WO2022151810A1 - 新型柴油机高压共轨压电陶瓷喷油器驱动控制系统 - Google Patents

新型柴油机高压共轨压电陶瓷喷油器驱动控制系统 Download PDF

Info

Publication number
WO2022151810A1
WO2022151810A1 PCT/CN2021/128343 CN2021128343W WO2022151810A1 WO 2022151810 A1 WO2022151810 A1 WO 2022151810A1 CN 2021128343 W CN2021128343 W CN 2021128343W WO 2022151810 A1 WO2022151810 A1 WO 2022151810A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
transistor
piezoelectric
control module
Prior art date
Application number
PCT/CN2021/128343
Other languages
English (en)
French (fr)
Inventor
张爱云
张美娟
陆玲亚
谢宏斌
沈保山
喻春明
陈珣
王吉华
Original Assignee
无锡职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡职业技术学院 filed Critical 无锡职业技术学院
Publication of WO2022151810A1 publication Critical patent/WO2022151810A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/201Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost inductance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to the technical field of circuits, in particular to a novel diesel engine high-pressure common rail piezoelectric ceramic fuel injector drive control system.
  • the driving control system of the high-voltage common rail piezoelectric ceramic injector of diesel engine mainly includes a boost circuit and a piezoelectric actuator drive circuit.
  • the driving voltage of the piezoelectric ceramic injector is 150V, which is realized by the +24V battery voltage through the boost circuit.
  • the voltage of the piezoelectric ceramic actuator is 0, and the high voltage of 150V charges the piezoelectric ceramic actuator, the piezoelectric ceramic actuator deforms and stretches, and the injector needle valve lifts up to inject fuel;
  • the +150V voltage is released on the piezoelectric ceramic actuator, the piezoelectric ceramic actuator returns to its original length, and the injector needle valve falls back under the action of the return spring to stop fuel injection.
  • the circuit structure of the existing diesel engine high-pressure common rail piezoelectric ceramic fuel injector drive control system is generally complex and has many devices.
  • the circuit structure of the existing diesel engine high-pressure common rail piezoelectric ceramic fuel injector drive control system is generally complex and has many devices.
  • the present inventor proposes a new type of diesel engine high-pressure common rail piezoelectric ceramic fuel injector drive control system.
  • the technical solution of the present invention is as follows:
  • a novel diesel engine high-voltage common rail piezoelectric ceramic fuel injector drive control system includes an MCU, a booster circuit and a piezoelectric actuator drive circuit with a shared inductance;
  • one end of the inductor is connected to the power input module, and the other end leads to the voltage output end through the capacitive load output module.
  • the common end of the inductor and the capacitive load output module is also grounded through the first transistor, and the on-off of the first transistor is controlled. in the booster circuit control module;
  • the drain of the charging switch transistor is connected to the voltage output terminal, the source is connected to the anode of the third diode, the cathode of the third diode is connected to the inductor and the common terminal of the first transistor, and the third diode is connected to the common terminal of the first transistor.
  • the cathode of the diode is also grounded through the discharge switch transistor, the cathode of the third diode is also connected to the anode of the fourth diode, the cathode of the fourth diode is connected to the voltage output terminal, and the connection between the charge switch transistor and the discharge switch transistor is connected.
  • the charging and discharging control module is controlled by the charging and discharging control module; the piezoelectric injector is connected to the common terminal of the power input module and the inductor; the charging and discharging control module controls the piezoelectric injector to charge and discharge by controlling the on-off of the charging switch transistor and the discharge switch transistor. ;
  • the booster circuit control module and the charge-discharge control module work according to the control signal of the MCU. After the booster circuit reaches a predetermined voltage threshold, the piezoelectric injector is driven. The MCU controls the charge and discharge of the piezoelectric injector through the booster circuit control module. During the operation, the booster circuit is controlled by the booster circuit control module to stop working. When the charging and discharging of the piezoelectric injector is completed, the booster circuit resumes work.
  • the present application discloses a novel high-voltage common rail piezoelectric ceramic fuel injector drive control system for diesel engines.
  • the booster circuit and the piezoelectric actuator drive circuit can share the same inductance, thereby saving energy.
  • the circuit components can reduce the circuit volume and reduce the cost.
  • a certain control logic is designed. When the piezoelectric injector operates, the booster circuit does not work, and when the piezoelectric injector does not inject fuel, the booster circuit works. , to ensure the safety and reliability of the entire system.
  • FIG. 1 is a circuit structure diagram of the novel diesel engine high-pressure common rail piezoelectric ceramic fuel injector drive control system of the present application.
  • FIG. 2 is a schematic diagram of waveforms of control signals of various parts in the system of the present application.
  • This application discloses a novel high-voltage common rail piezoelectric ceramic fuel injector drive control system for a diesel engine, please refer to FIG. 1 , the system includes an MCU, a booster circuit and a piezoelectric actuator drive circuit.
  • the inductance value in the boost circuit is 80uH
  • the piezoelectric actuator drive circuit in order to prevent the charge and discharge current from being too large, there is a 40 ⁇ 100uH
  • the application adjusts the overall circuit of the system so that the booster circuit and the piezoelectric actuator drive circuit share the same inductor L, and the inductance value of the inductance is about 80uH according to the inductance value requirements of the two circuits.
  • one end of the inductor L is connected to the power input module 1, the other end leads to the voltage output terminal +Boost through the capacitive load output module 2, and the common terminal of the inductor L and the capacitive load output module 2 is also grounded through the first transistor Q1,
  • the on-off of the first transistor Q1 is controlled by the booster circuit control module 3, that is, as shown in FIG. 1, the booster circuit control module 3 is connected to the gate of the first transistor Q1, and a second resistor is usually included between the two. R2.
  • the power input module 1 includes a battery BP and a first diode D1, the negative electrode of the battery BP is grounded, the positive electrode is connected to the anode of the first diode D1, and the cathode of the first diode D1 is connected to the inductor. L, the first diode D1 can play a role in preventing reverse connection.
  • the drain of the charging switch transistor Q2 is connected to the voltage output terminal +Boost
  • the source is connected to the anode of the third diode D3
  • the cathode of the third diode D3 is connected to the inductor L and the first transistor
  • the common terminal of Q1 and the cathode of the third diode D3 are also grounded through the discharge switching transistor Q3.
  • the cathode of the third diode D3 is also connected to the anode of the fourth diode D4, and the cathode of the fourth diode D4 is connected to the voltage output terminal +Boost.
  • the on-off of the charge switch transistor Q2 and the discharge switch transistor Q3 is controlled by the charge and discharge control module 4 .
  • the piezoelectric injector 5 is connected to the common terminal of the power input module 1 and the inductor L.
  • the charge and discharge control module 4 controls the piezoelectric injector 5 to charge and discharge by controlling the on-off of the charge switch transistor Q2 and the discharge switch transistor Q3.
  • the booster circuit control module 3 and the charge and discharge control module 4 work according to the control signal of the MCU. After the booster circuit boosts the voltage to a predetermined voltage threshold, it drives the piezoelectric injector 5.
