个指示箭头,三个所述指示箭头对应地设置在三个所述径向定位块的外端面上。
  6. 根据权利要求1-5中任意一项所述的卡套,其特征在于,所述多联三通模块有第一至第二五联三通模块和第一二联三通模块;所述注射器有第一至第三注射器;所述容器有第一至第八容器;所述管子有第一至第十七管子;其中,
    所述第一五联三通模块的最左侧的所述三通阀的上侧所述端口通过所述第一管子与所述第四容器相连;
    所述第一五联三通模块的最右侧的所述三通阀的右侧所述端口通过所述第二管子与所述第四容器相连;
    所述第一注射器、所述第一容器、所述第二容器和所述第三容器以自左向右的顺序分别通过所述第三管子、第四管子、第五管子和第六管子对应地与所述第一五联三通模块中自左起第二个至第五个所述三通阀的上侧所述端口相连;
    所述第三容器还连接有所述第七管子;
    所述第二五联三通模块的自左起的第三个所述三通阀的上侧所述端口通过所述第八管子与所述第四容器相连,且所述第七管子的一端深入所述第四容器的底部;
    所述第五容器通过所述第九管子与所述第二五联三通模块的自左起的第二个所述三通阀的上侧所述端口相连;
    所述第二注射器通过所述第十管子与所述第二五联三通模块的自左起的第四个所述三通阀的上侧所述端口相连;
    所述第六容器的上端通过所述第十一管子与所述第二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
    所述第六容器的下端通过所述第十二管子与所述第一二联三通模块的左侧所述三通阀的上侧所述端口相连;
    所述第七容器通过所述第十三管子与所述第一二联三通模块的左侧所述三通阀的左侧所述端口相连;
    所述第七容器还连接有所述第十四管子,所述第十四管子用于排空;
    所述第三注射器通过所述第十五管子与所述第一二联三通模块的右侧所述三通阀的上侧所述端口相连;
    所述第八容器通过所述第十六管子与所述第一二联三通模块的右侧所述三通阀的右侧所述端口相连;
    所述第八容器还连接有所述第十七管子,所述第十七管子用于排空。
  7. 根据权利要求1-6中任意一项所述的卡套,其特征在于,
    所述多联三通模块有第二十一至第二十二五联三通模块和第二十一二联三通模块;所述注射器有第二十一至第二十三注射器;所述容器有第二十一至第三十容器;所述管子有第二十一至第三十九管子;其中,
    所述第二十一五联三通模块的最左侧的所述三通阀的上侧所述端口通过所述第二十一管子与所述第二十四容器相连;
    所述第二十一五联三通模块的最右侧的所述三通阀的右侧所述端口通过所述第二十二管子与所述第二十四容器相连;
    所述第二十一注射器、所述第二十一容器、所述第二十二容器和所述第二十三容器以自左向右的顺序分别通过所述第二十三管子、第二十四管子、第二十五管子和第二十六管子对应地与所述第二十一五联三通模块中自左起第二个至第五个所述三通阀的上侧所述端口相连;
    所述第二十三容器还连接有所述第二十七管子;
    所述第二十二五联三通模块的最左侧所述三通阀的左侧所述端口通过所述第二十八管子与所述第二十四容器相连,且所述第二十八管子的一端深入所述第二十四容器的底部;
    所述第二十五容器、所述第二十六容器、所述第二十七容器和所述第二十二注射器以自左向右的顺序分别通过第二十九管子、第三十管子、第三十一管子和第三十二管子对应地与所述第二十二五联三通模块中自左起第一个至第四个所述三通阀的上侧所述端口相连;
    所述第二十八容器的上端通过第三十三管子与所述第二十二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
    所述第二十八容器的下端通过所述第三十四管子与所述第二十一二联三通模块的左侧所述三通阀的上侧所述端口相连;
    所述第二十九容器通过所述第三十五管子与所述第二十一二联三通模块的左侧所述三通阀的左侧所述端口相连;