  • the MCU controls the piezoelectric fuel injection through the piezoelectric actuator drive circuit.
  • the device 5 starts charging, injects fuel after charging, discharges after fuel injection, and completes the entire driving process after discharging.
  • the MCU controls the boosting circuit to stop working through the boosting circuit control module 3.
  • the boosting circuit resumes work, ensuring that The reliability and stability of the entire system.
  • the booster circuit further includes a current sampling circuit and a voltage sampling circuit.
  • the current sampling circuit samples the current flowing through the first transistor Q1 and provides it to the booster circuit control module 3, and the voltage sampling circuit samples the voltage of the voltage output terminal and provides it to the booster circuit. Voltage circuit control module 3. Then when the piezoelectric injector 5 does not operate, the starting voltage of the voltage output terminal +Boost of the booster circuit is the battery voltage provided by the power input module 1, usually +24V, and then the booster circuit control module 3 is based on current sampling.
  • the current sampled by the circuit and the voltage sampled by the voltage sampling circuit control the on-off of the first transistor Q1 to control the working process of the booster circuit: the booster circuit control module 3 outputs a high level to drive the first transistor Q1 to conduct, and the power input module 1 , the inductor L and the first transistor Q1 form a power-on loop, the current of the first transistor Q1 increases, and the voltage of the voltage output terminal +Boost increases.
  • the application When the sampling current of the current sampling terminal obtained by the booster circuit control module 3 based on the current sampling circuit reaches a predetermined current threshold, the application usually takes the sampling current as 10A, and the booster circuit control module 3 outputs a low level to drive the first transistor Q1 to turn off On, the power input module 1, the inductor L and the capacitive load output module 2 form a current freewheeling loop, and the voltage of the voltage output terminal +Boost increases.
  • the step of the booster circuit control module 3 outputting a high level to drive the first transistor Q1 to be turned on is performed again, and the above steps of turning on and off are repeated until the voltage of the voltage output terminal +Boost is sampled by the voltage sampling circuit
  • the predetermined voltage threshold in this application is usually +160V.
  • the booster circuit is charged from +24V to +160V through the above process. It takes 48ms.
  • the capacitive load output module 2 includes a second diode D2, a first capacitor C1 and a second capacitor C2, the anode of the second diode D2 is connected to the inductor L, and the cathode of the second diode D2 is connected to the Voltage output terminal +Boost, the first capacitor C1 and the second capacitor C2 are connected in parallel, and the high end is connected to the cathode of the second diode D2, and the low end is grounded.
  • the current sampling circuit includes a third resistor R3, which is connected between the first transistor Q1 and the ground, that is, the drain of the first transistor Q1 is connected to the inductor L, the source is grounded through the third resistor R3, and the first transistor Q1 and the common terminal of the third resistor R3 is connected to the booster circuit control module 3 as a current sampling terminal.
  • the voltage sampling circuit includes a fourth resistor R4 and a fifth resistor R5. One end of the series circuit formed by the fourth resistor R4 and the fifth resistor R5 is connected to the cathode of the second diode D2, and the other end is grounded. The common terminal of the five resistors R5 is connected to the booster circuit control module 3 as a voltage sampling terminal.
  • one end of the first resistor R1 is connected to the COMP port of the PWM generator U1, and the other end is grounded through the second transistor M2.
  • the OUT port of the PWM generator U1 is connected to the input INA port and the INB port of the enhanced drive controller U2.
  • Both the PWM generator U1 and the enhanced drive controller U2 are implemented using existing chips, and the output end of the enhanced drive controller U2
  • the OUTA port and the OUTB port are connected to the gate of the first transistor Q1.
  • the practice of connecting the current sampling circuit and the voltage sampling circuit to the booster circuit control module 3 is actually to connect the current sampling circuit and the voltage sampling circuit to the PWM generator U1, specifically, the common terminal of the first transistor Q1 and the third resistor R3 Connected to the I sense port of the PWM generator U1, the common terminal of the fourth resistor R4 and the fifth resistor R5 is connected to the V FB port of the PWM generator U1.
  • the on-off of the second transistor M2 is controlled by the boost prohibition enable signal S1 input by the MCU.
  • the boost prohibition enable signal S1 When the boost prohibition enable signal S1 is active at a high level, the second transistor M2 is turned on and the boost circuit stops working; When the disable enable signal S1 is inactive at a low level, the second transistor M2 is turned off and the boosting circuit works normally.
  • the boost circuit When the boost circuit is working normally, the PWM generator U1 outputs a high level through the OUT port, which is enhanced by the enhanced drive controller U2 and then output to the first transistor Q1 to turn it on.
  • the I sense port of the PWM generator U1 When the collected current reaches the predetermined current threshold, the output low level through the OUT port is enhanced by the enhanced drive controller U2 and then output to the first transistor Q1 to make it disconnected, and the PWM generator U1 outputs a high level again after a predetermined time interval.
  • the enhanced drive controller U2 is mainly used to increase the drive capability of the PWM generator U1 to the first transistor Q1, and the drive phase, pulse width and frequency of the first transistor Q1 are consistent with the output of the OUT port of the PWM generator U1.
  • the piezoelectric actuator driving circuit also includes a current sampling modulation module 6 and a voltage sampling feedback module 7, then during the operation of the piezoelectric injector 5, the charge and discharge control module 4 is based on the piezoelectricity sampled by the current sampling modulation module 6.
  • the current of the fuel injector 5 and the voltage of the piezoelectric fuel injector 5 sampled by the voltage sampling feedback module 7 are used to control the on-off of the charge switch transistor Q2 and the discharge switch transistor Q3.
  • the specific control process is as follows:
  • the charging and discharging control module 4 drives the charging switch transistor Q2 to conduct, and the voltage output terminal of the booster circuit + the output of Boost, the charging switch transistor Q2, the third diode D3, the inductor L and the piezoelectric injector 5 form a power-on loop,
  • the voltage of the voltage output terminal of the boost circuit + the predetermined voltage threshold output by Boost charges the piezoelectric injector 5, and the current and voltage of the piezoelectric injector 5 both increase, usually climbing up, due to the inductance of the inductance L.
  • the value is not large, so the current rising slope is usually large.
  • the charge and discharge control module 4 drives the charge switch transistor Q2 to turn off, and the body diode of the discharge switch transistor Q3, the inductor L and the piezoelectric injector 5 are formed
  • the freewheeling loop continues to charge the piezoelectric injector 5, and the voltage of the piezoelectric injector 5 continues to rise but the current drops.
  • the step of driving the charging switch transistor Q2 to turn on is performed again , the reciprocating operation of turning on and off in this way, until the voltage of the piezoelectric injector 5 reaches the predetermined charging threshold, the driving charging switch transistor Q2 is disconnected, the charging process is over, and the piezoelectric injector 5 is turned on for fuel injection.
  • the charge and discharge control module 4 drives the discharge switch transistor Q3 to conduct, and the piezoelectric injector 5, the inductor L, and the discharge switch transistor Q3 form a discharge circuit, and the energy of the piezoelectric injector 5 Moving to the inductance L, the voltage of the piezoelectric injector 5 decreases, but the current increases with a certain slope.
  • the charge and discharge control module 4 turns off the discharge switch transistor Q3, and the piezoelectric injector 5, the inductor L, the fourth diode D4 and the capacitive load output module 2 form a freewheeling loop.
  • the energy stored in the inductor L is transferred to the capacitor in the capacitive load output module 2, and the voltage and current of the piezoelectric injector 5 both drop.
  • the step of driving the discharge switch transistor Q3 to be turned on is performed again, and the reciprocating operation is turned on and off until the voltage of the piezoelectric injector 5 drops to 0, and the discharge process ends.
  • the current sampling modulation module 6 includes a sixth resistor R6, a charging current modulation circuit and a discharge current modulation circuit, one end of the piezoelectric injector 5 is connected to the common end of the power input module 1 and the inductor L, and the other end is connected to the The resistor R6 is grounded, the common terminal of the piezoelectric injector 5 and the sixth resistor R6 is connected to the charge and discharge control module 4 through the charging current modulation circuit to provide the corresponding output S2, and the common terminal of the piezoelectric injector 5 and the sixth resistor R6 It is also connected to the charge and discharge control module 4 through a discharge current modulation circuit to provide a corresponding output S3.
  • the charging current modulation circuit outputs a low level S2 when it detects that the received input reaches the upper limit of the preset hysteresis threshold, and the charging and discharging control module 4 turns off the charging switch transistor Q2 according to the low level output by the charging current modulation circuit, and the charging current modulates
  • the circuit outputs a high level S2 when it detects that the received input drops to the lower limit of the preset hysteresis threshold, and the charge and discharge control module 4 turns on the charge switch transistor Q2 according to the high level output by the charge current modulation circuit.
  • the discharge current modulation circuit outputs a low level S3 when it detects that the received input reaches the upper limit of the discharge current threshold, and the charge and discharge control module 4 turns off the discharge switch transistor Q2 according to the low level output by the discharge current modulation circuit.
  • a high level S3 is output, and the charge and discharge control module 4 turns on the discharge switch transistor Q2 according to the high level output by the discharge current modulation circuit.
  • Both the charge current modulation circuit and the discharge current modulation circuit can be constructed based on the comparator chip.
  • the voltage sampling feedback module 7 includes a seventh resistor R7, an eighth resistor R8 and a voltage feedback circuit.
  • One end of the series circuit formed by the seventh resistor R7 and the eighth resistor R8 is connected to the common end and the other end of the power input module 1 and the inductor L. Grounding, the common terminals of the seventh resistor R7 and the eighth resistor R8 are connected to the charge and discharge control module 4 through a voltage feedback circuit to provide a corresponding output S4.
  • the voltage feedback circuit when the voltage of the piezoelectric injector 5 does not reach the predetermined charging threshold, the voltage feedback circuit outputs a high level S4; when the voltage of the piezoelectric injector 5 reaches the predetermined charging threshold, the voltage feedback circuit outputs a low level level S4.
  • the voltage feedback circuit can be built on a comparator chip.
  • the charge and discharge control module 4 includes a logic processing unit, a charge pre-drive circuit and a discharge pre-drive circuit, and the MCU is connected to the logic processing unit to provide a charge enable signal S5 and a discharge enable signal S6, and the current sampling modulation module 6
  • the outputs S2 and S3 and the output S4 of the voltage sampling feedback module 7 are also output to the logic processing unit, which drives Q2 through the charging pre-drive circuit and/or drives Q3 through the discharging pre-drive circuit according to S2, S3, S4, S5 and S6
  • the signal of the logic processing unit driving the charging pre-driving circuit is denoted as S7
  • the signal of driving the discharging pre-driving circuit is denoted as S8.
  • the logic processing unit of the present application can be implemented by using commercially available chips, and both the charging pre-driving circuit and the discharging pre-driving circuit can be implemented by using existing driving circuits.
  • the piezoelectric actuator drive circuit includes several piezoelectric injectors 5 connected in parallel, as shown in FIG. 1 including three piezoelectric injectors 5 as an example. Then the piezoelectric actuator drive circuit also includes a cylinder selection control module 8 and a number of low-end cylinder selection transistor switches 9. One end of each piezoelectric injector 5 is connected to the power input module 1 and the common terminal of the inductor L, and the other end is connected to the common terminal of the power input module 1 and the inductor L. One end is respectively connected to the first through a corresponding low-end cylinder selection transistor switch 9. As shown in FIG.
  • each low-end cylinder selection transistor switch 9 includes three low-end cylinder selection transistor switches 9, and the drain end of each low-end cylinder selection transistor switch 9 is respectively connected to the corresponding voltage.
  • the electric fuel injector 5 and the source end are both connected to the ground.
  • the sixth resistor R6 is usually included between the piezoelectric injector 5 and the ground terminal, and the low-side cylinder selection transistor switch 9 is connected between the piezoelectric injector 5 and the sixth resistor R6, then each The drain ends of the low-end cylinder selection transistor switches 9 are respectively connected to the corresponding piezoelectric injectors 5, and the source ends are connected to one end of the sixth resistor R6, and the other end of the sixth resistor R6 is grounded.
  • each low-end cylinder selection transistor switch 9 is controlled by the cylinder selection control module 8, and the cylinder selection control module 8 controls the corresponding low-end cylinder selection transistor switch 9 according to the cylinder selection signal and the fuel injection pulse width signal S9 provided by the MCU. It is turned on to gate the connected piezoelectric injector 5 .
  • the piezoelectric injector 5 on the path where it is located is gated, and the charging and discharging operations can be performed according to the above process.
  • +Boost is equal to the battery voltage +24V, and the piezoelectric injector 5 does not operate.
  • the boost circuit of U2 the +Boost voltage rises from +24V to 150V, and the charging time is about 48ms.
  • the MCU outputs the corresponding cylinder selection signal and the fuel injection pulse width signal S9, and the cylinder selection control module 8 closes the corresponding selected low-end cylinder selection transistor switch 9 to gate the corresponding piezoelectric injector 5.
  • the fuel injection pulse width signal S9 is aligned with the rising edge of the charging enable signal S5.
  • the boost voltage meets the driving requirements of the piezoelectric injector.
  • the MCU outputs a high level of S1 to prohibit the boost circuit from working, and the gated piezoelectric fuel injection
  • the device 5 is charged according to the above process.
  • the MCU outputs a valid discharge enable signal S6, the fuel injection pulse width signal S9 is still valid, and the gated piezoelectric injector 5 discharges according to the above process.
  • the piezoelectric injector 5 of other circuits is gated to repeat the above process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