    所述第二十九容器还连接有所述第三十六管子,所述第三十六管子用于排空;
    所述第二十三注射器通过所述第三十七管子与所述第二十一二联三通模块的右侧所述三通阀的上侧所述端口相连;
    所述第三十容器通过所述第三十八管子与所述第二十一二联三通模块的右侧所述三通阀的右侧所述端口相连;
    所述第三十容器还连接有所述第三十九管子,所述第三十九管子用于排空。
  8. 根据权利要求1-7中任意一项所述的卡套,其特征在于,
    所述多联三通模块有第四十一五联三通模块和第四十一二联三通模块;所述注射器有第四十一注射器;所述容器有第四十一至第四十七容器;所述管子有第四十一至第五十二管子;其中,
    所述第四十一容器连接有所述第四十一管子,所述第四十一管子用于排空;
    所述第四十一容器通过所述第四十二管子与所述第四十一五联三通模块的最左侧所述三通阀的上侧所述端口相连;
    所述第四十一注射器、所述第四十二容器、所述第四十三容器、所述第四十四容器以自左向右的顺序分别通过所述第四十三管子、所述第四十四管子、所述第四十五管子、所述第四十六管子对应地与所述第四十一五联三通模块的自左起第二个至第五个所述三通阀的上侧所述端口相连;
    所述第四十五容器的上端通过所述第四十七管子与所述第四十一五联三通模块的最右侧所述三通阀的右侧所述端口相连;
    所述第四十五容器的下端通过所述第四十八管子与所述第四十一二联三通模块的左侧所述三 通阀的上侧所述端口相连;
    所述第四十六容器通过所述第四十九管子与所述第四十一二联三通模块的左侧所述三通阀的左侧所述端口相连;
    所述第四十六容器还连接有所述第五十管子,所述第五十管子用于排空;
    所述第四十七容器通过所述第五十一管子与所述第四十一二联三通模块的右侧所述三通阀的右侧所述端口相连;
    所述第四十七容器还连接有所述第五十二管子,所述第五十二管子用于排空。
  9. 根据权利要求1-8中任意一项所述的卡套,其特征在于,
    所述多联三通模块有第六十一至第六十二五联三通模块和第六十一二联三通模块;所述注射器有第六十一至第六十三注射器;所述容器有第六十一至第七十容器;所述管子有第六十一至第七十九管子;其中,
    所述第六十一容器连接有所述第六十一管子,所述第六十一管子用于排空;
    所述第六十一容器通过所述第六十二管子与所述第六十一五联三通模块的最左侧所述三通阀的上侧所述端口相连;
    所述第六十一注射器、所述第六十二容器、所述第六十三容器、所述第六十四容器以自左向右的顺序分别通过所述第六十三管子、所述第六十四管子、所述第六十五管子、所述第六十六管子对应地与所述第六十一五联三通模块的自左起第二个至第五个所述三通阀的上侧所述端口相连;
    所述第六十五容器的上端通过所述第六十七管子与所述第六十一五联三通模块的最右侧所述三通阀的右侧所述端口相连;
    所述第六十五容器的下端通过所述第六十八管子与所述第六十二五联三通模块的最左侧所述三通阀的上侧所述端口相连;
    所述第六十六容器的上端通过第六十九管子与所述第六十二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
    所述第六十六容器还连接有所述第七十管子,所述第七十管子用于排空;
    所述第六十七容器通过所述第七十一管子与所述第六十二五联三通模块的自左起第二个所述三通阀的上侧所述端口相连;
    所述第六十二注射器通过所述第七十二管子与所述第六十二五联三通模块的自左起第四个所述三通阀的上侧所述端口相连;
    所述第六十八容器的上端通过所述第七十三管子与所述第六十二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
    所述第六十八容器的下端通过所述第七十四管子与所述第六十一二联三通模块的左侧所述三通阀的上侧所述端口相连;