一种新型柴油机高压共轨压电陶瓷喷油器驱动控制系统,涉及电路技术领域,该系统的升压电路中电源输入模块(1)、电感(L)和电容负载输出模块(2)依次串联引出电压输出端(+Boost),压电执行器驱动电路中的充电开关晶体管(Q2)的漏极连接电压输出端(+Boost)、源极通过第三二极管(D3)串联升压电路中的电感(L)并连接压电喷油器(5),使得压电执行器驱动电路与升压电路共用同一个电感(L),MCU控制升压电路在压电喷油器(5)动作时停止工作。

Description

新型柴油机高压共轨压电陶瓷喷油器驱动控制系统 技术领域
本发明涉及电路技术领域,尤其是一种新型柴油机高压共轨压电陶瓷喷油器驱动控制系统。
背景技术
柴油机高压共轨压电陶瓷喷油器驱动控制系统主要包括Boost升压电路和压电执行器驱动电路,压电陶瓷喷油器的驱动电压为150V,由+24V电池电压通过Boost升压电路实现,在开始喷油时,压电陶瓷执行器的电压为0,150V的高电压向压电陶瓷执行器充电,压电陶瓷执行器形变伸长,喷油器针阀抬起喷油;喷油结束,压电陶瓷执行器上释放+150V电压,压电陶瓷执行器恢复至原有长度,喷油器针阀在回位弹簧作用下回落停止喷油。现有的柴油机高压共轨压电陶瓷喷油器驱动控制系统的电路结构普遍比较复杂、器件较多。
技术问题
现有的柴油机高压共轨压电陶瓷喷油器驱动控制系统的电路结构普遍比较复杂、器件较多。
技术解决方案
本发明人针对上述问题及技术需求,提出了一种新型柴油机高压共轨压电陶瓷喷油器驱动控制系统,本发明的技术方案如下:
一种新型柴油机高压共轨压电陶瓷喷油器驱动控制系统,该系统包括MCU以及共用电感的升压电路和压电执行器驱动电路;
在升压电路中,电感的一端连接电源输入模块、另一端通过电容负载输出模块引出电压输出端,电感和电容负载输出模块的公共端还通过第一晶体管接地,第一晶体管的通断受控于升压电路控制模块;
在压电执行器驱动电路中,充电开关晶体管的漏极连接电压输出端、源极连接第三二极管的阳极,第三二极管的阴极连接电感和第一晶体管的公共端,第三二极管的阴极还通过放电开关晶体管接地,第三二极管的阴极还连接第四二极管的阳极,第四二极管的阴极连接电压输出端,充电开关晶体管和放电开关晶体管的通断受控于充放电控制模块;压电喷油器连接到电源输入模块和电感的公共端;充放电控制模块通过控制充电开关晶体管和放电开关晶体管的通断控制压电喷油器进行充放电;
升压电路控制模块和充放电控制模块根据MCU的控制信号工作,升压电路升压达到预定电压阈值后驱动压电喷油器,MCU在通过升压电路控制模块控制压电喷油器充放电动作期间,通过升压电路控制模块控制升压电路停止工作,当压电喷油器充放电动作结束后,升压电路恢复工作。
有益效果
本申请公开了一种新型柴油机高压共轨压电陶瓷喷油器驱动控制系统,通过合理的设计电路结构和驱动方式,使得升压电路和压电执行器驱动电路可以共用同一个电感,节约了电路元件,使得电路体积缩小,也能降低成本,同时设计一定的控制逻辑,在压电喷油器动作时、升压电路不工作,而压电喷油器不喷油时、升压电路工作,保证了整个系统的安全性和可靠性。
附图说明
图1是本申请的新型柴油机高压共轨压电陶瓷喷油器驱动控制系统的电路结构图。
图2是本申请的系统中各部分控制信号的波形示意图。
本发明的实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
本申请公开了一种新型柴油机高压共轨压电陶瓷喷油器驱动控制系统,请参考图1,该系统包括MCU、升压电路和压电执行器驱动电路。在常规的柴油机高压共轨压电陶瓷喷油器驱动控制系统中,升压电路中的电感值为80uH,而压电执行器驱动电路中,为了防止充放电电流太大,存在一个40~100uH的限流电感,而本申请调整系统的整体电路,使得升压电路和压电执行器驱动电路共用同一个电感L,电感的感值按照两个电路的感值需求采用80uH左右。
在升压电路中,电感L的一端连接电源输入模块1、另一端通过电容负载输出模块2引出电压输出端+Boost,电感L和电容负载输出模块2的公共端还通过第一晶体管Q1接地,第一晶体管Q1的通断受控于升压电路控制模块3,也即如图1所示,升压电路控制模块3连接第一晶体管Q1的栅极,两者之间通常还包括第二电阻R2。可选的在本申请中,电源输入模块1包括蓄电池BP和第一二极管D1,蓄电池BP的负极接地、正极连接第一二极管D1的阳极,第一二极管D1的阴极连接电感L,第一二极管D1可以起到防反接的作用。
在压电执行器驱动电路中,充电开关晶体管Q2的漏极连接电压输出端+Boost、源极连接第三二极管D3的阳极,第三二极管D3的阴极连接电感L和第一晶体管Q1的公共端,第三二极管D3的阴极还通过放电开关晶体管Q3接地。第三二极管D3的阴极还连接第四二极管D4的阳极,第四二极管D4的阴极连接电压输出端+Boost。充电开关晶体管Q2和放电开关晶体管Q3的通断受控于充放电控制模块4。压电喷油器5连接到电源输入模块1和电感L的公共端。
充放电控制模块4通过控制充电开关晶体管Q2和放电开关晶体管Q3的通断控制压电喷油器5进行充放电。升压电路控制模块3和充放电控制模块4根据MCU的控制信号工作,升压电路升压达到预定电压阈值后驱动压电喷油器5,MCU通过压电执行器驱动电路控制压电喷油器5开始充电、充电完成后喷油、喷油结束后放电、放电结束后完成整个驱动过程。在压电喷油器5进行上述充放电动作期间,MCU通过升压电路控制模块3控制升压电路停止工作,当压电喷油器5充放电动作结束后,升压电路恢复工作,保证了整个系统的可靠性和稳定性。