    所述第六十九容器通过所述第七十五管子与所述第六十一二联三通模块的左侧所述三通阀的左侧所述端口相连;
    所述第六十九容器还连接有所述第七十六管子,所述第七十六管子用于排空;
    所述第六十三注射器通过所述第七十七管子与所述第六十一二联三通模块的右侧所述三通阀的上侧所述端口相连;
    所述第七十容器通过所述第七十八管子与所述第六十一二联三通模块的右侧所述三通阀的右侧所述端口相连;
    所述第七十容器还连接有所述第七十九管子,所述第七十九管子用于排空。
  10. 根据权利要求1-9中任意一项所述的卡套,其特征在于,
    所述多联三通模块有第八十一至第八十二五联三通模块和第八十一二联三通模块;所述注射器有第八十一至第八十三注射器;所述容器有第八十一至第九十一容器;所述管子有第八十一至第一百管子;其中,
    所述第八十一容器连接有所述第八十一管子,所述第八十一管子用于排空;
    所述第八十一容器通过所述第八十二管子与所述第八十一五联三通模块的最左侧所述三通阀 的上侧所述端口相连;
    所述第八十一注射器、所述第八十二容器、所述第八十三容器、所述第八十四容器以自左向右的顺序分别通过所述第八十三管子、所述第八十四管子、所述第八十五管子、所述第八十六管子对应地与所述第八十一五联三通模块的自左起第二个至第五个所述三通阀的上侧所述端口相连;
    所述第八十五容器的上端通过所述第八十七管子与所述第八十一五联三通模块的最右侧所述三通阀的右侧所述端口相连;
    所述第八十五容器的下端、所述第八十七容器、所述第八十八容器、所述第八十二注射器以自左向右的顺序分别通过所述第八十八管子、所述第九十一管子、所述第九十二管子、所述第九十三管子对应地与所述第八十二五联三通模块的自左起第一个至第四个所述三通阀的上侧所述端口相连;
    所述第八十六容器的上端通过所述第八十九管子与所述第八十二五联三通模块的最左侧所述三通阀的上侧所述端口相连;
    所述第八十六容器还连接有所述第九十管子,所述第九十管子用于排空;
    所述第八十九容器的上端通过所述第九十四管子与所述第八十二五联三通模块的最右侧所述三通阀的上侧所述端口相连;
    所述第八十九容器的下端通过所述第九十五管子与所述第八十一二联三通模块的左侧所述三通阀的上侧所述端口相连;
    所述第九十容器通过所述第九十六管子与所述第八十一二联三通模块的左侧所述三通阀的左侧所述端口相连;
    所述第九十容器还连接有所述第九十七管子,所述第九十七管子用于排空;
    所述第八十三注射器通过所述第九十八管子与所述第八十一二联三通模块的右侧所述三通阀的上侧所述端口相连;
    所述第九十一容器通过所述第九十九管子与所述第八十一二联三通模块的右侧所述三通阀的右侧所述端口相连;
    所述第九十一容器还连接有所述第一百管子,所述第一百管子用于排空。
  11. 一种卡套动作控制装置,其特征在于,用于与根据权利要求1-10中任意一项所述的卡套相连,包括:
    支架;
    注射器安装部,所述注射器安装部设置在所述支架上,所述注射器安装部包括可上下移动的活塞手柄安装部和位于所述活塞手柄安装部下方的套筒安装部,所述活塞手柄安装部用于安装所述注射器的活塞手柄,所述套筒安装部用于安装所述注射器的套筒;
    活塞驱动舵机,所述活塞驱动舵机与所述活塞手柄安装部相连,用于驱动所述活塞手柄安装部上下移动;
    三通阀旋钮,所述三通阀旋钮设置在所述支架上,所述三通阀旋钮用于可拆卸地与所述多联三通模块中的所述手柄对应固定相连;
    三通阀旋钮驱动舵机,所述三通阀旋钮驱动舵机对应地驱动所述三通阀旋钮转动。
  12. 根据权利要求11所述的卡套动作控制装置,其特征在于,所述支架上设有供所述活塞手柄安装部上下运动的导向槽。
  13. 根据权利要求11-12中任意一项所述的卡套动作控制装置,其特征在于,所述活塞手柄安装部上设有供所述注射器的所述活塞手柄适配卡入的手柄卡槽。