具体的,升压电路还包括电流采样电路和电压采样电路,电流采样电路采样流过第一晶体管Q1的电流并提供给升压电路控制模块3,电压采样电路采样电压输出端的电压并提供给升压电路控制模块3。则在压电喷油器5不动作时,升压电路的电压输出端+Boost的起始电压为电源输入模块1提供的蓄电池电压,通常为+24V,然后升压电路控制模块3基于电流采样电路采样的电流以及电压采样电路采样的电压控制第一晶体管Q1的通断来控制升压电路的工作过程:升压电路控制模块3输出高电平驱动第一晶体管Q1导通,电源输入模块1、电感L和第一晶体管Q1形成通电回路,第一晶体管Q1的电流上升,电压输出端+Boost的电压升高。当升压电路控制模块3基于电流采样电路获取到的电流采样端的采样电流达到预定电流阈值时,本申请通常取采样电流为10A,升压电路控制模块3输出低电平驱动第一晶体管Q1断开,电源输入模块1、电感L和电容负载输出模块2形成电流续流回路,电压输出端+Boost的电压升高。间隔预定时间后再次执行升压电路控制模块3输出高电平驱动第一晶体管Q1导通的步骤,重复上述导通、断开的步骤,直至通过电压采样电路采样到电压输出端+Boost的电压达到预定电压阈值时,升压电路充电完成,电压输出端+Boost升高至预定电压阈值,本申请中的预定电压阈值通常为+160V,升压电路通过上述过程从+24V充电至+160V大约需要48ms。
在本申请中,电容负载输出模块2包括第二二极管D2、第一电容C1和第二电容C2,第二二极管D2的阳极连接电感L,第二二极管D2的阴极连接到电压输出端+Boost,第一电容C1和第二电容C2并联且高端连接到第二二极管D2的阴极、低端接地。电流采样电路包括第三电阻R3,第三电阻R3连接在第一晶体管Q1和地之间,也即第一晶体管Q1的漏极连接电感L、源极通过第三电阻R3接地,第一晶体管Q1和第三电阻R3的公共端作为电流采样端连接到升压电路控制模块3。电压采样电路包括第四电阻R4和第五电阻R5,第四电阻R4和第五电阻R5构成的串联电路的一端连接到第二二极管D2的阴极、另一端接地,第四电阻R4和第五电阻R5的公共端作为电压采样端连接到升压电路控制模块3。
在本申请的升压电路控制模块3中,第一电阻R1的一端连接PWM发生器U1的COMP端口、另一端通过第二晶体管M2接地。PWM发生器U1的OUT端口连接增强型驱动控制器U2的输入端INA端口和INB端口,PWM发生器U1和增强型驱动控制器U2均采用现有芯片实现,增强型驱动控制器U2的输出端OUTA端口和OUTB端口连接到第一晶体管Q1的栅极。则电流采样电路和电压采样电路连接到升压电路控制模块3的做法实际是将电流采样电路和电压采样电路连接到PWM发生器U1,具体的,第一晶体管Q1和第三电阻R3的公共端连接到PWM发生器U1的I sense端口,第四电阻R4和第五电阻R5的公共端连接到PWM发生器U1的V FB端口。第二晶体管M2的通断受控于MCU输入的升压禁止使能信号S1,升压禁止使能信号S1为高电平有效时,第二晶体管M2导通、升压电路停止工作;升压禁止使能信号S1为低电平无效时,第二晶体管M2断开、升压电路正常工作。在升压电路正常工作时,PWM发生器U1通过OUT端口输出高电平,经增强型驱动控制器U2进行增强后输出给第一晶体管Q1使其导通,当PWM发生器U1的I sense端口采集到电流达到预定电流阈值时,通过OUT端口输出低电平经增强型驱动控制器U2进行增强后输出给第一晶体管Q1使其断开,PWM发生器U1间隔预定时间后再次输出高电平,如此往复,直到PWM发生器U1的V FB端口采样到的电压达到预定电压阈值。增强型驱动控制器U2主要用来增大PWM发生器U1对第一晶体管Q1的驱动能力,对第一晶体管Q1的驱动相位、脉宽、频率与PWM发生器U1的OUT端口的输出相一致。
类似的,压电执行器驱动电路还包括电流采样调制模块6和电压采样反馈模块7,则在压电喷油器5动作期间,充放电控制模块4基于电流采样调制模块6采样到的压电喷油器5的电流以及电压采样反馈模块7采样到的压电喷油器5的电压来控制充电开关晶体管Q2和放电开关晶体管Q3的通断。具体控制过程如下:
充放电控制模块4驱动充电开关晶体管Q2导通,升压电路的电压输出端+Boost的输出、充电开关晶体管Q2、第三二极管D3、电感L和压电喷油器5构成通电回路,升压电路的电压输出端+Boost输出的预定电压阈值的电压给压电喷油器5充电,压电喷油器5的电流和电压均增大,通常是爬坡上升,由于电感L的感值不大,因此电流上升斜率通常大。当压电喷油器5的电流上升至预设滞回阈值上限时,充放电控制模块4驱动充电开关晶体管Q2断开,放电开关晶体管Q3的体二极管、电感L和压电喷油器5构成续流回路继续向压电喷油器5充电,压电喷油器5的电压继续上升但电流下降,当电流下降至预设滞回阈值下限时,重新执行驱动充电开关晶体管Q2导通的步骤,如此导通断开往复操作,直至压电喷油器5的电压达到预定充电阈值时,驱动充电开关晶体管Q2断开、充电过程结束、压电喷油器5打开喷油。
压电喷油器5喷油结束后,充放电控制模块4驱动放电开关晶体管Q3导通,压电喷油器5、电感L、放电开关晶体管Q3形成放电回路,压电喷油器5的能量向电感L转移,压电喷油器5的电压降低、但电流以一定斜率增大。当电流上升至放电电流阈值上限时,充放电控制模块4断开放电开关晶体管Q3,压电喷油器5、电感L、第四二极管D4和电容负载输出模块2形成续流回路,具体的和电容负载输出模块2中的电容C1和C2形成续流回路,电感L中存储的能量向电容负载输出模块2中的电容转移,压电喷油器5的电压和电流均下降,当电流下降至放电电流阈值下限时,重新执行驱动放电开关晶体管Q3导通的步骤,如此导通断开往复操作,直至压电喷油器5的电压降低至0时,放电过程结束。由此可以看出,升压电路和压电执行器驱动电路除了共用电感L之外,实际还共用了第一电容C1和第二电容C2。
具体的,电流采样调制模块6包括第六电阻R6、充电电流调制电路和放电电流调制电路,压电喷油器5的一端连接到电源输入模块1和电感L的公共端、另一端通过第六电阻R6接地,压电喷油器5和第六电阻R6的公共端通过充电电流调制电路连接到充放电控制模块4提供相应的输出S2,压电喷油器5和第六电阻R6的公共端还通过放电电流调制电路连接到充放电控制模块4提供相应的输出S3。充电电流调制电路在检测到接收到的输入达到预设滞回阈值上限时输出低电平S2,充放电控制模块4根据充电电流调制电路输出的低电平关断充电开关晶体管Q2,充电电流调制电路在检测到接收到的输入下降至预设滞回阈值下限时输出高电平S2,充放电控制模块4根据充电电流调制电路输出的高电平导通充电开关晶体管Q2。放电电流调制电路在检测到接收到的输入达到放电电流阈值上限时输出低电平S3,充放电控制模块4根据放电电流调制电路输出的低电平关断放电开关晶体管Q2,放电电流调制电路在检测到接收到的输入下降至放电电流阈值下限时输出高电平S3,充放电控制模块4根据放电电流调制电路输出的高电平导通放电开关晶体管Q2。充电电流调制电路和放电电流调制电路均可以基于比较器芯片构建。
电压采样反馈模块7包括第七电阻R7、第八电阻R8和电压反馈电路,第七电阻R7和第八电阻R8构成的串联电路的一端连接到电源输入模块1和电感L的公共端、另一端接地,第七电阻R7和第八电阻R8的公共端通过电压反馈电路连接到充放电控制模块4提供相应的输出S4。在本申请中,当压电喷油器5的电压未达到预定充电阈值时,电压反馈电路输出高电平S4;当压电喷油器5的电压达到预定充电阈值时,电压反馈电路输出低电平S4。电压反馈电路可以基于比较器芯片构建。
在本申请中,充放电控制模块4包括逻辑处理单元、充电预驱动电路和放电预驱动电路,MCU连接到逻辑处理单元提供充电使能信号S5和放电使能信号S6,电流采样调制模块6的输出S2和S3和电压采样反馈模块7的输出S4也输出给逻辑处理单元,逻辑处理单元根据S2、S3、S4、S5和S6通过充电预驱动电路驱动Q2和/或通过放电预驱动电路驱动Q3,逻辑处理单元驱动充电预驱动电路的信号记为S7,驱动放电预驱动电路的信号记为S8。本申请的逻辑处理单元可以采用市售芯片实现,充电预驱动电路和放电预驱动电路均可以采用现有的驱动电路实现。
在实际实现时,压电执行器驱动电路包括若干个并联的压电喷油器5,如图1以包括三个压电喷油器5为例。则压电执行器驱动电路还包括选缸控制模块8以及若干个低端选缸晶体管开关9,每个压电喷油器5的一端均连接到电源输入模块1和电感L的公共端、另一端分别通过对应的一个低端选缸晶体管开关9连接至第,如图1中即包括三个低端选缸晶体管开关9,每个低端选缸晶体管开关9的漏端分别连接对应的压电喷油器5、源端均连接至地。如上所述,压电喷油器5与接地端之间通常还包括第六电阻R6,则低端选缸晶体管开关9连接在压电喷油器5与第六电阻R6之间,则每个低端选缸晶体管开关9的漏端分别连接对应的压电喷油器5、源端均连接至第六电阻R6的一端,第六电阻R6的另一端接地。各个低端选缸晶体管开关9的通断均受控于选缸控制模块8,选缸控制模块8根据MCU提供的选缸信号和喷油脉宽信号S9控制相应的低端选缸晶体管开关9导通从而选通所连的压电喷油器5。当低端选缸晶体管开关9导通时,其所在通路上的压电喷油器5即被选通,可以按照上述过程进行充放电动作。
以六缸压电喷油器、发动机转速为1200rpm为例,该驱动系统上电后,+Boost等于蓄电池电压+24V,压电喷油器5不动作,基于本申请的内置增强型驱动控制器U2的升压电路,+Boost电压从+24V上升至150V充电时间约为48ms。MCU输出相应的选缸信号和喷油脉宽信号S9,选缸控制模块8闭合相应的选中低端选缸晶体管开关9选通对应的压电喷油器5。喷油脉宽信号S9与充电使能信号S5上升沿对齐,此时Boost电压满足压电喷油器驱动需求,MCU输出高电平的S1使得升压电路禁止工作,选通的压电喷油器5按照上述过程进行充电。充电结束后,MCU输出有效的放电使能信号S6,喷油脉宽信号S9仍然有效,选通的压电喷油器5按照上述过程进行放电。结束当前选通的压电喷油器5的动作过程后,选通其他路的压电喷油器5重复上述过程,比如图2中喷油脉宽信号S9第一个有效电平周期对应选缸信号选通1缸的情况,第二个有效电平周期对应选缸信号选通5缸的情况,依次类推。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内