  14. 根据权利要求11-13中任意一项所述的卡套动作控制装置,其特征在于,所述套筒安装部包括第一基壁、第一左侧壁和第一右侧壁,所述第一左侧壁和所述第一右侧壁分别位于所述第一基壁的左侧和右侧并与所述第一基壁共同限定出与所述注射器的所述套筒相适配的套筒安装腔。
  15. 根据权利要求11-14中任意一项所述的卡套动作控制装置,其特征在于,所述套筒安装腔包含竖向延伸的主筒腔和与所述主筒腔径向相连且在上下方向上间隔开的多个环腔,其中,所述主筒腔用于容纳所述注射器的所述套筒的主筒体部分,所述环腔用于容纳设置在所述主筒体部分的末 端法兰边。
  16. 根据权利要求11-15中任意一项所述的卡套动作控制装置,其特征在于,在所述卡套中,所述手柄包括旋转轴和三个径向定位块,所述三个径向定位块呈径向设置分布在所述旋转轴的周面上,三个所述径向定位块呈T型布置;所述三通阀旋钮的一端端部设有十字型槽口,所述十字型槽口用于与所述手柄的三个所述径向定位块配合,以将所述手柄与所述三通阀旋钮可拆卸地固定。
  17. 根据权利要求11-16中任意一项所述的卡套动作控制装置,其特征在于,在所述卡套中,所述旋转轴设有定位孔;所述三通阀旋钮的一端端部还设有定位柱,所述定位柱用于适配地插入所述定位孔中。
  18. 根据权利要求11-17中任意一项所述的卡套动作控制装置,其特征在于,还包括容器安装部,所述容器安装部设置在所述支架上,用于安装所述容器。
  19. 根据权利要求11-18中任意一项所述的卡套动作控制装置,其特征在于,所述容器安装部包括第二基壁、第二左侧壁、第二右侧壁和横向挡壁,所述第二左侧壁和所述第二右侧壁分别位于所述第二基壁的左侧和右侧,所述横向挡壁位于所述第二左侧壁和所述第二右侧壁的下端,并分别与所述第二左侧壁、所述第二右侧壁和所述第二基壁固定相连以共同限定出与所述容器相适配的容器安装腔。
  20. 根据权利要求11-19中任意一项所述的卡套动作控制装置,其特征在于,所述横向挡壁上设有朝向所述第二基壁方向凹入的缺口。
  21. 根据权利要求11-20中任意一项所述的卡套动作控制装置,其特征在于,还包括加热模块,所述加热模块用于对所述卡套中的盛有待加热反应液体的所述容器进行加热。
  22. 根据权利要求11-21中任意一项所述的卡套动作控制装置,其特征在于,所述加热模块中设有用于放置盛有待加热反应液体的所述容器的安放孔。
  23. 根据权利要求11-22中任意一项所述的卡套动作控制装置,其特征在于,所述加热模块设有具有温控功能。
  24. 根据权利要求11-23中任意一项所述的卡套动作控制装置,其特征在于,所述加热模块设有扇热部件。
  25. 根据权利要求11-24中任意一项所述的卡套动作控制装置,其特征在于,所述加热模块上设有放射性探头,所述放射性探头用于探测正在加热的所述容器中的放射性变化。
  26. 一种放射性同位素纯化/标记系统,其特征在于,包括:
    根据权利要求1-10中任意一项所述的卡套和根据权利要求11-25中任意一项所述的卡套动作控制装置,所述卡套安装在所述卡套动作控制装置上。
PCT/CN2021/138878 2021-01-12 2021-12-16 卡套、卡套动作控制装置及放射性同位素纯化/标记系统 WO2022151911A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110036393.1 2021-01-12
CN202120082097.0 2021-01-12
CN202110036393.1A CN114762728A (zh) 2021-01-12 2021-01-12 卡套、卡套动作控制装置及放射性同位素纯化/标记系统
CN202120082097.0U CN215690054U (zh) 2021-01-12 2021-01-12 卡套、卡套动作控制装置及放射性同位素纯化/标记系统