Claims (8)

  1. 一种新型柴油机高压共轨压电陶瓷喷油器驱动控制系统,其特征在于,所述系统包括MCU以及共用电感的升压电路和压电执行器驱动电路;
    在所述升压电路中,所述电感的一端连接所述电源输入模块、另一端通过电容负载输出模块引出电压输出端,所述电感和电容负载输出模块的公共端还通过第一晶体管接地,所述第一晶体管的通断受控于升压电路控制模块;
    在所述压电执行器驱动电路中,充电开关晶体管的漏极连接所述电压输出端、源极连接第三二极管的阳极,所述第三二极管的阴极连接所述电感与所述第一晶体管的公共端,所述第三二极管的阴极还通过放电开关晶体管接地,所述第三二极管的阴极还连接第四二极管的阳极,所述第四二极管的阴极连接所述电压输出端,所述充电开关晶体管和放电开关晶体管的通断受控于充放电控制模块;压电喷油器连接到所述电源输入模块和所述电感的公共端;所述充放电控制模块通过控制所述充电开关晶体管和放电开关晶体管的通断控制所述压电喷油器进行充放电;
    所述升压电路控制模块和所述充放电控制模块根据所述MCU的控制信号工作,所述升压电路升压达到预定电压阈值后驱动所述压电喷油器,MCU在通过所述升压电路控制模块控制所述压电喷油器充放电动作期间,通过所述升压电路控制模块控制所述升压电路停止工作,当所述压电喷油器充放电动作结束后,所述升压电路恢复工作。
  2. 根据权利要求1所述的系统,其特征在于,在所述升压电路控制模块中,第一电阻的一端连接PWM发生器的COMP端口、另一端通过第二晶体管接地,所述第二晶体管的通断受控于所述MCU输入的升压禁止使能信号,所述PWM发生器的OUT端口连接增强型驱动控制器的输入端,所述增强型驱动控制器的输出端连接到所述第一晶体管的栅极;所述升压禁止使能信号为高电平有效时,所述第二晶体管导通、所述升压电路停止工作;所述升压禁止使能信号为低电平无效时,所述第二晶体管断开、所述升压电路正常工作。
  3. 根据权利要求1所述的系统,其特征在于,所述升压电路还包括电流采样电路和电压采样电路,所述电流采样电路采样流过所述第一晶体管的电流并提供给所述升压电路控制模块,所述电压采样电路采样所述电压输出端的电压并提供给所述升压电路控制模块;
    则在所述压电喷油器不动作时,所述升压电路控制模块基于所述电流采样电路采样的电流以及所述电压采样电路采样的电压控制所述第一晶体管的通断来控制所述升压电路的工作过程:
    所述升压电路控制模块输出高电平驱动所述第一晶体管导通,所述电源输入模块、所述电感和所述第一晶体管形成通电回路;当所述电流采样端的采样电流达到预定电流阈值时,所述升压电路控制模块输出低电平驱动所述第一晶体管断开,所述电源输入模块、电感和电容负载输出模块形成电流续流回路,所述电压输出端的电压升高;间隔预定时间并再次执行所述升压电路控制模块输出高电平驱动所述第一晶体管导通的步骤,直至通过所述电压采样电路采样到所述电压输出端的电压达到所述预定电压阈值。
  4. 根据权利要求3所述的系统,其特征在于,所述电容负载输出模块包括第二二极管、第一电容和第二电容,所述第二二极管的阳极连接所述电感,所述第二二极管的阴极连接到所述电压输出端,所述第一电容和第二电容并联且高端连接到所述第二二极管的阴极、低端接地;
    所述电流采样电路包括第三电阻,所述第三电阻连接在所述第一晶体管和地之间,所述第一晶体管和第三电阻的公共端作为电流采样端连接到所述升压电路控制模块;
    所述电压采样电路包括第四电阻和第五电阻,所述第四电阻和第五电阻构成的串联电路的一端连接到所述第二二极管的阴极、另一端接地,所述第四电阻和第五电阻的公共端作为电压采样端连接到所述升压电路控制模块。
  5. 根据权利要求1所述的系统,其特征在于,所述压电执行器驱动电路还包括电流采样调制模块和电压采样反馈模块,则在所述压电喷油器动作期间,所述充放电控制模块基于所述电流采样调制模块采样到的所述压电喷油器的电流以及所述电压采样反馈模块采样到的所述压电喷油器的电压来控制所述充电开关晶体管和放电开关晶体管的通断:
    所述充放电控制模块驱动所述充电开关晶体管导通,所述升压电路的电压输出端的输出、充电开关晶体管、第三二极管、电感和压电喷油器构成通电回路,所述升压电路的电压输出端输出的预定电压阈值的电压给所述压电喷油器充电,所述压电喷油器的电流和电压均增大,当电流上升至预设滞回阈值上限时,所述充放电控制模块驱动所述充电开关晶体管断开,所述放电开关晶体管的体二极管、电感和压电喷油器构成续流回路继续向所述压电喷油器充电,所述压电喷油器的电压继续上升但电流下降,当电流下降至预设滞回阈值下限时,重新执行所述驱动所述充电开关晶体管导通的步骤,直至所述压电喷油器的电压达到预定充电阈值时,驱动所述充电开关晶体管断开、充电过程结束、所述压电喷油器打开喷油;
    所述压电喷油器喷油结束后,所述充放电控制模块驱动所述放电开关晶体管导通,所述压电喷油器、电感、放电开关晶体管形成放电回路,所述压电喷油器的电压降低、电流增大,当电流上升至放电电流阈值上限时,所述充放电控制模块断开所述放电开关晶体管,所述压电喷油器、电感、第四二极管和电容负载输出模块形成续流回路,所述压电喷油器的电压和电流均下降,当电流下降至放电电流阈值下限时,重新执行所述驱动所述放电开关晶体管导通的步骤,直至所述压电喷油器的电压降低至0时,放电过程结束。
  6. 根据权利要求5所述的系统,其特征在于,
    所述电流采样调制模块包括第六电阻、充电电流调制电路和放电电流调制电路,所述压电喷油器的一端连接到所述电源输入模块和所述电感的公共端、另一端通过所述第六电阻接地,所述压电喷油器和所述第六电阻的公共端通过所述充电电流调制电路连接到所述充放电控制模块,所述压电喷油器和所述第六电阻的公共端还通过所述放电电流调制电路连接到所述充放电控制模块;
    所述充电电流调制电路在检测到接收到的输入达到预设滞回阈值上限时输出低电平,所述充放电控制模块根据所述充电电流调制电路输出的低电平关断所述充电开关晶体管;所述充电电流调制电路在检测到接收到的输入下降至预设滞回阈值下限时输出高电平,所述充放电控制模块根据所述充电电流调制电路输出的高电平导通所述充电开关晶体管;
    所述放电电流调制电路在检测到接收到的输入达到所述放电电流阈值上限时输出低电平,所述充放电控制模块根据所述放电电流调制电路输出的低电平关断所述充电开关晶体管;所述放电电流调制电路在检测到接收到的输入达到所述放电电流阈值下限时输出高电平,所述充放电控制模块根据所述放电电流调制电路输出的高电平导通所述充电开关晶体管;
    所述电压采样反馈模块包括第七电阻、第八电阻和电压反馈电路,所述第七电阻和第八电阻构成的串联电路的一端连接到所述电源输入模块和所述电感的公共端、另一端接地,所述第七电阻和第八电阻的公共端通过所述电压反馈电路连接到所述充放电控制模块;当所述压电喷油器的电压未达到所述预定充电阈值时,所述电压反馈电路输出高电平,当所述压电喷油器的电压达到所述预定充电阈值时,所述电压反馈电路输出低电平。
  7. 根据权利要求1所述的系统,其特征在于,所述压电执行器驱动电路包括若干个并联的所述压电喷油器,则所述压电执行器驱动电路还包括选缸控制模块以及若干个低端选缸晶体管开关,每个所述压电喷油器的一端均连接到所述电源输入模块和所述电感的公共端、另一端分别通过一个低端选缸晶体管开关连接至地,各个低端选缸晶体管开关的通断均受控于所述选缸控制模块,所述选缸控制模块根据所述MCU提供的选缸信号和喷油脉宽信号控制相应的低端选缸晶体管开关导通从而选通所连的压电喷油器。
  8. 根据权利要求1所述的系统,其特征在于,所述电源输入模块包括蓄电池和第一二极管,所述蓄电池的负极接地、正极连接所述第一二极管的阳极,所述第一二极管的阴极连接所述电感。
PCT/CN2021/128343 2021-01-15 2021-11-03 新型柴油机高压共轨压电陶瓷喷油器驱动控制系统 WO2022151810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110054779.5A CN112746908B (zh) 2021-01-15 2021-01-15 柴油机高压共轨压电陶瓷喷油器驱动控制系统
CN202110054779.5 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022151810A1 true WO2022151810A1 (zh) 2022-07-21

Family

ID=75652152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128343 WO2022151810A1 (zh) 2021-01-15 2021-11-03 新型柴油机高压共轨压电陶瓷喷油器驱动控制系统

Country Status (2)

Country Link
CN (1) CN112746908B (zh)
WO (1) WO2022151810A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746908B (zh) * 2021-01-15 2021-11-12 无锡职业技术学院 柴油机高压共轨压电陶瓷喷油器驱动控制系统
CN114592982B (zh) * 2022-03-18 2023-07-21 无锡职业技术学院 一种高压共轨喷油器快速大电流续流电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280098A (ja) * 1996-04-12 1997-10-28 Toyota Motor Corp インジェクタ駆動回路
EP1182341A1 (fr) * 2000-08-25 2002-02-27 Renault Dispositif de commande d'une céramique piézoélectrique, notamment pour un actionneur d'injecteur de moteur à combustion interne
CN1651742A (zh) * 2005-01-07 2005-08-10 清华大学 集成式双电压电磁阀驱动电路
CN202165166U (zh) * 2010-12-07 2012-03-14 中国第一汽车集团公司无锡油泵油嘴研究所 柴油机喷油系统电磁阀驱动电路
CN104500298A (zh) * 2014-12-03 2015-04-08 中国第一汽车股份有限公司无锡油泵油嘴研究所 柴油机压电陶瓷喷油器的驱动电流控制电路
CN112746908A (zh) * 2021-01-15 2021-05-04 无锡职业技术学院 新型柴油机高压共轨压电陶瓷喷油器驱动控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336905B2 (ja) * 1997-05-13 2002-10-21 トヨタ自動車株式会社 アクチュエータ駆動回路
DE102004058672A1 (de) * 2004-12-06 2006-06-08 Robert Bosch Gmbh Elektrische Schaltung zur Ansteuerung eines piezoelektrischen Elements insbesondere einer Kraftstoffeinspritzanlage eines Kraftfahrzeugs
CN104806401B (zh) * 2015-05-16 2018-01-12 意昂神州(北京)科技有限公司 多功能喷油器驱动控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280098A (ja) * 1996-04-12 1997-10-28 Toyota Motor Corp インジェクタ駆動回路
EP1182341A1 (fr) * 2000-08-25 2002-02-27 Renault Dispositif de commande d'une céramique piézoélectrique, notamment pour un actionneur d'injecteur de moteur à combustion interne
CN1651742A (zh) * 2005-01-07 2005-08-10 清华大学 集成式双电压电磁阀驱动电路
CN202165166U (zh) * 2010-12-07 2012-03-14 中国第一汽车集团公司无锡油泵油嘴研究所 柴油机喷油系统电磁阀驱动电路
CN104500298A (zh) * 2014-12-03 2015-04-08 中国第一汽车股份有限公司无锡油泵油嘴研究所 柴油机压电陶瓷喷油器的驱动电流控制电路
CN112746908A (zh) * 2021-01-15 2021-05-04 无锡职业技术学院 新型柴油机高压共轨压电陶瓷喷油器驱动控制系统

Also Published As

Publication number Publication date
CN112746908A (zh) 2021-05-04
CN112746908B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2022151810A1 (zh) 新型柴油机高压共轨压电陶瓷喷油器驱动控制系统
US6760212B2 (en) Piezoelectric injector drive circuit
US20070103033A1 (en) Drive circuit for an injector arrangement
CN105422963B (zh) 发动机电控单体泵电磁阀控制电路
GB2579933A (en) Switch control circuit for a gate drive
CN100356052C (zh) 集成式双电压电磁阀驱动电路
US8108126B2 (en) Method of controlling fuel injection apparatus
US20040212944A1 (en) Solenoid drive apparatus
CN202165166U (zh) 柴油机喷油系统电磁阀驱动电路
CN204615649U (zh) 直流稳压转换器
CN105736162A (zh) 共轨式柴油机喷油控制系统
CN203014677U (zh) 一种高压共轨喷油器的升压电路
CN104037880B (zh) 驱动压电式喷油器装置
JP2010522839A (ja) 圧電素子の駆動制御回路および駆動制御方法
US8154840B2 (en) Fuel injector control
CN112746920B (zh) 一种压电晶体喷油器驱动电路
CN108412627B (zh) 一种柴油机电控共轨系统的智能驱动装置及方法
CN111927666B (zh) 一种高压共轨喷油器快速续流电路
EP0821149B1 (en) Device for controlling inductive loads, in particular of injectors of an internal combustion engine injection system
CN208153170U (zh) 一种柴油机电控共轨系统的智能驱动装置
CN105245091A (zh) 一种功率变换器中功率mos管的栅极驱动电路
CN105927437B (zh) 带有能量回收的压电式喷油器的驱动结构
CN102223069A (zh) 一种自驱动同步降压转换器电路
CN219605416U (zh) 柴油发动机电子控制器
CN114087080B (zh) 一种压电晶体/电磁型高压共轨喷油器通用控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919001

Country of ref document: EP

Kind code of ref document: A1