Publications (1)

Publication Number Publication Date
WO2022151911A1 true WO2022151911A1 (zh) 2022-07-21

Family

ID=82446841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138878 WO2022151911A1 (zh) 2021-01-12 2021-12-16 卡套、卡套动作控制装置及放射性同位素纯化/标记系统

Country Status (1)

Country Link
WO (1) WO2022151911A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263592A (ja) * 1996-03-29 1997-10-07 N K K Plant Kensetsu Kk 使い捨てカートリッジを使用するfdg合成装置
WO1999063547A2 (en) * 1998-06-02 1999-12-09 The Dow Chemical Company Apparatus for the preparation of radioactive solutions
JP2002210007A (ja) * 2001-01-18 2002-07-30 Aloka Co Ltd 放射性医薬品用シリンジポンプ
EP2179926A1 (fr) * 2008-10-23 2010-04-28 Commissariat A L'energie Atomique Dispositif stérile à usage unique de préparation d'un médicament radiopharmaceutique, système et procédé mettant en oeuvre ce dispositif
US20110020224A1 (en) * 2008-04-17 2011-01-27 Philogen S.P.A. Apparatus and method for preparing medicines containing radioactive substances
CN106439107A (zh) * 2016-10-31 2017-02-22 北京派特生物技术有限公司 用于放射性药物合成的耐腐蚀旋塞阀、控制装置和系统
CN208414286U (zh) * 2018-02-27 2019-01-22 首都医科大学宣武医院 用于制备放射性药物的一次性辅助装置
CN208927120U (zh) * 2018-06-15 2019-06-04 派特(北京)科技有限公司 一次性卡套制备碳-11放射药物的装置
CN113019279A (zh) * 2021-03-11 2021-06-25 山西医科大学第一医院 一种放射性药物制备的自动合成装置及其使用方法
CN113353306A (zh) * 2021-06-07 2021-09-07 江苏华益科技有限公司 一种锝[99mTc]标记药物的自动化淋洗、合成及分装方法
CN113413840A (zh) * 2021-06-04 2021-09-21 四川玖谊源粒子科技有限公司 一种用于制备多核素放射性药物的合成系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263592A (ja) * 1996-03-29 1997-10-07 N K K Plant Kensetsu Kk 使い捨てカートリッジを使用するfdg合成装置
WO1999063547A2 (en) * 1998-06-02 1999-12-09 The Dow Chemical Company Apparatus for the preparation of radioactive solutions
JP2002210007A (ja) * 2001-01-18 2002-07-30 Aloka Co Ltd 放射性医薬品用シリンジポンプ
US20110020224A1 (en) * 2008-04-17 2011-01-27 Philogen S.P.A. Apparatus and method for preparing medicines containing radioactive substances
EP2179926A1 (fr) * 2008-10-23 2010-04-28 Commissariat A L'energie Atomique Dispositif stérile à usage unique de préparation d'un médicament radiopharmaceutique, système et procédé mettant en oeuvre ce dispositif
CN106439107A (zh) * 2016-10-31 2017-02-22 北京派特生物技术有限公司 用于放射性药物合成的耐腐蚀旋塞阀、控制装置和系统
CN208414286U (zh) * 2018-02-27 2019-01-22 首都医科大学宣武医院 用于制备放射性药物的一次性辅助装置
CN208927120U (zh) * 2018-06-15 2019-06-04 派特(北京)科技有限公司 一次性卡套制备碳-11放射药物的装置
CN113019279A (zh) * 2021-03-11 2021-06-25 山西医科大学第一医院 一种放射性药物制备的自动合成装置及其使用方法
CN113413840A (zh) * 2021-06-04 2021-09-21 四川玖谊源粒子科技有限公司 一种用于制备多核素放射性药物的合成系统
CN113353306A (zh) * 2021-06-07 2021-09-07 江苏华益科技有限公司 一种锝[99mTc]标记药物的自动化淋洗、合成及分装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMOR-COARASA ALEJANDRO, KELLY JAMES M., BABICH JOHN W.: "3D-printed automation for optimized PET radiochemistry", SCIENCE ADVANCES, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 5, no. 9, 13 September 2019 (2019-09-13), US , pages 1 - 11, XP055950861, ISSN: 2375-2548, DOI: 10.1126/sciadv.aax4762 *

Similar Documents

Publication Publication Date Title
US8147804B2 (en) Method and device for isolating a chemically and radiochemically cleaned 68Ga-radionuclide and for marking a marking precursor with the 68Ga-radionuclide
US7829032B2 (en) Fully-automated microfluidic system for the synthesis of radiolabeled biomarkers for positron emission tomography
Lebedev et al. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer
US8273300B2 (en) Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure
US7235216B2 (en) Apparatus and method for producing radiopharmaceuticals
Crouzel et al. Radiochemistry automation for PET
CN108218651B (zh) 用于制备放射性药物的一次性辅助装置及方法
WO2023237091A1 (zh) 生产液体组合物的设备及其制备方法和用途
CA2683285C (en) Medical isotope generator systems
WO2023237092A1 (zh) 一种液体组合物的生产设备及其制备方法和用途
WO2023236978A1 (zh) 一种液体组合物的生产设备及其制备方法和用途
IL253439B (en) A device for the synthesis of radioactive substances
WO2022151911A1 (zh) 卡套、卡套动作控制装置及放射性同位素纯化/标记系统
JP2023505247A (ja) 高度に精製された212Pbの製造
CN114762728A (zh) 卡套、卡套动作控制装置及放射性同位素纯化/标记系统
CN208414286U (zh) 用于制备放射性药物的一次性辅助装置
KR102159425B1 (ko) 플루오라이드 포획 배열체
CN215690054U (zh) 卡套、卡套动作控制装置及放射性同位素纯化/标记系统
KR102155932B1 (ko) Pet 추적자 정제 시스템
JP6843059B2 (ja) ディスコネクタデバイスを備える放射合成デバイス
EP2825266A1 (en) Device for material purification
JP6967454B2 (ja) 穿孔デバイスを備える放射性医薬品の製造のための装置
CN211837924U (zh) 一种用于[18F]AlF氟化铝标记的放射性药物自动化合成装置
US8053622B2 (en) Stripping method
Liu et al. Optimization, automation and validation of the large-scale radiosynthesis of Al 18 F tracers in a custom-made automatic platform for high yield

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919098

Country of ref document: EP

Kind code of ref document: A1